parquet-converter commited on
Commit
717e0f1
·
1 Parent(s): dfa8bd9

Update parquet files (step 35 of 249)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. spaces/123Kumar/vits-uma-genshin-honkai123/transforms.py +0 -193
  2. spaces/1gistliPinn/ChatGPT4/Examples/Fix Generator V.2.0 Samsungl.md +0 -9
  3. spaces/1pelhydcardo/ChatGPT-prompt-generator/README.md +0 -14
  4. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Download Dummynation Mod APK with Unlimited Troops and No Ads.md +0 -106
  5. spaces/1phancelerku/anime-remove-background/.md +0 -44
  6. spaces/1phancelerku/anime-remove-background/Bus Simulator Indonesia Mod APK A Game that Combines Simulation Adventure and Education.md +0 -101
  7. spaces/1phancelerku/anime-remove-background/Download and Install Instagram 4.0 2 APK - The Best Way to Share Your Photos and Videos.md +0 -127
  8. spaces/2ndelement/voicevox/voicevox_engine/cancellable_engine.py +0 -220
  9. spaces/AIGC-Audio/AudioGPT/audio_to_text/captioning/utils/README.md +0 -19
  10. spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/encoders/open_clap/openai.py +0 -129
  11. spaces/Abdllh/poetry2023/README.md +0 -13
  12. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/plugins/lzstring-plugin.d.ts +0 -8
  13. spaces/AlekseyKorshuk/thin-plate-spline-motion-model/README.md +0 -13
  14. spaces/AlexWang/lama/app.py +0 -49
  15. spaces/Amrrs/DragGan-Inversion/gen_images.py +0 -160
  16. spaces/Amrrs/DragGan-Inversion/stylegan_human/utils/util.py +0 -84
  17. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/examples/custom_diffusion/README.md +0 -280
  18. spaces/Andy1621/IAT_enhancement/model/blocks.py +0 -281
  19. spaces/Andy1621/uniformer_video_demo/kinetics_class_index.py +0 -402
  20. spaces/AquaSuisei/ChatGPTXE/modules/overwrites.py +0 -56
  21. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/chardet/euctwprober.py +0 -47
  22. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/urllib3/util/__init__.py +0 -49
  23. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/setuptools/_vendor/more_itertools/recipes.py +0 -620
  24. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/setuptools/_vendor/pyparsing/testing.py +0 -331
  25. spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/data/transforms/__init__.py +0 -14
  26. spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/structures/image_list.py +0 -110
  27. spaces/BatuhanYilmaz/Youtube-Transcriber/utils.py +0 -115
  28. spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/docs/waiter.py +0 -184
  29. spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/chardet/euckrprober.py +0 -47
  30. spaces/CVPR/LIVE/thrust/dependencies/cub/tune/Makefile +0 -192
  31. spaces/CVPR/LIVE/thrust/thrust/system/detail/adl/generate.h +0 -44
  32. spaces/CVPR/LIVE/thrust/thrust/system/tbb/detail/copy.h +0 -57
  33. spaces/CVPR/Text2Human/Text2Human/data/segm_attr_dataset.py +0 -167
  34. spaces/CVPR/regionclip-demo/detectron2/data/datasets/builtin_meta.py +0 -560
  35. spaces/CVPR/regionclip-demo/detectron2/utils/testing.py +0 -132
  36. spaces/ChallengeHub/Chinese-LangChain/tests/test_duckpy.py +0 -15
  37. spaces/ChandraMohanNayal/AutoGPT/autogpt/config/singleton.py +0 -24
  38. spaces/CjangCjengh/Shanghainese-TTS/monotonic_align/__init__.py +0 -19
  39. spaces/Clementapa/orang-outan-image-video-detection/style.css +0 -10
  40. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/index-d80d0bbf.js +0 -2
  41. spaces/Datasculptor/MusicGen/audiocraft/utils/export.py +0 -56
  42. spaces/Deci/DeciLM-6b-instruct/app.py +0 -136
  43. spaces/DragGan/DragGan-Inversion/PTI/training/projectors/w_projector.py +0 -142
  44. spaces/DragGan/DragGan/stylegan_human/torch_utils/ops/conv2d_gradfix.py +0 -172
  45. spaces/EPFL-VILAB/MultiMAE/mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.h +0 -35
  46. spaces/Eddycrack864/Applio-Inference/julius/utils.py +0 -101
  47. spaces/Edisonymy/buy-or-rent/src/mainbody.py +0 -237
  48. spaces/Epoching/DocumentQA/DiT_Extractor/dit_object_detection/ditod/beit.py +0 -671
  49. spaces/EronSamez/RVC_HFmeu/demucs/__main__.py +0 -317
  50. spaces/EuroPython2022/pyro-vision/app.py +0 -72
spaces/123Kumar/vits-uma-genshin-honkai123/transforms.py DELETED
@@ -1,193 +0,0 @@
1
- import torch
2
- from torch.nn import functional as F
3
-
4
- import numpy as np
5
-
6
-
7
- DEFAULT_MIN_BIN_WIDTH = 1e-3
8
- DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
- DEFAULT_MIN_DERIVATIVE = 1e-3
10
-
11
-
12
- def piecewise_rational_quadratic_transform(inputs,
13
- unnormalized_widths,
14
- unnormalized_heights,
15
- unnormalized_derivatives,
16
- inverse=False,
17
- tails=None,
18
- tail_bound=1.,
19
- min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
- min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
- min_derivative=DEFAULT_MIN_DERIVATIVE):
22
-
23
- if tails is None:
24
- spline_fn = rational_quadratic_spline
25
- spline_kwargs = {}
26
- else:
27
- spline_fn = unconstrained_rational_quadratic_spline
28
- spline_kwargs = {
29
- 'tails': tails,
30
- 'tail_bound': tail_bound
31
- }
32
-
33
- outputs, logabsdet = spline_fn(
34
- inputs=inputs,
35
- unnormalized_widths=unnormalized_widths,
36
- unnormalized_heights=unnormalized_heights,
37
- unnormalized_derivatives=unnormalized_derivatives,
38
- inverse=inverse,
39
- min_bin_width=min_bin_width,
40
- min_bin_height=min_bin_height,
41
- min_derivative=min_derivative,
42
- **spline_kwargs
43
- )
44
- return outputs, logabsdet
45
-
46
-
47
- def searchsorted(bin_locations, inputs, eps=1e-6):
48
- bin_locations[..., -1] += eps
49
- return torch.sum(
50
- inputs[..., None] >= bin_locations,
51
- dim=-1
52
- ) - 1
53
-
54
-
55
- def unconstrained_rational_quadratic_spline(inputs,
56
- unnormalized_widths,
57
- unnormalized_heights,
58
- unnormalized_derivatives,
59
- inverse=False,
60
- tails='linear',
61
- tail_bound=1.,
62
- min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
- min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
- min_derivative=DEFAULT_MIN_DERIVATIVE):
65
- inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
- outside_interval_mask = ~inside_interval_mask
67
-
68
- outputs = torch.zeros_like(inputs)
69
- logabsdet = torch.zeros_like(inputs)
70
-
71
- if tails == 'linear':
72
- unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
- constant = np.log(np.exp(1 - min_derivative) - 1)
74
- unnormalized_derivatives[..., 0] = constant
75
- unnormalized_derivatives[..., -1] = constant
76
-
77
- outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
- logabsdet[outside_interval_mask] = 0
79
- else:
80
- raise RuntimeError('{} tails are not implemented.'.format(tails))
81
-
82
- outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
- inputs=inputs[inside_interval_mask],
84
- unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
- unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
- unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
- inverse=inverse,
88
- left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
- min_bin_width=min_bin_width,
90
- min_bin_height=min_bin_height,
91
- min_derivative=min_derivative
92
- )
93
-
94
- return outputs, logabsdet
95
-
96
- def rational_quadratic_spline(inputs,
97
- unnormalized_widths,
98
- unnormalized_heights,
99
- unnormalized_derivatives,
100
- inverse=False,
101
- left=0., right=1., bottom=0., top=1.,
102
- min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
- min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
- min_derivative=DEFAULT_MIN_DERIVATIVE):
105
- if torch.min(inputs) < left or torch.max(inputs) > right:
106
- raise ValueError('Input to a transform is not within its domain')
107
-
108
- num_bins = unnormalized_widths.shape[-1]
109
-
110
- if min_bin_width * num_bins > 1.0:
111
- raise ValueError('Minimal bin width too large for the number of bins')
112
- if min_bin_height * num_bins > 1.0:
113
- raise ValueError('Minimal bin height too large for the number of bins')
114
-
115
- widths = F.softmax(unnormalized_widths, dim=-1)
116
- widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
- cumwidths = torch.cumsum(widths, dim=-1)
118
- cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
- cumwidths = (right - left) * cumwidths + left
120
- cumwidths[..., 0] = left
121
- cumwidths[..., -1] = right
122
- widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
-
124
- derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
-
126
- heights = F.softmax(unnormalized_heights, dim=-1)
127
- heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
- cumheights = torch.cumsum(heights, dim=-1)
129
- cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
- cumheights = (top - bottom) * cumheights + bottom
131
- cumheights[..., 0] = bottom
132
- cumheights[..., -1] = top
133
- heights = cumheights[..., 1:] - cumheights[..., :-1]
134
-
135
- if inverse:
136
- bin_idx = searchsorted(cumheights, inputs)[..., None]
137
- else:
138
- bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
-
140
- input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
- input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
-
143
- input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
- delta = heights / widths
145
- input_delta = delta.gather(-1, bin_idx)[..., 0]
146
-
147
- input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
- input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
-
150
- input_heights = heights.gather(-1, bin_idx)[..., 0]
151
-
152
- if inverse:
153
- a = (((inputs - input_cumheights) * (input_derivatives
154
- + input_derivatives_plus_one
155
- - 2 * input_delta)
156
- + input_heights * (input_delta - input_derivatives)))
157
- b = (input_heights * input_derivatives
158
- - (inputs - input_cumheights) * (input_derivatives
159
- + input_derivatives_plus_one
160
- - 2 * input_delta))
161
- c = - input_delta * (inputs - input_cumheights)
162
-
163
- discriminant = b.pow(2) - 4 * a * c
164
- assert (discriminant >= 0).all()
165
-
166
- root = (2 * c) / (-b - torch.sqrt(discriminant))
167
- outputs = root * input_bin_widths + input_cumwidths
168
-
169
- theta_one_minus_theta = root * (1 - root)
170
- denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
- * theta_one_minus_theta)
172
- derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
- + 2 * input_delta * theta_one_minus_theta
174
- + input_derivatives * (1 - root).pow(2))
175
- logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
-
177
- return outputs, -logabsdet
178
- else:
179
- theta = (inputs - input_cumwidths) / input_bin_widths
180
- theta_one_minus_theta = theta * (1 - theta)
181
-
182
- numerator = input_heights * (input_delta * theta.pow(2)
183
- + input_derivatives * theta_one_minus_theta)
184
- denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
- * theta_one_minus_theta)
186
- outputs = input_cumheights + numerator / denominator
187
-
188
- derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
- + 2 * input_delta * theta_one_minus_theta
190
- + input_derivatives * (1 - theta).pow(2))
191
- logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
-
193
- return outputs, logabsdet
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Fix Generator V.2.0 Samsungl.md DELETED
@@ -1,9 +0,0 @@
1
- <br />
2
- <p>Finally, since some people don’t like documentation and don’t want to read, we allow you to instantly see the output of our generators by downloading this draft and running the python script in the top-left corner of your browser. An article about our work can be found here: </p>
3
- <h2>Fix Generator V.2.0 Samsungl</h2><br /><p><b><b>DOWNLOAD</b> &#127379; <a href="https://imgfil.com/2uxZJw">https://imgfil.com/2uxZJw</a></b></p><br /><br />
4
- <p>Solar generators are the most expensive option, costing seven times as much as a standard fuel-powered generator. Price isnt the only issue. With fuel-powered generators, the output is consistent and guaranteed. However, solar generators require sunlight can be affected by things like cloud cover, placement location, and the length of the dayso they are nowhere near as reliable as their fossil fuel counterparts. Solar generators do store power in a power bank, which manufacturers hope will get you through any cloudy patches. But the power bank wont charge when you are operating at capacity.</p>
5
- <p>A conventional generators main benefit over the other types listed in this article is power output. While there is a whole range of conventional generators, they usually have an output of at least 4,000 Watts and up to around 12,000 Watts. While thats overkill if you want to hook up a sound system for a family BBQ, its ideal if youre going to power multiple large appliances during a power outage. They are also cheaper than inverter or solar generators.</p>
6
- <p>The traditional list of uses of generators is often long. Powering something that needs power when the sun doesnt shine or when the power grid is down is the most common. A generator provides ongoing and predictable power during a power outage. A generator provides power for things such as running a home lighting system at night. It can provide power for lights when batteries run out or for power tools when the AC power isnt available. It can provide power to water pumps and pump stations during a power failure. It can charge a cell phone or other electronic devices when the grid is down and when the power isnt provided by the grid. A generator can power a lantern during a storm. </p>
7
- <p></p> 899543212b<br />
8
- <br />
9
- <br />
 
 
 
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/README.md DELETED
@@ -1,14 +0,0 @@
1
- ---
2
- title: ChatGPT Prompt Generator
3
- emoji: 👨🏻‍🎤
4
- colorFrom: purple
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 3.16.2
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- duplicated_from: umair007/ChatGPT-prompt-generator
12
- ---
13
-
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Download Dummynation Mod APK with Unlimited Troops and No Ads.md DELETED
@@ -1,106 +0,0 @@
1
-
2
- <h1>Dummynation Mod APK Unlimited Troops: How to Conquer the World with Ease</h1>
3
- <p>Do you love strategy games where you can control a country and lead it to world domination? If so, you might want to check out <strong>Dummynation</strong>, a game that gives you unlimited power over a country with a single promise to fulfill: world domination. But how do you manage to achieve it? That's up to you. You can expand your territory by military occupation, analyze and manipulate diplomatic relations, use your country's resources to sustain your research and military campaigns, and determine your country's economic policy. Sounds exciting, right? But what if we tell you that there is a way to make it even more exciting? That's right, we are talking about <strong>Dummynation Mod APK Unlimited Troops</strong>, a modded version of the game that removes ads and adds new features, such as unlimited troops. In this article, we will tell you everything you need to know about this mod, how to download and install it, how to play it, and some tips and tricks to help you conquer the world with ease.</p>
4
- <h2>dummynation mod apk unlimited troops</h2><br /><p><b><b>Download Zip</b> &#9734;&#9734;&#9734; <a href="https://urlin.us/2uT1WO">https://urlin.us/2uT1WO</a></b></p><br /><br />
5
- <h2>What is Dummynation?</h2>
6
- <p>Dummynation is a strategy game where you have unlimited power over a country, with a single promise to fulfill: world domination. How you manage to achieve it is up to you.</p>
7
- <h3>A strategy game where you have unlimited power over a country</h3>
8
- <p>In Dummynation, you can choose any country in the world to start with, and customize your leader's name and appearance. You can then use the map to select a target country and send your troops to occupy it. You can also monitor your power, relations, resources and economy on the dashboard, and use research and policy options to improve your country's performance and influence.</p>
9
- <h3>The goal is to achieve world domination by expanding your territory, manipulating diplomacy, managing resources and economy</h3>
10
- <p>The ultimate goal of Dummynation is to achieve world domination by any means necessary. You can expand your territory by invading other countries with your troops, or by forming alliances and treaties with them. You can also manipulate diplomatic relations by using propaganda, espionage, sabotage, or bribery. You can manage your resources by allocating them to different sectors, such as military, research, or economy. You can also determine your economic policy by setting taxes, tariffs, subsidies, or trade agreements. The game offers a lot of freedom and flexibility in how you want to play and achieve your goal.</p>
11
- <h2>What is Dummynation Mod APK Unlimited Troops?</h2>
12
- <p>Dummynation Mod APK Unlimited Troops is a modded version of the game that removes ads and adds new features, such as unlimited troops. The main feature is unlimited troops, which allows you to invade any country without worrying about casualties or costs.</p>
13
- <p>dummynation mod apk no ads<br />
14
- dummynation mod apk latest version<br />
15
- dummynation mod apk free download<br />
16
- dummynation mod apk unlimited gems<br />
17
- dummynation mod apk android<br />
18
- dummynation mod apk happymod<br />
19
- dummynation mod apk world domination<br />
20
- dummynation mod apk strategy game<br />
21
- dummynation mod apk unlimited power<br />
22
- dummynation mod apk military occupation<br />
23
- dummynation mod apk diplomatic relations<br />
24
- dummynation mod apk resource management<br />
25
- dummynation mod apk economic policy<br />
26
- dummynation mod apk new weapons<br />
27
- dummynation mod apk updated graphics<br />
28
- dummynation mod apk new levels<br />
29
- dummynation mod apk easy install<br />
30
- dummynation mod apk compatible devices<br />
31
- dummynation mod apk anti-ban mechanism<br />
32
- dummynation mod apk unlock characters<br />
33
- dummynation mod apk offline mode<br />
34
- dummynation mod apk multiplayer mode<br />
35
- dummynation mod apk custom country<br />
36
- dummynation mod apk realistic simulation<br />
37
- dummynation mod apk historical scenarios<br />
38
- dummynation mod apk random events<br />
39
- dummynation mod apk achievements and leaderboards<br />
40
- dummynation mod apk tips and tricks<br />
41
- dummynation mod apk cheats and hacks<br />
42
- dummynation mod apk reviews and ratings<br />
43
- how to download dummynation mod apk unlimited troops<br />
44
- how to play dummynation mod apk unlimited troops<br />
45
- how to update dummynation mod apk unlimited troops<br />
46
- how to uninstall dummynation mod apk unlimited troops<br />
47
- how to backup and restore dummynation mod apk unlimited troops<br />
48
- how to fix errors in dummynation mod apk unlimited troops<br />
49
- how to contact developer of dummynation mod apk unlimited troops<br />
50
- how to support developer of dummynation mod apk unlimited troops<br />
51
- best alternatives to dummynation mod apk unlimited troops<br />
52
- best strategies for dummynation mod apk unlimited troops<br />
53
- best countries to play in dummynation mod apk unlimited troops<br />
54
- best weapons to use in dummynation mod apk unlimited troops<br />
55
- best allies and enemies in dummynation mod apk unlimited troops<br />
56
- best resources to invest in dummynation mod apk unlimited troops<br />
57
- best economic policies to adopt in dummynation mod apk unlimited troops<br />
58
- best ways to achieve world domination in dummynation mod apk unlimited troops<br />
59
- best ways to avoid war in dummynation mod apk unlimited troops<br />
60
- best ways to win war in dummynation mod apk unlimited troops<br />
61
- best ways to have fun in dummynation mod apk unlimited troops</p>
62
- <h3>A modded version of the game that removes ads and adds new features</h3>
63
- <p>Dummynation Mod APK Unlimited Troops is a modified version of the original game that removes annoying ads and adds new features that enhance the gameplay. The modded version is not available on the official app store, but you can download it from a reliable source online. The modded version does not require root access or any special permissions to install and run.</p>
64
- <h3>The main feature is unlimited troops, which allows you to invade any country without worrying about casualties or costs</h3>
65
- <p>The main feature of Dummynation Mod APK Unlimited Troops is unlimited troops, which means you can send as many troops as you want to any country you want to invade. You don't have to worry about losing troops or spending money on them. You can also use different types of troops, such as infantry, tanks, planes, ships, or missiles. This feature gives you a huge advantage over your enemies and makes it easier to conquer the world.</p>
66
- <h2>How to download and install Dummynation Mod APK Unlimited Troops?</h2>
67
- <p>Downloading and installing Dummynation Mod APK Unlimited Troops is easy and simple. Just follow these steps:</p>
68
- <h3>Download the modded APK file from a reliable source</h3>
69
- <p>The first step is to download the modded APK file from a reliable source online. You can search for Dummynation Mod APK Unlimited Troops on Google or any other search engine and find a link that offers a safe and secure download. Make sure you download the latest version of the mod that is compatible with your device.</p>
70
- <h3>Enable unknown sources on your device settings</h3>
71
- <p>The next step is to enable unknown sources on your device settings. This will allow you to install apps that are not from the official app store. To do this, go to your device settings and look for security or privacy options. Then find the option that says unknown sources or allow installation from unknown sources and turn it on.</p>
72
- <h3>Install the APK file and launch the game</h3>
73
- <p>The final step is to install the APK file and launch the game. To do this, locate the downloaded APK file on your device storage and tap on it. Follow the instructions on the screen to complete the installation process. Once done, you can launch the game from your app drawer or home screen and enjoy playing Dummynation Mod APK Unlimited Troops.</p> <h2>How to play Dummynation Mod APK Unlimited Troops?</h2>
74
- <p>Playing Dummynation Mod APK Unlimited Troops is fun and easy. Just follow these steps:</p>
75
- <h3>Choose a country to start with and customize your leader's name and appearance</h3>
76
- <p>The first step is to choose a country to start with and customize your leader's name and appearance. You can choose any country in the world, from the USA to China, from Russia to Brazil, from India to Australia. You can also change your leader's name, gender, hair, skin, and clothes. You can make your leader look like yourself, a famous person, or a fictional character. The choice is yours.</p>
77
- <h3>Use the map to select a target country and send your troops to occupy it</h3>
78
- <p>The next step is to use the map to select a target country and send your troops to occupy it. You can zoom in and out of the map and see the details of each country, such as its name, flag, population, power, relations, resources, and economy. You can also see the color of each country, which indicates its status: green for allies, red for enemies, yellow for neutral, and blue for yourself. To select a target country, simply tap on it and see its information on the bottom of the screen. To send your troops to occupy it, tap on the attack button and choose the type and number of troops you want to send. You can use unlimited troops, so don't be afraid to send as many as you want.</p>
79
- <h3>Monitor your power, relations, resources and economy on the dashboard</h3>
80
- <p>The third step is to monitor your power, relations, resources and economy on the dashboard. The dashboard is located on the top of the screen and shows you important information about your country and the world. You can see your power level, which indicates how strong you are compared to other countries. You can also see your relations with other countries, which indicates how friendly or hostile they are towards you. You can also see your resources, which include food, water, oil, metal, uranium, and money. You can use your resources to sustain your research and military campaigns. You can also see your economy, which includes your income and expenses. You can use your economy to determine your tax rate, trade agreements, subsidies, and tariffs.</p>
81
- <h3>Use research and policy options to improve your country's performance and influence</h3>
82
- <p>The fourth step is to use research and policy options to improve your country's performance and influence. You can access these options by tapping on the menu button on the top right corner of the screen. You can then choose between research or policy options. Research options allow you to unlock new technologies that can improve your military, economy, or diplomacy. For example, you can research nuclear weapons that can destroy entire countries in one strike. Policy options allow you to set your country's stance on various issues that can affect your relations with other countries. For example, you can set your policy on human rights that can make you more popular or unpopular among other countries.</p> <h2>Tips and tricks for Dummynation Mod APK Unlimited Troops</h2>
83
- <p>Playing Dummynation Mod APK Unlimited Troops can be a lot of fun, but also challenging. Here are some tips and tricks to help you conquer the world with ease:</p>
84
- <h3>Balance your expansion and diplomacy to avoid creating too many enemies</h3>
85
- <p>While it may be tempting to use your unlimited troops to invade every country you see, you should also consider the consequences of your actions. If you create too many enemies, you may face a coalition of countries that will try to stop you. You may also lose the support of your allies, who may turn against you or abandon you. Therefore, you should balance your expansion and diplomacy to avoid creating too many enemies. You can do this by forming alliances with other countries, respecting their sovereignty, honoring your treaties, and avoiding unnecessary conflicts. You can also use diplomacy to persuade or intimidate other countries to join you or surrender to you.</p>
86
- <h3>Use your unlimited troops wisely and strategically to overcome stronger opponents</h3>
87
- <p>Even though you have unlimited troops, you should still use them wisely and strategically to overcome stronger opponents. You should not just send your troops blindly to any country, but rather plan your attacks carefully and choose the best type and number of troops for each situation. You should also consider the terrain, weather, distance, and defense of each country before attacking them. You should also use different types of troops, such as infantry, tanks, planes, ships, or missiles, to exploit the weaknesses of your enemies and gain an advantage over them.</p>
88
- <h3>Invest in research and economy to gain an edge over your rivals</h3>
89
- <p>Besides using your unlimited troops, you should also invest in research and economy to gain an edge over your rivals. Research can help you unlock new technologies that can improve your military, economy, or diplomacy. For example, you can research nuclear weapons that can destroy entire countries in one strike, or stealth technology that can make your troops invisible to radar. Economy can help you increase your income and reduce your expenses. For example, you can increase your tax rate, trade agreements, subsidies, or tariffs to boost your revenue, or reduce your military spending, welfare spending, or debt payments to lower your costs.</p>
90
- <h3>Explore new levels and areas to discover new challenges and rewards</h3>
91
- <p>Dummynation Mod APK Unlimited Troops offers a lot of variety and replay value by providing different levels and areas to explore. Each level has a different difficulty and objective, such as conquering a continent, a region, or the whole world. Each area has a different theme and design, such as Europe, Asia, Africa, America, or Antarctica. By exploring new levels and areas, you can discover new challenges and rewards that will keep you entertained and motivated.</p>
92
- <h2>Conclusion</h2>
93
- <p>Dummynation Mod APK Unlimited Troops is a fun and addictive game that lets you experience the thrill of world domination. The modded version enhances the gameplay by removing ads and adding unlimited troops and other features. The game is easy to download, install and play, and offers hours of entertainment for strategy lovers. If you are looking for a game that will challenge your strategic skills and satisfy your desire for power, then Dummynation Mod APK Unlimited Troops is the game for you.</p>
94
- <h2>FAQs</h2>
95
- <h4>Is Dummynation Mod APK Unlimited Troops safe to use?</h4>
96
- <p>Dummynation Mod APK Unlimited Troops is safe to use as long as you download it from a reliable source online. The modded version does not contain any viruses or malware that can harm your device or data. However, you should always be careful when downloading any app from unknown sources and scan it with an antivirus before installing it.</p>
97
- <h4>What are the benefits of using Dummynation Mod APK Unlimited Troops?</h4>
98
- <p>The benefits of using Dummynation Mod APK Unlimited Troops are that it removes ads and adds unlimited troops and other features that enhance the gameplay. By using this mod, you can enjoy playing Dummynation without any interruptions or limitations. You can also have more fun and freedom in conquering the world with unlimited troops.</p>
99
- <h4>How can I update Dummynation Mod APK Unlimited Troops?</h4>
100
- <p>You can update Dummynation Mod APK Unlimited Troops by downloading the latest version of the mod from a reliable source online. You can then install it over the existing version without losing your progress or data. You should always update the mod whenever there is a new version available to ensure compatibility and performance.</p>
101
- <h4>Can I play Dummynation Mod APK Unlimited Troops offline?</h4>
102
- <p>Yes, you can play Dummynation Mod APK Unlimited Troops offline without any internet connection. The game does not require any internet connection to run or save your progress. However, you may need an internet connection to download and install the mod, or to access some online features, such as leaderboards or achievements.</p>
103
- <h4>Can I share my progress and achievements with other players?</h4>
104
- <p>Yes, you can share your progress and achievements with other players by using the social media buttons on the game. You can also compare your scores and rankings with other players on the leaderboards or achievements. You can also challenge your friends or other players to see who can conquer the world faster or better.</p> 197e85843d<br />
105
- <br />
106
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/.md DELETED
@@ -1,44 +0,0 @@
1
- ## Warman Crack With Full Game
2
-
3
-
4
-
5
-
6
-
7
- WORK
8
-
9
-
10
-
11
- **Click Here ✅ [https://vittuv.com/2tBMxo](https://vittuv.com/2tBMxo)**
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
- Ansys Discovery Student is a cutting-edge product design software for students that leverages our instantaneous simulation technology. It allows you to create and modify geometry models easily with Ansys SpaceClaim technology, which is a direct modeling tool that eliminates the need for complex CAD operations. It also enables you to perform thermal, structural and fluids simulations in real time with completely meshless and interactive solvers. With Ansys Discovery Student, you can explore and understand physics concepts without spending a lot of time learning how to use a complicated simulation tool.
26
-
27
-
28
-
29
- Ansys Discovery Student is ideal for students who want to learn about product design and engineering in a fun and intuitive way. You can experiment with different design scenarios and see how they affect the performance and behavior of your product. You can also compare different physics phenomena and discover how they interact with each other. For example, you can see how heat transfer affects the stress and deformation of a metal part, or how fluid flow affects the aerodynamics and lift of a wing.
30
-
31
-
32
-
33
- Ansys Discovery Student is also a great tool for students who want to prepare for their future careers in engineering and design. You can use it to create impressive projects and portfolios that showcase your skills and creativity. You can also use it to collaborate with your classmates and instructors and get feedback on your work. Ansys Discovery Student is compatible with other Ansys products, so you can easily export your models and simulations to other tools for further analysis and optimization.
34
-
35
-
36
-
37
- Ansys Discovery Student is free to download and use for academic purposes. You can install it on your personal computer or laptop and access it anytime and anywhere. You can also access online tutorials, videos, webinars and community forums to help you get started and learn more about the software. Ansys Discovery Student is the ultimate product design software for students who want to learn by doing and have fun along the way.
38
-
39
- 145887f19f
40
-
41
-
42
-
43
-
44
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Bus Simulator Indonesia Mod APK A Game that Combines Simulation Adventure and Education.md DELETED
@@ -1,101 +0,0 @@
1
- <br />
2
- <h1>Game Bus Simulator Indonesia Mod APK: A Fun and Realistic Driving Experience</h1>
3
- <p>Do you love driving games? Do you want to explore the beautiful and diverse cities of Indonesia? Do you want to customize your own bus and drive it on realistic roads? If you answered yes to any of these questions, then you should try Game Bus Simulator Indonesia Mod APK. This is a modified version of the popular game Bus Simulator Indonesia, which lets you enjoy unlimited money, fuel, and other features that make the game more fun and exciting. In this article, we will tell you everything you need to know about Game Bus Simulator Indonesia Mod APK, including its features, how to download and install it, and its pros and cons.</p>
4
- <h2>What is Game Bus Simulator Indonesia Mod APK?</h2>
5
- <p>Game Bus Simulator Indonesia Mod APK is based on driving a bus in various cities of Indonesia to perform various tasks on your android phone. In this game, you need to pick up the passengers from different areas of an Indonesian city and drop them at the destination. You can also drive freely around the city and enjoy the scenery. You can choose from different types of buses, such as mini buses, double-decker buses, or luxury buses. You can also customize your bus with different skins, stickers, horns, lights, and more. You can also experience realistic traffic, weather, day and night cycles, and other aspects of driving in Indonesia.</p>
6
- <h2>game bus simulator indonesia mod apk</h2><br /><p><b><b>Download</b> &#9734;&#9734;&#9734; <a href="https://jinyurl.com/2uNJO1">https://jinyurl.com/2uNJO1</a></b></p><br /><br />
7
- <h3>Features of Game Bus Simulator Indonesia Mod APK</h3>
8
- <h4>- Unlimited money and fuel</h4>
9
- <p>One of the best features of Game Bus Simulator Indonesia Mod APK is that it gives you unlimited money and fuel. This means that you can buy any bus you want, upgrade it with any accessories you like, and drive it as long as you want without worrying about running out of gas. You can also use the money to unlock new cities, modes, and missions in the game.</p>
10
- <h4>- Customizable buses and skins</h4>
11
- <p>Another great feature of Game Bus Simulator Indonesia Mod APK is that it allows you to customize your buses with different skins and accessories. You can change the color, design, logo, name, number plate, and more of your bus. You can also add stickers, horns, lights, mirrors, spoilers, exhausts, and more to your bus. You can make your bus look unique and stylish according to your preference.</p>
12
- <h4>- Realistic traffic and weather</h4>
13
- <p>Game Bus Simulator Indonesia Mod APK also offers realistic traffic and weather conditions in the game. You will encounter different types of vehicles on the road, such as cars, trucks, motorcycles, bicycles, rickshaws, etc. You will also have to follow the traffic rules and signals, such as speed limits, stop signs, red lights, etc. You will also experience different weather effects, such as rain, fog, sun, wind, etc. You will have to adjust your driving accordingly to avoid accidents and delays.</p>
14
- <h4>- Various modes and missions</h4>
15
- <p>Game Bus Simulator Indonesia Mod APK also provides various modes and missions for you to enjoy. You can choose from free mode, career mode, or multiplayer mode. In free mode, you can drive anywhere you want without any restrictions or objectives. In career mode, you have to complete different tasks and challenges to earn money and reputation. In multiplayer mode, you can play with other players online and compete with them in races or other events. You can also chat with them using the built-in voice chat feature.</p>
16
- <h2>How to download and install Game Bus Simulator Indonesia Mod APK?</h2>
17
- <h3>Requirements for Game Bus Simulator Indonesia Mod APK</h3> <h3>Steps to download and install Game Bus Simulator Indonesia Mod APK</h3>
18
- <p>If you want to download and install Game Bus Simulator Indonesia Mod APK on your android device, you need to follow these simple steps:</p>
19
- <ol>
20
- <li>Click on the download link to get the Game Bus Simulator Indonesia Mod APK file.</li>
21
- <li>Allow the installation of unknown sources on your device by going to Settings > Security > Unknown Sources.</li>
22
- <li>Locate the downloaded file in your file manager and tap on it to start the installation process.</li>
23
- <li>Follow the instructions on the screen and wait for the installation to complete.</li>
24
- <li>Launch the game and enjoy driving your bus in Indonesia.</li>
25
- </ol>
26
- <h2>Pros and cons of Game Bus Simulator Indonesia Mod APK</h2>
27
- <p>Game Bus Simulator Indonesia Mod APK is a fun and realistic driving game that lets you experience the culture and scenery of Indonesia. However, like any other game, it also has some pros and cons that you should consider before playing it. Here are some of them:</p>
28
- <h3>Pros of Game Bus Simulator Indonesia Mod APK</h3>
29
- <ul>
30
- <li>It is free to download and play.</li>
31
- <li>It has unlimited money and fuel, which makes the game more enjoyable and less stressful.</li>
32
- <li>It has customizable buses and skins, which gives you more options and creativity.</li>
33
- <li>It has realistic traffic and weather, which adds more challenge and realism to the game.</li>
34
- <li>It has various modes and missions, which keeps the game interesting and diverse.</li>
35
- <li>It has a multiplayer mode, which allows you to play with other players online and have more fun.</li>
36
- </ul>
37
- <h3>Cons of Game Bus Simulator Indonesia Mod APK</h3>
38
- <ul>
39
- <li>It may not be compatible with some devices or versions of Android.</li>
40
- <li>It may have some bugs or glitches that affect the gameplay or performance.</li>
41
- <li>It may require a stable internet connection for some features or modes.</li>
42
- <li>It may not be updated regularly or have new content or features.</li>
43
- </ul>
44
- <h2>Conclusion</h2>
45
- <p>Game Bus Simulator Indonesia Mod APK is a great game for anyone who loves driving games and wants to explore the beautiful and diverse cities of Indonesia. It offers unlimited money, fuel, customization, realism, variety, and multiplayer features that make the game more fun and exciting. However, it also has some drawbacks, such as compatibility issues, bugs, internet requirements, and lack of updates. Therefore, you should weigh the pros and cons before downloading and installing it on your device. If you are looking for a fun and realistic driving experience in Indonesia, then you should give Game Bus Simulator Indonesia Mod APK a try.</p>
46
- <h3>FAQs</h3>
47
- <p>Here are some frequently asked questions about Game Bus Simulator Indonesia Mod APK:</p>
48
- <p>game bus simulator indonesia mod apk unlimited money<br />
49
- game bus simulator indonesia mod apk download latest version<br />
50
- game bus simulator indonesia mod apk offline<br />
51
- game bus simulator indonesia mod apk 2021<br />
52
- game bus simulator indonesia mod apk free shopping<br />
53
- game bus simulator indonesia mod apk revdl<br />
54
- game bus simulator indonesia mod apk terbaru<br />
55
- game bus simulator indonesia mod apk android 1<br />
56
- game bus simulator indonesia mod apk unlimited fuel<br />
57
- game bus simulator indonesia mod apk hack<br />
58
- game bus simulator indonesia mod apk obb<br />
59
- game bus simulator indonesia mod apk rexdl<br />
60
- game bus simulator indonesia mod apk no ads<br />
61
- game bus simulator indonesia mod apk update<br />
62
- game bus simulator indonesia mod apk full unlocked<br />
63
- game bus simulator indonesia mod apk unlimited everything<br />
64
- game bus simulator indonesia mod apk data<br />
65
- game bus simulator indonesia mod apk pure<br />
66
- game bus simulator indonesia mod apk happymod<br />
67
- game bus simulator indonesia mod apk all buses unlocked<br />
68
- game bus simulator indonesia mod apk cheat<br />
69
- game bus simulator indonesia mod apk new version<br />
70
- game bus simulator indonesia mod apk online<br />
71
- game bus simulator indonesia mod apk an1<br />
72
- game bus simulator indonesia mod apk unlimited diamond<br />
73
- game bus simulator indonesia mod apk latest<br />
74
- game bus simulator indonesia mod apk original<br />
75
- game bus simulator indonesia mod apk lenov.ru<br />
76
- game bus simulator indonesia mod apk old version<br />
77
- game bus simulator indonesia mod apk unlimited coin<br />
78
- game bus simulator indonesia mod apk versi lama<br />
79
- game bus simulator indonesia mod apk mega<br />
80
- game bus simulator indonesia mod apk pro<br />
81
- game bus simulator indonesia mod apk premium<br />
82
- game bus simulator indonesia mod apk vip<br />
83
- game bus simulator indonesia mod apk plus<br />
84
- game bus simulator indonesia mod apk 2020<br />
85
- game bus simulator indonesia mod apk android oyun club<br />
86
- game bus simulator indonesia mod apk andropalace<br />
87
- game bus simulator indonesia mod apk apkpure.com</p>
88
- <ol>
89
- <li><b>Is Game Bus Simulator Indonesia Mod APK safe to download and install?</b></li>
90
- <p>Yes, Game Bus Simulator Indonesia Mod APK is safe to download and install as long as you get it from a trusted source. However, you should always scan the file for viruses or malware before installing it on your device.</p>
91
- <li><b>What is the difference between Game Bus Simulator Indonesia Mod APK and the original game?</b></li>
92
- <p>The main difference between Game Bus Simulator Indonesia Mod APK and the original game is that the modded version gives you unlimited money, fuel, customization, and other features that are not available in the original game. The modded version also bypasses some restrictions or limitations that are imposed by the original game.</p>
93
- <li><b>Can I play Game Bus Simulator Indonesia Mod APK offline?</b></li>
94
- <p>You can play Game Bus Simulator Indonesia Mod APK offline in free mode or career mode. However, you will need an internet connection to play multiplayer mode or access some online features or events.</p>
95
- <li><b>How can I update Game Bus Simulator Indonesia Mod APK?</b></li>
96
- <p>You can update Game Bus Simulator Indonesia Mod APK by downloading and installing the latest version from the same source. However, you should always back up your data before updating to avoid losing your progress or settings.</p>
97
- <li><b>How can I contact the developers of Game Bus Simulator Indonesia Mod APK?</b></li>
98
- <p>You can contact the developers of Game Bus Simulator Indonesia Mod APK by visiting their official website or their social media pages. You can also leave a comment or review on their download page or send them an email at [email protected].</p>
99
- </ol></p> 197e85843d<br />
100
- <br />
101
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download and Install Instagram 4.0 2 APK - The Best Way to Share Your Photos and Videos.md DELETED
@@ -1,127 +0,0 @@
1
- <br />
2
- <h1>Download Instagram 4.0 2 APK: How to Get the Latest Version of the Popular Social Media App</h1>
3
- <p>Do you love sharing your photos, videos, stories, reels, and more with your friends and followers on Instagram? Do you want to get the latest features and updates of the app without waiting for the official release on Google Play Store? If yes, then you might be interested in downloading Instagram 4.0 2 APK, which is the latest version of the app as of June 2023. In this article, we will explain what Instagram is, what an APK file is, and how to download and install Instagram 4.0 2 APK on your Android device.</p>
4
- <h2>download instagram 4.0 2 apk</h2><br /><p><b><b>DOWNLOAD</b> &gt; <a href="https://jinyurl.com/2uNPFR">https://jinyurl.com/2uNPFR</a></b></p><br /><br />
5
- <h2>What is Instagram and why do you need it?</h2>
6
- <p>Instagram is one of the most popular social media apps in the world, with over one billion monthly active users. It allows you to create and share your photos, videos, stories, reels, live broadcasts, IGTV videos, and more with the people you care about. You can also discover new content from other users, celebrities, brands, and influencers that match your interests. You can also chat with your friends, send voice messages, video calls, stickers, GIFs, and more through Instagram Direct. You can also shop for products, watch videos, play games, and access other apps through Instagram.</p>
7
- <h3>Instagram features and benefits</h3>
8
- <p>Some of the features and benefits of using Instagram are:</p>
9
- <ul>
10
- <li>You can edit your photos and videos with filters, stickers, text, music, effects, and more.</li>
11
- <li>You can create short-form videos with reels, which are fun and creative ways to express yourself.</li>
12
- <li>You can share your moments with stories, which disappear after 24 hours.</li>
13
- <li>You can go live with your friends or followers and interact with them in real-time.</li>
14
- <li>You can upload longer videos with IGTV, which is a platform for vertical videos.</li>
15
- <li>You can explore content from different categories with Explore, which shows you personalized recommendations based on your preferences.</li>
16
- <li>You can follow hashtags, accounts, topics, and locations that interest you.</li>
17
- <li>You can shop for products from your favorite brands and creators with Shopping.</li>
18
- <li>You can join or create rooms with up to 50 people with Messenger Rooms.</li>
19
- <li>You can access other apps like Facebook Watch, Spotify, TikTok, Netflix, and more with App Clips.</li>
20
- </ul>
21
- <h3>Instagram requirements and compatibility</h3>
22
- <p>To use Instagram on your Android device, you need to have:</p>
23
- <p>download instagram 4.0 2 apk for android<br />
24
- download instagram 4.0 2 apk latest version<br />
25
- download instagram 4.0 2 apk free<br />
26
- download instagram 4.0 2 apk mod<br />
27
- download instagram 4.0 2 apk old version<br />
28
- download instagram 4.0 2 apk file<br />
29
- download instagram 4.0 2 apk from google play<br />
30
- download instagram 4.0 2 apk update<br />
31
- download instagram 4.0 2 apk beta<br />
32
- download instagram 4.0 2 apk mirror<br />
33
- download instagram 4.0 2 apk offline<br />
34
- download instagram 4.0 2 apk cracked<br />
35
- download instagram 4.0 2 apk hack<br />
36
- download instagram 4.0 2 apk no ads<br />
37
- download instagram 4.0 2 apk premium<br />
38
- download instagram 4.0 2 apk pro<br />
39
- download instagram 4.0 2 apk full<br />
40
- download instagram 4.0 2 apk unlocked<br />
41
- download instagram 4.0 2 apk original<br />
42
- download instagram 4.0 2 apk safe<br />
43
- download instagram 4.0 2 apk direct link<br />
44
- download instagram 4.0 2 apk for pc<br />
45
- download instagram 4.0 2 apk for ios<br />
46
- download instagram 4.0 2 apk for windows<br />
47
- download instagram 4.0 2 apk for mac<br />
48
- download instagram 4.0 2 apk for tablet<br />
49
- download instagram 4.0 2 apk for firestick<br />
50
- download instagram 4.0 2 apk for smart tv<br />
51
- download instagram 4.0 2 apk for chromebook<br />
52
- download instagram 4.0 2 apk for huawei<br />
53
- download instagram 4.0 2 apk for samsung<br />
54
- download instagram 4.0 2 apk for xiaomi<br />
55
- download instagram 4.0 2 apk for oppo<br />
56
- download instagram 4.0 2 apk for vivo<br />
57
- download instagram 4.0 2 apk for nokia<br />
58
- download instagram 4.0 2 apk for lg<br />
59
- download instagram 4.0 2 apk for sony<br />
60
- download instagram 4.0 2 apk for oneplus<br />
61
- download instagram</p>
62
- <ul>
63
- <li>An Android device running Android 4.1 or higher.</li>
64
- <li>A stable internet connection (Wi-Fi or mobile data).</li>
65
- <li>An Instagram account (you can sign up with your email address, phone number, or Facebook account).</li>
66
- <li>At least 100 MB of free storage space on your device.</li>
67
- </ul>
68
- <h2>What is an APK file and why do you need it?</h2>
69
- <p>An APK file is an Android Package Kit file that contains all the files and code needed to install an app on an Android device. It is similar to an EXE file on Windows or a DMG file on Mac. You can download APK files from various sources online, such as websites, blogs, forums, or app stores. However, not all APK files are safe or reliable. Some may contain malware or viruses that can harm your device or steal your personal information. Therefore, you need to be careful when downloading APK files from unknown sources.</p>
70
- <h3>AP <h3>APK file definition and advantages</h3>
71
- <p>An APK file is an Android Package Kit file that contains all the files and code needed to install an app on an Android device. It is similar to an EXE file on Windows or a DMG file on Mac. You can download APK files from various sources online, such as websites, blogs, forums, or app stores. However, not all APK files are safe or reliable. Some may contain malware or viruses that can harm your device or steal your personal information. Therefore, you need to be careful when downloading APK files from unknown sources.</p>
72
- <p>Some of the advantages of using APK files are:</p>
73
- <ul>
74
- <li>You can get the latest version of an app before it is officially released on Google Play Store.</li>
75
- <li>You can access apps that are not available in your region or country.</li>
76
- <li>You can install apps that are not compatible with your device or Android version.</li>
77
- <li>You can customize or modify apps according to your preferences.</li>
78
- <li>You can backup or restore apps and their data easily.</li>
79
- </ul>
80
- <h3>APK file risks and precautions</h3>
81
- <p>Some of the risks and precautions of using APK files are:</p>
82
- <ul>
83
- <li>You may download fake or malicious apps that can damage your device or compromise your security.</li>
84
- <li>You may violate the terms and conditions of the app developer or Google Play Store.</li>
85
- <li>You may lose the warranty or support of your device manufacturer or service provider.</li>
86
- <li>You may encounter bugs, errors, crashes, or compatibility issues with the app or your device.</li>
87
- <li>You may need to update the app manually whenever a new version is available.</li>
88
- </ul>
89
- <h2>How to download Instagram 4.0 2 APK?</h2>
90
- <p>If you want to download Instagram 4.0 2 APK, you need to follow these steps:</p>
91
- <h3>Step 1: Enable unknown sources on your device</h3>
92
- <p>Before you can install any APK file on your device, you need to enable unknown sources in your settings. This will allow you to install apps from sources other than Google Play Store. To do this, go to Settings > Security > Unknown Sources and toggle it on. You may see a warning message that says installing apps from unknown sources may harm your device. Tap OK to proceed.</p>
93
- <h3>Step 2: Find a reliable source for the APK file</h3>
94
- <p>The next step is to find a reliable source for the Instagram 4.0 2 APK file. You can search online for websites, blogs, forums, or app stores that offer the APK file. However, be careful not to download from shady or untrustworthy sites that may contain malware or viruses. You can also check the reviews, ratings, comments, and feedback from other users who have downloaded the APK file before. You can also scan the APK file with an antivirus app before installing it.</p>
95
- <h3>Step 3: Download and install the APK file</h3>
96
- <p>Once you have found a reliable source for the Instagram 4.0 2 APK file, you can download it to your device. You may need to grant permission for the browser or app to download the file. After the download is complete, you can open the file and tap Install. You may see a message that says installing this app may harm your device. Tap Install Anyway to continue. Wait for the installation process to finish.</p>
97
- <h3>Step 4: Launch and enjoy Instagram 4.0 2</h3>
98
- <p>After the installation is done, you can launch Instagram 4.0 2 from your app drawer or home screen. You can sign in with your existing account or create a new one if you don't have one yet. You can then enjoy all the features and updates of Instagram 4.0 2 on your device.</p>
99
- <h2>Conclusion</h2>
100
- <p>In this article, we have explained what Instagram is, what an APK file is, and how to download and install Instagram 4.0 2 APK on your Android device. We hope this article has been helpful and informative for you. If you have any questions or feedback, please feel free to leave a comment below.</p>
101
- <h2>FAQs</h2>
102
- <p>Here are some frequently asked questions about Instagram 4.0 2 APK:</p>
103
- <ol>
104
- <li><b>Is Instagram 4.0 2 APK safe?</b></li>
105
- <p>Instagram 4.0 2 APK is safe as long as you download it from a reliable source and scan it with an antivirus app before installing it. However, there is always a risk of downloading fake or malicious apps from unknown sources, so be careful and use your own discretion.</p>
106
- <li><b>What are the new features of Instagram 4.0 <li><b>What are the new features of Instagram 4.0 2 APK?</b></li>
107
- <p>Instagram 4.0 2 APK has some new features and improvements, such as:</p>
108
- <ul>
109
- <li>You can create and join audio rooms with up to 50 people with Live Audio.</li>
110
- <li>You can add captions to your stories and reels automatically with Captions Sticker.</li>
111
- <li>You can remix your reels with other users' reels with Remix Reels.</li>
112
- <li>You can hide or unhide your likes and views on your posts with Hide Like Counts.</li>
113
- <li>You can save your drafts of stories and reels with Story Drafts and Reels Drafts.</li>
114
- </ul>
115
- <li><b>How to update Instagram 4.0 2 APK?</b></li>
116
- <p>To update Instagram 4.0 2 APK, you need to download the latest version of the APK file from a reliable source and install it on your device. You may need to uninstall the previous version of the app before installing the new one. Alternatively, you can wait for the official update on Google Play Store, which may take some time to be available.</p>
117
- <li><b>How to uninstall Instagram 4.0 2 APK?</b></li>
118
- <p>To uninstall Instagram 4.0 2 APK, you need to go to Settings > Apps > Instagram and tap Uninstall. You may also need to delete the APK file from your device storage. If you want to reinstall the app, you can download it from Google Play Store or another source.</p>
119
- <li><b>How to contact Instagram support?</b></li>
120
- <p>If you have any issues or problems with Instagram, you can contact Instagram support through the following ways:</p>
121
- <ul>
122
- <li>You can report a problem or send feedback through the app by going to Settings > Help > Report a Problem.</li>
123
- <li>You can visit the Instagram Help Center website at https://help.instagram.com/ for FAQs, guides, tips, and more.</li>
124
- <li>You can follow the Instagram official account on Twitter at https://twitter.com/instagram for updates, announcements, and more.</li>
125
- </ul></p> 401be4b1e0<br />
126
- <br />
127
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/2ndelement/voicevox/voicevox_engine/cancellable_engine.py DELETED
@@ -1,220 +0,0 @@
1
- import argparse
2
- import asyncio
3
- import queue
4
- from multiprocessing import Pipe, Process
5
- from multiprocessing.connection import Connection
6
- from tempfile import NamedTemporaryFile
7
- from typing import List, Optional, Tuple
8
-
9
- import soundfile
10
-
11
- # FIXME: remove FastAPI dependency
12
- from fastapi import HTTPException, Request
13
-
14
- from .model import AudioQuery
15
- from .synthesis_engine import make_synthesis_engines
16
- from .utility import get_latest_core_version
17
-
18
-
19
- class CancellableEngine:
20
- """
21
- 音声合成のキャンセル機能に関するクラス
22
- 初期化後は、synthesis関数で音声合成できる
23
- (オリジナルと比べ引数が増えているので注意)
24
-
25
- Attributes
26
- ----------
27
- watch_con_list: List[Tuple[Request, Process]]
28
- Requestは接続の監視に使用され、Processは通信切断時のプロセスキルに使用される
29
- クライアントから接続があるとListにTupleが追加される
30
- 接続が切断、もしくは音声合成が終了すると削除される
31
- procs_and_cons: queue.Queue[Tuple[Process, Connection]]
32
- 音声合成の準備が終わっているプロセスのList
33
- (音声合成中のプロセスは入っていない)
34
- """
35
-
36
- def __init__(self, args: argparse.Namespace) -> None:
37
- """
38
- 変数の初期化を行う
39
- また、args.init_processesの数だけプロセスを起動し、procs_and_consに格納する
40
- """
41
- self.args = args
42
- if not self.args.enable_cancellable_synthesis:
43
- raise HTTPException(
44
- status_code=404,
45
- detail="実験的機能はデフォルトで無効になっています。使用するには引数を指定してください。",
46
- )
47
-
48
- self.watch_con_list: List[Tuple[Request, Process]] = []
49
- self.procs_and_cons: queue.Queue[Tuple[Process, Connection]] = queue.Queue()
50
- for _ in range(self.args.init_processes):
51
- self.procs_and_cons.put(self.start_new_proc())
52
-
53
- def start_new_proc(
54
- self,
55
- ) -> Tuple[Process, Connection]:
56
- """
57
- 新しく開始したプロセスを返す関数
58
-
59
- Returns
60
- -------
61
- ret_proc: Process
62
- 新規のプロセス
63
- sub_proc_con1: Connection
64
- ret_procのプロセスと通信するためのPipe
65
- """
66
- sub_proc_con1, sub_proc_con2 = Pipe(True)
67
- ret_proc = Process(
68
- target=start_synthesis_subprocess,
69
- kwargs={
70
- "args": self.args,
71
- "sub_proc_con": sub_proc_con2,
72
- },
73
- daemon=True,
74
- )
75
- ret_proc.start()
76
- return ret_proc, sub_proc_con1
77
-
78
- def finalize_con(
79
- self,
80
- req: Request,
81
- proc: Process,
82
- sub_proc_con: Optional[Connection],
83
- ) -> None:
84
- """
85
- 接続が切断された時の処理を行う関数
86
- watch_con_listからの削除、プロセスの後処理を行う
87
- プロセスが生きている場合はそのままprocs_and_consに加える
88
- 死んでいる場合は新しく生成したものをprocs_and_consに加える
89
-
90
- Parameters
91
- ----------
92
- req: fastapi.Request
93
- 接続確立時に受け取ったものをそのまま渡せばよい
94
- https://fastapi.tiangolo.com/advanced/using-request-directly/
95
- proc: Process
96
- 音声合成を行っていたプロセス
97
- sub_proc_con: Connection, optional
98
- 音声合成を行っていたプロセスとのPipe
99
- 指定されていない場合、プロセスは再利用されず終了される
100
- """
101
- try:
102
- self.watch_con_list.remove((req, proc))
103
- except ValueError:
104
- pass
105
- try:
106
- if not proc.is_alive() or sub_proc_con is None:
107
- proc.close()
108
- raise ValueError
109
- # プロセスが死んでいない場合は再利用する
110
- self.procs_and_cons.put((proc, sub_proc_con))
111
- except ValueError:
112
- # プロセスが死んでいるので新しく作り直す
113
- self.procs_and_cons.put(self.start_new_proc())
114
-
115
- def _synthesis_impl(
116
- self,
117
- query: AudioQuery,
118
- speaker_id: int,
119
- request: Request,
120
- core_version: Optional[str],
121
- ) -> str:
122
- """
123
- 音声合成を行う関数
124
- 通常エンジンの引数に比べ、requestが必要になっている
125
- また、返り値がファイル名になっている
126
-
127
- Parameters
128
- ----------
129
- query: AudioQuery
130
- speaker_id: int
131
- request: fastapi.Request
132
- 接続確立時に受け取ったものをそのまま渡せばよい
133
- https://fastapi.tiangolo.com/advanced/using-request-directly/
134
- core_version: str
135
-
136
- Returns
137
- -------
138
- f_name: str
139
- 生���された音声ファイルの名前
140
- """
141
- proc, sub_proc_con1 = self.procs_and_cons.get()
142
- self.watch_con_list.append((request, proc))
143
- try:
144
- sub_proc_con1.send((query, speaker_id, core_version))
145
- f_name = sub_proc_con1.recv()
146
- except EOFError:
147
- raise HTTPException(status_code=422, detail="既にサブプロセスは終了されています")
148
- except Exception:
149
- self.finalize_con(request, proc, sub_proc_con1)
150
- raise
151
-
152
- self.finalize_con(request, proc, sub_proc_con1)
153
- return f_name
154
-
155
- async def catch_disconnection(self):
156
- """
157
- 接続監視を行うコルーチン
158
- """
159
- while True:
160
- await asyncio.sleep(1)
161
- for con in self.watch_con_list:
162
- req, proc = con
163
- if await req.is_disconnected():
164
- try:
165
- if proc.is_alive():
166
- proc.terminate()
167
- proc.join()
168
- proc.close()
169
- except ValueError:
170
- pass
171
- finally:
172
- self.finalize_con(req, proc, None)
173
-
174
-
175
- def start_synthesis_subprocess(
176
- args: argparse.Namespace,
177
- sub_proc_con: Connection,
178
- ):
179
- """
180
- 音声合成を行うサブプロセスで行うための関数
181
- pickle化の関係でグローバルに書いている
182
-
183
- Parameters
184
- ----------
185
- args: argparse.Namespace
186
- 起動時に作られたものをそのまま渡す
187
- sub_proc_con: Connection
188
- メインプロセスと通信するためのPipe
189
- """
190
-
191
- synthesis_engines = make_synthesis_engines(
192
- use_gpu=args.use_gpu,
193
- voicelib_dirs=args.voicelib_dir,
194
- voicevox_dir=args.voicevox_dir,
195
- runtime_dirs=args.runtime_dir,
196
- cpu_num_threads=args.cpu_num_threads,
197
- enable_mock=args.enable_mock,
198
- )
199
- assert len(synthesis_engines) != 0, "音声合成エンジンがありません。"
200
- latest_core_version = get_latest_core_version(versions=synthesis_engines.keys())
201
- while True:
202
- try:
203
- query, speaker_id, core_version = sub_proc_con.recv()
204
- if core_version is None:
205
- _engine = synthesis_engines[latest_core_version]
206
- elif core_version in synthesis_engines:
207
- _engine = synthesis_engines[core_version]
208
- else:
209
- # バージョンが見つからないエラー
210
- sub_proc_con.send("")
211
- continue
212
- wave = _engine._synthesis_impl(query, speaker_id)
213
- with NamedTemporaryFile(delete=False) as f:
214
- soundfile.write(
215
- file=f, data=wave, samplerate=query.outputSamplingRate, format="WAV"
216
- )
217
- sub_proc_con.send(f.name)
218
- except Exception:
219
- sub_proc_con.close()
220
- raise
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGC-Audio/AudioGPT/audio_to_text/captioning/utils/README.md DELETED
@@ -1,19 +0,0 @@
1
- # Utils
2
-
3
- Scripts in this directory are used as utility functions.
4
-
5
- ## BERT Pretrained Embeddings
6
-
7
- You can load pretrained word embeddings in Google [BERT](https://github.com/google-research/bert#pre-trained-models) instead of training word embeddings from scratch. The scripts in `utils/bert` need a BERT server in the background. We use BERT server from [bert-as-service](https://github.com/hanxiao/bert-as-service).
8
-
9
- To use bert-as-service, you need to first install the repository. It is recommended that you create a new environment with Tensorflow 1.3 to run BERT server since it is incompatible with Tensorflow 2.x.
10
-
11
- After successful installation of [bert-as-service](https://github.com/hanxiao/bert-as-service), downloading and running the BERT server needs to execute:
12
-
13
- ```bash
14
- bash scripts/prepare_bert_server.sh <path-to-server> <num-workers> zh
15
- ```
16
-
17
- By default, server based on BERT base Chinese model is running in the background. You can change to other models by changing corresponding model name and path in `scripts/prepare_bert_server.sh`.
18
-
19
- To extract BERT word embeddings, you need to execute `utils/bert/create_word_embedding.py`.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGC-Audio/AudioGPT/text_to_audio/Make_An_Audio/ldm/modules/encoders/open_clap/openai.py DELETED
@@ -1,129 +0,0 @@
1
- """ OpenAI pretrained model functions
2
-
3
- Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
4
- """
5
-
6
- import os
7
- import warnings
8
- from typing import Union, List
9
-
10
- import torch
11
-
12
- from .model import build_model_from_openai_state_dict
13
- from .pretrained import get_pretrained_url, list_pretrained_tag_models, download_pretrained
14
-
15
- __all__ = ["list_openai_models", "load_openai_model"]
16
-
17
-
18
- def list_openai_models() -> List[str]:
19
- """Returns the names of available CLIP models"""
20
- return list_pretrained_tag_models('openai')
21
-
22
-
23
- def load_openai_model(
24
- name: str,
25
- model_cfg,
26
- device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
27
- jit=True,
28
- cache_dir=os.path.expanduser("~/.cache/clip"),
29
- enable_fusion: bool = False,
30
- fusion_type: str = 'None'
31
- ):
32
- """Load a CLIP model, preserve its text pretrained part, and set in the CLAP model
33
-
34
- Parameters
35
- ----------
36
- name : str
37
- A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
38
- device : Union[str, torch.device]
39
- The device to put the loaded model
40
- jit : bool
41
- Whether to load the optimized JIT model (default) or more hackable non-JIT model.
42
-
43
- Returns
44
- -------
45
- model : torch.nn.Module
46
- The CLAP model
47
- preprocess : Callable[[PIL.Image], torch.Tensor]
48
- A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
49
- """
50
- if get_pretrained_url(name, 'openai'):
51
- model_path = download_pretrained(get_pretrained_url(name, 'openai'), root=cache_dir)
52
- elif os.path.isfile(name):
53
- model_path = name
54
- else:
55
- raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
56
-
57
- try:
58
- # loading JIT archive
59
- model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
60
- state_dict = None
61
- except RuntimeError:
62
- # loading saved state dict
63
- if jit:
64
- warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
65
- jit = False
66
- state_dict = torch.load(model_path, map_location="cpu")
67
-
68
- if not jit:
69
- try:
70
- model = build_model_from_openai_state_dict(state_dict or model.state_dict(), model_cfg, enable_fusion, fusion_type).to(device)
71
- except KeyError:
72
- sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
73
- model = build_model_from_openai_state_dict(sd, model_cfg, enable_fusion, fusion_type).to(device)
74
-
75
- if str(device) == "cpu":
76
- model.float()
77
- return model
78
-
79
- # patch the device names
80
- device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
81
- device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
82
-
83
- def patch_device(module):
84
- try:
85
- graphs = [module.graph] if hasattr(module, "graph") else []
86
- except RuntimeError:
87
- graphs = []
88
-
89
- if hasattr(module, "forward1"):
90
- graphs.append(module.forward1.graph)
91
-
92
- for graph in graphs:
93
- for node in graph.findAllNodes("prim::Constant"):
94
- if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
95
- node.copyAttributes(device_node)
96
-
97
- model.apply(patch_device)
98
- patch_device(model.encode_audio)
99
- patch_device(model.encode_text)
100
-
101
- # patch dtype to float32 on CPU
102
- if str(device) == "cpu":
103
- float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
104
- float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
105
- float_node = float_input.node()
106
-
107
- def patch_float(module):
108
- try:
109
- graphs = [module.graph] if hasattr(module, "graph") else []
110
- except RuntimeError:
111
- graphs = []
112
-
113
- if hasattr(module, "forward1"):
114
- graphs.append(module.forward1.graph)
115
-
116
- for graph in graphs:
117
- for node in graph.findAllNodes("aten::to"):
118
- inputs = list(node.inputs())
119
- for i in [1, 2]: # dtype can be the second or third argument to aten::to()
120
- if inputs[i].node()["value"] == 5:
121
- inputs[i].node().copyAttributes(float_node)
122
-
123
- model.apply(patch_float)
124
- patch_float(model.encode_audio)
125
- patch_float(model.encode_text)
126
- model.float()
127
-
128
- model.audio_branch.audio_length = model.audio_cfg.audio_length
129
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Abdllh/poetry2023/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Poetry2023
3
- emoji: 👁
4
- colorFrom: green
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 3.16.0
8
- app_file: app.py
9
- pinned: false
10
- duplicated_from: aaaaaabbbbbbbdddddddduuuuulllll/poetry2023
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/plugins/lzstring-plugin.d.ts DELETED
@@ -1,8 +0,0 @@
1
- import LZString from './lzstring';
2
-
3
- export default class LZStringPlugin extends Phaser.Plugins.BasePlugin {
4
- add(
5
- config?: LZString.IConfig
6
- ): LZString;
7
-
8
- }
 
 
 
 
 
 
 
 
 
spaces/AlekseyKorshuk/thin-plate-spline-motion-model/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Thin Plate Spline Motion Model
3
- emoji: 💩
4
- colorFrom: red
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 2.9.4
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AlexWang/lama/app.py DELETED
@@ -1,49 +0,0 @@
1
- import os
2
- os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt")
3
- os.system("pip install imageio")
4
- os.system("pip install albumentations==0.5.2")
5
- import cv2
6
- import paddlehub as hub
7
- import gradio as gr
8
- import torch
9
- from PIL import Image, ImageOps
10
- import numpy as np
11
- import imageio
12
- os.mkdir("data")
13
- os.rename("best.ckpt", "models/best.ckpt")
14
- os.mkdir("dataout")
15
- model = hub.Module(name='U2Net')
16
-
17
-
18
- def infer(img, mask, option):
19
- print(type(img["image"]), img["image"].shape)
20
- imageio.imwrite("./data/data.png", img["image"])
21
- if option == "Upload":
22
- imageio.imwrite("./data/data_mask.png", mask)
23
- elif option == "Automatic (U2net)":
24
- result = model.Segmentation(
25
- images=[cv2.cvtColor(img["image"], cv2.COLOR_RGB2BGR)],
26
- paths=None,
27
- batch_size=1,
28
- input_size=320,
29
- output_dir='output',
30
- visualization=True)
31
- im = Image.fromarray(result[0]['mask'])
32
- im.save("./data/data_mask.png")
33
- else:
34
- imageio.imwrite("./data/data_mask.png", img["mask"])
35
- os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
36
- return "./dataout/data_mask.png", "./data/data_mask.png"
37
-
38
-
39
- inputs = [gr.Image(tool="sketch", label="Input", type="numpy"),
40
- gr.Image(label="Mask", type="numpy"),
41
- gr.inputs.Radio(choices=["Upload", "Manual", "Automatic (U2net)"],
42
- type="value", default="Upload", label="Masking option")]
43
- outputs = [gr.outputs.Image(type="file", label="output"),
44
- gr.outputs.Image(type="file", label="Mask")]
45
- title = "LaMa Image Inpainting"
46
- description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
47
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
48
- gr.Interface(infer, inputs, outputs, title=title,
49
- description=description, article=article).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Amrrs/DragGan-Inversion/gen_images.py DELETED
@@ -1,160 +0,0 @@
1
- # Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
- #
3
- # NVIDIA CORPORATION and its licensors retain all intellectual property
4
- # and proprietary rights in and to this software, related documentation
5
- # and any modifications thereto. Any use, reproduction, disclosure or
6
- # distribution of this software and related documentation without an express
7
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
-
9
- """Generate images using pretrained network pickle."""
10
-
11
- import os
12
- import re
13
- from typing import List, Optional, Tuple, Union
14
-
15
- import click
16
- import dnnlib
17
- import numpy as np
18
- import PIL.Image
19
- import torch
20
-
21
- import legacy
22
-
23
- # ----------------------------------------------------------------------------
24
-
25
-
26
- def parse_range(s: Union[str, List]) -> List[int]:
27
- '''Parse a comma separated list of numbers or ranges and return a list of ints.
28
-
29
- Example: '1,2,5-10' returns [1, 2, 5, 6, 7]
30
- '''
31
- if isinstance(s, list):
32
- return s
33
- ranges = []
34
- range_re = re.compile(r'^(\d+)-(\d+)$')
35
- for p in s.split(','):
36
- m = range_re.match(p)
37
- if m:
38
- ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
39
- else:
40
- ranges.append(int(p))
41
- return ranges
42
-
43
- # ----------------------------------------------------------------------------
44
-
45
-
46
- def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]:
47
- '''Parse a floating point 2-vector of syntax 'a,b'.
48
-
49
- Example:
50
- '0,1' returns (0,1)
51
- '''
52
- if isinstance(s, tuple):
53
- return s
54
- parts = s.split(',')
55
- if len(parts) == 2:
56
- return (float(parts[0]), float(parts[1]))
57
- raise ValueError(f'cannot parse 2-vector {s}')
58
-
59
- # ----------------------------------------------------------------------------
60
-
61
-
62
- def make_transform(translate: Tuple[float, float], angle: float):
63
- m = np.eye(3)
64
- s = np.sin(angle/360.0*np.pi*2)
65
- c = np.cos(angle/360.0*np.pi*2)
66
- m[0][0] = c
67
- m[0][1] = s
68
- m[0][2] = translate[0]
69
- m[1][0] = -s
70
- m[1][1] = c
71
- m[1][2] = translate[1]
72
- return m
73
-
74
- # ----------------------------------------------------------------------------
75
-
76
-
77
- @click.command()
78
- @click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
79
- @click.option('--seeds', type=parse_range, help='List of random seeds (e.g., \'0,1,4-6\')', required=True)
80
- @click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
81
- @click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)')
82
- @click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
83
- @click.option('--translate', help='Translate XY-coordinate (e.g. \'0.3,1\')', type=parse_vec2, default='0,0', show_default=True, metavar='VEC2')
84
- @click.option('--rotate', help='Rotation angle in degrees', type=float, default=0, show_default=True, metavar='ANGLE')
85
- @click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR')
86
- def generate_images(
87
- network_pkl: str,
88
- seeds: List[int],
89
- truncation_psi: float,
90
- noise_mode: str,
91
- outdir: str,
92
- translate: Tuple[float, float],
93
- rotate: float,
94
- class_idx: Optional[int]
95
- ):
96
- """Generate images using pretrained network pickle.
97
-
98
- Examples:
99
-
100
- \b
101
- # Generate an image using pre-trained AFHQv2 model ("Ours" in Figure 1, left).
102
- python gen_images.py --outdir=out --trunc=1 --seeds=2 \\
103
- --network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl
104
-
105
- \b
106
- # Generate uncurated images with truncation using the MetFaces-U dataset
107
- python gen_images.py --outdir=out --trunc=0.7 --seeds=600-605 \\
108
- --network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-metfacesu-1024x1024.pkl
109
- """
110
-
111
- print('Loading networks from "%s"...' % network_pkl)
112
- device = torch.device('cuda')
113
- with dnnlib.util.open_url(network_pkl) as f:
114
- G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
115
- # import pickle
116
- # G = legacy.load_network_pkl(f)
117
- # output = open('checkpoints/stylegan2-car-config-f-pt.pkl', 'wb')
118
- # pickle.dump(G, output)
119
-
120
- os.makedirs(outdir, exist_ok=True)
121
-
122
- # Labels.
123
- label = torch.zeros([1, G.c_dim], device=device)
124
- if G.c_dim != 0:
125
- if class_idx is None:
126
- raise click.ClickException(
127
- 'Must specify class label with --class when using a conditional network')
128
- label[:, class_idx] = 1
129
- else:
130
- if class_idx is not None:
131
- print('warn: --class=lbl ignored when running on an unconditional network')
132
-
133
- # Generate images.
134
- for seed_idx, seed in enumerate(seeds):
135
- print('Generating image for seed %d (%d/%d) ...' %
136
- (seed, seed_idx, len(seeds)))
137
- z = torch.from_numpy(np.random.RandomState(
138
- seed).randn(1, G.z_dim)).to(device)
139
-
140
- # Construct an inverse rotation/translation matrix and pass to the generator. The
141
- # generator expects this matrix as an inverse to avoid potentially failing numerical
142
- # operations in the network.
143
- if hasattr(G.synthesis, 'input'):
144
- m = make_transform(translate, rotate)
145
- m = np.linalg.inv(m)
146
- G.synthesis.input.transform.copy_(torch.from_numpy(m))
147
-
148
- img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode)
149
- img = (img.permute(0, 2, 3, 1) * 127.5 +
150
- 128).clamp(0, 255).to(torch.uint8)
151
- PIL.Image.fromarray(img[0].cpu().numpy(), 'RGB').save(
152
- f'{outdir}/seed{seed:04d}.png')
153
-
154
-
155
- # ----------------------------------------------------------------------------
156
-
157
- if __name__ == "__main__":
158
- generate_images() # pylint: disable=no-value-for-parameter
159
-
160
- # ----------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Amrrs/DragGan-Inversion/stylegan_human/utils/util.py DELETED
@@ -1,84 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- import torch
4
- import cv2
5
- from torchvision import transforms
6
- import numpy as np
7
- import math
8
-
9
-
10
- def visual(output, out_path):
11
- output = (output + 1)/2
12
- output = torch.clamp(output, 0, 1)
13
- if output.shape[1] == 1:
14
- output = torch.cat([output, output, output], 1)
15
- output = output[0].detach().cpu().permute(1, 2, 0).numpy()
16
- output = (output*255).astype(np.uint8)
17
- output = output[:, :, ::-1]
18
- cv2.imwrite(out_path, output)
19
-
20
-
21
- def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
22
-
23
- lr_ramp = min(1, (1 - t) / rampdown)
24
- lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
25
- lr_ramp = lr_ramp * min(1, t / rampup)
26
- return initial_lr * lr_ramp
27
-
28
-
29
- def latent_noise(latent, strength):
30
- noise = torch.randn_like(latent) * strength
31
-
32
- return latent + noise
33
-
34
-
35
- def noise_regularize_(noises):
36
- loss = 0
37
-
38
- for noise in noises:
39
- size = noise.shape[2]
40
-
41
- while True:
42
- loss = (
43
- loss
44
- + (noise * torch.roll(noise, shifts=1, dims=3)).mean().pow(2)
45
- + (noise * torch.roll(noise, shifts=1, dims=2)).mean().pow(2)
46
- )
47
-
48
- if size <= 8:
49
- break
50
-
51
- noise = noise.reshape([-1, 1, size // 2, 2, size // 2, 2])
52
- noise = noise.mean([3, 5])
53
- size //= 2
54
-
55
- return loss
56
-
57
-
58
- def noise_normalize_(noises):
59
- for noise in noises:
60
- mean = noise.mean()
61
- std = noise.std()
62
-
63
- noise.data.add_(-mean).div_(std)
64
-
65
-
66
- def tensor_to_numpy(x):
67
- x = x[0].permute(1, 2, 0)
68
- x = torch.clamp(x, -1, 1)
69
- x = (x+1) * 127.5
70
- x = x.cpu().detach().numpy().astype(np.uint8)
71
- return x
72
-
73
-
74
- def numpy_to_tensor(x):
75
- x = (x / 255 - 0.5) * 2
76
- x = torch.from_numpy(x).unsqueeze(0).permute(0, 3, 1, 2)
77
- x = x.cuda().float()
78
- return x
79
-
80
-
81
- def tensor_to_pil(x):
82
- x = torch.clamp(x, -1, 1)
83
- x = (x+1) * 127.5
84
- return transforms.ToPILImage()(x.squeeze_(0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/examples/custom_diffusion/README.md DELETED
@@ -1,280 +0,0 @@
1
- # Custom Diffusion training example
2
-
3
- [Custom Diffusion](https://arxiv.org/abs/2212.04488) is a method to customize text-to-image models like Stable Diffusion given just a few (4~5) images of a subject.
4
- The `train_custom_diffusion.py` script shows how to implement the training procedure and adapt it for stable diffusion.
5
-
6
- ## Running locally with PyTorch
7
-
8
- ### Installing the dependencies
9
-
10
- Before running the scripts, make sure to install the library's training dependencies:
11
-
12
- **Important**
13
-
14
- To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
15
-
16
- ```bash
17
- git clone https://github.com/huggingface/diffusers
18
- cd diffusers
19
- pip install -e .
20
- ```
21
-
22
- Then cd in the example folder and run
23
-
24
- ```bash
25
- pip install -r requirements.txt
26
- pip install clip-retrieval
27
- ```
28
-
29
- And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
30
-
31
- ```bash
32
- accelerate config
33
- ```
34
-
35
- Or for a default accelerate configuration without answering questions about your environment
36
-
37
- ```bash
38
- accelerate config default
39
- ```
40
-
41
- Or if your environment doesn't support an interactive shell e.g. a notebook
42
-
43
- ```python
44
- from accelerate.utils import write_basic_config
45
- write_basic_config()
46
- ```
47
- ### Cat example 😺
48
-
49
- Now let's get our dataset. Download dataset from [here](https://www.cs.cmu.edu/~custom-diffusion/assets/data.zip) and unzip it.
50
-
51
- We also collect 200 real images using `clip-retrieval` which are combined with the target images in the training dataset as a regularization. This prevents overfitting to the the given target image. The following flags enable the regularization `with_prior_preservation`, `real_prior` with `prior_loss_weight=1.`.
52
- The `class_prompt` should be the category name same as target image. The collected real images are with text captions similar to the `class_prompt`. The retrieved image are saved in `class_data_dir`. You can disable `real_prior` to use generated images as regularization. To collect the real images use this command first before training.
53
-
54
- ```bash
55
- pip install clip-retrieval
56
- python retrieve.py --class_prompt cat --class_data_dir real_reg/samples_cat --num_class_images 200
57
- ```
58
-
59
- **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___**
60
-
61
- ```bash
62
- export MODEL_NAME="CompVis/stable-diffusion-v1-4"
63
- export OUTPUT_DIR="path-to-save-model"
64
- export INSTANCE_DIR="./data/cat"
65
-
66
- accelerate launch train_custom_diffusion.py \
67
- --pretrained_model_name_or_path=$MODEL_NAME \
68
- --instance_data_dir=$INSTANCE_DIR \
69
- --output_dir=$OUTPUT_DIR \
70
- --class_data_dir=./real_reg/samples_cat/ \
71
- --with_prior_preservation --real_prior --prior_loss_weight=1.0 \
72
- --class_prompt="cat" --num_class_images=200 \
73
- --instance_prompt="photo of a <new1> cat" \
74
- --resolution=512 \
75
- --train_batch_size=2 \
76
- --learning_rate=1e-5 \
77
- --lr_warmup_steps=0 \
78
- --max_train_steps=250 \
79
- --scale_lr --hflip \
80
- --modifier_token "<new1>"
81
- ```
82
-
83
- **Use `--enable_xformers_memory_efficient_attention` for faster training with lower VRAM requirement (16GB per GPU). Follow [this guide](https://github.com/facebookresearch/xformers) for installation instructions.**
84
-
85
- To track your experiments using Weights and Biases (`wandb`) and to save intermediate results (whcih we HIGHLY recommend), follow these steps:
86
-
87
- * Install `wandb`: `pip install wandb`.
88
- * Authorize: `wandb login`.
89
- * Then specify a `validation_prompt` and set `report_to` to `wandb` while launching training. You can also configure the following related arguments:
90
- * `num_validation_images`
91
- * `validation_steps`
92
-
93
- Here is an example command:
94
-
95
- ```bash
96
- accelerate launch train_custom_diffusion.py \
97
- --pretrained_model_name_or_path=$MODEL_NAME \
98
- --instance_data_dir=$INSTANCE_DIR \
99
- --output_dir=$OUTPUT_DIR \
100
- --class_data_dir=./real_reg/samples_cat/ \
101
- --with_prior_preservation --real_prior --prior_loss_weight=1.0 \
102
- --class_prompt="cat" --num_class_images=200 \
103
- --instance_prompt="photo of a <new1> cat" \
104
- --resolution=512 \
105
- --train_batch_size=2 \
106
- --learning_rate=1e-5 \
107
- --lr_warmup_steps=0 \
108
- --max_train_steps=250 \
109
- --scale_lr --hflip \
110
- --modifier_token "<new1>" \
111
- --validation_prompt="<new1> cat sitting in a bucket" \
112
- --report_to="wandb"
113
- ```
114
-
115
- Here is an example [Weights and Biases page](https://wandb.ai/sayakpaul/custom-diffusion/runs/26ghrcau) where you can check out the intermediate results along with other training details.
116
-
117
- If you specify `--push_to_hub`, the learned parameters will be pushed to a repository on the Hugging Face Hub. Here is an [example repository](https://huggingface.co/sayakpaul/custom-diffusion-cat).
118
-
119
- ### Training on multiple concepts 🐱🪵
120
-
121
- Provide a [json](https://github.com/adobe-research/custom-diffusion/blob/main/assets/concept_list.json) file with the info about each concept, similar to [this](https://github.com/ShivamShrirao/diffusers/blob/main/examples/dreambooth/train_dreambooth.py).
122
-
123
- To collect the real images run this command for each concept in the json file.
124
-
125
- ```bash
126
- pip install clip-retrieval
127
- python retrieve.py --class_prompt {} --class_data_dir {} --num_class_images 200
128
- ```
129
-
130
- And then we're ready to start training!
131
-
132
- ```bash
133
- export MODEL_NAME="CompVis/stable-diffusion-v1-4"
134
- export OUTPUT_DIR="path-to-save-model"
135
-
136
- accelerate launch train_custom_diffusion.py \
137
- --pretrained_model_name_or_path=$MODEL_NAME \
138
- --output_dir=$OUTPUT_DIR \
139
- --concepts_list=./concept_list.json \
140
- --with_prior_preservation --real_prior --prior_loss_weight=1.0 \
141
- --resolution=512 \
142
- --train_batch_size=2 \
143
- --learning_rate=1e-5 \
144
- --lr_warmup_steps=0 \
145
- --max_train_steps=500 \
146
- --num_class_images=200 \
147
- --scale_lr --hflip \
148
- --modifier_token "<new1>+<new2>"
149
- ```
150
-
151
- Here is an example [Weights and Biases page](https://wandb.ai/sayakpaul/custom-diffusion/runs/3990tzkg) where you can check out the intermediate results along with other training details.
152
-
153
- ### Training on human faces
154
-
155
- For fine-tuning on human faces we found the following configuration to work better: `learning_rate=5e-6`, `max_train_steps=1000 to 2000`, and `freeze_model=crossattn` with at least 15-20 images.
156
-
157
- To collect the real images use this command first before training.
158
-
159
- ```bash
160
- pip install clip-retrieval
161
- python retrieve.py --class_prompt person --class_data_dir real_reg/samples_person --num_class_images 200
162
- ```
163
-
164
- Then start training!
165
-
166
- ```bash
167
- export MODEL_NAME="CompVis/stable-diffusion-v1-4"
168
- export OUTPUT_DIR="path-to-save-model"
169
- export INSTANCE_DIR="path-to-images"
170
-
171
- accelerate launch train_custom_diffusion.py \
172
- --pretrained_model_name_or_path=$MODEL_NAME \
173
- --instance_data_dir=$INSTANCE_DIR \
174
- --output_dir=$OUTPUT_DIR \
175
- --class_data_dir=./real_reg/samples_person/ \
176
- --with_prior_preservation --real_prior --prior_loss_weight=1.0 \
177
- --class_prompt="person" --num_class_images=200 \
178
- --instance_prompt="photo of a <new1> person" \
179
- --resolution=512 \
180
- --train_batch_size=2 \
181
- --learning_rate=5e-6 \
182
- --lr_warmup_steps=0 \
183
- --max_train_steps=1000 \
184
- --scale_lr --hflip --noaug \
185
- --freeze_model crossattn \
186
- --modifier_token "<new1>" \
187
- --enable_xformers_memory_efficient_attention
188
- ```
189
-
190
- ## Inference
191
-
192
- Once you have trained a model using the above command, you can run inference using the below command. Make sure to include the `modifier token` (e.g. \<new1\> in above example) in your prompt.
193
-
194
- ```python
195
- import torch
196
- from diffusers import DiffusionPipeline
197
-
198
- pipe = DiffusionPipeline.from_pretrained(
199
- "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16
200
- ).to("cuda")
201
- pipe.unet.load_attn_procs(
202
- "path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin"
203
- )
204
- pipe.load_textual_inversion("path-to-save-model", weight_name="<new1>.bin")
205
-
206
- image = pipe(
207
- "<new1> cat sitting in a bucket",
208
- num_inference_steps=100,
209
- guidance_scale=6.0,
210
- eta=1.0,
211
- ).images[0]
212
- image.save("cat.png")
213
- ```
214
-
215
- It's possible to directly load these parameters from a Hub repository:
216
-
217
- ```python
218
- import torch
219
- from huggingface_hub.repocard import RepoCard
220
- from diffusers import DiffusionPipeline
221
-
222
- model_id = "sayakpaul/custom-diffusion-cat"
223
- card = RepoCard.load(model_id)
224
- base_model_id = card.data.to_dict()["base_model"]
225
-
226
- pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to(
227
- "cuda")
228
- pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin")
229
- pipe.load_textual_inversion(model_id, weight_name="<new1>.bin")
230
-
231
- image = pipe(
232
- "<new1> cat sitting in a bucket",
233
- num_inference_steps=100,
234
- guidance_scale=6.0,
235
- eta=1.0,
236
- ).images[0]
237
- image.save("cat.png")
238
- ```
239
-
240
- Here is an example of performing inference with multiple concepts:
241
-
242
- ```python
243
- import torch
244
- from huggingface_hub.repocard import RepoCard
245
- from diffusers import DiffusionPipeline
246
-
247
- model_id = "sayakpaul/custom-diffusion-cat-wooden-pot"
248
- card = RepoCard.load(model_id)
249
- base_model_id = card.data.to_dict()["base_model"]
250
-
251
- pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to(
252
- "cuda")
253
- pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin")
254
- pipe.load_textual_inversion(model_id, weight_name="<new1>.bin")
255
- pipe.load_textual_inversion(model_id, weight_name="<new2>.bin")
256
-
257
- image = pipe(
258
- "the <new1> cat sculpture in the style of a <new2> wooden pot",
259
- num_inference_steps=100,
260
- guidance_scale=6.0,
261
- eta=1.0,
262
- ).images[0]
263
- image.save("multi-subject.png")
264
- ```
265
-
266
- Here, `cat` and `wooden pot` refer to the multiple concepts.
267
-
268
- ### Inference from a training checkpoint
269
-
270
- You can also perform inference from one of the complete checkpoint saved during the training process, if you used the `--checkpointing_steps` argument.
271
-
272
- TODO.
273
-
274
- ## Set grads to none
275
- To save even more memory, pass the `--set_grads_to_none` argument to the script. This will set grads to None instead of zero. However, be aware that it changes certain behaviors, so if you start experiencing any problems, remove this argument.
276
-
277
- More info: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html
278
-
279
- ## Experimental results
280
- You can refer to [our webpage](https://www.cs.cmu.edu/~custom-diffusion/) that discusses our experiments in detail. We also released a more extensive dataset of 101 concepts for evaluating model customization methods. For more details please refer to our [dataset webpage](https://www.cs.cmu.edu/~custom-diffusion/dataset.html).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/IAT_enhancement/model/blocks.py DELETED
@@ -1,281 +0,0 @@
1
- """
2
- Code copy from uniformer source code:
3
- https://github.com/Sense-X/UniFormer
4
- """
5
- import os
6
- import torch
7
- import torch.nn as nn
8
- from functools import partial
9
- import math
10
- from timm.models.vision_transformer import VisionTransformer, _cfg
11
- from timm.models.registry import register_model
12
- from timm.models.layers import trunc_normal_, DropPath, to_2tuple
13
-
14
- # ResMLP's normalization
15
- class Aff(nn.Module):
16
- def __init__(self, dim):
17
- super().__init__()
18
- # learnable
19
- self.alpha = nn.Parameter(torch.ones([1, 1, dim]))
20
- self.beta = nn.Parameter(torch.zeros([1, 1, dim]))
21
-
22
- def forward(self, x):
23
- x = x * self.alpha + self.beta
24
- return x
25
-
26
- # Color Normalization
27
- class Aff_channel(nn.Module):
28
- def __init__(self, dim, channel_first = True):
29
- super().__init__()
30
- # learnable
31
- self.alpha = nn.Parameter(torch.ones([1, 1, dim]))
32
- self.beta = nn.Parameter(torch.zeros([1, 1, dim]))
33
- self.color = nn.Parameter(torch.eye(dim))
34
- self.channel_first = channel_first
35
-
36
- def forward(self, x):
37
- if self.channel_first:
38
- x1 = torch.tensordot(x, self.color, dims=[[-1], [-1]])
39
- x2 = x1 * self.alpha + self.beta
40
- else:
41
- x1 = x * self.alpha + self.beta
42
- x2 = torch.tensordot(x1, self.color, dims=[[-1], [-1]])
43
- return x2
44
-
45
- class Mlp(nn.Module):
46
- # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
47
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
48
- super().__init__()
49
- out_features = out_features or in_features
50
- hidden_features = hidden_features or in_features
51
- self.fc1 = nn.Linear(in_features, hidden_features)
52
- self.act = act_layer()
53
- self.fc2 = nn.Linear(hidden_features, out_features)
54
- self.drop = nn.Dropout(drop)
55
-
56
- def forward(self, x):
57
- x = self.fc1(x)
58
- x = self.act(x)
59
- x = self.drop(x)
60
- x = self.fc2(x)
61
- x = self.drop(x)
62
- return x
63
-
64
- class CMlp(nn.Module):
65
- # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
66
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
67
- super().__init__()
68
- out_features = out_features or in_features
69
- hidden_features = hidden_features or in_features
70
- self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
71
- self.act = act_layer()
72
- self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
73
- self.drop = nn.Dropout(drop)
74
-
75
- def forward(self, x):
76
- x = self.fc1(x)
77
- x = self.act(x)
78
- x = self.drop(x)
79
- x = self.fc2(x)
80
- x = self.drop(x)
81
- return x
82
-
83
- class CBlock_ln(nn.Module):
84
- def __init__(self, dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
85
- drop_path=0., act_layer=nn.GELU, norm_layer=Aff_channel, init_values=1e-4):
86
- super().__init__()
87
- self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
88
- #self.norm1 = Aff_channel(dim)
89
- self.norm1 = norm_layer(dim)
90
- self.conv1 = nn.Conv2d(dim, dim, 1)
91
- self.conv2 = nn.Conv2d(dim, dim, 1)
92
- self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
93
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
94
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
95
- #self.norm2 = Aff_channel(dim)
96
- self.norm2 = norm_layer(dim)
97
- mlp_hidden_dim = int(dim * mlp_ratio)
98
- self.gamma_1 = nn.Parameter(init_values * torch.ones((1, dim, 1, 1)), requires_grad=True)
99
- self.gamma_2 = nn.Parameter(init_values * torch.ones((1, dim, 1, 1)), requires_grad=True)
100
- self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
101
-
102
- def forward(self, x):
103
- x = x + self.pos_embed(x)
104
- B, C, H, W = x.shape
105
- #print(x.shape)
106
- norm_x = x.flatten(2).transpose(1, 2)
107
- #print(norm_x.shape)
108
- norm_x = self.norm1(norm_x)
109
- norm_x = norm_x.view(B, H, W, C).permute(0, 3, 1, 2)
110
-
111
-
112
- x = x + self.drop_path(self.gamma_1*self.conv2(self.attn(self.conv1(norm_x))))
113
- norm_x = x.flatten(2).transpose(1, 2)
114
- norm_x = self.norm2(norm_x)
115
- norm_x = norm_x.view(B, H, W, C).permute(0, 3, 1, 2)
116
- x = x + self.drop_path(self.gamma_2*self.mlp(norm_x))
117
- return x
118
-
119
-
120
- def window_partition(x, window_size):
121
- """
122
- Args:
123
- x: (B, H, W, C)
124
- window_size (int): window size
125
- Returns:
126
- windows: (num_windows*B, window_size, window_size, C)
127
- """
128
- B, H, W, C = x.shape
129
- #print(x.shape)
130
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
131
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
132
- return windows
133
-
134
-
135
- def window_reverse(windows, window_size, H, W):
136
- """
137
- Args:
138
- windows: (num_windows*B, window_size, window_size, C)
139
- window_size (int): Window size
140
- H (int): Height of image
141
- W (int): Width of image
142
- Returns:
143
- x: (B, H, W, C)
144
- """
145
- B = int(windows.shape[0] / (H * W / window_size / window_size))
146
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
147
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
148
- return x
149
-
150
-
151
- class WindowAttention(nn.Module):
152
- r""" Window based multi-head self attention (W-MSA) module with relative position bias.
153
- It supports both of shifted and non-shifted window.
154
- Args:
155
- dim (int): Number of input channels.
156
- window_size (tuple[int]): The height and width of the window.
157
- num_heads (int): Number of attention heads.
158
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
159
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
160
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
161
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
162
- """
163
-
164
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
165
- super().__init__()
166
- self.dim = dim
167
- self.window_size = window_size # Wh, Ww
168
- self.num_heads = num_heads
169
- head_dim = dim // num_heads
170
- self.scale = qk_scale or head_dim ** -0.5
171
-
172
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
173
- self.attn_drop = nn.Dropout(attn_drop)
174
- self.proj = nn.Linear(dim, dim)
175
- self.proj_drop = nn.Dropout(proj_drop)
176
-
177
- self.softmax = nn.Softmax(dim=-1)
178
-
179
- def forward(self, x):
180
- B_, N, C = x.shape
181
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
182
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
183
-
184
- q = q * self.scale
185
- attn = (q @ k.transpose(-2, -1))
186
-
187
- attn = self.softmax(attn)
188
-
189
- attn = self.attn_drop(attn)
190
-
191
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
192
- x = self.proj(x)
193
- x = self.proj_drop(x)
194
- return x
195
-
196
- ## Layer_norm, Aff_norm, Aff_channel_norm
197
- class SwinTransformerBlock(nn.Module):
198
- r""" Swin Transformer Block.
199
- Args:
200
- dim (int): Number of input channels.
201
- input_resolution (tuple[int]): Input resulotion.
202
- num_heads (int): Number of attention heads.
203
- window_size (int): Window size.
204
- shift_size (int): Shift size for SW-MSA.
205
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
206
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
207
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
208
- drop (float, optional): Dropout rate. Default: 0.0
209
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
210
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
211
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
212
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
213
- """
214
-
215
- def __init__(self, dim, num_heads=2, window_size=8, shift_size=0,
216
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
217
- act_layer=nn.GELU, norm_layer=Aff_channel):
218
- super().__init__()
219
- self.dim = dim
220
- self.num_heads = num_heads
221
- self.window_size = window_size
222
- self.shift_size = shift_size
223
- self.mlp_ratio = mlp_ratio
224
-
225
- self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim)
226
- #self.norm1 = norm_layer(dim)
227
- self.norm1 = norm_layer(dim)
228
- self.attn = WindowAttention(
229
- dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
230
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
231
-
232
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
233
- #self.norm2 = norm_layer(dim)
234
- self.norm2 = norm_layer(dim)
235
- mlp_hidden_dim = int(dim * mlp_ratio)
236
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
237
-
238
- def forward(self, x):
239
- x = x + self.pos_embed(x)
240
- B, C, H, W = x.shape
241
- x = x.flatten(2).transpose(1, 2)
242
-
243
- shortcut = x
244
- x = self.norm1(x)
245
- x = x.view(B, H, W, C)
246
-
247
- # cyclic shift
248
- if self.shift_size > 0:
249
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
250
- else:
251
- shifted_x = x
252
-
253
- # partition windows
254
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
255
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
256
-
257
- # W-MSA/SW-MSA
258
- attn_windows = self.attn(x_windows) # nW*B, window_size*window_size, C
259
-
260
- # merge windows
261
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
262
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
263
-
264
- x = shifted_x
265
- x = x.view(B, H * W, C)
266
-
267
- # FFN
268
- x = shortcut + self.drop_path(x)
269
- x = x + self.drop_path(self.mlp(self.norm2(x)))
270
- x = x.transpose(1, 2).reshape(B, C, H, W)
271
-
272
- return x
273
-
274
-
275
- if __name__ == "__main__":
276
- os.environ['CUDA_VISIBLE_DEVICES']='1'
277
- cb_blovk = CBlock_ln(dim = 16)
278
- x = torch.Tensor(1, 16, 400, 600)
279
- swin = SwinTransformerBlock(dim=16, num_heads=4)
280
- x = cb_blovk(x)
281
- print(x.shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_video_demo/kinetics_class_index.py DELETED
@@ -1,402 +0,0 @@
1
- kinetics_classnames = {
2
- "0": "riding a bike",
3
- "1": "marching",
4
- "2": "dodgeball",
5
- "3": "playing cymbals",
6
- "4": "checking tires",
7
- "5": "roller skating",
8
- "6": "tasting beer",
9
- "7": "clapping",
10
- "8": "drawing",
11
- "9": "juggling fire",
12
- "10": "bobsledding",
13
- "11": "petting animal (not cat)",
14
- "12": "spray painting",
15
- "13": "training dog",
16
- "14": "eating watermelon",
17
- "15": "building cabinet",
18
- "16": "applauding",
19
- "17": "playing harp",
20
- "18": "balloon blowing",
21
- "19": "sled dog racing",
22
- "20": "wrestling",
23
- "21": "pole vault",
24
- "22": "hurling (sport)",
25
- "23": "riding scooter",
26
- "24": "shearing sheep",
27
- "25": "sweeping floor",
28
- "26": "eating carrots",
29
- "27": "skateboarding",
30
- "28": "dunking basketball",
31
- "29": "disc golfing",
32
- "30": "eating spaghetti",
33
- "31": "playing flute",
34
- "32": "riding mechanical bull",
35
- "33": "making sushi",
36
- "34": "trapezing",
37
- "35": "picking fruit",
38
- "36": "stretching leg",
39
- "37": "playing ukulele",
40
- "38": "tying tie",
41
- "39": "skydiving",
42
- "40": "playing cello",
43
- "41": "jumping into pool",
44
- "42": "shooting goal (soccer)",
45
- "43": "trimming trees",
46
- "44": "bookbinding",
47
- "45": "ski jumping",
48
- "46": "walking the dog",
49
- "47": "riding unicycle",
50
- "48": "shaving head",
51
- "49": "hopscotch",
52
- "50": "playing piano",
53
- "51": "parasailing",
54
- "52": "bartending",
55
- "53": "kicking field goal",
56
- "54": "finger snapping",
57
- "55": "dining",
58
- "56": "yawning",
59
- "57": "peeling potatoes",
60
- "58": "canoeing or kayaking",
61
- "59": "front raises",
62
- "60": "laughing",
63
- "61": "dancing macarena",
64
- "62": "digging",
65
- "63": "reading newspaper",
66
- "64": "hitting baseball",
67
- "65": "clay pottery making",
68
- "66": "exercising with an exercise ball",
69
- "67": "playing saxophone",
70
- "68": "shooting basketball",
71
- "69": "washing hair",
72
- "70": "lunge",
73
- "71": "brushing hair",
74
- "72": "curling hair",
75
- "73": "kitesurfing",
76
- "74": "tapping guitar",
77
- "75": "bending back",
78
- "76": "skipping rope",
79
- "77": "situp",
80
- "78": "folding paper",
81
- "79": "cracking neck",
82
- "80": "assembling computer",
83
- "81": "cleaning gutters",
84
- "82": "blowing out candles",
85
- "83": "shaking hands",
86
- "84": "dancing gangnam style",
87
- "85": "windsurfing",
88
- "86": "tap dancing",
89
- "87": "skiing (not slalom or crosscountry)",
90
- "88": "bandaging",
91
- "89": "push up",
92
- "90": "doing nails",
93
- "91": "punching person (boxing)",
94
- "92": "bouncing on trampoline",
95
- "93": "scrambling eggs",
96
- "94": "singing",
97
- "95": "cleaning floor",
98
- "96": "krumping",
99
- "97": "drumming fingers",
100
- "98": "snowmobiling",
101
- "99": "gymnastics tumbling",
102
- "100": "headbanging",
103
- "101": "catching or throwing frisbee",
104
- "102": "riding elephant",
105
- "103": "bee keeping",
106
- "104": "feeding birds",
107
- "105": "snatch weight lifting",
108
- "106": "mowing lawn",
109
- "107": "fixing hair",
110
- "108": "playing trumpet",
111
- "109": "flying kite",
112
- "110": "crossing river",
113
- "111": "swinging legs",
114
- "112": "sanding floor",
115
- "113": "belly dancing",
116
- "114": "sneezing",
117
- "115": "clean and jerk",
118
- "116": "side kick",
119
- "117": "filling eyebrows",
120
- "118": "shuffling cards",
121
- "119": "recording music",
122
- "120": "cartwheeling",
123
- "121": "feeding fish",
124
- "122": "folding clothes",
125
- "123": "water skiing",
126
- "124": "tobogganing",
127
- "125": "blowing leaves",
128
- "126": "smoking",
129
- "127": "unboxing",
130
- "128": "tai chi",
131
- "129": "waxing legs",
132
- "130": "riding camel",
133
- "131": "slapping",
134
- "132": "tossing salad",
135
- "133": "capoeira",
136
- "134": "playing cards",
137
- "135": "playing organ",
138
- "136": "playing violin",
139
- "137": "playing drums",
140
- "138": "tapping pen",
141
- "139": "vault",
142
- "140": "shoveling snow",
143
- "141": "playing tennis",
144
- "142": "getting a tattoo",
145
- "143": "making a sandwich",
146
- "144": "making tea",
147
- "145": "grinding meat",
148
- "146": "squat",
149
- "147": "eating doughnuts",
150
- "148": "ice fishing",
151
- "149": "snowkiting",
152
- "150": "kicking soccer ball",
153
- "151": "playing controller",
154
- "152": "giving or receiving award",
155
- "153": "welding",
156
- "154": "throwing discus",
157
- "155": "throwing axe",
158
- "156": "ripping paper",
159
- "157": "swimming butterfly stroke",
160
- "158": "air drumming",
161
- "159": "blowing nose",
162
- "160": "hockey stop",
163
- "161": "taking a shower",
164
- "162": "bench pressing",
165
- "163": "planting trees",
166
- "164": "pumping fist",
167
- "165": "climbing tree",
168
- "166": "tickling",
169
- "167": "high kick",
170
- "168": "waiting in line",
171
- "169": "slacklining",
172
- "170": "tango dancing",
173
- "171": "hurdling",
174
- "172": "carrying baby",
175
- "173": "celebrating",
176
- "174": "sharpening knives",
177
- "175": "passing American football (in game)",
178
- "176": "headbutting",
179
- "177": "playing recorder",
180
- "178": "brush painting",
181
- "179": "garbage collecting",
182
- "180": "robot dancing",
183
- "181": "shredding paper",
184
- "182": "pumping gas",
185
- "183": "rock climbing",
186
- "184": "hula hooping",
187
- "185": "braiding hair",
188
- "186": "opening present",
189
- "187": "texting",
190
- "188": "decorating the christmas tree",
191
- "189": "answering questions",
192
- "190": "playing keyboard",
193
- "191": "writing",
194
- "192": "bungee jumping",
195
- "193": "sniffing",
196
- "194": "eating burger",
197
- "195": "playing accordion",
198
- "196": "making pizza",
199
- "197": "playing volleyball",
200
- "198": "tasting food",
201
- "199": "pushing cart",
202
- "200": "spinning poi",
203
- "201": "cleaning windows",
204
- "202": "arm wrestling",
205
- "203": "changing oil",
206
- "204": "swimming breast stroke",
207
- "205": "tossing coin",
208
- "206": "deadlifting",
209
- "207": "hoverboarding",
210
- "208": "cutting watermelon",
211
- "209": "cheerleading",
212
- "210": "snorkeling",
213
- "211": "washing hands",
214
- "212": "eating cake",
215
- "213": "pull ups",
216
- "214": "surfing water",
217
- "215": "eating hotdog",
218
- "216": "holding snake",
219
- "217": "playing harmonica",
220
- "218": "ironing",
221
- "219": "cutting nails",
222
- "220": "golf chipping",
223
- "221": "shot put",
224
- "222": "hugging",
225
- "223": "playing clarinet",
226
- "224": "faceplanting",
227
- "225": "trimming or shaving beard",
228
- "226": "drinking shots",
229
- "227": "riding mountain bike",
230
- "228": "tying bow tie",
231
- "229": "swinging on something",
232
- "230": "skiing crosscountry",
233
- "231": "unloading truck",
234
- "232": "cleaning pool",
235
- "233": "jogging",
236
- "234": "ice climbing",
237
- "235": "mopping floor",
238
- "236": "making bed",
239
- "237": "diving cliff",
240
- "238": "washing dishes",
241
- "239": "grooming dog",
242
- "240": "weaving basket",
243
- "241": "frying vegetables",
244
- "242": "stomping grapes",
245
- "243": "moving furniture",
246
- "244": "cooking sausages",
247
- "245": "doing laundry",
248
- "246": "dying hair",
249
- "247": "knitting",
250
- "248": "reading book",
251
- "249": "baby waking up",
252
- "250": "punching bag",
253
- "251": "surfing crowd",
254
- "252": "cooking chicken",
255
- "253": "pushing car",
256
- "254": "springboard diving",
257
- "255": "swing dancing",
258
- "256": "massaging legs",
259
- "257": "beatboxing",
260
- "258": "breading or breadcrumbing",
261
- "259": "somersaulting",
262
- "260": "brushing teeth",
263
- "261": "stretching arm",
264
- "262": "juggling balls",
265
- "263": "massaging person's head",
266
- "264": "eating ice cream",
267
- "265": "extinguishing fire",
268
- "266": "hammer throw",
269
- "267": "whistling",
270
- "268": "crawling baby",
271
- "269": "using remote controller (not gaming)",
272
- "270": "playing cricket",
273
- "271": "opening bottle",
274
- "272": "playing xylophone",
275
- "273": "motorcycling",
276
- "274": "driving car",
277
- "275": "exercising arm",
278
- "276": "passing American football (not in game)",
279
- "277": "playing kickball",
280
- "278": "sticking tongue out",
281
- "279": "flipping pancake",
282
- "280": "catching fish",
283
- "281": "eating chips",
284
- "282": "shaking head",
285
- "283": "sword fighting",
286
- "284": "playing poker",
287
- "285": "cooking on campfire",
288
- "286": "doing aerobics",
289
- "287": "paragliding",
290
- "288": "using segway",
291
- "289": "folding napkins",
292
- "290": "playing bagpipes",
293
- "291": "gargling",
294
- "292": "skiing slalom",
295
- "293": "strumming guitar",
296
- "294": "javelin throw",
297
- "295": "waxing back",
298
- "296": "riding or walking with horse",
299
- "297": "plastering",
300
- "298": "long jump",
301
- "299": "parkour",
302
- "300": "wrapping present",
303
- "301": "egg hunting",
304
- "302": "archery",
305
- "303": "cleaning toilet",
306
- "304": "swimming backstroke",
307
- "305": "snowboarding",
308
- "306": "catching or throwing baseball",
309
- "307": "massaging back",
310
- "308": "blowing glass",
311
- "309": "playing guitar",
312
- "310": "playing chess",
313
- "311": "golf driving",
314
- "312": "presenting weather forecast",
315
- "313": "rock scissors paper",
316
- "314": "high jump",
317
- "315": "baking cookies",
318
- "316": "using computer",
319
- "317": "washing feet",
320
- "318": "arranging flowers",
321
- "319": "playing bass guitar",
322
- "320": "spraying",
323
- "321": "cutting pineapple",
324
- "322": "waxing chest",
325
- "323": "auctioning",
326
- "324": "jetskiing",
327
- "325": "drinking",
328
- "326": "busking",
329
- "327": "playing monopoly",
330
- "328": "salsa dancing",
331
- "329": "waxing eyebrows",
332
- "330": "watering plants",
333
- "331": "zumba",
334
- "332": "chopping wood",
335
- "333": "pushing wheelchair",
336
- "334": "carving pumpkin",
337
- "335": "building shed",
338
- "336": "making jewelry",
339
- "337": "catching or throwing softball",
340
- "338": "bending metal",
341
- "339": "ice skating",
342
- "340": "dancing charleston",
343
- "341": "abseiling",
344
- "342": "climbing a rope",
345
- "343": "crying",
346
- "344": "cleaning shoes",
347
- "345": "dancing ballet",
348
- "346": "driving tractor",
349
- "347": "triple jump",
350
- "348": "throwing ball",
351
- "349": "getting a haircut",
352
- "350": "running on treadmill",
353
- "351": "climbing ladder",
354
- "352": "blasting sand",
355
- "353": "playing trombone",
356
- "354": "drop kicking",
357
- "355": "country line dancing",
358
- "356": "changing wheel",
359
- "357": "feeding goats",
360
- "358": "tying knot (not on a tie)",
361
- "359": "setting table",
362
- "360": "shaving legs",
363
- "361": "kissing",
364
- "362": "riding mule",
365
- "363": "counting money",
366
- "364": "laying bricks",
367
- "365": "barbequing",
368
- "366": "news anchoring",
369
- "367": "smoking hookah",
370
- "368": "cooking egg",
371
- "369": "peeling apples",
372
- "370": "yoga",
373
- "371": "sharpening pencil",
374
- "372": "dribbling basketball",
375
- "373": "petting cat",
376
- "374": "playing ice hockey",
377
- "375": "milking cow",
378
- "376": "shining shoes",
379
- "377": "juggling soccer ball",
380
- "378": "scuba diving",
381
- "379": "playing squash or racquetball",
382
- "380": "drinking beer",
383
- "381": "sign language interpreting",
384
- "382": "playing basketball",
385
- "383": "breakdancing",
386
- "384": "testifying",
387
- "385": "making snowman",
388
- "386": "golf putting",
389
- "387": "playing didgeridoo",
390
- "388": "biking through snow",
391
- "389": "sailing",
392
- "390": "jumpstyle dancing",
393
- "391": "water sliding",
394
- "392": "grooming horse",
395
- "393": "massaging feet",
396
- "394": "playing paintball",
397
- "395": "making a cake",
398
- "396": "bowling",
399
- "397": "contact juggling",
400
- "398": "applying cream",
401
- "399": "playing badminton"
402
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AquaSuisei/ChatGPTXE/modules/overwrites.py DELETED
@@ -1,56 +0,0 @@
1
- from __future__ import annotations
2
- import logging
3
-
4
- from llama_index import Prompt
5
- from typing import List, Tuple
6
- import mdtex2html
7
-
8
- from modules.presets import *
9
- from modules.llama_func import *
10
-
11
-
12
- def compact_text_chunks(self, prompt: Prompt, text_chunks: List[str]) -> List[str]:
13
- logging.debug("Compacting text chunks...🚀🚀🚀")
14
- combined_str = [c.strip() for c in text_chunks if c.strip()]
15
- combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)]
16
- combined_str = "\n\n".join(combined_str)
17
- # resplit based on self.max_chunk_overlap
18
- text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1)
19
- return text_splitter.split_text(combined_str)
20
-
21
-
22
- def postprocess(
23
- self, y: List[Tuple[str | None, str | None]]
24
- ) -> List[Tuple[str | None, str | None]]:
25
- """
26
- Parameters:
27
- y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
28
- Returns:
29
- List of tuples representing the message and response. Each message and response will be a string of HTML.
30
- """
31
- if y is None or y == []:
32
- return []
33
- user, bot = y[-1]
34
- if not detect_converted_mark(user):
35
- user = convert_asis(user)
36
- if not detect_converted_mark(bot):
37
- bot = convert_mdtext(bot)
38
- y[-1] = (user, bot)
39
- return y
40
-
41
- with open("./assets/custom.js", "r", encoding="utf-8") as f, open("./assets/Kelpy-Codos.js", "r", encoding="utf-8") as f2:
42
- customJS = f.read()
43
- kelpyCodos = f2.read()
44
-
45
- def reload_javascript():
46
- print("Reloading javascript...")
47
- js = f'<script>{customJS}</script><script>{kelpyCodos}</script>'
48
- def template_response(*args, **kwargs):
49
- res = GradioTemplateResponseOriginal(*args, **kwargs)
50
- res.body = res.body.replace(b'</html>', f'{js}</html>'.encode("utf8"))
51
- res.init_headers()
52
- return res
53
-
54
- gr.routes.templates.TemplateResponse = template_response
55
-
56
- GradioTemplateResponseOriginal = gr.routes.templates.TemplateResponse
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/chardet/euctwprober.py DELETED
@@ -1,47 +0,0 @@
1
- ######################## BEGIN LICENSE BLOCK ########################
2
- # The Original Code is mozilla.org code.
3
- #
4
- # The Initial Developer of the Original Code is
5
- # Netscape Communications Corporation.
6
- # Portions created by the Initial Developer are Copyright (C) 1998
7
- # the Initial Developer. All Rights Reserved.
8
- #
9
- # Contributor(s):
10
- # Mark Pilgrim - port to Python
11
- #
12
- # This library is free software; you can redistribute it and/or
13
- # modify it under the terms of the GNU Lesser General Public
14
- # License as published by the Free Software Foundation; either
15
- # version 2.1 of the License, or (at your option) any later version.
16
- #
17
- # This library is distributed in the hope that it will be useful,
18
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
- # Lesser General Public License for more details.
21
- #
22
- # You should have received a copy of the GNU Lesser General Public
23
- # License along with this library; if not, write to the Free Software
24
- # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
- # 02110-1301 USA
26
- ######################### END LICENSE BLOCK #########################
27
-
28
- from .chardistribution import EUCTWDistributionAnalysis
29
- from .codingstatemachine import CodingStateMachine
30
- from .mbcharsetprober import MultiByteCharSetProber
31
- from .mbcssm import EUCTW_SM_MODEL
32
-
33
-
34
- class EUCTWProber(MultiByteCharSetProber):
35
- def __init__(self) -> None:
36
- super().__init__()
37
- self.coding_sm = CodingStateMachine(EUCTW_SM_MODEL)
38
- self.distribution_analyzer = EUCTWDistributionAnalysis()
39
- self.reset()
40
-
41
- @property
42
- def charset_name(self) -> str:
43
- return "EUC-TW"
44
-
45
- @property
46
- def language(self) -> str:
47
- return "Taiwan"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/urllib3/util/__init__.py DELETED
@@ -1,49 +0,0 @@
1
- from __future__ import absolute_import
2
-
3
- # For backwards compatibility, provide imports that used to be here.
4
- from .connection import is_connection_dropped
5
- from .request import SKIP_HEADER, SKIPPABLE_HEADERS, make_headers
6
- from .response import is_fp_closed
7
- from .retry import Retry
8
- from .ssl_ import (
9
- ALPN_PROTOCOLS,
10
- HAS_SNI,
11
- IS_PYOPENSSL,
12
- IS_SECURETRANSPORT,
13
- PROTOCOL_TLS,
14
- SSLContext,
15
- assert_fingerprint,
16
- resolve_cert_reqs,
17
- resolve_ssl_version,
18
- ssl_wrap_socket,
19
- )
20
- from .timeout import Timeout, current_time
21
- from .url import Url, get_host, parse_url, split_first
22
- from .wait import wait_for_read, wait_for_write
23
-
24
- __all__ = (
25
- "HAS_SNI",
26
- "IS_PYOPENSSL",
27
- "IS_SECURETRANSPORT",
28
- "SSLContext",
29
- "PROTOCOL_TLS",
30
- "ALPN_PROTOCOLS",
31
- "Retry",
32
- "Timeout",
33
- "Url",
34
- "assert_fingerprint",
35
- "current_time",
36
- "is_connection_dropped",
37
- "is_fp_closed",
38
- "get_host",
39
- "parse_url",
40
- "make_headers",
41
- "resolve_cert_reqs",
42
- "resolve_ssl_version",
43
- "split_first",
44
- "ssl_wrap_socket",
45
- "wait_for_read",
46
- "wait_for_write",
47
- "SKIP_HEADER",
48
- "SKIPPABLE_HEADERS",
49
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/setuptools/_vendor/more_itertools/recipes.py DELETED
@@ -1,620 +0,0 @@
1
- """Imported from the recipes section of the itertools documentation.
2
-
3
- All functions taken from the recipes section of the itertools library docs
4
- [1]_.
5
- Some backward-compatible usability improvements have been made.
6
-
7
- .. [1] http://docs.python.org/library/itertools.html#recipes
8
-
9
- """
10
- import warnings
11
- from collections import deque
12
- from itertools import (
13
- chain,
14
- combinations,
15
- count,
16
- cycle,
17
- groupby,
18
- islice,
19
- repeat,
20
- starmap,
21
- tee,
22
- zip_longest,
23
- )
24
- import operator
25
- from random import randrange, sample, choice
26
-
27
- __all__ = [
28
- 'all_equal',
29
- 'consume',
30
- 'convolve',
31
- 'dotproduct',
32
- 'first_true',
33
- 'flatten',
34
- 'grouper',
35
- 'iter_except',
36
- 'ncycles',
37
- 'nth',
38
- 'nth_combination',
39
- 'padnone',
40
- 'pad_none',
41
- 'pairwise',
42
- 'partition',
43
- 'powerset',
44
- 'prepend',
45
- 'quantify',
46
- 'random_combination_with_replacement',
47
- 'random_combination',
48
- 'random_permutation',
49
- 'random_product',
50
- 'repeatfunc',
51
- 'roundrobin',
52
- 'tabulate',
53
- 'tail',
54
- 'take',
55
- 'unique_everseen',
56
- 'unique_justseen',
57
- ]
58
-
59
-
60
- def take(n, iterable):
61
- """Return first *n* items of the iterable as a list.
62
-
63
- >>> take(3, range(10))
64
- [0, 1, 2]
65
-
66
- If there are fewer than *n* items in the iterable, all of them are
67
- returned.
68
-
69
- >>> take(10, range(3))
70
- [0, 1, 2]
71
-
72
- """
73
- return list(islice(iterable, n))
74
-
75
-
76
- def tabulate(function, start=0):
77
- """Return an iterator over the results of ``func(start)``,
78
- ``func(start + 1)``, ``func(start + 2)``...
79
-
80
- *func* should be a function that accepts one integer argument.
81
-
82
- If *start* is not specified it defaults to 0. It will be incremented each
83
- time the iterator is advanced.
84
-
85
- >>> square = lambda x: x ** 2
86
- >>> iterator = tabulate(square, -3)
87
- >>> take(4, iterator)
88
- [9, 4, 1, 0]
89
-
90
- """
91
- return map(function, count(start))
92
-
93
-
94
- def tail(n, iterable):
95
- """Return an iterator over the last *n* items of *iterable*.
96
-
97
- >>> t = tail(3, 'ABCDEFG')
98
- >>> list(t)
99
- ['E', 'F', 'G']
100
-
101
- """
102
- return iter(deque(iterable, maxlen=n))
103
-
104
-
105
- def consume(iterator, n=None):
106
- """Advance *iterable* by *n* steps. If *n* is ``None``, consume it
107
- entirely.
108
-
109
- Efficiently exhausts an iterator without returning values. Defaults to
110
- consuming the whole iterator, but an optional second argument may be
111
- provided to limit consumption.
112
-
113
- >>> i = (x for x in range(10))
114
- >>> next(i)
115
- 0
116
- >>> consume(i, 3)
117
- >>> next(i)
118
- 4
119
- >>> consume(i)
120
- >>> next(i)
121
- Traceback (most recent call last):
122
- File "<stdin>", line 1, in <module>
123
- StopIteration
124
-
125
- If the iterator has fewer items remaining than the provided limit, the
126
- whole iterator will be consumed.
127
-
128
- >>> i = (x for x in range(3))
129
- >>> consume(i, 5)
130
- >>> next(i)
131
- Traceback (most recent call last):
132
- File "<stdin>", line 1, in <module>
133
- StopIteration
134
-
135
- """
136
- # Use functions that consume iterators at C speed.
137
- if n is None:
138
- # feed the entire iterator into a zero-length deque
139
- deque(iterator, maxlen=0)
140
- else:
141
- # advance to the empty slice starting at position n
142
- next(islice(iterator, n, n), None)
143
-
144
-
145
- def nth(iterable, n, default=None):
146
- """Returns the nth item or a default value.
147
-
148
- >>> l = range(10)
149
- >>> nth(l, 3)
150
- 3
151
- >>> nth(l, 20, "zebra")
152
- 'zebra'
153
-
154
- """
155
- return next(islice(iterable, n, None), default)
156
-
157
-
158
- def all_equal(iterable):
159
- """
160
- Returns ``True`` if all the elements are equal to each other.
161
-
162
- >>> all_equal('aaaa')
163
- True
164
- >>> all_equal('aaab')
165
- False
166
-
167
- """
168
- g = groupby(iterable)
169
- return next(g, True) and not next(g, False)
170
-
171
-
172
- def quantify(iterable, pred=bool):
173
- """Return the how many times the predicate is true.
174
-
175
- >>> quantify([True, False, True])
176
- 2
177
-
178
- """
179
- return sum(map(pred, iterable))
180
-
181
-
182
- def pad_none(iterable):
183
- """Returns the sequence of elements and then returns ``None`` indefinitely.
184
-
185
- >>> take(5, pad_none(range(3)))
186
- [0, 1, 2, None, None]
187
-
188
- Useful for emulating the behavior of the built-in :func:`map` function.
189
-
190
- See also :func:`padded`.
191
-
192
- """
193
- return chain(iterable, repeat(None))
194
-
195
-
196
- padnone = pad_none
197
-
198
-
199
- def ncycles(iterable, n):
200
- """Returns the sequence elements *n* times
201
-
202
- >>> list(ncycles(["a", "b"], 3))
203
- ['a', 'b', 'a', 'b', 'a', 'b']
204
-
205
- """
206
- return chain.from_iterable(repeat(tuple(iterable), n))
207
-
208
-
209
- def dotproduct(vec1, vec2):
210
- """Returns the dot product of the two iterables.
211
-
212
- >>> dotproduct([10, 10], [20, 20])
213
- 400
214
-
215
- """
216
- return sum(map(operator.mul, vec1, vec2))
217
-
218
-
219
- def flatten(listOfLists):
220
- """Return an iterator flattening one level of nesting in a list of lists.
221
-
222
- >>> list(flatten([[0, 1], [2, 3]]))
223
- [0, 1, 2, 3]
224
-
225
- See also :func:`collapse`, which can flatten multiple levels of nesting.
226
-
227
- """
228
- return chain.from_iterable(listOfLists)
229
-
230
-
231
- def repeatfunc(func, times=None, *args):
232
- """Call *func* with *args* repeatedly, returning an iterable over the
233
- results.
234
-
235
- If *times* is specified, the iterable will terminate after that many
236
- repetitions:
237
-
238
- >>> from operator import add
239
- >>> times = 4
240
- >>> args = 3, 5
241
- >>> list(repeatfunc(add, times, *args))
242
- [8, 8, 8, 8]
243
-
244
- If *times* is ``None`` the iterable will not terminate:
245
-
246
- >>> from random import randrange
247
- >>> times = None
248
- >>> args = 1, 11
249
- >>> take(6, repeatfunc(randrange, times, *args)) # doctest:+SKIP
250
- [2, 4, 8, 1, 8, 4]
251
-
252
- """
253
- if times is None:
254
- return starmap(func, repeat(args))
255
- return starmap(func, repeat(args, times))
256
-
257
-
258
- def _pairwise(iterable):
259
- """Returns an iterator of paired items, overlapping, from the original
260
-
261
- >>> take(4, pairwise(count()))
262
- [(0, 1), (1, 2), (2, 3), (3, 4)]
263
-
264
- On Python 3.10 and above, this is an alias for :func:`itertools.pairwise`.
265
-
266
- """
267
- a, b = tee(iterable)
268
- next(b, None)
269
- yield from zip(a, b)
270
-
271
-
272
- try:
273
- from itertools import pairwise as itertools_pairwise
274
- except ImportError:
275
- pairwise = _pairwise
276
- else:
277
-
278
- def pairwise(iterable):
279
- yield from itertools_pairwise(iterable)
280
-
281
- pairwise.__doc__ = _pairwise.__doc__
282
-
283
-
284
- def grouper(iterable, n, fillvalue=None):
285
- """Collect data into fixed-length chunks or blocks.
286
-
287
- >>> list(grouper('ABCDEFG', 3, 'x'))
288
- [('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')]
289
-
290
- """
291
- if isinstance(iterable, int):
292
- warnings.warn(
293
- "grouper expects iterable as first parameter", DeprecationWarning
294
- )
295
- n, iterable = iterable, n
296
- args = [iter(iterable)] * n
297
- return zip_longest(fillvalue=fillvalue, *args)
298
-
299
-
300
- def roundrobin(*iterables):
301
- """Yields an item from each iterable, alternating between them.
302
-
303
- >>> list(roundrobin('ABC', 'D', 'EF'))
304
- ['A', 'D', 'E', 'B', 'F', 'C']
305
-
306
- This function produces the same output as :func:`interleave_longest`, but
307
- may perform better for some inputs (in particular when the number of
308
- iterables is small).
309
-
310
- """
311
- # Recipe credited to George Sakkis
312
- pending = len(iterables)
313
- nexts = cycle(iter(it).__next__ for it in iterables)
314
- while pending:
315
- try:
316
- for next in nexts:
317
- yield next()
318
- except StopIteration:
319
- pending -= 1
320
- nexts = cycle(islice(nexts, pending))
321
-
322
-
323
- def partition(pred, iterable):
324
- """
325
- Returns a 2-tuple of iterables derived from the input iterable.
326
- The first yields the items that have ``pred(item) == False``.
327
- The second yields the items that have ``pred(item) == True``.
328
-
329
- >>> is_odd = lambda x: x % 2 != 0
330
- >>> iterable = range(10)
331
- >>> even_items, odd_items = partition(is_odd, iterable)
332
- >>> list(even_items), list(odd_items)
333
- ([0, 2, 4, 6, 8], [1, 3, 5, 7, 9])
334
-
335
- If *pred* is None, :func:`bool` is used.
336
-
337
- >>> iterable = [0, 1, False, True, '', ' ']
338
- >>> false_items, true_items = partition(None, iterable)
339
- >>> list(false_items), list(true_items)
340
- ([0, False, ''], [1, True, ' '])
341
-
342
- """
343
- if pred is None:
344
- pred = bool
345
-
346
- evaluations = ((pred(x), x) for x in iterable)
347
- t1, t2 = tee(evaluations)
348
- return (
349
- (x for (cond, x) in t1 if not cond),
350
- (x for (cond, x) in t2 if cond),
351
- )
352
-
353
-
354
- def powerset(iterable):
355
- """Yields all possible subsets of the iterable.
356
-
357
- >>> list(powerset([1, 2, 3]))
358
- [(), (1,), (2,), (3,), (1, 2), (1, 3), (2, 3), (1, 2, 3)]
359
-
360
- :func:`powerset` will operate on iterables that aren't :class:`set`
361
- instances, so repeated elements in the input will produce repeated elements
362
- in the output. Use :func:`unique_everseen` on the input to avoid generating
363
- duplicates:
364
-
365
- >>> seq = [1, 1, 0]
366
- >>> list(powerset(seq))
367
- [(), (1,), (1,), (0,), (1, 1), (1, 0), (1, 0), (1, 1, 0)]
368
- >>> from more_itertools import unique_everseen
369
- >>> list(powerset(unique_everseen(seq)))
370
- [(), (1,), (0,), (1, 0)]
371
-
372
- """
373
- s = list(iterable)
374
- return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
375
-
376
-
377
- def unique_everseen(iterable, key=None):
378
- """
379
- Yield unique elements, preserving order.
380
-
381
- >>> list(unique_everseen('AAAABBBCCDAABBB'))
382
- ['A', 'B', 'C', 'D']
383
- >>> list(unique_everseen('ABBCcAD', str.lower))
384
- ['A', 'B', 'C', 'D']
385
-
386
- Sequences with a mix of hashable and unhashable items can be used.
387
- The function will be slower (i.e., `O(n^2)`) for unhashable items.
388
-
389
- Remember that ``list`` objects are unhashable - you can use the *key*
390
- parameter to transform the list to a tuple (which is hashable) to
391
- avoid a slowdown.
392
-
393
- >>> iterable = ([1, 2], [2, 3], [1, 2])
394
- >>> list(unique_everseen(iterable)) # Slow
395
- [[1, 2], [2, 3]]
396
- >>> list(unique_everseen(iterable, key=tuple)) # Faster
397
- [[1, 2], [2, 3]]
398
-
399
- Similary, you may want to convert unhashable ``set`` objects with
400
- ``key=frozenset``. For ``dict`` objects,
401
- ``key=lambda x: frozenset(x.items())`` can be used.
402
-
403
- """
404
- seenset = set()
405
- seenset_add = seenset.add
406
- seenlist = []
407
- seenlist_add = seenlist.append
408
- use_key = key is not None
409
-
410
- for element in iterable:
411
- k = key(element) if use_key else element
412
- try:
413
- if k not in seenset:
414
- seenset_add(k)
415
- yield element
416
- except TypeError:
417
- if k not in seenlist:
418
- seenlist_add(k)
419
- yield element
420
-
421
-
422
- def unique_justseen(iterable, key=None):
423
- """Yields elements in order, ignoring serial duplicates
424
-
425
- >>> list(unique_justseen('AAAABBBCCDAABBB'))
426
- ['A', 'B', 'C', 'D', 'A', 'B']
427
- >>> list(unique_justseen('ABBCcAD', str.lower))
428
- ['A', 'B', 'C', 'A', 'D']
429
-
430
- """
431
- return map(next, map(operator.itemgetter(1), groupby(iterable, key)))
432
-
433
-
434
- def iter_except(func, exception, first=None):
435
- """Yields results from a function repeatedly until an exception is raised.
436
-
437
- Converts a call-until-exception interface to an iterator interface.
438
- Like ``iter(func, sentinel)``, but uses an exception instead of a sentinel
439
- to end the loop.
440
-
441
- >>> l = [0, 1, 2]
442
- >>> list(iter_except(l.pop, IndexError))
443
- [2, 1, 0]
444
-
445
- """
446
- try:
447
- if first is not None:
448
- yield first()
449
- while 1:
450
- yield func()
451
- except exception:
452
- pass
453
-
454
-
455
- def first_true(iterable, default=None, pred=None):
456
- """
457
- Returns the first true value in the iterable.
458
-
459
- If no true value is found, returns *default*
460
-
461
- If *pred* is not None, returns the first item for which
462
- ``pred(item) == True`` .
463
-
464
- >>> first_true(range(10))
465
- 1
466
- >>> first_true(range(10), pred=lambda x: x > 5)
467
- 6
468
- >>> first_true(range(10), default='missing', pred=lambda x: x > 9)
469
- 'missing'
470
-
471
- """
472
- return next(filter(pred, iterable), default)
473
-
474
-
475
- def random_product(*args, repeat=1):
476
- """Draw an item at random from each of the input iterables.
477
-
478
- >>> random_product('abc', range(4), 'XYZ') # doctest:+SKIP
479
- ('c', 3, 'Z')
480
-
481
- If *repeat* is provided as a keyword argument, that many items will be
482
- drawn from each iterable.
483
-
484
- >>> random_product('abcd', range(4), repeat=2) # doctest:+SKIP
485
- ('a', 2, 'd', 3)
486
-
487
- This equivalent to taking a random selection from
488
- ``itertools.product(*args, **kwarg)``.
489
-
490
- """
491
- pools = [tuple(pool) for pool in args] * repeat
492
- return tuple(choice(pool) for pool in pools)
493
-
494
-
495
- def random_permutation(iterable, r=None):
496
- """Return a random *r* length permutation of the elements in *iterable*.
497
-
498
- If *r* is not specified or is ``None``, then *r* defaults to the length of
499
- *iterable*.
500
-
501
- >>> random_permutation(range(5)) # doctest:+SKIP
502
- (3, 4, 0, 1, 2)
503
-
504
- This equivalent to taking a random selection from
505
- ``itertools.permutations(iterable, r)``.
506
-
507
- """
508
- pool = tuple(iterable)
509
- r = len(pool) if r is None else r
510
- return tuple(sample(pool, r))
511
-
512
-
513
- def random_combination(iterable, r):
514
- """Return a random *r* length subsequence of the elements in *iterable*.
515
-
516
- >>> random_combination(range(5), 3) # doctest:+SKIP
517
- (2, 3, 4)
518
-
519
- This equivalent to taking a random selection from
520
- ``itertools.combinations(iterable, r)``.
521
-
522
- """
523
- pool = tuple(iterable)
524
- n = len(pool)
525
- indices = sorted(sample(range(n), r))
526
- return tuple(pool[i] for i in indices)
527
-
528
-
529
- def random_combination_with_replacement(iterable, r):
530
- """Return a random *r* length subsequence of elements in *iterable*,
531
- allowing individual elements to be repeated.
532
-
533
- >>> random_combination_with_replacement(range(3), 5) # doctest:+SKIP
534
- (0, 0, 1, 2, 2)
535
-
536
- This equivalent to taking a random selection from
537
- ``itertools.combinations_with_replacement(iterable, r)``.
538
-
539
- """
540
- pool = tuple(iterable)
541
- n = len(pool)
542
- indices = sorted(randrange(n) for i in range(r))
543
- return tuple(pool[i] for i in indices)
544
-
545
-
546
- def nth_combination(iterable, r, index):
547
- """Equivalent to ``list(combinations(iterable, r))[index]``.
548
-
549
- The subsequences of *iterable* that are of length *r* can be ordered
550
- lexicographically. :func:`nth_combination` computes the subsequence at
551
- sort position *index* directly, without computing the previous
552
- subsequences.
553
-
554
- >>> nth_combination(range(5), 3, 5)
555
- (0, 3, 4)
556
-
557
- ``ValueError`` will be raised If *r* is negative or greater than the length
558
- of *iterable*.
559
- ``IndexError`` will be raised if the given *index* is invalid.
560
- """
561
- pool = tuple(iterable)
562
- n = len(pool)
563
- if (r < 0) or (r > n):
564
- raise ValueError
565
-
566
- c = 1
567
- k = min(r, n - r)
568
- for i in range(1, k + 1):
569
- c = c * (n - k + i) // i
570
-
571
- if index < 0:
572
- index += c
573
-
574
- if (index < 0) or (index >= c):
575
- raise IndexError
576
-
577
- result = []
578
- while r:
579
- c, n, r = c * r // n, n - 1, r - 1
580
- while index >= c:
581
- index -= c
582
- c, n = c * (n - r) // n, n - 1
583
- result.append(pool[-1 - n])
584
-
585
- return tuple(result)
586
-
587
-
588
- def prepend(value, iterator):
589
- """Yield *value*, followed by the elements in *iterator*.
590
-
591
- >>> value = '0'
592
- >>> iterator = ['1', '2', '3']
593
- >>> list(prepend(value, iterator))
594
- ['0', '1', '2', '3']
595
-
596
- To prepend multiple values, see :func:`itertools.chain`
597
- or :func:`value_chain`.
598
-
599
- """
600
- return chain([value], iterator)
601
-
602
-
603
- def convolve(signal, kernel):
604
- """Convolve the iterable *signal* with the iterable *kernel*.
605
-
606
- >>> signal = (1, 2, 3, 4, 5)
607
- >>> kernel = [3, 2, 1]
608
- >>> list(convolve(signal, kernel))
609
- [3, 8, 14, 20, 26, 14, 5]
610
-
611
- Note: the input arguments are not interchangeable, as the *kernel*
612
- is immediately consumed and stored.
613
-
614
- """
615
- kernel = tuple(kernel)[::-1]
616
- n = len(kernel)
617
- window = deque([0], maxlen=n) * n
618
- for x in chain(signal, repeat(0, n - 1)):
619
- window.append(x)
620
- yield sum(map(operator.mul, kernel, window))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/setuptools/_vendor/pyparsing/testing.py DELETED
@@ -1,331 +0,0 @@
1
- # testing.py
2
-
3
- from contextlib import contextmanager
4
- import typing
5
-
6
- from .core import (
7
- ParserElement,
8
- ParseException,
9
- Keyword,
10
- __diag__,
11
- __compat__,
12
- )
13
-
14
-
15
- class pyparsing_test:
16
- """
17
- namespace class for classes useful in writing unit tests
18
- """
19
-
20
- class reset_pyparsing_context:
21
- """
22
- Context manager to be used when writing unit tests that modify pyparsing config values:
23
- - packrat parsing
24
- - bounded recursion parsing
25
- - default whitespace characters.
26
- - default keyword characters
27
- - literal string auto-conversion class
28
- - __diag__ settings
29
-
30
- Example::
31
-
32
- with reset_pyparsing_context():
33
- # test that literals used to construct a grammar are automatically suppressed
34
- ParserElement.inlineLiteralsUsing(Suppress)
35
-
36
- term = Word(alphas) | Word(nums)
37
- group = Group('(' + term[...] + ')')
38
-
39
- # assert that the '()' characters are not included in the parsed tokens
40
- self.assertParseAndCheckList(group, "(abc 123 def)", ['abc', '123', 'def'])
41
-
42
- # after exiting context manager, literals are converted to Literal expressions again
43
- """
44
-
45
- def __init__(self):
46
- self._save_context = {}
47
-
48
- def save(self):
49
- self._save_context["default_whitespace"] = ParserElement.DEFAULT_WHITE_CHARS
50
- self._save_context["default_keyword_chars"] = Keyword.DEFAULT_KEYWORD_CHARS
51
-
52
- self._save_context[
53
- "literal_string_class"
54
- ] = ParserElement._literalStringClass
55
-
56
- self._save_context["verbose_stacktrace"] = ParserElement.verbose_stacktrace
57
-
58
- self._save_context["packrat_enabled"] = ParserElement._packratEnabled
59
- if ParserElement._packratEnabled:
60
- self._save_context[
61
- "packrat_cache_size"
62
- ] = ParserElement.packrat_cache.size
63
- else:
64
- self._save_context["packrat_cache_size"] = None
65
- self._save_context["packrat_parse"] = ParserElement._parse
66
- self._save_context[
67
- "recursion_enabled"
68
- ] = ParserElement._left_recursion_enabled
69
-
70
- self._save_context["__diag__"] = {
71
- name: getattr(__diag__, name) for name in __diag__._all_names
72
- }
73
-
74
- self._save_context["__compat__"] = {
75
- "collect_all_And_tokens": __compat__.collect_all_And_tokens
76
- }
77
-
78
- return self
79
-
80
- def restore(self):
81
- # reset pyparsing global state
82
- if (
83
- ParserElement.DEFAULT_WHITE_CHARS
84
- != self._save_context["default_whitespace"]
85
- ):
86
- ParserElement.set_default_whitespace_chars(
87
- self._save_context["default_whitespace"]
88
- )
89
-
90
- ParserElement.verbose_stacktrace = self._save_context["verbose_stacktrace"]
91
-
92
- Keyword.DEFAULT_KEYWORD_CHARS = self._save_context["default_keyword_chars"]
93
- ParserElement.inlineLiteralsUsing(
94
- self._save_context["literal_string_class"]
95
- )
96
-
97
- for name, value in self._save_context["__diag__"].items():
98
- (__diag__.enable if value else __diag__.disable)(name)
99
-
100
- ParserElement._packratEnabled = False
101
- if self._save_context["packrat_enabled"]:
102
- ParserElement.enable_packrat(self._save_context["packrat_cache_size"])
103
- else:
104
- ParserElement._parse = self._save_context["packrat_parse"]
105
- ParserElement._left_recursion_enabled = self._save_context[
106
- "recursion_enabled"
107
- ]
108
-
109
- __compat__.collect_all_And_tokens = self._save_context["__compat__"]
110
-
111
- return self
112
-
113
- def copy(self):
114
- ret = type(self)()
115
- ret._save_context.update(self._save_context)
116
- return ret
117
-
118
- def __enter__(self):
119
- return self.save()
120
-
121
- def __exit__(self, *args):
122
- self.restore()
123
-
124
- class TestParseResultsAsserts:
125
- """
126
- A mixin class to add parse results assertion methods to normal unittest.TestCase classes.
127
- """
128
-
129
- def assertParseResultsEquals(
130
- self, result, expected_list=None, expected_dict=None, msg=None
131
- ):
132
- """
133
- Unit test assertion to compare a :class:`ParseResults` object with an optional ``expected_list``,
134
- and compare any defined results names with an optional ``expected_dict``.
135
- """
136
- if expected_list is not None:
137
- self.assertEqual(expected_list, result.as_list(), msg=msg)
138
- if expected_dict is not None:
139
- self.assertEqual(expected_dict, result.as_dict(), msg=msg)
140
-
141
- def assertParseAndCheckList(
142
- self, expr, test_string, expected_list, msg=None, verbose=True
143
- ):
144
- """
145
- Convenience wrapper assert to test a parser element and input string, and assert that
146
- the resulting ``ParseResults.asList()`` is equal to the ``expected_list``.
147
- """
148
- result = expr.parse_string(test_string, parse_all=True)
149
- if verbose:
150
- print(result.dump())
151
- else:
152
- print(result.as_list())
153
- self.assertParseResultsEquals(result, expected_list=expected_list, msg=msg)
154
-
155
- def assertParseAndCheckDict(
156
- self, expr, test_string, expected_dict, msg=None, verbose=True
157
- ):
158
- """
159
- Convenience wrapper assert to test a parser element and input string, and assert that
160
- the resulting ``ParseResults.asDict()`` is equal to the ``expected_dict``.
161
- """
162
- result = expr.parse_string(test_string, parseAll=True)
163
- if verbose:
164
- print(result.dump())
165
- else:
166
- print(result.as_list())
167
- self.assertParseResultsEquals(result, expected_dict=expected_dict, msg=msg)
168
-
169
- def assertRunTestResults(
170
- self, run_tests_report, expected_parse_results=None, msg=None
171
- ):
172
- """
173
- Unit test assertion to evaluate output of ``ParserElement.runTests()``. If a list of
174
- list-dict tuples is given as the ``expected_parse_results`` argument, then these are zipped
175
- with the report tuples returned by ``runTests`` and evaluated using ``assertParseResultsEquals``.
176
- Finally, asserts that the overall ``runTests()`` success value is ``True``.
177
-
178
- :param run_tests_report: tuple(bool, [tuple(str, ParseResults or Exception)]) returned from runTests
179
- :param expected_parse_results (optional): [tuple(str, list, dict, Exception)]
180
- """
181
- run_test_success, run_test_results = run_tests_report
182
-
183
- if expected_parse_results is not None:
184
- merged = [
185
- (*rpt, expected)
186
- for rpt, expected in zip(run_test_results, expected_parse_results)
187
- ]
188
- for test_string, result, expected in merged:
189
- # expected should be a tuple containing a list and/or a dict or an exception,
190
- # and optional failure message string
191
- # an empty tuple will skip any result validation
192
- fail_msg = next(
193
- (exp for exp in expected if isinstance(exp, str)), None
194
- )
195
- expected_exception = next(
196
- (
197
- exp
198
- for exp in expected
199
- if isinstance(exp, type) and issubclass(exp, Exception)
200
- ),
201
- None,
202
- )
203
- if expected_exception is not None:
204
- with self.assertRaises(
205
- expected_exception=expected_exception, msg=fail_msg or msg
206
- ):
207
- if isinstance(result, Exception):
208
- raise result
209
- else:
210
- expected_list = next(
211
- (exp for exp in expected if isinstance(exp, list)), None
212
- )
213
- expected_dict = next(
214
- (exp for exp in expected if isinstance(exp, dict)), None
215
- )
216
- if (expected_list, expected_dict) != (None, None):
217
- self.assertParseResultsEquals(
218
- result,
219
- expected_list=expected_list,
220
- expected_dict=expected_dict,
221
- msg=fail_msg or msg,
222
- )
223
- else:
224
- # warning here maybe?
225
- print("no validation for {!r}".format(test_string))
226
-
227
- # do this last, in case some specific test results can be reported instead
228
- self.assertTrue(
229
- run_test_success, msg=msg if msg is not None else "failed runTests"
230
- )
231
-
232
- @contextmanager
233
- def assertRaisesParseException(self, exc_type=ParseException, msg=None):
234
- with self.assertRaises(exc_type, msg=msg):
235
- yield
236
-
237
- @staticmethod
238
- def with_line_numbers(
239
- s: str,
240
- start_line: typing.Optional[int] = None,
241
- end_line: typing.Optional[int] = None,
242
- expand_tabs: bool = True,
243
- eol_mark: str = "|",
244
- mark_spaces: typing.Optional[str] = None,
245
- mark_control: typing.Optional[str] = None,
246
- ) -> str:
247
- """
248
- Helpful method for debugging a parser - prints a string with line and column numbers.
249
- (Line and column numbers are 1-based.)
250
-
251
- :param s: tuple(bool, str - string to be printed with line and column numbers
252
- :param start_line: int - (optional) starting line number in s to print (default=1)
253
- :param end_line: int - (optional) ending line number in s to print (default=len(s))
254
- :param expand_tabs: bool - (optional) expand tabs to spaces, to match the pyparsing default
255
- :param eol_mark: str - (optional) string to mark the end of lines, helps visualize trailing spaces (default="|")
256
- :param mark_spaces: str - (optional) special character to display in place of spaces
257
- :param mark_control: str - (optional) convert non-printing control characters to a placeholding
258
- character; valid values:
259
- - "unicode" - replaces control chars with Unicode symbols, such as "␍" and "␊"
260
- - any single character string - replace control characters with given string
261
- - None (default) - string is displayed as-is
262
-
263
- :return: str - input string with leading line numbers and column number headers
264
- """
265
- if expand_tabs:
266
- s = s.expandtabs()
267
- if mark_control is not None:
268
- if mark_control == "unicode":
269
- tbl = str.maketrans(
270
- {c: u for c, u in zip(range(0, 33), range(0x2400, 0x2433))}
271
- | {127: 0x2421}
272
- )
273
- eol_mark = ""
274
- else:
275
- tbl = str.maketrans(
276
- {c: mark_control for c in list(range(0, 32)) + [127]}
277
- )
278
- s = s.translate(tbl)
279
- if mark_spaces is not None and mark_spaces != " ":
280
- if mark_spaces == "unicode":
281
- tbl = str.maketrans({9: 0x2409, 32: 0x2423})
282
- s = s.translate(tbl)
283
- else:
284
- s = s.replace(" ", mark_spaces)
285
- if start_line is None:
286
- start_line = 1
287
- if end_line is None:
288
- end_line = len(s)
289
- end_line = min(end_line, len(s))
290
- start_line = min(max(1, start_line), end_line)
291
-
292
- if mark_control != "unicode":
293
- s_lines = s.splitlines()[start_line - 1 : end_line]
294
- else:
295
- s_lines = [line + "␊" for line in s.split("␊")[start_line - 1 : end_line]]
296
- if not s_lines:
297
- return ""
298
-
299
- lineno_width = len(str(end_line))
300
- max_line_len = max(len(line) for line in s_lines)
301
- lead = " " * (lineno_width + 1)
302
- if max_line_len >= 99:
303
- header0 = (
304
- lead
305
- + "".join(
306
- "{}{}".format(" " * 99, (i + 1) % 100)
307
- for i in range(max(max_line_len // 100, 1))
308
- )
309
- + "\n"
310
- )
311
- else:
312
- header0 = ""
313
- header1 = (
314
- header0
315
- + lead
316
- + "".join(
317
- " {}".format((i + 1) % 10)
318
- for i in range(-(-max_line_len // 10))
319
- )
320
- + "\n"
321
- )
322
- header2 = lead + "1234567890" * (-(-max_line_len // 10)) + "\n"
323
- return (
324
- header1
325
- + header2
326
- + "\n".join(
327
- "{:{}d}:{}{}".format(i, lineno_width, line, eol_mark)
328
- for i, line in enumerate(s_lines, start=start_line)
329
- )
330
- + "\n"
331
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/data/transforms/__init__.py DELETED
@@ -1,14 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates.
2
- from fvcore.transforms.transform import Transform, TransformList # order them first
3
- from fvcore.transforms.transform import *
4
- from .transform import *
5
- from .augmentation import *
6
- from .augmentation_impl import *
7
-
8
- __all__ = [k for k in globals().keys() if not k.startswith("_")]
9
-
10
-
11
- from detectron2.utils.env import fixup_module_metadata
12
-
13
- fixup_module_metadata(__name__, globals(), __all__)
14
- del fixup_module_metadata
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/structures/image_list.py DELETED
@@ -1,110 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates.
2
- from __future__ import division
3
- from typing import Any, List, Tuple
4
- import torch
5
- from torch import device
6
- from torch.nn import functional as F
7
-
8
- from detectron2.layers.wrappers import shapes_to_tensor
9
-
10
-
11
- class ImageList(object):
12
- """
13
- Structure that holds a list of images (of possibly
14
- varying sizes) as a single tensor.
15
- This works by padding the images to the same size.
16
- The original sizes of each image is stored in `image_sizes`.
17
-
18
- Attributes:
19
- image_sizes (list[tuple[int, int]]): each tuple is (h, w).
20
- During tracing, it becomes list[Tensor] instead.
21
- """
22
-
23
- def __init__(self, tensor: torch.Tensor, image_sizes: List[Tuple[int, int]]):
24
- """
25
- Arguments:
26
- tensor (Tensor): of shape (N, H, W) or (N, C_1, ..., C_K, H, W) where K >= 1
27
- image_sizes (list[tuple[int, int]]): Each tuple is (h, w). It can
28
- be smaller than (H, W) due to padding.
29
- """
30
- self.tensor = tensor
31
- self.image_sizes = image_sizes
32
-
33
- def __len__(self) -> int:
34
- return len(self.image_sizes)
35
-
36
- def __getitem__(self, idx) -> torch.Tensor:
37
- """
38
- Access the individual image in its original size.
39
-
40
- Args:
41
- idx: int or slice
42
-
43
- Returns:
44
- Tensor: an image of shape (H, W) or (C_1, ..., C_K, H, W) where K >= 1
45
- """
46
- size = self.image_sizes[idx]
47
- return self.tensor[idx, ..., : size[0], : size[1]]
48
-
49
- @torch.jit.unused
50
- def to(self, *args: Any, **kwargs: Any) -> "ImageList":
51
- cast_tensor = self.tensor.to(*args, **kwargs)
52
- return ImageList(cast_tensor, self.image_sizes)
53
-
54
- @property
55
- def device(self) -> device:
56
- return self.tensor.device
57
-
58
- @staticmethod
59
- def from_tensors(
60
- tensors: List[torch.Tensor], size_divisibility: int = 0, pad_value: float = 0.0
61
- ) -> "ImageList":
62
- """
63
- Args:
64
- tensors: a tuple or list of `torch.Tensor`, each of shape (Hi, Wi) or
65
- (C_1, ..., C_K, Hi, Wi) where K >= 1. The Tensors will be padded
66
- to the same shape with `pad_value`.
67
- size_divisibility (int): If `size_divisibility > 0`, add padding to ensure
68
- the common height and width is divisible by `size_divisibility`.
69
- This depends on the model and many models need a divisibility of 32.
70
- pad_value (float): value to pad
71
-
72
- Returns:
73
- an `ImageList`.
74
- """
75
- assert len(tensors) > 0
76
- assert isinstance(tensors, (tuple, list))
77
- for t in tensors:
78
- assert isinstance(t, torch.Tensor), type(t)
79
- assert t.shape[:-2] == tensors[0].shape[:-2], t.shape
80
-
81
- image_sizes = [(im.shape[-2], im.shape[-1]) for im in tensors]
82
- image_sizes_tensor = [shapes_to_tensor(x) for x in image_sizes]
83
- max_size = torch.stack(image_sizes_tensor).max(0).values
84
-
85
- if size_divisibility > 1:
86
- stride = size_divisibility
87
- # the last two dims are H,W, both subject to divisibility requirement
88
- max_size = (max_size + (stride - 1)).div(stride, rounding_mode="floor") * stride
89
-
90
- # handle weirdness of scripting and tracing ...
91
- if torch.jit.is_scripting():
92
- max_size: List[int] = max_size.to(dtype=torch.long).tolist()
93
- else:
94
- if torch.jit.is_tracing():
95
- image_sizes = image_sizes_tensor
96
-
97
- if len(tensors) == 1:
98
- # This seems slightly (2%) faster.
99
- # TODO: check whether it's faster for multiple images as well
100
- image_size = image_sizes[0]
101
- padding_size = [0, max_size[-1] - image_size[1], 0, max_size[-2] - image_size[0]]
102
- batched_imgs = F.pad(tensors[0], padding_size, value=pad_value).unsqueeze_(0)
103
- else:
104
- # max_size can be a tensor in tracing mode, therefore convert to list
105
- batch_shape = [len(tensors)] + list(tensors[0].shape[:-2]) + list(max_size)
106
- batched_imgs = tensors[0].new_full(batch_shape, pad_value)
107
- for img, pad_img in zip(tensors, batched_imgs):
108
- pad_img[..., : img.shape[-2], : img.shape[-1]].copy_(img)
109
-
110
- return ImageList(batched_imgs.contiguous(), image_sizes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/BatuhanYilmaz/Youtube-Transcriber/utils.py DELETED
@@ -1,115 +0,0 @@
1
- import textwrap
2
- import unicodedata
3
- import re
4
-
5
- import zlib
6
- from typing import Iterator, TextIO
7
-
8
-
9
- def exact_div(x, y):
10
- assert x % y == 0
11
- return x // y
12
-
13
-
14
- def str2bool(string):
15
- str2val = {"True": True, "False": False}
16
- if string in str2val:
17
- return str2val[string]
18
- else:
19
- raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
20
-
21
-
22
- def optional_int(string):
23
- return None if string == "None" else int(string)
24
-
25
-
26
- def optional_float(string):
27
- return None if string == "None" else float(string)
28
-
29
-
30
- def compression_ratio(text) -> float:
31
- return len(text) / len(zlib.compress(text.encode("utf-8")))
32
-
33
-
34
- def format_timestamp(seconds: float, always_include_hours: bool = False, fractionalSeperator: str = '.'):
35
- assert seconds >= 0, "non-negative timestamp expected"
36
- milliseconds = round(seconds * 1000.0)
37
-
38
- hours = milliseconds // 3_600_000
39
- milliseconds -= hours * 3_600_000
40
-
41
- minutes = milliseconds // 60_000
42
- milliseconds -= minutes * 60_000
43
-
44
- seconds = milliseconds // 1_000
45
- milliseconds -= seconds * 1_000
46
-
47
- hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
48
- return f"{hours_marker}{minutes:02d}:{seconds:02d}{fractionalSeperator}{milliseconds:03d}"
49
-
50
-
51
- def write_txt(transcript: Iterator[dict], file: TextIO):
52
- for segment in transcript:
53
- print(segment['text'].strip(), file=file, flush=True)
54
-
55
-
56
- def write_vtt(transcript: Iterator[dict], file: TextIO, maxLineWidth=None):
57
- print("WEBVTT\n", file=file)
58
- for segment in transcript:
59
- text = processText(segment['text'], maxLineWidth).replace('-->', '->')
60
-
61
- print(
62
- f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
63
- f"{text}\n",
64
- file=file,
65
- flush=True,
66
- )
67
-
68
-
69
- def write_srt(transcript: Iterator[dict], file: TextIO, maxLineWidth=None):
70
- """
71
- Write a transcript to a file in SRT format.
72
- Example usage:
73
- from pathlib import Path
74
- from whisper.utils import write_srt
75
- result = transcribe(model, audio_path, temperature=temperature, **args)
76
- # save SRT
77
- audio_basename = Path(audio_path).stem
78
- with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt:
79
- write_srt(result["segments"], file=srt)
80
- """
81
- for i, segment in enumerate(transcript, start=1):
82
- text = processText(segment['text'].strip(), maxLineWidth).replace('-->', '->')
83
-
84
- # write srt lines
85
- print(
86
- f"{i}\n"
87
- f"{format_timestamp(segment['start'], always_include_hours=True, fractionalSeperator=',')} --> "
88
- f"{format_timestamp(segment['end'], always_include_hours=True, fractionalSeperator=',')}\n"
89
- f"{text}\n",
90
- file=file,
91
- flush=True,
92
- )
93
-
94
- def processText(text: str, maxLineWidth=None):
95
- if (maxLineWidth is None or maxLineWidth < 0):
96
- return text
97
-
98
- lines = textwrap.wrap(text, width=maxLineWidth, tabsize=4)
99
- return '\n'.join(lines)
100
-
101
- def slugify(value, allow_unicode=False):
102
- """
103
- Taken from https://github.com/django/django/blob/master/django/utils/text.py
104
- Convert to ASCII if 'allow_unicode' is False. Convert spaces or repeated
105
- dashes to single dashes. Remove characters that aren't alphanumerics,
106
- underscores, or hyphens. Convert to lowercase. Also strip leading and
107
- trailing whitespace, dashes, and underscores.
108
- """
109
- value = str(value)
110
- if allow_unicode:
111
- value = unicodedata.normalize('NFKC', value)
112
- else:
113
- value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii')
114
- value = re.sub(r'[^\w\s-]', '', value.lower())
115
- return re.sub(r'[-\s]+', '-', value).strip('-_')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/docs/waiter.py DELETED
@@ -1,184 +0,0 @@
1
- # Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License"). You
4
- # may not use this file except in compliance with the License. A copy of
5
- # the License is located at
6
- #
7
- # http://aws.amazon.com/apache2.0/
8
- #
9
- # or in the "license" file accompanying this file. This file is
10
- # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
11
- # ANY KIND, either express or implied. See the License for the specific
12
- # language governing permissions and limitations under the License.
13
- import os
14
-
15
- from botocore import xform_name
16
- from botocore.compat import OrderedDict
17
- from botocore.docs.bcdoc.restdoc import DocumentStructure
18
- from botocore.docs.method import document_model_driven_method
19
- from botocore.docs.utils import DocumentedShape
20
- from botocore.utils import get_service_module_name
21
-
22
-
23
- class WaiterDocumenter:
24
- def __init__(self, client, service_waiter_model, root_docs_path):
25
- self._client = client
26
- self._client_class_name = self._client.__class__.__name__
27
- self._service_name = self._client.meta.service_model.service_name
28
- self._service_waiter_model = service_waiter_model
29
- self._root_docs_path = root_docs_path
30
- self._USER_GUIDE_LINK = (
31
- 'https://boto3.amazonaws.com/'
32
- 'v1/documentation/api/latest/guide/clients.html#waiters'
33
- )
34
-
35
- def document_waiters(self, section):
36
- """Documents the various waiters for a service.
37
-
38
- :param section: The section to write to.
39
- """
40
- section.style.h2('Waiters')
41
- self._add_overview(section)
42
- section.style.new_line()
43
- section.writeln('The available waiters are:')
44
- section.style.toctree()
45
- for waiter_name in self._service_waiter_model.waiter_names:
46
- section.style.tocitem(f'{self._service_name}/waiter/{waiter_name}')
47
- # Create a new DocumentStructure for each waiter and add contents.
48
- waiter_doc_structure = DocumentStructure(
49
- waiter_name, target='html'
50
- )
51
- self._add_single_waiter(waiter_doc_structure, waiter_name)
52
- # Write waiters in individual/nested files.
53
- # Path: <root>/reference/services/<service>/waiter/<waiter_name>.rst
54
- waiter_dir_path = os.path.join(
55
- self._root_docs_path, self._service_name, 'waiter'
56
- )
57
- waiter_doc_structure.write_to_file(waiter_dir_path, waiter_name)
58
-
59
- def _add_single_waiter(self, section, waiter_name):
60
- breadcrumb_section = section.add_new_section('breadcrumb')
61
- breadcrumb_section.style.ref(
62
- self._client_class_name, f'../../{self._service_name}'
63
- )
64
- breadcrumb_section.write(f' / Waiter / {waiter_name}')
65
- section.add_title_section(waiter_name)
66
- waiter_section = section.add_new_section(waiter_name)
67
- waiter_section.style.start_sphinx_py_class(
68
- class_name=f"{self._client_class_name}.Waiter.{waiter_name}"
69
- )
70
-
71
- # Add example on how to instantiate waiter.
72
- waiter_section.style.start_codeblock()
73
- waiter_section.style.new_line()
74
- waiter_section.write(
75
- 'waiter = client.get_waiter(\'%s\')' % xform_name(waiter_name)
76
- )
77
- waiter_section.style.end_codeblock()
78
-
79
- # Add information on the wait() method
80
- waiter_section.style.new_line()
81
- document_wait_method(
82
- section=waiter_section,
83
- waiter_name=waiter_name,
84
- event_emitter=self._client.meta.events,
85
- service_model=self._client.meta.service_model,
86
- service_waiter_model=self._service_waiter_model,
87
- )
88
-
89
- def _add_overview(self, section):
90
- section.style.new_line()
91
- section.write(
92
- 'Waiters are available on a client instance '
93
- 'via the ``get_waiter`` method. For more detailed instructions '
94
- 'and examples on the usage or waiters, see the '
95
- 'waiters '
96
- )
97
- section.style.external_link(
98
- title='user guide',
99
- link=self._USER_GUIDE_LINK,
100
- )
101
- section.write('.')
102
- section.style.new_line()
103
-
104
-
105
- def document_wait_method(
106
- section,
107
- waiter_name,
108
- event_emitter,
109
- service_model,
110
- service_waiter_model,
111
- include_signature=True,
112
- ):
113
- """Documents a the wait method of a waiter
114
-
115
- :param section: The section to write to
116
-
117
- :param waiter_name: The name of the waiter
118
-
119
- :param event_emitter: The event emitter to use to emit events
120
-
121
- :param service_model: The service model
122
-
123
- :param service_waiter_model: The waiter model associated to the service
124
-
125
- :param include_signature: Whether or not to include the signature.
126
- It is useful for generating docstrings.
127
- """
128
- waiter_model = service_waiter_model.get_waiter(waiter_name)
129
- operation_model = service_model.operation_model(waiter_model.operation)
130
-
131
- waiter_config_members = OrderedDict()
132
-
133
- waiter_config_members['Delay'] = DocumentedShape(
134
- name='Delay',
135
- type_name='integer',
136
- documentation=(
137
- '<p>The amount of time in seconds to wait between '
138
- 'attempts. Default: {}</p>'.format(waiter_model.delay)
139
- ),
140
- )
141
-
142
- waiter_config_members['MaxAttempts'] = DocumentedShape(
143
- name='MaxAttempts',
144
- type_name='integer',
145
- documentation=(
146
- '<p>The maximum number of attempts to be made. '
147
- 'Default: {}</p>'.format(waiter_model.max_attempts)
148
- ),
149
- )
150
-
151
- botocore_waiter_params = [
152
- DocumentedShape(
153
- name='WaiterConfig',
154
- type_name='structure',
155
- documentation=(
156
- '<p>A dictionary that provides parameters to control '
157
- 'waiting behavior.</p>'
158
- ),
159
- members=waiter_config_members,
160
- )
161
- ]
162
-
163
- wait_description = (
164
- 'Polls :py:meth:`{}.Client.{}` every {} '
165
- 'seconds until a successful state is reached. An error is '
166
- 'returned after {} failed checks.'.format(
167
- get_service_module_name(service_model),
168
- xform_name(waiter_model.operation),
169
- waiter_model.delay,
170
- waiter_model.max_attempts,
171
- )
172
- )
173
-
174
- document_model_driven_method(
175
- section,
176
- 'wait',
177
- operation_model,
178
- event_emitter=event_emitter,
179
- method_description=wait_description,
180
- example_prefix='waiter.wait',
181
- include_input=botocore_waiter_params,
182
- document_output=False,
183
- include_signature=include_signature,
184
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/chardet/euckrprober.py DELETED
@@ -1,47 +0,0 @@
1
- ######################## BEGIN LICENSE BLOCK ########################
2
- # The Original Code is mozilla.org code.
3
- #
4
- # The Initial Developer of the Original Code is
5
- # Netscape Communications Corporation.
6
- # Portions created by the Initial Developer are Copyright (C) 1998
7
- # the Initial Developer. All Rights Reserved.
8
- #
9
- # Contributor(s):
10
- # Mark Pilgrim - port to Python
11
- #
12
- # This library is free software; you can redistribute it and/or
13
- # modify it under the terms of the GNU Lesser General Public
14
- # License as published by the Free Software Foundation; either
15
- # version 2.1 of the License, or (at your option) any later version.
16
- #
17
- # This library is distributed in the hope that it will be useful,
18
- # but WITHOUT ANY WARRANTY; without even the implied warranty of
19
- # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20
- # Lesser General Public License for more details.
21
- #
22
- # You should have received a copy of the GNU Lesser General Public
23
- # License along with this library; if not, write to the Free Software
24
- # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25
- # 02110-1301 USA
26
- ######################### END LICENSE BLOCK #########################
27
-
28
- from .chardistribution import EUCKRDistributionAnalysis
29
- from .codingstatemachine import CodingStateMachine
30
- from .mbcharsetprober import MultiByteCharSetProber
31
- from .mbcssm import EUCKR_SM_MODEL
32
-
33
-
34
- class EUCKRProber(MultiByteCharSetProber):
35
- def __init__(self) -> None:
36
- super().__init__()
37
- self.coding_sm = CodingStateMachine(EUCKR_SM_MODEL)
38
- self.distribution_analyzer = EUCKRDistributionAnalysis()
39
- self.reset()
40
-
41
- @property
42
- def charset_name(self) -> str:
43
- return "EUC-KR"
44
-
45
- @property
46
- def language(self) -> str:
47
- return "Korean"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/dependencies/cub/tune/Makefile DELETED
@@ -1,192 +0,0 @@
1
- #/******************************************************************************
2
- # * Copyright (c) 2011, Duane Merrill. All rights reserved.
3
- # * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
4
- # *
5
- # * Redistribution and use in source and binary forms, with or without
6
- # * modification, are permitted provided that the following conditions are met:
7
- # * * Redistributions of source code must retain the above copyright
8
- # * notice, this list of conditions and the following disclaimer.
9
- # * * Redistributions in binary form must reproduce the above copyright
10
- # * notice, this list of conditions and the following disclaimer in the
11
- # * documentation and/or other materials provided with the distribution.
12
- # * * Neither the name of the NVIDIA CORPORATION nor the
13
- # * names of its contributors may be used to endorse or promote products
14
- # * derived from this software without specific prior written permission.
15
- # *
16
- # * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17
- # * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18
- # * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19
- # * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
20
- # * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21
- # * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
- # * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23
- # * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
- # * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
- # * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
- # *
27
- #******************************************************************************/
28
-
29
- #-------------------------------------------------------------------------------
30
- # Build script for project
31
- #-------------------------------------------------------------------------------
32
-
33
- NVCC = "$(shell which nvcc)"
34
- NVCC_VERSION = $(strip $(shell nvcc --version | grep release | sed 's/.*release //' | sed 's/,.*//'))
35
-
36
- # detect OS
37
- OSUPPER = $(shell uname -s 2>/dev/null | tr [:lower:] [:upper:])
38
-
39
- #-------------------------------------------------------------------------------
40
- # Libs
41
- #-------------------------------------------------------------------------------
42
-
43
-
44
- #-------------------------------------------------------------------------------
45
- # Includes
46
- #-------------------------------------------------------------------------------
47
-
48
- INC = -I. -I.. -I../test
49
-
50
- #-------------------------------------------------------------------------------
51
- # Libs
52
- #-------------------------------------------------------------------------------
53
-
54
- LIBS += -lcudart
55
-
56
- #-------------------------------------------------------------------------------
57
- # Defines
58
- #-------------------------------------------------------------------------------
59
-
60
- DEFINES =
61
-
62
- #-------------------------------------------------------------------------------
63
- # SM Arch
64
- #-------------------------------------------------------------------------------
65
-
66
- ifdef sm
67
- SM_ARCH = $(sm)
68
- else
69
- SM_ARCH = 200
70
- endif
71
-
72
- # Only one arch per tuning binary
73
- ifeq (350, $(findstring 350, $(SM_ARCH)))
74
- SM_TARGETS = -arch=sm_35
75
- SM_ARCH = 350
76
- endif
77
- ifeq (300, $(findstring 300, $(SM_ARCH)))
78
- SM_TARGETS = -arch=sm_30
79
- SM_ARCH = 300
80
- endif
81
- ifeq (200, $(findstring 200, $(SM_ARCH)))
82
- SM_TARGETS = -arch=sm_20
83
- SM_ARCH = 200
84
- endif
85
- ifeq (130, $(findstring 130, $(SM_ARCH)))
86
- SM_TARGETS = -arch=sm_13
87
- SM_ARCH = 130
88
- endif
89
- ifeq (110, $(findstring 110, $(SM_ARCH)))
90
- SM_TARGETS = -arch=sm_11
91
- SM_ARCH = 110
92
- endif
93
- ifeq (100, $(findstring 100, $(SM_ARCH)))
94
- SM_TARGETS = -arch=sm_10
95
- SM_ARCH = 100
96
- endif
97
-
98
-
99
- #-------------------------------------------------------------------------------
100
- # Compiler Flags
101
- #-------------------------------------------------------------------------------
102
-
103
- NVCCFLAGS = -Xptxas -v -Xcudafe -\#
104
-
105
- # Help the compiler/linker work with huge numbers of kernels on Windows
106
- ifeq (WIN_NT, $(findstring WIN_NT, $(OSUPPER)))
107
- NVCCFLAGS += -Xcompiler /bigobj -Xcompiler /Zm500
108
- endif
109
-
110
- # 32/64-bit (32-bit device pointers by default)
111
- ifeq ($(force32), 1)
112
- CPU_ARCH = -m32
113
- CPU_ARCH_SUFFIX = i386
114
- else
115
- CPU_ARCH = -m64
116
- CPU_ARCH_SUFFIX = x86_64
117
- endif
118
-
119
- # CUDA ABI enable/disable (enabled by default)
120
- ifneq ($(abi), 0)
121
- ABI_SUFFIX = abi
122
- else
123
- NVCCFLAGS += -Xptxas -abi=no
124
- ABI_SUFFIX = noabi
125
- endif
126
-
127
- # NVVM/Open64 middle-end compiler (nvvm by default)
128
- ifeq ($(open64), 1)
129
- NVCCFLAGS += -open64
130
- PTX_SUFFIX = open64
131
- else
132
- PTX_SUFFIX = nvvm
133
- endif
134
-
135
- # Verbose toolchain output from nvcc
136
- ifeq ($(verbose), 1)
137
- NVCCFLAGS += -v
138
- endif
139
-
140
- # Keep intermediate compilation artifacts
141
- ifeq ($(keep), 1)
142
- NVCCFLAGS += -keep
143
- endif
144
-
145
- # Data type size to compile a schmoo binary for
146
- ifdef tunesize
147
- TUNE_SIZE = $(tunesize)
148
- else
149
- TUNE_SIZE = 4
150
- endif
151
-
152
-
153
- SUFFIX = $(TUNE_SIZE)B_sm$(SM_ARCH)_$(PTX_SUFFIX)_$(NVCC_VERSION)_$(ABI_SUFFIX)_$(CPU_ARCH_SUFFIX)
154
-
155
- #-------------------------------------------------------------------------------
156
- # Dependency Lists
157
- #-------------------------------------------------------------------------------
158
-
159
- rwildcard=$(foreach d,$(wildcard $1*),$(call rwildcard,$d/,$2) $(filter $(subst *,%,$2),$d))
160
-
161
- DEPS = ./Makefile \
162
- ../test/test_util.h \
163
- $(call rwildcard,../cub/,*.cuh)
164
-
165
-
166
- #-------------------------------------------------------------------------------
167
- # make default
168
- #-------------------------------------------------------------------------------
169
-
170
- default:
171
-
172
-
173
- #-------------------------------------------------------------------------------
174
- # make clean
175
- #-------------------------------------------------------------------------------
176
-
177
- clean :
178
- rm -f bin/*$(CPU_ARCH_SUFFIX)*
179
- rm -f *.i* *.cubin *.cu.c *.cudafe* *.fatbin.c *.ptx *.hash *.cu.cpp *.o
180
-
181
-
182
-
183
- #-------------------------------------------------------------------------------
184
- # make tune_device_reduce
185
- #-------------------------------------------------------------------------------
186
-
187
- tune_device_reduce: bin/tune_device_reduce_$(SUFFIX)
188
-
189
- bin/tune_device_reduce_$(SUFFIX) : tune_device_reduce.cu $(DEPS)
190
- mkdir -p bin
191
- $(NVCC) $(DEFINES) $(SM_TARGETS) -o bin/tune_device_reduce_$(SUFFIX) tune_device_reduce.cu $(NVCCFLAGS) $(CPU_ARCH) $(INC) $(LIBS) -O3 -DTUNE_ARCH=$(SM_ARCH) -DTUNE_SIZE=$(TUNE_SIZE)
192
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/detail/adl/generate.h DELETED
@@ -1,44 +0,0 @@
1
- /*
2
- * Copyright 2008-2013 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a fill of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
- #pragma once
18
-
19
- #include <thrust/detail/config.h>
20
-
21
- // the purpose of this header is to #include the generate.h header
22
- // of the sequential, host, and device systems. It should be #included in any
23
- // code which uses adl to dispatch generate
24
-
25
- #include <thrust/system/detail/sequential/generate.h>
26
-
27
- // SCons can't see through the #defines below to figure out what this header
28
- // includes, so we fake it out by specifying all possible files we might end up
29
- // including inside an #if 0.
30
- #if 0
31
- #include <thrust/system/cpp/detail/generate.h>
32
- #include <thrust/system/cuda/detail/generate.h>
33
- #include <thrust/system/omp/detail/generate.h>
34
- #include <thrust/system/tbb/detail/generate.h>
35
- #endif
36
-
37
- #define __THRUST_HOST_SYSTEM_GENERATE_HEADER <__THRUST_HOST_SYSTEM_ROOT/detail/generate.h>
38
- #include __THRUST_HOST_SYSTEM_GENERATE_HEADER
39
- #undef __THRUST_HOST_SYSTEM_GENERATE_HEADER
40
-
41
- #define __THRUST_DEVICE_SYSTEM_GENERATE_HEADER <__THRUST_DEVICE_SYSTEM_ROOT/detail/generate.h>
42
- #include __THRUST_DEVICE_SYSTEM_GENERATE_HEADER
43
- #undef __THRUST_DEVICE_SYSTEM_GENERATE_HEADER
44
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/tbb/detail/copy.h DELETED
@@ -1,57 +0,0 @@
1
- /*
2
- * Copyright 2008-2013 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a copy of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
- #pragma once
18
-
19
- #include <thrust/detail/config.h>
20
- #include <thrust/system/tbb/detail/execution_policy.h>
21
-
22
- namespace thrust
23
- {
24
- namespace system
25
- {
26
- namespace tbb
27
- {
28
- namespace detail
29
- {
30
-
31
-
32
- template<typename DerivedPolicy,
33
- typename InputIterator,
34
- typename OutputIterator>
35
- OutputIterator copy(execution_policy<DerivedPolicy> &exec,
36
- InputIterator first,
37
- InputIterator last,
38
- OutputIterator result);
39
-
40
-
41
- template<typename DerivedPolicy,
42
- typename InputIterator,
43
- typename Size,
44
- typename OutputIterator>
45
- OutputIterator copy_n(execution_policy<DerivedPolicy> &exec,
46
- InputIterator first,
47
- Size n,
48
- OutputIterator result);
49
-
50
-
51
- } // end namespace detail
52
- } // end namespace tbb
53
- } // end namespace system
54
- } // end namespace thrust
55
-
56
- #include <thrust/system/tbb/detail/copy.inl>
57
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/Text2Human/Text2Human/data/segm_attr_dataset.py DELETED
@@ -1,167 +0,0 @@
1
- import os
2
- import os.path
3
- import random
4
-
5
- import numpy as np
6
- import torch
7
- import torch.utils.data as data
8
- from PIL import Image
9
-
10
-
11
- class DeepFashionAttrSegmDataset(data.Dataset):
12
-
13
- def __init__(self,
14
- img_dir,
15
- segm_dir,
16
- pose_dir,
17
- ann_dir,
18
- downsample_factor=2,
19
- xflip=False):
20
- self._img_path = img_dir
21
- self._densepose_path = pose_dir
22
- self._segm_path = segm_dir
23
- self._image_fnames = []
24
- self.upper_fused_attrs = []
25
- self.lower_fused_attrs = []
26
- self.outer_fused_attrs = []
27
-
28
- self.downsample_factor = downsample_factor
29
- self.xflip = xflip
30
-
31
- # load attributes
32
- assert os.path.exists(f'{ann_dir}/upper_fused.txt')
33
- for idx, row in enumerate(
34
- open(os.path.join(f'{ann_dir}/upper_fused.txt'), 'r')):
35
- annotations = row.split()
36
- self._image_fnames.append(annotations[0])
37
- # assert self._image_fnames[idx] == annotations[0]
38
- self.upper_fused_attrs.append(int(annotations[1]))
39
-
40
- assert len(self._image_fnames) == len(self.upper_fused_attrs)
41
-
42
- assert os.path.exists(f'{ann_dir}/lower_fused.txt')
43
- for idx, row in enumerate(
44
- open(os.path.join(f'{ann_dir}/lower_fused.txt'), 'r')):
45
- annotations = row.split()
46
- assert self._image_fnames[idx] == annotations[0]
47
- self.lower_fused_attrs.append(int(annotations[1]))
48
-
49
- assert len(self._image_fnames) == len(self.lower_fused_attrs)
50
-
51
- assert os.path.exists(f'{ann_dir}/outer_fused.txt')
52
- for idx, row in enumerate(
53
- open(os.path.join(f'{ann_dir}/outer_fused.txt'), 'r')):
54
- annotations = row.split()
55
- assert self._image_fnames[idx] == annotations[0]
56
- self.outer_fused_attrs.append(int(annotations[1]))
57
-
58
- assert len(self._image_fnames) == len(self.outer_fused_attrs)
59
-
60
- # remove the overlapping item between upper cls and lower cls
61
- # cls 21 can appear with upper clothes
62
- # cls 4 can appear with lower clothes
63
- self.upper_cls = [1., 4.]
64
- self.lower_cls = [3., 5., 21.]
65
- self.outer_cls = [2.]
66
- self.other_cls = [
67
- 11., 18., 7., 8., 9., 10., 12., 16., 17., 19., 20., 22., 23., 15.,
68
- 14., 13., 0., 6.
69
- ]
70
-
71
- def _open_file(self, path_prefix, fname):
72
- return open(os.path.join(path_prefix, fname), 'rb')
73
-
74
- def _load_raw_image(self, raw_idx):
75
- fname = self._image_fnames[raw_idx]
76
- with self._open_file(self._img_path, fname) as f:
77
- image = Image.open(f)
78
- if self.downsample_factor != 1:
79
- width, height = image.size
80
- width = width // self.downsample_factor
81
- height = height // self.downsample_factor
82
- image = image.resize(
83
- size=(width, height), resample=Image.LANCZOS)
84
- image = np.array(image)
85
- if image.ndim == 2:
86
- image = image[:, :, np.newaxis] # HW => HWC
87
- image = image.transpose(2, 0, 1) # HWC => CHW
88
- return image
89
-
90
- def _load_densepose(self, raw_idx):
91
- fname = self._image_fnames[raw_idx]
92
- fname = f'{fname[:-4]}_densepose.png'
93
- with self._open_file(self._densepose_path, fname) as f:
94
- densepose = Image.open(f)
95
- if self.downsample_factor != 1:
96
- width, height = densepose.size
97
- width = width // self.downsample_factor
98
- height = height // self.downsample_factor
99
- densepose = densepose.resize(
100
- size=(width, height), resample=Image.NEAREST)
101
- # channel-wise IUV order, [3, H, W]
102
- densepose = np.array(densepose)[:, :, 2:].transpose(2, 0, 1)
103
- return densepose.astype(np.float32)
104
-
105
- def _load_segm(self, raw_idx):
106
- fname = self._image_fnames[raw_idx]
107
- fname = f'{fname[:-4]}_segm.png'
108
- with self._open_file(self._segm_path, fname) as f:
109
- segm = Image.open(f)
110
- if self.downsample_factor != 1:
111
- width, height = segm.size
112
- width = width // self.downsample_factor
113
- height = height // self.downsample_factor
114
- segm = segm.resize(
115
- size=(width, height), resample=Image.NEAREST)
116
- segm = np.array(segm)
117
- segm = segm[:, :, np.newaxis].transpose(2, 0, 1)
118
- return segm.astype(np.float32)
119
-
120
- def __getitem__(self, index):
121
- image = self._load_raw_image(index)
122
- pose = self._load_densepose(index)
123
- segm = self._load_segm(index)
124
-
125
- if self.xflip and random.random() > 0.5:
126
- assert image.ndim == 3 # CHW
127
- image = image[:, :, ::-1].copy()
128
- pose = pose[:, :, ::-1].copy()
129
- segm = segm[:, :, ::-1].copy()
130
-
131
- image = torch.from_numpy(image)
132
- segm = torch.from_numpy(segm)
133
-
134
- upper_fused_attr = self.upper_fused_attrs[index]
135
- lower_fused_attr = self.lower_fused_attrs[index]
136
- outer_fused_attr = self.outer_fused_attrs[index]
137
-
138
- # mask 0: denotes the common codebook,
139
- # mask (attr + 1): denotes the texture-specific codebook
140
- mask = torch.zeros_like(segm)
141
- if upper_fused_attr != 17:
142
- for cls in self.upper_cls:
143
- mask[segm == cls] = upper_fused_attr + 1
144
-
145
- if lower_fused_attr != 17:
146
- for cls in self.lower_cls:
147
- mask[segm == cls] = lower_fused_attr + 1
148
-
149
- if outer_fused_attr != 17:
150
- for cls in self.outer_cls:
151
- mask[segm == cls] = outer_fused_attr + 1
152
-
153
- pose = pose / 12. - 1
154
- image = image / 127.5 - 1
155
-
156
- return_dict = {
157
- 'image': image,
158
- 'densepose': pose,
159
- 'segm': segm,
160
- 'texture_mask': mask,
161
- 'img_name': self._image_fnames[index]
162
- }
163
-
164
- return return_dict
165
-
166
- def __len__(self):
167
- return len(self._image_fnames)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/regionclip-demo/detectron2/data/datasets/builtin_meta.py DELETED
@@ -1,560 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- # Copyright (c) Facebook, Inc. and its affiliates.
3
-
4
- """
5
- Note:
6
- For your custom dataset, there is no need to hard-code metadata anywhere in the code.
7
- For example, for COCO-format dataset, metadata will be obtained automatically
8
- when calling `load_coco_json`. For other dataset, metadata may also be obtained in other ways
9
- during loading.
10
-
11
- However, we hard-coded metadata for a few common dataset here.
12
- The only goal is to allow users who don't have these dataset to use pre-trained models.
13
- Users don't have to download a COCO json (which contains metadata), in order to visualize a
14
- COCO model (with correct class names and colors).
15
- """
16
- # meta data for 65-48-17 zeroshot split of COCO
17
- COCO_OVD_CATEGORIES = {
18
- 'target': [
19
- {"color": [106, 0, 228], "isthing": 1, "id": 5, "name": "airplane"},
20
- {"color": [0, 60, 100], "isthing": 1, "id": 6, "name": "bus"},
21
- {"color": [255, 77, 255], "isthing": 1, "id": 17, "name": "cat"},
22
- {"color": [0, 226, 252], "isthing": 1, "id": 18, "name": "dog"},
23
- {"color": [120, 166, 157], "isthing": 1, "id": 21, "name": "cow"},
24
- {"color": [110, 76, 0], "isthing": 1, "id": 22, "name": "elephant"},
25
- {"color": [0, 125, 92], "isthing": 1, "id": 28, "name": "umbrella"},
26
- {"color": [188, 208, 182], "isthing": 1, "id": 32, "name": "tie"},
27
- {"color": [133, 129, 255], "isthing": 1, "id": 36, "name": "snowboard"},
28
- {"color": [134, 134, 103], "isthing": 1, "id": 41, "name": "skateboard"},
29
- {"color": [109, 63, 54], "isthing": 1, "id": 47, "name": "cup"},
30
- {"color": [151, 0, 95], "isthing": 1, "id": 49, "name": "knife"},
31
- {"color": [147, 186, 208], "isthing": 1, "id": 61, "name": "cake"},
32
- {"color": [3, 95, 161], "isthing": 1, "id": 63, "name": "couch"},
33
- {"color": [166, 74, 118], "isthing": 1, "id": 76, "name": "keyboard"},
34
- {"color": [127, 167, 115], "isthing": 1, "id": 81, "name": "sink"},
35
- {"color": [128, 76, 255], "isthing": 1, "id": 87, "name": "scissors"},
36
- ],
37
- 'base': [
38
- {"color": [220, 20, 60], "isthing": 1, "id": 1, "name": "person"},
39
- {"color": [119, 11, 32], "isthing": 1, "id": 2, "name": "bicycle"},
40
- {"color": [0, 0, 142], "isthing": 1, "id": 3, "name": "car"},
41
- {"color": [0, 0, 230], "isthing": 1, "id": 4, "name": "motorcycle"},
42
- {"color": [0, 80, 100], "isthing": 1, "id": 7, "name": "train"},
43
- {"color": [0, 0, 70], "isthing": 1, "id": 8, "name": "truck"},
44
- {"color": [0, 0, 192], "isthing": 1, "id": 9, "name": "boat"},
45
- {"color": [250, 0, 30], "isthing": 1, "id": 15, "name": "bench"},
46
- {"color": [165, 42, 42], "isthing": 1, "id": 16, "name": "bird"},
47
- {"color": [182, 182, 255], "isthing": 1, "id": 19, "name": "horse"},
48
- {"color": [0, 82, 0], "isthing": 1, "id": 20, "name": "sheep"},
49
- {"color": [174, 57, 255], "isthing": 1, "id": 23, "name": "bear"},
50
- {"color": [199, 100, 0], "isthing": 1, "id": 24, "name": "zebra"},
51
- {"color": [72, 0, 118], "isthing": 1, "id": 25, "name": "giraffe"},
52
- {"color": [255, 179, 240], "isthing": 1, "id": 27, "name": "backpack"},
53
- {"color": [209, 0, 151], "isthing": 1, "id": 31, "name": "handbag"},
54
- {"color": [0, 220, 176], "isthing": 1, "id": 33, "name": "suitcase"},
55
- {"color": [255, 99, 164], "isthing": 1, "id": 34, "name": "frisbee"},
56
- {"color": [92, 0, 73], "isthing": 1, "id": 35, "name": "skis"},
57
- {"color": [0, 228, 0], "isthing": 1, "id": 38, "name": "kite"},
58
- {"color": [145, 148, 174], "isthing": 1, "id": 42, "name": "surfboard"},
59
- {"color": [197, 226, 255], "isthing": 1, "id": 44, "name": "bottle"},
60
- {"color": [207, 138, 255], "isthing": 1, "id": 48, "name": "fork"},
61
- {"color": [9, 80, 61], "isthing": 1, "id": 50, "name": "spoon"},
62
- {"color": [84, 105, 51], "isthing": 1, "id": 51, "name": "bowl"},
63
- {"color": [74, 65, 105], "isthing": 1, "id": 52, "name": "banana"},
64
- {"color": [166, 196, 102], "isthing": 1, "id": 53, "name": "apple"},
65
- {"color": [208, 195, 210], "isthing": 1, "id": 54, "name": "sandwich"},
66
- {"color": [255, 109, 65], "isthing": 1, "id": 55, "name": "orange"},
67
- {"color": [0, 143, 149], "isthing": 1, "id": 56, "name": "broccoli"},
68
- {"color": [179, 0, 194], "isthing": 1, "id": 57, "name": "carrot"},
69
- {"color": [5, 121, 0], "isthing": 1, "id": 59, "name": "pizza"},
70
- {"color": [227, 255, 205], "isthing": 1, "id": 60, "name": "donut"},
71
- {"color": [153, 69, 1], "isthing": 1, "id": 62, "name": "chair"},
72
- {"color": [119, 0, 170], "isthing": 1, "id": 65, "name": "bed"},
73
- {"color": [0, 165, 120], "isthing": 1, "id": 70, "name": "toilet"},
74
- {"color": [183, 130, 88], "isthing": 1, "id": 72, "name": "tv"},
75
- {"color": [95, 32, 0], "isthing": 1, "id": 73, "name": "laptop"},
76
- {"color": [130, 114, 135], "isthing": 1, "id": 74, "name": "mouse"},
77
- {"color": [110, 129, 133], "isthing": 1, "id": 75, "name": "remote"},
78
- {"color": [79, 210, 114], "isthing": 1, "id": 78, "name": "microwave"},
79
- {"color": [178, 90, 62], "isthing": 1, "id": 79, "name": "oven"},
80
- {"color": [65, 70, 15], "isthing": 1, "id": 80, "name": "toaster"},
81
- {"color": [59, 105, 106], "isthing": 1, "id": 82, "name": "refrigerator"},
82
- {"color": [142, 108, 45], "isthing": 1, "id": 84, "name": "book"},
83
- {"color": [196, 172, 0], "isthing": 1, "id": 85, "name": "clock"},
84
- {"color": [95, 54, 80], "isthing": 1, "id": 86, "name": "vase"},
85
- {"color": [191, 162, 208], "isthing": 1, "id": 90, "name": "toothbrush"},
86
- ],
87
- 'all': [
88
- {"color": [220, 20, 60], "isthing": 1, "id": 1, "name": "person"},
89
- {"color": [119, 11, 32], "isthing": 1, "id": 2, "name": "bicycle"},
90
- {"color": [0, 0, 142], "isthing": 1, "id": 3, "name": "car"},
91
- {"color": [0, 0, 230], "isthing": 1, "id": 4, "name": "motorcycle"},
92
- {"color": [106, 0, 228], "isthing": 1, "id": 5, "name": "airplane"},
93
- {"color": [0, 60, 100], "isthing": 1, "id": 6, "name": "bus"},
94
- {"color": [0, 80, 100], "isthing": 1, "id": 7, "name": "train"},
95
- {"color": [0, 0, 70], "isthing": 1, "id": 8, "name": "truck"},
96
- {"color": [0, 0, 192], "isthing": 1, "id": 9, "name": "boat"},
97
- {"color": [250, 0, 30], "isthing": 1, "id": 15, "name": "bench"},
98
- {"color": [165, 42, 42], "isthing": 1, "id": 16, "name": "bird"},
99
- {"color": [255, 77, 255], "isthing": 1, "id": 17, "name": "cat"},
100
- {"color": [0, 226, 252], "isthing": 1, "id": 18, "name": "dog"},
101
- {"color": [182, 182, 255], "isthing": 1, "id": 19, "name": "horse"},
102
- {"color": [0, 82, 0], "isthing": 1, "id": 20, "name": "sheep"},
103
- {"color": [120, 166, 157], "isthing": 1, "id": 21, "name": "cow"},
104
- {"color": [110, 76, 0], "isthing": 1, "id": 22, "name": "elephant"},
105
- {"color": [174, 57, 255], "isthing": 1, "id": 23, "name": "bear"},
106
- {"color": [199, 100, 0], "isthing": 1, "id": 24, "name": "zebra"},
107
- {"color": [72, 0, 118], "isthing": 1, "id": 25, "name": "giraffe"},
108
- {"color": [255, 179, 240], "isthing": 1, "id": 27, "name": "backpack"},
109
- {"color": [0, 125, 92], "isthing": 1, "id": 28, "name": "umbrella"},
110
- {"color": [209, 0, 151], "isthing": 1, "id": 31, "name": "handbag"},
111
- {"color": [188, 208, 182], "isthing": 1, "id": 32, "name": "tie"},
112
- {"color": [0, 220, 176], "isthing": 1, "id": 33, "name": "suitcase"},
113
- {"color": [255, 99, 164], "isthing": 1, "id": 34, "name": "frisbee"},
114
- {"color": [92, 0, 73], "isthing": 1, "id": 35, "name": "skis"},
115
- {"color": [133, 129, 255], "isthing": 1, "id": 36, "name": "snowboard"},
116
- {"color": [0, 228, 0], "isthing": 1, "id": 38, "name": "kite"},
117
- {"color": [134, 134, 103], "isthing": 1, "id": 41, "name": "skateboard"},
118
- {"color": [145, 148, 174], "isthing": 1, "id": 42, "name": "surfboard"},
119
- {"color": [197, 226, 255], "isthing": 1, "id": 44, "name": "bottle"},
120
- {"color": [109, 63, 54], "isthing": 1, "id": 47, "name": "cup"},
121
- {"color": [207, 138, 255], "isthing": 1, "id": 48, "name": "fork"},
122
- {"color": [151, 0, 95], "isthing": 1, "id": 49, "name": "knife"},
123
- {"color": [9, 80, 61], "isthing": 1, "id": 50, "name": "spoon"},
124
- {"color": [84, 105, 51], "isthing": 1, "id": 51, "name": "bowl"},
125
- {"color": [74, 65, 105], "isthing": 1, "id": 52, "name": "banana"},
126
- {"color": [166, 196, 102], "isthing": 1, "id": 53, "name": "apple"},
127
- {"color": [208, 195, 210], "isthing": 1, "id": 54, "name": "sandwich"},
128
- {"color": [255, 109, 65], "isthing": 1, "id": 55, "name": "orange"},
129
- {"color": [0, 143, 149], "isthing": 1, "id": 56, "name": "broccoli"},
130
- {"color": [179, 0, 194], "isthing": 1, "id": 57, "name": "carrot"},
131
- {"color": [5, 121, 0], "isthing": 1, "id": 59, "name": "pizza"},
132
- {"color": [227, 255, 205], "isthing": 1, "id": 60, "name": "donut"},
133
- {"color": [147, 186, 208], "isthing": 1, "id": 61, "name": "cake"},
134
- {"color": [153, 69, 1], "isthing": 1, "id": 62, "name": "chair"},
135
- {"color": [3, 95, 161], "isthing": 1, "id": 63, "name": "couch"},
136
- {"color": [119, 0, 170], "isthing": 1, "id": 65, "name": "bed"},
137
- {"color": [0, 165, 120], "isthing": 1, "id": 70, "name": "toilet"},
138
- {"color": [183, 130, 88], "isthing": 1, "id": 72, "name": "tv"},
139
- {"color": [95, 32, 0], "isthing": 1, "id": 73, "name": "laptop"},
140
- {"color": [130, 114, 135], "isthing": 1, "id": 74, "name": "mouse"},
141
- {"color": [110, 129, 133], "isthing": 1, "id": 75, "name": "remote"},
142
- {"color": [166, 74, 118], "isthing": 1, "id": 76, "name": "keyboard"},
143
- {"color": [79, 210, 114], "isthing": 1, "id": 78, "name": "microwave"},
144
- {"color": [178, 90, 62], "isthing": 1, "id": 79, "name": "oven"},
145
- {"color": [65, 70, 15], "isthing": 1, "id": 80, "name": "toaster"},
146
- {"color": [127, 167, 115], "isthing": 1, "id": 81, "name": "sink"},
147
- {"color": [59, 105, 106], "isthing": 1, "id": 82, "name": "refrigerator"},
148
- {"color": [142, 108, 45], "isthing": 1, "id": 84, "name": "book"},
149
- {"color": [196, 172, 0], "isthing": 1, "id": 85, "name": "clock"},
150
- {"color": [95, 54, 80], "isthing": 1, "id": 86, "name": "vase"},
151
- {"color": [128, 76, 255], "isthing": 1, "id": 87, "name": "scissors"},
152
- {"color": [191, 162, 208], "isthing": 1, "id": 90, "name": "toothbrush"},
153
- ],
154
- }
155
-
156
- # Classes not used in COCO_OVD_CATEGORIES
157
- NOT_USED = [
158
- {"color": [250, 170, 30], "isthing": 1, "id": 10, "name": "traffic light"},
159
- {"color": [100, 170, 30], "isthing": 1, "id": 11, "name": "fire hydrant"},
160
- {"color": [220, 220, 0], "isthing": 1, "id": 13, "name": "stop sign"},
161
- {"color": [175, 116, 175], "isthing": 1, "id": 14, "name": "parking meter"},
162
- {"color": [78, 180, 255], "isthing": 1, "id": 37, "name": "sports ball"},
163
- {"color": [174, 255, 243], "isthing": 1, "id": 39, "name": "baseball bat"},
164
- {"color": [45, 89, 255], "isthing": 1, "id": 40, "name": "baseball glove"},
165
- {"color": [255, 208, 186], "isthing": 1, "id": 43, "name": "tennis racket"},
166
- {"color": [171, 134, 1], "isthing": 1, "id": 46, "name": "wine glass"},
167
- {"color": [209, 99, 106], "isthing": 1, "id": 58, "name": "hot dog"},
168
- {"color": [163, 255, 0], "isthing": 1, "id": 64, "name": "potted plant"},
169
- {"color": [0, 182, 199], "isthing": 1, "id": 67, "name": "dining table"},
170
- {"color": [219, 142, 185], "isthing": 1, "id": 77, "name": "cell phone"},
171
- {"color": [201, 57, 1], "isthing": 1, "id": 88, "name": "teddy bear"},
172
- {"color": [246, 0, 122], "isthing": 1, "id": 89, "name": "hair drier"},
173
- {"color": [255, 255, 128], "isthing": 0, "id": 92, "name": "banner"},
174
- {"color": [147, 211, 203], "isthing": 0, "id": 93, "name": "blanket"},
175
- {"color": [150, 100, 100], "isthing": 0, "id": 95, "name": "bridge"},
176
- {"color": [168, 171, 172], "isthing": 0, "id": 100, "name": "cardboard"},
177
- {"color": [146, 112, 198], "isthing": 0, "id": 107, "name": "counter"},
178
- {"color": [210, 170, 100], "isthing": 0, "id": 109, "name": "curtain"},
179
- {"color": [92, 136, 89], "isthing": 0, "id": 112, "name": "door-stuff"},
180
- {"color": [218, 88, 184], "isthing": 0, "id": 118, "name": "floor-wood"},
181
- {"color": [241, 129, 0], "isthing": 0, "id": 119, "name": "flower"},
182
- {"color": [217, 17, 255], "isthing": 0, "id": 122, "name": "fruit"},
183
- {"color": [124, 74, 181], "isthing": 0, "id": 125, "name": "gravel"},
184
- {"color": [70, 70, 70], "isthing": 0, "id": 128, "name": "house"},
185
- {"color": [255, 228, 255], "isthing": 0, "id": 130, "name": "light"},
186
- {"color": [154, 208, 0], "isthing": 0, "id": 133, "name": "mirror-stuff"},
187
- {"color": [193, 0, 92], "isthing": 0, "id": 138, "name": "net"},
188
- {"color": [76, 91, 113], "isthing": 0, "id": 141, "name": "pillow"},
189
- {"color": [255, 180, 195], "isthing": 0, "id": 144, "name": "platform"},
190
- {"color": [106, 154, 176], "isthing": 0, "id": 145, "name": "playingfield"},
191
- {"color": [230, 150, 140], "isthing": 0, "id": 147, "name": "railroad"},
192
- {"color": [60, 143, 255], "isthing": 0, "id": 148, "name": "river"},
193
- {"color": [128, 64, 128], "isthing": 0, "id": 149, "name": "road"},
194
- {"color": [92, 82, 55], "isthing": 0, "id": 151, "name": "roof"},
195
- {"color": [254, 212, 124], "isthing": 0, "id": 154, "name": "sand"},
196
- {"color": [73, 77, 174], "isthing": 0, "id": 155, "name": "sea"},
197
- {"color": [255, 160, 98], "isthing": 0, "id": 156, "name": "shelf"},
198
- {"color": [255, 255, 255], "isthing": 0, "id": 159, "name": "snow"},
199
- {"color": [104, 84, 109], "isthing": 0, "id": 161, "name": "stairs"},
200
- {"color": [169, 164, 131], "isthing": 0, "id": 166, "name": "tent"},
201
- {"color": [225, 199, 255], "isthing": 0, "id": 168, "name": "towel"},
202
- {"color": [135, 158, 223], "isthing": 0, "id": 175, "name": "wall-stone"},
203
- {"color": [137, 54, 74], "isthing": 0, "id": 171, "name": "wall-brick"},
204
- {"color": [7, 246, 231], "isthing": 0, "id": 176, "name": "wall-tile"},
205
- {"color": [107, 255, 200], "isthing": 0, "id": 177, "name": "wall-wood"},
206
- {"color": [58, 41, 149], "isthing": 0, "id": 178, "name": "water-other"},
207
- {"color": [183, 121, 142], "isthing": 0, "id": 180, "name": "window-blind"},
208
- {"color": [255, 73, 97], "isthing": 0, "id": 181, "name": "window-other"},
209
- {"color": [107, 142, 35], "isthing": 0, "id": 184, "name": "tree-merged"},
210
- {"color": [190, 153, 153], "isthing": 0, "id": 185, "name": "fence-merged"},
211
- {"color": [146, 139, 141], "isthing": 0, "id": 186, "name": "ceiling-merged"},
212
- {"color": [70, 130, 180], "isthing": 0, "id": 187, "name": "sky-other-merged"},
213
- {"color": [134, 199, 156], "isthing": 0, "id": 188, "name": "cabinet-merged"},
214
- {"color": [209, 226, 140], "isthing": 0, "id": 189, "name": "table-merged"},
215
- {"color": [96, 36, 108], "isthing": 0, "id": 190, "name": "floor-other-merged"},
216
- {"color": [96, 96, 96], "isthing": 0, "id": 191, "name": "pavement-merged"},
217
- {"color": [64, 170, 64], "isthing": 0, "id": 192, "name": "mountain-merged"},
218
- {"color": [152, 251, 152], "isthing": 0, "id": 193, "name": "grass-merged"},
219
- {"color": [208, 229, 228], "isthing": 0, "id": 194, "name": "dirt-merged"},
220
- {"color": [206, 186, 171], "isthing": 0, "id": 195, "name": "paper-merged"},
221
- {"color": [152, 161, 64], "isthing": 0, "id": 196, "name": "food-other-merged"},
222
- {"color": [116, 112, 0], "isthing": 0, "id": 197, "name": "building-other-merged"},
223
- {"color": [0, 114, 143], "isthing": 0, "id": 198, "name": "rock-merged"},
224
- {"color": [102, 102, 156], "isthing": 0, "id": 199, "name": "wall-other-merged"},
225
- {"color": [250, 141, 255], "isthing": 0, "id": 200, "name": "rug-merged"},
226
- ]
227
-
228
- # All coco categories, together with their nice-looking visualization colors
229
- # It's from https://github.com/cocodataset/panopticapi/blob/master/panoptic_coco_categories.json
230
- COCO_CATEGORIES = [
231
- {"color": [220, 20, 60], "isthing": 1, "id": 1, "name": "person"},
232
- {"color": [119, 11, 32], "isthing": 1, "id": 2, "name": "bicycle"},
233
- {"color": [0, 0, 142], "isthing": 1, "id": 3, "name": "car"},
234
- {"color": [0, 0, 230], "isthing": 1, "id": 4, "name": "motorcycle"},
235
- {"color": [106, 0, 228], "isthing": 1, "id": 5, "name": "airplane"},
236
- {"color": [0, 60, 100], "isthing": 1, "id": 6, "name": "bus"},
237
- {"color": [0, 80, 100], "isthing": 1, "id": 7, "name": "train"},
238
- {"color": [0, 0, 70], "isthing": 1, "id": 8, "name": "truck"},
239
- {"color": [0, 0, 192], "isthing": 1, "id": 9, "name": "boat"},
240
- {"color": [250, 170, 30], "isthing": 1, "id": 10, "name": "traffic light"},
241
- {"color": [100, 170, 30], "isthing": 1, "id": 11, "name": "fire hydrant"},
242
- {"color": [220, 220, 0], "isthing": 1, "id": 13, "name": "stop sign"},
243
- {"color": [175, 116, 175], "isthing": 1, "id": 14, "name": "parking meter"},
244
- {"color": [250, 0, 30], "isthing": 1, "id": 15, "name": "bench"},
245
- {"color": [165, 42, 42], "isthing": 1, "id": 16, "name": "bird"},
246
- {"color": [255, 77, 255], "isthing": 1, "id": 17, "name": "cat"},
247
- {"color": [0, 226, 252], "isthing": 1, "id": 18, "name": "dog"},
248
- {"color": [182, 182, 255], "isthing": 1, "id": 19, "name": "horse"},
249
- {"color": [0, 82, 0], "isthing": 1, "id": 20, "name": "sheep"},
250
- {"color": [120, 166, 157], "isthing": 1, "id": 21, "name": "cow"},
251
- {"color": [110, 76, 0], "isthing": 1, "id": 22, "name": "elephant"},
252
- {"color": [174, 57, 255], "isthing": 1, "id": 23, "name": "bear"},
253
- {"color": [199, 100, 0], "isthing": 1, "id": 24, "name": "zebra"},
254
- {"color": [72, 0, 118], "isthing": 1, "id": 25, "name": "giraffe"},
255
- {"color": [255, 179, 240], "isthing": 1, "id": 27, "name": "backpack"},
256
- {"color": [0, 125, 92], "isthing": 1, "id": 28, "name": "umbrella"},
257
- {"color": [209, 0, 151], "isthing": 1, "id": 31, "name": "handbag"},
258
- {"color": [188, 208, 182], "isthing": 1, "id": 32, "name": "tie"},
259
- {"color": [0, 220, 176], "isthing": 1, "id": 33, "name": "suitcase"},
260
- {"color": [255, 99, 164], "isthing": 1, "id": 34, "name": "frisbee"},
261
- {"color": [92, 0, 73], "isthing": 1, "id": 35, "name": "skis"},
262
- {"color": [133, 129, 255], "isthing": 1, "id": 36, "name": "snowboard"},
263
- {"color": [78, 180, 255], "isthing": 1, "id": 37, "name": "sports ball"},
264
- {"color": [0, 228, 0], "isthing": 1, "id": 38, "name": "kite"},
265
- {"color": [174, 255, 243], "isthing": 1, "id": 39, "name": "baseball bat"},
266
- {"color": [45, 89, 255], "isthing": 1, "id": 40, "name": "baseball glove"},
267
- {"color": [134, 134, 103], "isthing": 1, "id": 41, "name": "skateboard"},
268
- {"color": [145, 148, 174], "isthing": 1, "id": 42, "name": "surfboard"},
269
- {"color": [255, 208, 186], "isthing": 1, "id": 43, "name": "tennis racket"},
270
- {"color": [197, 226, 255], "isthing": 1, "id": 44, "name": "bottle"},
271
- {"color": [171, 134, 1], "isthing": 1, "id": 46, "name": "wine glass"},
272
- {"color": [109, 63, 54], "isthing": 1, "id": 47, "name": "cup"},
273
- {"color": [207, 138, 255], "isthing": 1, "id": 48, "name": "fork"},
274
- {"color": [151, 0, 95], "isthing": 1, "id": 49, "name": "knife"},
275
- {"color": [9, 80, 61], "isthing": 1, "id": 50, "name": "spoon"},
276
- {"color": [84, 105, 51], "isthing": 1, "id": 51, "name": "bowl"},
277
- {"color": [74, 65, 105], "isthing": 1, "id": 52, "name": "banana"},
278
- {"color": [166, 196, 102], "isthing": 1, "id": 53, "name": "apple"},
279
- {"color": [208, 195, 210], "isthing": 1, "id": 54, "name": "sandwich"},
280
- {"color": [255, 109, 65], "isthing": 1, "id": 55, "name": "orange"},
281
- {"color": [0, 143, 149], "isthing": 1, "id": 56, "name": "broccoli"},
282
- {"color": [179, 0, 194], "isthing": 1, "id": 57, "name": "carrot"},
283
- {"color": [209, 99, 106], "isthing": 1, "id": 58, "name": "hot dog"},
284
- {"color": [5, 121, 0], "isthing": 1, "id": 59, "name": "pizza"},
285
- {"color": [227, 255, 205], "isthing": 1, "id": 60, "name": "donut"},
286
- {"color": [147, 186, 208], "isthing": 1, "id": 61, "name": "cake"},
287
- {"color": [153, 69, 1], "isthing": 1, "id": 62, "name": "chair"},
288
- {"color": [3, 95, 161], "isthing": 1, "id": 63, "name": "couch"},
289
- {"color": [163, 255, 0], "isthing": 1, "id": 64, "name": "potted plant"},
290
- {"color": [119, 0, 170], "isthing": 1, "id": 65, "name": "bed"},
291
- {"color": [0, 182, 199], "isthing": 1, "id": 67, "name": "dining table"},
292
- {"color": [0, 165, 120], "isthing": 1, "id": 70, "name": "toilet"},
293
- {"color": [183, 130, 88], "isthing": 1, "id": 72, "name": "tv"},
294
- {"color": [95, 32, 0], "isthing": 1, "id": 73, "name": "laptop"},
295
- {"color": [130, 114, 135], "isthing": 1, "id": 74, "name": "mouse"},
296
- {"color": [110, 129, 133], "isthing": 1, "id": 75, "name": "remote"},
297
- {"color": [166, 74, 118], "isthing": 1, "id": 76, "name": "keyboard"},
298
- {"color": [219, 142, 185], "isthing": 1, "id": 77, "name": "cell phone"},
299
- {"color": [79, 210, 114], "isthing": 1, "id": 78, "name": "microwave"},
300
- {"color": [178, 90, 62], "isthing": 1, "id": 79, "name": "oven"},
301
- {"color": [65, 70, 15], "isthing": 1, "id": 80, "name": "toaster"},
302
- {"color": [127, 167, 115], "isthing": 1, "id": 81, "name": "sink"},
303
- {"color": [59, 105, 106], "isthing": 1, "id": 82, "name": "refrigerator"},
304
- {"color": [142, 108, 45], "isthing": 1, "id": 84, "name": "book"},
305
- {"color": [196, 172, 0], "isthing": 1, "id": 85, "name": "clock"},
306
- {"color": [95, 54, 80], "isthing": 1, "id": 86, "name": "vase"},
307
- {"color": [128, 76, 255], "isthing": 1, "id": 87, "name": "scissors"},
308
- {"color": [201, 57, 1], "isthing": 1, "id": 88, "name": "teddy bear"},
309
- {"color": [246, 0, 122], "isthing": 1, "id": 89, "name": "hair drier"},
310
- {"color": [191, 162, 208], "isthing": 1, "id": 90, "name": "toothbrush"},
311
- {"color": [255, 255, 128], "isthing": 0, "id": 92, "name": "banner"},
312
- {"color": [147, 211, 203], "isthing": 0, "id": 93, "name": "blanket"},
313
- {"color": [150, 100, 100], "isthing": 0, "id": 95, "name": "bridge"},
314
- {"color": [168, 171, 172], "isthing": 0, "id": 100, "name": "cardboard"},
315
- {"color": [146, 112, 198], "isthing": 0, "id": 107, "name": "counter"},
316
- {"color": [210, 170, 100], "isthing": 0, "id": 109, "name": "curtain"},
317
- {"color": [92, 136, 89], "isthing": 0, "id": 112, "name": "door-stuff"},
318
- {"color": [218, 88, 184], "isthing": 0, "id": 118, "name": "floor-wood"},
319
- {"color": [241, 129, 0], "isthing": 0, "id": 119, "name": "flower"},
320
- {"color": [217, 17, 255], "isthing": 0, "id": 122, "name": "fruit"},
321
- {"color": [124, 74, 181], "isthing": 0, "id": 125, "name": "gravel"},
322
- {"color": [70, 70, 70], "isthing": 0, "id": 128, "name": "house"},
323
- {"color": [255, 228, 255], "isthing": 0, "id": 130, "name": "light"},
324
- {"color": [154, 208, 0], "isthing": 0, "id": 133, "name": "mirror-stuff"},
325
- {"color": [193, 0, 92], "isthing": 0, "id": 138, "name": "net"},
326
- {"color": [76, 91, 113], "isthing": 0, "id": 141, "name": "pillow"},
327
- {"color": [255, 180, 195], "isthing": 0, "id": 144, "name": "platform"},
328
- {"color": [106, 154, 176], "isthing": 0, "id": 145, "name": "playingfield"},
329
- {"color": [230, 150, 140], "isthing": 0, "id": 147, "name": "railroad"},
330
- {"color": [60, 143, 255], "isthing": 0, "id": 148, "name": "river"},
331
- {"color": [128, 64, 128], "isthing": 0, "id": 149, "name": "road"},
332
- {"color": [92, 82, 55], "isthing": 0, "id": 151, "name": "roof"},
333
- {"color": [254, 212, 124], "isthing": 0, "id": 154, "name": "sand"},
334
- {"color": [73, 77, 174], "isthing": 0, "id": 155, "name": "sea"},
335
- {"color": [255, 160, 98], "isthing": 0, "id": 156, "name": "shelf"},
336
- {"color": [255, 255, 255], "isthing": 0, "id": 159, "name": "snow"},
337
- {"color": [104, 84, 109], "isthing": 0, "id": 161, "name": "stairs"},
338
- {"color": [169, 164, 131], "isthing": 0, "id": 166, "name": "tent"},
339
- {"color": [225, 199, 255], "isthing": 0, "id": 168, "name": "towel"},
340
- {"color": [137, 54, 74], "isthing": 0, "id": 171, "name": "wall-brick"},
341
- {"color": [135, 158, 223], "isthing": 0, "id": 175, "name": "wall-stone"},
342
- {"color": [7, 246, 231], "isthing": 0, "id": 176, "name": "wall-tile"},
343
- {"color": [107, 255, 200], "isthing": 0, "id": 177, "name": "wall-wood"},
344
- {"color": [58, 41, 149], "isthing": 0, "id": 178, "name": "water-other"},
345
- {"color": [183, 121, 142], "isthing": 0, "id": 180, "name": "window-blind"},
346
- {"color": [255, 73, 97], "isthing": 0, "id": 181, "name": "window-other"},
347
- {"color": [107, 142, 35], "isthing": 0, "id": 184, "name": "tree-merged"},
348
- {"color": [190, 153, 153], "isthing": 0, "id": 185, "name": "fence-merged"},
349
- {"color": [146, 139, 141], "isthing": 0, "id": 186, "name": "ceiling-merged"},
350
- {"color": [70, 130, 180], "isthing": 0, "id": 187, "name": "sky-other-merged"},
351
- {"color": [134, 199, 156], "isthing": 0, "id": 188, "name": "cabinet-merged"},
352
- {"color": [209, 226, 140], "isthing": 0, "id": 189, "name": "table-merged"},
353
- {"color": [96, 36, 108], "isthing": 0, "id": 190, "name": "floor-other-merged"},
354
- {"color": [96, 96, 96], "isthing": 0, "id": 191, "name": "pavement-merged"},
355
- {"color": [64, 170, 64], "isthing": 0, "id": 192, "name": "mountain-merged"},
356
- {"color": [152, 251, 152], "isthing": 0, "id": 193, "name": "grass-merged"},
357
- {"color": [208, 229, 228], "isthing": 0, "id": 194, "name": "dirt-merged"},
358
- {"color": [206, 186, 171], "isthing": 0, "id": 195, "name": "paper-merged"},
359
- {"color": [152, 161, 64], "isthing": 0, "id": 196, "name": "food-other-merged"},
360
- {"color": [116, 112, 0], "isthing": 0, "id": 197, "name": "building-other-merged"},
361
- {"color": [0, 114, 143], "isthing": 0, "id": 198, "name": "rock-merged"},
362
- {"color": [102, 102, 156], "isthing": 0, "id": 199, "name": "wall-other-merged"},
363
- {"color": [250, 141, 255], "isthing": 0, "id": 200, "name": "rug-merged"},
364
- ]
365
-
366
- # fmt: off
367
- COCO_PERSON_KEYPOINT_NAMES = (
368
- "nose",
369
- "left_eye", "right_eye",
370
- "left_ear", "right_ear",
371
- "left_shoulder", "right_shoulder",
372
- "left_elbow", "right_elbow",
373
- "left_wrist", "right_wrist",
374
- "left_hip", "right_hip",
375
- "left_knee", "right_knee",
376
- "left_ankle", "right_ankle",
377
- )
378
- # fmt: on
379
-
380
- # Pairs of keypoints that should be exchanged under horizontal flipping
381
- COCO_PERSON_KEYPOINT_FLIP_MAP = (
382
- ("left_eye", "right_eye"),
383
- ("left_ear", "right_ear"),
384
- ("left_shoulder", "right_shoulder"),
385
- ("left_elbow", "right_elbow"),
386
- ("left_wrist", "right_wrist"),
387
- ("left_hip", "right_hip"),
388
- ("left_knee", "right_knee"),
389
- ("left_ankle", "right_ankle"),
390
- )
391
-
392
- # rules for pairs of keypoints to draw a line between, and the line color to use.
393
- KEYPOINT_CONNECTION_RULES = [
394
- # face
395
- ("left_ear", "left_eye", (102, 204, 255)),
396
- ("right_ear", "right_eye", (51, 153, 255)),
397
- ("left_eye", "nose", (102, 0, 204)),
398
- ("nose", "right_eye", (51, 102, 255)),
399
- # upper-body
400
- ("left_shoulder", "right_shoulder", (255, 128, 0)),
401
- ("left_shoulder", "left_elbow", (153, 255, 204)),
402
- ("right_shoulder", "right_elbow", (128, 229, 255)),
403
- ("left_elbow", "left_wrist", (153, 255, 153)),
404
- ("right_elbow", "right_wrist", (102, 255, 224)),
405
- # lower-body
406
- ("left_hip", "right_hip", (255, 102, 0)),
407
- ("left_hip", "left_knee", (255, 255, 77)),
408
- ("right_hip", "right_knee", (153, 255, 204)),
409
- ("left_knee", "left_ankle", (191, 255, 128)),
410
- ("right_knee", "right_ankle", (255, 195, 77)),
411
- ]
412
-
413
- # All Cityscapes categories, together with their nice-looking visualization colors
414
- # It's from https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py # noqa
415
- CITYSCAPES_CATEGORIES = [
416
- {"color": (128, 64, 128), "isthing": 0, "id": 7, "trainId": 0, "name": "road"},
417
- {"color": (244, 35, 232), "isthing": 0, "id": 8, "trainId": 1, "name": "sidewalk"},
418
- {"color": (70, 70, 70), "isthing": 0, "id": 11, "trainId": 2, "name": "building"},
419
- {"color": (102, 102, 156), "isthing": 0, "id": 12, "trainId": 3, "name": "wall"},
420
- {"color": (190, 153, 153), "isthing": 0, "id": 13, "trainId": 4, "name": "fence"},
421
- {"color": (153, 153, 153), "isthing": 0, "id": 17, "trainId": 5, "name": "pole"},
422
- {"color": (250, 170, 30), "isthing": 0, "id": 19, "trainId": 6, "name": "traffic light"},
423
- {"color": (220, 220, 0), "isthing": 0, "id": 20, "trainId": 7, "name": "traffic sign"},
424
- {"color": (107, 142, 35), "isthing": 0, "id": 21, "trainId": 8, "name": "vegetation"},
425
- {"color": (152, 251, 152), "isthing": 0, "id": 22, "trainId": 9, "name": "terrain"},
426
- {"color": (70, 130, 180), "isthing": 0, "id": 23, "trainId": 10, "name": "sky"},
427
- {"color": (220, 20, 60), "isthing": 1, "id": 24, "trainId": 11, "name": "person"},
428
- {"color": (255, 0, 0), "isthing": 1, "id": 25, "trainId": 12, "name": "rider"},
429
- {"color": (0, 0, 142), "isthing": 1, "id": 26, "trainId": 13, "name": "car"},
430
- {"color": (0, 0, 70), "isthing": 1, "id": 27, "trainId": 14, "name": "truck"},
431
- {"color": (0, 60, 100), "isthing": 1, "id": 28, "trainId": 15, "name": "bus"},
432
- {"color": (0, 80, 100), "isthing": 1, "id": 31, "trainId": 16, "name": "train"},
433
- {"color": (0, 0, 230), "isthing": 1, "id": 32, "trainId": 17, "name": "motorcycle"},
434
- {"color": (119, 11, 32), "isthing": 1, "id": 33, "trainId": 18, "name": "bicycle"},
435
- ]
436
-
437
- # fmt: off
438
- ADE20K_SEM_SEG_CATEGORIES = [
439
- "wall", "building", "sky", "floor", "tree", "ceiling", "road, route", "bed", "window ", "grass", "cabinet", "sidewalk, pavement", "person", "earth, ground", "door", "table", "mountain, mount", "plant", "curtain", "chair", "car", "water", "painting, picture", "sofa", "shelf", "house", "sea", "mirror", "rug", "field", "armchair", "seat", "fence", "desk", "rock, stone", "wardrobe, closet, press", "lamp", "tub", "rail", "cushion", "base, pedestal, stand", "box", "column, pillar", "signboard, sign", "chest of drawers, chest, bureau, dresser", "counter", "sand", "sink", "skyscraper", "fireplace", "refrigerator, icebox", "grandstand, covered stand", "path", "stairs", "runway", "case, display case, showcase, vitrine", "pool table, billiard table, snooker table", "pillow", "screen door, screen", "stairway, staircase", "river", "bridge, span", "bookcase", "blind, screen", "coffee table", "toilet, can, commode, crapper, pot, potty, stool, throne", "flower", "book", "hill", "bench", "countertop", "stove", "palm, palm tree", "kitchen island", "computer", "swivel chair", "boat", "bar", "arcade machine", "hovel, hut, hutch, shack, shanty", "bus", "towel", "light", "truck", "tower", "chandelier", "awning, sunshade, sunblind", "street lamp", "booth", "tv", "plane", "dirt track", "clothes", "pole", "land, ground, soil", "bannister, banister, balustrade, balusters, handrail", "escalator, moving staircase, moving stairway", "ottoman, pouf, pouffe, puff, hassock", "bottle", "buffet, counter, sideboard", "poster, posting, placard, notice, bill, card", "stage", "van", "ship", "fountain", "conveyer belt, conveyor belt, conveyer, conveyor, transporter", "canopy", "washer, automatic washer, washing machine", "plaything, toy", "pool", "stool", "barrel, cask", "basket, handbasket", "falls", "tent", "bag", "minibike, motorbike", "cradle", "oven", "ball", "food, solid food", "step, stair", "tank, storage tank", "trade name", "microwave", "pot", "animal", "bicycle", "lake", "dishwasher", "screen", "blanket, cover", "sculpture", "hood, exhaust hood", "sconce", "vase", "traffic light", "tray", "trash can", "fan", "pier", "crt screen", "plate", "monitor", "bulletin board", "shower", "radiator", "glass, drinking glass", "clock", "flag", # noqa
440
- ]
441
- # After processed by `prepare_ade20k_sem_seg.py`, id 255 means ignore
442
- # fmt: on
443
-
444
-
445
- def _get_coco_instances_meta():
446
- thing_ids = [k["id"] for k in COCO_CATEGORIES if k["isthing"] == 1]
447
- thing_colors = [k["color"] for k in COCO_CATEGORIES if k["isthing"] == 1]
448
- assert len(thing_ids) == 80, len(thing_ids)
449
- # Mapping from the incontiguous COCO category id to an id in [0, 79]
450
- thing_dataset_id_to_contiguous_id = {k: i for i, k in enumerate(thing_ids)}
451
- thing_classes = [k["name"] for k in COCO_CATEGORIES if k["isthing"] == 1]
452
- ret = {
453
- "thing_dataset_id_to_contiguous_id": thing_dataset_id_to_contiguous_id,
454
- "thing_classes": thing_classes,
455
- "thing_colors": thing_colors,
456
- }
457
- return ret
458
-
459
-
460
- def _get_coco_panoptic_separated_meta():
461
- """
462
- Returns metadata for "separated" version of the panoptic segmentation dataset.
463
- """
464
- stuff_ids = [k["id"] for k in COCO_CATEGORIES if k["isthing"] == 0]
465
- assert len(stuff_ids) == 53, len(stuff_ids)
466
-
467
- # For semantic segmentation, this mapping maps from contiguous stuff id
468
- # (in [0, 53], used in models) to ids in the dataset (used for processing results)
469
- # The id 0 is mapped to an extra category "thing".
470
- stuff_dataset_id_to_contiguous_id = {k: i + 1 for i, k in enumerate(stuff_ids)}
471
- # When converting COCO panoptic annotations to semantic annotations
472
- # We label the "thing" category to 0
473
- stuff_dataset_id_to_contiguous_id[0] = 0
474
-
475
- # 54 names for COCO stuff categories (including "things")
476
- stuff_classes = ["things"] + [
477
- k["name"].replace("-other", "").replace("-merged", "")
478
- for k in COCO_CATEGORIES
479
- if k["isthing"] == 0
480
- ]
481
-
482
- # NOTE: I randomly picked a color for things
483
- stuff_colors = [[82, 18, 128]] + [k["color"] for k in COCO_CATEGORIES if k["isthing"] == 0]
484
- ret = {
485
- "stuff_dataset_id_to_contiguous_id": stuff_dataset_id_to_contiguous_id,
486
- "stuff_classes": stuff_classes,
487
- "stuff_colors": stuff_colors,
488
- }
489
- ret.update(_get_coco_instances_meta())
490
- return ret
491
-
492
-
493
- def _get_builtin_metadata(dataset_name):
494
- if dataset_name == "coco":
495
- return _get_coco_instances_meta()
496
- if dataset_name == "coco_panoptic_separated":
497
- return _get_coco_panoptic_separated_meta()
498
- elif dataset_name == "coco_panoptic_standard":
499
- meta = {}
500
- # The following metadata maps contiguous id from [0, #thing categories +
501
- # #stuff categories) to their names and colors. We have to replica of the
502
- # same name and color under "thing_*" and "stuff_*" because the current
503
- # visualization function in D2 handles thing and class classes differently
504
- # due to some heuristic used in Panoptic FPN. We keep the same naming to
505
- # enable reusing existing visualization functions.
506
- thing_classes = [k["name"] for k in COCO_CATEGORIES]
507
- thing_colors = [k["color"] for k in COCO_CATEGORIES]
508
- stuff_classes = [k["name"] for k in COCO_CATEGORIES]
509
- stuff_colors = [k["color"] for k in COCO_CATEGORIES]
510
-
511
- meta["thing_classes"] = thing_classes
512
- meta["thing_colors"] = thing_colors
513
- meta["stuff_classes"] = stuff_classes
514
- meta["stuff_colors"] = stuff_colors
515
-
516
- # Convert category id for training:
517
- # category id: like semantic segmentation, it is the class id for each
518
- # pixel. Since there are some classes not used in evaluation, the category
519
- # id is not always contiguous and thus we have two set of category ids:
520
- # - original category id: category id in the original dataset, mainly
521
- # used for evaluation.
522
- # - contiguous category id: [0, #classes), in order to train the linear
523
- # softmax classifier.
524
- thing_dataset_id_to_contiguous_id = {}
525
- stuff_dataset_id_to_contiguous_id = {}
526
-
527
- for i, cat in enumerate(COCO_CATEGORIES):
528
- if cat["isthing"]:
529
- thing_dataset_id_to_contiguous_id[cat["id"]] = i
530
- else:
531
- stuff_dataset_id_to_contiguous_id[cat["id"]] = i
532
-
533
- meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id
534
- meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id
535
-
536
- return meta
537
- elif dataset_name == "coco_person":
538
- return {
539
- "thing_classes": ["person"],
540
- "keypoint_names": COCO_PERSON_KEYPOINT_NAMES,
541
- "keypoint_flip_map": COCO_PERSON_KEYPOINT_FLIP_MAP,
542
- "keypoint_connection_rules": KEYPOINT_CONNECTION_RULES,
543
- }
544
- elif dataset_name == "cityscapes":
545
- # fmt: off
546
- CITYSCAPES_THING_CLASSES = [
547
- "person", "rider", "car", "truck",
548
- "bus", "train", "motorcycle", "bicycle",
549
- ]
550
- CITYSCAPES_STUFF_CLASSES = [
551
- "road", "sidewalk", "building", "wall", "fence", "pole", "traffic light",
552
- "traffic sign", "vegetation", "terrain", "sky", "person", "rider", "car",
553
- "truck", "bus", "train", "motorcycle", "bicycle",
554
- ]
555
- # fmt: on
556
- return {
557
- "thing_classes": CITYSCAPES_THING_CLASSES,
558
- "stuff_classes": CITYSCAPES_STUFF_CLASSES,
559
- }
560
- raise KeyError("No built-in metadata for dataset {}".format(dataset_name))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/regionclip-demo/detectron2/utils/testing.py DELETED
@@ -1,132 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates.
2
- import io
3
- import numpy as np
4
- import torch
5
-
6
- from detectron2 import model_zoo
7
- from detectron2.data import DatasetCatalog
8
- from detectron2.data.detection_utils import read_image
9
- from detectron2.modeling import build_model
10
- from detectron2.structures import Boxes, Instances, ROIMasks
11
- from detectron2.utils.file_io import PathManager
12
-
13
-
14
- """
15
- Internal utilities for tests. Don't use except for writing tests.
16
- """
17
-
18
-
19
- def get_model_no_weights(config_path):
20
- """
21
- Like model_zoo.get, but do not load any weights (even pretrained)
22
- """
23
- cfg = model_zoo.get_config(config_path)
24
- if not torch.cuda.is_available():
25
- cfg.MODEL.DEVICE = "cpu"
26
- return build_model(cfg)
27
-
28
-
29
- def random_boxes(num_boxes, max_coord=100, device="cpu"):
30
- """
31
- Create a random Nx4 boxes tensor, with coordinates < max_coord.
32
- """
33
- boxes = torch.rand(num_boxes, 4, device=device) * (max_coord * 0.5)
34
- boxes.clamp_(min=1.0) # tiny boxes cause numerical instability in box regression
35
- # Note: the implementation of this function in torchvision is:
36
- # boxes[:, 2:] += torch.rand(N, 2) * 100
37
- # but it does not guarantee non-negative widths/heights constraints:
38
- # boxes[:, 2] >= boxes[:, 0] and boxes[:, 3] >= boxes[:, 1]:
39
- boxes[:, 2:] += boxes[:, :2]
40
- return boxes
41
-
42
-
43
- def get_sample_coco_image(tensor=True):
44
- """
45
- Args:
46
- tensor (bool): if True, returns 3xHxW tensor.
47
- else, returns a HxWx3 numpy array.
48
-
49
- Returns:
50
- an image, in BGR color.
51
- """
52
- try:
53
- file_name = DatasetCatalog.get("coco_2017_val_100")[0]["file_name"]
54
- if not PathManager.exists(file_name):
55
- raise FileNotFoundError()
56
- except IOError:
57
- # for public CI to run
58
- file_name = "http://images.cocodataset.org/train2017/000000000009.jpg"
59
- ret = read_image(file_name, format="BGR")
60
- if tensor:
61
- ret = torch.from_numpy(np.ascontiguousarray(ret.transpose(2, 0, 1)))
62
- return ret
63
-
64
-
65
- def convert_scripted_instances(instances):
66
- """
67
- Convert a scripted Instances object to a regular :class:`Instances` object
68
- """
69
- ret = Instances(instances.image_size)
70
- for name in instances._field_names:
71
- val = getattr(instances, "_" + name, None)
72
- if val is not None:
73
- ret.set(name, val)
74
- return ret
75
-
76
-
77
- def assert_instances_allclose(input, other, *, rtol=1e-5, msg="", size_as_tensor=False):
78
- """
79
- Args:
80
- input, other (Instances):
81
- size_as_tensor: compare image_size of the Instances as tensors (instead of tuples).
82
- Useful for comparing outputs of tracing.
83
- """
84
- if not isinstance(input, Instances):
85
- input = convert_scripted_instances(input)
86
- if not isinstance(other, Instances):
87
- other = convert_scripted_instances(other)
88
-
89
- if not msg:
90
- msg = "Two Instances are different! "
91
- else:
92
- msg = msg.rstrip() + " "
93
-
94
- size_error_msg = msg + f"image_size is {input.image_size} vs. {other.image_size}!"
95
- if size_as_tensor:
96
- assert torch.equal(
97
- torch.tensor(input.image_size), torch.tensor(other.image_size)
98
- ), size_error_msg
99
- else:
100
- assert input.image_size == other.image_size, size_error_msg
101
- fields = sorted(input.get_fields().keys())
102
- fields_other = sorted(other.get_fields().keys())
103
- assert fields == fields_other, msg + f"Fields are {fields} vs {fields_other}!"
104
-
105
- for f in fields:
106
- val1, val2 = input.get(f), other.get(f)
107
- if isinstance(val1, (Boxes, ROIMasks)):
108
- # boxes in the range of O(100) and can have a larger tolerance
109
- assert torch.allclose(val1.tensor, val2.tensor, atol=100 * rtol), (
110
- msg + f"Field {f} differs too much!"
111
- )
112
- elif isinstance(val1, torch.Tensor):
113
- if val1.dtype.is_floating_point:
114
- mag = torch.abs(val1).max().cpu().item()
115
- assert torch.allclose(val1, val2, atol=mag * rtol), (
116
- msg + f"Field {f} differs too much!"
117
- )
118
- else:
119
- assert torch.equal(val1, val2), msg + f"Field {f} is different!"
120
- else:
121
- raise ValueError(f"Don't know how to compare type {type(val1)}")
122
-
123
-
124
- def reload_script_model(module):
125
- """
126
- Save a jit module and load it back.
127
- Similar to the `getExportImportCopy` function in torch/testing/
128
- """
129
- buffer = io.BytesIO()
130
- torch.jit.save(module, buffer)
131
- buffer.seek(0)
132
- return torch.jit.load(buffer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ChallengeHub/Chinese-LangChain/tests/test_duckpy.py DELETED
@@ -1,15 +0,0 @@
1
- from duckpy import Client
2
-
3
- client = Client()
4
-
5
- results = client.search("Python Wikipedia")
6
-
7
- # Prints first result title
8
- print(results[0].title)
9
-
10
- # Prints first result URL
11
- print(results[0].url)
12
-
13
- # Prints first result description
14
- print(results[0].description)
15
- # https://github.com/AmanoTeam/duckpy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ChandraMohanNayal/AutoGPT/autogpt/config/singleton.py DELETED
@@ -1,24 +0,0 @@
1
- """The singleton metaclass for ensuring only one instance of a class."""
2
- import abc
3
-
4
-
5
- class Singleton(abc.ABCMeta, type):
6
- """
7
- Singleton metaclass for ensuring only one instance of a class.
8
- """
9
-
10
- _instances = {}
11
-
12
- def __call__(cls, *args, **kwargs):
13
- """Call method for the singleton metaclass."""
14
- if cls not in cls._instances:
15
- cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
16
- return cls._instances[cls]
17
-
18
-
19
- class AbstractSingleton(abc.ABC, metaclass=Singleton):
20
- """
21
- Abstract singleton class for ensuring only one instance of a class.
22
- """
23
-
24
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CjangCjengh/Shanghainese-TTS/monotonic_align/__init__.py DELETED
@@ -1,19 +0,0 @@
1
- from numpy import zeros, int32, float32
2
- from torch import from_numpy
3
-
4
- from .core import maximum_path_jit
5
-
6
- def maximum_path(neg_cent, mask):
7
- """ numba optimized version.
8
- neg_cent: [b, t_t, t_s]
9
- mask: [b, t_t, t_s]
10
- """
11
- device = neg_cent.device
12
- dtype = neg_cent.dtype
13
- neg_cent = neg_cent.data.cpu().numpy().astype(float32)
14
- path = zeros(neg_cent.shape, dtype=int32)
15
-
16
- t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32)
17
- t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32)
18
- maximum_path_jit(path, neg_cent, t_t_max, t_s_max)
19
- return from_numpy(path).to(device=device, dtype=dtype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Clementapa/orang-outan-image-video-detection/style.css DELETED
@@ -1,10 +0,0 @@
1
- #disp_image {
2
- text-align: center;
3
- /* Horizontally center the content */
4
- }
5
-
6
- #duplicate-button {
7
- margin-left: auto;
8
- color: #fff;
9
- background: #1565c0;
10
- }
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/cdn/assets/index-d80d0bbf.js DELETED
@@ -1,2 +0,0 @@
1
- import{S as N,e as O,s as P,N as G,O as H,k as Q,K as r,p as j,o as R,Q as K,z as D,v as I,A as q,x as T,a1 as J,B as V,a9 as L,ab as M,ac as Y,ad as Z,h as x,a4 as p,at as $,au as ee,P as le,R as ie,a7 as ne,F as te}from"./index-1d65707a.js";import{a as ae}from"./Button-f155035a.js";import{b as se}from"./ModifyUpload.svelte_svelte_type_style_lang-d2acacf0.js";import{X as fe}from"./Blocks-c9e1499d.js";function ue(l){let e;const i=l[17].default,n=L(i,l,l[19],null);return{c(){n&&n.c()},m(s,u){n&&n.m(s,u),e=!0},p(s,u){n&&n.p&&(!e||u&524288)&&M(n,i,s,s[19],e?Z(i,s[19],u,null):Y(s[19]),null)},i(s){e||(D(n,s),e=!0)},o(s){I(n,s),e=!1},d(s){n&&n.d(s)}}}function _e(l){let e,i,n,s,u,h,c,m,d,g;return c=new ae({props:{size:l[4],variant:l[8],elem_id:l[0],elem_classes:l[1],visible:l[2],scale:l[5],min_width:l[6],disabled:l[7]==="static",$$slots:{default:[ue]},$$scope:{ctx:l}}}),c.$on("click",l[12]),{c(){e=G("input"),h=H(),Q(c.$$.fragment),r(e,"class","hide svelte-ydeks8"),r(e,"accept",l[11]),r(e,"type","file"),e.multiple=i=l[3]==="multiple"||void 0,r(e,"webkitdirectory",n=l[3]==="directory"||void 0),r(e,"mozdirectory",s=l[3]==="directory"||void 0),r(e,"data-testid",u=l[9]+"-upload-button")},m(f,_){j(f,e,_),l[18](e),j(f,h,_),R(c,f,_),m=!0,d||(g=[K(e,"change",l[13]),K(e,"click",l[14])],d=!0)},p(f,[_]){(!m||_&2048)&&r(e,"accept",f[11]),(!m||_&8&&i!==(i=f[3]==="multiple"||void 0))&&(e.multiple=i),(!m||_&8&&n!==(n=f[3]==="directory"||void 0))&&r(e,"webkitdirectory",n),(!m||_&8&&s!==(s=f[3]==="directory"||void 0))&&r(e,"mozdirectory",s),(!m||_&512&&u!==(u=f[9]+"-upload-button"))&&r(e,"data-testid",u);const o={};_&16&&(o.size=f[4]),_&256&&(o.variant=f[8]),_&1&&(o.elem_id=f[0]),_&2&&(o.elem_classes=f[1]),_&4&&(o.visible=f[2]),_&32&&(o.scale=f[5]),_&64&&(o.min_width=f[6]),_&128&&(o.disabled=f[7]==="static"),_&524288&&(o.$$scope={dirty:_,ctx:f}),c.$set(o)},i(f){m||(D(c.$$.fragment,f),m=!0)},o(f){I(c.$$.fragment,f),m=!1},d(f){f&&(q(e),q(h)),l[18](null),T(c,f),d=!1,J(g)}}}function me(l,e,i){let{$$slots:n={},$$scope:s}=e,{elem_id:u=""}=e,{elem_classes:h=[]}=e,{visible:c=!0}=e,{file_count:m}=e,{file_types:d=[]}=e,{include_file_metadata:g=!0}=e,{size:f="lg"}=e,{scale:_=null}=e,{min_width:o=void 0}=e,{mode:k="dynamic"}=e,{variant:A="secondary"}=e,{label:B}=e,y;const E=V();let v;d==null?v=null:(d=d.map(t=>t.startsWith(".")?t:t+"/*"),v=d.join(", "));const C=()=>{y.click()},a=t=>{let w=Array.from(t);if(t.length){m==="single"&&(w=[t[0]]);var U=[];w.forEach((F,W)=>{U[W]=g?{name:F.name,size:F.size,data:"",blob:F}:F,U.filter(X=>X!==void 0).length===t.length&&E("load",m=="single"?U[0]:U)})}},S=t=>{const w=t.target;w.files&&a(w.files)},z=t=>{const w=t.target;w.value&&(w.value="")};function b(t){x[t?"unshift":"push"](()=>{y=t,i(10,y)})}return l.$$set=t=>{"elem_id"in t&&i(0,u=t.elem_id),"elem_classes"in t&&i(1,h=t.elem_classes),"visible"in t&&i(2,c=t.visible),"file_count"in t&&i(3,m=t.file_count),"file_types"in t&&i(15,d=t.file_types),"include_file_metadata"in t&&i(16,g=t.include_file_metadata),"size"in t&&i(4,f=t.size),"scale"in t&&i(5,_=t.scale),"min_width"in t&&i(6,o=t.min_width),"mode"in t&&i(7,k=t.mode),"variant"in t&&i(8,A=t.variant),"label"in t&&i(9,B=t.label),"$$scope"in t&&i(19,s=t.$$scope)},[u,h,c,m,f,_,o,k,A,B,y,v,C,S,z,d,g,n,b,s]}class oe extends N{constructor(e){super(),O(this,e,me,_e,P,{elem_id:0,elem_classes:1,visible:2,file_count:3,file_types:15,include_file_metadata:16,size:4,scale:5,min_width:6,mode:7,variant:8,label:9})}}function ce(l){let e=l[11](l[3])+"",i;return{c(){i=le(e)},m(n,s){j(n,i,s)},p(n,s){s&2056&&e!==(e=n[11](n[3])+"")&&ie(i,e)},d(n){n&&q(i)}}}function de(l){let e,i;return e=new oe({props:{elem_id:l[0],elem_classes:l[1],visible:l[2],file_count:l[4],file_types:l[5],size:l[6],scale:l[7],min_width:l[8],mode:l[9],variant:l[10],label:l[3],$$slots:{default:[ce]},$$scope:{ctx:l}}}),e.$on("click",l[15]),e.$on("load",l[12]),{c(){Q(e.$$.fragment)},m(n,s){R(e,n,s),i=!0},p(n,[s]){const u={};s&1&&(u.elem_id=n[0]),s&2&&(u.elem_classes=n[1]),s&4&&(u.visible=n[2]),s&16&&(u.file_count=n[4]),s&32&&(u.file_types=n[5]),s&64&&(u.size=n[6]),s&128&&(u.scale=n[7]),s&256&&(u.min_width=n[8]),s&512&&(u.mode=n[9]),s&1024&&(u.variant=n[10]),s&8&&(u.label=n[3]),s&264200&&(u.$$scope={dirty:s,ctx:n}),e.$set(u)},i(n){i||(D(e.$$.fragment,n),i=!0)},o(n){I(e.$$.fragment,n),i=!1},d(n){T(e,n)}}}function be(l,e,i){let n;p(l,fe,a=>i(11,n=a));let{elem_id:s=""}=e,{elem_classes:u=[]}=e,{visible:h=!0}=e,{label:c}=e,{value:m}=e,{file_count:d}=e,{file_types:g=[]}=e,{root:f}=e,{size:_="lg"}=e,{scale:o=null}=e,{min_width:k=void 0}=e,{mode:A="dynamic"}=e,{variant:B="secondary"}=e;const y=$("upload_files")??ee;async function E({detail:a}){i(13,m=a),await ne();let S=(Array.isArray(a)?a:[a]).map(z=>z.blob);y(f,S).then(async z=>{z.error?(Array.isArray(a)?a:[a]).forEach(async(b,t)=>{b.data=await se(b.blob),b.blob=void 0}):(Array.isArray(a)?a:[a]).forEach((b,t)=>{z.files&&(b.orig_name=b.name,b.name=z.files[t],b.is_file=!0,b.blob=void 0)}),v("change",m),v("upload",a)})}const v=V();function C(a){te.call(this,l,a)}return l.$$set=a=>{"elem_id"in a&&i(0,s=a.elem_id),"elem_classes"in a&&i(1,u=a.elem_classes),"visible"in a&&i(2,h=a.visible),"label"in a&&i(3,c=a.label),"value"in a&&i(13,m=a.value),"file_count"in a&&i(4,d=a.file_count),"file_types"in a&&i(5,g=a.file_types),"root"in a&&i(14,f=a.root),"size"in a&&i(6,_=a.size),"scale"in a&&i(7,o=a.scale),"min_width"in a&&i(8,k=a.min_width),"mode"in a&&i(9,A=a.mode),"variant"in a&&i(10,B=a.variant)},[s,u,h,c,d,g,_,o,k,A,B,n,E,m,f,C]}class re extends N{constructor(e){super(),O(this,e,be,de,P,{elem_id:0,elem_classes:1,visible:2,label:3,value:13,file_count:4,file_types:5,root:14,size:6,scale:7,min_width:8,mode:9,variant:10})}}const ye=re,ve=["static","dynamic"];export{ye as Component,ve as modes};
2
- //# sourceMappingURL=index-d80d0bbf.js.map
 
 
 
spaces/Datasculptor/MusicGen/audiocraft/utils/export.py DELETED
@@ -1,56 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
- #
4
- # This source code is licensed under the license found in the
5
- # LICENSE file in the root directory of this source tree.
6
-
7
- """
8
- Utility to export a training checkpoint to a lightweight release checkpoint.
9
- """
10
-
11
- from pathlib import Path
12
- import typing as tp
13
-
14
- from omegaconf import OmegaConf, DictConfig
15
- import torch
16
-
17
-
18
- def _clean_lm_cfg(cfg: DictConfig):
19
- OmegaConf.set_struct(cfg, False)
20
- # This used to be set automatically in the LM solver, need a more robust solution
21
- # for the future.
22
- cfg['transformer_lm']['card'] = 2048
23
- cfg['transformer_lm']['n_q'] = 4
24
- # Experimental params no longer supported.
25
- bad_params = ['spectral_norm_attn_iters', 'spectral_norm_ff_iters',
26
- 'residual_balancer_attn', 'residual_balancer_ff', 'layer_drop']
27
- for name in bad_params:
28
- del cfg['transformer_lm'][name]
29
- OmegaConf.set_struct(cfg, True)
30
- return cfg
31
-
32
-
33
- def export_encodec(checkpoint_path: tp.Union[Path, str], out_folder: tp.Union[Path, str]):
34
- sig = Path(checkpoint_path).parent.name
35
- assert len(sig) == 8, "Not a valid Dora signature"
36
- pkg = torch.load(checkpoint_path, 'cpu')
37
- new_pkg = {
38
- 'best_state': pkg['ema']['state']['model'],
39
- 'xp.cfg': OmegaConf.to_yaml(pkg['xp.cfg']),
40
- }
41
- out_file = Path(out_folder) / f'{sig}.th'
42
- torch.save(new_pkg, out_file)
43
- return out_file
44
-
45
-
46
- def export_lm(checkpoint_path: tp.Union[Path, str], out_folder: tp.Union[Path, str]):
47
- sig = Path(checkpoint_path).parent.name
48
- assert len(sig) == 8, "Not a valid Dora signature"
49
- pkg = torch.load(checkpoint_path, 'cpu')
50
- new_pkg = {
51
- 'best_state': pkg['fsdp_best_state']['model'],
52
- 'xp.cfg': OmegaConf.to_yaml(_clean_lm_cfg(pkg['xp.cfg']))
53
- }
54
- out_file = Path(out_folder) / f'{sig}.th'
55
- torch.save(new_pkg, out_file)
56
- return out_file
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Deci/DeciLM-6b-instruct/app.py DELETED
@@ -1,136 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import torch
4
- from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
5
-
6
- token = os.environ["HUGGINGFACEHUB_API_TOKEN"]
7
-
8
- model_id = 'Deci/DeciLM-6b-instruct'
9
-
10
- SYSTEM_PROMPT_TEMPLATE = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
11
-
12
- ### Instruction:
13
-
14
- {instruction}
15
-
16
- ### Response:
17
- """
18
-
19
- DESCRIPTION = """
20
- # <p style="text-align: center; color: #292b47;"> 🤖 <span style='color: #3264ff;'>DeciLM-6B-Instruct:</span> A Fast Instruction-Tuned Model💨 </p>
21
- <span style='color: #292b47;'>Welcome to <a href="https://huggingface.co/Deci/DeciLM-6b-instruct" style="color: #3264ff;">DeciLM-6B-Instruct</a>! DeciLM-6B-Instruct is a 6B parameter instruction-tuned language model and released under the Llama license. It's an instruction-tuned model, not a chat-tuned model; you should prompt the model with an instruction that describes a task, and the model will respond appropriately to complete the task.</span>
22
- <p><span style='color: #292b47;'>Learn more about the base model <a href="https://deci.ai/blog/decilm-15-times-faster-than-llama2-nas-generated-llm-with-variable-gqa/" style="color: #3264ff;">DeciLM-6B.</a></span></p>
23
- """
24
-
25
- if not torch.cuda.is_available():
26
- DESCRIPTION += 'You need a GPU for this example. Try using colab: https://bit.ly/decilm-instruct-nb'
27
-
28
- if torch.cuda.is_available():
29
- model = AutoModelForCausalLM.from_pretrained(
30
- model_id,
31
- torch_dtype=torch.float16,
32
- device_map='auto',
33
- trust_remote_code=True,
34
- use_auth_token=token
35
- )
36
- else:
37
- model = None
38
-
39
- tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
40
- tokenizer.pad_token = tokenizer.eos_token
41
-
42
- # Function to construct the prompt using the new system prompt template
43
- def get_prompt_with_template(message: str) -> str:
44
- return SYSTEM_PROMPT_TEMPLATE.format(instruction=message)
45
-
46
- # Function to generate the model's response
47
- def generate_model_response(message: str) -> str:
48
- prompt = get_prompt_with_template(message)
49
- inputs = tokenizer(prompt, return_tensors='pt')
50
- if torch.cuda.is_available():
51
- inputs = inputs.to('cuda')
52
- # Include **generate_kwargs to include the user-defined options
53
- output = model.generate(**inputs,
54
- max_new_tokens=3000,
55
- num_beams=2,
56
- no_repeat_ngram_size=4,
57
- early_stopping=True,
58
- do_sample=True
59
- )
60
- return tokenizer.decode(output[0], skip_special_tokens=True)
61
-
62
- # Function to extract the content after "### Response:"
63
- def extract_response_content(full_response: str, ) -> str:
64
- response_start_index = full_response.find("### Response:")
65
- if response_start_index != -1:
66
- return full_response[response_start_index + len("### Response:"):].strip()
67
- else:
68
- return full_response
69
-
70
- # The main function that uses the dynamic generate_kwargs
71
- def get_response_with_template(message: str) -> str:
72
- full_response = generate_model_response(message)
73
- return extract_response_content(full_response)
74
-
75
- with gr.Blocks(css="style.css") as demo:
76
- gr.Markdown(DESCRIPTION)
77
- gr.DuplicateButton(value='Duplicate Space for private use',
78
- elem_id='duplicate-button')
79
- with gr.Group():
80
- chatbot = gr.Textbox(label='DeciLM-6B-Instruct Output:')
81
- with gr.Row():
82
- textbox = gr.Textbox(
83
- container=False,
84
- show_label=False,
85
- placeholder='Type an instruction...',
86
- scale=10,
87
- elem_id="textbox"
88
- )
89
- submit_button = gr.Button(
90
- '💬 Submit',
91
- variant='primary',
92
- scale=1,
93
- min_width=0,
94
- elem_id="submit_button"
95
- )
96
-
97
- # Clear button to clear the chat history
98
- clear_button = gr.Button(
99
- '🗑️ Clear',
100
- variant='secondary',
101
- )
102
-
103
- clear_button.click(
104
- fn=lambda: ('',''),
105
- outputs=[textbox, chatbot],
106
- queue=False,
107
- api_name=False,
108
- )
109
-
110
- submit_button.click(
111
- fn=get_response_with_template,
112
- inputs=textbox,
113
- outputs= chatbot,
114
- queue=False,
115
- api_name=False,
116
- )
117
-
118
- gr.Examples(
119
- examples=[
120
- 'Write detailed instructions for making chocolate chip pancakes.',
121
- 'Write a 250-word article about your love of pancakes.',
122
- 'Explain the plot of Back to the Future in three sentences.',
123
- 'How do I make a trap beat?',
124
- 'A step-by-step guide to learning Python in one month.',
125
- ],
126
- inputs=textbox,
127
- outputs=chatbot,
128
- fn=get_response_with_template,
129
- cache_examples=True,
130
- elem_id="examples"
131
- )
132
-
133
-
134
- gr.HTML(label="Keep in touch", value="<img src='https://huggingface.co/spaces/Deci/DeciLM-6b-instruct/resolve/main/deci-coder-banner.png' alt='Keep in touch' style='display: block; color: #292b47; margin: auto; max-width: 800px;'>")
135
-
136
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DragGan/DragGan-Inversion/PTI/training/projectors/w_projector.py DELETED
@@ -1,142 +0,0 @@
1
- # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # NVIDIA CORPORATION and its licensors retain all intellectual property
4
- # and proprietary rights in and to this software, related documentation
5
- # and any modifications thereto. Any use, reproduction, disclosure or
6
- # distribution of this software and related documentation without an express
7
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
-
9
- """Project given image to the latent space of pretrained network pickle."""
10
-
11
- import copy
12
- import wandb
13
- import numpy as np
14
- import torch
15
- import torch.nn.functional as F
16
- from tqdm import tqdm
17
- from PTI.configs import global_config, hyperparameters
18
- from PTI.utils import log_utils
19
- import dnnlib
20
-
21
-
22
- def project(
23
- G,
24
- target: torch.Tensor, # [C,H,W] and dynamic range [0,255], W & H must match G output resolution
25
- *,
26
- num_steps=1000,
27
- w_avg_samples=10000,
28
- initial_learning_rate=0.01,
29
- initial_noise_factor=0.05,
30
- lr_rampdown_length=0.25,
31
- lr_rampup_length=0.05,
32
- noise_ramp_length=0.75,
33
- regularize_noise_weight=1e5,
34
- verbose=False,
35
- device: torch.device,
36
- use_wandb=False,
37
- initial_w=None,
38
- image_log_step=global_config.image_rec_result_log_snapshot,
39
- w_name: str
40
- ):
41
- assert target.shape == (G.img_channels, G.img_resolution, G.img_resolution),print(target.shape,G.img_resolution)
42
-
43
- def logprint(*args):
44
- if verbose:
45
- print(*args)
46
-
47
- G = copy.deepcopy(G).eval().requires_grad_(False).to(device).float() # type: ignore
48
-
49
- # Compute w stats.
50
- logprint(f'Computing W midpoint and stddev using {w_avg_samples} samples...')
51
- z_samples = np.random.RandomState(123).randn(w_avg_samples, G.z_dim)
52
- w_samples = G.mapping(torch.from_numpy(z_samples).to(device), None) # [N, L, C]
53
- w_samples = w_samples[:, :1, :].cpu().numpy().astype(np.float32) # [N, 1, C]
54
- w_avg = np.mean(w_samples, axis=0, keepdims=True) # [1, 1, C]
55
- w_avg_tensor = torch.from_numpy(w_avg).to(global_config.device)
56
- w_std = (np.sum((w_samples - w_avg) ** 2) / w_avg_samples) ** 0.5
57
-
58
- start_w = initial_w if initial_w is not None else w_avg
59
-
60
- # Setup noise inputs.
61
- noise_bufs = {name: buf for (name, buf) in G.synthesis.named_buffers() if 'noise_const' in name}
62
-
63
- # Load VGG16 feature detector.
64
- url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt'
65
- with dnnlib.util.open_url(url) as f:
66
- vgg16 = torch.jit.load(f).eval().to(device)
67
-
68
- # Features for target image.
69
- target_images = target.unsqueeze(0).to(device).to(torch.float32)
70
- if target_images.shape[2] > 256:
71
- target_images = F.interpolate(target_images, size=(256, 256), mode='area')
72
- target_features = vgg16(target_images, resize_images=False, return_lpips=True)
73
-
74
- w_opt = torch.tensor(start_w, dtype=torch.float32, device=device,
75
- requires_grad=True) # pylint: disable=not-callable
76
- optimizer = torch.optim.Adam([w_opt] + list(noise_bufs.values()), betas=(0.9, 0.999),
77
- lr=hyperparameters.first_inv_lr)
78
-
79
- # Init noise.
80
- for buf in noise_bufs.values():
81
- buf[:] = torch.randn_like(buf)
82
- buf.requires_grad = True
83
-
84
- for step in tqdm(range(num_steps)):
85
-
86
- # Learning rate schedule.
87
- t = step / num_steps
88
- w_noise_scale = w_std * initial_noise_factor * max(0.0, 1.0 - t / noise_ramp_length) ** 2
89
- lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
90
- lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
91
- lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
92
- lr = initial_learning_rate * lr_ramp
93
- for param_group in optimizer.param_groups:
94
- param_group['lr'] = lr
95
-
96
- # Synth images from opt_w.
97
- w_noise = torch.randn_like(w_opt) * w_noise_scale
98
- ws = (w_opt + w_noise).repeat([1, G.mapping.num_ws, 1])
99
- synth_images = G.synthesis(ws, noise_mode='const', force_fp32=True)
100
-
101
- # Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
102
- synth_images = (synth_images + 1) * (255 / 2)
103
- if synth_images.shape[2] > 256:
104
- synth_images = F.interpolate(synth_images, size=(256, 256), mode='area')
105
-
106
- # Features for synth images.
107
- synth_features = vgg16(synth_images, resize_images=False, return_lpips=True)
108
- dist = (target_features - synth_features).square().sum()
109
-
110
- # Noise regularization.
111
- reg_loss = 0.0
112
- for v in noise_bufs.values():
113
- noise = v[None, None, :, :] # must be [1,1,H,W] for F.avg_pool2d()
114
- while True:
115
- reg_loss += (noise * torch.roll(noise, shifts=1, dims=3)).mean() ** 2
116
- reg_loss += (noise * torch.roll(noise, shifts=1, dims=2)).mean() ** 2
117
- if noise.shape[2] <= 8:
118
- break
119
- noise = F.avg_pool2d(noise, kernel_size=2)
120
- loss = dist + reg_loss * regularize_noise_weight
121
-
122
- if step % image_log_step == 0:
123
- with torch.no_grad():
124
- if use_wandb:
125
- global_config.training_step += 1
126
- wandb.log({f'first projection _{w_name}': loss.detach().cpu()}, step=global_config.training_step)
127
- log_utils.log_image_from_w(w_opt.repeat([1, G.mapping.num_ws, 1]), G, w_name)
128
-
129
- # Step
130
- optimizer.zero_grad(set_to_none=True)
131
- loss.backward()
132
- optimizer.step()
133
- logprint(f'step {step + 1:>4d}/{num_steps}: dist {dist:<4.2f} loss {float(loss):<5.2f}')
134
-
135
- # Normalize noise.
136
- with torch.no_grad():
137
- for buf in noise_bufs.values():
138
- buf -= buf.mean()
139
- buf *= buf.square().mean().rsqrt()
140
-
141
- del G
142
- return w_opt.repeat([1, 18, 1])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DragGan/DragGan/stylegan_human/torch_utils/ops/conv2d_gradfix.py DELETED
@@ -1,172 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
4
- #
5
- # NVIDIA CORPORATION and its licensors retain all intellectual property
6
- # and proprietary rights in and to this software, related documentation
7
- # and any modifications thereto. Any use, reproduction, disclosure or
8
- # distribution of this software and related documentation without an express
9
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
10
-
11
- """Custom replacement for `torch.nn.functional.conv2d` that supports
12
- arbitrarily high order gradients with zero performance penalty."""
13
-
14
- import warnings
15
- import contextlib
16
- import torch
17
-
18
- # pylint: disable=redefined-builtin
19
- # pylint: disable=arguments-differ
20
- # pylint: disable=protected-access
21
-
22
- #----------------------------------------------------------------------------
23
-
24
- enabled = False # Enable the custom op by setting this to true.
25
- weight_gradients_disabled = False # Forcefully disable computation of gradients with respect to the weights.
26
-
27
- @contextlib.contextmanager
28
- def no_weight_gradients():
29
- global weight_gradients_disabled
30
- old = weight_gradients_disabled
31
- weight_gradients_disabled = True
32
- yield
33
- weight_gradients_disabled = old
34
-
35
- #----------------------------------------------------------------------------
36
-
37
- def conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1):
38
- if _should_use_custom_op(input):
39
- return _conv2d_gradfix(transpose=False, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=0, dilation=dilation, groups=groups).apply(input, weight, bias)
40
- return torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups)
41
-
42
- def conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1):
43
- if _should_use_custom_op(input):
44
- return _conv2d_gradfix(transpose=True, weight_shape=weight.shape, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation).apply(input, weight, bias)
45
- return torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, stride=stride, padding=padding, output_padding=output_padding, groups=groups, dilation=dilation)
46
-
47
- #----------------------------------------------------------------------------
48
-
49
- def _should_use_custom_op(input):
50
- assert isinstance(input, torch.Tensor)
51
- if (not enabled) or (not torch.backends.cudnn.enabled):
52
- return False
53
- if input.device.type != 'cuda':
54
- return False
55
- if any(torch.__version__.startswith(x) for x in ['1.7.', '1.8.', '1.9']):
56
- return True
57
- warnings.warn(f'conv2d_gradfix not supported on PyTorch {torch.__version__}. Falling back to torch.nn.functional.conv2d().')
58
- return False
59
-
60
- def _tuple_of_ints(xs, ndim):
61
- xs = tuple(xs) if isinstance(xs, (tuple, list)) else (xs,) * ndim
62
- assert len(xs) == ndim
63
- assert all(isinstance(x, int) for x in xs)
64
- return xs
65
-
66
- #----------------------------------------------------------------------------
67
-
68
- _conv2d_gradfix_cache = dict()
69
-
70
- def _conv2d_gradfix(transpose, weight_shape, stride, padding, output_padding, dilation, groups):
71
- # Parse arguments.
72
- ndim = 2
73
- weight_shape = tuple(weight_shape)
74
- stride = _tuple_of_ints(stride, ndim)
75
- padding = _tuple_of_ints(padding, ndim)
76
- output_padding = _tuple_of_ints(output_padding, ndim)
77
- dilation = _tuple_of_ints(dilation, ndim)
78
-
79
- # Lookup from cache.
80
- key = (transpose, weight_shape, stride, padding, output_padding, dilation, groups)
81
- if key in _conv2d_gradfix_cache:
82
- return _conv2d_gradfix_cache[key]
83
-
84
- # Validate arguments.
85
- assert groups >= 1
86
- assert len(weight_shape) == ndim + 2
87
- assert all(stride[i] >= 1 for i in range(ndim))
88
- assert all(padding[i] >= 0 for i in range(ndim))
89
- assert all(dilation[i] >= 0 for i in range(ndim))
90
- if not transpose:
91
- assert all(output_padding[i] == 0 for i in range(ndim))
92
- else: # transpose
93
- assert all(0 <= output_padding[i] < max(stride[i], dilation[i]) for i in range(ndim))
94
-
95
- # Helpers.
96
- common_kwargs = dict(stride=stride, padding=padding, dilation=dilation, groups=groups)
97
- def calc_output_padding(input_shape, output_shape):
98
- if transpose:
99
- return [0, 0]
100
- return [
101
- input_shape[i + 2]
102
- - (output_shape[i + 2] - 1) * stride[i]
103
- - (1 - 2 * padding[i])
104
- - dilation[i] * (weight_shape[i + 2] - 1)
105
- for i in range(ndim)
106
- ]
107
-
108
- # Forward & backward.
109
- class Conv2d(torch.autograd.Function):
110
- @staticmethod
111
- def forward(ctx, input, weight, bias):
112
- assert weight.shape == weight_shape
113
- if not transpose:
114
- output = torch.nn.functional.conv2d(input=input, weight=weight, bias=bias, **common_kwargs)
115
- else: # transpose
116
- output = torch.nn.functional.conv_transpose2d(input=input, weight=weight, bias=bias, output_padding=output_padding, **common_kwargs)
117
- ctx.save_for_backward(input, weight)
118
- return output
119
-
120
- @staticmethod
121
- def backward(ctx, grad_output):
122
- input, weight = ctx.saved_tensors
123
- grad_input = None
124
- grad_weight = None
125
- grad_bias = None
126
-
127
- if ctx.needs_input_grad[0]:
128
- p = calc_output_padding(input_shape=input.shape, output_shape=grad_output.shape)
129
- grad_input = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs).apply(grad_output, weight, None)
130
- assert grad_input.shape == input.shape
131
-
132
- if ctx.needs_input_grad[1] and not weight_gradients_disabled:
133
- grad_weight = Conv2dGradWeight.apply(grad_output, input)
134
- assert grad_weight.shape == weight_shape
135
-
136
- if ctx.needs_input_grad[2]:
137
- grad_bias = grad_output.sum([0, 2, 3])
138
-
139
- return grad_input, grad_weight, grad_bias
140
-
141
- # Gradient with respect to the weights.
142
- class Conv2dGradWeight(torch.autograd.Function):
143
- @staticmethod
144
- def forward(ctx, grad_output, input):
145
- op = torch._C._jit_get_operation('aten::cudnn_convolution_backward_weight' if not transpose else 'aten::cudnn_convolution_transpose_backward_weight')
146
- flags = [torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic, torch.backends.cudnn.allow_tf32]
147
- grad_weight = op(weight_shape, grad_output, input, padding, stride, dilation, groups, *flags)
148
- assert grad_weight.shape == weight_shape
149
- ctx.save_for_backward(grad_output, input)
150
- return grad_weight
151
-
152
- @staticmethod
153
- def backward(ctx, grad2_grad_weight):
154
- grad_output, input = ctx.saved_tensors
155
- grad2_grad_output = None
156
- grad2_input = None
157
-
158
- if ctx.needs_input_grad[0]:
159
- grad2_grad_output = Conv2d.apply(input, grad2_grad_weight, None)
160
- assert grad2_grad_output.shape == grad_output.shape
161
-
162
- if ctx.needs_input_grad[1]:
163
- p = calc_output_padding(input_shape=input.shape, output_shape=grad_output.shape)
164
- grad2_input = _conv2d_gradfix(transpose=(not transpose), weight_shape=weight_shape, output_padding=p, **common_kwargs).apply(grad_output, grad2_grad_weight, None)
165
- assert grad2_input.shape == input.shape
166
-
167
- return grad2_grad_output, grad2_input
168
-
169
- _conv2d_gradfix_cache[key] = Conv2d
170
- return Conv2d
171
-
172
- #----------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/EPFL-VILAB/MultiMAE/mask2former/modeling/pixel_decoder/ops/src/cuda/ms_deform_attn_cuda.h DELETED
@@ -1,35 +0,0 @@
1
- /*!
2
- **************************************************************************************************
3
- * Deformable DETR
4
- * Copyright (c) 2020 SenseTime. All Rights Reserved.
5
- * Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
- **************************************************************************************************
7
- * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
8
- **************************************************************************************************
9
- */
10
-
11
- /*!
12
- * Copyright (c) Facebook, Inc. and its affiliates.
13
- * Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR
14
- */
15
-
16
- #pragma once
17
- #include <torch/extension.h>
18
-
19
- at::Tensor ms_deform_attn_cuda_forward(
20
- const at::Tensor &value,
21
- const at::Tensor &spatial_shapes,
22
- const at::Tensor &level_start_index,
23
- const at::Tensor &sampling_loc,
24
- const at::Tensor &attn_weight,
25
- const int im2col_step);
26
-
27
- std::vector<at::Tensor> ms_deform_attn_cuda_backward(
28
- const at::Tensor &value,
29
- const at::Tensor &spatial_shapes,
30
- const at::Tensor &level_start_index,
31
- const at::Tensor &sampling_loc,
32
- const at::Tensor &attn_weight,
33
- const at::Tensor &grad_output,
34
- const int im2col_step);
35
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Eddycrack864/Applio-Inference/julius/utils.py DELETED
@@ -1,101 +0,0 @@
1
- # File under the MIT license, see https://github.com/adefossez/julius/LICENSE for details.
2
- # Author: adefossez, 2020
3
- """
4
- Non signal processing related utilities.
5
- """
6
-
7
- import inspect
8
- import typing as tp
9
- import sys
10
- import time
11
-
12
-
13
- def simple_repr(obj, attrs: tp.Optional[tp.Sequence[str]] = None,
14
- overrides: dict = {}):
15
- """
16
- Return a simple representation string for `obj`.
17
- If `attrs` is not None, it should be a list of attributes to include.
18
- """
19
- params = inspect.signature(obj.__class__).parameters
20
- attrs_repr = []
21
- if attrs is None:
22
- attrs = list(params.keys())
23
- for attr in attrs:
24
- display = False
25
- if attr in overrides:
26
- value = overrides[attr]
27
- elif hasattr(obj, attr):
28
- value = getattr(obj, attr)
29
- else:
30
- continue
31
- if attr in params:
32
- param = params[attr]
33
- if param.default is inspect._empty or value != param.default: # type: ignore
34
- display = True
35
- else:
36
- display = True
37
-
38
- if display:
39
- attrs_repr.append(f"{attr}={value}")
40
- return f"{obj.__class__.__name__}({','.join(attrs_repr)})"
41
-
42
-
43
- class MarkdownTable:
44
- """
45
- Simple MarkdownTable generator. The column titles should be large enough
46
- for the lines content. This will right align everything.
47
-
48
- >>> import io # we use io purely for test purposes, default is sys.stdout.
49
- >>> file = io.StringIO()
50
- >>> table = MarkdownTable(["Item Name", "Price"], file=file)
51
- >>> table.header(); table.line(["Honey", "5"]); table.line(["Car", "5,000"])
52
- >>> print(file.getvalue().strip()) # Strip for test purposes
53
- | Item Name | Price |
54
- |-----------|-------|
55
- | Honey | 5 |
56
- | Car | 5,000 |
57
- """
58
- def __init__(self, columns, file=sys.stdout):
59
- self.columns = columns
60
- self.file = file
61
-
62
- def _writeln(self, line):
63
- self.file.write("|" + "|".join(line) + "|\n")
64
-
65
- def header(self):
66
- self._writeln(f" {col} " for col in self.columns)
67
- self._writeln("-" * (len(col) + 2) for col in self.columns)
68
-
69
- def line(self, line):
70
- out = []
71
- for val, col in zip(line, self.columns):
72
- val = format(val, '>' + str(len(col)))
73
- out.append(" " + val + " ")
74
- self._writeln(out)
75
-
76
-
77
- class Chrono:
78
- """
79
- Measures ellapsed time, calling `torch.cuda.synchronize` if necessary.
80
- `Chrono` instances can be used as context managers (e.g. with `with`).
81
- Upon exit of the block, you can access the duration of the block in seconds
82
- with the `duration` attribute.
83
-
84
- >>> with Chrono() as chrono:
85
- ... _ = sum(range(10_000))
86
- ...
87
- >>> print(chrono.duration < 10) # Should be true unless on a really slow computer.
88
- True
89
- """
90
- def __init__(self):
91
- self.duration = None
92
-
93
- def __enter__(self):
94
- self._begin = time.time()
95
- return self
96
-
97
- def __exit__(self, exc_type, exc_value, exc_tracebck):
98
- import torch
99
- if torch.cuda.is_available():
100
- torch.cuda.synchronize()
101
- self.duration = time.time() - self._begin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Edisonymy/buy-or-rent/src/mainbody.py DELETED
@@ -1,237 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import numpy as np
4
- from buy_or_rent import Buy_or_Rent_Model
5
- from scipy.stats import norm, skew
6
- from utils.general import calculate_percentiles
7
- from utils.streamlit_utils import sticky_bottom_bar
8
- from plot import plot_hist_from_list
9
- import hydralit_components as hc
10
- import warnings
11
-
12
- warnings.simplefilter(action="ignore", category=FutureWarning)
13
-
14
-
15
- def generate_main_body(
16
- model: Buy_or_Rent_Model,
17
- mortgage_interest_annual_list=np.array([0.05]),
18
- property_price_growth_annual_list=np.array([0.026]),
19
- rent_increase_list=np.array([0.01325]),
20
- investment_return_annual_list=np.array([0.06]),
21
- years_until_sell_list=np.array([20]),
22
- ):
23
-
24
- adjust_for_inflation_bool = st.sidebar.toggle("Adjust for inflation (2% a year)")
25
- # use_present_value = st.toggle('Use present value instead of future value')
26
- # define what option labels and icons to display
27
- option_data = [
28
- {"icon": "bi bi-calculator", "label": "Typical Outcome"},
29
- {"icon": "bi bi-bar-chart-line", "label": "Simulation Results"},
30
- ]
31
-
32
- # override the theme, else it will use the Streamlit applied theme
33
- over_theme = {
34
- "txc_inactive": "black",
35
- "menu_background": "#b8d7ed",
36
- "txc_active": "black",
37
- "option_active": "white",
38
- }
39
- font_fmt = {"font-class": "h2", "font-size": "100%"}
40
-
41
- # display a horizontal version of the option bar
42
- op = hc.option_bar(
43
- option_definition=option_data,
44
- key="PrimaryOption",
45
- override_theme=over_theme,
46
- font_styling=font_fmt,
47
- horizontal_orientation=True,
48
- )
49
- n_samples_simulation = 1000
50
-
51
- if op == "Simulation Results":
52
- n_samples_simulation = st.slider(
53
- "Number of Simulation Samples:",
54
- min_value=500,
55
- max_value=5000,
56
- value=1000,
57
- step=100,
58
- )
59
-
60
- model.samples_rent_increase = np.random.choice(rent_increase_list, n_samples_simulation)
61
- model.samples_property_price_growth_annual = np.random.choice(property_price_growth_annual_list, n_samples_simulation)
62
- model.samples_mortgage_interest_annual = np.random.choice(mortgage_interest_annual_list, n_samples_simulation)
63
- model.samples_investment_return_annual = np.random.choice(investment_return_annual_list, n_samples_simulation)
64
- model.samples_years_until_sell = np.random.choice(years_until_sell_list, n_samples_simulation)
65
-
66
- model.run_calculations(adjust_for_inflation_bool = adjust_for_inflation_bool)
67
- #save simulation results
68
- buying_npv_list = model.buying_npv
69
- buying_fv_list = model.buying_fv
70
- renting_fv_list = model.renting_fv
71
- mortgage_interest_annual_list_chosen = model.samples_mortgage_interest_annual
72
- property_price_growth_annual_list_chosen = model.samples_property_price_growth_annual
73
- rent_increase_list_chosen = model.samples_rent_increase
74
- investment_return_annual_list_chosen = model.samples_investment_return_annual
75
- years_until_sell_list_chosen = model.samples_years_until_sell
76
-
77
- # typical scenario
78
- model.samples_rent_increase = np.median(rent_increase_list)
79
- model.samples_property_price_growth_annual = np.median(property_price_growth_annual_list)
80
- model.samples_mortgage_interest_annual = np.median(mortgage_interest_annual_list)
81
- model.samples_investment_return_annual = np.median(investment_return_annual_list)
82
- model.samples_years_until_sell = int(np.median(years_until_sell_list))
83
- model.run_calculations(adjust_for_inflation_bool=adjust_for_inflation_bool)
84
-
85
- if model.buying_fv > model.renting_fv:
86
- text = "Return is typically higher if you <strong>buy</strong>."
87
- if np.std(buying_fv_list) > np.std(renting_fv_list):
88
- text += " However, it is less risky if you <strong>rent</strong>."
89
- else:
90
- text += " It is also less risky if you <strong>buy</strong>."
91
- else:
92
- text = "Return is typically higher if you <strong>rent and invest the deposit</strong>."
93
- if np.std(buying_fv_list) > np.std(renting_fv_list):
94
- text += " It is also less risky if you <strong>rent</strong>."
95
- else:
96
- text += " However, it is less risky if you <strong>buy</strong>."
97
-
98
- sticky_bottom_bar(text)
99
-
100
-
101
-
102
-
103
- if op == "Typical Outcome":
104
- left_column, right_column = st.columns(2)
105
- with left_column:
106
- st.write(
107
- f"### Buy - Asset future value after {model.samples_years_until_sell} years"
108
- )
109
- st.markdown(
110
- f"**Typical Total Asset Value: £{model.buying_fv:,.0f}**",
111
- help="All components are converted to future value at the time of sale.",
112
- )
113
- st.markdown(f"***Breakdown:***")
114
- st.markdown(f" - Capital Invested (deposit): £{model.DEPOSIT:,.0f}")
115
- st.markdown(
116
- f" - Capital Invested (buying cost + stamp duty, if any): £{model.BUYING_COST_FLAT + model.STAMP_DUTY:,.0f}"
117
- )
118
- st.markdown(
119
- f" - Property Price at Sale: :green[£{model.future_house_price:,.0f}]",
120
- help="Calculated using the property price growth rate set in the left sidebar.",
121
- )
122
- st.markdown(
123
- f" - Selling cost (including Capital Gains Tax): :red[ -£{model.SELLING_COST:,.0f}]",
124
- help="Total expenses incurred when selling a property. These costs typically include real estate agent commissions, legal fees, advertising expenses, and any necessary repairs or renovations to prepare the property for sale.",
125
- )
126
- st.markdown(
127
- f" - Total maintenance and service costs: :red[ -£{model.fv_ongoing_cost:,.0f}]",
128
- help="Future value at the time of sale for the total cost associated with maintaining and servicing a property, including expenses such as property management fees, maintenance fees, and other related charges. Assumed to grow at inflation rate. Future value is determined by the discount rate, which is assumed to be equal to the investment return.",
129
- )
130
- if model.COUNTRY == "US":
131
- st.markdown(
132
- f" - Total property tax: :red[ -£{model.fv_property_tax:,.0f}]",
133
- help="Future value at the time of sale for the total property tax paid",
134
- )
135
- st.markdown(
136
- f" - Total Mortgage Payments: :red[ -£{model.fv_mortgage_payments:,.0f}]",
137
- help="This is higher than the sum of all mortgage payments since the payments are converted to their future value at the time of sale. Future value is determined by the discount rate, which is assumed to be equal to the investment return.",
138
- )
139
- st.markdown(
140
- f" - Total Rent Saved (future value at time of sale): :green[£{model.rent_fv:,.0f}]",
141
- help="This is higher than the sum of all rent payments that would have been paid since the payments are converted to their future value at the time of sale. Future value is determined by the discount rate, which is assumed to be equal to the investment return.",
142
- )
143
-
144
- with right_column:
145
- st.write(
146
- f"### Rent and invest - Asset future value after {model.samples_years_until_sell} years"
147
- )
148
- st.markdown(
149
- f"**Typical Total Asset Value: £{model.renting_fv:,.0f}**",
150
- help="All components are converted to future value at the time of sale.",
151
- )
152
- st.markdown(f"***Breakdown:***")
153
- st.markdown(f" - Capital Invested (deposit): £{model.DEPOSIT:,.0f}")
154
- st.markdown(
155
- f" - Capital Invested (buying cost + stamp duty, if any): £{model.BUYING_COST_FLAT + model.STAMP_DUTY:,.0f}"
156
- )
157
- st.markdown(
158
- f" - Capital Gains Tax: :red[-£{model.cgt_investment:,.0f}]",
159
- help="Your tax rate is determined by the annual salary set in the left sidebar.",
160
- )
161
- if (
162
- model.renting_fv
163
- - (model.DEPOSIT + model.BUYING_COST_FLAT + model.STAMP_DUTY)
164
- >= 0
165
- ):
166
- st.markdown(
167
- f" - Assumed Typical Capital Growth: :green[£{model.renting_fv - (model.DEPOSIT + model.BUYING_COST_FLAT + model.STAMP_DUTY):,.0f}]",
168
- help="Calculated with the investment return rated provided in the left sidebar.",
169
- )
170
- else:
171
- st.markdown(
172
- f" - Assumed Typical Capital Growth: :red[£{model.renting_fv - (model.DEPOSIT + model.BUYING_COST_FLAT + model.STAMP_DUTY):,.0f}]"
173
- )
174
-
175
- if op == "Simulation Results":
176
-
177
-
178
- plot_hist_from_list(
179
- [buying_fv_list, renting_fv_list],
180
- st,
181
- figsize=(7, 2),
182
- legends=["Buying", "Renting"],
183
- main_colors=["orange", "blue"],
184
- title="Future Asset Value - Simulation Results",
185
- xlabel="Asset Value",
186
- )
187
- st.markdown(
188
- "<span style='font-size: 14px; font-style: italic;'>Simulation results for future asset value. Using future value at 'years until sell mean' in your assumptions.</span>",
189
- unsafe_allow_html=True,
190
- )
191
- plot_hist_from_list(
192
- [buying_npv_list],
193
- st,
194
- plot_below_zero=True,
195
- clip=(0, None),
196
- main_colors=["blue"],
197
- secondary_color="orange",
198
- title="Net Present Value of Buying - Simulation Results",
199
- xlabel="Net Present Value of Buying",
200
- )
201
- st.markdown(
202
- "<span style='font-size: 14px; font-style: italic;'>Negative = Renting is better; Positive = Buying is better.</span>",
203
- unsafe_allow_html=True,
204
- )
205
- st.markdown(
206
- "<span style='font-size: 14px; font-style: italic;'>Net Present Value represents the net gain/loss that result in purchasing the property in present value. It is calculated as (PV of future house sale price - PV of rent saved - PV of mortgage payments - PV of ongoing costs - deposit - buying costs - stamp duty - PV of selling costs). If it is positive, then it is financially better to buy a property. Present value is calculated using a future discount rate equal to your assumed investment return. This is equivalent to assuming that any amount you save on rent or mortgage will be invested. </span>",
207
- unsafe_allow_html=True,
208
- )
209
-
210
- results_dict = {
211
- "buying_npv": buying_npv_list,
212
- "mortgage_interest_annual": mortgage_interest_annual_list_chosen,
213
- "property_price_growth_annual": property_price_growth_annual_list_chosen,
214
- "rent_increase": rent_increase_list_chosen,
215
- "investment_return_annual": investment_return_annual_list_chosen,
216
- "years_until_sell": years_until_sell_list_chosen,
217
- }
218
- results_df = pd.DataFrame(results_dict)
219
- percentiles_df = calculate_percentiles(buying_npv_list, model.DEPOSIT)
220
- with st.expander("### Net Present Value Statistics", expanded=False):
221
- st.write(
222
- f'- Buying is better {100-percentiles_df.loc[5,"Percentile"]:.0f}% of the time'
223
- )
224
- st.write(f"- Mean: £{np.mean(buying_npv_list):,.0f}")
225
- st.write(
226
- f"- Mean (as % of deposit): {np.mean(buying_npv_list)/model.DEPOSIT*100:.0f}%"
227
- )
228
- st.write(f"- Standard Deviation: £{np.std(buying_npv_list):,.0f}")
229
- st.write(
230
- f"- Standard Deviation (as % of deposit): {np.std(buying_npv_list)/model.DEPOSIT*100:.0f}%"
231
- )
232
- st.write(f"- Skew: {skew(buying_npv_list):.2f}")
233
- with st.expander(
234
- "Correlations Between Parameters and Buying NPV", expanded=False
235
- ):
236
- st.write(results_df.corr().iloc[0, 1:])
237
- # return percentiles_df, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Epoching/DocumentQA/DiT_Extractor/dit_object_detection/ditod/beit.py DELETED
@@ -1,671 +0,0 @@
1
- """ Vision Transformer (ViT) in PyTorch
2
-
3
- A PyTorch implement of Vision Transformers as described in
4
- 'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929
5
-
6
- The official jax code is released and available at https://github.com/google-research/vision_transformer
7
-
8
- Status/TODO:
9
- * Models updated to be compatible with official impl. Args added to support backward compat for old PyTorch weights.
10
- * Weights ported from official jax impl for 384x384 base and small models, 16x16 and 32x32 patches.
11
- * Trained (supervised on ImageNet-1k) my custom 'small' patch model to 77.9, 'base' to 79.4 top-1 with this code.
12
- * Hopefully find time and GPUs for SSL or unsupervised pretraining on OpenImages w/ ImageNet fine-tune in future.
13
-
14
- Acknowledgments:
15
- * The paper authors for releasing code and weights, thanks!
16
- * I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
17
- for some einops/einsum fun
18
- * Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
19
- * Bert reference code checks against Huggingface Transformers and Tensorflow Bert
20
-
21
- Hacked together by / Copyright 2020 Ross Wightman
22
- """
23
- import warnings
24
- import math
25
- import torch
26
- from functools import partial
27
- import torch.nn as nn
28
- import torch.nn.functional as F
29
- import torch.utils.checkpoint as checkpoint
30
- from timm.models.layers import drop_path, to_2tuple, trunc_normal_
31
-
32
-
33
- def _cfg(url='', **kwargs):
34
- return {
35
- 'url': url,
36
- 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
37
- 'crop_pct': .9, 'interpolation': 'bicubic',
38
- 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
39
- **kwargs
40
- }
41
-
42
-
43
- class DropPath(nn.Module):
44
- """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
45
- """
46
-
47
- def __init__(self, drop_prob=None):
48
- super(DropPath, self).__init__()
49
- self.drop_prob = drop_prob
50
-
51
- def forward(self, x):
52
- return drop_path(x, self.drop_prob, self.training)
53
-
54
- def extra_repr(self) -> str:
55
- return 'p={}'.format(self.drop_prob)
56
-
57
-
58
- class Mlp(nn.Module):
59
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
60
- super().__init__()
61
- out_features = out_features or in_features
62
- hidden_features = hidden_features or in_features
63
- self.fc1 = nn.Linear(in_features, hidden_features)
64
- self.act = act_layer()
65
- self.fc2 = nn.Linear(hidden_features, out_features)
66
- self.drop = nn.Dropout(drop)
67
-
68
- def forward(self, x):
69
- x = self.fc1(x)
70
- x = self.act(x)
71
- # x = self.drop(x)
72
- # commit this for the orignal BERT implement
73
- x = self.fc2(x)
74
- x = self.drop(x)
75
- return x
76
-
77
-
78
- class Attention(nn.Module):
79
- def __init__(
80
- self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
81
- proj_drop=0., window_size=None, attn_head_dim=None):
82
- super().__init__()
83
- self.num_heads = num_heads
84
- head_dim = dim // num_heads
85
- if attn_head_dim is not None:
86
- head_dim = attn_head_dim
87
- all_head_dim = head_dim * self.num_heads
88
- # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
89
- self.scale = qk_scale or head_dim ** -0.5
90
-
91
- self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
92
- if qkv_bias:
93
- self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
94
- self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
95
- else:
96
- self.q_bias = None
97
- self.v_bias = None
98
-
99
- if window_size:
100
- self.window_size = window_size
101
- self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
102
- self.relative_position_bias_table = nn.Parameter(
103
- torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
104
- # cls to token & token 2 cls & cls to cls
105
-
106
- # get pair-wise relative position index for each token inside the window
107
- coords_h = torch.arange(window_size[0])
108
- coords_w = torch.arange(window_size[1])
109
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
110
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
111
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
112
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
113
- relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
114
- relative_coords[:, :, 1] += window_size[1] - 1
115
- relative_coords[:, :, 0] *= 2 * window_size[1] - 1
116
- relative_position_index = \
117
- torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
118
- relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
119
- relative_position_index[0, 0:] = self.num_relative_distance - 3
120
- relative_position_index[0:, 0] = self.num_relative_distance - 2
121
- relative_position_index[0, 0] = self.num_relative_distance - 1
122
-
123
- self.register_buffer("relative_position_index", relative_position_index)
124
-
125
- # trunc_normal_(self.relative_position_bias_table, std=.0)
126
- else:
127
- self.window_size = None
128
- self.relative_position_bias_table = None
129
- self.relative_position_index = None
130
-
131
- self.attn_drop = nn.Dropout(attn_drop)
132
- self.proj = nn.Linear(all_head_dim, dim)
133
- self.proj_drop = nn.Dropout(proj_drop)
134
-
135
- def forward(self, x, rel_pos_bias=None, training_window_size=None):
136
- B, N, C = x.shape
137
- qkv_bias = None
138
- if self.q_bias is not None:
139
- qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
140
- # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
141
- qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
142
- qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
143
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
144
-
145
- q = q * self.scale
146
- attn = (q @ k.transpose(-2, -1))
147
-
148
- if self.relative_position_bias_table is not None:
149
- if training_window_size == self.window_size:
150
- relative_position_bias = \
151
- self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
152
- self.window_size[0] * self.window_size[1] + 1,
153
- self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
154
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
155
- attn = attn + relative_position_bias.unsqueeze(0)
156
- else:
157
- training_window_size = tuple(training_window_size.tolist())
158
- new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3
159
- # new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok
160
- new_relative_position_bias_table = F.interpolate(
161
- self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads,
162
- 2 * self.window_size[0] - 1,
163
- 2 * self.window_size[1] - 1),
164
- size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic',
165
- align_corners=False)
166
- new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads,
167
- new_num_relative_distance - 3).permute(
168
- 1, 0)
169
- new_relative_position_bias_table = torch.cat(
170
- [new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0)
171
-
172
- # get pair-wise relative position index for each token inside the window
173
- coords_h = torch.arange(training_window_size[0])
174
- coords_w = torch.arange(training_window_size[1])
175
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
176
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
177
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
178
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
179
- relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0
180
- relative_coords[:, :, 1] += training_window_size[1] - 1
181
- relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1
182
- relative_position_index = \
183
- torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2,
184
- dtype=relative_coords.dtype)
185
- relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
186
- relative_position_index[0, 0:] = new_num_relative_distance - 3
187
- relative_position_index[0:, 0] = new_num_relative_distance - 2
188
- relative_position_index[0, 0] = new_num_relative_distance - 1
189
-
190
- relative_position_bias = \
191
- new_relative_position_bias_table[relative_position_index.view(-1)].view(
192
- training_window_size[0] * training_window_size[1] + 1,
193
- training_window_size[0] * training_window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
194
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
195
- attn = attn + relative_position_bias.unsqueeze(0)
196
-
197
- if rel_pos_bias is not None:
198
- attn = attn + rel_pos_bias
199
-
200
- attn = attn.softmax(dim=-1)
201
- attn = self.attn_drop(attn)
202
-
203
- x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
204
- x = self.proj(x)
205
- x = self.proj_drop(x)
206
- return x
207
-
208
-
209
- class Block(nn.Module):
210
-
211
- def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
212
- drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
213
- window_size=None, attn_head_dim=None):
214
- super().__init__()
215
- self.norm1 = norm_layer(dim)
216
- self.attn = Attention(
217
- dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
218
- attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
219
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
220
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
221
- self.norm2 = norm_layer(dim)
222
- mlp_hidden_dim = int(dim * mlp_ratio)
223
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
224
-
225
- if init_values is not None:
226
- self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
227
- self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
228
- else:
229
- self.gamma_1, self.gamma_2 = None, None
230
-
231
- def forward(self, x, rel_pos_bias=None, training_window_size=None):
232
- if self.gamma_1 is None:
233
- x = x + self.drop_path(
234
- self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, training_window_size=training_window_size))
235
- x = x + self.drop_path(self.mlp(self.norm2(x)))
236
- else:
237
- x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias,
238
- training_window_size=training_window_size))
239
- x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
240
- return x
241
-
242
-
243
- class PatchEmbed(nn.Module):
244
- """ Image to Patch Embedding
245
- """
246
-
247
- def __init__(self, img_size=[224, 224], patch_size=16, in_chans=3, embed_dim=768):
248
- super().__init__()
249
- img_size = to_2tuple(img_size)
250
- patch_size = to_2tuple(patch_size)
251
- num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
252
- self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
253
- self.num_patches_w = self.patch_shape[0]
254
- self.num_patches_h = self.patch_shape[1]
255
- # the so-called patch_shape is the patch shape during pre-training
256
- self.img_size = img_size
257
- self.patch_size = patch_size
258
- self.num_patches = num_patches
259
-
260
- self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
261
-
262
- def forward(self, x, position_embedding=None, **kwargs):
263
- # FIXME look at relaxing size constraints
264
- # assert H == self.img_size[0] and W == self.img_size[1], \
265
- # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
266
- x = self.proj(x)
267
- Hp, Wp = x.shape[2], x.shape[3]
268
-
269
- if position_embedding is not None:
270
- # interpolate the position embedding to the corresponding size
271
- position_embedding = position_embedding.view(1, self.patch_shape[0], self.patch_shape[1], -1).permute(0, 3,
272
- 1, 2)
273
- position_embedding = F.interpolate(position_embedding, size=(Hp, Wp), mode='bicubic')
274
- x = x + position_embedding
275
-
276
- x = x.flatten(2).transpose(1, 2)
277
- return x, (Hp, Wp)
278
-
279
-
280
- class HybridEmbed(nn.Module):
281
- """ CNN Feature Map Embedding
282
- Extract feature map from CNN, flatten, project to embedding dim.
283
- """
284
-
285
- def __init__(self, backbone, img_size=[224, 224], feature_size=None, in_chans=3, embed_dim=768):
286
- super().__init__()
287
- assert isinstance(backbone, nn.Module)
288
- img_size = to_2tuple(img_size)
289
- self.img_size = img_size
290
- self.backbone = backbone
291
- if feature_size is None:
292
- with torch.no_grad():
293
- # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
294
- # map for all networks, the feature metadata has reliable channel and stride info, but using
295
- # stride to calc feature dim requires info about padding of each stage that isn't captured.
296
- training = backbone.training
297
- if training:
298
- backbone.eval()
299
- o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
300
- feature_size = o.shape[-2:]
301
- feature_dim = o.shape[1]
302
- backbone.train(training)
303
- else:
304
- feature_size = to_2tuple(feature_size)
305
- feature_dim = self.backbone.feature_info.channels()[-1]
306
- self.num_patches = feature_size[0] * feature_size[1]
307
- self.proj = nn.Linear(feature_dim, embed_dim)
308
-
309
- def forward(self, x):
310
- x = self.backbone(x)[-1]
311
- x = x.flatten(2).transpose(1, 2)
312
- x = self.proj(x)
313
- return x
314
-
315
-
316
- class RelativePositionBias(nn.Module):
317
-
318
- def __init__(self, window_size, num_heads):
319
- super().__init__()
320
- self.window_size = window_size
321
- self.num_heads = num_heads
322
- self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
323
- self.relative_position_bias_table = nn.Parameter(
324
- torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
325
- # cls to token & token 2 cls & cls to cls
326
-
327
- # get pair-wise relative position index for each token inside the window
328
- coords_h = torch.arange(window_size[0])
329
- coords_w = torch.arange(window_size[1])
330
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
331
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
332
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
333
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
334
- relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
335
- relative_coords[:, :, 1] += window_size[1] - 1
336
- relative_coords[:, :, 0] *= 2 * window_size[1] - 1
337
- relative_position_index = \
338
- torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
339
- relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
340
- relative_position_index[0, 0:] = self.num_relative_distance - 3
341
- relative_position_index[0:, 0] = self.num_relative_distance - 2
342
- relative_position_index[0, 0] = self.num_relative_distance - 1
343
-
344
- self.register_buffer("relative_position_index", relative_position_index)
345
-
346
- # trunc_normal_(self.relative_position_bias_table, std=.02)
347
-
348
- def forward(self, training_window_size):
349
- if training_window_size == self.window_size:
350
- relative_position_bias = \
351
- self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
352
- self.window_size[0] * self.window_size[1] + 1,
353
- self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
354
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
355
- else:
356
- training_window_size = tuple(training_window_size.tolist())
357
- new_num_relative_distance = (2 * training_window_size[0] - 1) * (2 * training_window_size[1] - 1) + 3
358
- # new_num_relative_dis 为 所有可能的相对位置选项,包含cls-cls,tok-cls,与cls-tok
359
- new_relative_position_bias_table = F.interpolate(
360
- self.relative_position_bias_table[:-3, :].permute(1, 0).view(1, self.num_heads,
361
- 2 * self.window_size[0] - 1,
362
- 2 * self.window_size[1] - 1),
363
- size=(2 * training_window_size[0] - 1, 2 * training_window_size[1] - 1), mode='bicubic',
364
- align_corners=False)
365
- new_relative_position_bias_table = new_relative_position_bias_table.view(self.num_heads,
366
- new_num_relative_distance - 3).permute(
367
- 1, 0)
368
- new_relative_position_bias_table = torch.cat(
369
- [new_relative_position_bias_table, self.relative_position_bias_table[-3::]], dim=0)
370
-
371
- # get pair-wise relative position index for each token inside the window
372
- coords_h = torch.arange(training_window_size[0])
373
- coords_w = torch.arange(training_window_size[1])
374
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
375
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
376
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
377
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
378
- relative_coords[:, :, 0] += training_window_size[0] - 1 # shift to start from 0
379
- relative_coords[:, :, 1] += training_window_size[1] - 1
380
- relative_coords[:, :, 0] *= 2 * training_window_size[1] - 1
381
- relative_position_index = \
382
- torch.zeros(size=(training_window_size[0] * training_window_size[1] + 1,) * 2,
383
- dtype=relative_coords.dtype)
384
- relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
385
- relative_position_index[0, 0:] = new_num_relative_distance - 3
386
- relative_position_index[0:, 0] = new_num_relative_distance - 2
387
- relative_position_index[0, 0] = new_num_relative_distance - 1
388
-
389
- relative_position_bias = \
390
- new_relative_position_bias_table[relative_position_index.view(-1)].view(
391
- training_window_size[0] * training_window_size[1] + 1,
392
- training_window_size[0] * training_window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
393
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
394
-
395
- return relative_position_bias
396
-
397
-
398
- class BEiT(nn.Module):
399
- """ Vision Transformer with support for patch or hybrid CNN input stage
400
- """
401
-
402
- def __init__(self,
403
- img_size=[224, 224],
404
- patch_size=16,
405
- in_chans=3,
406
- num_classes=80,
407
- embed_dim=768,
408
- depth=12,
409
- num_heads=12,
410
- mlp_ratio=4.,
411
- qkv_bias=False,
412
- qk_scale=None,
413
- drop_rate=0.,
414
- attn_drop_rate=0.,
415
- drop_path_rate=0.,
416
- hybrid_backbone=None,
417
- norm_layer=None,
418
- init_values=None,
419
- use_abs_pos_emb=False,
420
- use_rel_pos_bias=False,
421
- use_shared_rel_pos_bias=False,
422
- use_checkpoint=True,
423
- pretrained=None,
424
- out_features=None,
425
- ):
426
-
427
- super(BEiT, self).__init__()
428
-
429
- norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
430
- self.num_classes = num_classes
431
- self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
432
- self.use_checkpoint = use_checkpoint
433
-
434
- if hybrid_backbone is not None:
435
- self.patch_embed = HybridEmbed(
436
- hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
437
- else:
438
- self.patch_embed = PatchEmbed(
439
- img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
440
- num_patches = self.patch_embed.num_patches
441
- self.out_features = out_features
442
- self.out_indices = [int(name[5:]) for name in out_features]
443
-
444
- self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
445
- # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
446
- if use_abs_pos_emb:
447
- self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
448
- else:
449
- self.pos_embed = None
450
- self.pos_drop = nn.Dropout(p=drop_rate)
451
-
452
- self.use_shared_rel_pos_bias = use_shared_rel_pos_bias
453
- if use_shared_rel_pos_bias:
454
- self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
455
- else:
456
- self.rel_pos_bias = None
457
-
458
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
459
- self.use_rel_pos_bias = use_rel_pos_bias
460
- self.blocks = nn.ModuleList([
461
- Block(
462
- dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
463
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
464
- init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None)
465
- for i in range(depth)])
466
-
467
- # trunc_normal_(self.mask_token, std=.02)
468
-
469
- if patch_size == 16:
470
- self.fpn1 = nn.Sequential(
471
- nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
472
- # nn.SyncBatchNorm(embed_dim),
473
- nn.BatchNorm2d(embed_dim),
474
- nn.GELU(),
475
- nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
476
- )
477
-
478
- self.fpn2 = nn.Sequential(
479
- nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
480
- )
481
-
482
- self.fpn3 = nn.Identity()
483
-
484
- self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2)
485
- elif patch_size == 8:
486
- self.fpn1 = nn.Sequential(
487
- nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2),
488
- )
489
-
490
- self.fpn2 = nn.Identity()
491
-
492
- self.fpn3 = nn.Sequential(
493
- nn.MaxPool2d(kernel_size=2, stride=2),
494
- )
495
-
496
- self.fpn4 = nn.Sequential(
497
- nn.MaxPool2d(kernel_size=4, stride=4),
498
- )
499
-
500
- if self.pos_embed is not None:
501
- trunc_normal_(self.pos_embed, std=.02)
502
- trunc_normal_(self.cls_token, std=.02)
503
- self.apply(self._init_weights)
504
- self.fix_init_weight()
505
-
506
- def fix_init_weight(self):
507
- def rescale(param, layer_id):
508
- param.div_(math.sqrt(2.0 * layer_id))
509
-
510
- for layer_id, layer in enumerate(self.blocks):
511
- rescale(layer.attn.proj.weight.data, layer_id + 1)
512
- rescale(layer.mlp.fc2.weight.data, layer_id + 1)
513
-
514
- def _init_weights(self, m):
515
- if isinstance(m, nn.Linear):
516
- trunc_normal_(m.weight, std=.02)
517
- if isinstance(m, nn.Linear) and m.bias is not None:
518
- nn.init.constant_(m.bias, 0)
519
- elif isinstance(m, nn.LayerNorm):
520
- nn.init.constant_(m.bias, 0)
521
- nn.init.constant_(m.weight, 1.0)
522
-
523
- '''
524
- def init_weights(self):
525
- """Initialize the weights in backbone.
526
-
527
- Args:
528
- pretrained (str, optional): Path to pre-trained weights.
529
- Defaults to None.
530
- """
531
- logger = get_root_logger()
532
-
533
- if self.pos_embed is not None:
534
- trunc_normal_(self.pos_embed, std=.02)
535
- trunc_normal_(self.cls_token, std=.02)
536
- self.apply(self._init_weights)
537
- self.fix_init_weight()
538
-
539
- if self.init_cfg is None:
540
- logger.warn(f'No pre-trained weights for '
541
- f'{self.__class__.__name__}, '
542
- f'training start from scratch')
543
- else:
544
- assert 'checkpoint' in self.init_cfg, f'Only support ' \
545
- f'specify `Pretrained` in ' \
546
- f'`init_cfg` in ' \
547
- f'{self.__class__.__name__} '
548
- logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}")
549
- load_checkpoint(self,
550
- filename=self.init_cfg['checkpoint'],
551
- strict=False,
552
- logger=logger,
553
- beit_spec_expand_rel_pos = self.use_rel_pos_bias,
554
- )
555
- '''
556
-
557
- def get_num_layers(self):
558
- return len(self.blocks)
559
-
560
- @torch.jit.ignore
561
- def no_weight_decay(self):
562
- return {'pos_embed', 'cls_token'}
563
-
564
- def forward_features(self, x):
565
- B, C, H, W = x.shape
566
- x, (Hp, Wp) = self.patch_embed(x, self.pos_embed[:, 1:, :] if self.pos_embed is not None else None)
567
- # Hp, Wp are HW for patches
568
- batch_size, seq_len, _ = x.size()
569
-
570
- cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
571
- if self.pos_embed is not None:
572
- cls_tokens = cls_tokens + self.pos_embed[:, :1, :]
573
- x = torch.cat((cls_tokens, x), dim=1)
574
- x = self.pos_drop(x)
575
-
576
- features = []
577
- training_window_size = torch.tensor([Hp, Wp])
578
-
579
- rel_pos_bias = self.rel_pos_bias(training_window_size) if self.rel_pos_bias is not None else None
580
-
581
- for i, blk in enumerate(self.blocks):
582
- if self.use_checkpoint:
583
- x = checkpoint.checkpoint(blk, x, rel_pos_bias, training_window_size)
584
- else:
585
- x = blk(x, rel_pos_bias=rel_pos_bias, training_window_size=training_window_size)
586
- if i in self.out_indices:
587
- xp = x[:, 1:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp)
588
- features.append(xp.contiguous())
589
-
590
- ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4]
591
- for i in range(len(features)):
592
- features[i] = ops[i](features[i])
593
-
594
- feat_out = {}
595
-
596
- for name, value in zip(self.out_features, features):
597
- feat_out[name] = value
598
-
599
- return feat_out
600
-
601
- def forward(self, x):
602
- x = self.forward_features(x)
603
- return x
604
-
605
-
606
- def beit_base_patch16(pretrained=False, **kwargs):
607
- model = BEiT(
608
- patch_size=16,
609
- embed_dim=768,
610
- depth=12,
611
- num_heads=12,
612
- mlp_ratio=4,
613
- qkv_bias=True,
614
- norm_layer=partial(nn.LayerNorm, eps=1e-6),
615
- init_values=None,
616
- **kwargs)
617
- model.default_cfg = _cfg()
618
- return model
619
-
620
- def beit_large_patch16(pretrained=False, **kwargs):
621
- model = BEiT(
622
- patch_size=16,
623
- embed_dim=1024,
624
- depth=24,
625
- num_heads=16,
626
- mlp_ratio=4,
627
- qkv_bias=True,
628
- norm_layer=partial(nn.LayerNorm, eps=1e-6),
629
- init_values=None,
630
- **kwargs)
631
- model.default_cfg = _cfg()
632
- return model
633
-
634
- def dit_base_patch16(pretrained=False, **kwargs):
635
- model = BEiT(
636
- patch_size=16,
637
- embed_dim=768,
638
- depth=12,
639
- num_heads=12,
640
- mlp_ratio=4,
641
- qkv_bias=True,
642
- norm_layer=partial(nn.LayerNorm, eps=1e-6),
643
- init_values=0.1,
644
- **kwargs)
645
- model.default_cfg = _cfg()
646
- return model
647
-
648
- def dit_large_patch16(pretrained=False, **kwargs):
649
- model = BEiT(
650
- patch_size=16,
651
- embed_dim=1024,
652
- depth=24,
653
- num_heads=16,
654
- mlp_ratio=4,
655
- qkv_bias=True,
656
- norm_layer=partial(nn.LayerNorm, eps=1e-6),
657
- init_values=1e-5,
658
- **kwargs)
659
- model.default_cfg = _cfg()
660
- return model
661
-
662
- if __name__ == '__main__':
663
- model = BEiT(use_checkpoint=True, use_shared_rel_pos_bias=True)
664
- model = model.to("cuda:0")
665
- input1 = torch.rand(2, 3, 512, 762).to("cuda:0")
666
- input2 = torch.rand(2, 3, 800, 1200).to("cuda:0")
667
- input3 = torch.rand(2, 3, 720, 1000).to("cuda:0")
668
- output1 = model(input1)
669
- output2 = model(input2)
670
- output3 = model(input3)
671
- print("all done")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/EronSamez/RVC_HFmeu/demucs/__main__.py DELETED
@@ -1,317 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates.
2
- # All rights reserved.
3
- #
4
- # This source code is licensed under the license found in the
5
- # LICENSE file in the root directory of this source tree.
6
-
7
- import json
8
- import math
9
- import os
10
- import sys
11
- import time
12
- from dataclasses import dataclass, field
13
-
14
- import torch as th
15
- from torch import distributed, nn
16
- from torch.nn.parallel.distributed import DistributedDataParallel
17
-
18
- from .augment import FlipChannels, FlipSign, Remix, Scale, Shift
19
- from .compressed import get_compressed_datasets
20
- from .model import Demucs
21
- from .parser import get_name, get_parser
22
- from .raw import Rawset
23
- from .repitch import RepitchedWrapper
24
- from .pretrained import load_pretrained, SOURCES
25
- from .tasnet import ConvTasNet
26
- from .test import evaluate
27
- from .train import train_model, validate_model
28
- from .utils import (human_seconds, load_model, save_model, get_state,
29
- save_state, sizeof_fmt, get_quantizer)
30
- from .wav import get_wav_datasets, get_musdb_wav_datasets
31
-
32
-
33
- @dataclass
34
- class SavedState:
35
- metrics: list = field(default_factory=list)
36
- last_state: dict = None
37
- best_state: dict = None
38
- optimizer: dict = None
39
-
40
-
41
- def main():
42
- parser = get_parser()
43
- args = parser.parse_args()
44
- name = get_name(parser, args)
45
- print(f"Experiment {name}")
46
-
47
- if args.musdb is None and args.rank == 0:
48
- print(
49
- "You must provide the path to the MusDB dataset with the --musdb flag. "
50
- "To download the MusDB dataset, see https://sigsep.github.io/datasets/musdb.html.",
51
- file=sys.stderr)
52
- sys.exit(1)
53
-
54
- eval_folder = args.evals / name
55
- eval_folder.mkdir(exist_ok=True, parents=True)
56
- args.logs.mkdir(exist_ok=True)
57
- metrics_path = args.logs / f"{name}.json"
58
- eval_folder.mkdir(exist_ok=True, parents=True)
59
- args.checkpoints.mkdir(exist_ok=True, parents=True)
60
- args.models.mkdir(exist_ok=True, parents=True)
61
-
62
- if args.device is None:
63
- device = "cpu"
64
- if th.cuda.is_available():
65
- device = "cuda"
66
- else:
67
- device = args.device
68
-
69
- th.manual_seed(args.seed)
70
- # Prevents too many threads to be started when running `museval` as it can be quite
71
- # inefficient on NUMA architectures.
72
- os.environ["OMP_NUM_THREADS"] = "1"
73
- os.environ["MKL_NUM_THREADS"] = "1"
74
-
75
- if args.world_size > 1:
76
- if device != "cuda" and args.rank == 0:
77
- print("Error: distributed training is only available with cuda device", file=sys.stderr)
78
- sys.exit(1)
79
- th.cuda.set_device(args.rank % th.cuda.device_count())
80
- distributed.init_process_group(backend="nccl",
81
- init_method="tcp://" + args.master,
82
- rank=args.rank,
83
- world_size=args.world_size)
84
-
85
- checkpoint = args.checkpoints / f"{name}.th"
86
- checkpoint_tmp = args.checkpoints / f"{name}.th.tmp"
87
- if args.restart and checkpoint.exists() and args.rank == 0:
88
- checkpoint.unlink()
89
-
90
- if args.test or args.test_pretrained:
91
- args.epochs = 1
92
- args.repeat = 0
93
- if args.test:
94
- model = load_model(args.models / args.test)
95
- else:
96
- model = load_pretrained(args.test_pretrained)
97
- elif args.tasnet:
98
- model = ConvTasNet(audio_channels=args.audio_channels,
99
- samplerate=args.samplerate, X=args.X,
100
- segment_length=4 * args.samples,
101
- sources=SOURCES)
102
- else:
103
- model = Demucs(
104
- audio_channels=args.audio_channels,
105
- channels=args.channels,
106
- context=args.context,
107
- depth=args.depth,
108
- glu=args.glu,
109
- growth=args.growth,
110
- kernel_size=args.kernel_size,
111
- lstm_layers=args.lstm_layers,
112
- rescale=args.rescale,
113
- rewrite=args.rewrite,
114
- stride=args.conv_stride,
115
- resample=args.resample,
116
- normalize=args.normalize,
117
- samplerate=args.samplerate,
118
- segment_length=4 * args.samples,
119
- sources=SOURCES,
120
- )
121
- model.to(device)
122
- if args.init:
123
- model.load_state_dict(load_pretrained(args.init).state_dict())
124
-
125
- if args.show:
126
- print(model)
127
- size = sizeof_fmt(4 * sum(p.numel() for p in model.parameters()))
128
- print(f"Model size {size}")
129
- return
130
-
131
- try:
132
- saved = th.load(checkpoint, map_location='cpu')
133
- except IOError:
134
- saved = SavedState()
135
-
136
- optimizer = th.optim.Adam(model.parameters(), lr=args.lr)
137
-
138
- quantizer = None
139
- quantizer = get_quantizer(model, args, optimizer)
140
-
141
- if saved.last_state is not None:
142
- model.load_state_dict(saved.last_state, strict=False)
143
- if saved.optimizer is not None:
144
- optimizer.load_state_dict(saved.optimizer)
145
-
146
- model_name = f"{name}.th"
147
- if args.save_model:
148
- if args.rank == 0:
149
- model.to("cpu")
150
- model.load_state_dict(saved.best_state)
151
- save_model(model, quantizer, args, args.models / model_name)
152
- return
153
- elif args.save_state:
154
- model_name = f"{args.save_state}.th"
155
- if args.rank == 0:
156
- model.to("cpu")
157
- model.load_state_dict(saved.best_state)
158
- state = get_state(model, quantizer)
159
- save_state(state, args.models / model_name)
160
- return
161
-
162
- if args.rank == 0:
163
- done = args.logs / f"{name}.done"
164
- if done.exists():
165
- done.unlink()
166
-
167
- augment = [Shift(args.data_stride)]
168
- if args.augment:
169
- augment += [FlipSign(), FlipChannels(), Scale(),
170
- Remix(group_size=args.remix_group_size)]
171
- augment = nn.Sequential(*augment).to(device)
172
- print("Agumentation pipeline:", augment)
173
-
174
- if args.mse:
175
- criterion = nn.MSELoss()
176
- else:
177
- criterion = nn.L1Loss()
178
-
179
- # Setting number of samples so that all convolution windows are full.
180
- # Prevents hard to debug mistake with the prediction being shifted compared
181
- # to the input mixture.
182
- samples = model.valid_length(args.samples)
183
- print(f"Number of training samples adjusted to {samples}")
184
- samples = samples + args.data_stride
185
- if args.repitch:
186
- # We need a bit more audio samples, to account for potential
187
- # tempo change.
188
- samples = math.ceil(samples / (1 - 0.01 * args.max_tempo))
189
-
190
- args.metadata.mkdir(exist_ok=True, parents=True)
191
- if args.raw:
192
- train_set = Rawset(args.raw / "train",
193
- samples=samples,
194
- channels=args.audio_channels,
195
- streams=range(1, len(model.sources) + 1),
196
- stride=args.data_stride)
197
-
198
- valid_set = Rawset(args.raw / "valid", channels=args.audio_channels)
199
- elif args.wav:
200
- train_set, valid_set = get_wav_datasets(args, samples, model.sources)
201
- elif args.is_wav:
202
- train_set, valid_set = get_musdb_wav_datasets(args, samples, model.sources)
203
- else:
204
- train_set, valid_set = get_compressed_datasets(args, samples)
205
-
206
- if args.repitch:
207
- train_set = RepitchedWrapper(
208
- train_set,
209
- proba=args.repitch,
210
- max_tempo=args.max_tempo)
211
-
212
- best_loss = float("inf")
213
- for epoch, metrics in enumerate(saved.metrics):
214
- print(f"Epoch {epoch:03d}: "
215
- f"train={metrics['train']:.8f} "
216
- f"valid={metrics['valid']:.8f} "
217
- f"best={metrics['best']:.4f} "
218
- f"ms={metrics.get('true_model_size', 0):.2f}MB "
219
- f"cms={metrics.get('compressed_model_size', 0):.2f}MB "
220
- f"duration={human_seconds(metrics['duration'])}")
221
- best_loss = metrics['best']
222
-
223
- if args.world_size > 1:
224
- dmodel = DistributedDataParallel(model,
225
- device_ids=[th.cuda.current_device()],
226
- output_device=th.cuda.current_device())
227
- else:
228
- dmodel = model
229
-
230
- for epoch in range(len(saved.metrics), args.epochs):
231
- begin = time.time()
232
- model.train()
233
- train_loss, model_size = train_model(
234
- epoch, train_set, dmodel, criterion, optimizer, augment,
235
- quantizer=quantizer,
236
- batch_size=args.batch_size,
237
- device=device,
238
- repeat=args.repeat,
239
- seed=args.seed,
240
- diffq=args.diffq,
241
- workers=args.workers,
242
- world_size=args.world_size)
243
- model.eval()
244
- valid_loss = validate_model(
245
- epoch, valid_set, model, criterion,
246
- device=device,
247
- rank=args.rank,
248
- split=args.split_valid,
249
- overlap=args.overlap,
250
- world_size=args.world_size)
251
-
252
- ms = 0
253
- cms = 0
254
- if quantizer and args.rank == 0:
255
- ms = quantizer.true_model_size()
256
- cms = quantizer.compressed_model_size(num_workers=min(40, args.world_size * 10))
257
-
258
- duration = time.time() - begin
259
- if valid_loss < best_loss and ms <= args.ms_target:
260
- best_loss = valid_loss
261
- saved.best_state = {
262
- key: value.to("cpu").clone()
263
- for key, value in model.state_dict().items()
264
- }
265
-
266
- saved.metrics.append({
267
- "train": train_loss,
268
- "valid": valid_loss,
269
- "best": best_loss,
270
- "duration": duration,
271
- "model_size": model_size,
272
- "true_model_size": ms,
273
- "compressed_model_size": cms,
274
- })
275
- if args.rank == 0:
276
- json.dump(saved.metrics, open(metrics_path, "w"))
277
-
278
- saved.last_state = model.state_dict()
279
- saved.optimizer = optimizer.state_dict()
280
- if args.rank == 0 and not args.test:
281
- th.save(saved, checkpoint_tmp)
282
- checkpoint_tmp.rename(checkpoint)
283
-
284
- print(f"Epoch {epoch:03d}: "
285
- f"train={train_loss:.8f} valid={valid_loss:.8f} best={best_loss:.4f} ms={ms:.2f}MB "
286
- f"cms={cms:.2f}MB "
287
- f"duration={human_seconds(duration)}")
288
-
289
- if args.world_size > 1:
290
- distributed.barrier()
291
-
292
- del dmodel
293
- model.load_state_dict(saved.best_state)
294
- if args.eval_cpu:
295
- device = "cpu"
296
- model.to(device)
297
- model.eval()
298
- evaluate(model, args.musdb, eval_folder,
299
- is_wav=args.is_wav,
300
- rank=args.rank,
301
- world_size=args.world_size,
302
- device=device,
303
- save=args.save,
304
- split=args.split_valid,
305
- shifts=args.shifts,
306
- overlap=args.overlap,
307
- workers=args.eval_workers)
308
- model.to("cpu")
309
- if args.rank == 0:
310
- if not (args.test or args.test_pretrained):
311
- save_model(model, quantizer, args, args.models / model_name)
312
- print("done")
313
- done.write_text("done")
314
-
315
-
316
- if __name__ == "__main__":
317
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/EuroPython2022/pyro-vision/app.py DELETED
@@ -1,72 +0,0 @@
1
- # Copyright (C) 2022, Pyronear.
2
-
3
- # This program is licensed under the Apache License 2.0.
4
- # See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
5
-
6
- import argparse
7
- import json
8
-
9
- import gradio as gr
10
- import numpy as np
11
- import onnxruntime
12
- from huggingface_hub import hf_hub_download
13
- from PIL import Image
14
-
15
- REPO = "pyronear/rexnet1_0x"
16
-
17
-
18
- # Download model config & checkpoint
19
- with open(hf_hub_download(REPO, filename="config.json"), "rb") as f:
20
- cfg = json.load(f)
21
-
22
- ort_session = onnxruntime.InferenceSession(hf_hub_download(REPO, filename="model.onnx"))
23
-
24
- def preprocess_image(pil_img: Image.Image) -> np.ndarray:
25
- """Preprocess an image for inference
26
-
27
- Args:
28
- pil_img: a valid pillow image
29
-
30
- Returns:
31
- the resized and normalized image of shape (1, C, H, W)
32
- """
33
-
34
- # Resizing (PIL takes (W, H) order for resizing)
35
- img = pil_img.resize(cfg["input_shape"][-2:][::-1], Image.BILINEAR)
36
- # (H, W, C) --> (C, H, W)
37
- img = np.asarray(img).transpose((2, 0, 1)).astype(np.float32) / 255
38
- # Normalization
39
- img -= np.array(cfg["mean"])[:, None, None]
40
- img /= np.array(cfg["std"])[:, None, None]
41
-
42
- return img[None, ...]
43
-
44
- def predict(image):
45
- # Preprocessing
46
- np_img = preprocess_image(image)
47
- ort_input = {ort_session.get_inputs()[0].name: np_img}
48
-
49
- # Inference
50
- ort_out = ort_session.run(None, ort_input)
51
- # Post-processing
52
- probs = 1 / (1 + np.exp(-ort_out[0][0]))
53
-
54
- return {class_name: float(conf) for class_name, conf in zip(cfg["classes"], probs)}
55
-
56
-
57
- img = gr.inputs.Image(type="pil")
58
- outputs = gr.outputs.Label(num_top_classes=1)
59
-
60
-
61
- gr.Interface(
62
- fn=predict,
63
- inputs=[img],
64
- outputs=outputs,
65
- title="PyroVision: image classification demo",
66
- article=(
67
- "<p style='text-align: center'><a href='https://github.com/pyronear/pyro-vision'>"
68
- "Github Repo</a> | "
69
- "<a href='https://pyronear.org/pyro-vision/'>Documentation</a></p>"
70
- ),
71
- live=True,
72
- ).launch()