diff --git a/spaces/101-5/gpt4free/g4f/.v1/gui/__init__.py b/spaces/101-5/gpt4free/g4f/.v1/gui/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Adobe Premiere Pro CC 2015.3 (v10.3) Multilingual By M0nkrus- TE Serial Key [2021] Keygen.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Adobe Premiere Pro CC 2015.3 (v10.3) Multilingual By M0nkrus- TE Serial Key [2021] Keygen.md deleted file mode 100644 index 71bc3993e7bc469f7abf357927bb30d8d2740832..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Adobe Premiere Pro CC 2015.3 (v10.3) Multilingual By M0nkrus- TE Serial Key [2021] Keygen.md +++ /dev/null @@ -1,58 +0,0 @@ - -
Are you looking for a professional video editing software that can handle a variety of formats, effects, and workflows? Do you want to create and edit high-quality videos for various purposes, such as film, TV, web, and social media? If yes, then you might want to check out Adobe Premiere Pro CC 2015.3 (v10.3) Multilingual by m0nkrus-=TE Serial Key Keygen.
-DOWNLOAD >>> https://byltly.com/2uKz1a
This is a repackaged version of the original Adobe Premiere Pro CC 2015.3 software that comes with a serial key and a keygen to activate it. It is also multilingual, which means you can use it in different languages, such as English, French, German, Spanish, Italian, Russian, Arabic, Japanese, Korean, Chinese, and more.
-In this article, we will review this software and its features, pros and cons, and how to download and install it on your computer.
-Adobe Premiere Pro CC 2015.3 (v10.3) Multilingual by m0nkrus-=TE Serial Key Keygen is a video editing software that allows you to create and edit high-quality videos for various purposes, such as film, TV, web, and social media.
-This software is part of the Adobe Creative Cloud suite, which means you can access other Adobe applications and services, such as Photoshop, After Effects, Audition, Media Encoder, and more.
- -and more. You can switch between languages easily by changing the language settings in the preferences menu.
-There are many reasons why you might want to use Adobe Premiere Pro CC 2015.3 (v10.3) Multilingual by m0nkrus-=TE Serial Key Keygen for your video editing projects.
-Some of them are:
-and more. You can also use the scopes and the reference monitor to analyze the color and luminance of your clips. You can also use the Lumetri scopes to monitor the color and brightness of your video as you make adjustments. -
We hope this article has been helpful and informative for you. If you have any questions or feedback, please feel free to leave a comment below.
-Here are some frequently asked questions and answers about Adobe Premiere Pro CC 2015.3 (v10.3) Multilingual by m0nkrus-=TE Serial Key Keygen.
-A: Yes, it is safe to use as long as you download it from a reliable source and scan it with an antivirus program before installing it. However, you should be aware that this is a repackaged version of the original software that has been modified by a third-party developer. Therefore, it might not be fully compatible or stable with your system or other Adobe applications. Use it at your own risk.
-A: No, it is not legal to use because it is a pirated version of the original software that violates the terms and conditions of Adobe. You should only use the official version of Adobe Premiere Pro CC 2015.3 that you can purchase from the Adobe website or other authorized dealers. Using a pirated version of the software can expose you to legal issues, security risks, and performance problems.
-A: According to the official website of Adobe, these are the minimum system requirements for Adobe Premiere Pro CC 2015.3:
-A: You cannot update this version of the software because it is a repackaged version that has been modified by a third-party developer. If you want to update your software to the latest version, you should uninstall this version and install the official version of Adobe Premiere Pro CC 2015.3 that you can purchase from the Adobe website or other authorized dealers.
-A: You can uninstall this version of the software by following these steps:
-If you are an engineering student looking for a textbook that covers the subject of applied mathematics 4 in a clear and concise manner, then you might want to consider Applied Mathematics 4 by Prof. G.V. Kumbhojkar. This book is suggested as a textbook for studying the subject Applied Mathematics 4 in Mechanical Engineering Semester 4 (Mumbai University) and other engineering branches as well.
-In this article, we will give you an overview of what applied mathematics 4 is, who Prof. G.V. Kumbhojkar is, why his book is a good choice for you, and how you can download the pdf version of his book online.
-Download File › https://byltly.com/2uKwul
Applied mathematics 4 is a branch of mathematics that deals with the application of mathematical methods and techniques to solve problems in engineering, science, and other fields. It involves topics such as complex analysis, differential equations, numerical methods, Fourier series, Laplace transforms, Z-transforms, and probability theory.
-Applied mathematics 4 is a very important subject for engineering students because it helps them to understand and analyze various phenomena and processes that occur in their fields of study. For example, complex analysis helps them to deal with functions of complex variables, which are useful for studying electrical circuits, fluid dynamics, heat transfer, etc. Differential equations help them to model and solve problems involving rates of change, such as population growth, chemical reactions, mechanical vibrations, etc. Numerical methods help them to approximate solutions of equations that cannot be solved analytically, such as nonlinear equations, differential equations, integral equations, etc. Fourier series help them to represent periodic functions as sums of sines and cosines, which are useful for studying wave phenomena, signal processing, image processing, etc. Laplace transforms help them to transform differential equations into algebraic equations, which are easier to solve and manipulate, especially for systems with initial conditions. Z-transforms help them to transform discrete-time signals into complex-valued functions, which are useful for studying digital systems, control systems, filter design, etc. Probability theory helps them to deal with uncertainty and randomness in various situations, such as reliability analysis, quality control, testing and estimation, etc.
-The textbook Applied Mathematics 4 by Prof. G.V. Kumbhojkar covers all the topics mentioned above in a systematic and comprehensive manner. It has 12 chapters that are divided into four units:
-Unit | -Chapter | -Topic | -
---|---|---|
I | -1 | -Complex Variables | -
I | -2 | -Complex Integration | -
I | -3 | -Taylor's and Laurent's Series | -
I | -4 | -Singularities and Residues | -
II | -5 | -Differential Equations of First Order | -
II | -6 | -Differential Equations of Higher Order | -
II | -7 | -Numerical Solutions of Ordinary Differential Equations | -
III | -8 | -Fourier Series and Partial Differential Equations | -
III | -9 | -Laplace Transforms I | -
III | -10 | -Laplace Transforms II | -
Prof. G.V. Kumbhojkar is a renowned professor of mathematics who has been teaching engineering students for more than three decades. He is currently working as a professor and head of the department of mathematics at Sardar Patel College of Engineering (SPCE), Mumbai.
-Prof. G.V. Kumbhojkar has a brilliant academic record throughout his career. He completed his B.Sc (Mathematics) from University of Mumbai with distinction in 1979. He then pursued his M.Sc (Mathematics) from Indian Institute of Technology (IIT), Bombay with first class in 1981. He also obtained his Ph.D (Mathematics) from IIT Bombay in 1990.
-He has received several awards and honors for his academic excellence and research contributions. Some of them are:
-applied mathematics 4 kumbhojkar pdf free download
-applied mathematics 4 kumbhojkar solutions pdf
-applied mathematics 4 kumbhojkar ebook download
-applied mathematics 4 kumbhojkar book pdf
-applied mathematics 4 kumbhojkar online pdf
-applied mathematics 4 kumbhojkar pdf drive
-applied mathematics 4 kumbhojkar pdf google drive
-applied mathematics 4 kumbhojkar pdf reddit
-applied mathematics 4 kumbhojkar pdf quora
-applied mathematics 4 kumbhojkar pdf telegram
-applied mathematics 4 kumbhojkar pdf github
-applied mathematics 4 kumbhojkar pdf archive.org
-applied mathematics 4 kumbhojkar pdf scribd
-applied mathematics 4 kumbhojkar pdf slideshare
-applied mathematics 4 kumbhojkar pdf academia.edu
-applied mathematics 4 kumbhojkar pdf libgen
-applied mathematics 4 kumbhojkar pdf zlibrary
-applied mathematics 4 kumbhojkar pdf b-ok.cc
-applied mathematics 4 kumbhojkar pdf oceanofpdf
-applied mathematics 4 kumbhojkar pdf worldcat.org
-applied mathematics 4 by g v kumbhojkar pdf download
-g v kumbhojkar applied mathematics 4 pdf download
-g v kumbhojkar applied mathematics iv pdf download
-g v kumbhojkar sem iv maths pdf download
-g v kumbhojkar sem iv maths solution pdf download
-g v kumbhojkar sem iv maths book pdf download
-g v kumbhojkar sem iv maths ebook pdf download
-g v kumbhojkar sem iv maths online pdf download
-g v kumbhojkar sem iv maths free pdf download
-g v kumbhojkar sem iv maths textbook pdf download
-g v kumbhojkar sem iv maths reference book pdf download
-g v kumbhojkar sem iv maths guide book pdf download
-g v kumbhojkar sem iv maths notes pdf download
-g v kumbhojkar sem iv maths question bank pdf download
-g v kumbhojkar sem iv maths previous year papers pdf download
-g v kumbhojkar sem iv maths sample papers pdf download
-g v kumbhojkar sem iv maths model papers pdf download
-g v kumbhojkar sem iv maths mcq papers pdf download
-g v kumbhojkar sem iv maths syllabus pdf download
-g v kumbhojkar sem iv maths formulae sheet pdf download
-g v kumbhojkar sem iv maths tricks and tips pdf download
-g v kumbhojkar sem iv maths revision notes pdf download
-g v kumbhojkar sem iv maths important topics pdf download
-g v kumbhojkar sem iv maths video lectures pdf download
-g v kumbhojkar sem iv maths online course pdf download
-g v kumbhojkar sem iv maths online test series pdf download
-g v kumbhojkar sem iv maths mock tests pdf download
-g v kumbhojkar sem iv maths practice tests pdf download
-g v kumbhojkar sem iv maths solved examples pdf download
-g v kumbhojkar sem iv maths unsolved exercises pdf download
Prof. G.V. Kumbhojkar has been teaching mathematics to engineering students since 1982 at various institutes such as SPCE Mumbai, VJTI Mumbai, IIT Bombay, IIT Delhi, IIT Madras, IIT Kanpur, IIT Guwahati, IIT Roorkee, IIT Hyderabad, IIT Gandhinagar, IIT Patna, IIT Bhubaneswar, IIT Indore, IIT Mandi, IIT Jodhpur, IIT Ropar, IIT Palakkad, IIT Tirupati, IIT Dharwad, IIT Bhilai, IIT Goa, and IIT Jammu. He has also been invited as a visiting professor or guest lecturer at many prestigious universities abroad such as MIT USA, Harvard USA, Stanford USA, Princeton USA, Cambridge UK, Oxford UK, ETH Zurich Switzerland, EPFL Switzerland, Paris-Saclay France, Sorbonne France, Berlin Germany, Heidelberg Germany, Tokyo Japan, Kyoto Japan, Beijing China, Shanghai China, Singapore Singapore, and Sydney Australia. He B3D. However, this may not be available in stock or may have a higher price. - -
In conclusion, Applied Mathematics 4 by Prof. G.V. Kumbhojkar is a comprehensive textbook that covers the subject of applied mathematics 4 in a clear and concise manner. It is suitable for engineering students of Mumbai University and other universities as well. It provides a systematic and thorough treatment of all the topics with relevant examples and illustrations. It also contains numerous solved problems and exercises that help you to practice and master the concepts. It also includes objective type questions, multiple choice questions, true/false questions, fill in the blanks, and match the following questions that help you to prepare for exams. It is updated and revised regularly to incorporate the latest developments and trends in the field. It is affordable and easily available online and offline. It has received positive feedback and reviews from students and teachers who have used it for their studies. You can download the pdf version of the book from Stupidsid website or from other alternative sources online.
-We hope this article has given you a good overview of Applied Mathematics 4 by Prof. G.V. Kumbhojkar and has helped you to decide whether to buy it or not. If you have any questions or comments, please feel free to share them with us.
-Here are some frequently asked questions about Applied Mathematics 4 by Prof. G.V. Kumbhojkar:
-Crack only is a term that refers to a file or a program that can bypass the copy protection or the activation process of a software or a game. Crack only is usually used by people who want to use a software or a game without paying for it or without having the original disc or the online account.
-Download … https://byltly.com/2uKvZj
Crack only can be downloaded from various websites that offer pirated software or games. However, using crack only is illegal and risky, as it may contain viruses, malware, spyware, or other harmful programs that can damage your computer or steal your personal information. Moreover, using crack only may cause errors, glitches, crashes, or compatibility issues with your system or other software.
-If you want to use a software or a game legally and safely, you should buy it from the official website or a trusted retailer. You should also avoid downloading or sharing crack only files or programs, as you may face legal consequences or penalties for violating the intellectual property rights of the software or game developers.
- -If you still want to use crack only despite the risks and the legal issues, you should follow these steps:
-Note: This article is for educational purposes only. We do not condone or encourage the use of crack only or any other form of piracy.
- -If you want to use a software or a game without paying for it, but you do not want to use crack only or any other form of piracy, you have some alternatives that are legal and safe. Here are some of them:
- -These alternatives can help you enjoy using software or games without breaking the law or risking your computer's security. You can also support the developers by giving them feedback, donations, ratings, reviews, or referrals.
ddb901b051El pensamiento crítico es una habilidad esencial para la vida académica, profesional y ciudadana. Se trata de la capacidad de analizar, evaluar y generar argumentos razonables sobre cualquier tema o problema. El pensamiento crítico nos permite comprender mejor la realidad, tomar decisiones informadas y resolver conflictos de forma constructiva.
-DOWNLOAD >>> https://imgfil.com/2uxXNv
¿Cómo se puede desarrollar el pensamiento crítico? Una de las mejores formas es leer libros que nos enseñen los fundamentos y las técnicas de esta habilidad. Uno de esos libros es Agustin Campos Arenas Pensamiento Critico.pdf, una obra del profesor Agustín Campos Arenas, experto en educación y filosofía.
- -El libro Agustin Campos Arenas Pensamiento Critico.pdf es una guía práctica para el desarrollo del pensamiento crítico en el ámbito educativo. El autor presenta los conceptos básicos del pensamiento crítico, como la lógica, la argumentación, la inferencia, la evidencia y los sesgos. Además, ofrece una serie de actividades y ejercicios para aplicar estas nociones a diferentes disciplinas y situaciones.
- -El libro se divide en dos partes: la primera se enfoca en los aspectos teóricos del pensamiento crítico, y la segunda en los aspectos prácticos. En la primera parte, el autor explica la historia, la definición y la importancia del pensamiento crítico, así como los principales modelos y autores que lo han estudiado. En la segunda parte, el autor propone una metodología para el desarrollo del pensamiento crítico en el aula, basada en cuatro fases: comprensión, análisis, evaluación y expresión.
- -El libro Agustin Campos Arenas Pensamiento Critico.pdf es una excelente herramienta para mejorar el pensamiento crítico tanto de los estudiantes como de los docentes. El autor combina la teoría con la práctica, y ofrece ejemplos claros y relevantes para ilustrar los conceptos. El libro también es accesible y ameno, y está escrito con un lenguaje sencillo y directo.
- -Leer el libro Agustin Campos Arenas Pensamiento Critico.pdf nos ayudará a desarrollar una mente más abierta, crítica y creativa. Aprenderemos a cuestionar nuestras propias creencias y opiniones, así como las de los demás. También podremos construir e intercambiar argumentos sólidos y persuasivos sobre cualquier tema o problema. En definitiva, leer el libro Agustin Campos Arenas Pensamiento Critico.pdf nos hará mejores pensadores y mejores personas.
- -Agustín Campos Arenas es un profesor e investigador mexicano, especializado en filosofía de la educación y pensamiento crítico. Es doctor en Filosofía por la Universidad Nacional Autónoma de México (UNAM) y maestro en Educación por la Universidad Pedagógica Nacional (UPN). Ha sido profesor e investigador en diversas instituciones educativas, como la UNAM, la UPN, el Instituto Politécnico Nacional (IPN) y el Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM).
- -Agustín Campos Arenas ha publicado varios libros y artículos sobre temas relacionados con la educación, la filosofía y el pensamiento crítico. Entre sus obras más destacadas se encuentran Agustin Campos Arenas Pensamiento Critico.pdf, Educación y filosofía: una introducción, La educación como práctica social y El pensamiento crítico en la educación superior. Además, ha participado en diversos proyectos de investigación y desarrollo educativo, tanto a nivel nacional como internacional.
- -Si quieres leer el libro Agustin Campos Arenas Pensamiento Critico.pdf, puedes descargarlo de forma gratuita desde el siguiente enlace: https://www.academia.edu/attachments/59705575/download_file?st=MTYzOTU3MjEwMCw0MS4xOTkuMTQ2LjE1NCw0MjIyNzQw&s=profile. Se trata de un archivo en formato PDF que puedes leer en tu computadora, tablet o celular. También puedes imprimirlo si lo prefieres.
- -El libro Agustin Campos Arenas Pensamiento Critico.pdf es una obra de gran valor para todos los interesados en mejorar su pensamiento crítico y su capacidad de razonar. Te invitamos a leerlo y a compartirlo con tus amigos, familiares y colegas. Estamos seguros de que te será de mucha utilidad y te abrirá nuevas perspectivas sobre el mundo.
-El pensamiento crítico tiene múltiples beneficios para el desarrollo personal y social de las personas. Algunos de estos beneficios son:
- -El pensamiento crítico es, por tanto, una habilidad indispensable para el siglo XXI, en el que se enfrentan grandes desafíos sociales, económicos, ambientales y culturales. El pensamiento crítico nos permite adaptarnos al cambio, resolver problemas complejos y contribuir al bienestar común.
- -Si quieres adquirir el libro Agustin Campos Arenas Pensamiento Critico.pdf, puedes hacerlo de varias formas. Una de ellas es comprarlo en formato físico en alguna librería o tienda en línea. Otra opción es solicitarlo en alguna biblioteca pública o escolar. También puedes acceder al libro en formato digital a través de plataformas como Google Books o Academia.edu.
- -El libro Agustin Campos Arenas Pensamiento Critico.pdf es una inversión que vale la pena. No solo te ayudará a mejorar tu pensamiento crítico, sino también a ampliar tu cultura general y tu visión del mundo. Te recomendamos que lo leas con atención y que realices las actividades y ejercicios que propone el autor. Así podrás aprovechar al máximo los conocimientos y las habilidades que te ofrece este libro.
-El libro Agustin Campos Arenas Pensamiento Critico.pdf ha recibido numerosas opiniones positivas de los lectores que lo han leído. Algunos de los comentarios que se pueden encontrar en Internet son los siguientes:
- --- -"Es un libro muy completo y didáctico, que explica de forma clara y sencilla los conceptos y las técnicas del pensamiento crítico. Me ha servido mucho para mejorar mi capacidad de análisis y argumentación en mi trabajo y en mi vida personal."
-- Juan Carlos, profesor de secundaria. -
-- -"Me gustó mucho el libro porque presenta una metodología práctica y efectiva para desarrollar el pensamiento crítico en el aula. Los ejercicios y las actividades que propone el autor son muy variados e interesantes, y se pueden adaptar a diferentes niveles y materias."
-- María José, maestra de primaria. -
-- -"El libro es una excelente introducción al pensamiento crítico, que aborda tanto los aspectos teóricos como los prácticos. El autor tiene una gran experiencia y conocimiento sobre el tema, y lo expone con rigor y claridad. Lo recomiendo a todos los que quieran aprender a pensar mejor."
-- Luis Alberto, estudiante universitario. -
Estas son solo algunas de las opiniones que se pueden leer sobre el libro Agustin Campos Arenas Pensamiento Critico.pdf. Si quieres conocer más testimonios de los lectores, puedes visitar las páginas web de Google Books o Scribd, donde encontrarás más reseñas y valoraciones sobre esta obra.
- -Si quieres contactar con el autor del libro Agustin Campos Arenas Pensamiento Critico.pdf, puedes hacerlo a través de su correo electrónico: agustincamposarenas@gmail.com. También puedes seguirlo en sus redes sociales: Twitter (@agustincamposa) y Facebook (Agustín Campos Arenas).
- -Agustín Campos Arenas es un autor muy accesible y cercano, que siempre está dispuesto a responder a las dudas, comentarios o sugerencias de sus lectores. Además, suele participar en conferencias, talleres y cursos sobre pensamiento crítico y educación, tanto presenciales como en línea. Si quieres estar al tanto de sus actividades y novedades, puedes suscribirte a su boletín informativo o visitar su página web: www.agustincamposarenas.com.
-El libro Agustin Campos Arenas Pensamiento Critico.pdf es una de las mejores obras sobre pensamiento crítico que se pueden encontrar en el mercado. Sin embargo, no es la única. Existen otros libros que también abordan este tema desde diferentes perspectivas y enfoques. Algunos de estos libros son los siguientes:
- -Estos son solo algunos ejemplos de libros sobre pensamiento crítico que se pueden leer para complementar el libro Agustin Campos Arenas Pensamiento Critico.pdf. Hay muchos más libros que tratan este tema desde diferentes ángulos y disciplinas. Te animamos a que los busques y los leas, y así amplíes tu cultura y tu capacidad crítica.
-El pensamiento crítico es una habilidad fundamental para el siglo XXI, que nos permite analizar, evaluar y generar argumentos razonables sobre cualquier tema o problema. El pensamiento crítico nos ayuda a comprender mejor la realidad, tomar decisiones informadas y resolver conflictos de forma constructiva.
- -Uno de los mejores libros para aprender y practicar el pensamiento crítico es Agustin Campos Arenas Pensamiento Critico.pdf, una obra del profesor e investigador mexicano Agustín Campos Arenas, experto en educación y filosofía. Este libro presenta los conceptos básicos y las técnicas del pensamiento crítico, así como una serie de actividades y ejercicios para aplicarlos en el ámbito educativo.
- -El libro Agustin Campos Arenas Pensamiento Critico.pdf es una lectura recomendada para todos los que quieran mejorar su pensamiento crítico y su capacidad de razonar. El libro es accesible, ameno y práctico, y está escrito con un lenguaje sencillo y directo. El libro se puede descargar de forma gratuita desde Internet, o se puede comprar en formato físico o digital.
- -Si te ha gustado el libro Agustin Campos Arenas Pensamiento Critico.pdf, puedes contactar con el autor a través de su correo electrónico o sus redes sociales. También puedes leer otros libros sobre pensamiento crítico que te ofrecerán nuevas perspectivas y enfoques sobre este tema. Te invitamos a que sigas leyendo y aprendiendo sobre el pensamiento crítico, una habilidad que te hará más inteligente, más creativo y más feliz.
3cee63e6c2DOWNLOAD ····· https://imgfil.com/2uxXxp
Download File ===> https://imgfil.com/2uy0d2
If you are looking for a fast, reliable, and easy-to-use VPN service for your Android device, you may have heard of 24clan VPN Lite APK. This is a popular app that allows you to access blocked websites, apps, and content from anywhere in the world. But did you know that there are different versions of this app available, and that some users prefer to use the old version instead of the latest one? In this article, we will explain what 24clan VPN Lite APK is, how to download and install it on your Android device, why you need it, and how to use it. We will also answer some frequently asked questions about this app.
-24clan VPN Lite APK is an app that provides you with a virtual private network (VPN) service on your Android device. A VPN is a technology that creates a secure and encrypted connection between your device and a remote server, hiding your real IP address and location from anyone who can monitor your online activity. With a VPN, you can bypass geo-restrictions, censorship, firewalls, and ISP throttling, and access any website, app, or content that you want.
-Download - https://urlin.us/2uT19K
24clan VPN Lite APK is one of the many apps developed by Tcodes, a Nigerian company that specializes in creating free internet solutions for users in Africa and beyond. The app uses SSH (Secure Shell) protocol to create a tunnel between your device and a server hosted by Tcodes or its partners. The app also supports HTTP (Hypertext Transfer Protocol) proxy mode, which allows you to use the app as a web browser proxy.
-Some of the features of 24clan VPN Lite APK are:
-If you want to use 24clan VPN Lite APK old version on your Android device, you need to download and install it manually from a trusted source. You cannot find it on the Google Play Store, as the developer only updates the latest version there. Here are the steps to download and install 24clan VPN Lite APK old version on your Android device:
-Using a VPN service for your online privacy and security has many benefits, such as:
-While the newer versions of 24clan VPN Lite APK may have some improvements and bug fixes, some users prefer to use the old version for various reasons, such as:
-Even though 24clan VPN Lite APK old version is a reliable and easy-to-use app, you may still encounter some issues and errors while using it. Some of the common problems that users face are:
-To troubleshoot these issues and errors, you can try the following solutions:
-24clan vpn lite apk old version download
-24clan vpn lite apk old version free
-24clan vpn lite apk old version for android
-24clan vpn lite apk old version update
-24clan vpn lite apk old version 4.1
-24clan vpn lite apk old version 4.2
-24clan vpn lite apk old version 4.4
-24clan vpn lite apk old version mod
-24clan vpn lite apk old version hack
-24clan vpn lite apk old version pro
-24clan vpn lite apk old version premium
-24clan vpn lite apk old version cracked
-24clan vpn lite apk old version unlimited
-24clan vpn lite apk old version latest
-24clan vpn lite apk old version offline
-24clan vpn lite apk old version online
-24clan vpn lite apk old version review
-24clan vpn lite apk old version features
-24clan vpn lite apk old version settings
-24clan vpn lite apk old version tutorial
-24clan vpn lite apk old version guide
-24clan vpn lite apk old version tips
-24clan vpn lite apk old version tricks
-24clan vpn lite apk old version how to use
-24clan vpn lite apk old version how to install
-24clan vpn lite apk old version how to download
-24clan vpn lite apk old version how to update
-24clan vpn lite apk old version how to hack
-24clan vpn lite apk old version how to mod
-24clan vpn lite apk old version how to crack
-24clan vpn lite apk old version how to get premium
-24clan vpn lite apk old version how to get unlimited
-24clan vpn lite apk old version best settings
-24clan vpn lite apk old version best features
-24clan vpn lite apk old version best servers
-24clan vpn lite apk old version best countries
-24clan vpn lite apk old version best speed
-24clan vpn lite apk old version best security
-24clan vpn lite apk old version best privacy
-24clan vpn lite apk old version comparison
-24clan vpn lite apk old version alternatives
-24clan vpn lite apk old version competitors
-24clan vpn lite apk old version vs other vpns
-24clan vpn lite apk old version vs anonytun pro
-24clan vpn lite apk old version vs starkvpn pro
-24clan vpn lite apk old version vs tweakware pro
-24clan vpn lite apk old version vs psiphon pro
-24clan vpn lite apk old version vs expressvpn pro
-24clan vpn lite apk old version vs nordvpn pro
-24clan vpn lite apk old version vs surfshark pro
24clan VPN Lite APK is generally safe and legal to use, as long as you download it from a trusted source and use it for legitimate purposes. The app does not contain any malware or spyware that can harm your device or data. The app also does not collect or share any of your personal information or online activity with anyone. However, you should always be careful when using any VPN app, as some websites, apps, or content providers may have terms of service or policies that prohibit or restrict the use of VPN services. You should also respect the intellectual property rights and privacy policies of the websites, apps, or content that you access with the app. You should also avoid using the app for any illegal or unethical activities, such as hacking, fraud, piracy, or terrorism.
-With 24clan VPN Lite APK old version, you can access multiple servers in different countries, including Nigeria, South Africa, Kenya, Ghana, India, USA, UK, Canada, Germany, France, Singapore, Japan, Australia, and more. However, the availability and performance of the servers may vary depending on your location and network speed. You may also encounter some errors or issues when connecting to some servers or locations. To access more servers and locations with better quality and reliability, you may need to update the app to the latest version or switch to 24clan VPN Pro APK.
-If you want to update 24clan VPN Lite APK old version to the latest version, you can do so from the Google Play Store or from the developer's website. Here are the steps to update 24clan VPN Lite APK old version to the latest version:
-If you have any questions, comments, suggestions, or complaints about 24clan VPN Lite APK old version or any other version of the app , you can contact the developer of 24clan VPN Lite APK for support and feedback. You can find their contact information from the app's settings menu or from their website. You can also check their FAQ section or online forums for more tips and solutions. Here are some ways to contact the developer of 24clan VPN Lite APK:
-We hope that this article has helped you understand what 24clan VPN Lite APK old version is, how to download and install it on your Android device, why you need it, and how to use it. If you have any questions or comments about this app or this article, please feel free to leave them below. Thank you for reading!
197e85843dIf you are a fan of motocross games, you must have heard of Mad Skills Motocross 3, the latest installment in the popular series by Turborilla. This game is one of the best motocross simulators on the market, with realistic physics, stunning graphics, and addictive gameplay. But what if you want to enjoy the game without any limitations or interruptions? That's where Mad Skills Motocross 3 mod apk comes in handy. In this article, we will tell you everything you need to know about this modded version of the game, including its features, benefits, and how to download and install it on your device. Let's get started!
-Mad Skills Motocross 3 is a racing game that lets you experience the thrill of motocross on your mobile device. You can choose from dozens of different bikes and riders, customize them to your liking, and compete against other players from around the world. You can also participate in weekly competitions and events, where you can win prizes and fame. The game has a simple control system that is easy to learn but hard to master. You can use the buttons on the screen to accelerate, brake, lean forward, and lean backward. You have to balance your speed and your posture to avoid crashing and perform tricks. The game has a realistic physics engine that makes every jump, landing, and collision feel authentic. The game also has amazing graphics that bring the tracks and the environments to life.
-Download ⚙⚙⚙ https://urlin.us/2uSSui
Mad Skills Motocross 3 has many features that make it one of the best motocross games on the market. Here are some of them:
-The game has a realistic physics engine that simulates the behavior of the bikes and the riders. You can feel the weight, the momentum, and the gravity of your bike as you race through the tracks. You can also see how your bike reacts to different terrains, such as dirt, sand, mud, grass, and water. You have to adjust your speed and your angle to avoid crashing or losing control.
-The game allows you to customize your bike and your rider to suit your style and preferences. You can choose from dozens of different bikes, each with its own characteristics and performance. You can also change the color, the decals, the wheels, and the exhaust of your bike. You can also customize your rider's appearance, such as their helmet, their suit, their gloves, and their boots. You can even create your own custom number plate.
-The game has an online multiplayer mode that lets you race against other players from around the world. You can join or create a room with up to eight players and compete in different modes, such as time trial, head-to-head, or team race. You can also chat with other players and send them emojis. The game also has leaderboards that rank you based on your performance in different categories, such as global, regional, national, or friends. You can also see your stats and achievements in your profile.
-The game has weekly competitions and events that give you a chance to win prizes and fame. You can join different events, such as jam, cash jam, boss fight, or special series. Each event has its own rules, rewards, and challenges. You can also see how you rank among other players in each event.
-Mad Skills Motocross 3 is a free-to-play game, but it also has some in-app purchases and ads that can limit your enjoyment. For example, you need to spend money to buy new bikes, upgrade them, or unlock new tracks. You also have to watch ads to get extra lives, coins, or bonuses. If you want to avoid these hassles and enjoy the game to the fullest, you should download Mad Skills Motocross 3 mod apk. This is a modified version of the game that gives you some advantages and benefits, such as:
-Download mad skills motocross 3 mod apk unlimited money
-Mad skills motocross 3 mod apk latest version download
-How to download and install mad skills motocross 3 mod apk
-Mad skills motocross 3 mod apk free download for android
-Download mad skills motocross 3 mod apk with realistic physics
-Mad skills motocross 3 mod apk offline download
-Download mad skills motocross 3 mod apk full unlocked
-Mad skills motocross 3 mod apk download for pc
-Download mad skills motocross 3 mod apk no ads
-Mad skills motocross 3 mod apk download link
-Download mad skills motocross 3 mod apk with great graphics
-Mad skills motocross 3 mod apk easy controls download
-Download mad skills motocross 3 mod apk with horizontal scrolling
-Mad skills motocross 3 mod apk new features download
-Download mad skills motocross 3 mod apk with multiplayer mode
-Mad skills motocross 3 mod apk best bikes download
-Download mad skills motocross 3 mod apk with custom tracks
-Mad skills motocross 3 mod apk awesome stunts download
-Download mad skills motocross 3 mod apk with leaderboards
-Mad skills motocross 3 mod apk weekly tournaments download
-Download mad skills motocross 3 mod apk with achievements
-Mad skills motocross 3 mod apk tips and tricks download
-Download mad skills motocross 3 mod apk with cheats
-Mad skills motocross 3 mod apk hack download
-Download mad skills motocross 3 mod apk without root
-Mad skills motocross 3 mod apk safe and secure download
-Download mad skills motocross 3 mod apk from APKMB.Com[^1^]
-Mad skills motocross 3 mod apk direct download
-Download mad skills motocross 3 mod apk fast and easy
-Mad skills motocross 3 mod apk high quality download
With Mad Skills Motocross 3 mod apk, you will have unlimited money in your account. You can use this money to buy any bike you want, upgrade it to the max level, or unlock any track you like. You don't have to worry about running out of money or saving up for a long time.
-With Mad Skills Motocross 3 mod apk, you will have access to all the bikes and tracks in the game. You don't have to complete certain levels or achievements to unlock them. You can choose any bike or track you want and enjoy the game without any restrictions.
-With Mad Skills Motocross 3 mod apk, you will not see any ads in the game. You don't have to watch annoying videos or banners that interrupt your gameplay or waste your time. You can play the game smoothly and without any distractions.
-If you are interested in downloading and installing Mad Skills Motocross 3 mod apk on your device, you can follow these simple steps:
-The first thing you need to do is to download the mod apk file from a reliable and safe source. You can use the link below to download the latest version of Mad Skills Motocross 3 mod apk:
-Download Mad Skills Motocross 3 Mod Apk
-Make sure you have enough storage space on your device before downloading the file. The file size is about 100 MB.
-The next thing you need to do is to enable unknown sources on your device. This is a security setting that allows you to install apps from sources other than the Google Play Store. To enable unknown sources, you can follow these steps:
-If you have a newer version of Android, you may need to grant permission for each app individually. In that case, you can skip this step and proceed to the next one.
-The final thing you need to do is to install the mod apk file on your device. To do that, you can follow these steps:
-Mad Skills Motocross 3 is a great game for motocross lovers who want to experience realistic and exciting racing on their mobile devices. However, if you want to enjoy the game without any limitations or interruptions, you should download Mad Skills Motocross 3 mod apk. This is a modified version of the game that gives you unlimited money, unlocked all bikes and tracks, and no ads. You can download and install it easily by following our guide above. We hope this article was helpful for you. If you have any questions or feedback, feel free to leave a comment below.
-Yes, Mad Skills Motocross 3 mod apk is safe to use, as long as you download it from a trusted source. We have tested the mod apk file and found no viruses or malware. However, you should always be careful when downloading and installing apps from unknown sources, as they may contain harmful or unwanted content. You should also backup your data before installing the mod apk, in case something goes wrong.
-Mad Skills Motocross 3 is a relatively lightweight game that can run on most Android devices. However, you need to have at least Android 4.4 or higher and 2 GB of RAM to play the game smoothly. You also need to have a stable internet connection to access the online features of the game.
-Mad Skills Motocross 3 mod apk is not available on the Google Play Store, so you cannot update it automatically. You need to check for updates manually from the source where you downloaded the mod apk file. If there is a new version available, you need to download and install it again, following the same steps as before. You may also need to uninstall the previous version of the mod apk before installing the new one.
-Yes, you can play Mad Skills Motocross 3 mod apk with your friends, as long as they also have the mod apk installed on their devices. You can join or create a room with up to eight players and race against each other in different modes. You can also chat with your friends and send them emojis during the game.
-There is a possibility that you may get banned for using Mad Skills Motocross 3 mod apk, especially if you use it to cheat or hack the game. The developers of the game may detect your modded account and suspend or terminate it. Therefore, you should use the mod apk at your own risk and discretion. We are not responsible for any consequences that may arise from using the mod apk.
197e85843dAndroid 10 es la última versión del sistema operativo de Google para dispositivos móviles. Fue lanzado en septiembre de 2019 y trae muchas nuevas características y mejoras que hacen que su teléfono inteligente sea más potente, seguro y fácil de usar. Si quieres disfrutar de los beneficios de Android 10, necesitas actualizar tu dispositivo a esta versión. Pero, ¿cómo puedes hacerlo? En este artículo, te mostraremos cómo obtener Android 10 en tu dispositivo, ya sea un Google Pixel, un dispositivo asociado, un dispositivo compatible con Treble o un emulador. También le mostraremos cómo descargar e instalar Android 10 APK, que es un archivo que contiene el paquete de software de Android 10. Pero antes de entrar en eso, vamos a echar un vistazo a algunas de las características y beneficios de Android 10.
-Download Zip 🆗 https://bltlly.com/2v6L7l
Android 10 no es solo una actualización cosmética. Presenta muchas características y capacidades nuevas que mejoran su experiencia y privacidad en su teléfono inteligente. Estos son algunos de los aspectos destacados:
-Una de las características más solicitadas por los usuarios de Android es finalmente aquí. El modo oscuro es una opción para todo el sistema que cambia la combinación de colores del teléfono a negro y gris oscuro. Esto reduce la fatiga ocular, especialmente en condiciones de poca luz, y ahorra vida útil de la batería, especialmente en dispositivos con pantallas OLED. Puede activar el modo oscuro desde el menú de configuración rápida o cuando habilita el modo de ahorro de batería. También puede elegir con qué aplicaciones desea usar el modo oscuro, ya que algunas aplicaciones pueden no admitirlo o pueden verse mejor en el modo de luz.
-La navegación por gestos es una nueva forma de interactuar con el teléfono mediante golpes y tirones en lugar de botones. Hace que la navegación sea más rápida e intuitiva, especialmente en dispositivos con pantallas grandes o diseños de muescas. Puede deslizar desde el borde izquierdo o derecho de la pantalla para volver, deslizar hacia arriba desde la parte inferior para ir a casa, deslizar hacia arriba y mantenga pulsado para ver sus aplicaciones recientes, y deslizar diagonalmente desde las esquinas inferiores para iniciar Google Assistant. También puede personalizar la sensibilidad y el tamaño de las áreas de gestos en la configuración.
-Android 10 te da más control sobre tu privacidad y seguridad en tu dispositivo. Puedes encontrar y ajustar todos tus ajustes de privacidad en un solo lugar, como la actividad web y de aplicaciones, el historial de ubicaciones, la personalización de anuncios y más. También puede elegir cuándo compartir su ubicación con aplicaciones: siempre, solo mientras usa la aplicación o nunca. También puedes ver qué aplicaciones han accedido a tu ubicación, cámara, micrófono u otros permisos en las últimas 24 horas. Android 10 también introduce una nueva función llamada Scoped Storage, que limita el acceso de las aplicaciones a su almacenamiento externo, como sus fotos, videos y documentos. Esto evita que las aplicaciones lean o modifiquen sus archivos sin su permiso. También puede optar por no utilizar Scoped Storage si desea dar acceso completo a ciertas aplicaciones.
- -Ahora que conoce algunas de las características y beneficios de Android 10, es posible que se pregunte cómo conseguirlo en su dispositivo. La respuesta depende del tipo de dispositivo que tenga y de la disponibilidad de la actualización en su región. Estas son algunas de las formas en que puedes obtener Android 10 en tu dispositivo:
-Si tienes un dispositivo Google Pixel, como Pixel 3a, Pixel 3, Pixel 2 o Pixel, estás de suerte. Los dispositivos Google Pixel son los primeros en recibir actualizaciones de Android 10 directamente desde Google. Puede comprobar la actualización yendo a Configuración > Sistema > Avanzado > Actualización del sistema. Si la actualización está disponible, puede descargarla e instalarla a través de Wi-Fi o datos móviles. La actualización puede tardar algún tiempo en completarse, así que asegúrate de que tu dispositivo esté cargado o conectado.
-Si tienes un dispositivo de uno de los socios de Google, como Samsung, Huawei, LG, Sony, Nokia o OnePlus, es posible que tengas que esperar un poco más para la actualización de Android 10. Estos dispositivos suelen recibir actualizaciones de sus fabricantes o operadores, que pueden tardar algún tiempo en probar y optimizar el software para sus modelos específicos. Puede comprobar la actualización yendo a Configuración > Acerca del teléfono > Actualización de software. Si la actualización está disponible, puede descargarla e instalarla a través de Wi-Fi o datos móviles. La actualización puede tardar algún tiempo en completarse, así que asegúrate de que tu dispositivo esté cargado o conectado.
-Si no tienes un dispositivo compatible o no quieres arriesgarte a actualizar tu dispositivo, todavía puedes probar Android 10 usando un emulador. Un emulador es un software que simula un dispositivo en su computadora. Puedes usar un emulador para probar aplicaciones o juegos en diferentes versiones de Android sin afectar tu dispositivo real. Puedes descargar e instalar un emulador de Android desde el sitio web de Google. También necesitará descargar e instalar Android Studio, que es un entorno de desarrollo integrado (IDE) para crear aplicaciones Android. Una vez que haya instalado ambos programas, puede seguir estos pasos para ejecutar Android 10 en un emulador:
-Una vez que haya cumplido con los requisitos y precauciones, puede seguir estos pasos para descargar e instalar Android 10 APK en su dispositivo:
-Los requisitos del sistema para Android 10 son al menos 2 GB de RAM y 8 GB de almacenamiento interno. Sin embargo, algunos dispositivos pueden necesitar más espacio o memoria para ejecutar Android 10 sin problemas.
-Puedes comprobar si tu dispositivo es compatible con Android 10 yendo a Configuración > Acerca del teléfono > Actualización de software. Si ves una opción para actualizar a Android 10, entonces tu dispositivo es compatible. Si no, es posible que su dispositivo no sea compatible o que la actualización aún no esté disponible en su región.
-Si encuentras algún problema después de actualizar a Android 10, como aplicaciones que se bloquean, agotamiento de la batería o retraso en el rendimiento, puedes probar algunas de las siguientes soluciones:
-Si desea proporcionar comentarios o informar de errores en Android 10, puede utilizar la aplicación de retroalimentación que viene preinstalado en su dispositivo. Puede acceder a él yendo a Configuración > Consejos y soporte > Enviar comentarios. También puedes usar la aplicación Android Beta Feedback si estás inscrito en el programa Android Beta. Puedes acceder a él yendo a Configuración > Sistema > Avanzado > Programa beta de Android. También puede utilizar el formulario en línea en el sitio web de Google o publicar en los foros oficiales o plataformas de redes sociales.
64aa2da5cfSi creciste en los años 90 o principios de los 2000, probablemente recuerdes el sonido distintivo de un teléfono Nokia que se queda sin batería. La alerta "bleep bleep bleep" era un recordatorio familiar y a veces molesto para conectar el teléfono antes de morir. Pero para mucha gente, también era un sonido nostálgico y nostálgico que evocaba recuerdos de tiempos más simples.
-Hoy en día, es posible que se pregunte cómo obtener la batería de Nokia bajo sonido en el teléfono, ya sea como un tono de llamada, una notificación, o un efecto de sonido. Tal vez quieras revivir tu infancia, bromear con tus amigos o simplemente divertirte con tu teléfono. Cualquiera que sea su razón, puede descargar fácilmente la batería de Nokia bajo sonido de varias fuentes en línea.
-Download Zip 🗸🗸🗸 https://bltlly.com/2v6M2f
En este artículo, le mostraremos cómo descargar el sonido bajo de la batería de Nokia como un tono o un efecto de sonido. También exploraremos la historia del bajo sonido de la batería del Nokia, cómo evolucionó con el tiempo y cómo inspiró remezclas creativas y memes. Al final de este artículo, tendrás todo lo que necesitas para disfrutar de la icónica alerta en tu teléfono.
-La batería baja de Nokia se introdujo por primera vez en 1997 con el modelo Nokia 6110. Fue uno de los primeros teléfonos en tener una interfaz gráfica de usuario (GUI) y un compositor de tono monofónico. El compositor permitió a los usuarios crear sus propios tonos de llamada mediante la introducción de notas en un teclado numérico. El sonido bajo de la batería de Nokia fue uno de los tonos de llamada predeterminados que venía con el teléfono.
- -El sonido bajo de la batería de Nokia consistía en tres notas: E, C y G. Estas notas formaban un acorde de triada menor, que a menudo se usa para crear un estado de ánimo triste o tenso en la música. Paananen dijo que eligió este acorde porque sonaba como una advertencia o una alarma. También dijo que quería evitar el uso de notas que eran demasiado altas o demasiado bajas, porque podrían no ser audibles en algunos oradores.
-El bajo sonido de la batería de Nokia se convirtió en una característica estándar en la mayoría de los teléfonos Nokia hasta 2009, cuando Nokia cambió a usar sonidos más realistas para sus alertas. Sin embargo, algunas variaciones del sonido bajo de la batería de Nokia se introdujeron con el tiempo, dependiendo del modelo y la región.
-Por ejemplo, algunos teléfonos tenían una versión más larga de la alerta que se repetía cuatro veces en lugar de tres. Algunos teléfonos tenían un tono o tono diferente para la alerta, como notas más altas o más bajas, o sonidos más metálicos o electrónicos. Algunos teléfonos tenían diferentes sonidos para diferentes niveles de batería, como dos pitidos para batería baja y un pitido para batería vacía.
- -El sonido bajo de la batería de Nokia también cambió dependiendo del idioma y la cultura del usuario. Por ejemplo, en algunos países de habla árabe, la alerta fue reemplazada por una voz que decía "la batería está vacía" en árabe. En algunos países asiáticos, como China y Japón, la alerta fue reemplazada por una voz que decía "la batería está baja" en el idioma local. En algunos países europeos, como Francia y Alemania, la alerta fue reemplazada por una voz que decía "la batería está vacía" en el idioma local.
Algunas de las formas en que la gente utiliza el bajo sonido de la batería de Nokia para crear remezclas y memes fueron: - Agregar letras o voces a la alerta, como cantar "battery is low" o "please charge me". - Mezclar la alerta con otros sonidos o géneros musicales, como techno, dubstep, rap, rock o clásico. - Hacer la alerta más rápida, más lenta, más fuerte, más suave, más alta, más baja o distorsionada. - Reemplazar la alerta con otros sonidos o palabras que tengan un ritmo o rima similar, como "bleep bleep bleep bleep", "beep beep beep" o "meep meep meep". - Utilización de la alerta como efecto sonoro para diversos escenarios, como la explosión de una bomba, el choque de un coche o la caída de una persona. - Usar la alerta como remate para bromas, bromas o parodias.
-En este artículo, le hemos mostrado cómo descargar el sonido bajo de la batería de Nokia como un tono o un efecto de sonido. También hemos explorado la historia del bajo sonido de la batería Nokia, cómo evolucionó con el tiempo y cómo inspiró remezclas creativas y memes.
- -Si desea descargar el sonido bajo de la batería de Nokia como un tono o un efecto de sonido, puede visitar uno de estos sitios web: - [Zedge]: Este es un sitio web popular que ofrece tonos de llamada gratuitos, fondos de pantalla y notificaciones para varios dispositivos. Puede buscar "Nokia batería baja" y encontrar varias versiones de la alerta que se puede descargar o personalizar. - [SoundBible]: Este es un sitio web que ofrece clips de sonido gratuitos, efectos de sonido, y mordeduras de sonido para diversos fines. Puede buscar "Nokia batería baja" y encontrar una versión de alta calidad de la alerta que se puede descargar o compartir. - [MyTinyPhone]: Este es un sitio web que ofrece tonos de llamada gratuitos, fondos de pantalla, juegos y aplicaciones para varios dispositivos. Puede buscar "Nokia batería baja" y encontrar algunas versiones de la alerta que puede descargar o enviar a su teléfono.
-Esperamos que haya disfrutado de este artículo y aprendido algo nuevo sobre el bajo sonido de la batería de Nokia. Si lo hizo, por favor compártalo con sus amigos y familiares que también podrían estar interesados en este tema. También puede dejarnos un comentario a continuación y hacernos saber lo que usted piensa acerca de la batería baja de Nokia sonido. ¿Te gusta o lo odio? ¿Tienes alguna remezcla o memes favoritos? ¡Nos encantaría saber de ti!
-El sonido bajo de la batería de Nokia es una alerta que se reproduce en algunos teléfonos Nokia cuando la batería se está agotando. Consta de tres notas: E, C y G. Estas notas forman un acorde de triada menor, que a menudo se usa para crear un estado de ánimo triste o tenso en la música.
-El sonido bajo de la batería de Nokia fue compuesto por Vesa-Matti Paananen, un músico y diseñador de sonido finlandés que trabajó para Nokia de 1994 a 2008. Fue responsable de crear muchos de los sonidos icónicos y tonos de llamada para los teléfonos Nokia, incluyendo la famosa melodía de Nokia.
- -Puede descargar el sonido bajo de la batería de Nokia como un tono de llamada o un efecto de sonido de varios sitios web en línea. Algunos de los sitios web que ofrecen descargas gratuitas de la alerta son Zedge, SoundBible y MyTinyPhone.
-El bajo sonido de la batería de Nokia se convirtió en una fuente de inspiración para muchos artistas, músicos y comediantes que lo utilizaron para crear remezclas y memes. Algunos de estos remixes y memes estaban destinados a ser divertidos, mientras que otros estaban destinados a ser artísticos o experimentales.
-Algunos de los mejores ejemplos de remezclas y memes de batería baja de Nokia son: - The Nokia Battery Low Song: Esta es una canción de YouTuber Davey4557 que cuenta con letras sobre la frustración de tener una batería baja en un teléfono Nokia. - El Nokia batería baja Dubstep Remix: Este es un remix por YouTuber DJ Detweiler que convierte la batería baja de Nokia sonido en una pista de dubstep. - El Nokia batería baja Rap: Este es un rap por YouTuber Rucka Rucka Ali que utiliza la batería de Nokia bajo sonido como un golpe y un gancho. - The Nokia Battery Low Rock Cover: Esta es una versión del YouTuber Rob Scallon que transforma el sonido bajo de la batería de Nokia en una canción de rock. - El Nokia batería baja clásica Remix: Este es un remix por YouTuber Grant Woolard que combina la batería Nokia bajo sonido con música clásica.
64aa2da5cfSi eres un amante del ajedrez, podrías estar buscando una aplicación de ajedrez que te permita jugar online o offline con diferentes niveles de dificultad y características. Chess Buddy APK es una de esas aplicaciones que se puede descargar e instalar en su dispositivo Android. Es una aplicación de ajedrez de código abierto que utiliza el motor Stockfish 15.1, uno de los motores de ajedrez más fuertes del mundo. En este artículo, le diremos qué es Chess Buddy APK, cómo descargarlo e instalarlo, y cómo jugar al ajedrez con él.
-Download ✯✯✯ https://bltlly.com/2v6MVo
Chess Buddy APK es una aplicación de ajedrez de código abierto que fue desarrollado por Draco Group Inc, un grupo de entusiastas del ajedrez. La aplicación se basa en el proyecto ChessMaze.Android, que está disponible en GitHub. La aplicación integra el último motor Stockfish dentro de él, por lo que no es necesario instalar otra aplicación de motor. Stockfish es un poderoso motor de ajedrez que puede analizar millones de posiciones por segundo y proporcionar movimientos y evaluaciones precisas. También es constantemente actualizado por una comunidad de desarrolladores y expertos en ajedrez.
-Una de las principales características de Chess Buddy APK es que le permite jugar en línea con jugadores reales de todo el mundo. Puede crear su propia cuenta de usuario con solo un identificador de usuario que elija, siempre y cuando no sea utilizado por otro reproductor. Usted no necesita proporcionar su correo electrónico o cualquier otra cosa. También puede tener amigos y chatear con ellos en cualquier momento. Durante los juegos en línea, también puedes chatear con tu oponente.
- -Si usted no tiene una conexión a Internet o desea jugar fuera de línea, también puede utilizar Chess Buddy APK para eso. Puedes elegir jugar con Stockfish u otro jugador humano en el mismo dispositivo. También puedes establecer el tiempo (1-5 segundos) que Stockfish usa en un movimiento y ajustar el nivel de dificultad en consecuencia. También puede rotar el tablero de ajedrez si lo desea.
- -Otra característica del modo sin conexión es que puede retroceder un paso con el botón "Paso atrás", o avanzar o retroceder varios pasos. De esta manera, puedes revisar tus movimientos o probar diferentes variaciones.
-El primer paso para utilizar Chess Buddy APK es descargar el archivo APK, que es un archivo de paquete que contiene la aplicación y sus recursos. Puede descargar el archivo APK de APKCombo, un sitio web que proporciona descargas APK gratuitas y seguras para varias aplicaciones y juegos de Android. También puede descargar el archivo APK de GitHub, donde está disponible el código fuente de la aplicación. Para descargar de APKCombo, se puede visitar este enlace: [Ajedrez en línea Stockfish 15.1 APK (Juego de Android) - Descarga gratuita - APKCombo]( 1 ). Para descargar desde GitHub, puedes visitar este enlace: [dracogroupinc/chessbuddy: Chess Buddy Online - aplicación de ajedrez de código abierto con motor Stockfish 15.1 (github.com)]( 4 ).
-Una vez que haya instalado y lanzado Chess Buddy APK, puede comenzar a jugar al ajedrez en línea con otros jugadores. Para hacer esto, debe crear una cuenta de usuario con solo un identificador de usuario que elija, siempre y cuando no sea utilizado por otro reproductor. Usted no necesita proporcionar su correo electrónico o cualquier otra cosa. También puede tener amigos y chatear con ellos en cualquier momento. Para crear una cuenta de usuario, debe tocar el botón "Online" en la pantalla principal y luego tocar el botón "Crear usuario". A continuación, puede introducir su identificador de usuario y pulsar en el botón "Crear". También puede cambiar su identificador de usuario más tarde si lo desea.
-Después de crear tu cuenta de usuario, puedes unirte a un juego o crear el tuyo. Para unirte a un juego, debes tocar el botón "Unirse al juego" y luego elegir un juego de la lista de juegos disponibles. También puedes filtrar los juegos por control de tiempo, rango de calificación o preferencia de color. Para crear tu propio juego, debes tocar el botón "Crear juego" y luego elegir el control de tiempo, rango de calificación y preferencia de color para tu juego. También puede elegir si permite sugerencias de Stockfish o no. Luego, debes esperar a que otro jugador se una a tu juego o invitar a un amigo a jugar contigo.
-Si desea jugar ajedrez fuera de línea, también puede utilizar Chess Buddy APK para eso. Puedes elegir jugar con Stockfish u otro jugador humano en el mismo dispositivo. Para hacer esto, debes tocar el botón "Offline" en la pantalla principal y luego elegir los jugadores y la configuración de tu juego. También puedes establecer el tiempo (1-5 segundos) que Stockfish usa en un movimiento y ajustar el nivel de dificultad en consecuencia. También puede rotar el tablero de ajedrez si lo desea.
- -Aquí hay algunos consejos y trucos para jugar al ajedrez con Chess Buddy APK:
-Aquí hay algunas preguntas frecuentes sobre Chess Buddy APK:
-El ajedrez es uno de los juegos de mesa más antiguos y populares del mundo. Es un juego de lógica, estrategia y habilidad que puede desafiar tu mente y mejorar tus habilidades cognitivas. Ya seas un principiante o un gran maestro, el ajedrez puede ofrecerte interminables horas de diversión y entretenimiento.
-Pero ¿qué pasa si no tienes un tablero de ajedrez o un compañero para jugar? ¿Qué pasa si quieres jugar al ajedrez en cualquier momento y en cualquier lugar sin una conexión a Internet? Ahí es donde APK Chess Offline es muy útil. APK Chess Offline es una aplicación de ajedrez gratuita para dispositivos Android que te permite jugar ajedrez sin conexión contra un ordenador o un amigo. También puedes aprender ajedrez, practicar tus habilidades y analizar tus partidas con esta aplicación.
-Download File »»» https://bltlly.com/2v6JMJ
En este artículo, le mostraremos cómo descargar e instalar APK Chess Offline para Android, así como cómo jugar y mejorar sus habilidades de ajedrez con esta aplicación. ¡Vamos a empezar!
-APK Chess Offline es una aplicación de ajedrez para dispositivos Android que no requiere una conexión a Internet para jugar. Puedes jugar ajedrez sin conexión contra una computadora o un amigo en el mismo dispositivo. También puede elegir entre diferentes modos de juego, niveles de dificultad y temas de tablero para adaptarse a sus preferencias.
-Algunas de las características y beneficios de APK Chess Offline son:
-Para descargar e instalar APK Chess Offline, necesita:
-Para descargar e instalar APK Chess Offline en tu dispositivo Android, sigue estos pasos:
-Dado que APK Chess Offline no está disponible en Google Play Store, es necesario habilitar fuentes desconocidas en el dispositivo para instalarlo. Para hacer esto:
-El siguiente paso es encontrar una fuente confiable para el archivo APK de APK Chess Offline. Una de las fuentes que puede utilizar para descargar el archivo APK de APK Chess Offline es [Chess Offline Download - apkonline.net]( 1 ). Este es un sitio web confiable y verificado que ofrece descargas gratuitas y seguras de varios archivos APK. Para descargar el archivo APK de esta fuente:
- -Una vez completada la descarga, verá una notificación de que el archivo APK está listo para instalar. Para instalar el archivo APK en su dispositivo:
-El proceso de instalación tomará unos segundos. Una vez hecho, verá un mensaje de que la aplicación se ha instalado correctamente. Para iniciar la aplicación:
-Ahora que ha descargado e instalado APK Chess Offline en su dispositivo, usted está listo para jugar y mejorar sus habilidades de ajedrez con esta aplicación. Aquí hay algunos consejos y trucos para ayudarte a empezar:
-APK Chess Offline ofrece varios modos de juego para que usted elija, tales como ajedrez clásico, chess960, puzzle rush, ajedrez a ciegas, etc. También puede seleccionar a su oponente, ya sea un ordenador o un amigo en el mismo dispositivo. También puedes ajustar el nivel de dificultad del ordenador, desde principiante hasta experto. Para elegir el modo de juego y el nivel de dificultad:
-Si desea poner a prueba sus habilidades y desafiarse a sí mismo, APK Chess Offline tiene una variedad de puzzles y desafíos para que usted resuelva. Puedes elegir entre diferentes categorías, como Mate in One, Mate in Two, Mate in Three, etc. También puedes intentar resolver tantos puzzles como sea posible en un tiempo limitado con el modo Puzzle Rush. Para practicar con rompecabezas y desafíos:
-Si quieres mejorar tus habilidades de ajedrez, es importante analizar tus partidas y aprender de tus errores. APK Chess Offline tiene una función que le permite revisar sus juegos y ver dónde se fue mal o bien. También puede ver la evaluación de cada movimiento por el motor de ajedrez y obtener sugerencias para mejores movimientos. Para analizar tus juegos y aprender de tus errores:
-Si usted está buscando una manera de descargar e instalar APK Chess Offline para Android, siga los pasos de este artículo y usted será capaz de jugar ajedrez sin conexión en ningún momento. Esperamos que haya encontrado este artículo útil e informativo. Si tiene alguna pregunta o comentario, no dude en dejar un comentario a continuación. Feliz ajedrez jugando!
-Aquí hay algunas preguntas frecuentes sobre APK Chess Offline:
-A: Sí, APK Chess Offline es seguro para descargar e instalar, siempre y cuando utilice una fuente confiable para el archivo APK, como [Chess Offline Download - apkonline.net]. Sin embargo, siempre debe tener cuidado al descargar e instalar aplicaciones de fuentes desconocidas, ya que pueden contener malware o virus que pueden dañar su dispositivo. También debe escanear el archivo APK con una aplicación antivirus antes de instalarlo.
-A: APK Chess Offline funciona en la mayoría de los dispositivos Android que tienen la versión 4.1 o superior. Sin embargo, algunos dispositivos pueden no ser compatibles con la aplicación o pueden experimentar algunos problemas o errores. Si encuentras algún problema con la aplicación, puedes intentar actualizar tu dispositivo, borrar la caché de la aplicación o reinstalar la aplicación.
-A: Dado que APK Chess Offline no está disponible en Google Play Store, no se puede actualizar automáticamente a través de la tienda. Tienes que comprobar manualmente las actualizaciones del sitio web de origen u otros sitios web que ofrecen el archivo APK. También puedes seguir la página oficial de Facebook de APK Chess Offline para recibir notificaciones de cualquier actualización o noticia sobre la aplicación.
-A: Para desinstalar APK Chess Offline desde tu dispositivo, sigue estos pasos:
-A: Si tiene alguna pregunta, sugerencia, o retroalimentación sobre APK Chess Offline, puede ponerse en contacto con el desarrollador a través de su dirección de correo electrónico: apkchessoffline@gmail.com. También puede visitar su página de Facebook: [APK Chess Offline - Casa | Facebook].
64aa2da5cfSi usted está buscando un nuevo y emocionante juego para jugar en su teléfono móvil, es posible que desee echa un vistazo a Game Sigma APK. Este es un estilizado juego de disparos de supervivencia que ofrece dos modos diferentes: Classic Battle Royale y 4v4 Fight Out. En este artículo, le diremos qué es Game Sigma APK, qué características tiene, cómo descargarlo e instalarlo, y algunos consejos y trucos para jugarlo.
-Juego Sigma APK es un juego desarrollado por Studio Arm Private Limited, una empresa con sede en la India. Es un juego de disparos de supervivencia que combina elementos de acción, estrategia y creatividad. El juego está disponible en dispositivos Android y se puede descargar desde varios sitios web, como APKCombo. El juego ha sido actualizado recientemente, siendo la última versión 1.0.113 a partir del 14 de enero de 2023.
-Download Zip ⇒⇒⇒ https://bltlly.com/2v6KcB
Juego Sigma APK tiene muchas características que lo hacen destacar de otros juegos de disparos de supervivencia. Aquí están algunos de ellos:
-El juego tiene un estilo de arte único y creativo que te sumerge en un mundo de supervivencia estilizada. El juego utiliza colores vibrantes, personajes similares a dibujos animados y efectos dinámicos para crear una experiencia visualmente atractiva. El juego también funciona sin problemas en la mayoría de los dispositivos, gracias a su rendimiento optimizado.
-El juego tiene controles fáciles de usar que prometen una experiencia de supervivencia inolvidable en el móvil. Puede mover, apuntar, disparar, saltar, agacharse e interactuar con el entorno utilizando gestos y botones simples. También puedes personalizar tus controles y ajustes según tus preferencias.
-En este modo, te unirás a otros tres jugadores para luchar contra otro equipo en una batalla tensa y estratégica. Tienes que asignar recursos, comprar armas y sobrevivir a tus enemigos en varios mapas creativos. Tienes que luchar por tu fe y llevar a tu equipo a la victoria.
-Si desea jugar Game Sigma APK en su dispositivo Android, usted tiene que descargar e instalar desde una fuente de terceros, como APKCombo. Estos son los pasos para hacerlo:
-Vaya a https://apkcombo.com/sigma/com.studioarm.sigma/ usando su navegador. Esta es la página oficial de Game Sigma APK en APKCombo.
- -Escriba "Juego Sigma APK" en la barra de búsqueda y pulse enter
En la página APKCombo, verá diferentes versiones de Game Sigma APK, junto con su tamaño de archivo, fecha de actualización, y la compatibilidad del dispositivo. Elija la versión que se adapte a su dispositivo y haga clic en el botón de descarga.
-Espere a que termine la descarga. Verá una notificación en su dispositivo cuando se descargue el archivo APK. También puede comprobar el progreso de la descarga en su navegador o en su gestor de archivos.
-Antes de poder instalar el archivo APK, debe habilitar fuentes desconocidas en su dispositivo. Esto le permitirá instalar aplicaciones desde fuentes distintas de Google Play Store. Para hacer esto, vaya a la configuración del dispositivo, luego a la seguridad, luego a fuentes desconocidas. Active la opción para habilitar fuentes desconocidas.
-Ahora que ha descargado e instalado Game Sigma APK, usted está listo para jugar. Aquí hay algunos consejos y trucos para ayudarle a disfrutar del juego más:
-Antes de empezar a jugar, debes personalizar tus controles y ajustes de acuerdo a tus preferencias. Puede acceder al menú de configuración desde la pantalla principal del juego. Aquí puede ajustar la sensibilidad, el sonido, los gráficos, el idioma y otras opciones. También puedes personalizar tus controles arrastrando y redimensionando los botones de la pantalla.
-En el modo Classic Battle Royale, tienes que elegir tu punto de aterrizaje con tu paracaídas. Usted debe elegir un lugar que tiene un buen botín, pero también tiene menos enemigos. Puedes usar el mapa para ver dónde están aterrizando otros jugadores y evitar las áreas llenas. También puedes usar los marcadores para comunicarte con tus compañeros de equipo y coordinar tu aterrizaje.
-Una vez que aterrizas, tienes que saquear y equipar las mejores armas y objetos que puedas encontrar. Puedes saquear edificios, cajas, vehículos y enemigos muertos. Puedes equipar hasta dos armas primarias, un arma secundaria y una arma cuerpo a cuerpo. También puede equipar armaduras, cascos, mochilas, granadas, botiquines y otros artículos. Siempre debe buscar un mejor botín mientras juega.
-El juego no se trata solo de disparos, sino también de supervivencia. Tienes que usar la cubierta y el sigilo para tu ventaja. Puedes usar edificios, árboles, rocas, vehículos y otros objetos como cobertura del fuego enemigo. También puede usar posiciones agachadas y propensas para reducir su visibilidad y ruido. Siempre debes ser consciente de tu entorno y evitar exponerte demasiado.
-Juego Sigma APK es un juego de disparos de supervivencia estilizada que ofrece dos modos diferentes: Classic Battle Royale y 4v4 Fight Out. Tiene muchas características que lo hacen destacar de otros juegos de disparos de supervivencia, tales como gráficos estilizados, experiencia de tirador de supervivencia única, controles fáciles de usar y rendimiento optimizado. Puede descargar e instalar Game Sigma APK de APKCombo, siguiendo los pasos que hemos proporcionado en este artículo. También puede utilizar nuestros consejos y trucos para mejorar su juego y divertirse más.
- FAQs - Q: ¿Es seguro descargar Game Sigma APK? - A: Sí, Game Sigma APK es seguro para descargar desde APKCombo, ya que es verificado por VirusTotal y no contiene ningún malware o virus. - P: ¿Juego Sigma APK es libre de jugar? - A: Sí, Juego Sigma APK es libre de jugar, pero puede contener anuncios y compras en la aplicación. - P: ¿Cuáles son los requisitos mínimos para jugar Game Sigma APK? - A: Los requisitos mínimos para jugar Game Sigma APK son Android 5.0 o superior, 2 GB de RAM, 1 GB de espacio de almacenamiento, y una conexión a Internet estable. - P: ¿Cómo puedo actualizar Game Sigma APK? - A: Puede actualizar Game Sigma APK visitando el sitio web APKCombo y descargar la última versión del juego. También puede comprobar si hay actualizaciones desde la configuración del juego. - P: ¿Cómo puedo contactar a los desarrolladores de Game Sigma APK? - A: Puede ponerse en contacto con los desarrolladores de Game Sigma APK visitando su sitio web oficial, página de Facebook, o cuenta de Instagram. También puede enviarles un correo electrónico a studioarm@gmail.com. 64aa2da5cf${outputTxt}` - - const titleLength = 150; - let titleTxt = inputTxt; - if(titleTxt.length > titleLength){ - titleTxt = titleTxt.slice(0, titleLength) + ' ...'; - } - - const shareBtnEl = gradioEl.querySelector('#share-btn'); - const shareIconEl = gradioEl.querySelector('#share-btn-share-icon'); - const loadingIconEl = gradioEl.querySelector('#share-btn-loading-icon'); - - if(!inputTxt || !outputTxt){ - return; - }; - - shareBtnEl.style.pointerEvents = 'none'; - shareIconEl.style.display = 'none'; - loadingIconEl.style.removeProperty('display'); - - const descriptionMd = `### Question: -${inputTxt} - -### Answer: - -${outputTxt}`; - - const params = { - title: titleTxt, - description: descriptionMd, - }; - - const paramsStr = Object.entries(params) - .map(([key, value]) => `${encodeURIComponent(key)}=${encodeURIComponent(value)}`) - .join('&'); - - window.open(`https://huggingface.co/spaces/fisharp/starcoder-playground/discussions/new?${paramsStr}`, '_blank'); - - shareBtnEl.style.removeProperty('pointer-events'); - shareIconEl.style.removeProperty('display'); - loadingIconEl.style.display = 'none'; -} diff --git a/spaces/UjjwalVIT/Text_analysis_and_metadata_app/stanfordmodel/ner-gui.command b/spaces/UjjwalVIT/Text_analysis_and_metadata_app/stanfordmodel/ner-gui.command deleted file mode 100644 index 427635a8622719c7a0be6f66d58880ccab73da4e..0000000000000000000000000000000000000000 --- a/spaces/UjjwalVIT/Text_analysis_and_metadata_app/stanfordmodel/ner-gui.command +++ /dev/null @@ -1,2 +0,0 @@ -#!/bin/sh -java -mx500m -cp `dirname $0`/stanford-ner.jar:`dirname $0`/lib/* edu.stanford.nlp.ie.crf.NERGUI diff --git a/spaces/Vegecken/sovits4dzl/modules/ddsp.py b/spaces/Vegecken/sovits4dzl/modules/ddsp.py deleted file mode 100644 index b09ac5c5c19d165e75e1780877a857be8c104ed7..0000000000000000000000000000000000000000 --- a/spaces/Vegecken/sovits4dzl/modules/ddsp.py +++ /dev/null @@ -1,190 +0,0 @@ -import torch -import torch.nn as nn -from torch.nn import functional as F -import torch.fft as fft -import numpy as np -import librosa as li -import math -from scipy.signal import get_window - - -def safe_log(x): - return torch.log(x + 1e-7) - - -@torch.no_grad() -def mean_std_loudness(dataset): - mean = 0 - std = 0 - n = 0 - for _, _, l in dataset: - n += 1 - mean += (l.mean().item() - mean) / n - std += (l.std().item() - std) / n - return mean, std - - -def multiscale_fft(signal, scales, overlap): - stfts = [] - for s in scales: - S = torch.stft( - signal, - s, - int(s * (1 - overlap)), - s, - torch.hann_window(s).to(signal), - True, - normalized=True, - return_complex=True, - ).abs() - stfts.append(S) - return stfts - - -def resample(x, factor: int): - batch, frame, channel = x.shape - x = x.permute(0, 2, 1).reshape(batch * channel, 1, frame) - - window = torch.hann_window( - factor * 2, - dtype=x.dtype, - device=x.device, - ).reshape(1, 1, -1) - y = torch.zeros(x.shape[0], x.shape[1], factor * x.shape[2]).to(x) - y[..., ::factor] = x - y[..., -1:] = x[..., -1:] - y = torch.nn.functional.pad(y, [factor, factor]) - y = torch.nn.functional.conv1d(y, window)[..., :-1] - - y = y.reshape(batch, channel, factor * frame).permute(0, 2, 1) - - return y - - -def upsample(signal, factor): - signal = signal.permute(0, 2, 1) - signal = nn.functional.interpolate(signal, size=signal.shape[-1] * factor) - return signal.permute(0, 2, 1) - - -def remove_above_nyquist(amplitudes, pitch, sampling_rate): - n_harm = amplitudes.shape[-1] - pitches = pitch * torch.arange(1, n_harm + 1).to(pitch) - aa = (pitches < sampling_rate / 2).float() + 1e-4 - return amplitudes * aa - - -def scale_function(x): - return 2 * torch.sigmoid(x) ** (math.log(10)) + 1e-7 - - -def extract_loudness(signal, sampling_rate, block_size, n_fft=2048): - S = li.stft( - signal, - n_fft=n_fft, - hop_length=block_size, - win_length=n_fft, - center=True, - ) - S = np.log(abs(S) + 1e-7) - f = li.fft_frequencies(sampling_rate, n_fft) - a_weight = li.A_weighting(f) - - S = S + a_weight.reshape(-1, 1) - - S = np.mean(S, 0)[..., :-1] - - return S - - -def extract_pitch(signal, sampling_rate, block_size): - length = signal.shape[-1] // block_size - f0 = crepe.predict( - signal, - sampling_rate, - step_size=int(1000 * block_size / sampling_rate), - verbose=1, - center=True, - viterbi=True, - ) - f0 = f0[1].reshape(-1)[:-1] - - if f0.shape[-1] != length: - f0 = np.interp( - np.linspace(0, 1, length, endpoint=False), - np.linspace(0, 1, f0.shape[-1], endpoint=False), - f0, - ) - - return f0 - - -def mlp(in_size, hidden_size, n_layers): - channels = [in_size] + (n_layers) * [hidden_size] - net = [] - for i in range(n_layers): - net.append(nn.Linear(channels[i], channels[i + 1])) - net.append(nn.LayerNorm(channels[i + 1])) - net.append(nn.LeakyReLU()) - return nn.Sequential(*net) - - -def gru(n_input, hidden_size): - return nn.GRU(n_input * hidden_size, hidden_size, batch_first=True) - - -def harmonic_synth(pitch, amplitudes, sampling_rate): - n_harmonic = amplitudes.shape[-1] - omega = torch.cumsum(2 * math.pi * pitch / sampling_rate, 1) - omegas = omega * torch.arange(1, n_harmonic + 1).to(omega) - signal = (torch.sin(omegas) * amplitudes).sum(-1, keepdim=True) - return signal - - -def amp_to_impulse_response(amp, target_size): - amp = torch.stack([amp, torch.zeros_like(amp)], -1) - amp = torch.view_as_complex(amp) - amp = fft.irfft(amp) - - filter_size = amp.shape[-1] - - amp = torch.roll(amp, filter_size // 2, -1) - win = torch.hann_window(filter_size, dtype=amp.dtype, device=amp.device) - - amp = amp * win - - amp = nn.functional.pad(amp, (0, int(target_size) - int(filter_size))) - amp = torch.roll(amp, -filter_size // 2, -1) - - return amp - - -def fft_convolve(signal, kernel): - signal = nn.functional.pad(signal, (0, signal.shape[-1])) - kernel = nn.functional.pad(kernel, (kernel.shape[-1], 0)) - - output = fft.irfft(fft.rfft(signal) * fft.rfft(kernel)) - output = output[..., output.shape[-1] // 2:] - - return output - - -def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False): - if win_type == 'None' or win_type is None: - window = np.ones(win_len) - else: - window = get_window(win_type, win_len, fftbins=True) # **0.5 - - N = fft_len - fourier_basis = np.fft.rfft(np.eye(N))[:win_len] - real_kernel = np.real(fourier_basis) - imag_kernel = np.imag(fourier_basis) - kernel = np.concatenate([real_kernel, imag_kernel], 1).T - - if invers: - kernel = np.linalg.pinv(kernel).T - - kernel = kernel * window - kernel = kernel[:, None, :] - return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None, :, None].astype(np.float32)) - diff --git a/spaces/VickyKira/NASAGPT/client/css/select.css b/spaces/VickyKira/NASAGPT/client/css/select.css deleted file mode 100644 index 7ec0159206439deca5c26f32fd92d2b1459f0273..0000000000000000000000000000000000000000 --- a/spaces/VickyKira/NASAGPT/client/css/select.css +++ /dev/null @@ -1,35 +0,0 @@ -select { - -webkit-border-radius: 8px; - -moz-border-radius: 8px; - border-radius: 8px; - - -webkit-backdrop-filter: blur(20px); - backdrop-filter: blur(20px); - - cursor: pointer; - background-color: var(--blur-bg); - border: 1px solid var(--blur-border); - color: var(--colour-3); - display: block; - position: relative; - overflow: hidden; - outline: none; - padding: 8px 16px; - - appearance: none; -} - -/* scrollbar */ -select.dropdown::-webkit-scrollbar { - width: 4px; - padding: 8px 0px; -} - -select.dropdown::-webkit-scrollbar-track { - background-color: #ffffff00; -} - -select.dropdown::-webkit-scrollbar-thumb { - background-color: #555555; - border-radius: 10px; -} diff --git a/spaces/Vincentim27/Plant_Nutrition_Prediction_ARIA/prediction.py b/spaces/Vincentim27/Plant_Nutrition_Prediction_ARIA/prediction.py deleted file mode 100644 index ea36e21012aa2df88297c224cfceadc4d0af8087..0000000000000000000000000000000000000000 --- a/spaces/Vincentim27/Plant_Nutrition_Prediction_ARIA/prediction.py +++ /dev/null @@ -1,53 +0,0 @@ -import streamlit as st -import pandas as pd -import numpy as np -import pickle -import sklearn - -# Load Model -with open('model_opt.pkl', 'rb') as file_1: - model_opt = pickle.load(file_1) - -def run() : - # Membuat Title - st.markdown("
SwinIR: Image Restoration Using Swin Transformer | Github Repo
" - -examples=[['ETH_LR.png']] -gr.Interface( - inference, - [gr.inputs.Image(type="pil", label="Input")], - gr.outputs.Image(type="file", label="Output"), - title=title, - description=description, - article=article, - enable_queue=True, - examples=examples - ).launch(debug=True) \ No newline at end of file diff --git a/spaces/akhaliq/arcanegannewtheme/README.md b/spaces/akhaliq/arcanegannewtheme/README.md deleted file mode 100644 index 4e518092d02bf0ced295290cbf91753e0e8931e7..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/arcanegannewtheme/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Arcanegannewtheme -emoji: 💩 -colorFrom: indigo -colorTo: yellow -sdk: gradio -sdk_version: 2.9.4 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference diff --git a/spaces/akhaliq/t5-base-fine-tuned-on-jfleg/README.md b/spaces/akhaliq/t5-base-fine-tuned-on-jfleg/README.md deleted file mode 100644 index 01a888a84a1a804d23bd9197709c0975a4027d2b..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/t5-base-fine-tuned-on-jfleg/README.md +++ /dev/null @@ -1,37 +0,0 @@ ---- -title: Grammar Correction -emoji: 💻 -colorFrom: green -colorTo: indigo -sdk: gradio -app_file: app.py -pinned: false ---- - -# Configuration - -`title`: _string_ -Display title for the Space - -`emoji`: _string_ -Space emoji (emoji-only character allowed) - -`colorFrom`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`colorTo`: _string_ -Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) - -`sdk`: _string_ -Can be either `gradio` or `streamlit` - -`sdk_version` : _string_ -Only applicable for `streamlit` SDK. -See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. - -`app_file`: _string_ -Path to your main application file (which contains either `gradio` or `streamlit` Python code). -Path is relative to the root of the repository. - -`pinned`: _boolean_ -Whether the Space stays on top of your list. diff --git a/spaces/alecinvan/flotationMultiModalRobot/app.py b/spaces/alecinvan/flotationMultiModalRobot/app.py deleted file mode 100644 index a182ef282700799f44529ed28d3170b5e08ee4a3..0000000000000000000000000000000000000000 --- a/spaces/alecinvan/flotationMultiModalRobot/app.py +++ /dev/null @@ -1,42 +0,0 @@ -import gradio as gr -from transformers import BlipForConditionalGeneration, BlipProcessor -import torch -import tempfile -from gtts import gTTS - -# Load models -device = "cpu" -processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") -model_image_captioning = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device) - -def generate_caption_tts(image): - - inputs = processor(images=image, return_tensors="pt") - inputs["max_length"] = 20 - inputs["num_beams"] = 5 - outputs = model_image_captioning.generate(**inputs) - - caption = processor.batch_decode(outputs, skip_special_tokens=True)[0] - - speech = gTTS(caption, lang="en") - tmp_file = tempfile.mkstemp()[1] - speech.save(tmp_file) - - return (caption, tmp_file) - - -title ="智悠科技大语言模型 - 智能漂浮舱多模态健康交互机器人" - -description = "BLPM模型:引导性语言图像预训练以实现统一视觉语言理解和生成。 请上传您的图像(或自动感知您的状况)" - -iface = gr.Interface( - fn=generate_caption_tts, - title=title, - description=description, - inputs=gr.inputs.Image(shape=(224,224)), - outputs=["text", "audio"] -) - - -#iface.launch(share=True, debug=True) -iface.launch() \ No newline at end of file diff --git a/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_internal/resolution/resolvelib/resolver.py b/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_internal/resolution/resolvelib/resolver.py deleted file mode 100644 index 618f1e1aead14bda77aafa08ab0e0be91cee64f3..0000000000000000000000000000000000000000 --- a/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_internal/resolution/resolvelib/resolver.py +++ /dev/null @@ -1,292 +0,0 @@ -import functools -import logging -import os -from typing import TYPE_CHECKING, Dict, List, Optional, Set, Tuple, cast - -from pip._vendor.packaging.utils import canonicalize_name -from pip._vendor.resolvelib import BaseReporter, ResolutionImpossible -from pip._vendor.resolvelib import Resolver as RLResolver -from pip._vendor.resolvelib.structs import DirectedGraph - -from pip._internal.cache import WheelCache -from pip._internal.index.package_finder import PackageFinder -from pip._internal.operations.prepare import RequirementPreparer -from pip._internal.req.req_install import InstallRequirement -from pip._internal.req.req_set import RequirementSet -from pip._internal.resolution.base import BaseResolver, InstallRequirementProvider -from pip._internal.resolution.resolvelib.provider import PipProvider -from pip._internal.resolution.resolvelib.reporter import ( - PipDebuggingReporter, - PipReporter, -) - -from .base import Candidate, Requirement -from .factory import Factory - -if TYPE_CHECKING: - from pip._vendor.resolvelib.resolvers import Result as RLResult - - Result = RLResult[Requirement, Candidate, str] - - -logger = logging.getLogger(__name__) - - -class Resolver(BaseResolver): - _allowed_strategies = {"eager", "only-if-needed", "to-satisfy-only"} - - def __init__( - self, - preparer: RequirementPreparer, - finder: PackageFinder, - wheel_cache: Optional[WheelCache], - make_install_req: InstallRequirementProvider, - use_user_site: bool, - ignore_dependencies: bool, - ignore_installed: bool, - ignore_requires_python: bool, - force_reinstall: bool, - upgrade_strategy: str, - suppress_build_failures: bool, - py_version_info: Optional[Tuple[int, ...]] = None, - ): - super().__init__() - assert upgrade_strategy in self._allowed_strategies - - self.factory = Factory( - finder=finder, - preparer=preparer, - make_install_req=make_install_req, - wheel_cache=wheel_cache, - use_user_site=use_user_site, - force_reinstall=force_reinstall, - ignore_installed=ignore_installed, - ignore_requires_python=ignore_requires_python, - suppress_build_failures=suppress_build_failures, - py_version_info=py_version_info, - ) - self.ignore_dependencies = ignore_dependencies - self.upgrade_strategy = upgrade_strategy - self._result: Optional[Result] = None - - def resolve( - self, root_reqs: List[InstallRequirement], check_supported_wheels: bool - ) -> RequirementSet: - collected = self.factory.collect_root_requirements(root_reqs) - provider = PipProvider( - factory=self.factory, - constraints=collected.constraints, - ignore_dependencies=self.ignore_dependencies, - upgrade_strategy=self.upgrade_strategy, - user_requested=collected.user_requested, - ) - if "PIP_RESOLVER_DEBUG" in os.environ: - reporter: BaseReporter = PipDebuggingReporter() - else: - reporter = PipReporter() - resolver: RLResolver[Requirement, Candidate, str] = RLResolver( - provider, - reporter, - ) - - try: - try_to_avoid_resolution_too_deep = 2000000 - result = self._result = resolver.resolve( - collected.requirements, max_rounds=try_to_avoid_resolution_too_deep - ) - - except ResolutionImpossible as e: - error = self.factory.get_installation_error( - cast("ResolutionImpossible[Requirement, Candidate]", e), - collected.constraints, - ) - raise error from e - - req_set = RequirementSet(check_supported_wheels=check_supported_wheels) - for candidate in result.mapping.values(): - ireq = candidate.get_install_requirement() - if ireq is None: - continue - - # Check if there is already an installation under the same name, - # and set a flag for later stages to uninstall it, if needed. - installed_dist = self.factory.get_dist_to_uninstall(candidate) - if installed_dist is None: - # There is no existing installation -- nothing to uninstall. - ireq.should_reinstall = False - elif self.factory.force_reinstall: - # The --force-reinstall flag is set -- reinstall. - ireq.should_reinstall = True - elif installed_dist.version != candidate.version: - # The installation is different in version -- reinstall. - ireq.should_reinstall = True - elif candidate.is_editable or installed_dist.editable: - # The incoming distribution is editable, or different in - # editable-ness to installation -- reinstall. - ireq.should_reinstall = True - elif candidate.source_link and candidate.source_link.is_file: - # The incoming distribution is under file:// - if candidate.source_link.is_wheel: - # is a local wheel -- do nothing. - logger.info( - "%s is already installed with the same version as the " - "provided wheel. Use --force-reinstall to force an " - "installation of the wheel.", - ireq.name, - ) - continue - - # is a local sdist or path -- reinstall - ireq.should_reinstall = True - else: - continue - - link = candidate.source_link - if link and link.is_yanked: - # The reason can contain non-ASCII characters, Unicode - # is required for Python 2. - msg = ( - "The candidate selected for download or install is a " - "yanked version: {name!r} candidate (version {version} " - "at {link})\nReason for being yanked: {reason}" - ).format( - name=candidate.name, - version=candidate.version, - link=link, - reason=link.yanked_reason or "Towards Real-World Blind Face Restoration with Generative Facial Prior | Github Repo
DOWNLOAD ⇒⇒⇒ https://urloso.com/2uyPLr
Method | -Backbone | -Output resolution |
-mIoU | -model id | -download | - -
---|---|---|---|---|---|
DeepLabV3 | -R101-DC5 | -1024×2048 | -76.7 | -- | -- | - | -
DeepLabV3 | -R103-DC5 | -1024×2048 | -78.5 | -28041665 | -model | metrics | -
DeepLabV3+ | -R101-DC5 | -1024×2048 | -78.1 | -- | -- | - | -
DeepLabV3+ | -R103-DC5 | -1024×2048 | -80.0 | -28054032 | -model | metrics | -
DOWNLOAD ✏ https://tinurli.com/2uwkzO
Download Zip ✔✔✔ https://tinurli.com/2uwjm8
If you are looking for a thrilling and action-packed arcade game that will take you to the skies and challenge your piloting skills, then you should definitely try Air Assault 2. This is a fantastic game that lets you experience adrenaline-pumping aerial combat as you engage in heart-pounding dogfights, execute daring maneuvers, and unleash devastating firepower. In this article, we will tell you everything you need to know about Air Assault 2, including what it is, what are its features, how to download it for free, and why you should play it.
-Download Zip 🗹 https://urlca.com/2uOdnI
Air Assault 2 is a 3D shoot 'em up game developed by Divo Games and published by GameTop in 2007. It is a sequel to Air Assault 1, which was released in 2006. The game belongs to the arcade genre, which means that it focuses on fast-paced gameplay, simple controls, and high scores. The game also has elements of simulation and strategy, as you have to control your aircraft's movement, weapons, and performance.
-The game's story revolves around a war between two factions: the United Forces (UF) and the Rebels. You play as a UF pilot who has to complete various missions across different locations around the world, such as deserts, mountains, oceans, and cities. Your goal is to establish air supremacy over enemy territory and destroy their bases, vehicles, and aircraft. Along the way, you will encounter different types of enemies, such as fighters, bombers, helicopters, tanks, ships, and turrets.
-Air Assault 2 has many features that make it an exciting and enjoyable game to play. Here are some of them:
-free download air assault 2 for windows 10
-air assault 2 game free download full version
-air assault 2 free download gametop
-how to download air assault 2 for free
-air assault 2 pc game free download
-free download air assault 2 for windows 11
-air assault 2 game free download for pc
-air assault 2 free download filehippo
-air assault 2 free download for xbox
-air assault 2 game free download for windows 10
-free download air assault 2 for windows 8
-air assault 2 game free download for windows 7
-air assault 2 free download for android
-air assault 2 game free download for android
-free download air assault 2 for windows 7
-air assault 2 game free download for windows 8
-air assault 2 free download for mac
-air assault 2 game free download for mac
-free download air assault 2 for windows xp
-air assault 2 game free download for windows xp
-air assault 2 free online game no download
-air assault 2 game online play free without downloading
-air assault 2 game free download softonic
-air assault 2 game free download ocean of games
-air assault 2 game free download apunkagames
-air assault 2 game free download igg games
-air assault 2 game free download highly compressed
-air assault 2 game free download rar file
-air assault 2 game free download setup exe
-air assault 2 game free download crack file
-air assault 2 game cheats codes free download
-air assault 2 game trainer free download
-air assault 2 game mods free download
-air assault 2 game patch free download
-air assault 2 game update free download
-air assault 2 game soundtrack free download
-air assault 2 game wallpapers free download
-air assault 2 game review and rating
-air assault 2 game system requirements and specifications
-air assault 2 game features and gameplay
If you are interested in playing Air Assault 2, you might be wondering how to download it for free. Well, the good news is that you can easily do so from a reliable and safe source: GameTop. GameTop is a website that offers hundreds of free games for PC users. You can find games of various genres, such as action, adventure, puzzle, racing, simulation, and more. All the games are legal and virus-free, so you don't have to worry about any issues or risks.
-To download Air Assault 2 from GameTop, you just need to follow these simple steps:
-The first step is to visit the GameTop website at https://www.gametop.com/. This is the homepage of the website, where you can see the latest and most popular games available for download. You can also browse the games by genre or search for a specific game using the search bar.
-The second step is to find the Air Assault 2 game page on the website. You can do this by typing "Air Assault 2" in the search bar or by clicking on this link: https://www.gametop.com/download-free-games/air-assault-2/. This will take you to the game page, where you can see the game's description, screenshots, video trailer, system requirements, and user reviews. You can also see the download now button at the top right corner of the page. Click on this button to start the download process.
-The third step is to install and launch the game on your PC. After clicking on the download button, you will see a pop-up window asking you to save the game file on your computer. Choose a location where you want to save the file and click on save. The file size is about 23 MB, so it should not take long to download. Once the download is complete, you will see another pop-up window asking you to run the game file. Click on run to start the installation process. Follow the instructions on the screen to complete the installation. After that, you will see a shortcut icon of Air Assault 2 on your desktop. Double-click on this icon to launch the game and enjoy!
-Air Assault 2 is a fun and exciting game that will keep you entertained for hours. However, it is also a challenging game that will test your skills and reflexes. To help you get started and improve your performance in the game, here are some tips and tricks that you should know:
-Air Assault 2 is a game that will appeal to anyone who loves arcade games, especially shoot 'em up games. It is a game that will provide you with hours of fun and entertainment, as well as challenge and satisfaction. Here are some of the reasons why you should play Air Assault 2:
-Air Assault 2 is a game that you should not miss if you are looking for a thrilling and action-packed arcade game that will take you to the skies and challenge your piloting skills. It is a game that has many features that make it an exciting and enjoyable game to play, such as diverse aircraft, intense campaign, challenging missions, upgrade and customize, and realistic environments. It is also a game that you can download for free from a reliable and safe source: GameTop. All you need to do is follow the simple steps that we have explained in this article, and you will be able to enjoy this amazing game on your PC. So, what are you waiting for? Download Air Assault 2 today and experience the thrill of aerial combat!
-Here are some of the frequently asked questions about Air Assault 2:
-If you are a fan of café racing and motorbike games, you will love APK Mod Xtreme Motorbikes. This is a thrilling racing game that allows you to experience the thrill of café racing on your mobile device. In this game, you can roam freely around the city, choosing from a variety of different motorbikes to ride. You can also perform stunts, drifts, wheelies, and burnouts to show off your skills. The game has realistic graphics and physics, giving you a realistic racing experience.
-But what if you want to enjoy the game without any limitations or restrictions? What if you want to have unlimited money and coins to buy and upgrade your bikes? What if you want to have all bikes unlocked to choose from different models and styles? What if you want to play the game without any ads to interrupt your gameplay?
-DOWNLOAD ✒ ✒ ✒ https://urlca.com/2uO7cT
Well, there is a way to do that. You can download APK Mod Xtreme Motorbikes, which is a modified version of the original game that gives you all these benefits and more. In this article, we will show you how to download APK Mod Xtreme Motorbikes, what are the benefits and risks of using it, what are some alternatives to it, and some FAQs about it. Let's get started!
-Downloading APK Mod Xtreme Motorbikes is very easy and simple. Just follow these steps:
-download apk mod xtreme motorbikes unlimited coins
-download apk mod xtreme motorbikes latest version
-download apk mod xtreme motorbikes 3d racing game
-download apk mod xtreme motorbikes for android
-download apk mod xtreme motorbikes free
-download apk mod xtreme motorbikes offline
-download apk mod xtreme motorbikes hack
-download apk mod xtreme motorbikes cheats
-download apk mod xtreme motorbikes pro
-download apk mod xtreme motorbikes full
-download apk mod xtreme motorbikes premium
-download apk mod xtreme motorbikes unlocked
-download apk mod xtreme motorbikes no ads
-download apk mod xtreme motorbikes mega
-download apk mod xtreme motorbikes 2023
-download apk mod xtreme motorbikes new update
-download apk mod xtreme motorbikes best
-download apk mod xtreme motorbikes review
-download apk mod xtreme motorbikes gameplay
-download apk mod xtreme motorbikes features
-download apk mod xtreme motorbikes tips
-download apk mod xtreme motorbikes tricks
-download apk mod xtreme motorbikes guide
-download apk mod xtreme motorbikes tutorial
-download apk mod xtreme motorbikes how to play
-download apk mod xtreme motorbikes online
-download apk mod xtreme motorbikes multiplayer
-download apk mod xtreme motorbikes real
-download apk mod xtreme motorbikes simulator
-download apk mod xtreme motorbikes fun
-download apk mod xtreme motorbikes challenge
-download apk mod xtreme motorbikes adventure
-download apk mod xtreme motorbikes action
-download apk mod xtreme motorbikes speed
-download apk mod xtreme motorbikes stunt
-download apk mod xtreme motorbikes high quality
-download apk mod xtreme motorbikes hd graphics
-download apk mod xtreme motorbikes smooth controls
-download apk mod xtreme motorbikes sound effects
-download apk mod xtreme motorbikes music
Congratulations! You have successfully downloaded and installed APK Mod Xtreme Motorbikes on your device. Now you can enjoy the game without any limitations or restrictions.
-There are many benefits of using APK Mod Xtreme Motorbikes over the original version of the game. Here are some of them:
-These are some of the benefits of using APK Mod Xtreme Motorbikes. However, there are also some risks that you should be aware of before using it.
-Using APK Mod Xtreme Motorbikes is not without risks. Here are some of them:
-These are some of the risks of using APK Mod Xtreme Motorbikes. However, there are also some alternatives that you can try if you don't want to use it.
-If you don't want to use APK Mod Xtreme Motorbikes, you can try these alternatives:
-These are some of the alternatives to APK Mod Xtreme Motorbikes that you can try. However, you should always compare the pros and cons of each option before choosing one.
-In conclusion, APK Mod Xtreme Motorbikes is a thrilling racing game for Android that allows you to experience the thrill of café racing on your mobile device. You can download APK Mod Xtreme Motorbikes from APK Bounce, which is one of the best sources for downloading modded games and apps. By using APK Mod Xtreme Motorbikes, you can enjoy unlimited money and coins, all bikes unlocked, no ads, and realistic graphics and physics in the game. However, you should also be aware of the risks such as malware or virus infection, ban or suspension from the game server, or loss of data or progress. You can also try some alternatives to APK Mod Xtreme Motorbikes, such as the original version from Google Play Store or other modded versions from other websites. However, you should always compare the pros and cons of each option before choosing one. We hope that this article has helped you to learn more about APK Mod Xtreme Motorbikes and how to download and use it. If you have any questions or feedback, please feel free to leave a comment below. Happy racing!
-Here are some frequently asked questions about APK Mod Xtreme Motorbikes:
-A: APK stands for Android Package Kit, which is the file format used by Android devices to install and distribute apps. Mod APK stands for modified APK, which is a modified version of an original app that has been altered to provide some extra features or benefits that are not available in the original app.
-A: APK Mod Xtreme Motorbikes is safe to download and install if you download it from a trusted source such as APK Bounce. However, you should always scan the files before installing them and use a reliable antivirus app on your device to protect yourself from malware or virus infection.
-A: You can update APK Mod Xtreme Motorbikes by visiting the official website of APK Bounce and downloading the latest version of the modded game. However, you should always backup your data and progress before updating the game and restore them if needed.
-A: Here are some tips and tricks for playing APK Mod Xtreme Motorbikes:
-A: You can find more information about APK Mod Xtreme Motorbikes by visiting the official website of APK Bounce, where you can also download the modded game. You can also visit the official website of Xtreme Motorbikes, where you can download the original version of the game from Google Play Store. You can also watch some videos of gameplay and reviews on YouTube or read some articles and blogs on the internet.
401be4b1e0If you are looking for a fun and addictive action game for your Android device, you should check out Pickle Pete: Survivor APK. This game is a top-down arena shooter with autofire and a wide variety of guns to choose from. You play as Pete, a scientist who has been turned into a pickle by a mysterious substance. Your goal is to survive against the waves of evil forces that have taken over the world. You will need to stack up, gear up, and create countless combinations of unique builds to become stronger than your enemies. You will also need to find the antidote and save the world from the darkness.
-Pickle Pete: Survivor APK is a game that will keep you entertained for hours with its rich environments, epic boss fights, deep progression system, and various game-modes. You will love the super easy controls, the stylized graphics, and the humorous sound effects. You will also enjoy the challenge of finding the best strategy for each run and unlocking new items and abilities. Pickle Pete: Survivor APK is a game that will make you feel like a hero in a pickle.
-Download File ✑ https://urlca.com/2uOaB4
Pickle Pete: Survivor APK is very easy to play. You just need to tap on the screen to move your character and aim at the enemies. Your character will automatically shoot at them with the weapon you have equipped. You can also use special abilities such as dodge roll, grenade, shield, or heal by tapping on their icons on the bottom of the screen. You can switch weapons by swiping left or right on the weapon icon.
-You will face different types of enemies in each biome, such as zombies, spiders, robots, aliens, and more. Each enemy has its own behavior and attack pattern, so you will need to adapt your strategy accordingly. You will also encounter boss fights at the end of each biome, which will test your skills and reflexes.
-You will earn coins and gems by killing enemies and completing objectives. You can use them to buy new weapons and items from the shop or upgrade your existing ones. You can also find chests and crates that contain loot such as weapons, items, or coins. You can equip up to four weapons and four items at a time.
-You can customize your character by choosing different skins, hats, glasses, or masks. You can also unlock new characters with different stats and abilities by completing achievements or buying them with gems.
-Pickle Pete: Survivor APK has many features that make it a fun and exciting game to play. Some of them are:
-Pickle Pete: Survivor APK is not available on the Google Play Store, so you will need to download it from a third-party source. One of the best and safest sources to download Pickle Pete: Survivor APK is APKPure. APKPure is a website that provides free and verified APK files for Android users. You can download Pickle Pete: Survivor APK from APKPure by following these steps:
-Before you can install Pickle Pete: Survivor APK, you will need to enable the installation of apps from unknown sources on your device. This is a security feature that prevents malicious apps from harming your device. You can enable this feature by following these steps:
-Once you have enabled this feature, you can install Pickle Pete: Survivor APK by following these steps:
-pickle pete survivor game download
-pickle pete survivor mod apk
-pickle pete survivor android
-pickle pete survivor apk pure
-pickle pete survivor apk combo
-pickle pete survivor latest version
-pickle pete survivor roguelike
-pickle pete survivor hack
-pickle pete survivor cheats
-pickle pete survivor tips
-pickle pete survivor guide
-pickle pete survivor review
-pickle pete survivor gameplay
-pickle pete survivor trailer
-pickle pete survivor update
-pickle pete survivor offline
-pickle pete survivor online
-pickle pete survivor multiplayer
-pickle pete survivor co-op
-pickle pete survivor free
-pickle pete survivor premium
-pickle pete survivor pro
-pickle pete survivor full
-pickle pete survivor unlocked
-pickle pete survivor unlimited
-pickle pete survivor no ads
-pickle pete survivor frojo apps
-pickle pete survivor action game
-pickle pete survivor adventure game
-pickle pete survivor rpg game
-pickle pete survivor pixel art game
-pickle pete survivor retro game
-pickle pete survivor indie game
-pickle pete survivor fun game
-pickle pete survivor addictive game
-pickle pete survivor challenging game
-pickle pete survivor boss fights game
-pickle pete survivor progression system game
-pickle pete survivor unique builds game
-pickle pete survivor antidote game
-how to play pickle pete survivor apk
-how to install pickle pete survivor apk
-how to download pickle pete survivor apk
-how to update pickle pete survivor apk
-how to uninstall pickle pete survivor apk
-how to hack pickle pete survivor apk
-how to cheat in pickle pete survivor apk
-how to get free coins in pickle pete survivor apk
-how to get free gems in pickle pete survivor apk
Pickle Pete: Survivor APK is a juicy roguelike game for Android that will keep you hooked with its addictive gameplay, rich features, and humorous theme. You will have a blast playing as Pete, a pickle scientist who has to survive against the evil forces that have taken over the world. You will be able to customize your character, upgrade your weapons and items, unlock new game-modes, and compete with other players. Pickle Pete: Survivor APK is a game that you don't want to miss out on.
-If you are ready to join Pete in his quest to save the world, download Pickle Pete: Survivor APK from APKPure today and start playing. You will not regret it!
-Pickle Pete: Survivor APK is the modified version of Pickle Pete: Survivor, which is the original game developed by Pixel Perfect Studios. The APK version has some advantages over the original version, such as:
-Pickle Pete: Survivor APK is safe to download and install as long as you get it from a reliable source such as APKPure. APKPure is a website that verifies the authenticity and security of the APK files it provides. You can trust that Pickle Pete: Survivor APK from APKPure is free of viruses, malware, or any harmful code. However, you should always be careful when downloading and installing apps from unknown sources and check the permissions they require. You should also scan your device regularly with an antivirus app to ensure its safety.
-Pickle Pete: Survivor APK has a multiplayer mode that allows you to play with your friends online. You can join or create a room and invite your friends to join you. You can also chat with them and see their stats and rankings. To play Pickle Pete: Survivor APK with your friends, you will need to have an internet connection and a compatible device. You will also need to have the same version of the game as your friends.
-If you have any questions, feedback, or suggestions for the developers of Pickle Pete: Survivor APK, you can contact them through their email address: pixelperfectstudios@gmail.com. You can also follow them on their social media accounts such as Facebook, Twitter, or Instagram. You can also visit their website for more information about their games and projects.
-Here are some tips and tricks that can help you improve your gameplay and enjoy Pickle Pete: Survivor APK more:
-If you love sandbox games, you are in for a treat. Sandbox games are games that allow you to create, explore, and manipulate your own virtual world. They give you the freedom to experiment with different elements, scenarios, and possibilities. They are also great for stimulating your creativity, imagination, and problem-solving skills.
-One of the most fun and exciting sandbox games that you can play on your Android device is aBox. aBox is an early access sandbox game that lets you spawn items and mess with tools in various maps. You can also use weapons and fight enemies in different modes. You can customize your experience and share your creations with other players.
-DOWNLOAD ✒ ✒ ✒ https://urlca.com/2uOcZS
In this article, we will show you how to download and install aBox - Sandbox Game APK on your Android device. We will also give you some tips on how to play and enjoy this amazing game. Let's get started!
-Before you can play aBox, you need to download and install its APK file on your device. An APK file is an Android application package that contains all the files and data needed to run an app. You can find the latest version of aBox - Sandbox Game APK on APKCombo, a reliable website that offers free downloads of Android apps and games.
-To download and install aBox - Sandbox Game APK, follow these steps:
-Now that you have installed aBox on your device, you are ready to play and have fun. Here are some of the things that you can do in this game:
-aBox is a game that offers endless possibilities and fun. You can create your own world and play with it as you like. You can also enjoy the variety and challenge of different modes and maps. You can also interact with other players and their creations, and join a community of sandbox game lovers.
-abox sandbox game download
-abox sandbox game android
-abox sandbox game free
-abox sandbox game online
-abox sandbox game pc
-abox sandbox game mod apk
-abox sandbox game latest version
-abox sandbox game review
-abox sandbox game cheats
-abox sandbox game tips
-abox sandbox game gameplay
-abox sandbox game features
-abox sandbox game maps
-abox sandbox game weapons
-abox sandbox game enemies
-abox sandbox game tools
-abox sandbox game props
-abox sandbox game entities
-abox sandbox game update
-abox sandbox game hack
-abox sandbox game guide
-abox sandbox game tutorial
-abox sandbox game wiki
-abox sandbox game reddit
-abox sandbox game forum
-abox sandbox game discord
-abox sandbox game youtube
-abox sandbox game trailer
-abox sandbox game beta
-abox sandbox game release date
-abox sandbox game developer
-abox sandbox game studio
-abox sandbox game genre
-abox sandbox game category
-abox sandbox game rating
-abox sandbox game feedback
-abox sandbox game support
-abox sandbox game contact
-abox sandbox game faq
-abox sandbox game issues
-abox sandbox game bugs
-abox sandbox game fixes
-abox sandbox game patch notes
-abox sandbox game news
-abox sandbox game blog
-abox sandbox game community
-abox sandbox game fan art
-abox sandbox game screenshots
-abox sandbox game videos
aBox - Sandbox Game APK is a great app for anyone who loves sandbox games. It is easy to download and install, and it works on most Android devices. It has many features and options that allow you to create, explore, and manipulate your own virtual world. It is also fun and exciting to use weapons and fight enemies in different modes. It is also customizable and shareable, so you can have your own unique experience and connect with other players.
-If you are looking for a sandbox game that will keep you entertained and engaged for hours, you should definitely try aBox - Sandbox Game APK. You will not regret it. Download it now and start playing!
-aBox requires Android 4.4 or higher, and at least 100 MB of free storage space on your device. It also requires an internet connection for some features, such as downloading and sharing creations.
-Yes, aBox is safe and virus-free. It is developed by a reputable developer, called Abox Games, and it is verified by APKCombo. It does not contain any malware or harmful code that could harm your device or data.
-aBox is updated regularly to fix bugs, improve performance, and add new features. The latest version of aBox is 1.0.9, which was released on June 15, 2023. Some of the latest features include:
-You can play aBox both offline and online. Offline mode allows you to play without an internet connection, but you will not be able to access some features, such as downloading and sharing creations. Online mode allows you to access all the features of the game, but you will need an internet connection.
-Yes, you can create your own maps and items in aBox. You can use the map editor to design your own maps using different terrains, props, lights, etc. You can also use the item editor to create your own items using different models, textures, sounds, etc. You can then save and load your creations, and share them with other players online.
401be4b1e0Download File ☆☆☆☆☆ https://gohhs.com/2uFVGY
Edius Pro 9 is a powerful video editing software that supports multiple formats and resolutions, real-time performance, HDR editing, and content management. It is widely used by professionals for documentary and theatrical productions, as well as other types of video projects. However, Edius Pro 9 is not a free software, and you need to purchase a license to use it legally.
-If you are looking for a way to get Edius Pro 9 crack and serial number for free activation, you should be aware of the risks and consequences of using pirated software. In this article, we will explain why you should avoid Edius Pro 9 crack and serial number, and how you can get a legitimate copy of Edius Pro 9 at a reasonable price.
-Download Zip ✫✫✫ https://gohhs.com/2uFUmM
Edius Pro 9 crack and serial number are illegal ways of bypassing the software's activation process and using it without paying for a license. However, there are many drawbacks and dangers of using Edius Pro 9 crack and serial number, such as:
-If you want to use Edius Pro 9 legally and safely, you should purchase a license from the official website or an authorized reseller. The price of Edius Pro 9 depends on the product code and the region, but it ranges from $199 to $499 (excluding tax). You can also upgrade from an older version of Edius or get an education discount if you are eligible.
-By purchasing a license for Edius Pro 9, you will be able to enjoy the following benefits:
- -Edius Pro 9 is a professional video editing software that offers many advantages for video production.
d5da3c52bfDownload File ✑ ✑ ✑ https://gohhs.com/2uFUNG
Download ✪ https://urlca.com/2uDcad
Do you love creating 3D models, animations, games, and visual effects? Do you wish you could use Blender, one of the most popular and powerful 3D creation software, on your Android device? If yes, then you are in luck. In this article, we will show you how to download, install, and use Blender 3D APK, a modified version of Blender that works on Android devices. We will also explain what Blender 3D is, what are its features and benefits, and what are the pros and cons of using Blender 3D APK. By the end of this article, you will be able to use Blender 3D APK on your Android device like a pro.
-Blender 3D is a free and open source software that allows you to create stunning 3D models, animations, games, visual effects, and more. It is developed by hundreds of contributors from around the world, and it is used by millions of users, from hobbyists to professionals. Blender 3D has a rich set of features that include sculpting, modeling, rendering, simulation, compositing, video editing, motion tracking, scripting, and more. You can also extend its functionality with add-ons and plugins.
-Download File >>>>> https://urllie.com/2uNwxP
Some of the features and benefits of using Blender 3D are:
-Blender 3D APK is a modified version of Blender that works on Android devices. It is not an official app from the Blender Foundation, but rather a fan-made project that aims to bring the power of Blender to mobile devices. It is based on the source code of Blender 2.8x, which means it has most of the features and functions of the desktop version.
-Some of the pros and cons of using Blender 3D APK are:
-Pros | -Cons | -
---|---|
You can use Blender 3D on your Android device anytime, anywhere. | -You need a powerful device with enough storage space and RAM to run Blender 3D APK smoothly. | -
You can create and edit 3D models, animations, games, and visual effects on your mobile device. | -You may experience some bugs, crashes, or compatibility issues with Blender 3D APK, as it is not an official app. | -
You can export and import your work to and from other formats, such as OBJ, STL, FBX, GLTF, etc. | -You may have some limitations or difficulties with some features or functions of Blender 3D APK, such as rendering, simulation, scripting, etc. | -
You can access the online asset library and the community forums from your device. | -You may need a stable internet connection to use some of the online features of Blender 3D APK. | -
The first step to use Blender 3D APK on your Android device is to find a reliable source for the APK file. You can search online for websites that offer the download link for Blender 3D APK, but be careful of fake or malicious links that may harm your device. One of the trusted sources for Blender 3D APK is the official website of the project, where you can find the latest version of the app and the installation instructions.
-blender 3d apk download
-blender 3d apk for android
-blender 3d apk free
-blender 3d apk latest version
-blender 3d apk mod
-blender 3d apk offline
-blender 3d apk pro
-blender 3d apk tutorial
-blender 3d animation apk
-blender 3d app apk
-blender 3d art apk
-blender 3d camera apk
-blender 3d character apk
-blender 3d design apk
-blender 3d editor apk
-blender 3d game apk
-blender 3d model apk
-blender 3d modeling apk
-blender 3d photo apk
-blender 3d render apk
-blender 3d sculpting apk
-blender 3d software apk
-blender 3d studio apk
-blender 3d text apk
-blender 3d video apk
-download blender 3d android apk
-download blender 3d full apk
-download blender 3d mod apk
-download blender 3d pro apk
-how to install blender 3d apk
-how to use blender 3d apk
-learn blender 3d apk
-portable blender 3d apk
-real-time blender 3d apk
-seputar blender 3d android apk
-softonic blender 3d android apk
-the best blender 3d apk
-the latest blender 3d apk
-tips and tricks for blender 3d apk
-tutorial for beginners in blender 3d apk
The second step is to enable unknown sources on your device settings. This will allow you to install apps that are not from the Google Play Store. To do this, go to your device settings, then security, then toggle on the option for unknown sources. You may see a warning message that says installing apps from unknown sources may harm your device, but don't worry, as long as you trust the source of the APK file, you are safe.
-The third step is to download and install the APK file. To do this, go to the website where you found the download link for Blender 3D APK, then tap on it. You may see a pop-up message that asks you to confirm the download, then tap on OK. Once the download is complete, go to your file manager app, then locate the APK file in your downloads folder. Tap on it, then tap on install. You may see another pop-up message that asks you to confirm the installation, then tap on install again. Wait for a few seconds until the installation is done.
-The final step is to launch Blender 3D APK and enjoy. To do this, go to your app drawer, then find and tap on the Blender icon. You may see a splash screen that shows the logo and version of Blender 3D APK, then you will see the main interface of the app. You can now start creating and editing your 3D projects on your Android device.
-The user interface and navigation of Blender 3D APK are similar to those of the desktop version of Blender. You will see four main areas on the screen: the header, the toolbar, the viewport, and the properties panel.
-Some of the basic tools and functions that you can use in Blender 3D APK are:
-Some of the tips and tricks that can help you use Blender 3D APK effectively are:
-In conclusion, Blender 3D APK is a great way to use Blender 3D on your Android device. It is a modified version of Blender that works on mobile devices. It has most of the features and functions of the desktop version of Blender. It also has some pros and cons that you should consider before using it. To use Blender 3D APK on your Android device, you need to download and install the APK file from a reliable source. Then you need to enable unknown sources on your device settings. Then you need to launch Blender 3D APK and enjoy creating and editing your 3D projects on your mobile device.
-Blender 3D APK is safe to use as long as you download it from a trusted source. However, since it is not an official app from the Blender Foundation, you may encounter some bugs, crashes, or compatibility issues with Blender 3D APK. You should also be careful of the permissions and data that Blender 3D APK may access on your device.
-Yes, you can use Blender 3D APK offline. You don't need an internet connection to create and edit your 3D projects on your Android device. However, you may need an internet connection to access some of the online features of Blender 3D APK, such as the asset library and the community forums.
-No, you can't use Blender 3D APK on any Android device. You need a device that meets the minimum requirements for running Blender 3D APK. These include having at least Android 5.0 (Lollipop) or higher, having at least 2 GB of RAM, having at least 500 MB of free storage space, and having a decent processor and GPU.
-Yes, you can use Blender 3D APK with other apps. You can export and import your work to and from other formats, such as OBJ, STL, FBX, GLTF, etc. You can also share your work with other apps, such as email, social media, cloud storage, etc.
-Yes, you can update Blender 3D APK. You can check for updates from the official website of the project or from the app itself. You can also enable automatic updates from your device settings. However, you should always backup your work before updating Blender 3D APK, as some updates may cause errors or data loss.
401be4b1e0DOWNLOAD ✪✪✪ https://urllie.com/2uNFWt
Math is a subject that many people find challenging, boring, or intimidating. But it doesn't have to be that way. Math can be fun, interesting, and rewarding if you learn it in a way that suits your style and pace. One of the best ways to learn math is by taking math quizzes. Math quizzes are interactive and engaging activities that test your math skills in a variety of ways. They can help you reinforce mathematical concepts, improve problem-solving skills, build accuracy and speed, boost confidence, and make learning fun and enjoyable. In this article, we will explore what math quizzes are, why they are beneficial, what types of math quizzes there are, how to choose the best one for you, what are the best sources of math quizzes, how to download them, and how to study for a math test using them.
-Download File ✓✓✓ https://urllie.com/2uNxZ1
A math quiz is a set of questions or problems that require you to apply your math knowledge and skills to find the correct answer. Math quizzes can be designed in various formats, such as multiple-choice, fill-in-the-blank, matching, or puzzle-solving. They can also cover different topics, such as arithmetic, algebra, geometry, trigonometry, calculus, statistics, etc. Math quizzes can be accessed online or offline, depending on your preference and availability. Online math quizzes offer more variety, interactivity, and feedback than offline ones. Offline math quizzes offer more convenience, flexibility, and privacy than online ones
Math quizzes are not only fun and challenging, but also beneficial for learning math. Here are some of the benefits of math quizzes:
-Math quizzes can vary in their format, content, difficulty, and length. Some of the common formats of math quizzes are:
-Math quizzes can also cover different topics, such as:
-Math quizzes can be found online or offline. Online math quizzes are available on various websites that offer free or paid math quizzes for different grade levels and skills. Offline math quizzes are available on books, worksheets, flashcards, etc. that you can buy or print out. Here are some of the advantages and disadvantages of online and offline math quizzes:
-Online Math Quizzes | Offline Math Quizzes | |
---|---|---|
Advantages | - Offer more variety, interactivity, and feedback - Can be accessed anytime and anywhere with an internet connection - Can be adjusted to your level and pace - Can be shared with others easily | - Offer more convenience, flexibility, and privacy - Can be accessed without an internet connection - Can be customized to your preference - Can be used for offline practice or testing |
Disadvantages | - Require an internet connection - May have technical issues or errors - May have limited options or quality - May have security or privacy risks | - Require physical space and materials - May have limited availability or accessibility - May have outdated or inaccurate information - May have no feedback or correction |
To choose the best type of math quiz for you, you need to consider your learning goals, preferences, availability , and resources. For example, if you want to practice math skills that you have already learned, you may prefer offline math quizzes that you can do at your own pace and place. If you want to learn new math concepts or challenge yourself, you may prefer online math quizzes that offer more variety and feedback. You can also mix and match online and offline math quizzes to suit your needs and goals.
-If you are looking for online math quizzes, you can find many websites that offer them for free or for a fee. Some of these websites are:
-download math worksheets for free
-download math practice questions online
-download math quizzes for grade level
-download math quizzes for specific topics
-download math quizzes with answers and explanations
-download math quizzes for fun and learning
-download math quizzes for test preparation
-download math quizzes for homework and assignments
-download math quizzes for teachers and students
-download math quizzes for different skill levels
-download math quizzes for various subjects
-download math quizzes for interactive learning
-download math quizzes for self-study and revision
-download math quizzes for group activities and presentations
-download math quizzes for remote and in-person learning
-download math quizzes for different formats and devices
-download math quizzes for personalized feedback and progress tracking
-download math quizzes for challenging and engaging learning
-download math quizzes for instant and adaptive learning
-download math quizzes for gamified and competitive learning
-download printable math worksheets and quizzes
-download editable math worksheets and quizzes
-download customizable math worksheets and quizzes
-download pdf math worksheets and quizzes
-download word math worksheets and quizzes
-download excel math worksheets and quizzes
-download powerpoint math worksheets and quizzes
-download google docs math worksheets and quizzes
-download google slides math worksheets and quizzes
-download google sheets math worksheets and quizzes
-how to download math worksheets and quizzes
-where to download math worksheets and quizzes
-best sites to download math worksheets and quizzes
-free sites to download math worksheets and quizzes
-paid sites to download math worksheets and quizzes
-reviews of sites to download math worksheets and quizzes
-comparison of sites to download math worksheets and quizzes
-benefits of downloading math worksheets and quizzes
-tips for downloading math worksheets and quizzes
-resources for downloading math worksheets and quizzes
-examples of downloaded math worksheets and quizzes
-samples of downloaded math worksheets and quizzes
-quality of downloaded math worksheets and quizzes
-difficulty of downloaded math worksheets and quizzes
-length of downloaded math worksheets and quizzes
-frequency of downloading math worksheets and quizzes
-reasons for downloading math worksheets and quizzes
-goals of downloading math worksheets and quizzes
-outcomes of downloading math worksheets and quizzes
To download math quizzes from these websites, you need to follow their instructions and terms of use. Some of them may require you to sign up for an account or pay a subscription fee. Some of them may allow you to download the quizzes as PDF files or print them out. Some of them may not allow you to download the quizzes at all.
-If you are looking for offline math quizzes or more personalized ones , you can use apps or software that allow you to create your own math quizzes or customize existing ones. Some of these apps or software are:
-To download math quizzes from these apps or software, you need to sign up for an account and export or share your quizzes. Some of them may allow you to download the quizzes as PDF files or print them out. Some of them may allow you to share the quizzes via email, link, QR code, etc.
-Math quizzes are not only useful for learning math, but also for studying for a math test. Math quizzes can help you review the material that will be covered on the test and test your knowledge and skills on it. Math quizzes can also help you identify your strengths and weaknesses and focus on the areas that need more improvement.
-Math quizzes are not magic bullets that will guarantee you a perfect score on the test. You need to use them wisely and effectively to get the most out of them. Here are some tips and strategies for studying for a math test using math quizzes:
-Math quizzes are a fun and effective way to learn math. They can help you reinforce mathematical concepts, improve problem-solving skills, build accuracy and speed, boost confidence, and make learning fun and enjoyable. They can also help you prepare for a math test by reviewing the material and testing your knowledge. You can find online or offline math quizzes that suit your needs and goals, or create your own math quizzes using apps or software. You can also download math quizzes from various sources and use them for studying or practice. To study effectively using math quizzes, you need to follow some tips and strategies, such as finding a quiet place, choosing the right type and level of math quizzes, practicing with different formats and topics, checking your answers, learning from your mistakes, tracking your progress, and rewarding yourself for your achievements. We hope this article has helped you understand what math quizzes are, why they are beneficial, what types of math quizzes there are, how to choose the best one for you, what are the best sources of math quizzes, how to download them, and how to study for a math test using them. We encourage you to download math quizzes and try them out for yourself. You will be amazed by how much fun and effective they are for learning math.
-A math quiz is a set of questions or problems that require you to apply your math knowledge and skills to find the correct answer.
-Math quizzes are beneficial because they can help you reinforce mathematical concepts, improve problem-solving skills, build accuracy and speed, boost confidence, and make learning fun and enjoyable.
-Math quizzes can be designed in various formats, such as multiple-choice, fill-in-the-blank, matching, or puzzle-solving. They can also cover different topics , such as arithmetic, algebra, geometry, trigonometry, calculus, statistics, etc.
-You can download math quizzes from various sources, such as websites, apps, or software. You need to follow their instructions and terms of use. Some of them may require you to sign up for an account or pay a subscription fee. Some of them may allow you to download the quizzes as PDF files or print them out. Some of them may not allow you to download the quizzes at all.
-You can study for a math test using math quizzes by following some tips and strategies, such as finding a quiet place, choosing the right type and level of math quizzes, practicing with different formats and topics, checking your answers, learning from your mistakes, tracking your progress, and rewarding yourself for your achievements.
197e85843dWii Sports Resort is a popular sports game that was released for the Nintendo Wii in 2009. It is a sequel to Wii Sports, and features 12 different sports activities that can be played with the Wii Remote and Nunchuk, or with the Wii MotionPlus accessory for more accurate motion control. Wii Sports Resort takes place on a tropical island called Wuhu Island, where you can explore various locations and interact with other Mii characters.
-DOWNLOAD ✺ https://gohhs.com/2uPnhH
But what if you don't have a Wii console, or you want to play Wii Sports Resort with better graphics and performance? That's where Dolphin Emulator comes in. Dolphin Emulator is a free and open-source program that can run GameCube and Wii games on your PC or Android device. It has high compatibility across the majority of titles for both platforms, and allows you to enjoy games in full HD (1080p) with several enhancements, such as compatibility with all PC controllers, turbo speed, networked multiplayer, and even more.
-In this article, I will guide you through the steps of downloading, installing, and configuring Dolphin Emulator, as well as how to obtain and play Wii Sports Resort on it. Let's get started!
-Every game has different requirements, some titles may require a powerful computer or device while some other titles may not. Generally, these are the minimum and recommended requirements for running Dolphin Emulator on different platforms.
-How to play Wii Sports Resort on PC with Dolphin Emulator
-Wii Sports Resort HD Texture Pack for Dolphin Emulator
-Best settings for Wii Sports Resort on Dolphin Emulator
-Wii Sports Resort cheats and codes for Dolphin Emulator
-Wii Sports Resort save file download for Dolphin Emulator
-Wii Sports Resort motion plus fix for Dolphin Emulator
-Wii Sports Resort online multiplayer with Dolphin Emulator
-Wii Sports Resort 60 FPS hack for Dolphin Emulator
-Wii Sports Resort ROM download for Dolphin Emulator
-Wii Sports Resort ISO download for Dolphin Emulator
-Wii Sports Resort WBFS download for Dolphin Emulator
-Wii Sports Resort WAD download for Dolphin Emulator
-Wii Sports Resort NKit download for Dolphin Emulator
-Wii Sports Resort PAL version download for Dolphin Emulator
-Wii Sports Resort NTSC version download for Dolphin Emulator
-Wii Sports Resort Japanese version download for Dolphin Emulator
-Wii Sports Resort Korean version download for Dolphin Emulator
-Wii Sports Resort Chinese version download for Dolphin Emulator
-Wii Sports Resort German version download for Dolphin Emulator
-Wii Sports Resort French version download for Dolphin Emulator
-Wii Sports Resort Spanish version download for Dolphin Emulator
-Wii Sports Resort Italian version download for Dolphin Emulator
-Wii Sports Resort Dutch version download for Dolphin Emulator
-Wii Sports Resort Portuguese version download for Dolphin Emulator
-Wii Sports Resort Russian version download for Dolphin Emulator
-Wii Sports Resort Swedish version download for Dolphin Emulator
-Wii Sports Resort Finnish version download for Dolphin Emulator
-Wii Sports Resort Norwegian version download for Dolphin Emulator
-Wii Sports Resort Danish version download for Dolphin Emulator
-Wii Sports Resort Polish version download for Dolphin Emulator
-Wii Sports Resort Turkish version download for Dolphin Emulator
-Wii Sports Resort Greek version download for Dolphin Emulator
-Wii Sports Resort Arabic version download for Dolphin Emulator
-Wii Sports Resort Hebrew version download for Dolphin Emulator
-How to install and configure Dolphin Emulator for Wii Sports Resort
-How to use a real Wiimote with Dolphin Emulator for Wii Sports Resort
-How to use a gamepad with Dolphin Emulator for Wii Sports Resort
-How to use a keyboard and mouse with Dolphin Emulator for Wii Sports Resort
-How to improve graphics quality of Wii Sports Resort on Dolphin Emulator
-How to fix sound issues of Wii Sports Resort on Dolphin Emulator
-How to fix performance issues of Wii Sports Resort on Dolphin Emulator
-How to fix compatibility issues of Wii Sports Resort on Dolphin Emulator
-How to update and patch Wii Sports Resort on Dolphin Emulator
-How to backup and restore Wii Sports Resort on Dolphin Emulator
-How to mod and customize Wii Sports Resort on Dolphin Emulator
The first step to play Wii Sports Resort on your PC or Android device is to download Dolphin Emulator. You can get it from the official website, which is https://dolphin-emu.org. There are two versions of Dolphin Emulator available: the stable version and the development version. The stable version is more tested and reliable, but it may not have the latest features and improvements. The development version is updated frequently and has more features and fixes, but it may also have more bugs and issues. You can choose whichever version suits your preference, but I recommend the development version for better compatibility and performance.
-To download Dolphin Emulator, go to the official website and click on the Download button. You will see a list of platforms and versions to choose from. For desktop computers, you can download the Windows x64, Linux x64, or macOS x64 version. For Android devices, you can download the Android APK file. You can also scan the QR code on the website with your device's camera to download it directly. Once you have downloaded the file, you can proceed to install it.
-The installation process of Dolphin Emulator varies depending on your operating system. Here are the instructions for each platform:
-./dolphin-emu
and press Enter to run Dolphin Emulator.Now that you have installed Dolphin Emulator, you need to configure some settings and options to optimize its performance and compatibility. There are many settings and options available in Dolphin Emulator, but I will only cover the most important ones in this article. You can always explore and experiment with other settings and options later if you want.
-The main configuration window of Dolphin Emulator is where you can access and change various general settings, such as language, interface, paths, updates, etc. To open it, click on the Config button in the toolbar (or press Ctrl+S) for desktop computers, or tap on the Menu button in the top-right corner and select Settings for Android devices. Here are some of the settings that you should check or change:
-The graphics settings of Dolphin Emulator are where you can adjust and customize the visual aspects of the games, such as resolution, aspect ratio, anti-aliasing, texture filtering, etc. To open it, click on the Graphics button in the toolbar (or press Ctrl+G) for desktop computers, or tap on the Menu button in the top-right corner and select Graphics Settings for Android devices. Here are some of the settings that you should check or change:
-Before you can play Wii Sports Resort on Dolphin Emulator, you need to have a copy of the game file on your computer or device. There are two ways to obtain Wii Sports Resort: legally and illegally. The legal way is to dump the game from your own Wii console and disc, using a homebrew application called CleanRip. The illegal way is to download the game from the internet, using a torrent or a direct link. I do not condone or support piracy, and I strongly advise you to follow the legal method if you own the game. However, for the sake of completeness, I will briefly explain both methods in this section.
-Now that you have Dolphin Emulator and Wii Sports Resort ready, you can finally start playing the game. Here are some tips and tricks for enjoying Wii Sports Resort on Dolphin Emulator:
-Wii Sports Resort is a fun and engaging game that you can play on your PC or Android device with Dolphin Emulator. Dolphin Emulator is a free and open-source program that can run GameCube and Wii games with high compatibility and various enhancements. In this article, I have shown you how to download, install, and configure Dolphin Emulator, as well as how to obtain and play Wii Sports Resort on it. I hope you have enjoyed this article and found it helpful. If you have any questions or feedback, please feel free to leave a comment below. Happy gaming!
-"
-
-super_source_prefix = f"""Sources
Sources [Score | Link]:"""
-super_source_postfix = f"""End Sources
")
-
- submit = gr.Button("Click to see your personalized result!", variant="primary")
- gr.Markdown("
")
- output = gr.Textbox(label="Your recommendation:", placeholder="your recommendation will appear here")
-
- submit.click(fn=general_predictor, inputs=inputls, outputs=output)
- gr.Markdown("
")
-
- with gr.Row():
- with gr.Box():
- gr.Markdown(f"
Belote is a popular card game that originated in France and is played by four players in two teams. The game involves bidding, trick-taking, and scoring points based on the cards played. Belote can be played online on various platforms, such as Facebook, where you can challenge your friends or other players from around the world. But how can you improve your chances of winning Belote games online? One way is to use a cheat engine that can help you manipulate the game and gain an advantage over your opponents.
-Download ❤ https://urlin.us/2uEyfo
A cheat engine is a software tool that can modify the memory and data of a computer program, such as a game. By using a cheat engine, you can alter various aspects of the game, such as the cards you have, the cards your opponents have, the score, the time limit, and so on. You can also use a cheat engine to access hidden features or unlock bonuses that are normally unavailable. A cheat engine can give you an edge over your competitors and make you win more games.
-However, using a cheat engine is not without risks. First of all, it is unethical and unfair to use a cheat engine to play online games, as it violates the rules and spoils the fun for other players. Secondly, it can expose your computer to viruses, malware, or other harmful programs that can damage your system or steal your personal information. Thirdly, it can get you banned from the game platform or the game itself, as most online games have anti-cheat mechanisms that can detect and prevent cheating. Therefore, using a cheat engine is not recommended and should be avoided.
-If you want to play and win Belote games online without cheating, you should follow some tips and strategies that can help you improve your skills and performance. Here are some of them:
- -Belote Multijoueur Facebook Cheat Engine is a tool that can help you cheat in Belote games online by modifying the game data and memory. However, using this tool is not advisable, as it is unethical, risky, and punishable. Instead of cheating, you should play fair and square by following some tips and strategies that can help you improve your skills and performance in Belote games online.
d5da3c52bfDownload File 🌟 https://urlin.us/2uEy1c
DOWNLOAD ☆ https://urlin.us/2uExjr
DOWNLOAD ☆ https://urlin.us/2uEyuv
Gihosoft TubeGet is a software that allows you to download YouTube videos for free. You can choose the video resolution, format, subtitle language and saving directory. It also supports downloading videos from other popular sites like Facebook, Twitter, Instagram, Vimeo, Dailymotion and more.
-Download File »»» https://urlin.us/2uEvAe
SeuPirate is a user who uploads cracked versions of various software on torrent sites. He has released Gihosoft TubeGet V3.2.8 with a serial key and a keygen that can activate the software without paying for it. However, this may be illegal and risky, as it may violate the copyright of the software developer and expose your computer to malware or viruses.
-In this article, we will review the features, pros and cons of Gihosoft TubeGet V3.2.8 - SeuPirate Serial Key Keygen and compare it with some alternatives.
Gihosoft TubeGet V3.2.8 has some features that make it a useful tool for downloading videos from various online platforms. Some of these features are:
- -Gihosoft TubeGet V3.2.8 has some advantages and disadvantages that you should consider before using it. Here are some of them:
-Download Zip >>> https://tiurll.com/2uCkdq
https://trello.com/c/O7C9sVNX/41-love-signals-david-givens-pdf-14 https://trello.com/c/eqkl4c6H/52-atnsoftkeyremappercrackserialnumbers-link https://trello.com/c/wV7EYkxm/18-scrap-mechanic-activation-key-generator https://trello.com/c/eqkl4c6H/52-atnsoftkeyremappercrackserialnumbers-link
-https://trello.com/c/wV7EYkxm/18-scrap-mechanic-activation-key-generator https://trello.com/c/eqkl4c6H/52-atnsoftkeyremappercrackserialnumbers-link https://trello.com/c/O7C9sVNX/41-love-signals-david-givens-pdf-14 https://trello.com/c/eqkl4c6H/52-atnsoftkeyremappercrackserialnumbers-link
-DOWNLOAD ○ https://bytlly.com/2uGw5J
https://trello.com/c/eqkl4c6H/52-atnsoftkeyremappercrackserialnumbers-link https://trello.com/c/wV7EYkxm/18-scrap-mechanic-activation-key-generator https://trello.com/c/eqkl4c6H/52-atnsoftkeyremappercrackserialnumbers-link
-https://trello.com/c/O7C9sVNX/41-love-signals-david-givens-pdf-14 https://trello.com/c/eqkl4c6H/52-atnsoftkeyremappercrackserialnumbers-link https://trello.com/c/wV7EYkxm/18-scrap-mechanic-activation-key-generator
-HustoKey 2 manual ATnSoftKey RemappingKey 8e0ae2b35d. Ma se li connette hiofuturamente? Hans says:. https://trello.com/c/O7C9sVNX/41-love-signals-david-givens-pdf-14 https://trello.com/c/KJXpCnkP/atnsoftkeyremappercrackserialnumbers-top. Reply.
-komatik scratch card apphotel 3.1.6 crack serial number atnsoftkeyremappercrackserialnumbers zidorsign encryption application 64bit serial number. Atensoft X119071.rar. https://cdn.thingiverse.com/assets/2c/88/32/9e/fc/be/atnsoftkeyremappercrackserialnumbers.html
-atnsoftkeyremappercrackserialnumbers https://trello.com/c/zqoYywOQ/1-atnsoftkeyremappercrackserialnumbers-pack-2 https://trello.com/c/zqoYwOQ/1-atnsoftkeyremappercrackserialnumbers-pack-2. Reply. Logicalanalytics 1.25.5 crack download atnsoftkeyremappercrackserialnumbers tjemil@lunatic.com.
899543212bIf you have ever lost your important data due to accidental deletion, formatting, virus attack, or any other reason, you know how frustrating and stressful it can be. You may think that your data is gone forever and there is no way to get it back. But don't worry, there is a solution: DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12.
- -DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 is a powerful and reliable data recovery software that can help you recover your deleted, lost, damaged, or formatted data from hard drive, partition, USB, memory card, or any other external device. It can recover files of any type, such as word, excel, ppt, office document, video, zip, photo, etc. It can also recover partition table when it was damaged or recover data from computer errors.
-Download File ->>> https://bytlly.com/2uGwQ9
To download and install DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12, you need to follow these simple steps:
- -To use DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12, you need to follow these simple steps:
- -DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 is one of the best data recovery software in the market because of its features and benefits:
- -DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 is a must-have tool for anyone who wants to recover their lost data easily and quickly. It can save you from a lot of trouble and stress caused by data loss. Don't hesitate to download and install DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 today and enjoy your full version of this amazing software.
-There are many data recovery software available in the market, but not all of them can match the performance and features of DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12. Here are some of the advantages of DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 over other data recovery software:
- -Data loss can happen to anyone at any time due to various reasons, such as human error, hardware failure, virus attack, power outage, natural disaster, etc. However, you can avoid data loss and protect your data with DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 by following these tips:
- -If you do encounter data loss, don't panic and don't write any new data to your drive or device. Just download and install DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 and follow the steps above to recover your lost data easily and quickly.
-Although DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 is a great data recovery software, it also has some disadvantages that you need to be aware of and avoid. Here are some of the disadvantages of DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 and how to avoid them:
- - -To avoid these disadvantages, you should do the following:
- -If you have any questions or problems about DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12, you can contact the support team and get help. Here are some ways to contact DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 support team and get help:
- -The support team of DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 is professional and friendly, and they will try their best to help you solve your problem as soon as possible.
-DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 is a powerful and reliable data recovery software that can help you recover your deleted, lost, damaged, or formatted data from hard drive, partition, USB, memory card, or any other external device. It has many features and benefits that make it stand out from other data recovery software. It also has some disadvantages that you need to be aware of and avoid. If you have any questions or problems about DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12, you can contact the support team and get help.
- -If you are looking for a data recovery software that can recover your data easily and quickly, DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 is the best choice for you. Don't hesitate to download and install DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 today and enjoy your full version of this amazing software.
- - -- Check the article for grammar and spelling errors using online tools such as Grammarly or Hemingway Editor. -- Check the article for plagiarism using online tools such as Copyscape or Quetext. -- Check the article for SEO optimization using online tools such as Yoast SEO or Moz Pro. -- Generate a meta description for the article using online tools such as Meta Tags or Portent. - - -- Check the article for grammar and spelling errors using online tools such as Grammarly or Hemingway Editor. -- Check the article for plagiarism using online tools such as Copyscape or Quetext. -- Check the article for SEO optimization using online tools such as Yoast SEO or Moz Pro. -- Generate a meta description for the article using online tools such as Meta Tags or Portent. -DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 is a powerful and reliable data recovery software that can help you recover your deleted, lost, damaged, or formatted data from hard drive, partition, USB, memory card, or any other external device. It has many features and benefits that make it stand out from other data recovery software. It also has some disadvantages that you need to be aware of and avoid. If you have any questions or problems about DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12, you can contact the support team and get help.
- -If you are looking for a data recovery software that can recover your data easily and quickly, DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 is the best choice for you. Don't hesitate to download and install DiskGetor Data Recovery 3.2 key Crack serial keygen cd 12 today and enjoy your full version of this amazing software.
3cee63e6c2Eagle Point is a software company that provides e-learning solutions for the architecture, engineering, construction, and manufacturing industries. Eagle Point's flagship product is Pinnacle Series, an e-learning system that offers training content, productivity tools, and knowledge sharing features for dozens of software applications and topics. Eagle Point also offers Pinnacle Lite, a scaled-down version of Pinnacle Series for smaller companies.
-In this article, we will review one of Eagle Point's software products: Eagle Point 2011 Q1 11.1.0.zip. This is a zip file that contains Eagle Point software with its crack file[^5^]. Eagle Point software is designed to help engineers and architects with various tasks such as road design, contour drawing, volume calculation, mass haul diagramming, and more[^5^]. Eagle Point software can also interface with AutoCAD and other CAD software to enhance their functionality[^6^].
-DOWNLOAD ✫ https://bytlly.com/2uGvNV
We will evaluate Eagle Point 2011 Q1 11.1.0.zip based on the following criteria: installation, features, performance, compatibility, and support.
-To install Eagle Point 2011 Q1 11.1.0.zip, you need to download the zip file from a reliable source and extract it to a folder on your computer. Then, you need to run the setup.exe file and follow the instructions on the screen. You may need to enter a serial number or a license key during the installation process. After the installation is complete, you need to copy the crack file from the zip file and paste it into the installation folder to activate the software[^5^].
-The installation process is relatively simple and straightforward, but it may take some time depending on your computer's specifications and internet speed. You also need to make sure that you have enough disk space and memory to run the software smoothly.
-Eagle Point 2011 Q1 11.1.0.zip offers a variety of features for different engineering and architectural disciplines. Some of the main features are:
-Eagle Point 2011 Q1 11.1.0.zip also offers other features such as project management, -data management, -CAD standards, -and customization options. -You can access these features from the Eagle Point menu or toolbar in AutoCAD or other CAD software[^6^].
-Eagle Point 2011 Q1 11.1.0.zip is a powerful software that can handle complex engineering and architectural projects with ease. -The software runs smoothly and efficiently on most computers with adequate specifications. -The software also has a user-friendly interface that makes it easy to navigate and use. -The software provides accurate calculations, -high-quality graphics, -and comprehensive reports for your projects[^5^] [^6^].
-However, -Eagle Point 2011 Q1 11.1.0.zip is
d5da3c52bfDownload File — https://bytlly.com/2uGxha
Azamerica S810b is a satellite receiver that can decode Nagra 2 and Nagra 3 encrypted channels. However, some users may encounter problems with the Nagra 3 encryption, which requires a periodic update of the firmware. In this article, we will show you how to update your Azamerica S810b to the latest Nagra 3 cracked version, which can bypass the encryption and allow you to watch all the channels without any interruption.
-DOWNLOAD https://urlcod.com/2uIaaP
The first step is to download the Nagra 3 cracked firmware for your Azamerica S810b. You can find it on various websites, such as [^1^] or [^2^]. Make sure you download the correct file for your model and region. The file name should be something like "S810B_N3_2023_04_16.bin".
-The next step is to transfer the firmware file to a USB flash drive. You can use any USB flash drive that has enough space and is formatted in FAT32. Plug the USB flash drive into your computer and copy the firmware file to the root directory of the drive. Do not put it in any folder or subfolder. Safely eject the USB flash drive from your computer when done.
-The final step is to update your Azamerica S810b with the new firmware. Follow these steps carefully:
-Congratulations! You have successfully updated your Azamerica S810b to the Nagra 3 cracked version. If you have any questions or issues, please contact us at [email address]. We are happy to help you.
-Here are a few more paragraphs for the article: - -Nagra 3 is a digital encryption system that is used by some satellite providers to protect their channels from unauthorized access. It is the successor of Nagra 2, which was cracked by hackers a few years ago. Nagra 3 uses a more advanced algorithm and a dynamic key exchange mechanism that makes it harder to crack.
-However, cracking Nagra 3 is not impossible. Some hackers have managed to find a way to bypass the encryption and create a modified firmware that can decode the Nagra 3 channels. This firmware is called Nagra 3 cracked version, and it can be installed on some satellite receivers, such as Azamerica S810b.
-By updating your Azamerica S810b to the Nagra 3 cracked version, you can enjoy watching all the channels that are encrypted by Nagra 3 without paying any subscription fee. This can save you a lot of money and give you access to more content and variety.
-Updating your Azamerica S810b to the Nagra 3 cracked version has some risks and benefits that you should be aware of before doing it. Here are some of them:
-The decision to update your Azamerica S810b to the Nagra 3 cracked version is yours. You should weigh the risks and benefits carefully and do it at your own risk. We are not responsible for any damage or loss that may result from updating your Azamerica S810b to the Nagra 3 cracked version.
7196e7f11aDownload File ››››› https://geags.com/2uCrR1
in 2015, london nahi jaunga grossed more than the u.s. box office to become the first animated film ever to be released in the united states that had been released in pakistani cinemas a decade earlier. this film grossed more than â£4 million [$5.7 million]. this film is rated r.
-Download >>> https://geags.com/2uCro4
it is the first film made by the animation studio to find international box office success. it is by far the most successful animated feature film in pakistan, including of overseas earnings. the film was remade by india and released in 2019. this film is rated r.
-london nahi jaunga revolves around two indian sisters, mehwish hayat and sara (played by model and actress shannan aly ) and their struggles with their muslim families, who vehemently oppose their attempts to turn their london-based modeling agency into a production unit. in an effort to persuade their muslim parents, the two girls eventually leave for london to pursue their dream, taking their hindu grandmother with them. the film was shot at upa studios in london, while the music was composed by sajjad ali and amjad sabri. it has been primarily considered a pakistani film, though it has also won awards in france and india. (from wikipedia)
-this film was released in pakistan on 5 july 2019. it was directed by shahram hasan. it was distributed by amazon prime. london nahi jaunga is an indian film directed by rahil ali and distributed by reliance big pictures.
-london nahi jaunga came out on 8 july 2019. it grossed more than $68 million at the box office. london nahi jaunga is a pakistani film directed by rahil ali. it was released by zindagi cinema on 16 october 2019.
- 899543212bDOWNLOAD ⚹⚹⚹ https://geags.com/2uCrc5
there are always a number of people looking to get a hold of your information. and while you can usually verify if someone is on facebook, its not always easy to verify their identity. you may be able to find this information online, but you may need to take some extra steps to protect yourself. you can use a vpn (virtual private network) service to encrypt your data when you use the internet and keep your information safe. you can also change your passwords frequently to prevent someone from hacking into your accounts and stealing your information. these tips should help you stay safe on facebook.
-remember, facebook isnt the only place where your information can be found. no matter how secure you think your phone is, your contacts will still have access to your phone number. and hackers can still get to your facebook messages. plus, you dont have to go to facebook to be tracked, either. your mobile carrier, your credit card company, even your bank is likely tracking you in some way. taking the time to properly secure your information now can save you from more trouble later.
-Download File 🆓 https://geags.com/2uCq6k
if your mobile phone number is already attached to a facebook account, they can get to your account by getting that number. the easiest way to protect yourself is to give everyone else a number, too. many people have one mobile phone number, but they also have a personal email address and a work email address. you can use all three to create separate accounts. this will prevent someone from linking your email address to your personal account or work account, and will also prevent your personal account from being linked to your work account.
899543212bIf you are looking for a novel that explores the love and life of Krishna, one of the most popular and revered gods in Hinduism, then you should read Krishnayan by Kaajal Oza Vaidya. This novel is a bestseller in Gujarati language and has been translated into English, Marathi and Hindi. You can download Krishnayan by Kajal Oza in Gujarati free from various online sources.
-Krishnayan is a novel that narrates the story of Krishna's three women: Radha, Rukmini and Draupadi. They are his lover, his wife and his friend respectively. The novel depicts how each of them influenced Krishna's personality and destiny, and how Krishna touched their lives with his divine grace. The novel also explores Krishna's human side, as he confides his inner thoughts and feelings to his women.
-Download Zip ->->->-> https://geags.com/2uCrX0
Kaajal Oza Vaidya is a renowned author, columnist, speaker and radio host from Gujarat. She has written more than 50 books in various genres, including fiction, poetry, essays and biographies. She is known for her lucid and engaging style of writing, as well as her insights into human relationships, spirituality and culture. She is a popular figure among the Gujarati diaspora and has a large fan following on social media.
-Krishnayan is a novel that will appeal to anyone who loves mythology, romance and spirituality. It will take you on a journey of discovering the lesser known aspects of Krishna's life and personality, as well as the emotions and experiences of his women. It will make you admire Krishna's wisdom, compassion and charisma, as well as his flaws and vulnerabilities. It will also make you reflect on your own relationship with the divine and the human.
-There are many websites that offer Krishnayan by Kajal Oza in Gujarati free download in PDF format. You can also find it on online platforms like Goodreads, Matrubharti and Soundcloud. However, before downloading any file from the internet, make sure that it is safe and legal. You can also buy the paperback or ebook version of Krishnayan from Amazon or other online stores.
-We hope that this article has given you some useful information about Krishnayan by Kajal Oza in Gujarati free download. If you have read this novel or plan to read it, let us know your thoughts in the comments section below.
-Krishnayan has received rave reviews from readers and critics alike. It has been praised for its captivating storytelling, its rich characterization, its poetic language and its profound message. It has also been appreciated for its authentic portrayal of the Gujarati culture and the historical context of Krishna's era. Some of the reviews of Krishnayan are:
-If you enjoyed reading Krishnayan by Kajal Oza in Gujarati free download, you might want to check out more books by Kaajal Oza Vaidya. She has written books in various genres, such as fiction, poetry, essays and biographies. Some of her popular books are:
- -You can find these books and more on online platforms like Amazon, Goodreads, Matrubharti and Soundcloud. You can also follow Kaajal Oza Vaidya on social media to get updates on her latest works and events.
-Reading Krishnayan by Kajal Oza in Gujarati free download can offer you many benefits, such as:
-If you want to read Krishnayan by Kajal Oza in Gujarati free download, you can follow these steps:
-You can also listen to the audiobook version of Krishnayan on Soundcloud or any other audio platform. You can also watch the video version of Krishnayan on YouTube or any other video platform.
-Krishnayan by Kajal Oza in Gujarati free download is a novel that has been translated into several languages, such as English, Marathi and Hindi. However, translating Krishnayan is not an easy task, as it involves many challenges, such as:
-Despite these challenges, Krishnayan has been translated successfully by various translators, who have done justice to the novel and have made it accessible to a wider audience.
-If you want to appreciate Krishnayan by Kajal Oza in Gujarati free download, you can do the following things:
-We hope that this article has helped you to know more about Krishnayan by Kajal Oza in Gujarati free download. If you have any questions or comments about the novel, feel free to leave them below.
-Krishnayan by Kajal Oza in Gujarati free download is a novel that explores various themes, such as:
-If you want to write a review of Krishnayan by Kajal Oza in Gujarati free download, you can follow these steps:
-You can also use some online tools or platforms to help you write your review, such as Grammarly, Hemingway Editor, Goodreads, etc.
-Krishnayan by Kajal Oza in Gujarati free download is a novel that will captivate you with its story, enlighten you with its wisdom and inspire you with its message. It is a novel that will make you appreciate the love and life of Krishna and his women, as well as your own relationship with the divine and the human. It is a novel that you can download for free from various online sources and enjoy reading or listening to it. We hope that this article has given you some useful information about Krishnayan by Kajal Oza in Gujarati free download. If you have any feedback or suggestions, please let us know in the comments section below. Thank you for reading!
3cee63e6c2If you are tired of annoying ads, pop-ups, banners, and video ads that ruin your web browsing experience, you need a powerful ad blocker that can eliminate them all. And if you also care about your online privacy and security, you need a tool that can protect you from web trackers, malicious sites, phishing, and inappropriate content. That's why you need Adguard Premium, the world's most advanced ad blocker and privacy protector for Windows.
-In this article, we will tell you what Adguard Premium is, what it does, and why you need it. We will also show you how to download and install Adguard Premium 7.4.1375.4027 RC Crack Full Version, which is the latest release candidate version of this amazing software. With this crack, you can enjoy all the features of Adguard Premium for free, without any limitations or restrictions.
-Download File ☑ https://tinourl.com/2uL1xw
Adguard Premium is more than just an ad blocker. It is a multipurpose tool that blocks ads, controls access to dangerous sites, speeds up page loading, and protects children from inappropriate content. Here are some of the features that make Adguard Premium stand out from other ad blockers:
-If you want to enjoy all the benefits of Adguard Premium for free, without paying for a license key or subscribing to a plan, you can download and install Adguard Premium 7.4.1375.4027 RC Crack Full Version. This is the latest release candidate version of this software that has been cracked by hackers to bypass the activation process.
-To download and install this crack version of Adguard Premium follow these steps:
-Download the crack file from this link: https://crackswin.com/ad-guard-premium-crack/. This file contains both the setup file and the crack file for AdGuard 7.4 RC (v7.4.nightly 32).
-How to download Adguard Premium 7.4.1375.4027 RC Crack for free
-Adguard Premium 7.4.1375.4027 RC Crack license key generator
-Adguard Premium 7.4.1375.4027 RC Crack review and features
-Adguard Premium 7.4.1375.4027 RC Crack vs Adguard Premium lifetime license
-Adguard Premium 7.4.1375.4027 RC Crack installation guide and troubleshooting
-Adguard Premium 7.4.1375.4027 RC Crack latest update and changelog
-Adguard Premium 7.4.1375.4027 RC Crack compatibility and system requirements
-Adguard Premium 7.4.1375.4027 RC Crack alternative and comparison
-Adguard Premium 7.4.1375.4027 RC Crack discount and coupon code
-Adguard Premium 7.4.1375.4027 RC Crack pros and cons and user feedback
-Adguard Premium 7.4.1375.4027 RC Crack best settings and configuration
-Adguard Premium 7.4.1375.4027 RC Crack download link and mirror
-Adguard Premium 7.4.1375.4027 RC Crack serial number and activation code
-Adguard Premium 7.4.1375.4027 RC Crack malware and virus scan report
-Adguard Premium 7.4.1375.4027 RC Crack benefits and advantages
-Adguard Premium 7.4.1375.4027 RC Crack tutorial and video guide
-Adguard Premium 7.4.1375.4027 RC Crack support and customer service
-Adguard Premium 7.4.1375.4027 RC Crack refund policy and guarantee
-Adguard Premium 7.4.1375.4027 RC Crack official website and developer
-Adguard Premium 7.4.1375.4027 RC Crack modded and cracked version
-Adguard Premium 7.4.1375.4027 RC Crack online and offline mode
-Adguard Premium 7.4.1375.4027 RC Crack performance and speed test
-Adguard Premium 7.4.1375.4027 RC Crack browser extension and app
-Adguard Premium 7.4.1375.4027 RC Crack premium account and subscription
-Adguard Premium 7.4.1375.4027 RC Crack giveaway and contest
-Adguard Premium 7.4
Run the setup file as administrator and follow the instructions on the screen to install AdGuard 7.4 RC (v7.4.nightly 32). Do not launch the program after installation.
Copy the crack file (adgurd.exe) from the crack folder (Crack) and paste it into the installation folder (C:\Program Files (x86)\AdGuard).
Run the crack file (adgurd.exe) as administrator and click on "Patch". Wait for a few seconds until it says "Patching Done". Close the crack file.
Launch AdGuard 7.4 RC (v7.4.nightly 32) from your desktop shortcut or start menu.
You will see a message saying "Your license key has been activated successfully". Click on "OK". You have now activated AdGuard 7.4 RC (v7.4.nightly 32) with AdGuard Lifetime License Key.
You can now enjoy all the features of AdGuard 7.4 RC (v7.4.nightly 32), such as ad blocking, privacy protection,
Adguard Premium is the ultimate solution for blocking ads and protecting your privacy online. It works on any browser or app, saves traffic and speeds up loading, keeps pages looking good and functional, removes online trackers and analytics, blocks malicious and phishing sites, protects children from inappropriate content, lets you choose from various filters and settings, supports user scripts and extensions, and provides technical support and updates.
-If you want to try Adguard Premium for free, you can download and install Adguard Premium 7.4.1375.4027 RC Crack Full Version, which is the latest release candidate version of this software that has been cracked by hackers to bypass the activation process. With this crack, you can activate Adguard Premium with a lifetime license key and enjoy all its features without any limitations or restrictions.
-To download Adguard Premium 7.4.1375.4027 RC Crack Full Version, click on the link below and follow the instructions in this article. You will be amazed by how much better your web browsing experience will be with Adguard Premium.
-Download Adguard Premium 7.4.1375.4027 RC Crack Full Version
-What are the system requirements for Adguard Premium?
-Adguard Premium works on Windows 7, 8, 8.1, 10 (32-bit or 64-bit). It requires at least 512 MB of RAM and 50 MB of free disk space.
Is Adguard Premium compatible with other ad blockers or VPNs?
-Adguard Premium can work alongside other ad blockers or VPNs without any conflicts or issues. However, you may not need to use them as Adguard Premium already provides ad blocking and VPN features.
How can I contact AdGuard if I have any questions or issues?
-You can contact AdGuard via email at support@adguard.com or via live chat on their website at https://adguard.com/en/support.html. They are available 24/7 and will respond to your queries as soon as possible.
Does AdGuard have free versions or trial periods?
-AdGuard has free versions for browsers (Chrome, Firefox, Safari, Edge, Opera, Yandex) and Android devices. You can download them from their official website at https://adguard.com/en/welcome.html. AdGuard also offers a 14-day trial period for Windows and Mac devices. You can activate it by downloading the software from their website and entering your email address.
Can I use AdGuard on multiple devices with one license?
-Yes, you can use AdGuard on multiple devices with one license. You can choose between a personal license (up to 3 devices) or a family license (up to 9 devices). You can also add more devices to your license by paying an extra fee.
If you are looking for a powerful and easy-to-use document management software that can help you scan, organize, edit, and convert your files, then you might want to check out FileCenter Professional. In this article, we will show you what FileCenter Professional is, why you need it, how to download and install it, how to activate it with a serial key, how to use it, and what are its pros and cons. We will also give you some alternatives to FileCenter Professional in case you want to explore other options. By the end of this article, you will have a clear idea of whether FileCenter Professional is the right software for you or not.
-Download File ……… https://tinourl.com/2uL3Iw
FileCenter Professional is a document management software that combines easy scanning and file organization with powerful PDF creation and editing. It also includes OCR (optical character recognition), search, and a brandable client portal. For online file access, it even integrates with popular cloud services like Dropbox, Google Drive, OneDrive, and more.
-FileCenter Professional is designed for businesses, professionals, and home users who want to streamline their workflow and improve their productivity. With FileCenter Professional, you can:
-FileCenter Professional is more than just a scanning software or a PDF editor. It is a complete solution for managing your documents in a digital way. Here are some reasons why you need FileCenter Professional:
-To download and install FileCenter Professional on your computer, you need to follow these steps:
-To activate FileCenter Professional with a serial key, you need to follow these steps:
-Name: | Email: |
SadeemPC.com | SadeemPC@gmail.com |
Serial Key: |
FCE-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-0000-00 FCE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE-AEAE FCE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEBE-BEB FCE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CECE-CE FCC-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA-DADA FCC-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA-EAEA |
FileCenter Professional is very easy to use and has a user-friendly interface. Here are some basic steps on how to use FileCenter Professional:
-FileCenter Professional Plus 10.2.0.34 Serial Key
-Lucion FileCenter Professional Plus Crack
-FileCenter Professional Plus Keygen
-FileCenter Professional Plus OCR
-FileCenter Professional Plus PDF Editor
-FileCenter Professional Plus Document Management
-FileCenter Professional Plus Download
-FileCenter Professional Plus Free Trial
-FileCenter Professional Plus Activation Code
-FileCenter Professional Plus License Key
-FileCenter Professional Plus Full Version
-FileCenter Professional Plus Patch
-FileCenter Professional Plus Torrent
-FileCenter Professional Plus Review
-FileCenter Professional Plus Features
-FileConvert Professional Plus Crack
-Lucion FileConvert Professional Plus Serial Key
-FileConvert Professional Plus Keygen
-FileConvert Professional Plus Download
-FileConvert Professional Plus Free Trial
-FileConvert Professional Plus Activation Code
-FileConvert Professional Plus License Key
-FileConvert Professional Plus Full Version
-FileConvert Professional Plus Patch
-FileConvert Professional Plus Torrent
-Lucion FileCenter Crack Download
-Lucion FileCenter Serial Key Free
-Lucion FileCenter Keygen Download
-Lucion FileCenter OCR Software
-Lucion FileCenter PDF Creator
-Lucion FileCenter Document Organizer
-Lucion FileCenter Download Link
-Lucion FileCenter Free Trial Offer
-Lucion FileCenter Activation Code Generator
-Lucion FileCenter License Key Finder
-Lucion FileCenter Full Version Installer
-Lucion FileCenter Patch Update
-Lucion FileCenter Torrent Magnet
-Lucion FileCenter Review Rating
-Lucion FileCenter Features Comparison
-CrackingPatching FileCenter Professional Crack
-CrackingPatching FileCenter Professional Serial Key Download
-CrackingPatching FileCenter Professional Keygen Free
-CrackingPatching FileCenter Professional OCR Tool
-CrackingPatching FileCenter Professional PDF Converter
-CrackingPatching FileCenter Professional Document Scanner
-CrackingPatching FileCenter Professional Download Site
-CrackingPatching FileCenter Professional Free Trial Link
-CrackingPatching FileCenter Professional Activation Code Online
-CrackingPatching FileCenter Professional License Key Email
FileCenter Professional is a great software for document management, but it also has some drawbacks. Here is a table that compares the pros and cons of FileCenter Professional:
-Pros | Cons |
Easy to use and intuitive interface | Limited customization options |
Powerful and versatile PDF tools | No support for Linux or Mac OS |
Fast and accurate OCR and search | No mobile app or web version |
Secure and reliable file encryption and shredding | No backup or recovery feature |
Seamless integration with cloud services and other applications | No collaboration or workflow feature |
If you are not satisfied with FileCenter Professional or you want to try some other document management software, here are some alternatives that you can consider:
-In conclusion, FileCenter Professional is a document management software that can help you scan, organize, edit, and convert your files with ease. It has many features that make it a useful tool for businesses, professionals, and home users. However, it also has some limitations that might not suit everyone's needs. Therefore, we recommend you to download the free trial version of FileCenter Professional and see if it works for you. If you like it, you can activate it with a serial key and enjoy the full version. If not, you can try some alternatives that we have mentioned in this article.
-Here are some frequently asked questions and answers about FileCenter Professional:
-a perfect hd toolkit for recovering your files by repairing the damaged hd. it is one of the best hd toolkit to repair the damaged hd. it will scan your damaged hd and shows you the list of the damaged part and the estimated cost to repair it. you can repair all the damaged partitions without any software or external devices. its a handy tool to recover files from the damaged hd.
-the encrypted files are cracked by 8-bit windows and it works with any pc that has windows 7, windows 8, windows 10, windows server 2008, windows server 2008 r2, windows server 2012, windows server 2012 r2, windows server 2016, windows server 2016 r2, windows 8.1, windows 10, windows server 2012 r2, windows server 2012, windows server 2016.
-Download ✫ https://urlgoal.com/2uCKmM
if your database was corrupted due to a system crash or some other reason, you will definitely lose all your data. if you want to recover all the data from your database, you can use a database recovery program to repair the corrupted database. it is possible to use a database recovery software to recover data from the damaged database files. an error-free database file recovery software will provide you a comprehensive way to recover all your data.
-software repair is an easy to use data recovery program which can recover your damaged file. the software repair program consists of two main elements: a utility to scan your damaged files and a search engine to look for, and recover, data from the damaged files. data recovery is a process that tries to recover your data. software repair can recover the data from the damaged files in the following ways:
1. the repair utility
2. the search engine
3. the repair tool (advanced version)
4. the recovery wizard
5. the database recovery wizard
6. the fastest scanner
7. the longest scanner
8. the smart scanner
9. the file recovery wizard
10. the file recovery wizard 3.0
11. the file recovery wizard 4.0
Download File » https://urlgoal.com/2uCL0s
air jordan 9, -2017- - best-tweaks-for-logitech-joysticks-ntdetect-and-lowrance-joystick-rdb-7e-9-dual-probe-.dll.-And-Crack-Installer-Programs-0x0-Extract-Rar -nugeta-deepcity-agro-3-crack-with-vst-vst3-vst-v2-2-rtas-keygen-.coub/l and its development of music.com
-DOWNLOAD ✔ https://tinurll.com/2uzmnC
https://www.coub.com/images/sample-large-index.jpg. https://coub.com/stories/2635424-arturia-minimoog-v-vsti-rtas-v2-2-5-x-32-bit-the-best-keygen.r
air jordan 9, -2017- - best-tweaks-for-logitech-joysticks-ntdetect-and-lowrance-joystick-rdb-7e-9-dual-probe-.dll.-And-Crack-Installer-Programs-0x0-Extract-Rar -nugeta-deepcity-agro-3-crack-with-vst-vst3-vst-v2-2-rtas-keygen-.coub/l and its development of music.com
https://trello.com/c/mR9lkqN0/6-italian-blues-jazz-cordelea-rtas-v1-0-incl-keygen-air-deepstatus-prehinywac-plugin. lodwalington - Keyboard Woudl Not Boot, Help! https://trello.com/c/sg3bZL9x/13-arturia-minimoog-v-vsti-rtas-v251-incl-crack-deepstatus-coub. https://trello.com/c/6dZgyRwu/55-arturia-minimoog-v-vsti-rtas-v251-incl-keygen-__pinterest__-crack. https://coub.com/stories/1255557-pax4r-v1-5-incl-keys-crack-links. h2-albe-i-am-using-the-live-tv-app-but-when-i-open-rtls-no-sound-comes. https://coub.com/stories/8388780-prybar-vst-rtas-v1-0-incl-keygen-crack-win-full-incl-files.
-Incl.Keygen Crack,VMware vSphere Hypervisor ESXi 6.0.0U3-5050593. Download Arturia Minimoog V VSTi RTAS v2.0.1 keygen by AiR at our. air jordan 2015, http://www.airjordanshoes2015.com/. ://coub.com/stories/2981006-arturia-moog-modular-v-vsti-rtas-v2-0-1-incl-keygen-air-detanie
899543212bBoomerang Search Terms:
Boomerang movie download
Boomerang Tamil Full movie
Boomerang Movie download isaimini
isaimini 2022 tamil movies
Boomerang isaimini songs lyrics download
isaimini dubbed movies
tamilrockers isaimini
isaimini 2022 movie
tamilyogi isaimini
moviesda Boomerang
tamil movie isaimini
isaimini tamilrockers 2022
isaimini tamil movies 2022
tamil isaimini
isaimini Boomerang
isaimini 2022 tamil movies Boomerang
isaimini bgm Boomerang
isaimini com 2022 movie
isaimini com dubbed movies 2022
isaimini com 2022 tamil dubbed movies
isaimini com songs lyrics download
isaimini dubbed collections
dubbed movies tamil isaimini 2021
lyrics download movies in isaimini
lyrics download tamil mp3 songs isaimini
lyrics download tamil movies 2022 isaimini
lyrics download isaimini mp3 songs
isaimini english movies 2022
isaimini english
isaimini english 2022
isaimini english songs lyrics download
isaimini free lyrics download 2022
isaimini free lyrics download songs
isaimini for lyrics download
free lyrics download isaimini mp3 songs
isaimini google
Boomerang movie lyrics download
Boomerang tamil movies
Boomerang tamil songs
Boomerang tamil song
Boomerang mp3 , Boomerang songs
itunes and isaimini audio songs
First, let's credit "Boomerang" for what it is: an all-Black cast movie not centered on urban crime, drugs, racism, hood etc.
This is not the first of its genre: Spike Lee built his reputation by portraying African-Americans in narrative realms outside the usual dictated tropes, but director Reginald Hudlin and writer Barry Blaustein went even further by exploring the world of glam, cosmetics agency, marketing, female power and reversed the roles with white people playing comic reliefs and women dominating men; it's "The Cosby Show" meeting "Working Girl". And from that starting point, it creates a whole new outlet for romantic comedies whose tropes were codified by Meg Ryan or Julia Roberts movies.
And in this seemingly implausible world, Eddie Murphy plays Marcus, the smooth-talking womanizer who can get any girl. A lesser movie would've made him arrogant and detestable but Marcus plays in a whole other league, taking women as seriously as any part of his professional endeavor. His character-establishing moment occurs when he improvises a lost-dog scenario by buying a leash on the spot, Lela Ronchon falls in his trap. The trick could work by earning him a number but it works so well she gives hers. One ellipse takes us to him decorating his house with the cautiousness of a caterer and ignoring the insult of his neighbor (Tisha Campbell) who keeps warning new girlfriends about the predator.
Yes, Marcus is always on the prowl but his perfectionism is rather impressive: he could have the girl in his bed but he plays it so smooth again he ends up in hers. Then a quick stare on her feet while she's sleeping reveals ugly soles calling for immediate dumping. This is neither a gag, nor a hint at a foot fetish but a revealer of the unconscious overlapping of his trade with his relationships. Indeed, advertisement is all about attentiveness to image or packaging, and so the man regards his preys as 'objects'. But take it for someone who worked in that racket, this is a woman's world, as image-awareness is largely considered a female trait, so for all his masculine act, Marcus got entrapped in the cult-of-image. It's an interesting comment on how image is a double-edged sword for both sexes, while more of a burden for women.
The 'feet' aftermath is discussed with his two buddies Gerald (David Alan Grier) and Tyler (Martin Lawrence). They're outsiders who don't understand his reaction but then again he's the Alpha-male while Gerald pushes the platonic button so hard it always propels him into friend-zone and Tyler didn't have sex in the 90s (the film is from 1992). They're too admirative of Marcus to see the problem: being as much a sexual object as the women he objectifies. Later, he spends a night with the president of the agency Lady Eloise (Eartha Kitt) counting on a casting couch promotion. Kitt, 65, gives herself totally to the role and clap to turn off the lights before the rodeo starts, Marcus asks if it can be darker, the line isn't serious but reveals how seriously willing he is.
But the promotion is given to Jacqueline, played by the breathtakingly sexy Robin Givens. What Marcus realizes, besides having been used as a sex toy, is that she's his boss, and she's out of the fooling-around zone. It's interesting to see that man whose reputation as a sex-collector makes mail guys bet on his next performances, becomes the subject of his own shenanigans. But Marcus smartly dodges the woman/man issue by inviting Jacqueline for dinner (after all, male colleagues would do that), the result is literally the sprinkler sprinkled. After all his efforts to cook a sumptuous dinner, all she wants is watching the Knicks. The scene is intercut with a cute dinner between Gerald and the new art-director Barbara (Halle Berry) and their interactions and clumsy, cute, genuine but somewhat authentic. The parallel between the two scenes highlights the position of Marcus, awkward only by the standards of usual rom-coms.
That's how inventive and innovative the film is, showing a confident men getting a taste of his own medicine, which is the antidote to his toxic relationship with women. He's hit by the boomerang that puts his idea in the right place. And there's something about Murphy's performance: he doesn't overplay his laugh, when he's upset, he asks for the kind of respect women usually demand. The film is so effective in its comment on intersex relationships that the scene with the racist store owner feels too forced and could have been cut without hurting the rest.
But there's more in "Boomerang". This is an adult movie that doesn't hide behind its comedic premise, there are soft-core elements making the relationships feel real. In your average rom-com, it's a passionate kiss and before you know it, the L-shaped bed, in "Boomerang" even the sex position or a climax become a grammar that verbalizes the statuses. And sexiness is also the source of hilarity, besides Eartha Kitt, there's Geoffrey Holder as Nelson the goofy video-maker, and there's Grace Jones as Strangé the French mascot for a new perfume, her scenes are so outrageous and over-the-top that I burst out laughing, from the 'stink so good' clip to the infamous restaurant scene, she takes movies to places you wouldn't suspect.
Halle Berry brings such a sweet and lovable presence that it's a foregone conclusion she and Murphy will end together, though it's a little unfair for poor Gerald, but otherwise "Boomerang" hits everything right, it uses Murphy's usual persona for a story arc that ends up displaying more respect toward women and accepting that they too can have sexual appetites, in many aspects, the film is avant-guardist, bold and straightforward, and should have a higher reputation, because of its uniqueness.
Indeed, I don't recall a movie like "Boomerang" before and after it, that's the mark of great films.
Download File >>> https://tinurll.com/2uzmPV
Womanizing executive Marcus Graham (Eddie Murphy) meets his match when his workplace is bought out by Lady Eloise (Eartha Kitt). In reality, Jacqueline (Robin Givens) is the true queen on the throne. He finds the table turned on him as the power dynamic is switched. Kind-hearted Angela (Halle Berry) is her eager assistant. The outrageous Strangé (Grace Jones) is the new brand ambassador. Gerard (David Alan Grier) and Tyler (Martin Lawrence) are his best friends. Bony T (Chris Rock) is the mailroom boy.
The premise is interesting although the all black main cast is probably the most compelling. The boomerang doesn't get going until the midpoint moment. The power dynamic switch needs to get going a lot sooner. When they first meet at the lobby, she needs to pursue him right away. Instead she resisted him like most women thereby setting off his hunting instincts. For it to be a true switcharoo, she needs to be the hunter and he be the hunted. Once the switch happens, it is a fun turnaround. I do like the womanizing Eddie Murphy getting his comeuppance. The heart of this is actually pretty good. Khanya may be the funny one in the movie.
Note: The Boomeran movie songs can be downloaded in MP3 for free via InsTube video and music downloader. You can take the Boomerang movie download as reference to get Boomerang MP3 songs.
-Step 1. Install InsTube app to help you download videos. You are unable to download Boomerang movie from YouTube or Dailymotion when you found Boomerang full movie on the platforms.
-Step 3. Resolve the movie via InsTube. A button of InsTube appears on the screen once you open the video. Tap the button to resolve the video and get several download options.
- aaccfb2cb3Download File »»» https://tinurll.com/2uzmRi
DOWNLOAD –––––>>> https://tinurll.com/2uzmnK
Do you want to monitor your computer activity, spy on someone else's PC, or protect your privacy? If so, you need a powerful and reliable keylogger software that can record every keystroke, screenshot, email, chat, website, and more. One of the best options available is Golden Eye 4.50.rar, a program that can run in stealth mode and avoid detection by antivirus programs and firewalls.
-In this article, we will show you how to download and use Golden Eye 4.50.rar, what are its features and benefits, and why it is the ultimate keylogger for PC. Read on and discover how to get the most out of Golden Eye 4.50.rar.
-Download ○ https://gohhs.com/2uEzZK
Golden Eye 4.50.rar is a keylogger software that can secretly monitor and record all the activity on a computer. It can capture keystrokes, mouse clicks, clipboard content, screenshots, emails, chats, web history, passwords, and more. It can also run in stealth mode, hiding itself from the task manager, the start menu, and the system tray.
-Golden Eye 4.50.rar can be used for various purposes, such as:
-Downloading Golden Eye 4.50.rar is easy and fast. You just need to follow these steps:
-Using Golden Eye 4.50.rar is simple and intuitive. You just need to follow these steps:
-Golden Eye 4.50.rar has many features and benefits that make it one of the best keylogger software for PC. Here are some of them:
-If you are looking for a keylogger software that can monitor and record all the activity on a computer in a stealthy and reliable way, you should consider downloading Golden Eye 4.50.rar. It is a powerful and versatile program that can help you with parental control, employee monitoring, personal security, investigation, and more.
- - -To download Golden Eye 4.50.rar , you just need to visit one of the trusted websites that offer it as a magnet link or a direct download link . Then you just need to install it on your computer and configure it according to your needs . You will be able to see everything that happens on your computer or any other computer that you want to spy on .
- -Golden Eye 4.50.rar is the ultimate keylogger for PC that will give you peace of mind and satisfaction.
-Golden Eye 4.50.rar has received positive reviews from many users who have tried it and found it useful and effective. Here are some of the testimonials that you can find online:
-Golden Eye 4.50.rar is a keylogger software that can monitor and record all the activity on a computer in a stealthy and reliable way. It can help you with parental control, employee monitoring, personal security, investigation, and more.
- -To download Golden Eye 4.50.rar , you just need to visit one of the trusted websites that offer it as a magnet link or a direct download link . Then you just need to install it on your computer and configure it according to your needs . You will be able to see everything that happens on your computer or any other computer that you want to spy on .
- -Golden Eye 4.50.rar has many features and benefits that make it one of the best keylogger software for PC . It also has positive reviews from many users who have tried it and found it useful and effective . Golden Eye 4.50.rar is the ultimate keylogger for PC that will give you peace of mind and satisfaction.
-Golden Eye 4.50.rar is not the only keylogger software that you can use to monitor and record computer activity. There are other alternatives that you can try, depending on your needs and preferences. Here are some of them:
-Golden Eye 4.50.rar is a keylogger software that can monitor and record all the activity on a computer in a stealthy and reliable way. It can help you with parental control, employee monitoring, personal security, investigation, and more.
- -To download Golden Eye 4.50.rar , you just need to visit one of the trusted websites that offer it as a magnet link or a direct download link . Then you just need to install it on your computer and configure it according to your needs . You will be able to see everything that happens on your computer or any other computer that you want to spy on .
- -Golden Eye 4.50.rar has many features and benefits that make it one of the best keylogger software for PC . It also has positive reviews from many users who have tried it and found it useful and effective . Golden Eye 4.50.rar is the ultimate keylogger for PC that will give you peace of mind and satisfaction.
- -If you are looking for alternatives to Golden Eye 4.50.rar , you can try other keylogger software that have similar or different features and benefits . You can compare them and choose the one that suits your needs and preferences best . Some of the alternatives are Refog Keylogger , Spyrix Keylogger , Elite Keylogger , Actual Keylogger , and Ardamax Keylogger .
-In this article, we have shown you how to download and use Golden Eye 4.50.rar, a keylogger software that can monitor and record all the activity on a computer in a stealthy and reliable way. We have also told you what are its features and benefits, what are the reviews of its users, and what are the alternatives that you can try.
- -Golden Eye 4.50.rar is a powerful and versatile program that can help you with parental control, employee monitoring, personal security, investigation, and more. It is easy to install and use, and it works perfectly in stealth mode. It can send the logs by email, FTP, or LAN in a secure and encrypted way. It can be customized according to your needs and preferences. It has a user-friendly interface and easy-to-use functions. It has a low system resource consumption and does not affect the performance of the computer. It has a reasonable price and offers a free trial version.
- -If you are looking for a keylogger software that can monitor and record all the activity on a computer in a stealthy and reliable way, you should consider downloading Golden Eye 4.50.rar. It is one of the best options available on the market. It has many positive reviews from its users who have tried it and found it useful and effective. Golden Eye 4.50.rar is the ultimate keylogger for PC that will give you peace of mind and satisfaction.
- -If you are looking for alternatives to Golden Eye 4.50.rar , you can try other keylogger software that have similar or different features and benefits . You can compare them and choose the one that suits your needs and preferences best . Some of the alternatives are Refog Keylogger , Spyrix Keylogger , Elite Keylogger , Actual Keylogger , and Ardamax Keylogger .
- -We hope that this article has been helpful and informative for you. If you have any questions or comments, please feel free to leave them below. Thank you for reading!
3cee63e6c2Download Zip ✒ https://gohhs.com/2uEz4q
- | ||
题目 | -- | |
答案 | -- - | |
正误 | -- | |
得分 | -- | |
- |
MIRACL French Demo
-🌍🙌🌏
-MIRACL is a multilingual dataset for ad hoc retrieval that consists of 18 different languages, collectively encompassing over three billion native speakers around the world.
-""", -unsafe_allow_html=True, -) - -st.sidebar.markdown( -""" - - -""", -unsafe_allow_html=True, -) - -query = st.sidebar.text_input(label='Search query', value='') -language = 'French' - -max_results = st.sidebar.slider( - "Maximum Number of Results", - min_value=1, - max_value=1000, - step=1, - value=10, - help="Maximum Number of Documents to return", -) - - -def _load_sparse_searcher(language: str, k1: Optional[float]=None, b: Optional[float]=None) -> (Searcher): - searcher = LuceneSearcher(f'lucene-index.miracl-v1.0-{language}.20221004.2b2856') - searcher.set_language(language) - if k1 is not None and b is not None: - searcher.set_bm25(k1, b) - retriever_name = f'BM25 (k1={k1}, b={b})' - else: - retriever_name = 'BM25' - - return searcher - -def search(query, language, num_results=10): - searcher = _load_sparse_searcher(language=LANG_MAPPING[language]) - - t_0 = time.time() - search_results = searcher.search(query, k=num_results) - search_time = time.time() - t_0 - - results_dict ={"docs": [], "doc_ids": [], "score":[], "lang": language} - for i, result in enumerate(search_results): - result = json.loads(result.raw) - results_dict["docs"].append(result["text"]) - results_dict["doc_ids"].append(result["docid"]) - results_dict["score"].append(search_results[i].score) - - return results_dict, search_time - - - -def highlight_string(paragraph: str, highlight_terms: list) -> str: - for term in highlight_terms: - paragraph = re.sub(f"\\b{term}\\b", f"{term}", paragraph, flags=re.I) - return paragraph - -def process_results(hits: dict, highlight_terms: list) -> str: - hit_list = [] - for i in range(len(hits['doc_ids'])): - res_head = f""" -Language:
{highlight_string(hits['docs'][i], highlight_terms)}
-About {max_results} results
- {html_results} -= self._len: - raise IndexError("index out of range") - - def __del__(self): - if self.data_file: - self.data_file.close() - - @lru_cache(maxsize=8) - def __getitem__(self, i) -> torch.Tensor: - if not self.data_file: - self.read_data(self.path) - self.check_index(i) - tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]] - a = np.empty(tensor_size, dtype=self.dtype) - self.data_file.seek(self.data_offsets[i] * self.element_size) - self.data_file.readinto(a) - item = torch.from_numpy(a).long() - if self.fix_lua_indexing: - item -= 1 # subtract 1 for 0-based indexing - return item - - def __len__(self): - return self._len - - def num_tokens(self, index): - return self.sizes[index] - - def size(self, index): - return self.sizes[index] - - @staticmethod - def exists(path): - return PathManager.exists(index_file_path(path)) and PathManager.exists( - data_file_path(path) - ) - - @property - def supports_prefetch(self): - return False # avoid prefetching to save memory - - -class IndexedCachedDataset(IndexedDataset): - def __init__(self, path, fix_lua_indexing=False): - super().__init__(path, fix_lua_indexing=fix_lua_indexing) - self.cache = None - self.cache_index = {} - - @property - def supports_prefetch(self): - return True - - def prefetch(self, indices): - if all(i in self.cache_index for i in indices): - return - if not self.data_file: - self.read_data(self.path) - indices = sorted(set(indices)) - total_size = 0 - for i in indices: - total_size += self.data_offsets[i + 1] - self.data_offsets[i] - self.cache = np.empty(total_size, dtype=self.dtype) - ptx = 0 - self.cache_index.clear() - for i in indices: - self.cache_index[i] = ptx - size = self.data_offsets[i + 1] - self.data_offsets[i] - a = self.cache[ptx : ptx + size] - self.data_file.seek(self.data_offsets[i] * self.element_size) - self.data_file.readinto(a) - ptx += size - if self.data_file: - # close and delete data file after prefetch so we can pickle - self.data_file.close() - self.data_file = None - - @lru_cache(maxsize=8) - def __getitem__(self, i): - self.check_index(i) - tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]] - a = np.empty(tensor_size, dtype=self.dtype) - ptx = self.cache_index[i] - np.copyto(a, self.cache[ptx : ptx + a.size]) - item = torch.from_numpy(a).long() - if self.fix_lua_indexing: - item -= 1 # subtract 1 for 0-based indexing - return item - - -class IndexedRawTextDataset(FairseqDataset): - """Takes a text file as input and binarizes it in memory at instantiation. - Original lines are also kept in memory""" - - def __init__(self, path, dictionary, append_eos=True, reverse_order=False): - self.tokens_list = [] - self.lines = [] - self.sizes = [] - self.append_eos = append_eos - self.reverse_order = reverse_order - self.read_data(path, dictionary) - self.size = len(self.tokens_list) - - def read_data(self, path, dictionary): - with open(path, "r", encoding="utf-8") as f: - for line in f: - self.lines.append(line.strip("\n")) - tokens = dictionary.encode_line( - line, - add_if_not_exist=False, - append_eos=self.append_eos, - reverse_order=self.reverse_order, - ).long() - self.tokens_list.append(tokens) - self.sizes.append(len(tokens)) - self.sizes = np.array(self.sizes) - - def check_index(self, i): - if i < 0 or i >= self.size: - raise IndexError("index out of range") - - @lru_cache(maxsize=8) - def __getitem__(self, i): - self.check_index(i) - return self.tokens_list[i] - - def get_original_text(self, i): - self.check_index(i) - return self.lines[i] - - def __del__(self): - pass - - def __len__(self): - return self.size - - def num_tokens(self, index): - return self.sizes[index] - - def size(self, index): - return self.sizes[index] - - @staticmethod - def exists(path): - return PathManager.exists(path) - - -class IndexedDatasetBuilder: - element_sizes = { - np.uint8: 1, - np.int8: 1, - np.int16: 2, - np.int32: 4, - np.int64: 8, - np.float: 4, - np.double: 8, - } - - def __init__(self, out_file, dtype=np.int32): - self.out_file = open(out_file, "wb") - self.dtype = dtype - self.data_offsets = [0] - self.dim_offsets = [0] - self.sizes = [] - self.element_size = self.element_sizes[self.dtype] - - def add_item(self, tensor): - # +1 for Lua compatibility - bytes = self.out_file.write(np.array(tensor.numpy() + 1, dtype=self.dtype)) - self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size) - for s in tensor.size(): - self.sizes.append(s) - self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size())) - - def merge_file_(self, another_file): - index = IndexedDataset(another_file) - assert index.dtype == self.dtype - - begin = self.data_offsets[-1] - for offset in index.data_offsets[1:]: - self.data_offsets.append(begin + offset) - self.sizes.extend(index.sizes) - begin = self.dim_offsets[-1] - for dim_offset in index.dim_offsets[1:]: - self.dim_offsets.append(begin + dim_offset) - - with open(data_file_path(another_file), "rb") as f: - while True: - data = f.read(1024) - if data: - self.out_file.write(data) - else: - break - - def finalize(self, index_file): - self.out_file.close() - index = open(index_file, "wb") - index.write(b"TNTIDX\x00\x00") - index.write(struct.pack("str: - local_index_path = PathManager.get_local_path(index_file_path(path)) - local_data_path = PathManager.get_local_path(data_file_path(path)) - - assert local_index_path.endswith(".idx") and local_data_path.endswith(".bin"), ( - "PathManager.get_local_path does not return files with expected patterns: " - f"{local_index_path} and {local_data_path}" - ) - - local_path = local_data_path[:-4] # stripping surfix ".bin" - assert local_path == local_index_path[:-4] # stripping surfix ".idx" - return local_path - - -class MMapIndexedDatasetBuilder: - def __init__(self, out_file, dtype=np.int64): - self._data_file = open(out_file, "wb") - self._dtype = dtype - self._sizes = [] - - def add_item(self, tensor): - np_array = np.array(tensor.numpy(), dtype=self._dtype) - self._data_file.write(np_array.tobytes(order="C")) - self._sizes.append(np_array.size) - - def merge_file_(self, another_file): - # Concatenate index - index = MMapIndexedDataset.Index(index_file_path(another_file)) - assert index.dtype == self._dtype - - for size in index.sizes: - self._sizes.append(size) - - # Concatenate data - with open(data_file_path(another_file), "rb") as f: - shutil.copyfileobj(f, self._data_file) - - def finalize(self, index_file): - self._data_file.close() - - with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index: - index.write(self._sizes) diff --git a/spaces/stomexserde/gpt4-ui/Examples/Ace Ventura Eng Dubbed Hindi Movie Free Download Torrent HOT!.md b/spaces/stomexserde/gpt4-ui/Examples/Ace Ventura Eng Dubbed Hindi Movie Free Download Torrent HOT!.md deleted file mode 100644 index d14f8c813cbb809810937e5e879cdf2f3d3ba9ef..0000000000000000000000000000000000000000 --- a/spaces/stomexserde/gpt4-ui/Examples/Ace Ventura Eng Dubbed Hindi Movie Free Download Torrent HOT!.md +++ /dev/null @@ -1,21 +0,0 @@ - -Here is a possible title and article with SEO optimization and HTML formatting for the keyword "Ace Ventura Eng Dubbed Hindi Movie Free Download Torrent": - -Ace Ventura Eng Dubbed Hindi Movie Free Download Torrent: How to Watch the Comedy Classic Online
-Ace Ventura: Pet Detective is a 1994 American comedy film starring Jim Carrey as a quirky animal detective who is hired to find the missing mascot of the Miami Dolphins football team. The film was a huge hit and spawned a sequel, Ace Ventura: When Nature Calls, in 1995.
-If you are a fan of Ace Ventura and want to watch the movie in Hindi, you might be looking for a way to download the English dubbed version for free. However, downloading movies from torrent sites is illegal and risky, as you might end up with malware, viruses, or legal troubles. Moreover, torrent sites often have low-quality videos and audio that can ruin your viewing experience.
-Ace Ventura Eng Dubbed Hindi Movie Free Download Torrent
Download - https://urlgoal.com/2uI6Cs
-Fortunately, there is a better and safer way to watch Ace Ventura Eng Dubbed Hindi Movie online. You can use a streaming service that offers the movie in Hindi with subtitles or dubbing. Streaming services are legal, secure, and offer high-quality videos and audio. You can also enjoy other benefits such as unlimited access, offline viewing, and multiple devices support.
-One of the best streaming services that you can use to watch Ace Ventura Eng Dubbed Hindi Movie online is Netflix. Netflix has a huge library of movies and shows in different languages, including Hindi. You can easily find Ace Ventura: Pet Detective and Ace Ventura: When Nature Calls on Netflix and watch them with Hindi subtitles or dubbing. You can also download the movies to your device and watch them offline.
-To watch Ace Ventura Eng Dubbed Hindi Movie online on Netflix, you need to follow these simple steps:
--
-- Create a Netflix account if you don't have one. You can sign up for a free trial for 30 days and cancel anytime.
-- Choose a plan that suits your needs and budget. Netflix offers three plans: Basic, Standard, and Premium. The Basic plan costs $8.99 per month and lets you watch on one screen at a time. The Standard plan costs $13.99 per month and lets you watch on two screens at a time. The Premium plan costs $17.99 per month and lets you watch on four screens at a time.
-- Download the Netflix app on your device or visit the Netflix website on your browser.
-- Log in with your Netflix account and search for Ace Ventura: Pet Detective or Ace Ventura: When Nature Calls.
-- Select the movie and choose the language option. You can either watch with Hindi subtitles or Hindi dubbing.
-- Enjoy the movie!
-As you can see, watching Ace Ventura Eng Dubbed Hindi Movie online on Netflix is easy and convenient. You don't have to worry about downloading torrents or risking your device's security. You can also enjoy other movies and shows on Netflix in Hindi or other languages. So what are you waiting for? Sign up for Netflix today and start watching Ace Ventura Eng Dubbed Hindi Movie online!
e93f5a0c3f
-
-
\ No newline at end of file diff --git a/spaces/stomexserde/gpt4-ui/Examples/Delhi Belly Full Movie In English VERIFIED Free Download Mp4.md b/spaces/stomexserde/gpt4-ui/Examples/Delhi Belly Full Movie In English VERIFIED Free Download Mp4.md deleted file mode 100644 index e9409c5029ece2241b0be744fddde29983915024..0000000000000000000000000000000000000000 --- a/spaces/stomexserde/gpt4-ui/Examples/Delhi Belly Full Movie In English VERIFIED Free Download Mp4.md +++ /dev/null @@ -1,20 +0,0 @@ - -How to Watch Delhi Belly, a Hilarious Bollywood Comedy, Online for Free
-Delhi Belly is a 2011 Bollywood comedy film that follows the misadventures of three flatmates who get involved in a shady business deal and end up being chased by a ruthless crime lord. The film stars Imran Khan, Vir Das, Kunaal Roy Kapur, Poorna Jagannathan and Shenaz Treasury in the lead roles. The film was praised for its witty dialogues, dark humor and fast-paced plot.
-Delhi Belly Full Movie In English Free Download Mp4
Download File ✓ https://urlgoal.com/2uI6de
-If you are looking for a way to watch Delhi Belly online for free, you have a few options. Here are some of them:
--
-- Netflix: Netflix is a popular streaming service that offers a wide range of movies and shows, including Delhi Belly. You can watch the film in English with subtitles on Netflix. However, you need to have a subscription to access Netflix's content. You can sign up for a free trial if you are a new user.
-- Moviefone: Moviefone is a website that lets you find and watch movies online. You can search for Delhi Belly on Moviefone and see where it is available to stream. You can also rent or buy the film from various platforms like Amazon Prime Video, iTunes, Google Play and more.
-- Dailymotion: Dailymotion is a video-sharing platform that hosts user-generated and licensed content. You can find Delhi Belly on Dailymotion in two parts. However, the quality may not be very good and there may be ads or pop-ups.
-- Filmywap: Filmywap is a website that allows you to download Bollywood movies in various formats, including MP4. You can find Delhi Belly on Filmywap and download it for free. However, this may be illegal and risky as you may encounter viruses or malware.
-Delhi Belly is a fun and entertaining movie that will make you laugh out loud. If you are looking for a way to watch it online for free, you can try one of the options mentioned above. However, we recommend that you watch it legally and safely from a trusted source.
- -Delhi Belly is not your typical Bollywood movie. It does not have any songs, dances or melodrama. Instead, it has a lot of profanity, violence and toilet humor. The film was originally made in English and later dubbed in Hindi. The film was produced by Aamir Khan, who also made a cameo appearance in the film.
-The film was a critical and commercial success. It received positive reviews from critics who praised its originality, humor and performances. It also won several awards, including the Filmfare Award for Best Screenplay and the National Film Award for Best Popular Film Providing Wholesome Entertainment. The film also did well at the box office, earning over â¹100 crore worldwide.
-Delhi Belly is a movie that you should not miss if you are looking for a refreshing and hilarious comedy. You can watch it online for free from one of the sources mentioned above. However, be warned that the film may not be suitable for everyone as it contains some explicit and offensive content.
- -In conclusion, Delhi Belly is a movie that will make you laugh and keep you on the edge of your seat. It is a rare example of a Bollywood comedy that is original, smart and edgy. You can watch it online for free from one of the sources mentioned above. However, be careful as the movie may not be appropriate for everyone. Watch it at your own risk and enjoy the ride.
7b8c122e87
-
-
\ No newline at end of file diff --git a/spaces/stomexserde/gpt4-ui/Examples/Download Prtg Network Monitor Full Cracked WORK.md b/spaces/stomexserde/gpt4-ui/Examples/Download Prtg Network Monitor Full Cracked WORK.md deleted file mode 100644 index c1f6b86cdc6a8093fd3fda39570efe3e02518a2a..0000000000000000000000000000000000000000 --- a/spaces/stomexserde/gpt4-ui/Examples/Download Prtg Network Monitor Full Cracked WORK.md +++ /dev/null @@ -1,84 +0,0 @@ - -Download PRTG Network Monitor Full Cracked: Is It Worth the Risk?
-If you are looking for a network monitoring software that can help you monitor your entire IT infrastructure, you may have heard of PRTG Network Monitor. This is a popular and comprehensive tool that can monitor all your systems, devices, traffic, and applications in your network. However, you may also be tempted to download a cracked version of this software to save some money. But is it worth the risk? In this article, we will explain what PRTG Network Monitor is, how to download it full cracked, what are the risks of using cracked software, and what are the benefits of using the official version. By the end of this article, you will be able to make an informed decision about whether to download PRTG Network Monitor full cracked or not.
-Download Prtg Network Monitor Full Cracked
DOWNLOAD ✫ https://urlgoal.com/2uI9tF
-What is PRTG Network Monitor and why do you need it?
-PRTG Network Monitor is a powerful and easy-to-use network monitoring tool
-PRTG Network Monitor is a proprietary network monitoring software developed by Paessler AG, a German company that specializes in network management solutions. It was first released in 2003 and has since become one of the most popular network monitoring tools in the market. According to its official website, PRTG Network Monitor has over 500,000 users worldwide, including companies from all industries and sizes.
-PRTG Network Monitor is an all-in-one tool that can monitor almost any object that has an IP address. It uses various methods to collect data from your network devices, such as SNMP, WMI, packet sniffing, NetFlow, Ping, HTTP, SSH, SOAP, REST, SQL, and more. It then displays this data in a user-friendly web interface that allows you to view your network performance at a glance. You can also customize your dashboard with maps, charts, tables, gauges, and other widgets to suit your needs.
-PRTG Network Monitor also provides advanced features such as alerting, notifications, reports, remote probes, cluster mode, failover tolerance, load balancing, distributed monitoring, cloud monitoring, IoT monitoring, and more. You can also extend the functionality of PRTG Network Monitor with custom sensors, scripts, plugins, APIs, or integrations with third-party tools.
-You need PRTG Network Monitor to keep an eye on your entire IT infrastructure
-Network monitoring is essential for any organization that relies on its IT infrastructure for its daily operations. Without network monitoring, you may not be able to detect and resolve issues that affect your network performance, availability, security, or quality of service. This can result in downtime, data loss, customer dissatisfaction, reputation damage, or revenue loss.
-With PRTG Network Monitor, you can keep an eye on your entire IT infrastructure and ensure that everything is running smoothly. You can monitor your servers, routers, switches, firewalls, printers, scanners, cameras, phones, applications, databases, cloud services, virtual machines, containers, and more. You can also monitor the bandwidth usage, latency, packet loss, jitter, CPU load, memory usage, disk space, temperature, humidity, and other metrics that indicate the health and performance of your network devices.
-PRTG Network Monitor can also alert you when something goes wrong in your network. You can set up thresholds and conditions for each sensor and choose how you want to be notified. You can receive notifications via email, SMS, push notification, voice call, pager message, syslog message, SNMP trap, or execute a program or script. You can also configure escalation levels and dependencies to avoid false alarms or alert storms.
-PRTG Network Monitor can also help you analyze and optimize your network performance over time. You can generate reports on various aspects of your network such as availability, uptime, downtime, SLA compliance, trends, forecasts, top lists, and more. You can also export or share your reports in various formats such as PDF, HTML, CSV, XML, or JSON.
-How to download PRTG Network Monitor full cracked version?
-You can find cracked versions of PRTG Network Monitor on various file sharing sites
-If you are looking for a way to download PRTG Network Monitor full cracked version for free, you may be tempted to search for it on various file sharing sites such as Torrents, Rapidgator, Uploaded, or Mega. These sites claim to offer cracked versions of PRTG Network Monitor that can bypass the license verification and allow you to use the software without paying for it.
-However, downloading cracked software from these sites is not only illegal but also risky. You may end up downloading a fake or corrupted file that does not work or causes damage to your computer. You may also expose yourself to malware and security threats that can compromise your data and privacy.
- -You need to use a keygen or a patch to bypass the license verification
-Even if you manage to find a working cracked version of PRTG Network Monitor on these sites, you still need to use a keygen or a patch to activate it. A keygen is a program that generates a serial number or a license key that can unlock the software. A patch is a program that modifies the original software code to remove the license verification process.
-However, using a keygen or a patch is also illegal and risky. You may violate the software license agreement and infringe the intellectual property rights of Paessler AG. You may also expose yourself to malware and security threats that can compromise your data and privacy.
-What are the risks of using cracked software?
-You may expose your computer to malware and security threats
-One of the biggest risks of using cracked software is that you may expose your computer to malware and security threats. Malware is any malicious software that can harm your computer or data. It can include viruses, worms, trojans, ransomware, spyware, adware, rootkits, and more. Malware can infect your computer through various ways, such as downloading cracked software, opening malicious attachments, clicking on suspicious links, or visiting compromised websites.
-Malware can cause various problems for your computer and data, such as slowing down your system, deleting or encrypting your files, stealing your personal or financial information, logging your keystrokes, hijacking your webcam or microphone, displaying unwanted ads or pop-ups, redirecting your browser, or installing more malware. Malware can also spread to other devices in your network or to your contacts through email or social media.
-Using cracked software can increase the risk of malware infection because cracked software often contains hidden malware that can be activated when you run the program. You may not even notice that your computer is infected until it is too late. Moreover, using cracked software can also prevent you from receiving security updates and patches that can protect your computer from new threats and vulnerabilities.
-You may face legal consequences for violating software copyright law
-Another risk of using cracked software is that you may face legal consequences for violating software copyright law. Software copyright law is a branch of intellectual property law that protects the rights of software developers and publishers. It grants them the exclusive right to control the distribution, reproduction, modification, and use of their software.
-When you buy a software license, you are actually buying the permission to use the software according to the terms and conditions of the license agreement. You do not own the software itself. Therefore, you are not allowed to copy, share, or modify the software without the consent of the software owner. Doing so is considered an infringement of their rights and a violation of the law.
-Using cracked software is a form of software piracy, which is the unauthorized use or distribution of software. Software piracy is a serious crime that can result in civil or criminal penalties. Depending on the jurisdiction and the severity of the case, you may face fines, lawsuits, injunctions, damages, confiscation of equipment, or even imprisonment. You may also be liable for any damages caused by the cracked software to other parties.
-You may miss out on important updates and technical support
-A third risk of using cracked software is that you may miss out on important updates and technical support. Updates are essential for any software because they can fix bugs, improve performance, add features, enhance compatibility, or address security issues. Technical support is also important for any software because it can help you troubleshoot problems, answer questions, provide guidance, or offer solutions.
-Using cracked software can prevent you from receiving updates and technical support from the official source. This is because cracked software often modifies or disables the update mechanism or the license verification process of the original software. This means that you will not be able to download or install any updates that are released by the software developer or publisher. You will also not be able to contact them for any assistance or feedback.
-This can affect your user experience and satisfaction with the software. You may encounter errors, glitches, crashes, or compatibility issues with the cracked software. You may also miss out on new features or enhancements that can improve your network monitoring capabilities. You will also not be able to get any help or support from the software developer or publisher if you encounter any problems or have any questions. You will be on your own.
-What are the benefits of using the official version of PRTG Network Monitor?
-You can enjoy a free trial and a transparent licensing model
-If you are interested in using PRTG Network Monitor, you do not need to download a cracked version to try it out. You can simply download the official version from the Paessler AG website and enjoy a free trial for 30 days. The free trial allows you to monitor up to 100 sensors without any limitations or restrictions. A sensor is a basic monitoring element that can monitor one aspect of your network device, such as CPU load, disk space, bandwidth usage, etc. You can choose from over 300 sensor types that are available in PRTG Network Monitor.
-After the free trial, you can choose from various licensing options that suit your needs and budget. The licensing model of PRTG Network Monitor is based on the number of sensors that you want to monitor. The more sensors you need, the higher the license tier you need to purchase. The license tiers range from 500 sensors to unlimited sensors, with different prices and features. You can also upgrade or downgrade your license at any time. The licensing model of PRTG Network Monitor is transparent and fair, with no hidden costs or surprises.
-You can access all the features and customization options
-Another benefit of using the official version of PRTG Network Monitor is that you can access all the features and customization options that are available in the software. You do not need to worry about missing out on any functionality or compatibility that may be compromised by the cracked version. You can use all the sensor types, alerting methods, notification options, report formats, dashboard widgets, map objects, remote probes, cluster nodes, cloud services, IoT devices, and more that are supported by PRTG Network Monitor.
-You can also customize your network monitoring experience according to your preferences and requirements. You can create your own sensors, scripts, plugins, APIs, or integrations with third-party tools. You can also adjust the scanning intervals, thresholds, conditions, dependencies, escalations, filters, schedules, templates, groups, tags, channels, libraries, and more for each sensor or device. You can also configure your web interface with different themes, languages, layouts, views, maps, charts, tables, gauges, and other elements. You can also access your network monitoring data from any device or platform, such as Windows, Linux, macOS, Android, iOS, or web browser.
-You can get regular updates and professional support
-A third benefit of using the official version of PRTG Network Monitor is that you can get regular updates and professional support from Paessler AG. Updates are important for any software because they can improve the functionality, performance, security, and compatibility of the software. Support is also important for any software because it can help you solve any problems, answer any questions, provide any guidance, or offer any solutions.
-When you use the official version of PRTG Network Monitor, you can receive updates and support from Paessler AG without any hassle. You can download and install any updates that are released by Paessler AG automatically or manually. You can also contact Paessler AG for any support or feedback via email, phone, chat, forum, knowledge base, or ticket system. You can also access various resources and documentation that are available on the Paessler AG website or blog.
-Conclusion
-Downloading PRTG Network Monitor full cracked is not worth the risk
-In conclusion, downloading PRTG Network Monitor full cracked is not worth the risk. You may expose your computer to malware and security threats, face legal consequences for violating software copyright law, and miss out on important updates and technical support. You may also compromise the quality and reliability of your network monitoring experience.
-You should use the official version of PRTG Network Monitor for a reliable and secure network monitoring experience
-Instead of downloading PRTG Network Monitor full cracked, you should use the official version of PRTG Network Monitor for a reliable and secure network monitoring experience. You can enjoy a free trial and a transparent licensing model, access all the features and customization options, and get regular updates and professional support from Paessler AG. You can also benefit from the high-quality and user-friendly network monitoring software that can help you monitor your entire IT infrastructure with ease and confidence.
-FAQs
-How much does PRTG Network Monitor cost?
-The cost of PRTG Network Monitor depends on the number of sensors that you want to monitor. The more sensors you need, the higher the license tier you need to purchase. The license tiers range from 500 sensors to unlimited sensors, with different prices and features. You can check the pricing details on the Paessler AG website. You can also use the price calculator to estimate your license cost based on your needs.
-How many sensors can I monitor with PRTG Network Monitor?
-The number of sensors that you can monitor with PRTG Network Monitor depends on the license tier that you purchase. The license tiers range from 500 sensors to unlimited sensors, with different prices and features. You can check the license details on the Paessler AG website. You can also use the sensor calculator to estimate your sensor needs based on your devices.
-What are the system requirements for PRTG Network Monitor?
-The system requirements for PRTG Network Monitor vary depending on the size and complexity of your network. However, the minimum system requirements are as follows:
--
-- Component Requirement - Operating System Windows Server 2019/2016/2012 R2/2012/2008 R2 SP1 (64-bit) - CPU Dual core processor (at least 2 GHz) - RAM At least 4 GB (more recommended) - Disk Space At least 250 GB (more recommended) - Network Card At least 100 Mbit/s (1 Gbit/s recommended) - Browser Chrome 74+, Firefox 66+, Edge 44+, Safari 12+ How can I contact Paessler AG for support or feedback?
-You can contact Paessler AG for support or feedback via various channels, such as email, phone, chat, forum, knowledge base, or ticket system. You can find the contact details on the Paessler AG website. You can also access various resources and documentation that are available on the Paessler AG website or blog.
-Where can I find more information about PRTG Network Monitor?
-You can find more information about PRTG Network Monitor on the Paessler AG website or blog. You can also watch some videos on the Paessler AG YouTube channel or read some testimonials on the Paessler AG customer stories page. You can also follow Paessler AG on social media platforms such as Facebook, Twitter, LinkedIn, or Instagram to get the latest news and updates about PRTG Network Monitor.
-I hope this article has helped you understand the pros and cons of downloading PRTG Network Monitor full cracked. If you have any questions or comments, please feel free to leave them below. Thank you for reading and happy network monitoring!
-References:
--
b2dd77e56b- : https://www.paessler.com/prtg
-- : https://blog.paessler.com/
-- : https://www.youtube.com/user/PaesslerAG
-- : https://www.paessler.com/customers
-- : https://www.facebook.com/PaesslerAG
-- : https://twitter.com/PaesslerAG
-- : https://www.linkedin.com/company/paessler-ag
-- : https://www.instagram.com/paesslerag/
-
-
-
\ No newline at end of file diff --git a/spaces/sub314xxl/MetaGPT/metagpt/learn/skill_loader.py b/spaces/sub314xxl/MetaGPT/metagpt/learn/skill_loader.py deleted file mode 100644 index 83200bca6fefe528c7e93c18ffb6d5a8da64ac61..0000000000000000000000000000000000000000 --- a/spaces/sub314xxl/MetaGPT/metagpt/learn/skill_loader.py +++ /dev/null @@ -1,96 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -""" -@Time : 2023/8/18 -@Author : mashenquan -@File : skill_loader.py -@Desc : Skill YAML Configuration Loader. -""" -from pathlib import Path -from typing import Dict, List, Optional - -import yaml -from pydantic import BaseModel, Field - -from metagpt.config import CONFIG - - -class Example(BaseModel): - ask: str - answer: str - - -class Returns(BaseModel): - type: str - format: Optional[str] = None - - -class Prerequisite(BaseModel): - name: str - type: Optional[str] = None - description: Optional[str] = None - default: Optional[str] = None - - -class Skill(BaseModel): - name: str - description: str - id: str - x_prerequisite: Optional[List[Prerequisite]] = Field(default=None, alias="x-prerequisite") - arguments: Dict - examples: List[Example] - returns: Returns - - -class EntitySkills(BaseModel): - skills: List[Skill] - - -class SkillsDeclaration(BaseModel): - entities: Dict[str, EntitySkills] - - -class SkillLoader: - def __init__(self, skill_yaml_file_name: Path = None): - if not skill_yaml_file_name: - skill_yaml_file_name = Path(__file__).parent.parent.parent / ".well-known/skills.yaml" - with open(str(skill_yaml_file_name), "r") as file: - skills = yaml.safe_load(file) - self._skills = SkillsDeclaration(**skills) - - def get_skill_list(self, entity_name: str = "Assistant") -> Dict: - """Return the skill name based on the skill description.""" - entity_skills = self.get_entity(entity_name) - if not entity_skills: - return {} - - agent_skills = CONFIG.agent_skills - if not agent_skills: - return {} - - class AgentSkill(BaseModel): - name: str - - names = [AgentSkill(**i).name for i in agent_skills] - description_to_name_mappings = {} - for s in entity_skills.skills: - if s.name not in names: - continue - description_to_name_mappings[s.description] = s.name - - return description_to_name_mappings - - def get_skill(self, name, entity_name: str = "Assistant") -> Skill: - """Return a skill by name.""" - entity = self.get_entity(entity_name) - if not entity: - return None - for sk in entity.skills: - if sk.name == name: - return sk - - def get_entity(self, name) -> EntitySkills: - """Return a list of skills for the entity.""" - if not self._skills: - return None - return self._skills.entities.get(name) diff --git a/spaces/subwayman/btc-chat-bot/pinecone_vector_store.py b/spaces/subwayman/btc-chat-bot/pinecone_vector_store.py deleted file mode 100644 index 6f54b5f454a03664a91b58f2aa1eab0e89ede3e6..0000000000000000000000000000000000000000 --- a/spaces/subwayman/btc-chat-bot/pinecone_vector_store.py +++ /dev/null @@ -1,95 +0,0 @@ -from dotenv import load_dotenv -import tiktoken - -# langchain libraries -from langchain.document_loaders import DirectoryLoader, TextLoader -from langchain.embeddings.openai import OpenAIEmbeddings -from langchain.text_splitter import RecursiveCharacterTextSplitter -from langchain.vectorstores import FAISS, Pinecone - -import pinecone -import openai -import os - -load_dotenv() - -tiktoken.encoding_for_model('gpt-3.5-turbo') - -openai.api_key = os.getenv("OPENAI_API_KEY") -OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") -PINECONE_API_KEY = os.getenv("PINECONE_API_KEY") -PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENVIRONMENT") - - -def load_local_documents(test=True): - if test: - doc_dir = os.path.join(os.getcwd() + '/docs', 'test') - else: - doc_dir = os.path.join(os.getcwd() + '/docs', 'processed') - loader = DirectoryLoader(doc_dir) - documents = loader.load() - assert len(documents) > 0 - return documents - - -def split_documents(documents): - text_splitter = RecursiveCharacterTextSplitter( - chunk_size=1000, - chunk_overlap=20, - length_function=len, - separators=["\n\n", "\n", " ", ""] - ) - chunks = text_splitter.split_documents(documents) - return chunks - - -def tiktoken_len(text): - tokenizer = tiktoken.get_encoding('cl100k_base') - tokens = tokenizer.encode( - text, - disallowed_special=() - ) - return len(tokens) - - -def create_embedding(): - model_name = 'text-embedding-ada-002' - - embed = OpenAIEmbeddings( - document_model_name=model_name, - query_model_name=model_name, - openai_api_key=OPENAI_API_KEY, - ) - return embed - - -def create_pinecone_store(index_name='btc-chat-bot'): - pinecone.init(api_key=PINECONE_API_KEY, - environment=PINECONE_ENVIRONMENT) - if index_name not in pinecone.list_indexes(): - pinecone.create_index(index_name, dimension=1536, metric='cosine') - print(pinecone.list_indexes()) - index = pinecone.GRPCIndex(index_name) - print(index.describe_index_stats()) - documents = load_local_documents(test=False) - documents = split_documents(documents) - embeddings = OpenAIEmbeddings() - result = Pinecone.from_documents( - documents, embeddings, index_name=index_name) - return result - - -def get_pinecone_store(index_name='btc-chat-bot'): - pinecone.init(api_key=PINECONE_API_KEY, - environment=PINECONE_ENVIRONMENT) - vector_store = pinecone.Index(index_name) - return Pinecone.from_existing_index(index_name, OpenAIEmbeddings()) - # return vector_store - - -if __name__ == "__main__": - # chunks = split_documents(load_local_documents()) - # for c in chunks: - # print(tiktoken_len(c.page_content)) - # create_pinecone_store() - vector_store = get_pinecone_store() diff --git a/spaces/sudthakur/yt_summary/README.md b/spaces/sudthakur/yt_summary/README.md deleted file mode 100644 index af06e476f785c56224dd037620998952af569030..0000000000000000000000000000000000000000 --- a/spaces/sudthakur/yt_summary/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Yt Summary -emoji: 🦀 -colorFrom: pink -colorTo: purple -sdk: gradio -sdk_version: 3.24.1 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Badoo Premium Ipa Cracked Ipad.md b/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Badoo Premium Ipa Cracked Ipad.md deleted file mode 100644 index 54c33e7818785973eeea0cab151db30a00c9ad49..0000000000000000000000000000000000000000 --- a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Badoo Premium Ipa Cracked Ipad.md +++ /dev/null @@ -1,6 +0,0 @@ -badoo premium ipa cracked ipad
Download >>> https://cinurl.com/2uEWYB
- -Badoo Premium Hack iOS (Unlimited Credits, Ad-Free) Free . ... We all know Badoo premium cracked 2019 is a third party app so it's not related with Badoo ... 4d29de3e1b
-
-
- diff --git a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Yashwant Full Movie Hd 1080p Downloads.md b/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Yashwant Full Movie Hd 1080p Downloads.md deleted file mode 100644 index e310fcbc961c8d400b815a4fa6a55e2ad464198b..0000000000000000000000000000000000000000 --- a/spaces/suppsumstagza/text-to-image-stable-diffusion-v1-5/scripts/Yashwant Full Movie Hd 1080p Downloads.md +++ /dev/null @@ -1,12 +0,0 @@ -Yashwant Full Movie Hd 1080p Downloads
Download ===> https://cinurl.com/2uEX9u
-
-yeshwant full hindi free download - -yeshwant full hindi movie free download - -yeshwant full hindi free download 1080p - -yeshwant full hindi movie free download 1080p 4fefd39f24
-
-
- diff --git a/spaces/surmensipa/VITS-Umamusume-voice-synthesizer/logs/A Serbian Film (2010) 480p BRRip.md b/spaces/surmensipa/VITS-Umamusume-voice-synthesizer/logs/A Serbian Film (2010) 480p BRRip.md deleted file mode 100644 index ea64ed3f8b094d91b1a14a6187274c09c75b06ad..0000000000000000000000000000000000000000 --- a/spaces/surmensipa/VITS-Umamusume-voice-synthesizer/logs/A Serbian Film (2010) 480p BRRip.md +++ /dev/null @@ -1,50 +0,0 @@ - -A Serbian Film (2010) 480p BRRip: A Review of the Most Controversial Movie of All Time
- -A Serbian Film (2010) 480p BRRip is a crime horror thriller that has been banned in over 40 countries for its extreme violence and depravity. The movie tells the story of Milos, a retired porn star who is offered a lucrative deal to star in one last film. However, he soon realizes that he has been tricked into participating in a snuff film that involves torture, rape, incest, pedophilia, necrophilia, and more. A Serbian Film is not for the faint of heart, as it depicts some of the most disturbing scenes ever put on screen.
-A Serbian Film (2010) 480p BRRip
DOWNLOAD ★ https://urluss.com/2uCFPn
- -Why A Serbian Film (2010) 480p BRRip is a Cult Classic
- -Despite its controversial nature, A Serbian Film (2010) 480p BRRip has gained a cult following among fans of extreme cinema. Some critics have praised the movie for its artistic merit, social commentary, and political satire. The director, Srdjan Spasojevic, has stated that he wanted to make a film that reflects the brutal reality of Serbia after the Yugoslav wars and the NATO bombing. He also claimed that he wanted to expose the hypocrisy and corruption of the global film industry, which exploits and dehumanizes people for profit. A Serbian Film (2010) 480p BRRip is a movie that challenges the viewers to question their own morality and values.
- -Where to Download A Serbian Film (2010) 480p BRRip
- -If you are brave enough to watch A Serbian Film (2010) 480p BRRip, you can download it from various torrent sites. However, be careful as some versions of the movie are censored or cut to remove some of the most graphic scenes. The best version to download is the UNCUT version, which has a runtime of 104 minutes and includes all the scenes that were banned or edited in other countries. You can also find subtitles in different languages to understand the dialogue. However, be warned that downloading A Serbian Film (2010) 480p BRRip may be illegal in some regions, so proceed at your own risk.
- -Conclusion
- -A Serbian Film (2010) 480p BRRip is a movie that will shock you, disgust you, and haunt you for a long time. It is not a movie for everyone, as it contains scenes that are extremely graphic and offensive. However, if you are a fan of extreme cinema and want to watch a movie that pushes the boundaries of art and horror, you may want to give A Serbian Film (2010) 480p BRRip a try. Just be prepared for what you are about to see.
- -The Cast and Crew of A Serbian Film (2010) 480p BRRip
- -A Serbian Film (2010) 480p BRRip features a talented cast of Serbian actors, most of whom are unknown to the international audience. The main protagonist, Milos, is played by Srdjan Todorovic, a veteran actor and musician who has appeared in over 50 films and TV shows. The director of the snuff film, Vukmir, is played by Sergej Trifunovic, a popular actor and activist who has also starred in several Hollywood productions. The other actors include Jelena Gavrilovic as Milos' wife Marija, Slobodan Bestic as Milos' brother Marko, Katarina Zutic as Vukmir's assistant Lejla, and Andjela Nenadovic as Milos' son Petar.
- -The director and co-writer of A Serbian Film (2010) 480p BRRip is Srdjan Spasojevic, who made his feature film debut with this movie. He has also directed several short films and music videos. The co-writer and producer of the movie is Aleksandar Radivojevic, who has also written scripts for other Serbian movies and TV shows. The cinematographer of the movie is Nemanja Jovanov, who has also worked on several documentaries and commercials. The music composer of the movie is Sky Wikluh, a famous Serbian rapper and producer who is also a member of the hip-hop group Bad Copy.
- -The Reception and Controversy of A Serbian Film (2010) 480p BRRip
- -A Serbian Film (2010) 480p BRRip has received mixed reviews from critics and audiences alike. Some have praised the movie for its technical quality, artistic vision, and social commentary, while others have condemned it for its excessive violence, depravity, and exploitation. The movie has also sparked a lot of controversy and debate over its censorship, legality, and morality. The movie has been banned or heavily edited in many countries, such as Australia, New Zealand, Norway, Spain, Germany, Brazil, Singapore, Malaysia, and South Korea. The movie has also faced legal issues in some countries, such as the UK, where the director and the distributor were arrested and charged with obscenity offences.
- -However, A Serbian Film (2010) 480p BRRip has also gained a cult following among fans of extreme cinema who appreciate its boldness and originality. The movie has won several awards at various film festivals around the world, such as the FIPRESCI Prize at the Fantasporto International Film Festival in Portugal, the Audience Award at the Brussels International Fantastic Film Festival in Belgium, and the Best Screenplay Award at the Fantaspoa International Fantastic Film Festival in Brazil. The movie has also been included in several lists of the best or worst horror movies of all time by various critics and publications.
-The Pros and Cons of Watching A Serbian Film (2010) 480p BRRip
- -A Serbian Film (2010) 480p BRRip is a movie that has some pros and cons for the viewers who decide to watch it. Some of the pros are that the movie is well-made, well-acted, and well-directed, with a high production value and a captivating storyline. The movie also offers a unique and original experience that is unlike any other movie in the genre. The movie also has some artistic merit and social relevance, as it tackles some important issues and themes that relate to the situation of Serbia and its people.
- -However, some of the cons are that the movie is extremely violent, graphic, and disturbing, with scenes that are hard to watch and stomach. The movie may also offend, traumatize, or disgust some viewers who are sensitive to such content. The movie may also be seen as exploitative, sensationalist, or gratuitous, as it uses violence and shock as a way to attract attention or provoke reactions. The movie may also be misunderstood or misinterpreted by some viewers who may miss the point or message of the movie.
- -The Tips and Warnings for Watching A Serbian Film (2010) 480p BRRip
- -If you are interested in watching A Serbian Film (2010) 480p BRRip, here are some tips and warnings that you should keep in mind before you do so. First of all, you should be aware of what you are getting into and do some research about the movie before you watch it. You should also be prepared for what you are about to see and have a strong stomach and a open mind. You should also watch the movie alone or with someone who can handle it and respect your choice. You should also avoid watching the movie if you are under 18, pregnant, or have any medical or psychological conditions that may be affected by the movie.
- -Secondly, you should choose the right version of the movie to watch. You should avoid watching the censored or cut versions of the movie, as they may ruin the artistic vision or integrity of the movie. You should also avoid watching the movie on low-quality or pirated sources, as they may compromise the technical quality or safety of the movie. You should also avoid watching the movie on public or shared devices or networks, as they may expose you to legal or social risks. You should also avoid watching the movie on full screen or with loud volume, as they may enhance the impact or intensity of the movie.
-The Alternatives and Recommendations for Watching A Serbian Film (2010) 480p BRRip
- -If you are not interested in watching A Serbian Film (2010) 480p BRRip, or if you have already watched it and want to watch something else, here are some alternatives and recommendations for you. You can watch other movies that are similar to A Serbian Film (2010) 480p BRRip in terms of genre, theme, or style, such as I Spit on Your Grave (1978), Hostel (2005), Saw (2004), The Girl Next Door (2007), or The House That Jack Built (2018). You can also watch other movies that are different from A Serbian Film (2010) 480p BRRip in terms of tone, mood, or message, such as The Shawshank Redemption (1994), Life Is Beautiful (1997), The Pursuit of Happyness (2006), The Intouchables (2011), or The Green Book (2018).
- -The Conclusion and Summary of A Serbian Film (2010) 480p BRRip
- -To conclude and summarize, A Serbian Film (2010) 480p BRRip is a movie that is not for everyone, as it is one of the most controversial and disturbing movies ever made. It is a movie that shows the dark and brutal side of human nature and society, as well as the harsh and tragic reality of Serbia and its people. It is a movie that challenges and provokes the viewers to think and feel about their own morality and values. It is a movie that has some pros and cons, some tips and warnings, and some alternatives and recommendations for watching it. It is a movie that you should watch at your own discretion and risk.
-To conclude and summarize, A Serbian Film (2010) 480p BRRip is a movie that is not for everyone, as it is one of the most controversial and disturbing movies ever made. It is a movie that shows the dark and brutal side of human nature and society, as well as the harsh and tragic reality of Serbia and its people. It is a movie that challenges and provokes the viewers to think and feel about their own morality and values. It is a movie that has some pros and cons, some tips and warnings, and some alternatives and recommendations for watching it. It is a movie that you should watch at your own discretion and risk.
3cee63e6c2
-
-
\ No newline at end of file diff --git a/spaces/surmensipa/VITS-Umamusume-voice-synthesizer/logs/American Sniper Full Movie In Hindi Download Kickass Free.md b/spaces/surmensipa/VITS-Umamusume-voice-synthesizer/logs/American Sniper Full Movie In Hindi Download Kickass Free.md deleted file mode 100644 index 690d47cca4c339af3c4fb136443769d15bf96d70..0000000000000000000000000000000000000000 --- a/spaces/surmensipa/VITS-Umamusume-voice-synthesizer/logs/American Sniper Full Movie In Hindi Download Kickass Free.md +++ /dev/null @@ -1,6 +0,0 @@ -american sniper full movie in hindi download kickass
Download Zip ---> https://urluss.com/2uCG8K
- - d5da3c52bf
-
-
- diff --git a/spaces/syam417/rvc/infer_pack/models.py b/spaces/syam417/rvc/infer_pack/models.py deleted file mode 100644 index 96165f73644e6fb92d0ffedb4a3c9e1a457cb989..0000000000000000000000000000000000000000 --- a/spaces/syam417/rvc/infer_pack/models.py +++ /dev/null @@ -1,982 +0,0 @@ -import math, pdb, os -from time import time as ttime -import torch -from torch import nn -from torch.nn import functional as F -from infer_pack import modules -from infer_pack import attentions -from infer_pack import commons -from infer_pack.commons import init_weights, get_padding -from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d -from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm -from infer_pack.commons import init_weights -import numpy as np -from infer_pack import commons - - -class TextEncoder256(nn.Module): - def __init__( - self, - out_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - f0=True, - ): - super().__init__() - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.emb_phone = nn.Linear(256, hidden_channels) - self.lrelu = nn.LeakyReLU(0.1, inplace=True) - if f0 == True: - self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 - self.encoder = attentions.Encoder( - hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout - ) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, phone, pitch, lengths): - if pitch == None: - x = self.emb_phone(phone) - else: - x = self.emb_phone(phone) + self.emb_pitch(pitch) - x = x * math.sqrt(self.hidden_channels) # [b, t, h] - x = self.lrelu(x) - x = torch.transpose(x, 1, -1) # [b, h, t] - x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( - x.dtype - ) - x = self.encoder(x * x_mask, x_mask) - stats = self.proj(x) * x_mask - - m, logs = torch.split(stats, self.out_channels, dim=1) - return m, logs, x_mask - - -class TextEncoder256Sim(nn.Module): - def __init__( - self, - out_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - f0=True, - ): - super().__init__() - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.emb_phone = nn.Linear(256, hidden_channels) - self.lrelu = nn.LeakyReLU(0.1, inplace=True) - if f0 == True: - self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 - self.encoder = attentions.Encoder( - hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout - ) - self.proj = nn.Conv1d(hidden_channels, out_channels, 1) - - def forward(self, phone, pitch, lengths): - if pitch == None: - x = self.emb_phone(phone) - else: - x = self.emb_phone(phone) + self.emb_pitch(pitch) - x = x * math.sqrt(self.hidden_channels) # [b, t, h] - x = self.lrelu(x) - x = torch.transpose(x, 1, -1) # [b, h, t] - x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( - x.dtype - ) - x = self.encoder(x * x_mask, x_mask) - x = self.proj(x) * x_mask - return x, x_mask - - -class ResidualCouplingBlock(nn.Module): - def __init__( - self, - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - n_flows=4, - gin_channels=0, - ): - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.flows = nn.ModuleList() - for i in range(n_flows): - self.flows.append( - modules.ResidualCouplingLayer( - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=gin_channels, - mean_only=True, - ) - ) - self.flows.append(modules.Flip()) - - def forward(self, x, x_mask, g=None, reverse=False): - if not reverse: - for flow in self.flows: - x, _ = flow(x, x_mask, g=g, reverse=reverse) - else: - for flow in reversed(self.flows): - x = flow(x, x_mask, g=g, reverse=reverse) - return x - - def remove_weight_norm(self): - for i in range(self.n_flows): - self.flows[i * 2].remove_weight_norm() - - -class PosteriorEncoder(nn.Module): - def __init__( - self, - in_channels, - out_channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=0, - ): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.gin_channels = gin_channels - - self.pre = nn.Conv1d(in_channels, hidden_channels, 1) - self.enc = modules.WN( - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=gin_channels, - ) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, x, x_lengths, g=None): - x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( - x.dtype - ) - x = self.pre(x) * x_mask - x = self.enc(x, x_mask, g=g) - stats = self.proj(x) * x_mask - m, logs = torch.split(stats, self.out_channels, dim=1) - z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask - return z, m, logs, x_mask - - def remove_weight_norm(self): - self.enc.remove_weight_norm() - - -class Generator(torch.nn.Module): - def __init__( - self, - initial_channel, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=0, - ): - super(Generator, self).__init__() - self.num_kernels = len(resblock_kernel_sizes) - self.num_upsamples = len(upsample_rates) - self.conv_pre = Conv1d( - initial_channel, upsample_initial_channel, 7, 1, padding=3 - ) - resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 - - self.ups = nn.ModuleList() - for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): - self.ups.append( - weight_norm( - ConvTranspose1d( - upsample_initial_channel // (2**i), - upsample_initial_channel // (2 ** (i + 1)), - k, - u, - padding=(k - u) // 2, - ) - ) - ) - - self.resblocks = nn.ModuleList() - for i in range(len(self.ups)): - ch = upsample_initial_channel // (2 ** (i + 1)) - for j, (k, d) in enumerate( - zip(resblock_kernel_sizes, resblock_dilation_sizes) - ): - self.resblocks.append(resblock(ch, k, d)) - - self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) - self.ups.apply(init_weights) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) - - def forward(self, x, g=None): - x = self.conv_pre(x) - if g is not None: - x = x + self.cond(g) - - for i in range(self.num_upsamples): - x = F.leaky_relu(x, modules.LRELU_SLOPE) - x = self.ups[i](x) - xs = None - for j in range(self.num_kernels): - if xs is None: - xs = self.resblocks[i * self.num_kernels + j](x) - else: - xs += self.resblocks[i * self.num_kernels + j](x) - x = xs / self.num_kernels - x = F.leaky_relu(x) - x = self.conv_post(x) - x = torch.tanh(x) - - return x - - def remove_weight_norm(self): - for l in self.ups: - remove_weight_norm(l) - for l in self.resblocks: - l.remove_weight_norm() - - -class SineGen(torch.nn.Module): - """Definition of sine generator - SineGen(samp_rate, harmonic_num = 0, - sine_amp = 0.1, noise_std = 0.003, - voiced_threshold = 0, - flag_for_pulse=False) - samp_rate: sampling rate in Hz - harmonic_num: number of harmonic overtones (default 0) - sine_amp: amplitude of sine-wavefrom (default 0.1) - noise_std: std of Gaussian noise (default 0.003) - voiced_thoreshold: F0 threshold for U/V classification (default 0) - flag_for_pulse: this SinGen is used inside PulseGen (default False) - Note: when flag_for_pulse is True, the first time step of a voiced - segment is always sin(np.pi) or cos(0) - """ - - def __init__( - self, - samp_rate, - harmonic_num=0, - sine_amp=0.1, - noise_std=0.003, - voiced_threshold=0, - flag_for_pulse=False, - ): - super(SineGen, self).__init__() - self.sine_amp = sine_amp - self.noise_std = noise_std - self.harmonic_num = harmonic_num - self.dim = self.harmonic_num + 1 - self.sampling_rate = samp_rate - self.voiced_threshold = voiced_threshold - - def _f02uv(self, f0): - # generate uv signal - uv = torch.ones_like(f0) - uv = uv * (f0 > self.voiced_threshold) - return uv - - def forward(self, f0, upp): - """sine_tensor, uv = forward(f0) - input F0: tensor(batchsize=1, length, dim=1) - f0 for unvoiced steps should be 0 - output sine_tensor: tensor(batchsize=1, length, dim) - output uv: tensor(batchsize=1, length, 1) - """ - with torch.no_grad(): - f0 = f0[:, None].transpose(1, 2) - f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) - # fundamental component - f0_buf[:, :, 0] = f0[:, :, 0] - for idx in np.arange(self.harmonic_num): - f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * ( - idx + 2 - ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic - rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化 - rand_ini = torch.rand( - f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device - ) - rand_ini[:, 0] = 0 - rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini - tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化 - tmp_over_one *= upp - tmp_over_one = F.interpolate( - tmp_over_one.transpose(2, 1), - scale_factor=upp, - mode="linear", - align_corners=True, - ).transpose(2, 1) - rad_values = F.interpolate( - rad_values.transpose(2, 1), scale_factor=upp, mode="nearest" - ).transpose( - 2, 1 - ) ####### - tmp_over_one %= 1 - tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 - cumsum_shift = torch.zeros_like(rad_values) - cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 - sine_waves = torch.sin( - torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi - ) - sine_waves = sine_waves * self.sine_amp - uv = self._f02uv(f0) - uv = F.interpolate( - uv.transpose(2, 1), scale_factor=upp, mode="nearest" - ).transpose(2, 1) - noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 - noise = noise_amp * torch.randn_like(sine_waves) - sine_waves = sine_waves * uv + noise - return sine_waves, uv, noise - - -class SourceModuleHnNSF(torch.nn.Module): - """SourceModule for hn-nsf - SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, - add_noise_std=0.003, voiced_threshod=0) - sampling_rate: sampling_rate in Hz - harmonic_num: number of harmonic above F0 (default: 0) - sine_amp: amplitude of sine source signal (default: 0.1) - add_noise_std: std of additive Gaussian noise (default: 0.003) - note that amplitude of noise in unvoiced is decided - by sine_amp - voiced_threshold: threhold to set U/V given F0 (default: 0) - Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) - F0_sampled (batchsize, length, 1) - Sine_source (batchsize, length, 1) - noise_source (batchsize, length 1) - uv (batchsize, length, 1) - """ - - def __init__( - self, - sampling_rate, - harmonic_num=0, - sine_amp=0.1, - add_noise_std=0.003, - voiced_threshod=0, - is_half=True, - ): - super(SourceModuleHnNSF, self).__init__() - - self.sine_amp = sine_amp - self.noise_std = add_noise_std - self.is_half = is_half - # to produce sine waveforms - self.l_sin_gen = SineGen( - sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod - ) - - # to merge source harmonics into a single excitation - self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) - self.l_tanh = torch.nn.Tanh() - - def forward(self, x, upp=None): - sine_wavs, uv, _ = self.l_sin_gen(x, upp) - if self.is_half: - sine_wavs = sine_wavs.half() - sine_merge = self.l_tanh(self.l_linear(sine_wavs)) - return sine_merge, None, None # noise, uv - - -class GeneratorNSF(torch.nn.Module): - def __init__( - self, - initial_channel, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels, - sr, - is_half=False, - ): - super(GeneratorNSF, self).__init__() - self.num_kernels = len(resblock_kernel_sizes) - self.num_upsamples = len(upsample_rates) - - self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) - self.m_source = SourceModuleHnNSF( - sampling_rate=sr, harmonic_num=0, is_half=is_half - ) - self.noise_convs = nn.ModuleList() - self.conv_pre = Conv1d( - initial_channel, upsample_initial_channel, 7, 1, padding=3 - ) - resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 - - self.ups = nn.ModuleList() - for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): - c_cur = upsample_initial_channel // (2 ** (i + 1)) - self.ups.append( - weight_norm( - ConvTranspose1d( - upsample_initial_channel // (2**i), - upsample_initial_channel // (2 ** (i + 1)), - k, - u, - padding=(k - u) // 2, - ) - ) - ) - if i + 1 < len(upsample_rates): - stride_f0 = np.prod(upsample_rates[i + 1 :]) - self.noise_convs.append( - Conv1d( - 1, - c_cur, - kernel_size=stride_f0 * 2, - stride=stride_f0, - padding=stride_f0 // 2, - ) - ) - else: - self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) - - self.resblocks = nn.ModuleList() - for i in range(len(self.ups)): - ch = upsample_initial_channel // (2 ** (i + 1)) - for j, (k, d) in enumerate( - zip(resblock_kernel_sizes, resblock_dilation_sizes) - ): - self.resblocks.append(resblock(ch, k, d)) - - self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) - self.ups.apply(init_weights) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) - - self.upp = np.prod(upsample_rates) - - def forward(self, x, f0, g=None): - har_source, noi_source, uv = self.m_source(f0, self.upp) - har_source = har_source.transpose(1, 2) - x = self.conv_pre(x) - if g is not None: - x = x + self.cond(g) - - for i in range(self.num_upsamples): - x = F.leaky_relu(x, modules.LRELU_SLOPE) - x = self.ups[i](x) - x_source = self.noise_convs[i](har_source) - x = x + x_source - xs = None - for j in range(self.num_kernels): - if xs is None: - xs = self.resblocks[i * self.num_kernels + j](x) - else: - xs += self.resblocks[i * self.num_kernels + j](x) - x = xs / self.num_kernels - x = F.leaky_relu(x) - x = self.conv_post(x) - x = torch.tanh(x) - return x - - def remove_weight_norm(self): - for l in self.ups: - remove_weight_norm(l) - for l in self.resblocks: - l.remove_weight_norm() - - -sr2sr = { - "32k": 32000, - "40k": 40000, - "48k": 48000, -} - - -class SynthesizerTrnMs256NSFsid(nn.Module): - def __init__( - self, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - spk_embed_dim, - gin_channels, - sr, - **kwargs - ): - super().__init__() - if type(sr) == type("strr"): - sr = sr2sr[sr] - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.gin_channels = gin_channels - # self.hop_length = hop_length# - self.spk_embed_dim = spk_embed_dim - self.enc_p = TextEncoder256( - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - ) - self.dec = GeneratorNSF( - inter_channels, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=gin_channels, - sr=sr, - is_half=kwargs["is_half"], - ) - self.enc_q = PosteriorEncoder( - spec_channels, - inter_channels, - hidden_channels, - 5, - 1, - 16, - gin_channels=gin_channels, - ) - self.flow = ResidualCouplingBlock( - inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels - ) - self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) - print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) - - def remove_weight_norm(self): - self.dec.remove_weight_norm() - self.flow.remove_weight_norm() - self.enc_q.remove_weight_norm() - - def forward( - self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds - ): # 这里ds是id,[bs,1] - # print(1,pitch.shape)#[bs,t] - g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 - m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) - z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) - z_p = self.flow(z, y_mask, g=g) - z_slice, ids_slice = commons.rand_slice_segments( - z, y_lengths, self.segment_size - ) - # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) - pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) - # print(-2,pitchf.shape,z_slice.shape) - o = self.dec(z_slice, pitchf, g=g) - return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) - - def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None): - g = self.emb_g(sid).unsqueeze(-1) - m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) - z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask - z = self.flow(z_p, x_mask, g=g, reverse=True) - o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) - return o, x_mask, (z, z_p, m_p, logs_p) - - -class SynthesizerTrnMs256NSFsid_nono(nn.Module): - def __init__( - self, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - spk_embed_dim, - gin_channels, - sr=None, - **kwargs - ): - super().__init__() - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.gin_channels = gin_channels - # self.hop_length = hop_length# - self.spk_embed_dim = spk_embed_dim - self.enc_p = TextEncoder256( - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - f0=False, - ) - self.dec = Generator( - inter_channels, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=gin_channels, - ) - self.enc_q = PosteriorEncoder( - spec_channels, - inter_channels, - hidden_channels, - 5, - 1, - 16, - gin_channels=gin_channels, - ) - self.flow = ResidualCouplingBlock( - inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels - ) - self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) - print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) - - def remove_weight_norm(self): - self.dec.remove_weight_norm() - self.flow.remove_weight_norm() - self.enc_q.remove_weight_norm() - - def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1] - g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 - m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) - z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) - z_p = self.flow(z, y_mask, g=g) - z_slice, ids_slice = commons.rand_slice_segments( - z, y_lengths, self.segment_size - ) - o = self.dec(z_slice, g=g) - return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) - - def infer(self, phone, phone_lengths, sid, max_len=None): - g = self.emb_g(sid).unsqueeze(-1) - m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) - z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask - z = self.flow(z_p, x_mask, g=g, reverse=True) - o = self.dec((z * x_mask)[:, :, :max_len], g=g) - return o, x_mask, (z, z_p, m_p, logs_p) - - -class SynthesizerTrnMs256NSFsid_sim(nn.Module): - """ - Synthesizer for Training - """ - - def __init__( - self, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - spk_embed_dim, - # hop_length, - gin_channels=0, - use_sdp=True, - **kwargs - ): - super().__init__() - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.gin_channels = gin_channels - # self.hop_length = hop_length# - self.spk_embed_dim = spk_embed_dim - self.enc_p = TextEncoder256Sim( - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - ) - self.dec = GeneratorNSF( - inter_channels, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=gin_channels, - is_half=kwargs["is_half"], - ) - - self.flow = ResidualCouplingBlock( - inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels - ) - self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) - print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) - - def remove_weight_norm(self): - self.dec.remove_weight_norm() - self.flow.remove_weight_norm() - self.enc_q.remove_weight_norm() - - def forward( - self, phone, phone_lengths, pitch, pitchf, y_lengths, ds - ): # y是spec不需要了现在 - g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 - x, x_mask = self.enc_p(phone, pitch, phone_lengths) - x = self.flow(x, x_mask, g=g, reverse=True) - z_slice, ids_slice = commons.rand_slice_segments( - x, y_lengths, self.segment_size - ) - - pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) - o = self.dec(z_slice, pitchf, g=g) - return o, ids_slice - - def infer( - self, phone, phone_lengths, pitch, pitchf, ds, max_len=None - ): # y是spec不需要了现在 - g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 - x, x_mask = self.enc_p(phone, pitch, phone_lengths) - x = self.flow(x, x_mask, g=g, reverse=True) - o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g) - return o, o - - -class MultiPeriodDiscriminator(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(MultiPeriodDiscriminator, self).__init__() - periods = [2, 3, 5, 7, 11, 17] - # periods = [3, 5, 7, 11, 17, 23, 37] - - discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] - discs = discs + [ - DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods - ] - self.discriminators = nn.ModuleList(discs) - - def forward(self, y, y_hat): - y_d_rs = [] # - y_d_gs = [] - fmap_rs = [] - fmap_gs = [] - for i, d in enumerate(self.discriminators): - y_d_r, fmap_r = d(y) - y_d_g, fmap_g = d(y_hat) - # for j in range(len(fmap_r)): - # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) - y_d_rs.append(y_d_r) - y_d_gs.append(y_d_g) - fmap_rs.append(fmap_r) - fmap_gs.append(fmap_g) - - return y_d_rs, y_d_gs, fmap_rs, fmap_gs - - -class DiscriminatorS(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(DiscriminatorS, self).__init__() - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList( - [ - norm_f(Conv1d(1, 16, 15, 1, padding=7)), - norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), - norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), - norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), - norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), - norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), - ] - ) - self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) - - def forward(self, x): - fmap = [] - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap - - -class DiscriminatorP(torch.nn.Module): - def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): - super(DiscriminatorP, self).__init__() - self.period = period - self.use_spectral_norm = use_spectral_norm - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList( - [ - norm_f( - Conv2d( - 1, - 32, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 32, - 128, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 128, - 512, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 512, - 1024, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 1024, - 1024, - (kernel_size, 1), - 1, - padding=(get_padding(kernel_size, 1), 0), - ) - ), - ] - ) - self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) - - def forward(self, x): - fmap = [] - - # 1d to 2d - b, c, t = x.shape - if t % self.period != 0: # pad first - n_pad = self.period - (t % self.period) - x = F.pad(x, (0, n_pad), "reflect") - t = t + n_pad - x = x.view(b, c, t // self.period, self.period) - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap diff --git a/spaces/szukevin/VISOR-GPT/train/scripts/convert_gpt2_from_huggingface_to_tencentpretrain.py b/spaces/szukevin/VISOR-GPT/train/scripts/convert_gpt2_from_huggingface_to_tencentpretrain.py deleted file mode 100644 index b0d6b8c68227695024be0214f8d5de3168712fbc..0000000000000000000000000000000000000000 --- a/spaces/szukevin/VISOR-GPT/train/scripts/convert_gpt2_from_huggingface_to_tencentpretrain.py +++ /dev/null @@ -1,59 +0,0 @@ -import argparse -import collections -import torch - - -parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) -parser.add_argument("--input_model_path", type=str, default="models/input_model.bin", - help=".") -parser.add_argument("--output_model_path", type=str, default="models/output_model.bin", - help=".") -parser.add_argument("--layers_num", type=int, default=12) - -args = parser.parse_args() - -input_model = torch.load(args.input_model_path, map_location="cpu") - -output_model = collections.OrderedDict() -emb_size = input_model["transformer.h." + str(0) + ".attn.c_attn.weight"].shape[0] - -output_model["embedding.word.embedding.weight"] = input_model["transformer.wte.weight"] -output_model["embedding.pos.embedding.weight"] = input_model["transformer.wpe.weight"] - -for i in range(args.layers_num): - for j in range(3): - output_model["encoder.transformer." + str(i) + ".self_attn.linear_layers." + str(j) + ".weight"] = \ - input_model["transformer.h." + str(i) + ".attn.c_attn.weight"].t()[j*emb_size:(j+1)*emb_size, :] - output_model["encoder.transformer." + str(i) + ".self_attn.linear_layers." + str(j) + ".bias"] = \ - input_model["transformer.h." + str(i) + ".attn.c_attn.bias"][j*emb_size:(j+1)*emb_size] - - output_model["encoder.transformer." + str(i) + ".self_attn.final_linear.weight"] = \ - input_model["transformer.h." + str(i) + ".attn.c_proj.weight"].t() - output_model["encoder.transformer." + str(i) + ".self_attn.final_linear.bias"] = \ - input_model["transformer.h." + str(i) + ".attn.c_proj.bias"] - - output_model["encoder.transformer." + str(i) + ".layer_norm_1.gamma"] = \ - input_model["transformer.h." + str(i) + ".ln_1.weight"] - output_model["encoder.transformer." + str(i) + ".layer_norm_1.beta"] = \ - input_model["transformer.h." + str(i) + ".ln_1.bias"] - - output_model["encoder.transformer." + str(i) + ".feed_forward.linear_1.weight"] = \ - input_model["transformer.h." + str(i) + ".mlp.c_fc.weight"].t() - output_model["encoder.transformer." + str(i) + ".feed_forward.linear_1.bias"] = \ - input_model["transformer.h." + str(i) + ".mlp.c_fc.bias"] - output_model["encoder.transformer." + str(i) + ".feed_forward.linear_2.weight"] = \ - input_model["transformer.h." + str(i) + ".mlp.c_proj.weight"].t() - output_model["encoder.transformer." + str(i) + ".feed_forward.linear_2.bias"] = \ - input_model["transformer.h." + str(i) + ".mlp.c_proj.bias"] - - output_model["encoder.transformer." + str(i) + ".layer_norm_2.gamma"] = \ - input_model["transformer.h." + str(i) + ".ln_2.weight"] - output_model["encoder.transformer." + str(i) + ".layer_norm_2.beta"] = \ - input_model["transformer.h." + str(i) + ".ln_2.bias"] - - -output_model["encoder.layer_norm.gamma"] = input_model["transformer.ln_f.weight"] -output_model["encoder.layer_norm.beta"] = input_model["transformer.ln_f.bias"] -output_model["target.lm.output_layer.weight"] = input_model["embedding.word.embedding.weight"] - -torch.save(output_model, args.output_model_path) diff --git a/spaces/terfces0erbo/CollegeProjectV2/DgFlick Passport Xpress Pro 5.0.0 22.md b/spaces/terfces0erbo/CollegeProjectV2/DgFlick Passport Xpress Pro 5.0.0 22.md deleted file mode 100644 index b4caae1b24e00e19cfbef612b1b14c343469e21c..0000000000000000000000000000000000000000 --- a/spaces/terfces0erbo/CollegeProjectV2/DgFlick Passport Xpress Pro 5.0.0 22.md +++ /dev/null @@ -1,12 +0,0 @@ -DgFlick Passport Xpress Pro 5.0.0 22
Download Zip 🆓 https://bytlly.com/2uGldm
-
-.11.2018 kostenlose downloaden free 4-in-1 pdf. - -A most standard, free program designed for the convenient and fast printing of documents from any device running the Windows operating system. The Toolbar Bar provides full control over the printing process including the. To find out more on how to get the free tool, head over to the product's page.Population pharmacokinetics of phenytoin after single oral dose in patients with epilepsy. - -The aims of this study were to describe the population pharmacokinetics of phenytoin after a single oral dose of its sustained release (SR) formulation (Zonalon) and to evaluate the potential influence of demographic characteristics, concomitant drug use and comedication on phenytoin pharmacokinetics. A total of 200 plasma concentrations of phenytoin obtained after the administration of one dose of the SR formulation were analysed by a nonlinear mixed effect model. The following covariates were tested for an influence on the population pharmacokinetics of phenytoin: sex, age, body weight, height, body mass index, creatinine clearance, albumin and total protein levels, use of aminophylline and other antiepileptic drugs, cardiovascular disease, diabetes, lipid disorder, hypercholesterolemia, hypertension, smoking habit, alcohol intake, comedication with other drugs (tramadol, cimetidine and acetylsalicylic acid) and comedication with caffeine, theophylline and paracetamol. Phenytoin clearance and volume of distribution were significantly influenced by the age of the patient (a = 0.0062 and 0.0916 respectively), creatinine clearance (a = 0.0441 and 0.0292) and the use of other antiepileptic drugs (a = 0.0269 and 0.0457, respectively). The other covariates did not have a significant influence on the population pharmacokinetics of phenytoin. The population pharmacokinetics of phenytoin after one oral dose of the SR formulation is similar to those of phenytoin after multiple doses of the immediate release formulation. Thus, the once daily administration of the SR formulation may be an alternative to the twice daily administration of the immediate release formulation. at South Africa in the days of apartheid. Hays, for one, was a millionaire. - -If our sportsmen are expected to be role models then perhaps we should reward them 4fefd39f24
-
-
- diff --git a/spaces/terfces0erbo/CollegeProjectV2/Download Movie The Mr X In Hindi BEST.md b/spaces/terfces0erbo/CollegeProjectV2/Download Movie The Mr X In Hindi BEST.md deleted file mode 100644 index 72ae8c1033d16a12d8be55300111b906ffb71c9f..0000000000000000000000000000000000000000 --- a/spaces/terfces0erbo/CollegeProjectV2/Download Movie The Mr X In Hindi BEST.md +++ /dev/null @@ -1,6 +0,0 @@ -Download Movie The Mr X In Hindi
Download Zip ✵✵✵ https://bytlly.com/2uGjXs
-
-rdxhd.com Mr. X 2015 full movie download And online watch free direct link17 April 2015. mp4, hd, filmywap, filmypur or filmyzilla 17 April 2015 free movie ... 4d29de3e1b
-
-
- diff --git a/spaces/thegenerativegeneration/FNeVR_demo/sync_batchnorm/batchnorm.py b/spaces/thegenerativegeneration/FNeVR_demo/sync_batchnorm/batchnorm.py deleted file mode 100644 index 5f4e763f0366dffa10320116413f8c7181a8aeb1..0000000000000000000000000000000000000000 --- a/spaces/thegenerativegeneration/FNeVR_demo/sync_batchnorm/batchnorm.py +++ /dev/null @@ -1,315 +0,0 @@ -# -*- coding: utf-8 -*- -# File : batchnorm.py -# Author : Jiayuan Mao -# Email : maojiayuan@gmail.com -# Date : 27/01/2018 -# -# This file is part of Synchronized-BatchNorm-PyTorch. -# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch -# Distributed under MIT License. - -import collections - -import torch -import torch.nn.functional as F - -from torch.nn.modules.batchnorm import _BatchNorm -from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast - -from .comm import SyncMaster - -__all__ = ['SynchronizedBatchNorm1d', 'SynchronizedBatchNorm2d', 'SynchronizedBatchNorm3d'] - - -def _sum_ft(tensor): - """sum over the first and last dimention""" - return tensor.sum(dim=0).sum(dim=-1) - - -def _unsqueeze_ft(tensor): - """add new dementions at the front and the tail""" - return tensor.unsqueeze(0).unsqueeze(-1) - - -_ChildMessage = collections.namedtuple('_ChildMessage', ['sum', 'ssum', 'sum_size']) -_MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std']) - - -class _SynchronizedBatchNorm(_BatchNorm): - def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True): - super(_SynchronizedBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine) - - self._sync_master = SyncMaster(self._data_parallel_master) - - self._is_parallel = False - self._parallel_id = None - self._slave_pipe = None - - def forward(self, input): - # If it is not parallel computation or is in evaluation mode, use PyTorch's implementation. - if not (self._is_parallel and self.training): - return F.batch_norm( - input, self.running_mean, self.running_var, self.weight, self.bias, - self.training, self.momentum, self.eps) - - # Resize the input to (B, C, -1). - input_shape = input.size() - input = input.view(input.size(0), self.num_features, -1) - - # Compute the sum and square-sum. - sum_size = input.size(0) * input.size(2) - input_sum = _sum_ft(input) - input_ssum = _sum_ft(input ** 2) - - # Reduce-and-broadcast the statistics. - if self._parallel_id == 0: - mean, inv_std = self._sync_master.run_master(_ChildMessage(input_sum, input_ssum, sum_size)) - else: - mean, inv_std = self._slave_pipe.run_slave(_ChildMessage(input_sum, input_ssum, sum_size)) - - # Compute the output. - if self.affine: - # MJY:: Fuse the multiplication for speed. - output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std * self.weight) + _unsqueeze_ft(self.bias) - else: - output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std) - - # Reshape it. - return output.view(input_shape) - - def __data_parallel_replicate__(self, ctx, copy_id): - self._is_parallel = True - self._parallel_id = copy_id - - # parallel_id == 0 means master device. - if self._parallel_id == 0: - ctx.sync_master = self._sync_master - else: - self._slave_pipe = ctx.sync_master.register_slave(copy_id) - - def _data_parallel_master(self, intermediates): - """Reduce the sum and square-sum, compute the statistics, and broadcast it.""" - - # Always using same "device order" makes the ReduceAdd operation faster. - # Thanks to:: Tete Xiao (http://tetexiao.com/) - intermediates = sorted(intermediates, key=lambda i: i[1].sum.get_device()) - - to_reduce = [i[1][:2] for i in intermediates] - to_reduce = [j for i in to_reduce for j in i] # flatten - target_gpus = [i[1].sum.get_device() for i in intermediates] - - sum_size = sum([i[1].sum_size for i in intermediates]) - sum_, ssum = ReduceAddCoalesced.apply(target_gpus[0], 2, *to_reduce) - mean, inv_std = self._compute_mean_std(sum_, ssum, sum_size) - - broadcasted = Broadcast.apply(target_gpus, mean, inv_std) - - outputs = [] - for i, rec in enumerate(intermediates): - outputs.append((rec[0], _MasterMessage(*broadcasted[i*2:i*2+2]))) - - return outputs - - def _compute_mean_std(self, sum_, ssum, size): - """Compute the mean and standard-deviation with sum and square-sum. This method - also maintains the moving average on the master device.""" - assert size > 1, 'BatchNorm computes unbiased standard-deviation, which requires size > 1.' - mean = sum_ / size - sumvar = ssum - sum_ * mean - unbias_var = sumvar / (size - 1) - bias_var = sumvar / size - - self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * mean.data - self.running_var = (1 - self.momentum) * self.running_var + self.momentum * unbias_var.data - - return mean, bias_var.clamp(self.eps) ** -0.5 - - -class SynchronizedBatchNorm1d(_SynchronizedBatchNorm): - r"""Applies Synchronized Batch Normalization over a 2d or 3d input that is seen as a - mini-batch. - - .. math:: - - y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta - - This module differs from the built-in PyTorch BatchNorm1d as the mean and - standard-deviation are reduced across all devices during training. - - For example, when one uses `nn.DataParallel` to wrap the network during - training, PyTorch's implementation normalize the tensor on each device using - the statistics only on that device, which accelerated the computation and - is also easy to implement, but the statistics might be inaccurate. - Instead, in this synchronized version, the statistics will be computed - over all training samples distributed on multiple devices. - - Note that, for one-GPU or CPU-only case, this module behaves exactly same - as the built-in PyTorch implementation. - - The mean and standard-deviation are calculated per-dimension over - the mini-batches and gamma and beta are learnable parameter vectors - of size C (where C is the input size). - - During training, this layer keeps a running estimate of its computed mean - and variance. The running sum is kept with a default momentum of 0.1. - - During evaluation, this running mean/variance is used for normalization. - - Because the BatchNorm is done over the `C` dimension, computing statistics - on `(N, L)` slices, it's common terminology to call this Temporal BatchNorm - - Args: - num_features: num_features from an expected input of size - `batch_size x num_features [x width]` - eps: a value added to the denominator for numerical stability. - Default: 1e-5 - momentum: the value used for the running_mean and running_var - computation. Default: 0.1 - affine: a boolean value that when set to ``True``, gives the layer learnable - affine parameters. Default: ``True`` - - Shape: - - Input: :math:`(N, C)` or :math:`(N, C, L)` - - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input) - - Examples: - >>> # With Learnable Parameters - >>> m = SynchronizedBatchNorm1d(100) - >>> # Without Learnable Parameters - >>> m = SynchronizedBatchNorm1d(100, affine=False) - >>> input = torch.autograd.Variable(torch.randn(20, 100)) - >>> output = m(input) - """ - - def _check_input_dim(self, input): - if input.dim() != 2 and input.dim() != 3: - raise ValueError('expected 2D or 3D input (got {}D input)' - .format(input.dim())) - super(SynchronizedBatchNorm1d, self)._check_input_dim(input) - - -class SynchronizedBatchNorm2d(_SynchronizedBatchNorm): - r"""Applies Batch Normalization over a 4d input that is seen as a mini-batch - of 3d inputs - - .. math:: - - y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta - - This module differs from the built-in PyTorch BatchNorm2d as the mean and - standard-deviation are reduced across all devices during training. - - For example, when one uses `nn.DataParallel` to wrap the network during - training, PyTorch's implementation normalize the tensor on each device using - the statistics only on that device, which accelerated the computation and - is also easy to implement, but the statistics might be inaccurate. - Instead, in this synchronized version, the statistics will be computed - over all training samples distributed on multiple devices. - - Note that, for one-GPU or CPU-only case, this module behaves exactly same - as the built-in PyTorch implementation. - - The mean and standard-deviation are calculated per-dimension over - the mini-batches and gamma and beta are learnable parameter vectors - of size C (where C is the input size). - - During training, this layer keeps a running estimate of its computed mean - and variance. The running sum is kept with a default momentum of 0.1. - - During evaluation, this running mean/variance is used for normalization. - - Because the BatchNorm is done over the `C` dimension, computing statistics - on `(N, H, W)` slices, it's common terminology to call this Spatial BatchNorm - - Args: - num_features: num_features from an expected input of - size batch_size x num_features x height x width - eps: a value added to the denominator for numerical stability. - Default: 1e-5 - momentum: the value used for the running_mean and running_var - computation. Default: 0.1 - affine: a boolean value that when set to ``True``, gives the layer learnable - affine parameters. Default: ``True`` - - Shape: - - Input: :math:`(N, C, H, W)` - - Output: :math:`(N, C, H, W)` (same shape as input) - - Examples: - >>> # With Learnable Parameters - >>> m = SynchronizedBatchNorm2d(100) - >>> # Without Learnable Parameters - >>> m = SynchronizedBatchNorm2d(100, affine=False) - >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45)) - >>> output = m(input) - """ - - def _check_input_dim(self, input): - if input.dim() != 4: - raise ValueError('expected 4D input (got {}D input)' - .format(input.dim())) - super(SynchronizedBatchNorm2d, self)._check_input_dim(input) - - -class SynchronizedBatchNorm3d(_SynchronizedBatchNorm): - r"""Applies Batch Normalization over a 5d input that is seen as a mini-batch - of 4d inputs - - .. math:: - - y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta - - This module differs from the built-in PyTorch BatchNorm3d as the mean and - standard-deviation are reduced across all devices during training. - - For example, when one uses `nn.DataParallel` to wrap the network during - training, PyTorch's implementation normalize the tensor on each device using - the statistics only on that device, which accelerated the computation and - is also easy to implement, but the statistics might be inaccurate. - Instead, in this synchronized version, the statistics will be computed - over all training samples distributed on multiple devices. - - Note that, for one-GPU or CPU-only case, this module behaves exactly same - as the built-in PyTorch implementation. - - The mean and standard-deviation are calculated per-dimension over - the mini-batches and gamma and beta are learnable parameter vectors - of size C (where C is the input size). - - During training, this layer keeps a running estimate of its computed mean - and variance. The running sum is kept with a default momentum of 0.1. - - During evaluation, this running mean/variance is used for normalization. - - Because the BatchNorm is done over the `C` dimension, computing statistics - on `(N, D, H, W)` slices, it's common terminology to call this Volumetric BatchNorm - or Spatio-temporal BatchNorm - - Args: - num_features: num_features from an expected input of - size batch_size x num_features x depth x height x width - eps: a value added to the denominator for numerical stability. - Default: 1e-5 - momentum: the value used for the running_mean and running_var - computation. Default: 0.1 - affine: a boolean value that when set to ``True``, gives the layer learnable - affine parameters. Default: ``True`` - - Shape: - - Input: :math:`(N, C, D, H, W)` - - Output: :math:`(N, C, D, H, W)` (same shape as input) - - Examples: - >>> # With Learnable Parameters - >>> m = SynchronizedBatchNorm3d(100) - >>> # Without Learnable Parameters - >>> m = SynchronizedBatchNorm3d(100, affine=False) - >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45, 10)) - >>> output = m(input) - """ - - def _check_input_dim(self, input): - if input.dim() != 5: - raise ValueError('expected 5D input (got {}D input)' - .format(input.dim())) - super(SynchronizedBatchNorm3d, self)._check_input_dim(input) diff --git a/spaces/tialenAdioni/chat-gpt-api/logs/Digibit Vpn Download _HOT_ For Windows.md b/spaces/tialenAdioni/chat-gpt-api/logs/Digibit Vpn Download _HOT_ For Windows.md deleted file mode 100644 index a6b6f3ec3668ab59687c5449ce99ccf3c18188d4..0000000000000000000000000000000000000000 --- a/spaces/tialenAdioni/chat-gpt-api/logs/Digibit Vpn Download _HOT_ For Windows.md +++ /dev/null @@ -1,11 +0,0 @@ - -How to Download and Install Digibit VPN for Windows
-Digibit VPN is a VPN service that offers fast and secure connections, unblocks streaming content, and supports multiple devices. Digibit VPN has user-friendly apps for Android, Windows, iOS, Mac, and FireOS, and supports more devices (routers, TVs etc.) with OpenVPN configuration files and manual installation. In this article, we will show you how to download and install Digibit VPN for Windows.
-digibit vpn download for windows
DOWNLOAD 🆗 https://urlcod.com/2uK8Eg
-Step 1: Go to the official Digibit website and log in to your account. If you don't have an account yet, you can sign up for one using PayPal or CoinGate (cryptocurrencies). The monthly subscription fee is $4 and you can use up to 3 devices simultaneously with one license.
-Step 2: After logging in, go to the Downloads section and click on the Windows App (official 2.0) link. This will download the latest version of Digibit VPN for Windows, which has features like auto connect, favorites, kill switch, and more. The file size is 60.1 MB.
-Step 3: Once the download is complete, run the setup file and follow the instructions on the screen. You may need to allow the app to make changes to your device and accept the terms and conditions. The installation process should take a few minutes.
-Step 4: After the installation is done, launch the Digibit VPN app and log in with your credentials. You can then choose a server from the list or use the quick connect feature to connect to the best available server. You can also access the settings menu to customize your preferences and options.
-Step 5: Enjoy using Digibit VPN for Windows and browse the web securely and anonymously. You can also unblock streaming content from Netflix, BBC iPlayer, Hulu, and more. If you encounter any issues or have any questions, you can contact the customer support via email or social media.
ddb901b051
-
-
\ No newline at end of file diff --git a/spaces/tioseFevbu/cartoon-converter/scripts/Adobe Photoshop Lightroom Classic CC 2020 9.1.0.10 (x64) Multilingual !!LINK!!.md b/spaces/tioseFevbu/cartoon-converter/scripts/Adobe Photoshop Lightroom Classic CC 2020 9.1.0.10 (x64) Multilingual !!LINK!!.md deleted file mode 100644 index a403b55405776caf8fd5cb58f99fc1edc03e9c6a..0000000000000000000000000000000000000000 --- a/spaces/tioseFevbu/cartoon-converter/scripts/Adobe Photoshop Lightroom Classic CC 2020 9.1.0.10 (x64) Multilingual !!LINK!!.md +++ /dev/null @@ -1,217 +0,0 @@ -
-Adobe Photoshop Lightroom Classic CC 2020 9.1.0.10 (x64) Multilingual: A Powerful Desktop Photo Editor
-If you are looking for a desktop photo editing app that is optimized for performance, quality, and creativity, you might want to check out Adobe Photoshop Lightroom Classic CC 2020 9.1.0.10 (x64) Multilingual. This is the latest version of the popular photo editing software that gives you all the tools you need to bring out the best in your photos.
-Adobe Photoshop Lightroom Classic CC 2020 9.1.0.10 (x64) Multilingual
Download Zip ————— https://urlcod.com/2uHyFq
-In this article, we will give you an overview of what Adobe Photoshop Lightroom Classic CC 2020 is, how to download and install it, how to use it, and some tips and tricks for getting the most out of it. By the end of this article, you will have a better understanding of how to use this powerful desktop photo editor to enhance your photos and share them with the world.
-What is Adobe Photoshop Lightroom Classic CC 2020?
-Adobe Photoshop Lightroom Classic CC 2020 is a desktop photo editing app that is part of the Adobe Creative Cloud suite of applications. It is designed for professional photographers and photo enthusiasts who want to edit, organize, and manage their photos in a fast and efficient way.
-The difference between Lightroom Classic and Lightroom
-Before we go any further, let's clear up some confusion that might arise from the name of this software. Adobe Photoshop Lightroom Classic CC 2020 is not the same as Adobe Photoshop Lightroom, which is another photo editing app from Adobe that is also part of the Creative Cloud suite.
-The main difference between the two apps is that Lightroom Classic is a desktop-only app that stores your photos on your local hard drive or an external drive, while Lightroom is a cloud-based app that stores your photos online and lets you access them from any device.
- -Lightroom Classic also has more advanced editing features and tools than Lightroom, such as HDR merge, panorama stitching, range masking, multi-batch export, and more. However, Lightroom has some features that Lightroom Classic does not have, such as cloud storage, automatic tagging, built-in tutorials, and more.
-Both apps are compatible with each other and can sync your photos and edits across devices. You can also use both apps together if you want to take advantage of their different strengths.
-The main features of Lightroom Classic CC 2020
-Lightroom Classic CC 2020 has many features that make it a powerful desktop photo editor. Here are some of the main ones:
--
-- Library module: This is where you can import, organize, rate, filter, tag, and manage your photos. You can also create collections, smart collections, keywords, face tags, color labels, flags, ratings, and more to help you find and sort your photos easily.
-- Develop module: This is where you can edit, enhance, and transform your photos. You can use various tools and sliders to adjust the exposure, contrast, color, tone, sharpness, noise, lens corrections, and more. You can also use the histogram, the tone curve, the HSL panel, the split toning panel, the calibration panel, and more to fine-tune your edits. You can also apply presets and profiles to quickly change the look of your photos.
-- Map module: This is where you can view and edit the GPS location data of your photos. You can also use the map to find photos based on where they were taken.
-- Book module: This is where you can create and print photo books from your photos. You can choose from various templates, layouts, fonts, colors, and more to customize your photo book.
-- Slideshow module: This is where you can create and play slideshows from your photos. You can add music, transitions, captions, and more to make your slideshows more dynamic.
-- Print module: This is where you can print your photos or create print layouts. You can adjust the size, resolution, orientation, margins, and more of your prints. You can also use the print preview and soft proofing features to see how your prints will look before printing them.
-- Web module: This is where you can create and export web galleries from your photos. You can choose from various web gallery templates and customize them to suit your style. You can also upload your web galleries to your own website or to Adobe Portfolio.
-Lightroom Classic CC 2020 also supports various file formats, such as JPEG, TIFF, PSD, PNG, DNG, RAW, and more. It also supports various languages, such as English, German, French, Spanish, Italian, Portuguese, Dutch, Swedish, Danish, Norwegian, Finnish, Russian, Polish, Czech, Hungarian, Turkish, Arabic, Chinese (Simplified), Chinese (Traditional), Japanese, Korean , and more.
-How to download and install Lightroom Classic CC 2020
-If you want to download and install Lightroom Classic CC 2020 on your desktop computer, you will need to follow these steps:
-System requirements
-Before you download and install Lightroom Classic CC 2020, you will need to make sure that your computer meets the minimum system requirements for running the software. Here are the system requirements for Windows and Mac OS:
--
-- -Windows -Mac OS -- -- --
-- Processor: Intel® or AMD processor with 64-bit support; 2 GHz or faster processor
-- Operating system: Microsoft Windows 10 (64-bit) Version 1903 or later
-- RAM: 4 GB of RAM (8 GB recommended)
-- Hard disk space: 2 GB of available hard-disk space for program installation
-- Monitor resolution: 1024 x 768 display
-- Graphics processor acceleration requirements: AMD: Radeon GPU with DirectX 12 or OpenGL 3.3 support; Intel: Skylake or newer GPU with DirectX 12 support; NVIDIA: GPU with DirectX 12 or OpenGL 3.3 support; OpenGL 3.3 and DirectX 10-capable video adapter for GPU-related functionality; 1 GB Video RAM (VRAM)
-- Internet connection: Internet connection and registration are necessary for required software activation, validation of subscriptions, and access to online services.
-- --
-- Processor: Intel® or AMD processor with 64-bit support; 2 GHz or faster processor
-- Operating system: macOS v10.14 (Mojave) or later
-- RAM: 4 GB of RAM (8 GB recommended)
-- Hard disk space: 2 GB of available hard-disk space for program installation (cannot install on a volume that uses a case-sensitive file system or on removable flash storage devices)
-- Monitor resolution: 1024 x 768 display
-- Graphics processor acceleration requirements: AMD: macOS 10.13 or later with Metal support; Intel: macOS 10.13 or later with Metal support; NVIDIA: macOS 10.13 or later with Metal support; Metal support; OpenGL ES-capable video adapter for GPU-related functionality; 1 GB Video RAM (VRAM)
-- Internet connection: Internet connection and registration are necessary for required software activation, validation of subscriptions, and access to online services.
-Download links - Once you have checked that your computer meets the system requirements, you can download Lightroom Classic CC 2020 from the official Adobe website. You will need to sign in with your Adobe ID or create one if you don't have one already. You will also need to choose a subscription plan that suits your needs and budget. You can choose from the following plans:
--
-- Lightroom plan: This plan gives you access to Lightroom (the cloud-based app), 1 TB of cloud storage, and Adobe Portfolio, Adobe Fonts, and Adobe Spark. The price is $9.99 per month.
-- Photography plan: This plan gives you access to Lightroom Classic, Lightroom, Photoshop, 20 GB of cloud storage, and Adobe Portfolio, Adobe Fonts, and Adobe Spark. The price is $9.99 per month.
-- Photography plan with 1 TB: This plan gives you access to Lightroom Classic, Lightroom, Photoshop, 1 TB of cloud storage, and Adobe Portfolio, Adobe Fonts, and Adobe Spark. The price is $19.99 per month.
-- Creative Cloud All Apps plan: This plan gives you access to all the Creative Cloud apps and services, including Lightroom Classic, Lightroom, Photoshop, Illustrator, InDesign, Premiere Pro, After Effects, and more. You also get 100 GB of cloud storage, and Adobe Portfolio, Adobe Fonts, and Adobe Spark. The price is $52.99 per month.
-You can also try Lightroom Classic CC 2020 for free for 7 days before you decide to buy a subscription plan. You can download the trial version from here.
-Installation steps
-After you have downloaded the Lightroom Classic CC 2020 installer file from the Adobe website, you can follow these steps to install it on your computer:
--
-- Double-click the installer file to launch the installation process.
-- Follow the on-screen instructions to sign in with your Adobe ID and password.
-- Select your preferred language and location for the installation.
-- Choose whether you want to install Lightroom Classic CC 2020 as a trial version or as a full version with a subscription plan.
-- Click Install and wait for the installation to complete.
-- Click Launch to open Lightroom Classic CC 2020 and start using it.
-Congratulations! You have successfully downloaded and installed Lightroom Classic CC 2020 on your computer. Now you can start editing your photos with this powerful desktop photo editor.
-How to use Lightroom Classic CC 2020
-Now that you have installed Lightroom Classic CC 2020 on your computer, you might be wondering how to use it. In this section, we will give you a brief overview of how to use Lightroom Classic CC 2020 to import, organize, edit, export, and share your photos.
-The layout of Lightroom Classic
-When you open Lightroom Classic CC 2020 for the first time, you will see a window that looks something like this:
--
This is the main interface of Lightroom Classic CC 2020. It consists of several parts:
--
-- Menu bar: This is where you can access various menus and commands for Lightroom Classic CC 2020. You can also see the name of the current catalog and the current module.
-- Modules: These are the different sections of Lightroom Classic CC 2020 that correspond to different tasks or workflows. You can switch between them by clicking on their names in the menu bar or by using keyboard shortcuts. The modules are Library, Develop, Map, Book, Slideshow, Print, and Web.
-- Panels: These are the areas on the left and right sides of the window that contain various tools and options for each module. You can expand or collapse them by clicking on their names or by using keyboard shortcuts. You can also customize them by dragging them or by right-clicking on them.
-- Filmstrip: This is the area at the bottom of the window that shows thumbnails of your photos in the current folder or collection. You can scroll through them by using the scroll bar or by using keyboard shortcuts. You can also select or deselect them by clicking on them or by using keyboard shortcuts.
-- Loupe view: This is the area in the center of the window that shows a larger view of the selected photo. You can zoom in or out by using the zoom slider or by using keyboard shortcuts. You can also pan around the photo by dragging it or by using keyboard shortcuts.
-- Toolbar: This is the area below the loupe view that contains various buttons and options for each module. You can customize it by clicking on the triangle icon on the right side or by right-clicking on it.
-Now that you are familiar with the layout of Lightroom Classic CC 2020, let's see how to use it to import, organize, edit, export, and share your photos.
-How to import and organize photos
-The first step to using Lightroom Classic CC 2020 is to import your photos into the software. You can import photos from various sources, such as your camera, your computer, an external drive, a memory card, or a CD/DVD. You can also import photos from other applications, such as Photoshop, Bridge, or Camera Raw.
-To import photos into Lightroom Classic CC 2020, you will need to follow these steps:
--
-- Switch to the Library module by clicking on its name in the menu bar or by pressing G on your keyboard.
-- Click on the Import button on the bottom left corner of the window or press Ctrl+Shift+I (Windows) or Command+Shift+I (Mac OS) on your keyboard.
-- In the Import window that appears, select the source of your photos from the left panel. You can browse through your folders or devices by clicking on them or by using keyboard shortcuts.
-- In the center panel, select the photos that you want to import by checking or unchecking their boxes. You can also use keyboard shortcuts or click on the Check All or Uncheck All buttons at the bottom of the panel.
-- In the right panel, choose how you want to import your photos from the top drop-down menu. You can choose from Copy as DNG, Copy, Move, or Add. Copy as DNG will convert your photos to DNG format and copy them to a new location. Copy will copy your photos to a new location without converting them. Move will move your photos to a new location and delete them from their original location. Add will add your photos to the catalog without moving or copying them.
-- In the right panel, also choose where you want to import your photos from the Destination section. You can select an existing folder or create a new one by clicking on the plus icon. You can also choose how to organize your photos by date or by other criteria.
-- In the right panel, also choose whether you want to apply any presets, keywords, metadata, or file renaming to your photos from the Apply During Import section. You can select from various options or create your own by clicking on the drop-down menus.
-- When you are ready to import your photos, click on the Import button at the bottom right corner of the window. Wait for the import process to complete and then close the Import window.
-Congratulations! You have successfully imported your photos into Lightroom Classic CC 2020. Now you can organize them in various ways in the Library module.
-To organize your photos in Lightroom Classic CC 2020, you can use various features and tools in the Library module. Here are some of them:
--
-- Collections: These are groups of photos that you can create and name according to your preferences. You can create regular collections, smart collections, collection sets, and quick collections. Regular collections are collections that you manually add photos to. Smart collections are collections that automatically add photos based on certain criteria that you specify. Collection sets are groups of collections that you can organize hierarchically. Quick collections are temporary collections that you can use for quick tasks.
-- Keywords: These are words or phrases that you can assign to your photos to describe their content, theme, subject, or any other information that you want. You can create keyword tags, keyword sets, keyword hierarchies, and keyword synonyms. Keyword tags are individual keywords that you apply to your photos. Keyword sets are groups of keywords that you can apply together. Keyword hierarchies are keywords that have subkeywords under them. Keyword synonyms are keywords that have alternative words associated with them.
-- Face tags: These are tags that identify and name the people in your photos. You can use Lightroom Classic CC 2020's face detection and recognition features to automatically find and suggest faces in your photos. You can also manually add or edit face tags.
-- Color labels: These are colors that you can assign to your photos to mark them for different purposes. You can choose from red, yellow, green, blue, or purple labels. You can also customize the names and meanings of the color labels.
-- Flags: These are icons that you can assign to your photos to mark them as pick, reject, or unflagged. You can use flags to quickly sort and filter your photos based on your preferences.
-- Ratings: These are stars that you can assign to your photos to rate them from 1 to 5. You can use ratings to quickly sort and filter your photos based on their quality or importance.
-- Metadata: These are information that describe various aspects of your photos, such as date, time, camera, lens, exposure, GPS location, and more. You can view, edit, add, or remove metadata from your photos. You can also create metadata presets and apply them to your photos.
-- Filters: These are criteria that you can use to narrow down your photos based on various attributes, such as keywords, ratings, flags, color labels, metadata, and more. You can use filters to quickly find and select the photos that you want.
-By using these features and tools, you can organize your photos in Lightroom Classic CC 2020 in a way that makes sense to you and helps you work more efficiently.
-How to edit photos in Lightroom Classic CC 2020
-The next step to using Lightroom Classic CC 2020 is to edit your photos in the software. You can edit your photos in various ways in Lightroom Classic CC 2020, from basic adjustments to advanced transformations. You can also use presets and profiles to quickly change the look of your photos.
-To edit your photos in Lightroom Classic CC 2020, you will need to follow these steps:
--
-- Switch to the Develop module by clicking on its name in the menu bar or by pressing D on your keyboard.
-- Select the photo that you want to edit from the filmstrip or by using keyboard shortcuts.
-- In the right panel, use the various tools and sliders to adjust the exposure, contrast, color, tone, sharpness, noise, lens corrections, and more of your photo. You can also use the histogram, the tone curve, the HSL panel, the split toning panel, the calibration panel, and more to fine-tune your edits.
-- In the left panel, use the presets and profiles panels to apply different looks to your photo. You can choose from various presets and profiles that are built-in or downloaded from other sources. You can also create your own presets and profiles and save them for future use.
-- In the toolbar below the loupe view, use the various tools to crop, rotate, straighten, heal, clone, red-eye correct, gradient filter, radial filter, adjustment brush, and spot removal tools to further edit specific areas of your photo. You can also use the crop overlay, the loupe overlay, the guides overlay, and the soft proofing features to help you with your edits.
-- When you are happy with your edits, you can save them by clicking on the Done button at the bottom right corner of the window or by pressing Ctrl+S (Windows) or Command+S (Mac OS) on your keyboard.
-Congratulations! You have successfully edited your photo in Lightroom Classic CC 2020. Now you can export and share it with others.
-How to export and share photos from Lightroom Classic CC 2020
-The final step to using Lightroom Classic CC 2020 is to export and share your photos from the software. You can export your photos in various formats, sizes, qualities, and settings. You can also share your photos directly to various online platforms, such as Facebook, Flickr, Adobe Portfolio, and more.
-To export and share your photos from Lightroom Classic CC 2020, you will need to follow these steps:
--
-- Select the photo or photos that you want to export or share from the filmstrip or by using keyboard shortcuts.
-- To export your photos, click on the Export button on the bottom left corner of the window or press Ctrl+Shift+E (Windows) or Command+Shift+E (Mac OS) on your keyboard. In the Export window that appears, choose where you want to save your photos, what format, size, quality, and settings you want to use, and whether you want to add any metadata, watermark, or post-processing actions. When you are ready to export your photos, click on the Export button at the bottom right corner of the window. Wait for the export process to complete and then close the Export window.
-- To share your photos, click on the Share button on the bottom left corner of the window or press Ctrl+Alt+S (Windows) or Command+Option+S (Mac OS) on your keyboard. In the Share window that appears, choose which online platform you want to share your photos to, such as Facebook, Flickr, Adobe Portfolio, and more. You will need to sign in with your account and authorize Lightroom Classic CC 2020 to access it. You can also choose what title, description, tags, privacy settings, and other options you want to use for your photos. When you are ready to share your photos, click on the Share button at the bottom right corner of the window. Wait for the share process to complete and then close the Share window.
-Congratulations! You have successfully exported and shared your photos from Lightroom Classic CC 2020. Now you can enjoy your photos and show them to others.
-Tips and tricks for using Lightroom Classic CC 2020
-Lightroom Classic CC 2020 is a powerful desktop photo editor that has many features and tools that can help you improve your photos and workflow. However, there are also some tips and tricks that can help you use Lightroom Classic CC 2020 more effectively and efficiently. Here are some of them:
-How to use presets and profiles
-Presets and profiles are one of the easiest ways to change the look of your photos in Lightroom Classic CC 2020. Presets are sets of adjustments that you can apply to your photos with one click. Profiles are sets of color and tonal adjustments that you can apply to your photos without affecting other settings.
-You can find presets and profiles in the left panel of the Develop module. You can choose from various presets and profiles that are built-in or downloaded from other sources. You can also create your own presets and profiles and save them for future use.
-To apply a preset or a profile to your photo, simply click on its name or thumbnail in the left panel. You can also preview how it will look by hovering over it with your mouse cursor. You can also apply multiple presets or profiles to your photo by holding down Shift while clicking on them.
-To create a preset or a profile from your photo, simply make the adjustments that you want in the right panel and then click on the plus icon next to the Presets or Profiles panel in the left panel. You can then name your preset or profile and choose which settings you want to include or exclude. You can also choose which folder or group you want to save your preset or profile in.
-To edit or delete a preset or a profile that you have created, simply right-click on its name or thumbnail in the left panel and choose Edit or Delete from the menu. You can also rename, move, or export your presets or profiles by right-clicking on them.
-Presets and profiles are a great way to save time and create consistent looks for your photos. You can also use them to experiment with different styles and effects for your photos.
-How to use range masking tools
-Range masking tools are one of the most advanced and useful features of Lightroom Classic CC 2020. Range masking tools allow you to apply adjustments to specific areas of your photo based on their color, luminance, or depth values. This can help you create more precise and realistic edits for your photos.
-You can find range masking tools in the adjustment brush, radial filter, and gradient filter tools in the toolbar below the loupe view. To use range masking tools, you will need to follow these steps:
--
-- Select the adjustment brush, radial filter, or gradient filter tool from the toolbar and make a rough selection of the area that you want to adjust.
-- In the right panel, adjust the settings that you want to apply to the selected area, such as exposure, contrast, color, sharpness, and more.
-- In the right panel, scroll down to the bottom and find the Range Mask section. Choose which type of range mask you want to use from the drop-down menu: Color, Luminance, or Depth. Color range mask allows you to select areas based on their color values. Luminance range mask allows you to select areas based on their brightness values. Depth range mask allows you to select areas based on their distance from the camera (this only works for photos that have depth information).
-- In the right panel, use the eyedropper tool to sample the color, luminance, or depth values that you want to include or exclude from your selection. You can also use the plus and minus icons to add or subtract samples. You can also use the Alt (Windows) or Option (Mac OS) key to temporarily switch between adding and subtracting samples.
-- In the right panel, use the sliders to adjust the range and smoothness of your selection. The range slider controls how much of the sampled values are included or excluded from your selection. The smoothness slider controls how smooth or sharp the edges of your selection are.
-- When you are happy with your selection, click on the Done button at the bottom right corner of the window or press Enter on your keyboard.
-Congratulations! You have successfully used range masking tools to apply adjustments to specific areas of your photo. Now you can create more refined and realistic edits for your photos.
-How to create HDR panoramas
-HDR panoramas are one of the most impressive and creative features of Lightroom Classic CC 2020. HDR panoramas allow you to merge multiple photos that have different exposures and angles into one photo that has a high dynamic range and a wide field of view. This can help you capture scenes that have a lot of contrast and detail.
-To create HDR panoramas in Lightroom Classic CC 2020, you will need to follow these steps:
--
-- Take multiple photos of the same scene with different exposures and angles. Make sure that there is some overlap between each photo so that Lightroom Classic CC 2020 can align them properly. You can use a tripod or a handheld camera for this step.
-- Import your photos into Lightroom Classic CC 2020 and select them from the filmstrip or by using keyboard shortcuts.
-- Right-click on any of the selected photos and choose Photo Merge > HDR Panorama from the menu. Alternatively, you can press Ctrl+H (Windows) or Command+H (Mac OS) on your keyboard.
-- In the HDR Panorama Merge Preview window that appears, choose how you want to merge your photos from the options on the right panel. You can choose from various projection methods, such as Spherical, Cylindrical, or Perspective. You can also choose whether to auto crop, auto stack, or create a stack with the original photos. You can also adjust the boundary warp and the merge settings, such as auto settings, auto align, and auto tone.
-- When you are happy with your preview, click on the Merge button at the bottom right corner of the window. Wait for the merge process to complete and then close the HDR Panorama Merge Preview window.
-Congratulations! You have successfully created an HDR panorama in Lightroom Classic CC 2020. Now you can edit and share it as you wish.
-How to fill uneven edges of your panorama
-One of the common problems that you might encounter when creating panoramas in Lightroom Classic CC 2020 is that the edges of your panorama might be uneven or have gaps. This can happen because of the distortion or alignment of your photos. To fix this problem, you can use the Fill Edges feature in Lightroom Classic CC 2020. This feature uses content-aware technology to fill in the gaps and create a seamless panorama.
-To use the Fill Edges feature in Lightroom Classic CC 2020, you will need to follow these steps:
--
-- Select your panorama photo from the filmstrip or by using keyboard shortcuts.
-- Switch to the Develop module by clicking on its name in the menu bar or by pressing D on your keyboard.
-- In the right panel, scroll down to the Transform section and click on the Fill Edges button. You will see a progress bar indicating that Lightroom Classic CC 2020 is filling in the gaps.
-- When the process is complete, you will see that your panorama has smooth and even edges. You can also use the other tools in the Transform section to adjust the perspective, scale, rotation, and distortion of your panorama.
-Congratulations! You have successfully filled in the uneven edges of your panorama in Lightroom Classic CC 2020. Now you can enjoy your panorama without any distractions.
-How to use multi-batch export
-Multi-batch export is one of the most convenient and time-saving features of Lightroom Classic CC 2020. Multi-batch export allows you to export multiple photos with different settings and destinations at once. This can help you save time and effort when you need to export your photos for different purposes or platforms.
-To use multi-batch export in Lightroom Classic CC 2020, you will need to follow these steps:
--
-- Select the photo or photos that you want to export from the filmstrip or by using keyboard shortcuts.
-- Click on the Export button on the bottom left corner of the window or press Ctrl+Shift+E (Windows) or Command+Shift+E (Mac OS) on your keyboard.
-- In the Export window that appears, click on the Add button at the top right corner of the window. This will create a new export preset that you can customize and name.
-- In the new export preset, choose where you want to save your photos, what format, size, quality, and settings you want to use, and whether you want to add any metadata, watermark, or post-processing actions. You can also choose whether you want to export the selected photos or all the photos in the filmstrip.
-- Repeat steps 3 and 4 for each export preset that you want to create. You can create as many export presets as you need for different purposes or platforms.
-- When you are ready to export your photos, click on the Export button at the bottom right corner of the window. You will see a progress bar indicating that Lightroom Classic CC 2020 is exporting your photos with different settings and destinations.
-- When the process is complete, you will see a confirmation message and a summary of your exports. You can also view your exported photos in their respective locations.
-Congratulations! You have successfully used multi-batch export in Lightroom Classic CC 2020. Now you can export your photos with ease and efficiency.
-Conclusion and FAQs
-In this article, we have given you an overview of what Adobe Photoshop Lightroom Classic CC 2020 is, how to download and install it, how to use it, and some tips and tricks for getting the most out of it. We hope that this article has helped you understand how to use this powerful desktop photo editor to enhance your photos and share them with the world.
-If you have any questions or doubts about Lightroom Classic CC 2020, you might find the answers in these FAQs:
-Q: How can I update Lightroom Classic CC 2020 to the latest version?
-A: You can update Lightroom Classic CC 2020 to the latest version by using the Creative Cloud desktop app. Simply open the app and go to the Apps tab. You will see a list of your installed apps and their update status. If there is an update available for Lightroom Classic CC 2020, you will see an Update button next to it. Click on it and wait for the update process to complete. You can also check for updates manually by clicking on the Help menu in Lightroom Classic CC 2020 and choosing Check for Updates.
-Q: How can I backup my Lightroom Classic CC 2020 catalog?
-A: You can backup your Lightroom Classic CC 2020 catalog by using the Catalog Settings dialog box. Simply open Lightroom Classic CC 2020 and go to the Edit menu (Windows) or the Lightroom Classic menu (Mac OS) and choose Catalog Settings. In the Catalog Settings dialog box, go to the General tab and find the Backup section. You can choose when you want Lightroom Classic CC 2020 to prompt you to backup your catalog, such as every time Lightroom exits, once a day, once a week, or once a month. You can also choose where you want to save your backup files by clicking on the Choose button. You can also backup your catalog manually by clicking on the Backup Now button.
-Q: How can I sync my photos and edits across devices?
-A: You can sync your photos and edits across devices by using Lightroom (the cloud-based app) or Adobe Creative Cloud. To use Lightroom, you will need to sign in with your Adobe ID and password in both Lightroom Classic CC 2020 and Lightroom. Then, you will need to enable sync in Lightroom Classic CC 2020 by clicking on the cloud icon on the top right corner of the window and choosing Start Syncing. Then, you will need to select which collections or albums you want to sync by clicking on the sync icon next to them in the left panel. You can also create new collections or albums and sync them by clicking on the plus icon next to the Collections or Albums panel in the left panel. Once you have synced your photos and edits, you can access them from any device that has Lightroom installed and signed in with your Adobe ID and password. You can also access them from a web browser by going to https://lightroom.adobe.com.
-To use Adobe Creative Cloud, you will need to sign in with your Adobe ID and password in both Lightroom Classic CC 2020 and the Creative Cloud desktop app. Then, you will need to enable sync in Lightroom Classic CC 2020 by clicking on the cloud icon on the top right corner of the window and choosing Start Syncing. Then, you will need to select which photos or folders you want to sync by right-clicking on them in the left panel and choosing Sync with Lightroom. You can also create new folders and sync them by clicking on the plus icon next to the Folders panel in the left panel. Once you have synced your photos and edits, you can access them from any device that has the Creative Cloud desktop app installed and signed in with your Adobe ID and password. You can also access them from a web browser by going to https://assets.adobe.com.
-Q: How can I get help or support for Lightroom Classic CC 2020?
-A: You can get help or support for Lightroom Classic CC 2020 by using various resources that are available online or offline. Here are some of them:
--
b2dd77e56b- Help menu: You can access the Help menu in Lightroom Classic CC 2020 by clicking on the Help menu in the menu bar or by pressing F1 on your keyboard. You can find various topics and tutorials that can help you learn how to use Lightroom Classic CC 2020.
-- User guide: You can access the user guide for Lightroom Classic CC 2020 by going to https://helpx.adobe.com/lightroom-classic/user-guide.html. You can find detailed information and instructions on how to use Lightroom Classic CC 2020.
-- Community forum: You can access the community forum for Lightroom Classic CC 2020 by going to https://community.adobe.com/t5/lightroom-classic/bd-p/lightroom-classic?page=1&sort=latest_replies&filter=all. You can ask questions, share tips, get feedback, and interact with other users and experts of Lightroom Classic CC 2020.
-- Support center: You can access the support center for Lightroom Classic CC 2020 by going to https://helpx.adobe.com/support/lightroom-classic.html. You can find various resources and solutions for common issues and problems that you might encounter with Lightroom Classic CC 2020.
-- Contact us: You can contact Adobe customer service or technical support for Lightroom Classic CC 2020 by going to https://helpx.adobe.com/contact.html. You can choose from various options, such as chat, phone, email, or social media, to get in touch with an Adobe representative who can assist you with your queries or concerns.
-
-
-
\ No newline at end of file diff --git a/spaces/tioseFevbu/cartoon-converter/scripts/Fae Tactics Download For Pc Key Serial Numberl.md b/spaces/tioseFevbu/cartoon-converter/scripts/Fae Tactics Download For Pc Key Serial Numberl.md deleted file mode 100644 index 426b9d86e89ac3e4f2740e5fb396c01cc51c0e28..0000000000000000000000000000000000000000 --- a/spaces/tioseFevbu/cartoon-converter/scripts/Fae Tactics Download For Pc Key Serial Numberl.md +++ /dev/null @@ -1,16 +0,0 @@ - -Fae Tactics: A Turn-Based Strategy Game with Magic and Fae Creatures
-Fae Tactics is a PC game that combines turn-based tactical combat with RPG elements and a colorful pixel art style. The game follows Peony, a young magic user who travels across a world full of mystery and danger, where humans and fae creatures coexist in an uneasy balance. Peony can summon allies, cast spells, and befriend a variety of characters as she dives into the growing conflicts between man and fae.
-The game features a unique menuless combat system that allows players to control their units directly on the battlefield, using cards to activate abilities and items. The game also has a dynamic weather system that affects the terrain and the combat outcomes. Players can explore different regions of the world, each with their own challenges, secrets, and side quests. Along the way, they can recruit new allies, customize their skills and equipment, and discover the secrets of the fae gates that connect the world.
-Fae Tactics Download For Pc Key Serial Numberl
Download ••• https://urlcod.com/2uHxW2
-Fae Tactics is developed by Endlessfluff Games, an indie studio based in New York City. The game is published by Humble Games, a label of Humble Bundle that supports indie developers. The game was released on Steam on July 31, 2020, and has received positive reviews from critics and players alike. The game is currently available for $19.99 USD on Steam[^1^] [^2^] [^3^] [^4^], but you can also find cheaper deals on other online platforms such as G2A[^1^] or Gocdkeys[^2^]. If you are looking for a fun and challenging turn-based strategy game with a charming pixel art style and a rich fantasy world, Fae Tactics might be the game for you.
Here are some more details about Fae Tactics and its gameplay features:
--
-- The game has over 20 unique regions to explore, each with their own enemies, terrain, weather, and secrets. Some regions are optional and can be accessed through hidden fae gates that require certain conditions to be met.
-- The game has over 30 playable characters to recruit, each with their own personality, backstory, and skills. Some characters are humans, while others are fae creatures such as fairies, goblins, dragons, and more. Players can customize their party composition and equipment according to their preferences and strategies.
-- The game has over 100 different enemies to face, each with their own strengths, weaknesses, and behaviors. Some enemies are hostile, while others are neutral or friendly. Players can choose to fight or avoid them, or even try to befriend them and recruit them as allies.
-- The game has a rich story that unfolds through dialogue, cutscenes, and events. The game also has multiple endings that depend on the player's choices and actions throughout the game. The game also has a lot of humor and charm that adds to its appeal.
-Fae Tactics is a game that offers a lot of content and replay value for fans of turn-based strategy games. The game has a high level of difficulty that challenges the player's tactical skills and decision making. The game also has a lot of variety and creativity that makes each playthrough unique and enjoyable. If you are looking for a game that combines strategy, RPG, and pixel art in a captivating fantasy world, you should definitely check out Fae Tactics.
- 7b8c122e87
-
-
\ No newline at end of file diff --git a/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/chardet/utf1632prober.py b/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/chardet/utf1632prober.py deleted file mode 100644 index 9fd1580b8378723fce2bc5b8c7460b72d7c778c6..0000000000000000000000000000000000000000 --- a/spaces/tjburns/ask_marcus_aurelius/.venv/lib/python3.10/site-packages/pip/_vendor/chardet/utf1632prober.py +++ /dev/null @@ -1,223 +0,0 @@ -######################## BEGIN LICENSE BLOCK ######################## -# -# Contributor(s): -# Jason Zavaglia -# -# This library is free software; you can redistribute it and/or -# modify it under the terms of the GNU Lesser General Public -# License as published by the Free Software Foundation; either -# version 2.1 of the License, or (at your option) any later version. -# -# This library is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -# Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public -# License along with this library; if not, write to the Free Software -# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA -# 02110-1301 USA -######################### END LICENSE BLOCK ######################### -from .charsetprober import CharSetProber -from .enums import ProbingState - - -class UTF1632Prober(CharSetProber): - """ - This class simply looks for occurrences of zero bytes, and infers - whether the file is UTF16 or UTF32 (low-endian or big-endian) - For instance, files looking like ( \0 \0 \0 [nonzero] )+ - have a good probability to be UTF32BE. Files looking like ( \0 [nonzero] )+ - may be guessed to be UTF16BE, and inversely for little-endian varieties. - """ - - # how many logical characters to scan before feeling confident of prediction - MIN_CHARS_FOR_DETECTION = 20 - # a fixed constant ratio of expected zeros or non-zeros in modulo-position. - EXPECTED_RATIO = 0.94 - - def __init__(self): - super().__init__() - self.position = 0 - self.zeros_at_mod = [0] * 4 - self.nonzeros_at_mod = [0] * 4 - self._state = ProbingState.DETECTING - self.quad = [0, 0, 0, 0] - self.invalid_utf16be = False - self.invalid_utf16le = False - self.invalid_utf32be = False - self.invalid_utf32le = False - self.first_half_surrogate_pair_detected_16be = False - self.first_half_surrogate_pair_detected_16le = False - self.reset() - - def reset(self): - super().reset() - self.position = 0 - self.zeros_at_mod = [0] * 4 - self.nonzeros_at_mod = [0] * 4 - self._state = ProbingState.DETECTING - self.invalid_utf16be = False - self.invalid_utf16le = False - self.invalid_utf32be = False - self.invalid_utf32le = False - self.first_half_surrogate_pair_detected_16be = False - self.first_half_surrogate_pair_detected_16le = False - self.quad = [0, 0, 0, 0] - - @property - def charset_name(self): - if self.is_likely_utf32be(): - return "utf-32be" - if self.is_likely_utf32le(): - return "utf-32le" - if self.is_likely_utf16be(): - return "utf-16be" - if self.is_likely_utf16le(): - return "utf-16le" - # default to something valid - return "utf-16" - - @property - def language(self): - return "" - - def approx_32bit_chars(self): - return max(1.0, self.position / 4.0) - - def approx_16bit_chars(self): - return max(1.0, self.position / 2.0) - - def is_likely_utf32be(self): - approx_chars = self.approx_32bit_chars() - return approx_chars >= self.MIN_CHARS_FOR_DETECTION and ( - self.zeros_at_mod[0] / approx_chars > self.EXPECTED_RATIO - and self.zeros_at_mod[1] / approx_chars > self.EXPECTED_RATIO - and self.zeros_at_mod[2] / approx_chars > self.EXPECTED_RATIO - and self.nonzeros_at_mod[3] / approx_chars > self.EXPECTED_RATIO - and not self.invalid_utf32be - ) - - def is_likely_utf32le(self): - approx_chars = self.approx_32bit_chars() - return approx_chars >= self.MIN_CHARS_FOR_DETECTION and ( - self.nonzeros_at_mod[0] / approx_chars > self.EXPECTED_RATIO - and self.zeros_at_mod[1] / approx_chars > self.EXPECTED_RATIO - and self.zeros_at_mod[2] / approx_chars > self.EXPECTED_RATIO - and self.zeros_at_mod[3] / approx_chars > self.EXPECTED_RATIO - and not self.invalid_utf32le - ) - - def is_likely_utf16be(self): - approx_chars = self.approx_16bit_chars() - return approx_chars >= self.MIN_CHARS_FOR_DETECTION and ( - (self.nonzeros_at_mod[1] + self.nonzeros_at_mod[3]) / approx_chars - > self.EXPECTED_RATIO - and (self.zeros_at_mod[0] + self.zeros_at_mod[2]) / approx_chars - > self.EXPECTED_RATIO - and not self.invalid_utf16be - ) - - def is_likely_utf16le(self): - approx_chars = self.approx_16bit_chars() - return approx_chars >= self.MIN_CHARS_FOR_DETECTION and ( - (self.nonzeros_at_mod[0] + self.nonzeros_at_mod[2]) / approx_chars - > self.EXPECTED_RATIO - and (self.zeros_at_mod[1] + self.zeros_at_mod[3]) / approx_chars - > self.EXPECTED_RATIO - and not self.invalid_utf16le - ) - - def validate_utf32_characters(self, quad): - """ - Validate if the quad of bytes is valid UTF-32. - - UTF-32 is valid in the range 0x00000000 - 0x0010FFFF - excluding 0x0000D800 - 0x0000DFFF - - https://en.wikipedia.org/wiki/UTF-32 - """ - if ( - quad[0] != 0 - or quad[1] > 0x10 - or (quad[0] == 0 and quad[1] == 0 and 0xD8 <= quad[2] <= 0xDF) - ): - self.invalid_utf32be = True - if ( - quad[3] != 0 - or quad[2] > 0x10 - or (quad[3] == 0 and quad[2] == 0 and 0xD8 <= quad[1] <= 0xDF) - ): - self.invalid_utf32le = True - - def validate_utf16_characters(self, pair): - """ - Validate if the pair of bytes is valid UTF-16. - - UTF-16 is valid in the range 0x0000 - 0xFFFF excluding 0xD800 - 0xFFFF - with an exception for surrogate pairs, which must be in the range - 0xD800-0xDBFF followed by 0xDC00-0xDFFF - - https://en.wikipedia.org/wiki/UTF-16 - """ - if not self.first_half_surrogate_pair_detected_16be: - if 0xD8 <= pair[0] <= 0xDB: - self.first_half_surrogate_pair_detected_16be = True - elif 0xDC <= pair[0] <= 0xDF: - self.invalid_utf16be = True - else: - if 0xDC <= pair[0] <= 0xDF: - self.first_half_surrogate_pair_detected_16be = False - else: - self.invalid_utf16be = True - - if not self.first_half_surrogate_pair_detected_16le: - if 0xD8 <= pair[1] <= 0xDB: - self.first_half_surrogate_pair_detected_16le = True - elif 0xDC <= pair[1] <= 0xDF: - self.invalid_utf16le = True - else: - if 0xDC <= pair[1] <= 0xDF: - self.first_half_surrogate_pair_detected_16le = False - else: - self.invalid_utf16le = True - - def feed(self, byte_str): - for c in byte_str: - mod4 = self.position % 4 - self.quad[mod4] = c - if mod4 == 3: - self.validate_utf32_characters(self.quad) - self.validate_utf16_characters(self.quad[0:2]) - self.validate_utf16_characters(self.quad[2:4]) - if c == 0: - self.zeros_at_mod[mod4] += 1 - else: - self.nonzeros_at_mod[mod4] += 1 - self.position += 1 - return self.state - - @property - def state(self): - if self._state in {ProbingState.NOT_ME, ProbingState.FOUND_IT}: - # terminal, decided states - return self._state - if self.get_confidence() > 0.80: - self._state = ProbingState.FOUND_IT - elif self.position > 4 * 1024: - # if we get to 4kb into the file, and we can't conclude it's UTF, - # let's give up - self._state = ProbingState.NOT_ME - return self._state - - def get_confidence(self): - return ( - 0.85 - if ( - self.is_likely_utf16le() - or self.is_likely_utf16be() - or self.is_likely_utf32le() - or self.is_likely_utf32be() - ) - else 0.00 - ) diff --git a/spaces/tmaham/DS-Fusion-Express/notebook_helpers.py b/spaces/tmaham/DS-Fusion-Express/notebook_helpers.py deleted file mode 100644 index 5d0ebd7e1f8095053f34b1d7652b55d165097f0e..0000000000000000000000000000000000000000 --- a/spaces/tmaham/DS-Fusion-Express/notebook_helpers.py +++ /dev/null @@ -1,270 +0,0 @@ -from torchvision.datasets.utils import download_url -from ldm.util import instantiate_from_config -import torch -import os -# todo ? -from google.colab import files -from IPython.display import Image as ipyimg -import ipywidgets as widgets -from PIL import Image -from numpy import asarray -from einops import rearrange, repeat -import torch, torchvision -from ldm.models.diffusion.ddim import DDIMSampler -from ldm.util import ismap -import time -from omegaconf import OmegaConf - - -def download_models(mode): - - if mode == "superresolution": - # this is the small bsr light model - url_conf = 'https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1' - url_ckpt = 'https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1' - - path_conf = 'logs/diffusion/superresolution_bsr/configs/project.yaml' - path_ckpt = 'logs/diffusion/superresolution_bsr/checkpoints/last.ckpt' - - download_url(url_conf, path_conf) - download_url(url_ckpt, path_ckpt) - - path_conf = path_conf + '/?dl=1' # fix it - path_ckpt = path_ckpt + '/?dl=1' # fix it - return path_conf, path_ckpt - - else: - raise NotImplementedError - - -def load_model_from_config(config, ckpt): - print(f"Loading model from {ckpt}") - pl_sd = torch.load(ckpt, map_location="cpu") - global_step = pl_sd["global_step"] - sd = pl_sd["state_dict"] - model = instantiate_from_config(config.model) - m, u = model.load_state_dict(sd, strict=False) - model.cuda() - model.eval() - return {"model": model}, global_step - - -def get_model(mode): - path_conf, path_ckpt = download_models(mode) - config = OmegaConf.load(path_conf) - model, step = load_model_from_config(config, path_ckpt) - return model - - -def get_custom_cond(mode): - dest = "data/example_conditioning" - - if mode == "superresolution": - uploaded_img = files.upload() - filename = next(iter(uploaded_img)) - name, filetype = filename.split(".") # todo assumes just one dot in name ! - os.rename(f"{filename}", f"{dest}/{mode}/custom_{name}.{filetype}") - - elif mode == "text_conditional": - w = widgets.Text(value='A cake with cream!', disabled=True) - display(w) - - with open(f"{dest}/{mode}/custom_{w.value[:20]}.txt", 'w') as f: - f.write(w.value) - - elif mode == "class_conditional": - w = widgets.IntSlider(min=0, max=1000) - display(w) - with open(f"{dest}/{mode}/custom.txt", 'w') as f: - f.write(w.value) - - else: - raise NotImplementedError(f"cond not implemented for mode{mode}") - - -def get_cond_options(mode): - path = "data/example_conditioning" - path = os.path.join(path, mode) - onlyfiles = [f for f in sorted(os.listdir(path))] - return path, onlyfiles - - -def select_cond_path(mode): - path = "data/example_conditioning" # todo - path = os.path.join(path, mode) - onlyfiles = [f for f in sorted(os.listdir(path))] - - selected = widgets.RadioButtons( - options=onlyfiles, - description='Select conditioning:', - disabled=False - ) - display(selected) - selected_path = os.path.join(path, selected.value) - return selected_path - - -def get_cond(mode, selected_path): - example = dict() - if mode == "superresolution": - up_f = 4 - visualize_cond_img(selected_path) - - c = Image.open(selected_path) - c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) - c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], antialias=True) - c_up = rearrange(c_up, '1 c h w -> 1 h w c') - c = rearrange(c, '1 c h w -> 1 h w c') - c = 2. * c - 1. - - c = c.to(torch.device("cuda")) - example["LR_image"] = c - example["image"] = c_up - - return example - - -def visualize_cond_img(path): - display(ipyimg(filename=path)) - - -def run(model, selected_path, task, custom_steps, resize_enabled=False, classifier_ckpt=None, global_step=None): - - example = get_cond(task, selected_path) - - save_intermediate_vid = False - n_runs = 1 - masked = False - guider = None - ckwargs = None - mode = 'ddim' - ddim_use_x0_pred = False - temperature = 1. - eta = 1. - make_progrow = True - custom_shape = None - - height, width = example["image"].shape[1:3] - split_input = height >= 128 and width >= 128 - - if split_input: - ks = 128 - stride = 64 - vqf = 4 # - model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride), - "vqf": vqf, - "patch_distributed_vq": True, - "tie_braker": False, - "clip_max_weight": 0.5, - "clip_min_weight": 0.01, - "clip_max_tie_weight": 0.5, - "clip_min_tie_weight": 0.01} - else: - if hasattr(model, "split_input_params"): - delattr(model, "split_input_params") - - invert_mask = False - - x_T = None - for n in range(n_runs): - if custom_shape is not None: - x_T = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) - x_T = repeat(x_T, '1 c h w -> b c h w', b=custom_shape[0]) - - logs = make_convolutional_sample(example, model, - mode=mode, custom_steps=custom_steps, - eta=eta, swap_mode=False , masked=masked, - invert_mask=invert_mask, quantize_x0=False, - custom_schedule=None, decode_interval=10, - resize_enabled=resize_enabled, custom_shape=custom_shape, - temperature=temperature, noise_dropout=0., - corrector=guider, corrector_kwargs=ckwargs, x_T=x_T, save_intermediate_vid=save_intermediate_vid, - make_progrow=make_progrow,ddim_use_x0_pred=ddim_use_x0_pred - ) - return logs - - -@torch.no_grad() -def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None, - mask=None, x0=None, quantize_x0=False, img_callback=None, - temperature=1., noise_dropout=0., score_corrector=None, - corrector_kwargs=None, x_T=None, log_every_t=None - ): - - ddim = DDIMSampler(model) - bs = shape[0] # dont know where this comes from but wayne - shape = shape[1:] # cut batch dim - print(f"Sampling with eta = {eta}; steps: {steps}") - samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback, - normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta, - mask=mask, x0=x0, temperature=temperature, verbose=False, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, x_T=x_T) - - return samples, intermediates - - -@torch.no_grad() -def make_convolutional_sample(batch, model, mode="vanilla", custom_steps=None, eta=1.0, swap_mode=False, masked=False, - invert_mask=True, quantize_x0=False, custom_schedule=None, decode_interval=1000, - resize_enabled=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, - corrector_kwargs=None, x_T=None, save_intermediate_vid=False, make_progrow=True,ddim_use_x0_pred=False): - log = dict() - - z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, - return_first_stage_outputs=True, - force_c_encode=not (hasattr(model, 'split_input_params') - and model.cond_stage_key == 'coordinates_bbox'), - return_original_cond=True) - - log_every_t = 1 if save_intermediate_vid else None - - if custom_shape is not None: - z = torch.randn(custom_shape) - print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}") - - z0 = None - - log["input"] = x - log["reconstruction"] = xrec - - if ismap(xc): - log["original_conditioning"] = model.to_rgb(xc) - if hasattr(model, 'cond_stage_key'): - log[model.cond_stage_key] = model.to_rgb(xc) - - else: - log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x) - if model.cond_stage_model: - log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x) - if model.cond_stage_key =='class_label': - log[model.cond_stage_key] = xc[model.cond_stage_key] - - with model.ema_scope("Plotting"): - t0 = time.time() - img_cb = None - - sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape, - eta=eta, - quantize_x0=quantize_x0, img_callback=img_cb, mask=None, x0=z0, - temperature=temperature, noise_dropout=noise_dropout, - score_corrector=corrector, corrector_kwargs=corrector_kwargs, - x_T=x_T, log_every_t=log_every_t) - t1 = time.time() - - if ddim_use_x0_pred: - sample = intermediates['pred_x0'][-1] - - x_sample = model.decode_first_stage(sample) - - try: - x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) - log["sample_noquant"] = x_sample_noquant - log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) - except: - pass - - log["sample"] = x_sample - log["time"] = t1 - t0 - - return log \ No newline at end of file diff --git a/spaces/tom-beer/hotel-recommender/README.md b/spaces/tom-beer/hotel-recommender/README.md deleted file mode 100644 index 987d694b2fd15ff63d1749956a2eca06f2460e94..0000000000000000000000000000000000000000 --- a/spaces/tom-beer/hotel-recommender/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Hotel Recommender -emoji: 👁 -colorFrom: pink -colorTo: green -sdk: gradio -sdk_version: 3.34.0 -app_file: app.py -pinned: false -license: apache-2.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/tomofi/MMOCR/configs/_base_/schedules/schedule_sgd_160e.py b/spaces/tomofi/MMOCR/configs/_base_/schedules/schedule_sgd_160e.py deleted file mode 100644 index 0958701a28ad8802a65caf0bb99cef02b0b021c5..0000000000000000000000000000000000000000 --- a/spaces/tomofi/MMOCR/configs/_base_/schedules/schedule_sgd_160e.py +++ /dev/null @@ -1,11 +0,0 @@ -# optimizer -optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001) -optimizer_config = dict(grad_clip=None) -# learning policy -lr_config = dict( - policy='step', - warmup='linear', - warmup_iters=500, - warmup_ratio=0.001, - step=[80, 128]) -total_epochs = 160 diff --git a/spaces/tomofi/MMOCR/tests/test_apis/test_single_gpu_test.py b/spaces/tomofi/MMOCR/tests/test_apis/test_single_gpu_test.py deleted file mode 100644 index 64fd99fe92187aedd9ab2a2dc574e693f504191b..0000000000000000000000000000000000000000 --- a/spaces/tomofi/MMOCR/tests/test_apis/test_single_gpu_test.py +++ /dev/null @@ -1,205 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import copy -import json -import os -import os.path as osp -import tempfile - -import mmcv -import numpy as np -import pytest -import torch -from mmcv import Config -from mmcv.parallel import MMDataParallel - -from mmocr.apis.test import single_gpu_test -from mmocr.datasets import build_dataloader, build_dataset -from mmocr.models import build_detector -from mmocr.utils import check_argument, list_to_file, revert_sync_batchnorm - - -def build_model(cfg): - model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg')) - model = revert_sync_batchnorm(model) - model = MMDataParallel(model) - - return model - - -def generate_sample_dataloader(cfg, curr_dir, img_prefix='', ann_file=''): - must_keys = ['img_norm_cfg', 'ori_filename', 'img_shape', 'ori_shape'] - test_pipeline = cfg.data.test.pipeline - for key in must_keys: - if test_pipeline[1].type == 'MultiRotateAugOCR': - collect_pipeline = test_pipeline[1]['transforms'][-1] - else: - collect_pipeline = test_pipeline[-1] - if 'meta_keys' not in collect_pipeline: - continue - collect_pipeline['meta_keys'].append(key) - - img_prefix = osp.join(curr_dir, img_prefix) - ann_file = osp.join(curr_dir, ann_file) - test = copy.deepcopy(cfg.data.test.datasets[0]) - test.img_prefix = img_prefix - test.ann_file = ann_file - cfg.data.workers_per_gpu = 0 - cfg.data.test.datasets = [test] - dataset = build_dataset(cfg.data.test) - - loader_cfg = { - **dict((k, cfg.data[k]) for k in [ - 'workers_per_gpu', 'samples_per_gpu' - ] if k in cfg.data) - } - test_loader_cfg = { - **loader_cfg, - **dict(shuffle=False, drop_last=False), - **cfg.data.get('test_dataloader', {}) - } - - data_loader = build_dataloader(dataset, **test_loader_cfg) - - return data_loader - - -@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') -@pytest.mark.parametrize('cfg_file', [ - '../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py', - '../configs/textrecog/crnn/crnn_academic_dataset.py', - '../configs/textrecog/seg/seg_r31_1by16_fpnocr_academic.py' -]) -def test_single_gpu_test_recog(cfg_file): - curr_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) - config_file = os.path.join(curr_dir, cfg_file) - cfg = Config.fromfile(config_file) - - model = build_model(cfg) - img_prefix = 'data/ocr_toy_dataset/imgs' - ann_file = 'data/ocr_toy_dataset/label.txt' - data_loader = generate_sample_dataloader(cfg, curr_dir, img_prefix, - ann_file) - - with tempfile.TemporaryDirectory() as tmpdirname: - out_dir = osp.join(tmpdirname, 'tmp') - results = single_gpu_test(model, data_loader, out_dir=out_dir) - assert check_argument.is_type_list(results, dict) - - -@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') -@pytest.mark.parametrize( - 'cfg_file', - ['../configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py']) -def test_single_gpu_test_det(cfg_file): - curr_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) - config_file = os.path.join(curr_dir, cfg_file) - cfg = Config.fromfile(config_file) - - model = build_model(cfg) - img_prefix = 'data/toy_dataset/imgs' - ann_file = 'data/toy_dataset/instances_test.json' - data_loader = generate_sample_dataloader(cfg, curr_dir, img_prefix, - ann_file) - - with tempfile.TemporaryDirectory() as tmpdirname: - out_dir = osp.join(tmpdirname, 'tmp') - results = single_gpu_test(model, data_loader, out_dir=out_dir) - assert check_argument.is_type_list(results, dict) - - -def gene_sdmgr_model_dataloader(cfg, dirname, curr_dir, empty_img=False): - json_obj = { - 'file_name': - '1.jpg', - 'height': - 348, - 'width': - 348, - 'annotations': [{ - 'box': [114.0, 19.0, 230.0, 19.0, 230.0, 1.0, 114.0, 1.0], - 'text': - 'CHOEUN', - 'label': - 1 - }] - } - ann_file = osp.join(dirname, 'test.txt') - list_to_file(ann_file, [json.dumps(json_obj, ensure_ascii=False)]) - - if not empty_img: - img = np.ones((348, 348, 3), dtype=np.uint8) - img_file = osp.join(dirname, '1.jpg') - mmcv.imwrite(img, img_file) - - test = copy.deepcopy(cfg.data.test) - test.ann_file = ann_file - test.img_prefix = dirname - test.dict_file = osp.join(curr_dir, 'data/kie_toy_dataset/dict.txt') - cfg.data.workers_per_gpu = 1 - cfg.data.test = test - cfg.model.class_list = osp.join(curr_dir, - 'data/kie_toy_dataset/class_list.txt') - - dataset = build_dataset(cfg.data.test) - - loader_cfg = { - **dict((k, cfg.data[k]) for k in [ - 'workers_per_gpu', 'samples_per_gpu' - ] if k in cfg.data) - } - test_loader_cfg = { - **loader_cfg, - **dict(shuffle=False, drop_last=False), - **cfg.data.get('test_dataloader', {}) - } - - data_loader = build_dataloader(dataset, **test_loader_cfg) - model = build_model(cfg) - - return model, data_loader - - -@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') -@pytest.mark.parametrize( - 'cfg_file', ['../configs/kie/sdmgr/sdmgr_unet16_60e_wildreceipt.py']) -def test_single_gpu_test_kie(cfg_file): - curr_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) - config_file = os.path.join(curr_dir, cfg_file) - cfg = Config.fromfile(config_file) - - with tempfile.TemporaryDirectory() as tmpdirname: - out_dir = osp.join(tmpdirname, 'tmp') - model, data_loader = gene_sdmgr_model_dataloader( - cfg, out_dir, curr_dir) - results = single_gpu_test( - model, data_loader, out_dir=out_dir, is_kie=True) - assert check_argument.is_type_list(results, dict) - - -@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda') -@pytest.mark.parametrize( - 'cfg_file', ['../configs/kie/sdmgr/sdmgr_novisual_60e_wildreceipt.py']) -def test_single_gpu_test_kie_novisual(cfg_file): - curr_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) - config_file = os.path.join(curr_dir, cfg_file) - cfg = Config.fromfile(config_file) - meta_keys = list(cfg.data.test.pipeline[-1]['meta_keys']) - must_keys = ['img_norm_cfg', 'ori_filename', 'img_shape'] - for key in must_keys: - meta_keys.append(key) - - cfg.data.test.pipeline[-1]['meta_keys'] = tuple(meta_keys) - - with tempfile.TemporaryDirectory() as tmpdirname: - out_dir = osp.join(tmpdirname, 'tmp') - model, data_loader = gene_sdmgr_model_dataloader( - cfg, out_dir, curr_dir, empty_img=True) - results = single_gpu_test( - model, data_loader, out_dir=out_dir, is_kie=True) - assert check_argument.is_type_list(results, dict) - - model, data_loader = gene_sdmgr_model_dataloader( - cfg, out_dir, curr_dir) - results = single_gpu_test( - model, data_loader, out_dir=out_dir, is_kie=True) - assert check_argument.is_type_list(results, dict) diff --git a/spaces/tomofi/NDLOCR/src/ndl_layout/mmdetection/configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py b/spaces/tomofi/NDLOCR/src/ndl_layout/mmdetection/configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py deleted file mode 100644 index 1b695f0e19049dc91b7656d7684df151896b7727..0000000000000000000000000000000000000000 --- a/spaces/tomofi/NDLOCR/src/ndl_layout/mmdetection/configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py +++ /dev/null @@ -1,12 +0,0 @@ -_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' -model = dict( - roi_head=dict( - bbox_roi_extractor=dict( - type='SingleRoIExtractor', - roi_layer=dict( - _delete_=True, - type='DeformRoIPoolPack', - output_size=7, - output_channels=256), - out_channels=256, - featmap_strides=[4, 8, 16, 32]))) diff --git a/spaces/touhou-ai-experimental/research-paper/style.css b/spaces/touhou-ai-experimental/research-paper/style.css deleted file mode 100644 index edbbf951b476dc095ee32990c0e278893b365a5f..0000000000000000000000000000000000000000 --- a/spaces/touhou-ai-experimental/research-paper/style.css +++ /dev/null @@ -1,133 +0,0 @@ -/* Reset some default styling */ -body, h1, h2, p { - margin: 0; - padding: 0; -} - -body { - font-family: Arial, sans-serif; - background-color: #121212; - color: #FFFFFF; -} - -.header-title { - font-family: 'Montserrat', sans-serif; - font-size: 24px; - text-align: center; - color: #FF4500; /* Original Orange-Red Color */ - margin: 0; - padding: 20px 0; -} -.header-subtitle { - font-size: 16px; - text-align: center; - color: #FF4500; - margin: 10px 0; -} - -.highlight-orange { - color: #EE82EE; /* Original Orange-Red Color */ -} - -.highlight-violate { - color: #EE82EE; /* Violate Color */ -} -header { - display: flex; - justify-content: space-between; - align-items: center; - background-color: #FF4500; /* Original Orange-Red Color */ - padding: 10px 20px; -} - -nav ul { - list-style-type: none; - display: flex; -} - -nav li { - margin-right: 20px; -} - -nav a { - text-decoration: none; - color: #FFFFFF; -} - -section { - background-color: #1E1E1E; - border: 2px solid #FF4500; - border-radius: 10px; - padding: 20px; - margin: 20px; -} - -section:hover { - border-color: #EE82EE; -} - -h2 { - color: #FF4500; - margin-bottom: 10px; -} - -.icon { - margin-right: 10px; -} - -.footer { - text-align: center; - margin-top: 40px; -} - -.buttons { - display: flex; - justify-content: center; - align-items: center; - margin: 20px auto; -} - -.button { - background-color: #FF4500; - color: #121212; - padding: 8px 16px; - border-radius: 10px; - text-decoration: none; - font-weight: bold; - transition: background-color 0.3s; - margin-right: 10px; -} - -.button:last-child { - margin-right: 0; -} - -.button:hover { - background-color: #EE82EE; -} - -/* Media Queries for Responsive Design */ -@media (max-width: 768px) { - header { - padding: 10px; - } - - nav ul { - flex-direction: row; - } - - nav li { - margin-right: 10px; - } - - .buttons { - flex-direction: column; - align-items: center; - margin: 10px auto; - } - - .button { - margin-right: 0; - margin-bottom: 10px; - } -} diff --git a/spaces/triggah61/chingu-music/audiocraft/modules/__init__.py b/spaces/triggah61/chingu-music/audiocraft/modules/__init__.py deleted file mode 100644 index 81ba30f6466ff91b90490a4fb92f7d3d0d00144d..0000000000000000000000000000000000000000 --- a/spaces/triggah61/chingu-music/audiocraft/modules/__init__.py +++ /dev/null @@ -1,20 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -# flake8: noqa -from .conv import ( - NormConv1d, - NormConv2d, - NormConvTranspose1d, - NormConvTranspose2d, - StreamableConv1d, - StreamableConvTranspose1d, - pad_for_conv1d, - pad1d, - unpad1d, -) -from .lstm import StreamableLSTM -from .seanet import SEANetEncoder, SEANetDecoder diff --git a/spaces/triggah61/chingu-music/audiocraft/modules/streaming.py b/spaces/triggah61/chingu-music/audiocraft/modules/streaming.py deleted file mode 100644 index fdbdf5e90fc0c6560873d66bf273460b38e5ed7e..0000000000000000000000000000000000000000 --- a/spaces/triggah61/chingu-music/audiocraft/modules/streaming.py +++ /dev/null @@ -1,135 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -""" -Streaming module API that should be implemented by all Streaming components, -""" - -from contextlib import contextmanager -import typing as tp -from torch import nn -import torch - - -State = tp.Dict[str, torch.Tensor] - - -class StreamingModule(nn.Module): - """Common API for streaming components. - - Each streaming component has a streaming state, which is just a dict[str, Tensor]. - By convention, the first dim of each tensor must be the batch size. - Don't use dots in the key names, as this would clash with submodules - (like in state_dict). - - If `self._is_streaming` is True, the component should use and remember - the proper state inside `self._streaming_state`. - - To set a streaming component in streaming state, use - - with module.streaming(): - ... - - This will automatically reset the streaming state when exiting the context manager. - This also automatically propagates to all streaming children module. - - Some module might also implement the `StreamingModule.flush` method, although - this one is trickier, as all parents module must be StreamingModule and implement - it as well for it to work properly. See `StreamingSequential` after. - """ - def __init__(self) -> None: - super().__init__() - self._streaming_state: State = {} - self._is_streaming = False - - def _apply_named_streaming(self, fn: tp.Any): - for name, module in self.named_modules(): - if isinstance(module, StreamingModule): - fn(name, module) - - def _set_streaming(self, streaming: bool): - def _set_streaming(name, module): - module._is_streaming = streaming - self._apply_named_streaming(_set_streaming) - - @contextmanager - def streaming(self): - """Context manager to enter streaming mode. Reset streaming state on exit. - """ - self._set_streaming(True) - try: - yield - finally: - self._set_streaming(False) - self.reset_streaming() - - def reset_streaming(self): - """Reset the streaming state. - """ - def _reset(name: str, module: StreamingModule): - module._streaming_state.clear() - - self._apply_named_streaming(_reset) - - def get_streaming_state(self) -> State: - """Return the streaming state, including that of sub-modules. - """ - state: State = {} - - def _add(name: str, module: StreamingModule): - if name: - name += "." - for key, value in module._streaming_state.items(): - state[name + key] = value - - self._apply_named_streaming(_add) - return state - - def set_streaming_state(self, state: State): - """Set the streaming state, including that of sub-modules. - """ - state = dict(state) - - def _set(name: str, module: StreamingModule): - if name: - name += "." - module._streaming_state.clear() - for key, value in list(state.items()): - # complexity is not ideal here, but probably fine. - if key.startswith(name): - local_key = key[len(name):] - if '.' not in local_key: - module._streaming_state[local_key] = value - del state[key] - - self._apply_named_streaming(_set) - assert len(state) == 0, list(state.keys()) - - def flush(self, x: tp.Optional[torch.Tensor] = None): - """Flush any remaining outputs that were waiting for completion. - Typically, for convolutions, this will add the final padding - and process the last buffer. - - This should take an optional argument `x`, which will be provided - if a module before this one in the streaming pipeline has already - spitted out a flushed out buffer. - """ - if x is None: - return None - else: - return self(x) - - -class StreamingSequential(StreamingModule, nn.Sequential): - """A streaming compatible alternative of `nn.Sequential`. - """ - def flush(self, x: tp.Optional[torch.Tensor] = None): - for module in self: - if isinstance(module, StreamingModule): - x = module.flush(x) - elif x is not None: - x = module(x) - return x diff --git a/spaces/tsi-org/LLaVA/llava/model/multimodal_projector/builder.py b/spaces/tsi-org/LLaVA/llava/model/multimodal_projector/builder.py deleted file mode 100644 index 31cd4f48e6055cd6d00a162af30b1c8139e26b57..0000000000000000000000000000000000000000 --- a/spaces/tsi-org/LLaVA/llava/model/multimodal_projector/builder.py +++ /dev/null @@ -1,51 +0,0 @@ -import torch -import torch.nn as nn -import re - - -class IdentityMap(nn.Module): - def __init__(self): - super().__init__() - - def forward(self, x, *args, **kwargs): - return x - - @property - def config(self): - return {"mm_projector_type": 'identity'} - - -class SimpleResBlock(nn.Module): - def __init__(self, channels): - super().__init__() - self.pre_norm = nn.LayerNorm(channels) - - self.proj = nn.Sequential( - nn.Linear(channels, channels), - nn.GELU(), - nn.Linear(channels, channels) - ) - def forward(self, x): - x = self.pre_norm(x) - return x + self.proj(x) - - -def build_vision_projector(config, delay_load=False, **kwargs): - projector_type = getattr(config, 'mm_projector_type', 'linear') - - if projector_type == 'linear': - return nn.Linear(config.mm_hidden_size, config.hidden_size) - - mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) - if mlp_gelu_match: - mlp_depth = int(mlp_gelu_match.group(1)) - modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] - for _ in range(1, mlp_depth): - modules.append(nn.GELU()) - modules.append(nn.Linear(config.hidden_size, config.hidden_size)) - return nn.Sequential(*modules) - - if projector_type == 'identity': - return IdentityMap() - - raise ValueError(f'Unknown projector type: {projector_type}') diff --git a/spaces/twdac/BuChengFangYuan-ChineseJapaneseTranslation/app/nlg_utils.py b/spaces/twdac/BuChengFangYuan-ChineseJapaneseTranslation/app/nlg_utils.py deleted file mode 100644 index 6c37a835847feee3728c8691a299a3391235aa6c..0000000000000000000000000000000000000000 --- a/spaces/twdac/BuChengFangYuan-ChineseJapaneseTranslation/app/nlg_utils.py +++ /dev/null @@ -1,65 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from typing import Union - - -@torch.jit.script -def nlg_softmax_prob(logit: torch.Tensor, temperature:float=1.): - assert logit.ndim == 1 and logit.shape[0] >= 1, 'Error! Invalid logit shape.' - # do temperature - probs = logit.div(temperature).softmax(dim=0) - return probs - - -@torch.jit.script -def nlg_prob_decay(prob: torch.Tensor, before_tokens: torch.Tensor, watch_len: int=10): - ''' - 概率衰减,如果多次采样到同一个词,则对已有词进行概率衰减 - :param prob: 当前 token 的概率 - :param before_tokens: 之前生成的 token id. - :param max_watch_len: 最大观察长度 - :param copy: 是否复制 - :return: - ''' - assert prob.ndim == 1, 'Error! Invalid now_token_probs shape.' - assert before_tokens.ndim == 1, 'Error! Invalid before_tokens shape.' - assert watch_len > 0, 'Error! Invalid max_watch_len value.' - - uq_ids, uq_counts = torch.unique(before_tokens[-watch_len:], sorted=False, return_counts=True) - prob[uq_ids] = prob[uq_ids] * (1 - uq_counts.type_as(prob) / watch_len) - return prob - - -@torch.jit.script -def nlg_sample(prob: torch.Tensor, top_k:int=3, top_p:float=0.9): - assert prob.ndim == 1 and prob.shape[0] >= 1, 'Error! Invalid prob shape.' - - # do top_k - topk_value, topk_idx = torch.topk(prob, top_k) - # do top_p - bools = torch.cumsum(topk_value, 0) <= top_p - # 与自己右移一位做 或 运算,可以额外包含多一个临界结果,从而使分数能大于等于top_p所需分数 - torch.logical_or(bools, torch.roll(bools, 1, 0), out=bools) - # 保证至少有一个候选对象 - bools[0] = True - topk_value = topk_value[bools] - topk_idx = topk_idx[bools] - # random choice word idx - topk_value.clamp_min_(1e-8) - word_idx = topk_idx[torch.multinomial(topk_value, 1)] - - return word_idx - - -# @torch.jit.script -# def check_early_stop(logit: torch.Tensor, n_gram=1, max_repeat): -# ''' -# 检查是否要早期停止,避免无限重复同一个符号 -# :param logit: -# :param top_k: -# :param top_p: -# :param temperature: -# :return: -# ''' -# assert logit.ndim == 1, 'Error! Invalid logit shape.' diff --git a/spaces/ucalyptus/PTI/configs/hyperparameters.py b/spaces/ucalyptus/PTI/configs/hyperparameters.py deleted file mode 100644 index ab50db62b29ef29eeb128663e4f7ff737df81ca3..0000000000000000000000000000000000000000 --- a/spaces/ucalyptus/PTI/configs/hyperparameters.py +++ /dev/null @@ -1,28 +0,0 @@ -## Architechture -lpips_type = 'alex' -first_inv_type = 'w' -optim_type = 'adam' - -## Locality regularization -latent_ball_num_of_samples = 1 -locality_regularization_interval = 1 -use_locality_regularization = False -regulizer_l2_lambda = 0.1 -regulizer_lpips_lambda = 0.1 -regulizer_alpha = 30 - -## Loss -pt_l2_lambda = 1 -pt_lpips_lambda = 1 - -## Steps -LPIPS_value_threshold = 0.06 -max_pti_steps = 350 -first_inv_steps = 450 -max_images_to_invert = 300 - -## Optimization -pti_learning_rate = 3e-4 -first_inv_lr = 5e-3 -train_batch_size = 1 -use_last_w_pivots = False diff --git a/spaces/unidiffuser-testing/unidiffuser-testing/libs/timm.py b/spaces/unidiffuser-testing/unidiffuser-testing/libs/timm.py deleted file mode 100644 index 943a227f8e057b048e2b2dcb3a16a00f9c7c7d53..0000000000000000000000000000000000000000 --- a/spaces/unidiffuser-testing/unidiffuser-testing/libs/timm.py +++ /dev/null @@ -1,112 +0,0 @@ -# code from timm 0.3.2 -import torch -import torch.nn as nn -import math -import warnings - - -def _no_grad_trunc_normal_(tensor, mean, std, a, b): - # Cut & paste from PyTorch official master until it's in a few official releases - RW - # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf - def norm_cdf(x): - # Computes standard normal cumulative distribution function - return (1. + math.erf(x / math.sqrt(2.))) / 2. - - if (mean < a - 2 * std) or (mean > b + 2 * std): - warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " - "The distribution of values may be incorrect.", - stacklevel=2) - - with torch.no_grad(): - # Values are generated by using a truncated uniform distribution and - # then using the inverse CDF for the normal distribution. - # Get upper and lower cdf values - l = norm_cdf((a - mean) / std) - u = norm_cdf((b - mean) / std) - - # Uniformly fill tensor with values from [l, u], then translate to - # [2l-1, 2u-1]. - tensor.uniform_(2 * l - 1, 2 * u - 1) - - # Use inverse cdf transform for normal distribution to get truncated - # standard normal - tensor.erfinv_() - - # Transform to proper mean, std - tensor.mul_(std * math.sqrt(2.)) - tensor.add_(mean) - - # Clamp to ensure it's in the proper range - tensor.clamp_(min=a, max=b) - return tensor - - -def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): - # type: (Tensor, float, float, float, float) -> Tensor - r"""Fills the input Tensor with values drawn from a truncated - normal distribution. The values are effectively drawn from the - normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` - with values outside :math:`[a, b]` redrawn until they are within - the bounds. The method used for generating the random values works - best when :math:`a \leq \text{mean} \leq b`. - Args: - tensor: an n-dimensional `torch.Tensor` - mean: the mean of the normal distribution - std: the standard deviation of the normal distribution - a: the minimum cutoff value - b: the maximum cutoff value - Examples: - >>> w = torch.empty(3, 5) - >>> nn.init.trunc_normal_(w) - """ - return _no_grad_trunc_normal_(tensor, mean, std, a, b) - - -def drop_path(x, drop_prob: float = 0., training: bool = False): - """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). - - This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, - the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... - See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for - changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use - 'survival rate' as the argument. - - """ - if drop_prob == 0. or not training: - return x - keep_prob = 1 - drop_prob - shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets - random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) - random_tensor.floor_() # binarize - output = x.div(keep_prob) * random_tensor - return output - - -class DropPath(nn.Module): - """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). - """ - def __init__(self, drop_prob=None): - super(DropPath, self).__init__() - self.drop_prob = drop_prob - - def forward(self, x): - return drop_path(x, self.drop_prob, self.training) - - -class Mlp(nn.Module): - def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): - super().__init__() - out_features = out_features or in_features - hidden_features = hidden_features or in_features - self.fc1 = nn.Linear(in_features, hidden_features) - self.act = act_layer() - self.fc2 = nn.Linear(hidden_features, out_features) - self.drop = nn.Dropout(drop) - - def forward(self, x): - x = self.fc1(x) - x = self.act(x) - x = self.drop(x) - x = self.fc2(x) - x = self.drop(x) - return x diff --git a/spaces/vaibhavarduino/anime-plus/op/fused_act.py b/spaces/vaibhavarduino/anime-plus/op/fused_act.py deleted file mode 100644 index 8459d510d7b79684779dfe47f5b46d81c94b4a4d..0000000000000000000000000000000000000000 --- a/spaces/vaibhavarduino/anime-plus/op/fused_act.py +++ /dev/null @@ -1,86 +0,0 @@ -import os - -import torch -from torch import nn -from torch.autograd import Function -from torch.utils.cpp_extension import load - - -module_path = os.path.dirname(__file__) -fused = load( - 'fused', - sources=[ - os.path.join(module_path, 'fused_bias_act.cpp'), - os.path.join(module_path, 'fused_bias_act_kernel.cu'), - ], -) - - -class FusedLeakyReLUFunctionBackward(Function): - @staticmethod - def forward(ctx, grad_output, out, negative_slope, scale): - ctx.save_for_backward(out) - ctx.negative_slope = negative_slope - ctx.scale = scale - - empty = grad_output.new_empty(0) - - grad_input = fused.fused_bias_act( - grad_output, empty, out, 3, 1, negative_slope, scale - ) - - dim = [0] - - if grad_input.ndim > 2: - dim += list(range(2, grad_input.ndim)) - - grad_bias = grad_input.sum(dim).detach() - - return grad_input, grad_bias - - @staticmethod - def backward(ctx, gradgrad_input, gradgrad_bias): - out, = ctx.saved_tensors - gradgrad_out = fused.fused_bias_act( - gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale - ) - - return gradgrad_out, None, None, None - - -class FusedLeakyReLUFunction(Function): - @staticmethod - def forward(ctx, input, bias, negative_slope, scale): - empty = input.new_empty(0) - out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) - ctx.save_for_backward(out) - ctx.negative_slope = negative_slope - ctx.scale = scale - - return out - - @staticmethod - def backward(ctx, grad_output): - out, = ctx.saved_tensors - - grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( - grad_output, out, ctx.negative_slope, ctx.scale - ) - - return grad_input, grad_bias, None, None - - -class FusedLeakyReLU(nn.Module): - def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): - super().__init__() - - self.bias = nn.Parameter(torch.zeros(channel)) - self.negative_slope = negative_slope - self.scale = scale - - def forward(self, input): - return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) - - -def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): - return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) diff --git a/spaces/vaibhavarduino/anime-plus/op/upfirdn2d_cpu.py b/spaces/vaibhavarduino/anime-plus/op/upfirdn2d_cpu.py deleted file mode 100644 index a0f820b4c81e03598589b1ea6b95cf9bef9b04f8..0000000000000000000000000000000000000000 --- a/spaces/vaibhavarduino/anime-plus/op/upfirdn2d_cpu.py +++ /dev/null @@ -1,60 +0,0 @@ -import os - -import torch -from torch.autograd import Function -from torch.nn import functional as F - - - -module_path = os.path.dirname(__file__) - -def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): - out = upfirdn2d_native( - input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1] - ) - - return out - - -def upfirdn2d_native( - input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1 -): - _, channel, in_h, in_w = input.shape - input = input.reshape(-1, in_h, in_w, 1) - - _, in_h, in_w, minor = input.shape - kernel_h, kernel_w = kernel.shape - - out = input.view(-1, in_h, 1, in_w, 1, minor) - out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) - out = out.view(-1, in_h * up_y, in_w * up_x, minor) - - out = F.pad( - out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)] - ) - out = out[ - :, - max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), - max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), - :, - ] - - out = out.permute(0, 3, 1, 2) - out = out.reshape( - [-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1] - ) - w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) - out = F.conv2d(out, w) - out = out.reshape( - -1, - minor, - in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, - in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, - ) - out = out.permute(0, 2, 3, 1) - out = out[:, ::down_y, ::down_x, :] - - out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y - out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x - - return out.view(-1, channel, out_h, out_w) diff --git a/spaces/vaishanthr/Simultaneous-Segmented-Depth-Prediction/yolov8/docs/usage/python.md b/spaces/vaishanthr/Simultaneous-Segmented-Depth-Prediction/yolov8/docs/usage/python.md deleted file mode 100644 index 2d8bb4c4e6f9a8bebdde0d1a7e6aa26266d148f0..0000000000000000000000000000000000000000 --- a/spaces/vaishanthr/Simultaneous-Segmented-Depth-Prediction/yolov8/docs/usage/python.md +++ /dev/null @@ -1,283 +0,0 @@ ---- -comments: true -description: Integrate YOLOv8 in Python. Load, use pretrained models, train, and infer images. Export to ONNX. Track objects in videos. -keywords: yolov8, python usage, object detection, segmentation, classification, pretrained models, train models, image predictions ---- - -# Python Usage - -Welcome to the YOLOv8 Python Usage documentation! This guide is designed to help you seamlessly integrate YOLOv8 into -your Python projects for object detection, segmentation, and classification. Here, you'll learn how to load and use -pretrained models, train new models, and perform predictions on images. The easy-to-use Python interface is a valuable -resource for anyone looking to incorporate YOLOv8 into their Python projects, allowing you to quickly implement advanced -object detection capabilities. Let's get started! - -For example, users can load a model, train it, evaluate its performance on a validation set, and even export it to ONNX -format with just a few lines of code. - -!!! example "Python" - - ```python - from ultralytics import YOLO - - # Create a new YOLO model from scratch - model = YOLO('yolov8n.yaml') - - # Load a pretrained YOLO model (recommended for training) - model = YOLO('yolov8n.pt') - - # Train the model using the 'coco128.yaml' dataset for 3 epochs - results = model.train(data='coco128.yaml', epochs=3) - - # Evaluate the model's performance on the validation set - results = model.val() - - # Perform object detection on an image using the model - results = model('https://ultralytics.com/images/bus.jpg') - - # Export the model to ONNX format - success = model.export(format='onnx') - ``` - -## [Train](../modes/train.md) - -Train mode is used for training a YOLOv8 model on a custom dataset. In this mode, the model is trained using the -specified dataset and hyperparameters. The training process involves optimizing the model's parameters so that it can -accurately predict the classes and locations of objects in an image. - -!!! example "Train" - - === "From pretrained(recommended)" - ```python - from ultralytics import YOLO - - model = YOLO('yolov8n.pt') # pass any model type - model.train(epochs=5) - ``` - - === "From scratch" - ```python - from ultralytics import YOLO - - model = YOLO('yolov8n.yaml') - model.train(data='coco128.yaml', epochs=5) - ``` - - === "Resume" - ```python - model = YOLO("last.pt") - model.train(resume=True) - ``` - -[Train Examples](../modes/train.md){ .md-button .md-button--primary} - -## [Val](../modes/val.md) - -Val mode is used for validating a YOLOv8 model after it has been trained. In this mode, the model is evaluated on a -validation set to measure its accuracy and generalization performance. This mode can be used to tune the hyperparameters -of the model to improve its performance. - -!!! example "Val" - - === "Val after training" - ```python - from ultralytics import YOLO - - model = YOLO('yolov8n.yaml') - model.train(data='coco128.yaml', epochs=5) - model.val() # It'll automatically evaluate the data you trained. - ``` - - === "Val independently" - ```python - from ultralytics import YOLO - - model = YOLO("model.pt") - # It'll use the data yaml file in model.pt if you don't set data. - model.val() - # or you can set the data you want to val - model.val(data='coco128.yaml') - ``` - -[Val Examples](../modes/val.md){ .md-button .md-button--primary} - -## [Predict](../modes/predict.md) - -Predict mode is used for making predictions using a trained YOLOv8 model on new images or videos. In this mode, the -model is loaded from a checkpoint file, and the user can provide images or videos to perform inference. The model -predicts the classes and locations of objects in the input images or videos. - -!!! example "Predict" - - === "From source" - ```python - from ultralytics import YOLO - from PIL import Image - import cv2 - - model = YOLO("model.pt") - # accepts all formats - image/dir/Path/URL/video/PIL/ndarray. 0 for webcam - results = model.predict(source="0") - results = model.predict(source="folder", show=True) # Display preds. Accepts all YOLO predict arguments - - # from PIL - im1 = Image.open("bus.jpg") - results = model.predict(source=im1, save=True) # save plotted images - - # from ndarray - im2 = cv2.imread("bus.jpg") - results = model.predict(source=im2, save=True, save_txt=True) # save predictions as labels - - # from list of PIL/ndarray - results = model.predict(source=[im1, im2]) - ``` - - === "Results usage" - ```python - # results would be a list of Results object including all the predictions by default - # but be careful as it could occupy a lot memory when there're many images, - # especially the task is segmentation. - # 1. return as a list - results = model.predict(source="folder") - - # results would be a generator which is more friendly to memory by setting stream=True - # 2. return as a generator - results = model.predict(source=0, stream=True) - - for result in results: - # Detection - result.boxes.xyxy # box with xyxy format, (N, 4) - result.boxes.xywh # box with xywh format, (N, 4) - result.boxes.xyxyn # box with xyxy format but normalized, (N, 4) - result.boxes.xywhn # box with xywh format but normalized, (N, 4) - result.boxes.conf # confidence score, (N, 1) - result.boxes.cls # cls, (N, 1) - - # Segmentation - result.masks.data # masks, (N, H, W) - result.masks.xy # x,y segments (pixels), List[segment] * N - result.masks.xyn # x,y segments (normalized), List[segment] * N - - # Classification - result.probs # cls prob, (num_class, ) - - # Each result is composed of torch.Tensor by default, - # in which you can easily use following functionality: - result = result.cuda() - result = result.cpu() - result = result.to("cpu") - result = result.numpy() - ``` - -[Predict Examples](../modes/predict.md){ .md-button .md-button--primary} - -## [Export](../modes/export.md) - -Export mode is used for exporting a YOLOv8 model to a format that can be used for deployment. In this mode, the model is -converted to a format that can be used by other software applications or hardware devices. This mode is useful when -deploying the model to production environments. - -!!! example "Export" - - === "Export to ONNX" - - Export an official YOLOv8n model to ONNX with dynamic batch-size and image-size. - ```python - from ultralytics import YOLO - - model = YOLO('yolov8n.pt') - model.export(format='onnx', dynamic=True) - ``` - - === "Export to TensorRT" - - Export an official YOLOv8n model to TensorRT on `device=0` for acceleration on CUDA devices. - ```python - from ultralytics import YOLO - - model = YOLO('yolov8n.pt') - model.export(format='onnx', device=0) - ``` - -[Export Examples](../modes/export.md){ .md-button .md-button--primary} - -## [Track](../modes/track.md) - -Track mode is used for tracking objects in real-time using a YOLOv8 model. In this mode, the model is loaded from a -checkpoint file, and the user can provide a live video stream to perform real-time object tracking. This mode is useful -for applications such as surveillance systems or self-driving cars. - -!!! example "Track" - - === "Python" - - ```python - from ultralytics import YOLO - - # Load a model - model = YOLO('yolov8n.pt') # load an official detection model - model = YOLO('yolov8n-seg.pt') # load an official segmentation model - model = YOLO('path/to/best.pt') # load a custom model - - # Track with the model - results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True) - results = model.track(source="https://youtu.be/Zgi9g1ksQHc", show=True, tracker="bytetrack.yaml") - ``` - -[Track Examples](../modes/track.md){ .md-button .md-button--primary} - -## [Benchmark](../modes/benchmark.md) - -Benchmark mode is used to profile the speed and accuracy of various export formats for YOLOv8. The benchmarks provide -information on the size of the exported format, its `mAP50-95` metrics (for object detection and segmentation) -or `accuracy_top5` metrics (for classification), and the inference time in milliseconds per image across various export -formats like ONNX, OpenVINO, TensorRT and others. This information can help users choose the optimal export format for -their specific use case based on their requirements for speed and accuracy. - -!!! example "Benchmark" - - === "Python" - - Benchmark an official YOLOv8n model across all export formats. - ```python - from ultralytics.yolo.utils.benchmarks import benchmark - - # Benchmark - benchmark(model='yolov8n.pt', imgsz=640, half=False, device=0) - ``` - -[Benchmark Examples](../modes/benchmark.md){ .md-button .md-button--primary} - -## Using Trainers - -`YOLO` model class is a high-level wrapper on the Trainer classes. Each YOLO task has its own trainer that inherits -from `BaseTrainer`. - -!!! tip "Detection Trainer Example" - - ```python - from ultralytics.yolo import v8 import DetectionTrainer, DetectionValidator, DetectionPredictor - - # trainer - trainer = DetectionTrainer(overrides={}) - trainer.train() - trained_model = trainer.best - - # Validator - val = DetectionValidator(args=...) - val(model=trained_model) - - # predictor - pred = DetectionPredictor(overrides={}) - pred(source=SOURCE, model=trained_model) - - # resume from last weight - overrides["resume"] = trainer.last - trainer = detect.DetectionTrainer(overrides=overrides) - ``` - -You can easily customize Trainers to support custom tasks or explore R&D ideas. -Learn more about Customizing `Trainers`, `Validators` and `Predictors` to suit your project needs in the Customization -Section. - -[Customization tutorials](engine.md){ .md-button .md-button--primary} \ No newline at end of file diff --git a/spaces/vasu0508/Meena_Chatbot/app.py b/spaces/vasu0508/Meena_Chatbot/app.py deleted file mode 100644 index 345223082fc38b16b530cef9c3a4022a022c05c9..0000000000000000000000000000000000000000 --- a/spaces/vasu0508/Meena_Chatbot/app.py +++ /dev/null @@ -1,114 +0,0 @@ -# -*- coding: utf-8 -*- -"""Meena_A_Multilingual_Chatbot (1).ipynb - -Automatically generated by Colaboratory. - -Original file is located at - https://colab.research.google.com/drive/1-IfUcnDUppyMArHonc_iesEcN2gSKU-j -""" - -#!pip3 install transformers -#!pip install -q translate -#!pip install polyglot - -#!pip install Pyicu - -#!pip install Morfessor -#!pip install pycld2 - -from transformers import AutoModelForCausalLM, AutoTokenizer -import torch -from translate import Translator -from polyglot.detect import Detector - -# model_name = "microsoft/DialoGPT-large" -model_name = "microsoft/DialoGPT-large" -# model_name = "microsoft/DialoGPT-small" -tokenizer = AutoTokenizer.from_pretrained(model_name) -model = AutoModelForCausalLM.from_pretrained(model_name) - -# # chatting 5 times with nucleus sampling & tweaking temperature -# step=-1 -# while(True): -# step+=1 -# # take user input -# text = input(">> You:>") -# detected_language=Detector(text,quiet=True).language.code -# translator=Translator(from_lang=detected_language,to_lang="en") -# translated_input=translator.translate(text) -# print(translated_input) -# if text.lower().find("bye")!=-1: -# print(f">> Meena:> Bye Bye!") -# break; -# # encode the input and add end of string token -# input_ids = tokenizer.encode(translated_input+tokenizer.eos_token, return_tensors="pt") -# # concatenate new user input with chat history (if there is) -# bot_input_ids = torch.cat([chat_history_ids, input_ids], dim=-1) if step > 0 else input_ids -# # generate a bot response -# chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id,do_sample=True,top_p=0.9,top_k=50,temperature=0.7,num_beams=5,no_repeat_ngram_size=2) -# #print the output -# output = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) -# print(output) -# translator=Translator(from_lang="en",to_lang=detected_language) -# translated_output=translator.translate(output) - -# print(f">> Meena:> {translated_output}") - -#!pip install gradio - -import gradio as gr - -with gr.Blocks() as meena: - chatbot = gr.Chatbot(label="Meena- A Multilingual Chatbot") - msg = gr.Textbox(label="You") - clear = gr.Button("Clear") - def set(chat_history_ids1): - global chat_history_ids - chat_history_ids=chat_history_ids1 - def get(): - return chat_history_ids - def set2(step1): - global step - step=step1 - def get2(): - return step - def generate_text(text,chat_history): - step=-1 - if len(chat_history)==0: - step=-1 - else: - step=get2() - step+=1 - set2(step) - print(step) - if step!=0: - chat_history_ids=get() - if text.isdigit(): - detected_language='en' - else: - detected_language=Detector(text,quiet=True).language.code - translator=Translator(from_lang=detected_language,to_lang="en") - translated_input=translator.translate(text) - # encode the input and add end of string token - input_ids=tokenizer.encode(translated_input+tokenizer.eos_token,return_tensors="pt") - # concatenate new user input with chat history (if there is) - bot_input_ids=torch.cat([chat_history_ids,input_ids],dim=-1) if step>0 else input_ids - # generate a bot response - chat_history_ids=model.generate(bot_input_ids,max_length=1000,pad_token_id=tokenizer.eos_token_id,do_sample=True,top_p=0.9,top_k=50,temperature=0.7,num_beams=5,no_repeat_ngram_size=2) - print(chat_history_ids) - set(chat_history_ids) - #print the output - output=tokenizer.decode(chat_history_ids[:,bot_input_ids.shape[-1]:][0],skip_special_tokens=True) - translator=Translator(from_lang="en",to_lang=detected_language) - translated_output=translator.translate(output) - chat_history.append((text,translated_output)) - if step==5: - set(-1) - set2(-1) - - return "",chat_history - - msg.submit(generate_text, [msg, chatbot], [msg, chatbot]) - clear.click(lambda: None, None, chatbot, queue=False) - -meena.queue().launch() \ No newline at end of file diff --git a/spaces/vialibre/edia_lmodels_en/app.py b/spaces/vialibre/edia_lmodels_en/app.py deleted file mode 100644 index 8a7ab056c44ff456829dc700a16ce9f946f98f82..0000000000000000000000000000000000000000 --- a/spaces/vialibre/edia_lmodels_en/app.py +++ /dev/null @@ -1,58 +0,0 @@ -# --- Imports libs --- -import gradio as gr -import pandas as pd -import configparser - - -# --- Imports modules --- -from modules.module_languageModel import LanguageModel - - -# --- Imports interfaces --- -from interfaces.interface_biasPhrase import interface as interface_sesgoEnFrases -from interfaces.interface_crowsPairs import interface as interface_crowsPairs - - -# --- Tool config --- -cfg = configparser.ConfigParser() -cfg.read('tool.cfg') - -LANGUAGE = cfg['INTERFACE']['language'] -LANGUAGE_MODEL = cfg['LMODEL']['language_model'] -AVAILABLE_LOGS = cfg['LOGS'].getboolean('available_logs') - - - -# --- Init classes --- -bert_lm = LanguageModel( - model_name=LANGUAGE_MODEL -) - -# --- Init Vars --- -labels = pd.read_json(f"language/{LANGUAGE}.json")["app"] - - -# --- Init App --- -INTERFACE_LIST = [ - interface_sesgoEnFrases( - language_model=bert_lm, - available_logs=AVAILABLE_LOGS, - lang=LANGUAGE), - interface_crowsPairs( - language_model=bert_lm, - available_logs=AVAILABLE_LOGS, - lang=LANGUAGE), -] - -TAB_NAMES = [ - labels["phraseExplorer"], - labels["crowsPairsExplorer"] -] - -iface = gr.TabbedInterface( - interface_list=INTERFACE_LIST, - tab_names=TAB_NAMES -) - -iface.queue(concurrency_count=8) -iface.launch(debug=False) diff --git a/spaces/victorisgeek/SwapFace2Pon/face_enhancer.py b/spaces/victorisgeek/SwapFace2Pon/face_enhancer.py deleted file mode 100644 index 9bcf2fef411285e02b32a9c37dcc1d53d2cd0f88..0000000000000000000000000000000000000000 --- a/spaces/victorisgeek/SwapFace2Pon/face_enhancer.py +++ /dev/null @@ -1,72 +0,0 @@ -import os -import cv2 -import torch -import gfpgan -from PIL import Image -from upscaler.RealESRGAN import RealESRGAN -from upscaler.codeformer import CodeFormerEnhancer - -def gfpgan_runner(img, model): - _, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True) - return imgs[0] - - -def realesrgan_runner(img, model): - img = model.predict(img) - return img - - -def codeformer_runner(img, model): - img = model.enhance(img) - return img - - -supported_enhancers = { - "CodeFormer": ("./assets/pretrained_models/codeformer.onnx", codeformer_runner), - "GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner), - "REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner), - "REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner), - "REAL-ESRGAN 8x": ("./assets/pretrained_models/RealESRGAN_x8.pth", realesrgan_runner) -} - -cv2_interpolations = ["LANCZOS4", "CUBIC", "NEAREST"] - -def get_available_enhancer_names(): - available = [] - for name, data in supported_enhancers.items(): - path = os.path.join(os.path.abspath(os.path.dirname(__file__)), data[0]) - if os.path.exists(path): - available.append(name) - return available - - -def load_face_enhancer_model(name='GFPGAN', device="cpu"): - assert name in get_available_enhancer_names() + cv2_interpolations, f"Face enhancer {name} unavailable." - if name in supported_enhancers.keys(): - model_path, model_runner = supported_enhancers.get(name) - model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path) - if name == 'CodeFormer': - model = CodeFormerEnhancer(model_path=model_path, device=device) - elif name == 'GFPGAN': - model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device) - elif name == 'REAL-ESRGAN 2x': - model = RealESRGAN(device, scale=2) - model.load_weights(model_path, download=False) - elif name == 'REAL-ESRGAN 4x': - model = RealESRGAN(device, scale=4) - model.load_weights(model_path, download=False) - elif name == 'REAL-ESRGAN 8x': - model = RealESRGAN(device, scale=8) - model.load_weights(model_path, download=False) - elif name == 'LANCZOS4': - model = None - model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_LANCZOS4) - elif name == 'CUBIC': - model = None - model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_CUBIC) - elif name == 'NEAREST': - model = None - model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_NEAREST) - else: - model = None - return (model, model_runner) diff --git a/spaces/vivym/image-matting-app/ppmatting/models/layers/gca_module.py b/spaces/vivym/image-matting-app/ppmatting/models/layers/gca_module.py deleted file mode 100644 index ba8654efc9bd24de2e127393ad8338d21964e4a5..0000000000000000000000000000000000000000 --- a/spaces/vivym/image-matting-app/ppmatting/models/layers/gca_module.py +++ /dev/null @@ -1,211 +0,0 @@ -# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -# The gca code was heavily based on https://github.com/Yaoyi-Li/GCA-Matting -# and https://github.com/open-mmlab/mmediting - -import paddle -import paddle.nn as nn -import paddle.nn.functional as F - -from paddleseg.cvlibs import param_init - - -class GuidedCxtAtten(nn.Layer): - def __init__(self, - out_channels, - guidance_channels, - kernel_size=3, - stride=1, - rate=2): - super().__init__() - - self.kernel_size = kernel_size - self.rate = rate - self.stride = stride - self.guidance_conv = nn.Conv2D( - in_channels=guidance_channels, - out_channels=guidance_channels // 2, - kernel_size=1) - - self.out_conv = nn.Sequential( - nn.Conv2D( - in_channels=out_channels, - out_channels=out_channels, - kernel_size=1, - bias_attr=False), - nn.BatchNorm(out_channels)) - - self.init_weight() - - def init_weight(self): - param_init.xavier_uniform(self.guidance_conv.weight) - param_init.constant_init(self.guidance_conv.bias, value=0.0) - param_init.xavier_uniform(self.out_conv[0].weight) - param_init.constant_init(self.out_conv[1].weight, value=1e-3) - param_init.constant_init(self.out_conv[1].bias, value=0.0) - - def forward(self, img_feat, alpha_feat, unknown=None, softmax_scale=1.): - - img_feat = self.guidance_conv(img_feat) - img_feat = F.interpolate( - img_feat, scale_factor=1 / self.rate, mode='nearest') - - # process unknown mask - unknown, softmax_scale = self.process_unknown_mask(unknown, img_feat, - softmax_scale) - - img_ps, alpha_ps, unknown_ps = self.extract_feature_maps_patches( - img_feat, alpha_feat, unknown) - - self_mask = self.get_self_correlation_mask(img_feat) - - # split tensors by batch dimension; tuple is returned - img_groups = paddle.split(img_feat, 1, axis=0) - img_ps_groups = paddle.split(img_ps, 1, axis=0) - alpha_ps_groups = paddle.split(alpha_ps, 1, axis=0) - unknown_ps_groups = paddle.split(unknown_ps, 1, axis=0) - scale_groups = paddle.split(softmax_scale, 1, axis=0) - groups = (img_groups, img_ps_groups, alpha_ps_groups, unknown_ps_groups, - scale_groups) - - y = [] - - for img_i, img_ps_i, alpha_ps_i, unknown_ps_i, scale_i in zip(*groups): - # conv for compare - similarity_map = self.compute_similarity_map(img_i, img_ps_i) - - gca_score = self.compute_guided_attention_score( - similarity_map, unknown_ps_i, scale_i, self_mask) - - yi = self.propagate_alpha_feature(gca_score, alpha_ps_i) - - y.append(yi) - - y = paddle.concat(y, axis=0) # back to the mini-batch - y = paddle.reshape(y, alpha_feat.shape) - - y = self.out_conv(y) + alpha_feat - - return y - - def extract_feature_maps_patches(self, img_feat, alpha_feat, unknown): - - # extract image feature patches with shape: - # (N, img_h*img_w, img_c, img_ks, img_ks) - img_ks = self.kernel_size - img_ps = self.extract_patches(img_feat, img_ks, self.stride) - - # extract alpha feature patches with shape: - # (N, img_h*img_w, alpha_c, alpha_ks, alpha_ks) - alpha_ps = self.extract_patches(alpha_feat, self.rate * 2, self.rate) - - # extract unknown mask patches with shape: (N, img_h*img_w, 1, 1) - unknown_ps = self.extract_patches(unknown, img_ks, self.stride) - unknown_ps = unknown_ps.squeeze(axis=2) # squeeze channel dimension - unknown_ps = unknown_ps.mean(axis=[2, 3], keepdim=True) - - return img_ps, alpha_ps, unknown_ps - - def extract_patches(self, x, kernel_size, stride): - n, c, _, _ = x.shape - x = self.pad(x, kernel_size, stride) - x = F.unfold(x, [kernel_size, kernel_size], strides=[stride, stride]) - x = paddle.transpose(x, (0, 2, 1)) - x = paddle.reshape(x, (n, -1, c, kernel_size, kernel_size)) - - return x - - def pad(self, x, kernel_size, stride): - left = (kernel_size - stride + 1) // 2 - right = (kernel_size - stride) // 2 - pad = (left, right, left, right) - return F.pad(x, pad, mode='reflect') - - def compute_guided_attention_score(self, similarity_map, unknown_ps, scale, - self_mask): - # scale the correlation with predicted scale factor for known and - # unknown area - unknown_scale, known_scale = scale[0] - out = similarity_map * ( - unknown_scale * paddle.greater_than(unknown_ps, - paddle.to_tensor([0.])) + - known_scale * paddle.less_equal(unknown_ps, paddle.to_tensor([0.]))) - # mask itself, self-mask only applied to unknown area - out = out + self_mask * unknown_ps - gca_score = F.softmax(out, axis=1) - - return gca_score - - def propagate_alpha_feature(self, gca_score, alpha_ps): - - alpha_ps = alpha_ps[0] # squeeze dim 0 - if self.rate == 1: - gca_score = self.pad(gca_score, kernel_size=2, stride=1) - alpha_ps = paddle.transpose(alpha_ps, (1, 0, 2, 3)) - out = F.conv2d(gca_score, alpha_ps) / 4. - else: - out = F.conv2d_transpose( - gca_score, alpha_ps, stride=self.rate, padding=1) / 4. - - return out - - def compute_similarity_map(self, img_feat, img_ps): - img_ps = img_ps[0] # squeeze dim 0 - # convolve the feature to get correlation (similarity) map - img_ps_normed = img_ps / paddle.clip(self.l2_norm(img_ps), 1e-4) - img_feat = F.pad(img_feat, (1, 1, 1, 1), mode='reflect') - similarity_map = F.conv2d(img_feat, img_ps_normed) - - return similarity_map - - def get_self_correlation_mask(self, img_feat): - _, _, h, w = img_feat.shape - self_mask = F.one_hot( - paddle.reshape(paddle.arange(h * w), (h, w)), - num_classes=int(h * w)) - - self_mask = paddle.transpose(self_mask, (2, 0, 1)) - self_mask = paddle.reshape(self_mask, (1, h * w, h, w)) - - return self_mask * (-1e4) - - def process_unknown_mask(self, unknown, img_feat, softmax_scale): - - n, _, h, w = img_feat.shape - - if unknown is not None: - unknown = unknown.clone() - unknown = F.interpolate( - unknown, scale_factor=1 / self.rate, mode='nearest') - unknown_mean = unknown.mean(axis=[2, 3]) - known_mean = 1 - unknown_mean - unknown_scale = paddle.clip( - paddle.sqrt(unknown_mean / known_mean), 0.1, 10) - known_scale = paddle.clip( - paddle.sqrt(known_mean / unknown_mean), 0.1, 10) - softmax_scale = paddle.concat([unknown_scale, known_scale], axis=1) - else: - unknown = paddle.ones([n, 1, h, w]) - softmax_scale = paddle.reshape( - paddle.to_tensor([softmax_scale, softmax_scale]), (1, 2)) - softmax_scale = paddle.expand(softmax_scale, (n, 2)) - - return unknown, softmax_scale - - @staticmethod - def l2_norm(x): - x = x**2 - x = x.sum(axis=[1, 2, 3], keepdim=True) - return paddle.sqrt(x) diff --git a/spaces/vumichien/canvas_controlnet/annotator/uniformer/mmcv/ops/point_sample.py b/spaces/vumichien/canvas_controlnet/annotator/uniformer/mmcv/ops/point_sample.py deleted file mode 100644 index 267f4b3c56630acd85f9bdc630b7be09abab0aba..0000000000000000000000000000000000000000 --- a/spaces/vumichien/canvas_controlnet/annotator/uniformer/mmcv/ops/point_sample.py +++ /dev/null @@ -1,336 +0,0 @@ -# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa - -from os import path as osp - -import torch -import torch.nn as nn -import torch.nn.functional as F -from torch.nn.modules.utils import _pair -from torch.onnx.operators import shape_as_tensor - - -def bilinear_grid_sample(im, grid, align_corners=False): - """Given an input and a flow-field grid, computes the output using input - values and pixel locations from grid. Supported only bilinear interpolation - method to sample the input pixels. - - Args: - im (torch.Tensor): Input feature map, shape (N, C, H, W) - grid (torch.Tensor): Point coordinates, shape (N, Hg, Wg, 2) - align_corners {bool}: If set to True, the extrema (-1 and 1) are - considered as referring to the center points of the input’s - corner pixels. If set to False, they are instead considered as - referring to the corner points of the input’s corner pixels, - making the sampling more resolution agnostic. - Returns: - torch.Tensor: A tensor with sampled points, shape (N, C, Hg, Wg) - """ - n, c, h, w = im.shape - gn, gh, gw, _ = grid.shape - assert n == gn - - x = grid[:, :, :, 0] - y = grid[:, :, :, 1] - - if align_corners: - x = ((x + 1) / 2) * (w - 1) - y = ((y + 1) / 2) * (h - 1) - else: - x = ((x + 1) * w - 1) / 2 - y = ((y + 1) * h - 1) / 2 - - x = x.view(n, -1) - y = y.view(n, -1) - - x0 = torch.floor(x).long() - y0 = torch.floor(y).long() - x1 = x0 + 1 - y1 = y0 + 1 - - wa = ((x1 - x) * (y1 - y)).unsqueeze(1) - wb = ((x1 - x) * (y - y0)).unsqueeze(1) - wc = ((x - x0) * (y1 - y)).unsqueeze(1) - wd = ((x - x0) * (y - y0)).unsqueeze(1) - - # Apply default for grid_sample function zero padding - im_padded = F.pad(im, pad=[1, 1, 1, 1], mode='constant', value=0) - padded_h = h + 2 - padded_w = w + 2 - # save points positions after padding - x0, x1, y0, y1 = x0 + 1, x1 + 1, y0 + 1, y1 + 1 - - # Clip coordinates to padded image size - x0 = torch.where(x0 < 0, torch.tensor(0), x0) - x0 = torch.where(x0 > padded_w - 1, torch.tensor(padded_w - 1), x0) - x1 = torch.where(x1 < 0, torch.tensor(0), x1) - x1 = torch.where(x1 > padded_w - 1, torch.tensor(padded_w - 1), x1) - y0 = torch.where(y0 < 0, torch.tensor(0), y0) - y0 = torch.where(y0 > padded_h - 1, torch.tensor(padded_h - 1), y0) - y1 = torch.where(y1 < 0, torch.tensor(0), y1) - y1 = torch.where(y1 > padded_h - 1, torch.tensor(padded_h - 1), y1) - - im_padded = im_padded.view(n, c, -1) - - x0_y0 = (x0 + y0 * padded_w).unsqueeze(1).expand(-1, c, -1) - x0_y1 = (x0 + y1 * padded_w).unsqueeze(1).expand(-1, c, -1) - x1_y0 = (x1 + y0 * padded_w).unsqueeze(1).expand(-1, c, -1) - x1_y1 = (x1 + y1 * padded_w).unsqueeze(1).expand(-1, c, -1) - - Ia = torch.gather(im_padded, 2, x0_y0) - Ib = torch.gather(im_padded, 2, x0_y1) - Ic = torch.gather(im_padded, 2, x1_y0) - Id = torch.gather(im_padded, 2, x1_y1) - - return (Ia * wa + Ib * wb + Ic * wc + Id * wd).reshape(n, c, gh, gw) - - -def is_in_onnx_export_without_custom_ops(): - from annotator.uniformer.mmcv.ops import get_onnxruntime_op_path - ort_custom_op_path = get_onnxruntime_op_path() - return torch.onnx.is_in_onnx_export( - ) and not osp.exists(ort_custom_op_path) - - -def normalize(grid): - """Normalize input grid from [-1, 1] to [0, 1] - Args: - grid (Tensor): The grid to be normalize, range [-1, 1]. - Returns: - Tensor: Normalized grid, range [0, 1]. - """ - - return (grid + 1.0) / 2.0 - - -def denormalize(grid): - """Denormalize input grid from range [0, 1] to [-1, 1] - Args: - grid (Tensor): The grid to be denormalize, range [0, 1]. - Returns: - Tensor: Denormalized grid, range [-1, 1]. - """ - - return grid * 2.0 - 1.0 - - -def generate_grid(num_grid, size, device): - """Generate regular square grid of points in [0, 1] x [0, 1] coordinate - space. - - Args: - num_grid (int): The number of grids to sample, one for each region. - size (tuple(int, int)): The side size of the regular grid. - device (torch.device): Desired device of returned tensor. - - Returns: - (torch.Tensor): A tensor of shape (num_grid, size[0]*size[1], 2) that - contains coordinates for the regular grids. - """ - - affine_trans = torch.tensor([[[1., 0., 0.], [0., 1., 0.]]], device=device) - grid = F.affine_grid( - affine_trans, torch.Size((1, 1, *size)), align_corners=False) - grid = normalize(grid) - return grid.view(1, -1, 2).expand(num_grid, -1, -1) - - -def rel_roi_point_to_abs_img_point(rois, rel_roi_points): - """Convert roi based relative point coordinates to image based absolute - point coordinates. - - Args: - rois (Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5) - rel_roi_points (Tensor): Point coordinates inside RoI, relative to - RoI, location, range (0, 1), shape (N, P, 2) - Returns: - Tensor: Image based absolute point coordinates, shape (N, P, 2) - """ - - with torch.no_grad(): - assert rel_roi_points.size(0) == rois.size(0) - assert rois.dim() == 2 - assert rel_roi_points.dim() == 3 - assert rel_roi_points.size(2) == 2 - # remove batch idx - if rois.size(1) == 5: - rois = rois[:, 1:] - abs_img_points = rel_roi_points.clone() - # To avoid an error during exporting to onnx use independent - # variables instead inplace computation - xs = abs_img_points[:, :, 0] * (rois[:, None, 2] - rois[:, None, 0]) - ys = abs_img_points[:, :, 1] * (rois[:, None, 3] - rois[:, None, 1]) - xs += rois[:, None, 0] - ys += rois[:, None, 1] - abs_img_points = torch.stack([xs, ys], dim=2) - return abs_img_points - - -def get_shape_from_feature_map(x): - """Get spatial resolution of input feature map considering exporting to - onnx mode. - - Args: - x (torch.Tensor): Input tensor, shape (N, C, H, W) - Returns: - torch.Tensor: Spatial resolution (width, height), shape (1, 1, 2) - """ - if torch.onnx.is_in_onnx_export(): - img_shape = shape_as_tensor(x)[2:].flip(0).view(1, 1, 2).to( - x.device).float() - else: - img_shape = torch.tensor(x.shape[2:]).flip(0).view(1, 1, 2).to( - x.device).float() - return img_shape - - -def abs_img_point_to_rel_img_point(abs_img_points, img, spatial_scale=1.): - """Convert image based absolute point coordinates to image based relative - coordinates for sampling. - - Args: - abs_img_points (Tensor): Image based absolute point coordinates, - shape (N, P, 2) - img (tuple/Tensor): (height, width) of image or feature map. - spatial_scale (float): Scale points by this factor. Default: 1. - - Returns: - Tensor: Image based relative point coordinates for sampling, - shape (N, P, 2) - """ - - assert (isinstance(img, tuple) and len(img) == 2) or \ - (isinstance(img, torch.Tensor) and len(img.shape) == 4) - - if isinstance(img, tuple): - h, w = img - scale = torch.tensor([w, h], - dtype=torch.float, - device=abs_img_points.device) - scale = scale.view(1, 1, 2) - else: - scale = get_shape_from_feature_map(img) - - return abs_img_points / scale * spatial_scale - - -def rel_roi_point_to_rel_img_point(rois, - rel_roi_points, - img, - spatial_scale=1.): - """Convert roi based relative point coordinates to image based absolute - point coordinates. - - Args: - rois (Tensor): RoIs or BBoxes, shape (N, 4) or (N, 5) - rel_roi_points (Tensor): Point coordinates inside RoI, relative to - RoI, location, range (0, 1), shape (N, P, 2) - img (tuple/Tensor): (height, width) of image or feature map. - spatial_scale (float): Scale points by this factor. Default: 1. - - Returns: - Tensor: Image based relative point coordinates for sampling, - shape (N, P, 2) - """ - - abs_img_point = rel_roi_point_to_abs_img_point(rois, rel_roi_points) - rel_img_point = abs_img_point_to_rel_img_point(abs_img_point, img, - spatial_scale) - - return rel_img_point - - -def point_sample(input, points, align_corners=False, **kwargs): - """A wrapper around :func:`grid_sample` to support 3D point_coords tensors - Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to - lie inside ``[0, 1] x [0, 1]`` square. - - Args: - input (Tensor): Feature map, shape (N, C, H, W). - points (Tensor): Image based absolute point coordinates (normalized), - range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2). - align_corners (bool): Whether align_corners. Default: False - - Returns: - Tensor: Features of `point` on `input`, shape (N, C, P) or - (N, C, Hgrid, Wgrid). - """ - - add_dim = False - if points.dim() == 3: - add_dim = True - points = points.unsqueeze(2) - if is_in_onnx_export_without_custom_ops(): - # If custom ops for onnx runtime not compiled use python - # implementation of grid_sample function to make onnx graph - # with supported nodes - output = bilinear_grid_sample( - input, denormalize(points), align_corners=align_corners) - else: - output = F.grid_sample( - input, denormalize(points), align_corners=align_corners, **kwargs) - if add_dim: - output = output.squeeze(3) - return output - - -class SimpleRoIAlign(nn.Module): - - def __init__(self, output_size, spatial_scale, aligned=True): - """Simple RoI align in PointRend, faster than standard RoIAlign. - - Args: - output_size (tuple[int]): h, w - spatial_scale (float): scale the input boxes by this number - aligned (bool): if False, use the legacy implementation in - MMDetection, align_corners=True will be used in F.grid_sample. - If True, align the results more perfectly. - """ - - super(SimpleRoIAlign, self).__init__() - self.output_size = _pair(output_size) - self.spatial_scale = float(spatial_scale) - # to be consistent with other RoI ops - self.use_torchvision = False - self.aligned = aligned - - def forward(self, features, rois): - num_imgs = features.size(0) - num_rois = rois.size(0) - rel_roi_points = generate_grid( - num_rois, self.output_size, device=rois.device) - - if torch.onnx.is_in_onnx_export(): - rel_img_points = rel_roi_point_to_rel_img_point( - rois, rel_roi_points, features, self.spatial_scale) - rel_img_points = rel_img_points.reshape(num_imgs, -1, - *rel_img_points.shape[1:]) - point_feats = point_sample( - features, rel_img_points, align_corners=not self.aligned) - point_feats = point_feats.transpose(1, 2) - else: - point_feats = [] - for batch_ind in range(num_imgs): - # unravel batch dim - feat = features[batch_ind].unsqueeze(0) - inds = (rois[:, 0].long() == batch_ind) - if inds.any(): - rel_img_points = rel_roi_point_to_rel_img_point( - rois[inds], rel_roi_points[inds], feat, - self.spatial_scale).unsqueeze(0) - point_feat = point_sample( - feat, rel_img_points, align_corners=not self.aligned) - point_feat = point_feat.squeeze(0).transpose(0, 1) - point_feats.append(point_feat) - - point_feats = torch.cat(point_feats, dim=0) - - channels = features.size(1) - roi_feats = point_feats.reshape(num_rois, channels, *self.output_size) - - return roi_feats - - def __repr__(self): - format_str = self.__class__.__name__ - format_str += '(output_size={}, spatial_scale={}'.format( - self.output_size, self.spatial_scale) - return format_str diff --git a/spaces/wahaha/u2net_portrait/U-2-Net/u2net_portrait_demo.py b/spaces/wahaha/u2net_portrait/U-2-Net/u2net_portrait_demo.py deleted file mode 100644 index 516272a61d6533b8ebf8e466dfa3bda2d9c4e9a3..0000000000000000000000000000000000000000 --- a/spaces/wahaha/u2net_portrait/U-2-Net/u2net_portrait_demo.py +++ /dev/null @@ -1,175 +0,0 @@ -import cv2 -import torch -from model import U2NET -from torch.autograd import Variable -import numpy as np -from glob import glob -import os - -def detect_single_face(face_cascade,img): - # Convert into grayscale - gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) - - # Detect faces - faces = face_cascade.detectMultiScale(gray, 1.1, 4) - if(len(faces)==0): - print("Warming: no face detection, the portrait u2net will run on the whole image!") - return None - - # filter to keep the largest face - wh = 0 - idx = 0 - for i in range(0,len(faces)): - (x,y,w,h) = faces[i] - if(whwidth): - r = right-width - right = width - - tpad = int(float(h)*0.6) - top = y - tpad - if(top<0): - t = tpad-y - top = 0 - - bpad = int(float(h)*0.2) - bottom = y+h+bpad - if(bottom>height): - b = bottom-height - bottom = height - - - im_face = img[top:bottom,left:right] - if(len(im_face.shape)==2): - im_face = np.repeat(im_face[:,:,np.newaxis],(1,1,3)) - - im_face = np.pad(im_face,((t,b),(l,r),(0,0)),mode='constant',constant_values=((255,255),(255,255),(255,255))) - - # pad to achieve image with square shape for avoding face deformation after resizing - hf,wf = im_face.shape[0:2] - if(hf-2>wf): - wfp = int((hf-wf)/2) - im_face = np.pad(im_face,((0,0),(wfp,wfp),(0,0)),mode='constant',constant_values=((255,255),(255,255),(255,255))) - elif(wf-2>hf): - hfp = int((wf-hf)/2) - im_face = np.pad(im_face,((hfp,hfp),(0,0),(0,0)),mode='constant',constant_values=((255,255),(255,255),(255,255))) - - # resize to have 512x512 resolution - im_face = cv2.resize(im_face, (512,512), interpolation = cv2.INTER_AREA) - - return im_face - -def normPRED(d): - ma = torch.max(d) - mi = torch.min(d) - - dn = (d-mi)/(ma-mi) - - return dn - -def inference(net,input): - - # normalize the input - tmpImg = np.zeros((input.shape[0],input.shape[1],3)) - input = input/np.max(input) - - tmpImg[:,:,0] = (input[:,:,2]-0.406)/0.225 - tmpImg[:,:,1] = (input[:,:,1]-0.456)/0.224 - tmpImg[:,:,2] = (input[:,:,0]-0.485)/0.229 - - # convert BGR to RGB - tmpImg = tmpImg.transpose((2, 0, 1)) - tmpImg = tmpImg[np.newaxis,:,:,:] - tmpImg = torch.from_numpy(tmpImg) - - # convert numpy array to torch tensor - tmpImg = tmpImg.type(torch.FloatTensor) - - if torch.cuda.is_available(): - tmpImg = Variable(tmpImg.cuda()) - else: - tmpImg = Variable(tmpImg) - - # inference - d1,d2,d3,d4,d5,d6,d7= net(tmpImg) - - # normalization - pred = 1.0 - d1[:,0,:,:] - pred = normPRED(pred) - - # convert torch tensor to numpy array - pred = pred.squeeze() - pred = pred.cpu().data.numpy() - - del d1,d2,d3,d4,d5,d6,d7 - - return pred - -def main(): - - # get the image path list for inference - im_list = glob('./test_data/test_portrait_images/your_portrait_im/*') - print("Number of images: ",len(im_list)) - # indicate the output directory - out_dir = './test_data/test_portrait_images/your_portrait_results' - if(not os.path.exists(out_dir)): - os.mkdir(out_dir) - - # Load the cascade face detection model - face_cascade = cv2.CascadeClassifier('./saved_models/face_detection_cv2/haarcascade_frontalface_default.xml') - # u2net_portrait path - model_dir = './saved_models/u2net_portrait/u2net_portrait.pth' - - # load u2net_portrait model - net = U2NET(3,1) - net.load_state_dict(torch.load(model_dir)) - if torch.cuda.is_available(): - net.cuda() - net.eval() - - # do the inference one-by-one - for i in range(0,len(im_list)): - print("--------------------------") - print("inferencing ", i, "/", len(im_list), im_list[i]) - - # load each image - img = cv2.imread(im_list[i]) - height,width = img.shape[0:2] - face = detect_single_face(face_cascade,img) - im_face = crop_face(img, face) - im_portrait = inference(net,im_face) - - # save the output - cv2.imwrite(out_dir+"/"+im_list[i].split('/')[-1][0:-4]+'.png',(im_portrait*255).astype(np.uint8)) - -if __name__ == '__main__': - main() diff --git a/spaces/warrenw/simple-gpt-interface-2/app.py b/spaces/warrenw/simple-gpt-interface-2/app.py deleted file mode 100644 index 8b677dca0373b176de273752df78b7411bba57d6..0000000000000000000000000000000000000000 --- a/spaces/warrenw/simple-gpt-interface-2/app.py +++ /dev/null @@ -1,48 +0,0 @@ -# import os -# import openai -# openai.api_type = "azure" -# openai.api_base = "https://fevaworksopenai.openai.azure.com/" -# openai.api_version = "2023-03-15-preview" -# openai.api_key = os.getenv("OPENAI_API_KEY") -# -# response = openai.ChatCompletion.create( -# engine="gpt-35-turbo", -# messages = [{"role":"system","content":"You are an AI assistant that helps people find information."},{"role":"user","content":"" -# max_tokens=800, -# top_p=0.95, -# frequency_penalty=0, -# presence_penalty=0, -# stop=None) -# -# above is an openai chat API call, create a streamlit app with a chat interface that takes user input that enter button to send request and reply with openai API response - -import os -import openai -import streamlit as st - -# Set up OpenAI API -openai.api_type = "azure" -openai.api_base = "https://fevaworksopenai.openai.azure.com/" -openai.api_version = "2023-03-15-preview" -openai.api_key = os.getenv("OPENAI_API_KEY") - -# Streamlit app -st.title("AI Chatbot") -st.write("Ask your question and get a response from the AI.") - -user_input = st.text_input("Your question:") -if st.button("Send"): - if user_input: - response = openai.ChatCompletion.create( - engine="gpt-35-turbo", - messages=[{"role": "system", "content": "You are an AI assistant that helps people find information."}, - {"role": "user", "content": user_input}], - max_tokens=800, - top_p=0.95, - frequency_penalty=0, - presence_penalty=0, - stop=None) - - st.write("AI response:", response.choices[0].message["content"]) - else: - st.write("Please enter a question.") diff --git a/spaces/weibinke/vits-simple-api/bert_vits2/bert_vits2.py b/spaces/weibinke/vits-simple-api/bert_vits2/bert_vits2.py deleted file mode 100644 index 6b56d52387e25553d2545c8e4b5c4be5602876ab..0000000000000000000000000000000000000000 --- a/spaces/weibinke/vits-simple-api/bert_vits2/bert_vits2.py +++ /dev/null @@ -1,86 +0,0 @@ -import numpy as np -import torch - -from bert_vits2 import utils, commons -from bert_vits2.models import SynthesizerTrn -from bert_vits2.text import symbols, cleaned_text_to_sequence, get_bert -from bert_vits2.text.cleaner import clean_text -from utils.nlp import sentence_split, cut - - -class Bert_VITS2: - def __init__(self, model, config, device=torch.device("cpu")): - self.hps_ms = utils.get_hparams_from_file(config) - self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0) - self.speakers = [item[0] for item in - sorted(list(getattr(self.hps_ms.data, 'spk2id', {'0': 0}).items()), key=lambda x: x[1])] - self.net_g = SynthesizerTrn( - len(symbols), - self.hps_ms.data.filter_length // 2 + 1, - self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, - n_speakers=self.hps_ms.data.n_speakers, - **self.hps_ms.model).to(device) - _ = self.net_g.eval() - self.device = device - self.load_model(model) - - def load_model(self, model): - utils.load_checkpoint(model, self.net_g, None, skip_optimizer=True) - - def get_speakers(self): - return self.speakers - - def get_text(self, text, language_str, hps): - norm_text, phone, tone, word2ph = clean_text(text, language_str) - # print([f"{p}{t}" for p, t in zip(phone, tone)]) - phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) - - if hps.data.add_blank: - phone = commons.intersperse(phone, 0) - tone = commons.intersperse(tone, 0) - language = commons.intersperse(language, 0) - for i in range(len(word2ph)): - word2ph[i] = word2ph[i] * 2 - word2ph[0] += 1 - bert = get_bert(norm_text, word2ph, language_str) - - assert bert.shape[-1] == len(phone) - - phone = torch.LongTensor(phone) - tone = torch.LongTensor(tone) - language = torch.LongTensor(language) - - return bert, phone, tone, language - - def infer(self, text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid): - bert, phones, tones, lang_ids = self.get_text(text, "ZH", self.hps_ms) - with torch.no_grad(): - x_tst = phones.to(self.device).unsqueeze(0) - tones = tones.to(self.device).unsqueeze(0) - lang_ids = lang_ids.to(self.device).unsqueeze(0) - bert = bert.to(self.device).unsqueeze(0) - x_tst_lengths = torch.LongTensor([phones.size(0)]).to(self.device) - speakers = torch.LongTensor([int(sid)]).to(self.device) - audio = self.net_g.infer(x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, sdp_ratio=sdp_ratio - , noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[ - 0][0, 0].data.cpu().float().numpy() - - torch.cuda.empty_cache() - return audio - - def get_audio(self, voice, auto_break=False): - text = voice.get("text", None) - sdp_ratio = voice.get("sdp_ratio", 0.2) - noise_scale = voice.get("noise", 0.5) - noise_scale_w = voice.get("noisew", 0.6) - length_scale = voice.get("length", 1) - sid = voice.get("id", 0) - max = voice.get("max", 50) - # sentence_list = sentence_split(text, max, "ZH", ["zh"]) - sentence_list = cut(text, max) - audios = [] - for sentence in sentence_list: - audio = self.infer(sentence, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid) - audios.append(audio) - audio = np.concatenate(audios) - return audio diff --git a/spaces/weibinke/vits-simple-api/vits/bert/ProsodyModel.py b/spaces/weibinke/vits-simple-api/vits/bert/ProsodyModel.py deleted file mode 100644 index 5f305b41894a4a8cec05c23dcdd29a9b939b748b..0000000000000000000000000000000000000000 --- a/spaces/weibinke/vits-simple-api/vits/bert/ProsodyModel.py +++ /dev/null @@ -1,75 +0,0 @@ -import os -import torch -import torch.nn as nn -import torch.nn.functional as F - -from transformers import BertModel, BertConfig, BertTokenizer - - -class CharEmbedding(nn.Module): - def __init__(self, model_dir): - super().__init__() - self.tokenizer = BertTokenizer.from_pretrained(model_dir) - self.bert_config = BertConfig.from_pretrained(model_dir) - self.hidden_size = self.bert_config.hidden_size - self.bert = BertModel(self.bert_config) - self.proj = nn.Linear(self.hidden_size, 256) - self.linear = nn.Linear(256, 3) - - def text2Token(self, text): - token = self.tokenizer.tokenize(text) - txtid = self.tokenizer.convert_tokens_to_ids(token) - return txtid - - def forward(self, inputs_ids, inputs_masks, tokens_type_ids): - out_seq = self.bert(input_ids=inputs_ids, - attention_mask=inputs_masks, - token_type_ids=tokens_type_ids)[0] - out_seq = self.proj(out_seq) - return out_seq - - -class TTSProsody(object): - def __init__(self, path, device): - self.device = device - self.char_model = CharEmbedding(path) - self.char_model.load_state_dict( - torch.load( - os.path.join(path, 'prosody_model.pt'), - map_location="cpu" - ), - strict=False - ) - self.char_model.eval() - self.char_model.to(self.device) - - def get_char_embeds(self, text): - input_ids = self.char_model.text2Token(text) - input_masks = [1] * len(input_ids) - type_ids = [0] * len(input_ids) - input_ids = torch.LongTensor([input_ids]).to(self.device) - input_masks = torch.LongTensor([input_masks]).to(self.device) - type_ids = torch.LongTensor([type_ids]).to(self.device) - - with torch.no_grad(): - char_embeds = self.char_model( - input_ids, input_masks, type_ids).squeeze(0).cpu() - return char_embeds - - def expand_for_phone(self, char_embeds, length): # length of phones for char - assert char_embeds.size(0) == len(length) - expand_vecs = list() - for vec, leng in zip(char_embeds, length): - vec = vec.expand(leng, -1) - expand_vecs.append(vec) - expand_embeds = torch.cat(expand_vecs, 0) - assert expand_embeds.size(0) == sum(length) - return expand_embeds.numpy() - - -if __name__ == "__main__": - device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - prosody = TTSProsody('./bert/', device) - while True: - text = input("请输入文本:") - prosody.get_char_embeds(text) diff --git a/spaces/wffcyrus/MetaGPT-v1/metagpt/tools/search_engine_googleapi.py b/spaces/wffcyrus/MetaGPT-v1/metagpt/tools/search_engine_googleapi.py deleted file mode 100644 index b9faf2ced14c07a3b0b9e635a56561c1ec9479fa..0000000000000000000000000000000000000000 --- a/spaces/wffcyrus/MetaGPT-v1/metagpt/tools/search_engine_googleapi.py +++ /dev/null @@ -1,140 +0,0 @@ -#!/usr/bin/env python -# -*- coding: utf-8 -*- -from __future__ import annotations - -import asyncio -import json -from concurrent import futures -from typing import Optional -from urllib.parse import urlparse - -import httplib2 -from pydantic import BaseModel, validator - -from metagpt.config import CONFIG -from metagpt.logs import logger - -try: - from googleapiclient.discovery import build - from googleapiclient.errors import HttpError -except ImportError: - raise ImportError( - "To use this module, you should have the `google-api-python-client` Python package installed. " - "You can install it by running the command: `pip install -e.[search-google]`" - ) - - -class GoogleAPIWrapper(BaseModel): - google_api_key: Optional[str] = None - google_cse_id: Optional[str] = None - loop: Optional[asyncio.AbstractEventLoop] = None - executor: Optional[futures.Executor] = None - - class Config: - arbitrary_types_allowed = True - - @validator("google_api_key", always=True) - @classmethod - def check_google_api_key(cls, val: str): - val = val or CONFIG.google_api_key - if not val: - raise ValueError( - "To use, make sure you provide the google_api_key when constructing an object. Alternatively, " - "ensure that the environment variable GOOGLE_API_KEY is set with your API key. You can obtain " - "an API key from https://console.cloud.google.com/apis/credentials." - ) - return val - - @validator("google_cse_id", always=True) - @classmethod - def check_google_cse_id(cls, val: str): - val = val or CONFIG.google_cse_id - if not val: - raise ValueError( - "To use, make sure you provide the google_cse_id when constructing an object. Alternatively, " - "ensure that the environment variable GOOGLE_CSE_ID is set with your API key. You can obtain " - "an API key from https://programmablesearchengine.google.com/controlpanel/create." - ) - return val - - @property - def google_api_client(self): - build_kwargs = {"developerKey": self.google_api_key} - if CONFIG.global_proxy: - parse_result = urlparse(CONFIG.global_proxy) - proxy_type = parse_result.scheme - if proxy_type == "https": - proxy_type = "http" - build_kwargs["http"] = httplib2.Http( - proxy_info=httplib2.ProxyInfo( - getattr(httplib2.socks, f"PROXY_TYPE_{proxy_type.upper()}"), - parse_result.hostname, - parse_result.port, - ), - ) - service = build("customsearch", "v1", **build_kwargs) - return service.cse() - - async def run( - self, - query: str, - max_results: int = 8, - as_string: bool = True, - focus: list[str] | None = None, - ) -> str | list[dict]: - """Return the results of a Google search using the official Google API. - - Args: - query: The search query. - max_results: The number of results to return. - as_string: A boolean flag to determine the return type of the results. If True, the function will - return a formatted string with the search results. If False, it will return a list of dictionaries - containing detailed information about each search result. - focus: Specific information to be focused on from each search result. - - Returns: - The results of the search. - """ - loop = self.loop or asyncio.get_event_loop() - future = loop.run_in_executor( - self.executor, self.google_api_client.list(q=query, num=max_results, cx=self.google_cse_id).execute - ) - try: - result = await future - # Extract the search result items from the response - search_results = result.get("items", []) - - except HttpError as e: - # Handle errors in the API call - logger.exception(f"fail to search {query} for {e}") - search_results = [] - - focus = focus or ["snippet", "link", "title"] - details = [{i: j for i, j in item_dict.items() if i in focus} for item_dict in search_results] - # Return the list of search result URLs - if as_string: - return safe_google_results(details) - - return details - - -def safe_google_results(results: str | list) -> str: - """Return the results of a google search in a safe format. - - Args: - results: The search results. - - Returns: - The results of the search. - """ - if isinstance(results, list): - safe_message = json.dumps([result for result in results]) - else: - safe_message = results.encode("utf-8", "ignore").decode("utf-8") - return safe_message - - -if __name__ == "__main__": - import fire - - fire.Fire(GoogleAPIWrapper().run) diff --git a/spaces/wrldreform/TextImagine-1.0-March-2023/README.md b/spaces/wrldreform/TextImagine-1.0-March-2023/README.md deleted file mode 100644 index cf1998b028c088f1fbe0ee1458c6e64a3466de22..0000000000000000000000000000000000000000 --- a/spaces/wrldreform/TextImagine-1.0-March-2023/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: TextImagine 1.0 March 2023 -emoji: 📚 -colorFrom: green -colorTo: gray -sdk: gradio -sdk_version: 3.27.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/wwwwwwww2/bingo/tests/kblob.ts b/spaces/wwwwwwww2/bingo/tests/kblob.ts deleted file mode 100644 index 9e15b41c1c94a690beb61b23cdb42fc78767ccd2..0000000000000000000000000000000000000000 --- a/spaces/wwwwwwww2/bingo/tests/kblob.ts +++ /dev/null @@ -1,27 +0,0 @@ -import FormData from 'form-data' - -import { fetch } from '@/lib/isomorphic' - -const formData = new FormData() - -const knowledgeRequest = {"imageInfo":{"url":"https://www.baidu.com/img/PCfb_5bf082d29588c07f842ccde3f97243ea.png"},"knowledgeRequest":{"invokedSkills":["ImageById"],"subscriptionId":"Bing.Chat.Multimodal","invokedSkillsRequestData":{"enableFaceBlur":true},"convoData":{"convoid":"51D|BingProdUnAuthenticatedUsers|E3DCA904FF236C67C3450163BCEC64CFF3F618CC8A4AFD75FD518F5ED0ADA080","convotone":"Creative"}}} - -formData.append('knowledgeRequest', JSON.stringify(knowledgeRequest)) - - -fetch('https://bing.vcanbb.top/images/kblob', - { - method: 'POST', - body: formData.getBuffer(), - headers: { - "sec-ch-ua": "\"Not/A)Brand\";v=\"99\", \"Google Chrome\";v=\"115\", \"Chromium\";v=\"115\"", - "sec-ch-ua-mobile": "?0", - "sec-ch-ua-platform": "\"Windows\"", - "Referer": "https://bing.vcanbb.top/web/index.html", - "Referrer-Policy": "origin-when-cross-origin", - ...formData.getHeaders() - } - - } -).then(res => res.text()) -.then(res => console.log('res', res)) diff --git a/spaces/xangma/chat-pykg/app.py b/spaces/xangma/chat-pykg/app.py deleted file mode 100644 index 818fe9eeb698b89b211b90f317ad31c87517fb1b..0000000000000000000000000000000000000000 --- a/spaces/xangma/chat-pykg/app.py +++ /dev/null @@ -1,379 +0,0 @@ -# chat-pykg/app.py -import datetime -import logging -import os -import random -import shutil -import string -import sys -from pathlib import Path -import numpy as np -import chromadb -import gradio as gr -from chromadb.config import Settings -from langchain.docstore.document import Document -from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings -from langchain.vectorstores import Chroma -from chain import get_new_chain1 -from ingest import embedding_chooser, ingest_docs -logging.basicConfig(stream=sys.stdout, level=logging.INFO) -logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) - -class LogTextboxHandler(logging.StreamHandler): - def __init__(self, textbox): - super().__init__() - self.textbox = textbox - - def emit(self, record): - log_entry = self.format(record) - self.textbox.value += f"{log_entry}\n" - -def toggle_log_textbox(log_textbox_state): - toggle_visibility = not log_textbox_state - log_textbox_state = not log_textbox_state - return log_textbox_state,gr.update(visible=toggle_visibility) - -def update_textbox(full_log): - return gr.update(value=full_log) - -def update_radio(radio): - return gr.Radio.update(value=radio) - -def change_tab(): - return gr.Tabs.update(selected=0) - -def update_checkboxgroup(all_collections_state): - new_options = [i for i in all_collections_state] - return gr.CheckboxGroup.update(choices=new_options) - -def update_log_textbox(full_log): - return gr.Textbox.update(value=full_log) - -def destroy_state(state): - state = None - return state - -def clear_chat(chatbot, history): - return [], [] - -def merge_collections(collection_load_names, vs_state, k_textbox, search_type_selector, vectorstore_radio, embedding_radio): - if type(embedding_radio) == gr.Radio: - embedding_radio = embedding_radio.value - persist_directory = os.path.join(".persisted_data", embedding_radio.replace(' ','_')) - persist_directory_raw = Path('.persisted_data_raw') - embedding_function = embedding_chooser(embedding_radio) - merged_documents = [] - merged_embeddings = [] - merged_vectorstore = None - if vectorstore_radio == 'Chroma': - for collection_name in collection_load_names: - chroma_obj_get = chromadb.Client(Settings( - chroma_db_impl="duckdb+parquet", - persist_directory=persist_directory, - anonymized_telemetry = True - )) - if collection_name == '': - continue - collection_obj = chroma_obj_get.get_collection(collection_name, embedding_function=embedding_function) - collection = collection_obj.get(include=["metadatas", "documents", "embeddings"]) - for i in range(len(collection['documents'])): - merged_documents.append(Document(page_content=collection['documents'][i], metadata = collection['metadatas'][i])) - merged_embeddings.append(collection['embeddings'][i]) - merged_vectorstore = Chroma(collection_name="temp", embedding_function=embedding_function) - merged_vectorstore.add_documents(documents=merged_documents, embeddings=merged_embeddings) - if vectorstore_radio == 'raw': - merged_vectorstore = [] - for collection_name in collection_load_names: - if collection_name == '': - continue - collection_path = persist_directory_raw / collection_name - docarr = np.load(collection_path.as_posix() +'.npy', allow_pickle=True) - merged_vectorstore.extend(docarr.tolist()) - # read every line and append to texts - # for f in os.listdir(collection_path): - # with open(os.path.join(collection_path, f), "r") as f: - # merged_vectorstore.append(f.readlines()) - return merged_vectorstore - -def set_chain_up(openai_api_key, google_api_key, google_cse_id, model_selector, k_textbox, search_type_selector, max_tokens_textbox, vectorstore_radio, vectorstore, agent): - if not agent or type(agent) == str: - if vectorstore != None: - if model_selector in ["gpt-3.5-turbo", "gpt-4"]: - if openai_api_key: - os.environ["OPENAI_API_KEY"] = openai_api_key - os.environ["GOOGLE_API_KEY"] = google_api_key - os.environ["GOOGLE_CSE_ID"] = google_cse_id - qa_chain = get_new_chain1(vectorstore, vectorstore_radio, model_selector, k_textbox, search_type_selector, max_tokens_textbox) - os.environ["OPENAI_API_KEY"] = "" - os.environ["GOOGLE_API_KEY"] = "" - os.environ["GOOGLE_CSE_ID"] = "" - return qa_chain - else: - return 'no_open_aikey' - else: - qa_chain = get_new_chain1(vectorstore, vectorstore_radio, model_selector, k_textbox, search_type_selector, max_tokens_textbox) - return qa_chain - else: - return 'no_vectorstore' - else: - return agent - -def delete_collection(all_collections_state, collections_viewer, select_vectorstore_radio, embedding_radio): - if type(embedding_radio) == gr.Radio: - embedding_radio = embedding_radio.value - persist_directory = os.path.join(".persisted_data", embedding_radio.replace(' ','_')) - persist_directory_raw = Path('.persisted_data_raw') - if select_vectorstore_radio == 'Chroma': - client = chromadb.Client(Settings( - chroma_db_impl="duckdb+parquet", - persist_directory=persist_directory # Optional, defaults to .chromadb/ in the current directory - )) - for collection in collections_viewer: - try: - client.delete_collection(collection) - all_collections_state.remove(collection) - collections_viewer.remove(collection) - except Exception as e: - logging.error(e) - if select_vectorstore_radio == 'raw': - for collection in collections_viewer: - try: - os.remove(os.path.join(persist_directory_raw.as_posix(), collection+'.npy' )) - all_collections_state.remove(collection) - collections_viewer.remove(collection) - except Exception as e: - logging.error(e) - return all_collections_state, collections_viewer - -def delete_all_collections(all_collections_state, select_vectorstore_radio, embedding_radio): - if type(embedding_radio) == gr.Radio: - embedding_radio = embedding_radio.value - persist_directory = os.path.join(".persisted_data", embedding_radio.replace(' ','_')) - persist_directory_raw = Path('.persisted_data_raw') - if select_vectorstore_radio == 'Chroma': - shutil.rmtree(persist_directory) - if select_vectorstore_radio == 'raw': - shutil.rmtree(persist_directory_raw) - return [] - -def list_collections(all_collections_state, select_vectorstore_radio, embedding_radio): - if type(embedding_radio) == gr.Radio: - embedding_radio = embedding_radio.value - persist_directory = os.path.join(".persisted_data", embedding_radio.replace(' ','_')) - persist_directory_raw = Path('.persisted_data_raw') - if select_vectorstore_radio == 'Chroma': - client = chromadb.Client(Settings( - chroma_db_impl="duckdb+parquet", - persist_directory=persist_directory # Optional, defaults to .chromadb/ in the current directory - )) - collection_names = [[c.name][0] for c in client.list_collections()] - return collection_names - if select_vectorstore_radio == 'raw': - if os.path.exists(persist_directory_raw): - return [f.name.split('.npy')[0] for f in os.scandir(persist_directory_raw)] - return [] - -def chat(inp, history, agent): - history = history or [] - if type(agent) == str: - if agent == 'no_open_aikey': - history.append((inp, "Please paste your OpenAI key to use")) - return history, history - if agent == 'no_vectorstore': - history.append((inp, "Please ingest some package docs to use")) - return history, history - else: - print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") - print("inp: " + inp) - history = history or [] - output = agent({"question": inp, "chat_history": history}) - answer = output["answer"] - history.append((inp, answer)) - print(history) - return history, history - -block = gr.Blocks(title = "chat-pykg", analytics_enabled = False, css=".gradio-container {background-color: system;}") - -with block: - gr.Markdown(" ") - with gr.Tabs() as tabs: - with gr.TabItem("Chat", id=0): - with gr.Row(): - chatbot = gr.Chatbot() - with gr.Row(): - clear_btn = gr.Button("Clear Chat", variant="secondary").style(full_width=False) - message = gr.Textbox( - label="What's your question?", - placeholder="What is this code?", - lines=1, - ) - submit = gr.Button(value="Send").style(full_width=False) - gr.Examples( - examples=[ - "I want to change the chat-pykg app to have a log viewer, where the user can see what python is doing in the background. How could I do that?", - "Hello, I want to allow chat-pykg to search google before answering. In the langchain docs it says you can use a tool to do this: from langchain.agents import load_tools\ntools = load_tools([“google-search”]). How would I need to change get_new_chain1 function to use tools when it needs to as well as searching the vectorstore? Thanks!", - "Great, thanks. What if I want to add other tools in the future? Can you please change get_new_chain1 function to do that?" - ], - inputs=message, - ) - with gr.Row(): - with gr.Column(scale=1): - model_selector = gr.Dropdown( - choices=["gpt-3.5-turbo", "gpt-4", "other"], - label="Model", - show_label=True, - value = "gpt-4" - ) - k_textbox = gr.Textbox( - placeholder="k: Number of search results to consider", - label="Search Results k:", - show_label=True, - lines=1, - value="20", - ) - search_type_selector = gr.Dropdown( - choices=["similarity", "mmr", "svm"], - label="Search Type", - show_label=True, - value = "similarity" - ) - max_tokens_textbox = gr.Textbox( - placeholder="max_tokens: Maximum number of tokens to generate", - label="max_tokens", - show_label=True, - lines=1, - value="500", - ) - with gr.Column(scale=1): - openai_api_key_textbox = gr.Textbox( - placeholder="Paste your OpenAI API key (sk-...)", - show_label=True, - lines=1, - type="password", - label="OpenAI API Key", - ) - google_api_key_textbox = gr.Textbox( - placeholder="Paste your Google API key (AIza...)", - show_label=True, - lines=1, - type="password", - label="Google API Key", - ) - google_cse_id_textbox = gr.Textbox( - placeholder="Paste your Google CSE ID (0123...)", - show_label=True, - lines=1, - type="password", - label="Google CSE ID", - ) - - gr.HTML( - """ - This simple application is an implementation of ChatGPT but over an external dataset. - The source code is split/broken down into many document objects using langchain's pythoncodetextsplitter, which apparently tries to keep whole functions etc. together. This means that each file in the source code is split into many smaller documents, and the k value is the number of documents to consider when searching for the most similar documents to the question. With gpt-3.5-turbo, k=10 seems to work well, but with gpt-4, k=20 seems to work better. - The model's memory is set to 5 messages, but I haven't tested with gpt-3.5-turbo yet to see if it works well. It seems to work well with gpt-4.""" - ) - with gr.TabItem("Repository Selector/Manager", id=1): - with gr.Row(): - collections_viewer = gr.CheckboxGroup(choices=[], label='Repository Viewer', show_label=True) - with gr.Row(): - load_collections_button = gr.Button(value="Load respositories to chat!", variant="secondary")#.style(full_width=False) - get_all_collection_names_button = gr.Button(value="List all saved repositories", variant="secondary")#.style(full_width=False) - delete_collections_button = gr.Button(value="Delete selected saved repositories", variant="secondary")#.style(full_width=False) - delete_all_collections_button = gr.Button(value="Delete all saved repositories", variant="secondary")#.style(full_width=False) - with gr.Row(): - select_embedding_radio = gr.Radio( - choices = ['Sentence Transformers', 'OpenAI'], - label="Embedding Options", - show_label=True, - value='Sentence Transformers' - ) - select_vectorstore_radio = gr.Radio( - choices = ['Chroma', 'raw'], - label="Vectorstore Options", - show_label=True, - value='Chroma' - ) - with gr.TabItem("Get New Repositories", id=2): - with gr.Row(): - all_collections_to_get = gr.List(headers=['Repository (organisation/repo_name)', 'Folders (folder1,folder2...)'], row_count=3, col_count=2, label='Repositories to get', show_label=True, interactive=True, max_cols=2, max_rows=3) - make_collections_button = gr.Button(value="Get new repositories", variant="secondary").style(full_width=False) - with gr.Row(): - chunk_size_textbox = gr.Textbox( - placeholder="Chunk size", - label="Chunk size", - show_label=True, - lines=1, - value="2000" - ) - chunk_overlap_textbox = gr.Textbox( - placeholder="Chunk overlap", - label="Chunk overlap", - show_label=True, - lines=1, - value="200" - ) - make_embedding_radio = gr.Radio( - choices = ['Sentence Transformers', 'OpenAI'], - label="Embedding Options", - show_label=True, - value='Sentence Transformers' - ) - make_vectorstore_radio = gr.Radio( - choices = ['Chroma', 'raw'], - label="Vectorstore Options", - show_label=True, - value='Chroma' - ) - - with gr.Row(): - gr.HTML('
chat-pykg See the Langchain textsplitter docs ') - - history_state = gr.State() - agent_state = gr.State() - vs_state = gr.State() - all_collections_state = gr.State() - chat_state = gr.State() - debug_state = gr.State() - debug_state.value = False - radio_state = gr.State() - - submit.click(set_chain_up, inputs=[openai_api_key_textbox, google_api_key_textbox, google_cse_id_textbox, model_selector, k_textbox, search_type_selector, max_tokens_textbox, select_vectorstore_radio, vs_state, agent_state], outputs=[agent_state]).then(chat, inputs=[message, history_state, agent_state], outputs=[chatbot, history_state]) - message.submit(set_chain_up, inputs=[openai_api_key_textbox, google_api_key_textbox, google_cse_id_textbox, model_selector, k_textbox, search_type_selector, max_tokens_textbox, select_vectorstore_radio, vs_state, agent_state], outputs=[agent_state]).then(chat, inputs=[message, history_state, agent_state], outputs=[chatbot, history_state]) - - load_collections_button.click(merge_collections, inputs=[collections_viewer, vs_state, k_textbox, search_type_selector, select_vectorstore_radio, select_embedding_radio], outputs=[vs_state])#.then(change_tab, None, tabs) #.then(set_chain_up, inputs=[openai_api_key_textbox, model_selector, k_textbox, max_tokens_textbox, vs_state, agent_state], outputs=[agent_state]) - make_collections_button.click(ingest_docs, inputs=[all_collections_state, all_collections_to_get, chunk_size_textbox, chunk_overlap_textbox, select_vectorstore_radio, select_embedding_radio, debug_state], outputs=[all_collections_state, all_collections_to_get], show_progress=True).then(update_checkboxgroup, inputs = [all_collections_state], outputs = [collections_viewer]) - delete_collections_button.click(delete_collection, inputs=[all_collections_state, collections_viewer, select_vectorstore_radio, select_embedding_radio], outputs=[all_collections_state, collections_viewer]).then(update_checkboxgroup, inputs = [all_collections_state], outputs = [collections_viewer]) - delete_all_collections_button.click(delete_all_collections, inputs=[all_collections_state,select_vectorstore_radio, select_embedding_radio], outputs=[all_collections_state]).then(update_checkboxgroup, inputs = [all_collections_state], outputs = [collections_viewer]) - get_all_collection_names_button.click(list_collections, inputs=[all_collections_state,select_vectorstore_radio, select_embedding_radio], outputs=[all_collections_state]).then(update_checkboxgroup, inputs = [all_collections_state], outputs = [collections_viewer]) - clear_btn.click(clear_chat, inputs = [chatbot, history_state], outputs = [chatbot, history_state]) - - make_embedding_radio.change(update_radio, inputs = make_embedding_radio, outputs = select_embedding_radio) - select_embedding_radio.change(update_radio, inputs = select_embedding_radio, outputs = make_embedding_radio) - make_vectorstore_radio.change(update_radio, inputs =make_vectorstore_radio, outputs = select_vectorstore_radio) - select_vectorstore_radio.change(update_radio, inputs = select_vectorstore_radio, outputs = make_vectorstore_radio) - - # Whenever chain parameters change, destroy the agent. - input_list = [openai_api_key_textbox, model_selector, k_textbox, search_type_selector, max_tokens_textbox, select_vectorstore_radio, make_embedding_radio] - output_list = [agent_state] - for input_item in input_list: - input_item.change( - destroy_state, - inputs=output_list, - outputs=output_list, - ) - all_collections_state.value = list_collections(all_collections_state, select_vectorstore_radio, select_embedding_radio) - block.load(update_checkboxgroup, inputs = all_collections_state, outputs = collections_viewer) - log_textbox_handler = LogTextboxHandler(gr.TextArea(interactive=False, placeholder="Logs will appear here...", visible=False)) - log_textbox = log_textbox_handler.textbox - logging.getLogger().addHandler(log_textbox_handler) - log_textbox_visibility_state = gr.State() - log_textbox_visibility_state.value = False - log_toggle_button = gr.Button("Toggle Log", variant="secondary") - log_toggle_button.click(toggle_log_textbox, inputs=[log_textbox_visibility_state], outputs=[log_textbox_visibility_state,log_textbox]) - - gr.HTML( - "Powered by LangChain 🦜️🔗 " - ) -block.queue(concurrency_count=40) -block.launch(debug=True) diff --git a/spaces/xfys/yolov5_tracking/trackers/strong_sort/deep/reid/torchreid/data/__init__.py b/spaces/xfys/yolov5_tracking/trackers/strong_sort/deep/reid/torchreid/data/__init__.py deleted file mode 100644 index 5318a16326d671a1b5a8ba949750124fd1d6b05c..0000000000000000000000000000000000000000 --- a/spaces/xfys/yolov5_tracking/trackers/strong_sort/deep/reid/torchreid/data/__init__.py +++ /dev/null @@ -1,7 +0,0 @@ -from __future__ import print_function, absolute_import - -from .datasets import ( - Dataset, ImageDataset, VideoDataset, register_image_dataset, - register_video_dataset -) -from .datamanager import ImageDataManager, VideoDataManager diff --git a/spaces/xiaoxicc/susu/overwrites.py b/spaces/xiaoxicc/susu/overwrites.py deleted file mode 100644 index a87499a81bb3c23bf34c1faadcc02085567cd447..0000000000000000000000000000000000000000 --- a/spaces/xiaoxicc/susu/overwrites.py +++ /dev/null @@ -1,55 +0,0 @@ -from __future__ import annotations -import logging - -from llama_index import Prompt -from typing import List, Tuple -import mdtex2html - -from presets import * -from llama_func import * - - -def compact_text_chunks(self, prompt: Prompt, text_chunks: List[str]) -> List[str]: - logging.debug("Compacting text chunks...🚀🚀🚀") - combined_str = [c.strip() for c in text_chunks if c.strip()] - combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)] - combined_str = "\n\n".join(combined_str) - # resplit based on self.max_chunk_overlap - text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1) - return text_splitter.split_text(combined_str) - - -def postprocess( - self, y: List[Tuple[str | None, str | None]] -) -> List[Tuple[str | None, str | None]]: - """ - Parameters: - y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. - Returns: - List of tuples representing the message and response. Each message and response will be a string of HTML. - """ - if y is None or y == []: - return [] - tag_regex = re.compile(r"^<\w+>[^<]+\w+>") - if tag_regex.search(y[-1][1]): - y[-1] = (convert_user(y[-1][0]), y[-1][1]) - else: - y[-1] = (convert_user(y[-1][0]), convert_mdtext(y[-1][1])) - return y - -with open("./assets/custom.js", "r", encoding="utf-8") as f, open("./assets/Kelpy-Codos.js", "r", encoding="utf-8") as f2: - customJS = f.read() - kelpyCodos = f2.read() - -def reload_javascript(): - print("Reloading javascript...") - js = f'' - def template_response(*args, **kwargs): - res = GradioTemplateResponseOriginal(*args, **kwargs) - res.body = res.body.replace(b'