parquet-converter commited on
Commit
6e9851c
·
1 Parent(s): 12c3dc0

Update parquet files (step 26 of 397)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. spaces/101-5/gpt4free/g4f/.v1/testing/poe_test.py +0 -13
  2. spaces/1acneusushi/gradio-2dmoleculeeditor/data/3d Systems Cubify Sculpt 2014 32bit Incl Crack.md +0 -75
  3. spaces/1acneusushi/gradio-2dmoleculeeditor/data/4K Video Downloader Patch The Ultimate Guide to Downloading High-Quality Videos.md +0 -25
  4. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Bosch ESI Tronic 2.0 Key Generator What You Need to Know Before You Buy.md +0 -205
  5. spaces/1gistliPinn/ChatGPT4/Examples/Coat Of Arms Design Studio Pro Torrent.md +0 -6
  6. spaces/1gistliPinn/ChatGPT4/Examples/FeatureCAM 2019 Xforce Keygen 64 Bits _BEST_.md +0 -42
  7. spaces/1line/AutoGPT/autogpt/commands/web_playwright.py +0 -80
  8. spaces/1line/AutoGPT/autogpt/config/ai_config.py +0 -121
  9. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/APKPure Presents Red WhatsApp APK Download for Android Devices.md +0 -138
  10. spaces/1phancelerku/anime-remove-background/Angry Birds Classic The Game that Made History.md +0 -83
  11. spaces/1phancelerku/anime-remove-background/Download Smash the Dummy Mod APK and Enjoy Ragdoll Physics and Stress Relief.md +0 -101
  12. spaces/1phancelerku/anime-remove-background/Free Download M-PESA App and Send Money with Gifs Description and Profile Picture.md +0 -114
  13. spaces/1toTree/lora_test/ppdiffusers/models/unet_1d.py +0 -247
  14. spaces/4Taps/SadTalker/src/face3d/models/arcface_torch/eval_ijbc.py +0 -483
  15. spaces/AILab-CVC/SEED-LLaMA/models/seed_qformer/qformer_quantizer.py +0 -375
  16. spaces/AIZ2H/05-SOTA-Question-Answer-From-TextFileContext/README.md +0 -13
  17. spaces/ATang0729/Forecast4Muses/Model/Model6/Model6_2_ProfileRecogition/mmpretrain/configs/resnet/resnet50_8xb8_cub.py +0 -20
  18. spaces/AbelKidane/headdetector/prediction.py +0 -185
  19. spaces/AchyuthGamer/OpenGPT/g4f/Provider/Providers/Cromicle.py +0 -50
  20. spaces/Adapter/CoAdapter/ldm/lr_scheduler.py +0 -98
  21. spaces/AgentVerse/agentVerse/agentverse/environments/simulation_env/rules/describer/base.py +0 -23
  22. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/numberbar/Factory.js +0 -13
  23. spaces/Andy1621/uniformer_image_detection/configs/detectors/detectors_htc_r50_1x_coco.py +0 -28
  24. spaces/Andy1621/uniformer_image_detection/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py +0 -11
  25. spaces/Andy1621/uniformer_image_detection/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py +0 -13
  26. spaces/AnimaLab/bias-test-gpt-pairs/mgr_biases.py +0 -557
  27. spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/cnn/bricks/norm.py +0 -144
  28. spaces/AnonymousSub/Ayurveda4U/app.py +0 -48
  29. spaces/AriaMei/TTSdemo/attentions.py +0 -303
  30. spaces/ArtGAN/Diffusion-API/app.py +0 -48
  31. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/build_env.py +0 -311
  32. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/distlib/database.py +0 -1350
  33. spaces/Atualli/mediapipe-pose-estimation/app.py +0 -83
  34. spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/data/benchmark.py +0 -225
  35. spaces/Basav/openai-whisper-medium/README.md +0 -12
  36. spaces/Benson/text-generation/Examples/Cmo Descargar Nox Gacha En Samsung.md +0 -236
  37. spaces/Benson/text-generation/Examples/Descargar Alphazero Chess Engine.md +0 -71
  38. spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_internal/operations/build/wheel_editable.py +0 -46
  39. spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/rich/_stack.py +0 -16
  40. spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/rich/layout.py +0 -443
  41. spaces/Bishnupada/Fine-tuning-using-Hugging-face-transformers/README.md +0 -12
  42. spaces/BlinkDL/ChatRWKV-gradio/README.md +0 -13
  43. spaces/BrunoBall/Kaludi-ARTificialJourney-v1.0-768/app.py +0 -3
  44. spaces/CVPR/CVPR2022_papers/app.py +0 -66
  45. spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/detectron2/modeling/backbone/resnet.py +0 -566
  46. spaces/CVPR/LIVE/thrust/thrust/iterator/detail/any_assign.h +0 -55
  47. spaces/Chandrasekahar2k/KVCSekharGenAIBot/README.md +0 -12
  48. spaces/ChristopherMarais/Andrew_AI-BB_classification-beta/mysite/mysite/asgi.py +0 -16
  49. spaces/CikeyQI/Yunzai/Yunzai/plugins/ws-plugin/resources/help/imgs/config.js +0 -24
  50. spaces/ClaudioX/mg_sd_esp/app.py +0 -61
spaces/101-5/gpt4free/g4f/.v1/testing/poe_test.py DELETED
@@ -1,13 +0,0 @@
1
- from time import sleep
2
-
3
- from gpt4free import quora
4
-
5
- token = quora.Account.create(proxy=None, logging=True)
6
- print('token', token)
7
-
8
- sleep(2)
9
-
10
- for response in quora.StreamingCompletion.create(model='ChatGPT', prompt='hello world', token=token):
11
- print(response.text, flush=True)
12
-
13
- quora.Account.delete(token)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/3d Systems Cubify Sculpt 2014 32bit Incl Crack.md DELETED
@@ -1,75 +0,0 @@
1
-
2
- <table>
3
- <tr>
4
- <td>
5
- <h1>3D Systems Cubify Sculpt 2014 32bit Incl Crack: A Powerful and Easy-to-Use Software for 3D Printing</h1>
6
- <p>Have you ever dreamed of creating your own 3D models and printing them out in real life? Do you want to design anything from toys, jewelry, art, figurines, sculptures, prototypes, and more? If you answered yes to these questions, then you need to check out Cubify Sculpt 2014, a powerful and easy-to-use software for 3D printing. Cubify Sculpt 2014 is a product of 3D Systems, a leading company in the 3D printing industry. Cubify Sculpt 2014 allows you to sculpt and manipulate virtual clay with your mouse or touch screen, just like you would with real clay. You can create organic shapes, add textures, colors, and details, and export your models to print them in 3D. Cubify Sculpt 2014 is compatible with Windows 7 and 8, and requires a 32-bit system. In this article, I will show you how to download and install Cubify Sculpt 2014 32bit incl crack, how to use it to create amazing 3D models, how to export and print your models, and some tips and tricks for using it effectively. By the end of this article, you will be able to unleash your creativity and make your own 3D masterpieces with Cubify Sculpt 2014.</p>
7
- <h2>3d Systems Cubify Sculpt 2014 32bit Incl Crack</h2><br /><p><b><b>DOWNLOAD</b> &#8250;&#8250;&#8250;&#8250;&#8250; <a href="https://byltly.com/2uKvFW">https://byltly.com/2uKvFW</a></b></p><br /><br />
8
- <h2>How to Download and Install Cubify Sculpt 2014 32bit Incl Crack</h2>
9
- <p>The first step to use Cubify Sculpt 2014 is to download and install it on your computer. You can buy the software from the official website of Cubify for $129, or you can download it for free from a reliable source such as this one. If you choose the latter option, you will also get a crack file that will activate the full version of the software. Here are the steps to download and install Cubify Sculpt 2014 32bit incl crack:</p>
10
- <ol>
11
- <li>Download the software from the link provided above. The file size is about 300 MB.</li>
12
- <li>Extract the zip file using a program such as WinRAR or 7-Zip. You will get a folder named "Cubify Sculpt 2014" that contains two files: "setup.exe" and "crack.rar".</li>
13
- <li>Run the setup file and follow the installation wizard. Accept the license agreement and choose the destination folder for the software. The installation process may take a few minutes.</li>
14
- <li>After the installation is complete, do not launch the software yet. Instead, open the crack folder and extract the file named "Cubify.Sculpt.v2014.Win32.Cracked.rar". You will get another folder named "Cubify.Sculpt.v2014.Win32.Cracked" that contains a file named "Cubify.Sculpt.exe".</li>
15
- <li>Copy and paste this file into the installation folder of Cubify Sculpt 2014. You can find it in C:\Program Files (x86)\Cubify\Cubify Sculpt by default. Replace the original file when prompted.</li>
16
- <li>Launch Cubify Sculpt 2014 from your desktop or start menu. You will see a message that says "Thank you for using Cubify Sculpt". This means that the crack has worked and you have activated the full version of the software.</li>
17
- </ol>
18
- <p>Congratulations! You have successfully downloaded and installed Cubify Sculpt 2014 32bit incl crack. Now you are ready to use it to create amazing 3D models.</p>
19
- <h2>How to Use Cubify Sculpt 2014 to Create Amazing 3D Models</h2>
20
- <p>Cubify Sculpt 2014 is a software that lets you sculpt and manipulate virtual clay with your mouse or touch screen, just like you would with real clay. You can start with a box, sphere or cylinder of virtual clay, and use various tools to push, pull, smooth, emboss, deform, reform, paint, and more. You can also design with symmetry when modeling a face or figurine, or deform and reform your model by squishing and pulling whole objects. You can add patterns and textures from Cubify Sculpt's library or import your own displacement map. You can also add color with the paintbrush feature. Here are the steps to use Cubify Sculpt 2014 to create amazing 3D models:</p>
21
- <ol>
22
- <li>Start with a box, sphere or cylinder of virtual clay. To do this, click on the "New" button on the top left corner of the screen, and choose your desired shape from the drop-down menu. You can also adjust the size of your shape by dragging the slider below it.</li>
23
- <li>Use push and pull tools to sculpt your digital clay. To do this, click on the "Tools" tab on the right side of the screen, and choose from various tools such as move, grab, pinch, smooth, inflate, flatten, crease, scrape, carve, etc. You can also adjust the size, strength and falloff of each tool by dragging the sliders below them.</li>
24
- <li>Design with symmetry when modeling a face or figurine. To do this, click on the "Symmetry" button on the top right corner of the screen, and choose from various options such as x-axis, y-axis, z-axis, radial, etc. You can also adjust the symmetry plane by dragging the blue line on your model.</li>
25
- <li>Deform and reform your model by squishing and pulling whole objects. To do this, click on the "Deform" tab on the right side of the screen, and choose from various tools such as twist, bend, taper, stretch, etc. You can also adjust the axis, angle and amount of each tool by dragging the sliders below them.</li>
26
- <li>Emboss with patterns and textures from Cubify Sculpt's library or import your own displacement map. To do this, click on the "Emboss" tab on the right side of the screen, and choose from various categories such as abstract, animal, fabric, floral, geometric, etc. You can also import your own image file by clicking on the "Import" button below. You can then apply the pattern or texture to your model by dragging it over the surface. You can also adjust the size, depth and rotation of the pattern or texture by dragging the sliders below them.</li>
27
- <li>Add color with the paintbrush feature. To do this, click on the "Paint" tab on the right side of the screen, and choose from various colors or create your own custom color by clicking on the "Color Picker" button below. You can then paint your model by dragging your mouse or finger over the surface. You can also adjust the size and opacity of the paintbrush by dragging the sliders below them.</li>
28
- </ol>
29
- <p>Congratulations! You have successfully used Cubify Sculpt 2014 to create an amazing 3D model. Now you are ready to export and print it.</p>
30
- <p></p>
31
- <h2>How to Export and Print Your 3D Models with Cubify Sculpt 2014</h2>
32
- <p>Cubify Sculpt 2014 allows you to export and print your 3D models in various ways. You can save your model as a STL, OBJ, PLY, CLY or ZPC file, and choose your preferred printing method: Cloudprint, Cube printer or third-party printer. Here are the steps to export and print your 3D models with Cubify Sculpt 2014:</p>
33
- <ol>
34
- <li>Save your model as a STL, OBJ, PLY, CLY or ZPC file. To do this, click on the "File" button on the top left corner of the screen, and choose "Save As". You can then name your file and choose your desired format from the drop-down menu. You can also adjust the quality of your file by dragging the slider below it.</li>
35
- <li>Choose your preferred printing method: Cloudprint, Cube printer or third-party printer. To do this, click on the "Print" button on the top left corner of the screen, and choose from various options such as "Print with Cubify", "Print with Cube", or "Print with Other". You can also access more settings by clicking on the "Advanced" button below.</li>
36
- <li>Adjust your print settings such as scale, orientation and resolution. To do this, use the tools on the left side of the screen to modify your model according to your preferences. You can also preview your model in different views by clicking on the buttons on the bottom right corner of the screen.</li>
37
- <li>Send your model to print and wait for your masterpiece to be ready. To do this, click on the "Print" button on the bottom left corner of the screen, and follow the instructions on the screen. Depending on your chosen method, you may need to connect your printer, upload your file, or select your delivery options. Once your model is sent to print, you will receive a confirmation message and an estimated time of completion.</li>
38
- </ol>
39
- <p>Congratulations! You have successfully exported and printed your 3D model with Cubify Sculpt 2014. Now you can enjoy your 3D masterpiece in real life.</p>
40
- <h2>Tips and Tricks for Using Cubify Sculpt 2014 Effectively</h2>
41
- <p>Cubify Sculpt 2014 is a powerful and easy-to-use software for 3D printing, but there are some tips and tricks that can help you use it more effectively. Here are some of them:</p>
42
- <ul>
43
- <li>Use keyboard shortcuts to speed up your workflow. To do this, press the "Help" button on the top right corner of the screen, and choose "Keyboard Shortcuts" from the drop-down menu. You will see a list of keyboard shortcuts that can help you access various tools and functions quickly.</li>
44
- <li>Use layers to organize your model and apply different effects. To do this, click on the "Layers" tab on the right side of the screen, and use the buttons below to add, delete, duplicate, merge, or hide layers. You can also rename your layers by double-clicking on them. You can apply different tools, colors, textures, and effects to each layer separately, and change their order or opacity by dragging them up or down.</li>
45
- <li>Use undo and redo buttons to correct your mistakes or try different options. To do this, click on the "Undo" or "Redo" buttons on the top left corner of the screen, or press Ctrl+Z or Ctrl+Y on your keyboard. You can undo or redo up to 50 steps in Cubify Sculpt 2014.</li>
46
- <li>Use the mirror tool to create symmetrical models easily. To do this, click on the "Mirror" button on the top right corner of the screen, and choose from various options such as x-axis, y-axis, z-axis, radial, etc. You can also adjust the mirror plane by dragging the blue line on your model. The mirror tool will copy and reflect any changes you make to one side of your model to the other side automatically.</li>
47
- <li>Use the smooth tool to refine your model and remove unwanted bumps or creases. To do this, click on the "Tools" tab on the right side of the screen, and choose the "Smooth" tool from the drop-down menu. You can then drag your mouse or finger over the surface of your model to smooth it out. You can also adjust the size, strength and falloff of the smooth tool by dragging the sliders below it.</li>
48
- </ul>
49
- <p>These are some of the tips and tricks for using Cubify Sculpt 2014 effectively. You can also explore more features and functions by clicking on the "Help" button on the top right corner of the screen, and choosing from various options such as "Tutorials", "FAQs", "Support", etc.</p>
50
- <h2>Conclusion: Why Cubify Sculpt 2014 is a Great Choice for 3D Printing Enthusiasts</h2>
51
- <p>In conclusion, Cubify Sculpt 2014 is a great choice for 3D printing enthusiasts who want to create their own 3D models and print them out in real life. Cubify Sculpt 2014 is a powerful and easy-to-use software that lets you sculpt and manipulate virtual clay with your mouse or touch screen, just like you would with real clay. You can create organic shapes, add textures, colors, and details, and export your models to print them in 3D. Cubify Sculpt 2014 is compatible with Windows 7 and 8, and requires a 32-bit system. You can download and install Cubify Sculpt 2014 32bit incl crack for free from a reliable source such as this one. You can also use some tips and tricks to use it more effectively.</p>
52
- <p>If you are interested in creating your own 3D masterpieces with Cubify Sculpt 2014, don't hesitate any longer. Download Cubify Sculpt 2014 today and unleash your creativity!</p>
53
- <h2>FAQs</h2>
54
- <p>Here are some frequently asked questions about Cubify Sculpt 2014:</p>
55
- <ol>
56
- <li>What are the system requirements for Cubify Sculpt 2014?</li>
57
- <p>Cubify Sculpt 2014 requires a Windows 7 or 8 operating system with a 32-bit processor. It also requires a minimum of 2 GB RAM, 1 GB free disk space, OpenGL graphics card with at least 256 MB RAM, Internet connection for activation and updates.</p>
58
- <li>What are the file formats supported by Cubify Sculpt 2014?</li>
59
- <p>Cubify Sculpt 2014 supports the following file formats: STL, OBJ, PLY, CLY and ZPC. You can import and export these file formats to and from Cubify Sculpt 2014.</p>
60
- <li>How can I print my models with Cubify Sculpt 2014?</li>
61
- <p>Cubify Sculpt 2014 offers three printing methods: Cloudprint, Cube printer or third-party printer. You can choose your preferred method by clicking on the "Print" button on the top left corner of the screen. You can also adjust your print settings such as scale, orientation and resolution by using the tools on the left side of the screen.</p>
62
- <li>What are the advantages of using Cubify Sculpt 2014 over other 3D modeling software?</li>
63
- <p>Cubify Sculpt 2014 has several advantages over other 3D modeling software, such as:</p>
64
- <ul>
65
- <li>It is easy to use and intuitive. You can sculpt and manipulate virtual clay with your mouse or touch screen, just like you would with real clay.</li>
66
- <li>It is powerful and versatile. You can create organic shapes, add textures, colors, and details, and export your models to print them in 3D.</li>
67
- <li>It is compatible with Windows 7 and 8, and requires a 32-bit system. You can download and install it for free from a reliable source such as this one.</li>
68
- <li>It is fun and creative. You can unleash your imagination and make your own 3D masterpieces with Cubify Sculpt 2014.</li>
69
- </ul>
70
- <li>Where can I get more help or support for Cubify Sculpt 2014?</li>
71
- <p>If you need more help or support for Cubify Sculpt 2014, you can click on the "Help" button on the top right corner of the screen, and choose from various options such as "Tutorials", "FAQs", "Support", etc. You can also visit the official website of Cubify or contact their customer service team.</p>
72
- </ol>
73
- <p>I hope you enjoyed this article and learned how to use Cubify Sculpt 2014 to create amazing 3D models. If you have any questions or feedback, please leave a comment below. Thank you for reading!</p> b2dd77e56b<br />
74
- <br />
75
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/4K Video Downloader Patch The Ultimate Guide to Downloading High-Quality Videos.md DELETED
@@ -1,25 +0,0 @@
1
- <br />
2
- <h1>How to Use 4K Video Downloader Patch to Download Videos from Any Site</h1>
3
- <p>If you are looking for a way to download videos from any site in high quality, you might want to try 4K Video Downloader Patch. This is a software that allows you to download videos from YouTube, Vimeo, Facebook, Instagram and more in 4K resolution. You can also download playlists, channels, subtitles and 3D videos with this software.</p>
4
- <h2>4k video downloader patch</h2><br /><p><b><b>Download</b> ::: <a href="https://byltly.com/2uKA7c">https://byltly.com/2uKA7c</a></b></p><br /><br />
5
- <p>But how do you use 4K Video Downloader Patch to download videos from any site? Here are the steps you need to follow:</p>
6
- <ol>
7
- <li><b>Download and install 4K Video Downloader Patch.</b> You can find the software on the official website or on other trusted sources. Make sure you download the latest version of the software and install it on your computer.</li>
8
- <li><b>Copy the video URL.</b> Go to the site where you want to download the video and copy the video URL from the address bar or the share button.</li>
9
- <li><b>Paste the video URL into 4K Video Downloader Patch.</b> Open the software and click on the "Paste Link" button. The software will automatically detect the video and show you the available options.</li>
10
- <li><b>Choose the format and quality.</b> You can choose the format and quality of the video you want to download. You can also choose to download only the audio or the subtitles if you want. You can also select multiple videos at once if you want to download a playlist or a channel.</li>
11
- <li><b>Start the download.</b> Click on the "Download" button and wait for the software to finish downloading the video. You can see the progress and speed of the download on the software interface. You can also pause or resume the download at any time.</li>
12
- <li><b>Enjoy your video.</b> Once the download is complete, you can find your video in the destination folder that you have chosen. You can also play your video directly from the software or transfer it to your device or media player.</li>
13
- </ol>
14
- <p>That's how you use 4K Video Downloader Patch to download videos from any site. This software is easy to use, fast and reliable. It can help you save your favorite videos offline and watch them anytime you want. However, you should always respect the copyright of the video owners and use this software for personal use only.</p>
15
-
16
- <p>Now that you know how to use 4K Video Downloader Patch to download videos from any site, you might be wondering what are the benefits of using this software. Here are some of the reasons why 4K Video Downloader Patch is one of the best video downloader software available:</p>
17
- <ul>
18
- <li><b>It's free and easy to use.</b> You don't have to pay anything to use 4K Video Downloader Patch, and you can download as many videos as you want. The software has a simple and intuitive interface that lets you download videos with just a few clicks. You can also customize your download settings according to your preferences.</li>
19
- <li><b>It supports multiple sites and formats.</b> You can download videos from over 10,000 sites, including YouTube, Vimeo, Facebook, Instagram and more. You can also choose from various formats and resolutions, such as MP4, MKV, FLV, 3GP, WEBM, MP3 and more. You can even download 4K and 8K videos if they are available.</li>
20
- <li><b>It has additional features and tools.</b> You can also use 4K Video Downloader Patch to download playlists, channels, subtitles and 3D videos. You can also use it to extract audio from videos or convert videos to different formats. You can also use it to record your screen and capture live streams or online meetings.</li>
21
- </ul>
22
- <p>These are just some of the benefits of using 4K Video Downloader Patch to download videos from any site. This software is fast, reliable and versatile. It can help you save your favorite videos offline and watch them anytime you want. However, you should always respect the copyright of the video owners and use this software for personal use only.</p>
23
- <p></p> ddb901b051<br />
24
- <br />
25
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Bosch ESI Tronic 2.0 Key Generator What You Need to Know Before You Buy.md DELETED
@@ -1,205 +0,0 @@
1
- <br />
2
- <h1>What is Bosch ESI Tronic 2.0 and why do you need it?</h1>
3
- <p>If you are a professional mechanic, a car enthusiast, or a vehicle owner who wants to perform maintenance, service, and repair work on your own, you need a reliable diagnostic software that can help you with various tasks. One of the best options available in the market is Bosch ESI Tronic 2.0, a comprehensive diagnostic software that covers a wide range of vehicles worldwide.</p>
4
- <p>Bosch ESI Tronic 2.0 is an online diagnostic software that enables workshops to carry out diagnosis, troubleshooting, repair, maintenance, service, wiring diagrams, schematics, and more quickly, efficiently, and effectively. The diagnostic software is compatible with Bosch KTS diagnostic tools, such as KTS 560, 590, 350, or 250. It also works with other standard OBD-II scanners.</p>
5
- <h2>bosch esi tronic 2.0 key generator</h2><br /><p><b><b>Download Zip</b> &rarr;&rarr;&rarr; <a href="https://byltly.com/2uKwLU">https://byltly.com/2uKwLU</a></b></p><br /><br />
6
- <p>Bosch ESI Tronic 2.0 has many features that make it stand out from other diagnostic software. Some of these features are:</p>
7
- <ul>
8
- <li>It has an optimized search function that allows you to find information faster and easier.</li>
9
- <li>It has an intuitive user interface that guides you through the diagnosis process step by step.</li>
10
- <li>It has a comprehensive database that contains information on over 90,000 vehicle models from more than 150 manufacturers.</li>
11
- <li>It has an online update function that keeps the software up to date with the latest vehicle models, systems, components, functions, news, etc.</li>
12
- <li>It has an online support function that allows you to contact Bosch customer service directly from the software.</li>
13
- <li>It has an online feedback function that allows you to provide your suggestions and opinions on the software.</li>
14
- </ul>
15
- <p>With Bosch ESI Tronic 2.0, you can perform various tasks on your vehicle with ease and accuracy. Some of these tasks are:</p>
16
- <p>bosch esi tronic 2.0 activation code generator<br />
17
- bosch esi tronic 2.0 license key generator<br />
18
- bosch esi tronic 2.0 crack keygen generator<br />
19
- bosch esi tronic 2.0 serial number generator<br />
20
- bosch esi tronic 2.0 product key generator<br />
21
- how to generate bosch esi tronic 2.0 key<br />
22
- bosch esi tronic 2.0 keygen free download<br />
23
- bosch esi tronic 2.0 keygen online<br />
24
- bosch esi tronic 2.0 keygen software<br />
25
- bosch esi tronic 2.0 keygen tool<br />
26
- bosch esi tronic 2.0 key generator download<br />
27
- bosch esi tronic 2.0 key generator online<br />
28
- bosch esi tronic 2.0 key generator software<br />
29
- bosch esi tronic 2.0 key generator tool<br />
30
- download bosch esi tronic 2.0 keygen<br />
31
- online bosch esi tronic 2.0 keygen<br />
32
- software bosch esi tronic 2.0 keygen<br />
33
- tool bosch esi tronic 2.0 keygen<br />
34
- best bosch esi tronic 2.0 key generator<br />
35
- cheap bosch esi tronic 2.0 key generator<br />
36
- easy bosch esi tronic 2.0 key generator<br />
37
- fast bosch esi tronic 2.0 key generator<br />
38
- reliable bosch esi tronic 2.0 key generator<br />
39
- secure bosch esi tronic 2.0 key generator<br />
40
- working bosch esi tronic 2.0 key generator<br />
41
- buy bosch esi tronic 2.0 keygen<br />
42
- get bosch esi tronic 2.0 keygen<br />
43
- use bosch esi tronic 2.0 keygen<br />
44
- install bosch esi tronic 2.0 keygen<br />
45
- update bosch esi tronic 2.0 keygen<br />
46
- fix bosch esi tronic 2.0 keygen<br />
47
- repair bosch esi tronic 2.0 keygen<br />
48
- replace bosch esi tronic 2.0 keygen<br />
49
- remove bosch esi tronic 2.0 keygen<br />
50
- uninstall bosch esi tronic 2.0 keygen<br />
51
- what is bosch esi tronic 2.0 keygen<br />
52
- how does bosch esi tronic 2.0 keygen work<br />
53
- why use bosch esi tronic 2.0 keygen<br />
54
- when to use bosch esi tronic 2.0 keygen<br />
55
- where to find bosch esi tronic 2.0 keygen<br />
56
- who uses bosch esi tronic 2.0 keygen<br />
57
- which bosch esi tronic 2.0 keygen is best<br />
58
- how to buy bosch esi tronic 2.0 keygen<br />
59
- how to get bosch esi tronic 2.0 keygen<br />
60
- how to use bosch esi tronic 2.0 keygen<br />
61
- how to install bosch esi tronic 2.0 keygen<br />
62
- how to update bosch esi tronic 2.0 keygen<br />
63
- how to fix bosch esi tronic 2.0 keygen<br />
64
- how to repair bosch esi tronic 2.0 keygen</p>
65
- <ul>
66
- <li>Reading and clearing fault codes</li>
67
- <li>Viewing actual values</li>
68
- <li>Performing actuator tests</li>
69
- <li>Adjusting basic settings</li>
70
- <li>Coding and programming</li>
71
- <li>Calibrating sensors</li>
72
- <li>Resetting service indicators</li>
73
- <li>Following maintenance and service schedules</li>
74
- <li>Viewing wiring diagrams and schematics</li>
75
- <li>And more</li>
76
- </ul>
77
- <h2>How to install and activate Bosch ESI Tronic 2.0?</h2>
78
- <p>To use Bosch ESI Tronic 2.0, you need to install it on your computer or laptop first. You also need to activate it with a valid license key before you can use it fully. Here are the requirements and steps for installing and activating Bosch ESI Tronic 2.0:</p>
79
- <h3>Requirements</h3>
80
- <p>To install Bosch ESI Tronic 2.0 on your computer or laptop, you need to meet the following requirements:</p>
81
- <ul>
82
- <li>A Windows operating system (Windows 7 or higher)</li>
83
- <li>A minimum of 4 GB RAM</li>
84
- <li>A minimum of 20 GB free disk space</li>
85
- <li>An internet connection (for online updates)</li>
86
- <li>A DVD drive (for installation)</li>
87
- <li>A USB port (for connecting the diagnostic tool)</li>
88
- </ul>
89
- <h3>Steps</h3>
90
- <p>To install Bosch ESI Tronic 2.0 on your computer or laptop, follow these steps:</p>
91
- <ol>
92
- <li>Insert the installation DVD into your DVD drive.</li>
93
- <li>The installation wizard will start automatically. If not, open the DVD folder and run the setup.exe file.</li>
94
- <li>Follow the instructions on the screen to complete the installation process.</li>
95
- <li>After the installation is finished, restart your computer or laptop.</li>
96
- <li>To activate Bosch ESI Tronic 2.0, you need a valid license key. You can get one from Bosch by registering your product online or by contacting your local dealer.</li>
97
- <li>To register your product online, go to https://www.boschaftermarket.com/gb/en/diagnostics/ecu-diagnosis/esitronic-diagnostic-software/esi-2-0-online/registration/ </li>
98
- <li>Fill in your personal details, product details, serial number, etc., and submit your registration form.</li>
99
- <li>You will receive an email confirmation with your license key.</li>
100
- <li>To activate Bosch ESI Tronic 2.0 with your license key, open the software on your computer or laptop.</li>
101
- <li>Go to Settings > License Management > Activate License.</li>
102
- <li>Enter your license key in the field provided and click OK.</li>
103
- <li>Your Bosch ESI Tronic 2.0 is now activated and ready to use.</li>
104
- <h2>How to use Bosch ESI Tronic 2.0 for vehicle diagnosis and repair?</h2>
105
- <p>Bosch ESI Tronic 2.0 is designed to help you diagnose and repair vehicles easily and accurately. The software has various functions and modules that cover different aspects of vehicle diagnosis and repair. Here are some of the main functions and modules of Bosch ESI Tronic 2.0:</p>
106
- <h3>Troubleshooting and fault codes</h3>
107
- <p>This function allows you to read and clear fault codes from various control units in your vehicle. You can also view actual values, perform actuator tests, adjust basic settings, code and program control units, calibrate sensors, etc., depending on the vehicle model and system.</p>
108
- <p>To use this function:</p>
109
- <ol>
110
- <li>Connect your diagnostic tool (Bosch KTS or other OBD-II scanner) to your vehicle's diagnostic port via a USB cable.</li>
111
- <li>Open Bosch ESI Tronic 2.0 on your computer or laptop.</li>
112
- <li>Select Troubleshooting from the main menu.</li>
113
- <li>Select your vehicle model from the list or enter your VIN number manually.</li>
114
- <li>Select the system or control unit you want to diagnose from the list or use the quick test function to scan all systems automatically.</li>
115
- <li>The software will display the fault codes (if any) along with their descriptions, causes, symptoms, solutions, etc.</li>
116
- <li>You can clear the fault codes by clicking on Clear Fault Memory button.</li>
117
- <li>You can also access other functions such as actual values, actuator tests, basic settings, coding, programming, calibration, etc., by clicking on their respective buttons.</li>
118
- </ol>
119
- <h4>Maintenance and service schedules</h4>
120
- <p>This function allows you to access and follow <h4>Maintenance and service schedules</h4>
121
- <p>This function allows you to access and follow the recommended maintenance and service intervals for different vehicles. You can also reset the service indicators after performing the required service tasks.</p>
122
- <p>To use this function:</p>
123
- <ol>
124
- <li>Connect your diagnostic tool (Bosch KTS or other OBD-II scanner) to your vehicle's diagnostic port via a USB cable.</li>
125
- <li>Open Bosch ESI Tronic 2.0 on your computer or laptop.</li>
126
- <li>Select Maintenance from the main menu.</li>
127
- <li>Select your vehicle model from the list or enter your VIN number manually.</li>
128
- <li>The software will display the maintenance and service schedules for your vehicle, along with the tasks, parts, fluids, tools, etc. required for each service interval.</li>
129
- <li>You can print or save the schedules for future reference.</li>
130
- <li>After performing the service tasks, you can reset the service indicators by clicking on Reset Service Indicator button.</li>
131
- </ol>
132
- <h4>Wiring diagrams and schematics</h4>
133
- <p>This function allows you to view and print wiring diagrams and schematics for various systems and components in your vehicle. You can also zoom in and out, highlight, search, and navigate through the diagrams and schematics.</p>
134
- <p>To use this function:</p>
135
- <ol>
136
- <li>Connect your diagnostic tool (Bosch KTS or other OBD-II scanner) to your vehicle's diagnostic port via a USB cable.</li>
137
- <li>Open Bosch ESI Tronic 2.0 on your computer or laptop.</li>
138
- <li>Select Wiring Diagrams from the main menu.</li>
139
- <li>Select your vehicle model from the list or enter your VIN number manually.</li>
140
- <li>Select the system or component you want to view the wiring diagram or schematic for from the list.</li>
141
- <li>The software will display the wiring diagram or schematic for your selected system or component, along with the legend, symbols, colors, etc.</li>
142
- <li>You can use the toolbar to zoom in and out, highlight, search, and navigate through the diagram or schematic.</li>
143
- <li>You can print or save the diagram or schematic for future reference.</li>
144
- </ol>
145
- <h2>How to update Bosch ESI Tronic 2.0 online?</h2>
146
- <p>Bosch ESI Tronic 2.0 is an online diagnostic software that requires regular updates to keep up with the latest vehicle models, systems, components, functions, news, etc. Updating Bosch ESI Tronic 2.0 online has many benefits, such as:</p>
147
- <ul>
148
- <li>It ensures that you have access to the most current and accurate information and data for vehicle diagnosis and repair.</li>
149
- <li>It enhances the performance and functionality of the software and fixes any bugs or errors that may occur.</li>
150
- <li>It adds new features and improvements to the software that make it more user-friendly and efficient.</li>
151
- </ul>
152
- <p>To update Bosch ESI Tronic 2.0 online, you need an internet connection and a valid license key. Here is the process of updating Bosch ESI Tronic 2.0 online:</p>
153
- <ol>
154
- <li>Open Bosch ESI Tronic 2.0 on your computer or laptop.</li>
155
- <li>Go to Settings > Online Update > Check for Updates.</li>
156
- <li>The software will check for any available updates online and display them on the screen.</li>
157
- <li>You can select which updates you want to download and install by checking or unchecking the boxes next to them.</li>
158
- <li>Click on Download and Install button to start the update process.</li>
159
- <li>The software will download and install the selected updates automatically. You may need to restart your computer or laptop after the installation is finished.</li>
160
- <li>Your Bosch ESI Tronic 2.0 is now updated and ready to use.</li>
161
- </ol>
162
- <h3>News and new features</h3>
163
- <p>To find out the latest news and new features of Bosch ESI Tronic 2.0 online, you can use the following functions:</p>
164
- <ul>
165
- <li>Go to News from the main menu. The software will display the latest news and announcements about Bosch ESI Tronic 2.0 online, such as new vehicle models, systems, components, functions, etc., added to the software, new updates and improvements, new tips and tricks, etc. You can read the news by clicking on them. You can also print or save the news for future reference. </li>
166
- <li>Go to Help > What's New from the main menu. The software will display a list of new features and improvements that have been added to Bosch ESI Tronic 2.0 online in each update. You can read more about each feature by clicking on it. You can also print or save the list for future reference.</li>
167
- </ul>
168
- <h3>Online support and feedback</h3>
169
- <p>If you have any questions, problems, or feedback about Bosch ESI Tronic 2.0 online, you can use the following functions:</p>
170
- <ul>
171
- <li>Go to Help > Online Support from the main menu. The software will open a web browser window that allows you to contact Bosch customer service directly from the software. You can fill in your details, select your topic, write your message, attach files if needed, and submit your request. You will receive a reply from Bosch customer service as soon as possible.</li>
172
- <li>Go to Help > Online Feedback from the main menu. The software will open a web browser window that allows you to provide your suggestions and opinions on Bosch ESI Tronic 2.0 online. You can rate different aspects of the software, such as usability, performance, functionality, etc., on a scale of 1 to 5 stars. You can also write your comments and ideas in the text box provided. You can also attach files if needed. Your feedback will be sent to Bosch and used to improve the software in future updates. </li>
173
- </ul>
174
- <h2>How to get a Bosch ESI Tronic 2.0 key generator?</h2>
175
- <p>A key generator is a software program that generates random license keys for activating a software product without paying for it. A key generator is usually used by people who want to use a software product for free or who cannot afford to buy a license key legally. A Bosch ESI Tronic 2.0 key generator is a key generator that generates license keys for activating Bosch ESI Tronic 2.0 without buying it from Bosch. A Bosch ESI Tronic 2.0 key generator may seem like an attractive option for some people who want to use Bosch ESI Tronic 2.0 without paying for it. However, there are many advantages and disadvantages of using a key generator for activating Bosch ESI Tronic 2.0. Here are some of them:</p>
176
- <h3>Advantages and disadvantages of using a key generator</h3>
177
- <h4>Legal and ethical issues</h4>
178
- <p>The most obvious disadvantage of using a key generator for activating Bosch ESI Tronic 2.0 is that it is illegal and unethical. Using a key generator is considered as piracy, which is a form of theft. Piracy violates the intellectual property rights of Bosch, which is the creator and owner of Bosch ESI Tronic 2.0. Piracy also harms the legitimate customers of Bosch, who pay for their license keys legally. Piracy reduces the revenue of Bosch, which affects its ability to invest in research, development, innovation, quality, customer service, etc. Piracy also exposes the users of key generators to legal risks and consequences. Bosch may detect the use of key generators by monitoring its online activation system. Bosch may also take legal action against the users of key generators by suing them for damages, fines, penalties, etc. Using a key generator is not only illegal but also unethical. Using a key generator is unfair to Bosch, which invests time, money, and effort in creating and maintaining Bosch ESI Tronic 2.0. Using a key generator is also unfair to other users of Bosch ESI Tronic 2.0, who pay for their license keys legally. Using a key generator is dishonest and disrespectful to Bosch, which provides a valuable service to its customers by offering them a high-quality diagnostic software. Using a key generator is also dishonest and disrespectful to oneself, as it shows a lack of integrity, responsibility, and professionalism. Therefore, using a key generator for activating Bosch ESI Tronic 2.0 is not advisable from a legal and ethical point of view.</p>
179
- <h4>Quality and reliability issues</h4>
180
- <p>Another disadvantage of using a key generator for activating Bosch ESI Tronic 2.0 is that it may compromise the quality and reliability of the software. Using a key generator may cause problems such as: - The software may not work properly or at all. - The software may crash or freeze frequently. - The software may contain errors or bugs that affect its performance and functionality. - The software may be incompatible with some vehicles, systems, components, functions, etc. - The software may be outdated or missing some features or information. - The software may compromise your personal data or privacy by sending it to unknown third parties. Using a key generator may also prevent you from accessing the online features and benefits of Bosch ESI Tronic 2.0, such as: - Online updates that keep the software up to date with the latest vehicle models, systems, components, functions, news, etc. - Online support that allows you to contact Bosch customer service directly from the software. - Online feedback that allows you to provide your suggestions and opinions on the software. Therefore, using a key generator for activating Bosch ESI Tronic 2.0 may not guarantee the quality and reliability of the software.</p>
181
- <h3>Where to find a Bosch ESI Tronic 2.0 key generator?</h3>
182
- <p>If you still want to use a key generator for activating Bosch ESI Tronic 2.0, despite the disadvantages and risks mentioned above, you may wonder where to find one. There are many sources where you can find a key generator online or offline, such as: - Websites that offer key generators or links to them for free or for a fee. - Forums that discuss key generators or share them among users. - Torrents that allow users to download key generators or other pirated software. - CDs or DVDs that contain key generators or other pirated software. However, finding a key generator is not easy or safe. You need to be careful and cautious when looking for a key generator, as there are many scams, viruses, malware, and other threats that may harm your computer or yourself. Here are some tips and precautions for finding a key generator:</p>
183
- <h4>Trusted websites and forums</h4>
184
- <p>Not all websites and forums that offer key generators are trustworthy or reputable. Some of them may be fake, fraudulent, or malicious. They may trick you into downloading viruses, malware, spyware, etc., instead of key generators. They may also ask you for personal information, such as your name, email address, credit card number, etc., and use it for identity theft or other illegal purposes. To avoid these scams and threats, you should only visit trusted websites and forums that have good reviews, ratings, feedbacks, etc., from other users. You should also check the domain name, URL, security certificate, etc., of the website or forum before visiting it. You should also scan the downloaded file with an antivirus program before opening it.</p>
185
- <h4>Cautionary measures and precautions</h4>
186
- <p>Even if you find a trusted website or forum that offers a key generator, you should still take some cautionary measures and precautions before using it. Some of these measures and precautions are: - Backup your computer data before using a key generator. - Disable your internet connection before using a key generator. - Use a virtual machine or sandbox to run a key generator. - Use a firewall or antivirus program to block any unwanted connections or activities from a key generator. - Do not share your license key with anyone else. - Do not update your software online after using a key generator. These measures and precautions may help you reduce the risks and damages that may result from using a key generator.</p>
187
- <h1>Conclusion</h1>
188
- <p>Bosch ESI Tronic 2.0 is a powerful and comprehensive diagnostic software that can help you diagnose and repair vehicles quickly, efficiently, and effectively. It has many features and functions that cover different aspects of vehicle diagnosis and repair. It also has online features and benefits that keep the software up to date and provide support and feedback. To use Bosch ESI Tronic 2.0, you need to install and activate it with a valid license key. You can get a license key from Bosch by registering your product online or by contacting your local dealer. Alternatively, you can use a key generator to generate a license key for activating Bosch ESI Tronic 2.0 without paying for it. However, using a key generator has many disadvantages and risks, such as legal and ethical issues, quality and reliability issues, scams, viruses, malware, and other threats. Therefore, it is advisable to use Bosch ESI Tronic 2.0 legally and ethically, by buying a license key from Bosch or its authorized dealers.</p>
189
- <h2>FAQs</h2>
190
- <p>Here are some frequently asked questions about Bosch ESI Tronic 2.0 and key generators:</p>
191
- <ol>
192
- <li>Q: What is the difference between Bosch ESI Tronic 1.0 and 2.0?</li>
193
- <li>A: Bosch ESI Tronic 1.0 is an offline diagnostic software that requires installation on DVDs. Bosch ESI Tronic 2.0 is an online diagnostic software that requires installation on a computer or laptop with an internet connection.</li>
194
- <li>Q: How much does Bosch ESI Tronic 2.0 cost?</li>
195
- <li>A: The price of Bosch ESI Tronic 2.0 depends on the type of license you choose (annual or quarterly) and the region you are in. You can check the price on https://www.boschaftermarket.com/gb/en/diagnostics/ecu-diagnosis/esitronic-diagnostic-software/esi-2-0-online/price/ </li>
196
- <li>Q: How can I get a free trial of Bosch ESI Tronic 2.0?</li>
197
- <li>A: You can get a free trial of Bosch ESI Tronic 2.0 by registering on https://www.boschaftermarket.com/gb/en/diagnostics/ecu-diagnosis/esitronic-diagnostic-software/esi-2-0-online/free-trial/ You will receive an email with your login details and instructions on how to use the software.</li>
198
- <li>Q: How can I update my Bosch ESI Tronic 2.0 offline?</li>
199
- <li>A: You cannot update your Bosch ESI Tronic 2.0 offline. You need an internet connection to update your software online.</li>
200
- <li>Q: How can I find my serial number for Bosch ESI Tronic 2.0?</li>
201
- <li>A: You can find your serial number for Bosch ESI Tronic 2.0 on the label of your diagnostic tool (Bosch KTS) or on the invoice or receipt of your purchase.</li>
202
- </ol>
203
- </p> 0a6ba089eb<br />
204
- <br />
205
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Coat Of Arms Design Studio Pro Torrent.md DELETED
@@ -1,6 +0,0 @@
1
- <h2>coat of arms design studio pro torrent</h2><br /><p><b><b>DOWNLOAD</b> &ndash;&ndash;&ndash;&ndash;&ndash;>>> <a href="https://imgfil.com/2uxZOP">https://imgfil.com/2uxZOP</a></b></p><br /><br />
2
- <br />
3
- Hi All, Was going to download the free version of Coat of Arms Design Studio but the links on their page are just erroring, does anyone have a ... 1fdad05405<br />
4
- <br />
5
- <br />
6
- <p></p>
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/FeatureCAM 2019 Xforce Keygen 64 Bits _BEST_.md DELETED
@@ -1,42 +0,0 @@
1
- <h2>FeatureCAM 2019 xforce keygen 64 bits</h2><br /><p><b><b>Download File</b> &#10022;&#10022;&#10022; <a href="https://imgfil.com/2uxYCf">https://imgfil.com/2uxYCf</a></b></p><br /><br />
2
-
3
- The result is awesome.
4
-
5
- 3. Video Effects Free
6
-
7
- Video effects is a great tool for create video. You can add effect like Instagram for your video. Video effects is free to use.
8
-
9
- 4. Vine
10
-
11
- Vine is video sharing app. You can share video in 6 seconds. You can add emojis and choose rich video style. It is short video app, you need to share it on your favorite social media. Vine for Android.
12
-
13
- 5. LoopPeer
14
-
15
- LoopPeer is video sharing app. You can download video on mobile, and share the video on your social media.
16
-
17
- 6. Super Fast Mode
18
-
19
- Super Fast Mode is video editing app. With Super Fast Mode, you can edit videos. You can trim, edit your video, add subtitle and share your videos.
20
-
21
- 7. PicCollage
22
-
23
- PicCollage is best photo editing and video editor app. You can trim your video, add music, photo, add animation. PicCollage can make photo collages.
24
-
25
- 8. Skype Video Chat
26
-
27
- Skype Video Chat is video editing app. You can record your video and share your video on social media. The result is awesome.
28
-
29
- 9. Instagram Video Editor
30
-
31
- Instagram Video Editor is best video editor. You can edit your videos, trim your videos, add subtitle, add photo, add gif and send to your friends on Facebook or Instagram.
32
-
33
- 10. PhotoCollage
34
-
35
- PhotoCollage is photo editor, photo collage maker. You can create collages, add photo, add video, add text. The result is awesome.Flat panel liquid crystal display devices have been used in flat panel display devices of small-size products such as mobile phones. In recent years, however, the demand for display devices of higher resolution has been increasing as a result of recent improvements in the performance of personal computers. Under the circumstances, large screen display devices having a diagonal length of 40 inches and more have been developed (see, for example, Patent Document 1).
36
-
37
- The liquid crystal display device, as one type of the flat panel display devices, basically comprises a liquid crystal layer, two substrates and a backlight.
38
-
39
- The liquid crystal layer is formed of an extremely thin liquid crystal layer having thicknesses of 1 μm or less. On the other hand, the two substrates, on the liquid crystal layer, are formed of glass substrates of relatively thick thicknesses. These glass substrates 4fefd39f24<br />
40
- <br />
41
- <br />
42
- <p></p>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1line/AutoGPT/autogpt/commands/web_playwright.py DELETED
@@ -1,80 +0,0 @@
1
- """Web scraping commands using Playwright"""
2
- from __future__ import annotations
3
-
4
- try:
5
- from playwright.sync_api import sync_playwright
6
- except ImportError:
7
- print(
8
- "Playwright not installed. Please install it with 'pip install playwright' to use."
9
- )
10
- from bs4 import BeautifulSoup
11
-
12
- from autogpt.processing.html import extract_hyperlinks, format_hyperlinks
13
-
14
-
15
- def scrape_text(url: str) -> str:
16
- """Scrape text from a webpage
17
-
18
- Args:
19
- url (str): The URL to scrape text from
20
-
21
- Returns:
22
- str: The scraped text
23
- """
24
- with sync_playwright() as p:
25
- browser = p.chromium.launch()
26
- page = browser.new_page()
27
-
28
- try:
29
- page.goto(url)
30
- html_content = page.content()
31
- soup = BeautifulSoup(html_content, "html.parser")
32
-
33
- for script in soup(["script", "style"]):
34
- script.extract()
35
-
36
- text = soup.get_text()
37
- lines = (line.strip() for line in text.splitlines())
38
- chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
39
- text = "\n".join(chunk for chunk in chunks if chunk)
40
-
41
- except Exception as e:
42
- text = f"Error: {str(e)}"
43
-
44
- finally:
45
- browser.close()
46
-
47
- return text
48
-
49
-
50
- def scrape_links(url: str) -> str | list[str]:
51
- """Scrape links from a webpage
52
-
53
- Args:
54
- url (str): The URL to scrape links from
55
-
56
- Returns:
57
- Union[str, List[str]]: The scraped links
58
- """
59
- with sync_playwright() as p:
60
- browser = p.chromium.launch()
61
- page = browser.new_page()
62
-
63
- try:
64
- page.goto(url)
65
- html_content = page.content()
66
- soup = BeautifulSoup(html_content, "html.parser")
67
-
68
- for script in soup(["script", "style"]):
69
- script.extract()
70
-
71
- hyperlinks = extract_hyperlinks(soup, url)
72
- formatted_links = format_hyperlinks(hyperlinks)
73
-
74
- except Exception as e:
75
- formatted_links = f"Error: {str(e)}"
76
-
77
- finally:
78
- browser.close()
79
-
80
- return formatted_links
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1line/AutoGPT/autogpt/config/ai_config.py DELETED
@@ -1,121 +0,0 @@
1
- # sourcery skip: do-not-use-staticmethod
2
- """
3
- A module that contains the AIConfig class object that contains the configuration
4
- """
5
- from __future__ import annotations
6
-
7
- import os
8
- from typing import Type
9
-
10
- import yaml
11
-
12
-
13
- class AIConfig:
14
- """
15
- A class object that contains the configuration information for the AI
16
-
17
- Attributes:
18
- ai_name (str): The name of the AI.
19
- ai_role (str): The description of the AI's role.
20
- ai_goals (list): The list of objectives the AI is supposed to complete.
21
- """
22
-
23
- def __init__(
24
- self, ai_name: str = "", ai_role: str = "", ai_goals: list | None = None
25
- ) -> None:
26
- """
27
- Initialize a class instance
28
-
29
- Parameters:
30
- ai_name (str): The name of the AI.
31
- ai_role (str): The description of the AI's role.
32
- ai_goals (list): The list of objectives the AI is supposed to complete.
33
- Returns:
34
- None
35
- """
36
- if ai_goals is None:
37
- ai_goals = []
38
- self.ai_name = ai_name
39
- self.ai_role = ai_role
40
- self.ai_goals = ai_goals
41
-
42
- # Soon this will go in a folder where it remembers more stuff about the run(s)
43
- SAVE_FILE = os.path.join(os.path.dirname(__file__), "..", "ai_settings.yaml")
44
-
45
- @staticmethod
46
- def load(config_file: str = SAVE_FILE) -> "AIConfig":
47
- """
48
- Returns class object with parameters (ai_name, ai_role, ai_goals) loaded from
49
- yaml file if yaml file exists,
50
- else returns class with no parameters.
51
-
52
- Parameters:
53
- config_file (int): The path to the config yaml file.
54
- DEFAULT: "../ai_settings.yaml"
55
-
56
- Returns:
57
- cls (object): An instance of given cls object
58
- """
59
-
60
- try:
61
- with open(config_file, encoding="utf-8") as file:
62
- config_params = yaml.load(file, Loader=yaml.FullLoader)
63
- except FileNotFoundError:
64
- config_params = {}
65
-
66
- ai_name = config_params.get("ai_name", "")
67
- ai_role = config_params.get("ai_role", "")
68
- ai_goals = config_params.get("ai_goals", [])
69
- # type: Type[AIConfig]
70
- return AIConfig(ai_name, ai_role, ai_goals)
71
-
72
- def save(self, config_file: str = SAVE_FILE) -> None:
73
- """
74
- Saves the class parameters to the specified file yaml file path as a yaml file.
75
-
76
- Parameters:
77
- config_file(str): The path to the config yaml file.
78
- DEFAULT: "../ai_settings.yaml"
79
-
80
- Returns:
81
- None
82
- """
83
-
84
- config = {
85
- "ai_name": self.ai_name,
86
- "ai_role": self.ai_role,
87
- "ai_goals": self.ai_goals,
88
- }
89
- with open(config_file, "w", encoding="utf-8") as file:
90
- yaml.dump(config, file, allow_unicode=True)
91
-
92
- def construct_full_prompt(self) -> str:
93
- """
94
- Returns a prompt to the user with the class information in an organized fashion.
95
-
96
- Parameters:
97
- None
98
-
99
- Returns:
100
- full_prompt (str): A string containing the initial prompt for the user
101
- including the ai_name, ai_role and ai_goals.
102
- """
103
-
104
- prompt_start = (
105
- "Your decisions must always be made independently without"
106
- " seeking user assistance. Play to your strengths as an LLM and pursue"
107
- " simple strategies with no legal complications."
108
- ""
109
- )
110
-
111
- from autogpt.prompt import get_prompt
112
-
113
- # Construct full prompt
114
- full_prompt = (
115
- f"You are {self.ai_name}, {self.ai_role}\n{prompt_start}\n\nGOALS:\n\n"
116
- )
117
- for i, goal in enumerate(self.ai_goals):
118
- full_prompt += f"{i+1}. {goal}\n"
119
-
120
- full_prompt += f"\n\n{get_prompt()}"
121
- return full_prompt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/APKPure Presents Red WhatsApp APK Download for Android Devices.md DELETED
@@ -1,138 +0,0 @@
1
-
2
- <h1>Red WhatsApp APK Download Apkpure: What You Need to Know</h1>
3
- <p>WhatsApp is one of the most popular messaging apps in the world, with over 2 billion monthly active users. However, some people are not satisfied with the official WhatsApp app and look for modified versions that offer more features and customization options. One of these mods is Red WhatsApp APK, which claims to be a better and more stylish version of WhatsApp. But is it safe and reliable? How can you download it from Apkpure? And are there any alternatives to Red WhatsApp APK? In this article, we will answer these questions and more.</p>
4
- <h2>What is Red WhatsApp APK?</h2>
5
- <p>Red WhatsApp APK is a modded version of WhatsApp that changes the color scheme of the app to red and black. It also adds some extra features that are not available in the official WhatsApp app, such as:</p>
6
- <h2>red whatsapp apk download apkpure</h2><br /><p><b><b>Download File</b> &#9889; <a href="https://urlin.us/2uSSn8">https://urlin.us/2uSSn8</a></b></p><br /><br />
7
- <h3>Features of Red WhatsApp APK</h3>
8
- <ul>
9
- <li>You can hide your online status, last seen, blue ticks, second ticks, typing status, and recording status.</li>
10
- <li>You can customize the app icon, notification icon, chat bubbles, fonts, and wallpapers.</li>
11
- <li>You can send unlimited media files of any size and format.</li>
12
- <li>You can lock the app with a password or a pattern.</li>
13
- <li>You can copy the status of other contacts and view deleted messages.</li>
14
- <li>You can use two WhatsApp accounts on the same device.</li>
15
- </ul>
16
- <h3>Risks of Red WhatsApp APK</h3>
17
- <p>While Red WhatsApp APK may sound tempting, it also comes with some risks that you should be aware of before downloading it. These include:</p>
18
- <ul>
19
- <li>Red WhatsApp APK is not an official app and it is not available on the Google Play Store. This means that it is not verified by Google and it may contain malware or spyware that can harm your device or steal your data.</li>
20
- <li>Red WhatsApp APK violates the terms of service of WhatsApp and it may get your account banned or suspended. WhatsApp has been cracking down on modded apps and users who use them.</li>
21
- <li>Red WhatsApp APK does not support end-to-end encryption, which means that your messages are not secure and can be intercepted by third parties. This can compromise your privacy and security.</li>
22
- </ul>
23
- <h2>How to Download Red WhatsApp APK from Apkpure</h2>
24
- <p>If you still want to try Red WhatsApp APK despite the risks, you can download it from Apkpure, which is a third-party app store that hosts various Android apps and games. Here are the steps to download and install Red WhatsApp APK from Apkpure:</p>
25
- <h3>Steps to Download and Install Red WhatsApp APK</h3>
26
- <ol>
27
- <li>Go to <a href="(^1^)">Apkpure.com</a> on your browser and search for "Red WhatsApp" in the search bar.</li>
28
- <li>Select the app from the search results and tap on the "Download APK" button.</li>
29
- <li>Wait for the download to finish and then open the downloaded file.</li>
30
- <li>If you see a warning message that says "Install blocked", go to your device settings and enable "Unknown sources" under security options.</li>
31
- <li>Tap on "Install" and wait for the installation to complete.</li>
32
- <li>Open the app and enter your phone number to verify your account.</li>
33
- <li>Enjoy using Red WhatsApp APK on your device.</li>
34
- </ol>
35
- <h3>How to Use Red WhatsApp APK</h3>
36
- <p>Using Red WhatsApp APK is similar to using the official WhatsApp app, with some minor differences. Here are some tips on how to use Red WhatsApp APK:</p>
37
- <ul>
38
- <li>To access the mod settings, tap on the three dots icon on the top right corner of the app and select "REDWA Settings".</li>
39
- <li>To change the theme of the app, go to REDWA Settings > Themes and choose from the available themes or download more themes online.</li>
40
- <li>To hide your online status, last seen, blue ticks, etc., go to REDWA Settings > Privacy and select the options you want to hide.</li>
41
- <li>To customize the app icon, notification icon, chat bubbles, fonts, etc., go to REDWA Settings > Universal and select the options you want to change.</li>
42
- <li>To send unlimited media files, tap on the attachment icon on the chat screen and select the file you want to send. You can also compress the file size or change the file format if you want.</li>
43
- <li>To lock the app with a password or a pattern, go to REDWA Settings > Lock and enable the lock option. You can also set a recovery question and answer in case you forget your password or pattern.</li>
44
- <li>To copy the status of other contacts or view deleted messages, tap and hold on the contact's name on the chat screen and select the option you want.</li>
45
- <li>To use two WhatsApp accounts on the same device, download and install another WhatsApp mod such as GBWhatsApp or FMWhatsApp and verify your second account on it.</li>
46
- </ul>
47
- <h2>Alternatives to Red WhatsApp APK</h2>
48
- <p>If you are looking for other ways to enhance your WhatsApp experience without risking your account or device, you can try some of these alternatives to Red WhatsApp APK:</p>
49
- <h3>Telegram Messenger</h3>
50
- <p>Telegram is a cloud-based messaging app that offers many features that WhatsApp does not, such as:</p>
51
- <ul>
52
- <li>You can create groups with up to 200,000 members and channels with unlimited subscribers.</li>
53
- <li>You can send media files of up to 2 GB each and access them from any device.</li>
54
- <li>You can use bots to automate tasks, play games, get news, etc.</li>
55
- <li>You can use secret chats that are end-to-end encrypted and self-destruct after a set time.</li>
56
- <li>You can customize the app with themes, stickers, animated emojis, etc.</li>
57
- </ul>
58
- <p>You can download Telegram from the Google Play Store or from <a href="">Telegram.org</a>.</p>
59
- <h3>Signal Private Messenger</h3>
60
- <p>Signal is a privacy-focused messaging app that uses end-to-end encryption for all your communications. It also offers some features that WhatsApp does not, such as:</p>
61
- <ul>
62
- <li>You can send disappearing messages that are deleted after a set time.</li>
63
- <li>You can blur faces or other sensitive information in photos before sending them.</li>
64
- <li>You can use stickers, GIFs, voice notes, etc. without compromising your privacy.</li>
65
- <li>You can make encrypted voice and video calls with up to 8 participants.</li>
66
- <li>You can verify the identity of your contacts with safety numbers.</li>
67
- </ul>
68
- <p>You can download Signal from the Google Play Store or from <a href="">Signal.org</a>.</p>
69
- <p>red whatsapp plus apk download apkpure<br />
70
- red whatsapp mod apk download apkpure<br />
71
- red whatsapp latest version apk download apkpure<br />
72
- red whatsapp 2023 apk download apkpure<br />
73
- red whatsapp app apk download apkpure<br />
74
- red whatsapp free apk download apkpure<br />
75
- red whatsapp pro apk download apkpure<br />
76
- red whatsapp gold apk download apkpure<br />
77
- red whatsapp transparent apk download apkpure<br />
78
- red whatsapp messenger apk download apkpure<br />
79
- red whatsapp gb apk download apkpure<br />
80
- red whatsapp fm apk download apkpure<br />
81
- red whatsapp yowhatsapp apk download apkpure<br />
82
- red whatsapp business apk download apkpure<br />
83
- red whatsapp lite apk download apkpure<br />
84
- red whatsapp dark mode apk download apkpure<br />
85
- red whatsapp anti ban apk download apkpure<br />
86
- red whatsapp delta apk download apkpure<br />
87
- red whatsapp fouad apk download apkpure<br />
88
- red whatsapp indigo apk download apkpure<br />
89
- red whatsapp black apk download apkpure<br />
90
- red whatsapp prime apk download apkpure<br />
91
- red whatsapp emoji changer apk download apkpure<br />
92
- red whatsapp sticker maker apk download apkpure<br />
93
- red whatsapp video call apk download apkpure<br />
94
- red whatsapp status saver apk download apkpure<br />
95
- red whatsapp web scanner apk download apkpure<br />
96
- red whatsapp lock screen apk download apkpure<br />
97
- red whatsapp dual account apk download apkpure<br />
98
- red whatsapp backup and restore apk download apkpure<br />
99
- red whatsapp clone app apk download apkpure<br />
100
- red whatsapp chat wallpaper apk download apkpure<br />
101
- red whatsapp voice changer apk download apkpure<br />
102
- red whatsapp auto reply apk download apkpure<br />
103
- red whatsapp scheduler apk download apkpure<br />
104
- red whatsapp cleaner apk download apkpure<br />
105
- red whatsapp spy tool apk download apkpure<br />
106
- red whatsapp hacker app apk download apkpure<br />
107
- red whatsapp recovery app apk download apkpure<br />
108
- red whatsapp tracker app apk download apkpure<br />
109
- red whatsapp online notifier app apk download apkpure<br />
110
- red whatsapp last seen hider app apk download apkpure<br />
111
- red whatsapp theme maker app apk download apkpure<br />
112
- red whatsapp font changer app apk download apkpure<br />
113
- red whatsapp group link app apk download apkpure<br />
114
- red whatsapp number finder app apk download apkpure<br />
115
- red whatsapp fake chat app apk download apkpure</p>
116
- <h3>Other WhatsApp Mods</h3>
117
- <p>If you still want to use a modded version of WhatsApp, you can try some of these other WhatsApp mods that are more popular and updated than Red WhatsApp APK:</p>
118
- <table border="1">
119
- <tr><th>Name</th><th>Features</th><th>Download Link</th></tr>
120
- <tr><td>GBWhatsApp</td><td>- Hide online status, last seen, blue ticks, etc.<br>- Customize app icon, notification icon, chat bubbles, fonts, etc.<br>- Send media files of up to 100 MB each<br>- Use two WhatsApp accounts on the same device<br>- Enable dark mode<br>- Use anti-revoke feature to view deleted messages<br>- Use DND mode to disable internet connection for WhatsApp only<br></td><td><a href="">GBPlus.net</a></td></tr>
121
- <tr><td>FMWhatsApp</td><td>- Hide online status, last seen, blue ticks, etc.<br>- Customize app icon, notification icon, chat bubbles, fonts, etc.<br>- Send media files of up to 700 MB each<br>- Use two WhatsApp accounts on the same device<br>- Enable dark mode<br>- Use anti-revoke feature to view deleted messages<br>- Use DND mode to disable internet connection for WhatsApp only<br>- Lock chats with fingerprint or pattern<br></td><td><a href="">FMMods.app</a></td></tr>
122
- <tr><td>YOWhatsApp</td><td>- Hide online status, last seen, blue ticks, etc.<br>- Customize app icon, notification icon, chat bubbles, fonts, etc.<br>- Send media files of up to 700 MB each<br>- Use two WhatsApp accounts on the same device<br>- Enable dark mode<br>- Use anti-revoke feature to view deleted messages<br>- Use DND mode to disable internet connection for WhatsApp only<br>- Lock chats with fingerprint or pattern<br>- Use emoji variants and stickers<br></td><td><a href="">YoMods.net</a></td></tr>
123
- </table>
124
- <h2>Conclusion</h2>
125
- <p>Red WhatsApp APK is a modded version of WhatsApp that offers some extra features and customization options, but it also comes with some risks and drawbacks. If you want to download it from Apkpure, you need to follow some steps and enable unknown sources on your device. However, you may also consider some alternatives to Red WhatsApp APK, such as Telegram, Signal, or other WhatsApp mods that are more secure and updated. Ultimately, the choice is yours, but you should be careful and responsible when using any modded app.</p>
126
- <h2>FAQs</h2>
127
- <h3>What is the difference between Red WhatsApp APK and WhatsApp Plus?</h3>
128
- <p>Red WhatsApp APK and WhatsApp Plus are both modded versions of WhatsApp that offer similar features and customization options. However, Red WhatsApp APK has a red and black color scheme, while WhatsApp Plus has a blue and white color scheme. Also, Red WhatsApp APK is not updated as frequently as WhatsApp Plus, which may make it more prone to bugs and errors.</p>
129
- <h3>Is Red WhatsApp APK legal?</h3>
130
- <p>Red WhatsApp APK is not legal, as it violates the terms of service of WhatsApp and infringes on its intellectual property rights. Using Red WhatsApp APK may get your account banned or suspended by WhatsApp. Also, downloading Red WhatsApp APK from Apkpure or any other third-party app store may expose your device to malware or spyware.</p>
131
- <h3>Can I backup my chats from Red WhatsApp APK to Google Drive?</h3>
132
- <p>No, you cannot backup your chats from Red WhatsApp APK to Google Drive, as Google Drive does not support modded apps. If you want to backup your chats from Red WhatsApp APK, you need to use a local backup option or a third-party app such as Titanium Backup.</p>
133
- <h3>Can I use Red WhatsApp APK on iOS devices?</h3>
134
- <p>No, you cannot use Red WhatsApp APK on iOS devices, as it is only compatible with Android devices. If you want to use a modded version of WhatsApp on iOS devices, you need to jailbreak your device and use a tweak such as Watusi or WhatsApp++.</p>
135
- <h3>How can I update Red WhatsApp APK?</h3>
136
- <p>To update Red WhatsApp APK, you need to visit Apkpure or any other website that hosts the latest version of the app and download it manually. You cannot update Red WhatsApp APK from the app itself or from the Google Play Store.</p> 197e85843d<br />
137
- <br />
138
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Angry Birds Classic The Game that Made History.md DELETED
@@ -1,83 +0,0 @@
1
-
2
- <h1>Angry Birds Classic: A Fun and Addictive Game for Everyone</h1>
3
- <p>If you are looking for a casual and entertaining game that will keep you hooked for hours, you might want to check out Angry Birds Classic. This is the original game that started the global phenomenon of Angry Birds, a series of games that feature colorful birds who try to save their eggs from greedy pigs.</p>
4
- <p>Angry Birds Classic was first released in 2009 for iOS devices, and since then it has been downloaded over 2 billion times across all platforms. The game has been praised for its fun gameplay, comical style, and low price. It has also spawned many spin-offs, sequels, movies, and merchandise featuring its characters.</p>
5
- <h2>angry birds classic download app store</h2><br /><p><b><b>Download Zip</b> === <a href="https://jinyurl.com/2uNNMx">https://jinyurl.com/2uNNMx</a></b></p><br /><br />
6
- <h2>Features</h2>
7
- <p>The gameplay of Angry Birds Classic is simple but challenging. You use a slingshot to launch the birds at the pigs' fortresses, which are made of various materials such as wood, glass, and stone. You have to use logic, skill, and force to destroy all the pigs on each level.</p>
8
- <p>The game features 15 original episodes with over 680 levels to play. Each episode has a different theme and introduces new types of birds with unique abilities. For example, the yellow bird can speed up in mid-air, the black bird can explode like a bomb, and the white bird can drop egg bombs.</p>
9
- <p>You can also compete against other players in the Mighty League, where you can earn coins and power-ups by playing daily challenges. Power-ups can boost your birds' destructive strength by giving them extra speed, size, or aim. You can also use the Mighty Eagle, a super-powered bird that can clear any level with ease.</p>
10
- <h2>Platforms</h2>
11
- <p>Angry Birds Classic is available for download on various devices, including smartphones, tablets, computers, and consoles. You can find it on the App Store for iOS devices , Google Play Store for Android devices , Amazon Appstore for Kindle Fire devices , and Windows Store for Windows devices . You can also play it on your web browser using Google Chrome or Facebook .</p>
12
- <p>The game is free to download and play on most platforms, but it may require internet connectivity and data charges may apply. The game may also include in-app purchases, advertisements, and links to other websites or social networks.</p>
13
- <p>How to download Angry Birds Classic for free on iOS<br />
14
- Angry Birds Classic HD app review and gameplay<br />
15
- Best powerups and tips for Angry Birds Classic<br />
16
- Angry Birds Classic vs Angry Birds 2: Which one is better?<br />
17
- Download Angry Birds Classic on Google Play Store<br />
18
- Angry Birds Classic Rovio Entertainment Corporation: Developer info and contact<br />
19
- Angry Birds Classic offline mode: How to play without internet<br />
20
- Angry Birds Classic episodes and levels: Complete guide and walkthrough<br />
21
- Angry Birds Classic Mighty Eagle: How to unlock and use<br />
22
- Angry Birds Classic cheats and hacks: How to get unlimited coins and powerups<br />
23
- Angry Birds Classic for PC: How to install and play on Windows or Mac<br />
24
- Angry Birds Classic update: What's new in version 8.0.3<br />
25
- Angry Birds Classic slingshot gameplay: How to aim and shoot accurately<br />
26
- Angry Birds Classic physics-based puzzles: How to solve them with logic and skill<br />
27
- Angry Birds Classic social networking features: How to connect and compete with friends<br />
28
- Angry Birds Classic in-app purchases: How to buy and use them wisely<br />
29
- Angry Birds Classic ads: How to remove or block them<br />
30
- Angry Birds Classic privacy policy and terms of use: What you need to know<br />
31
- Angry Birds Classic ratings and reviews: What users are saying about the game<br />
32
- Angry Birds Classic support: How to contact the developer and get help<br />
33
- Angry Birds Classic history and trivia: How the game became a global phenomenon<br />
34
- Angry Birds Classic merchandise and products: Where to buy them online or offline<br />
35
- Angry Birds Classic movies and cartoons: How to watch them online or offline<br />
36
- Angry Birds Classic spin-offs and sequels: What other games are available in the franchise<br />
37
- Angry Birds Classic challenges and achievements: How to complete them and earn rewards<br />
38
- Angry Birds Classic wallpapers and ringtones: How to download and use them on your device<br />
39
- Angry Birds Classic fan art and memes: Where to find and share them online<br />
40
- Angry Birds Classic news and events: What's happening in the world of Angry Birds<br />
41
- Angry Birds Classic FAQs: Answers to common questions about the game<br />
42
- Angry Birds Classic bugs and glitches: How to fix them or report them to the developer</p>
43
- <h2>Tips and tricks</h2>
44
- <p>If you want to master Angry Birds Classic and get three stars on every level, you may need some tips and tricks to help you out. Here are some of them:</p>
45
- <ul>
46
- <li>Know your birds well. Each bird has its own strengths and weaknesses, and you should use them accordingly. For example, use the yellow bird to break through wood, use the black bird to blast through stone, and use the white bird to drop bombs on hard-to-reach places.</li>
47
- <li>Use the environment to your advantage. Sometimes you can cause more damage by hitting objects that can fall or roll onto the pigs. For example, you can hit TNT crates, boulders, icicles, or balloons to create chain reactions.</li>
48
- <li>Aim for weak spots. Look for gaps, cracks, or joints in the pigs' structures that can make them collapse easily. You can also aim for pigs that are exposed or close to the edge.</li>
49
- <li>Be patient and retry. Sometimes you may need to try a level several times before you find the best strategy or angle. Don't give up and keep trying until you succeed.</li>
50
- <li>Watch videos or read guides. If you are stuck on a level or want to improve your score, you can watch videos or read guides online that show you how to beat it. You can find many resources on YouTube , AngryBirdsNest , or the official Angry Birds website .</li>
51
- </ul>
52
- <h2>Reviews</h2>
53
- <p>Angry Birds Classic has received mostly positive reviews from critics and players alike. The game has a rating of 4.5 out of 5 stars on the App Store , 4.4 out of 5 stars on the Google Play Store , and 4.6 out of 5 stars on the Amazon Appstore .</p>
54
- <p>Some of the praises for the game are:</p>
55
- <blockquote>
56
- <p>"Angry Birds is one of the most addictive and fun games I have ever played. The graphics are colorful and cute, the sound effects are hilarious, and the gameplay is simple but challenging. I love how each bird has its own personality and ability, and how each level is different and requires strategy. I can play this game for hours and never get bored."</p>
57
- <cite>A user review on the App Store</cite>
58
- </blockquote>
59
- <blockquote>
60
- <p>"Angry Birds is a classic game that never gets old. It is a great way to pass time and have fun. The game is easy to learn but hard to master, which makes it appealing to both casual and hardcore gamers. The game also has a lot of content and updates, which keep it fresh and exciting. I highly recommend this game to anyone who likes puzzle games or just wants to have a blast."</p>
61
- <cite>A user review on the Google Play Store</cite>
62
- </blockquote>
63
- <blockquote>
64
- <p>"Angry Birds is a game that everyone should try at least once. It is a game that combines physics, logic, and humor in a brilliant way. The game is very well-designed and polished, with smooth controls, crisp graphics, and catchy music. The game also has a lot of variety and replay value, with different birds, levels, modes, and achievements. It is a game that will make you laugh, think, and enjoy."</p>
65
- <cite>A user review on the Amazon Appstore</cite>
66
- </blockquote>
67
- <h2>Conclusion</h2>
68
- <p>Angry Birds Classic is a game that has earned its place in the history of mobile gaming. It is a game that appeals to people of all ages and backgrounds, with its simple yet addictive gameplay, charming style, and low price. It is a game that you can download and play on almost any device, whether you are at home or on the go.</p>
69
- <p>If you have not played Angry Birds Classic yet, you are missing out on a lot of fun and entertainment. You can download it for free from your preferred app store or play it online using your web browser. You will not regret it.</p>
70
- <p>So what are you waiting for? Grab your slingshot and join the Angry Birds in their quest to defeat the pigs and save their eggs. You will have a blast!</p>
71
- <h2>FAQs</h2>
72
- <h3>What is the difference between Angry Birds Classic and Angry Birds 2?</h3>
73
- <p>Angry Birds 2 is the sequel to Angry Birds Classic, released in 2015. It features new graphics, levels, birds, pigs, power-ups, spells, bosses, and multiplayer modes. However, it also includes more in-app purchases, advertisements, lives, and randomness than Angry Birds Classic.</p>
74
- <h3>How many Angry Birds games are there?</h3>
75
- <p>There are over 20 Angry Birds games as of 2021, including spin-offs, sequels, collaborations, and compilations. Some of the most popular ones are Angry Birds Seasons, Angry Birds Rio, Angry Birds Space, Angry Birds Star Wars, Angry Birds Go!, Angry Birds Epic, Angry Birds Transformers, Angry Birds Friends, Angry Birds Match, and Angry Birds Dream Blast.</p>
76
- <h3>Are there any movies or shows based on Angry Birds?</h3>
77
- <p>Yes, there are two animated movies based on Angry Birds: The Angry Birds Movie (2016) and The Angry Birds Movie 2 (2019). There are also several animated shows based on Angry Birds: Angry Birds Toons (2013-2016), Piggy Tales (2014-2018), Stella (2014-2016), Angry Birds Blues (2017), and Angry Birds MakerSpace (2019-present).</p>
78
- <h3>Who created Angry Birds?</h3>
79
- <p>Angry Birds was created by Rovio Entertainment, a Finnish video game company founded in 2003. The original idea for the game was inspired by a sketch of stylized wingless birds by Jaakko Iisalo, a senior game designer at Rovio.</p>
80
- <h3>Why are the birds angry?</h3>
81
- <p>The birds are angry because the pigs stole their eggs and want to eat them. The birds want to get their eggs back and stop the pigs from eating them. The birds use their slingshot and their special abilities to attack the pigs and their structures.</p> 401be4b1e0<br />
82
- <br />
83
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download Smash the Dummy Mod APK and Enjoy Ragdoll Physics and Stress Relief.md DELETED
@@ -1,101 +0,0 @@
1
-
2
- <h1>Smash the Dummy Mod Apk: A Fun and Stress-Relieving Game</h1>
3
- <p>Have you ever felt stressed, angry, or frustrated and wished you could vent your emotions on something or someone? Well, now you can with smash the dummy mod apk, a fun and stress-relieving game that lets you punch, shoot, and kick a virtual dummy or voodoo doll. Smash the dummy mod apk is a modified version of the original game, Smash the Dummy: Beat Boss Kick Buddy Ragdoll Game, that gives you unlimited resources and features to enjoy. In this article, we will tell you what smash the dummy mod apk is, why it is popular, how to download and install it, how to play it, what are its benefits and drawbacks, and our final verdict on it.</p>
4
- <h2>smash the dummy mod apk</h2><br /><p><b><b>Download Zip</b> >>>>> <a href="https://jinyurl.com/2uNPdk">https://jinyurl.com/2uNPdk</a></b></p><br /><br />
5
- <h2>How to Download and Install Smash the Dummy Mod Apk</h2>
6
- <p>If you want to play smash the dummy mod apk on your Android device, you will need to follow these steps:</p>
7
- <ol>
8
- <li>Go to a trusted website that offers smash the dummy mod apk download link. For example, you can visit [Sosomod](^1^) or [Myristica](^2^).</li>
9
- <li>Click on the download button and wait for the file to be downloaded on your device.</li>
10
- <li>Go to your device settings and enable installation from unknown sources. This will allow you to install apps that are not from the Google Play Store.</li>
11
- <li>Locate the downloaded file in your file manager and tap on it to start the installation process.</li>
12
- <li>Follow the instructions on the screen and wait for the installation to be completed.</li>
13
- <li>Launch the game from your app drawer or home screen and enjoy smashing the dummy.</li>
14
- </ol>
15
- <h2>How to Play Smash the Dummy Mod Apk</h2>
16
- <h3>Choose Your Dummy and Weapon</h3>
17
- <p>When you start playing smash the dummy mod apk, you will be able to choose from different types of dummies and weapons to smash them. You can select from various categories such as animals, zombies, superheroes, celebrities , and more. You can also choose from different weapons such as guns, knives, hammers, rockets, grenades, and more. Each dummy and weapon has its own characteristics and effects, so you can experiment with different combinations and see what happens.</p>
18
- <h3>Smash, Shoot, and Kick the Dummy</h3>
19
- <p>Once you have chosen your dummy and weapon, you can start smashing, shooting, and kicking the dummy. You can use various gestures and actions to inflict damage on the dummy, such as tapping, swiping, dragging, pinching, and shaking. You can also use the buttons on the screen to perform different actions, such as throwing the dummy, changing the weapon, or activating special features. The more you smash the dummy, the more damage you will cause and the more fun you will have.</p>
20
- <h3>Earn Coins and Diamonds</h3>
21
- <p>As you play smash the dummy mod apk, you will also earn coins and diamonds by smashing the dummy and completing missions. Coins and diamonds are the in-game currencies that you can use to unlock new dummies and weapons. You can also use them to upgrade your weapons and increase their power and effects. You can earn coins and diamonds by playing the game regularly, watching ads, or using the modded features of the game.</p>
22
- <h3>Unlock New Dummies and Weapons</h3>
23
- <p>With the coins and diamonds you earn, you can unlock new dummies and weapons to smash them. You can access the shop from the main menu and browse through different categories of dummies and weapons. You can also see their prices and descriptions before buying them. Some of the dummies and weapons are locked until you reach a certain level or complete a certain mission. You can also use the modded features of the game to unlock all the dummies and weapons for free.</p>
24
- <p>* Smash the dummy ragdoll game mod apk<br />
25
- * Smash the dummy beat boss kick buddy mod apk<br />
26
- * Smash the dummy unlimited money mod apk<br />
27
- * Smash the dummy voodoo doll simulator mod apk<br />
28
- * Smash the dummy weapons and magic mod apk<br />
29
- * Download smash the dummy mod apk for android<br />
30
- * How to install smash the dummy mod apk on pc<br />
31
- * Smash the dummy mod apk latest version 2023<br />
32
- * Smash the dummy mod apk offline mode<br />
33
- * Smash the dummy mod apk no ads<br />
34
- * Smash the dummy mod apk free shopping<br />
35
- * Smash the dummy mod apk unlimited health<br />
36
- * Smash the dummy mod apk all weapons unlocked<br />
37
- * Smash the dummy mod apk cheats and hacks<br />
38
- * Smash the dummy mod apk gameplay and review<br />
39
- * Smash the dummy mod apk download link<br />
40
- * Smash the dummy mod apk file size and requirements<br />
41
- * Smash the dummy mod apk features and benefits<br />
42
- * Smash the dummy mod apk tips and tricks<br />
43
- * Smash the dummy mod apk best weapons and magic<br />
44
- * Smash the dummy mod apk fun and stress relief<br />
45
- * Smash the dummy mod apk online multiplayer mode<br />
46
- * Smash the dummy mod apk custom ragdoll creator<br />
47
- * Smash the dummy mod apk realistic physics and graphics<br />
48
- * Smash the dummy mod apk funniest ragdoll game<br />
49
- * Smash the dummy mod apk vs kick the buddy mod apk<br />
50
- * Smash the dummy mod apk vs beat the boss 4 mod apk<br />
51
- * Smash the dummy mod apk vs happy wheels mod apk<br />
52
- * Smash the dummy mod apk vs ragdoll achievement 2 mod apk<br />
53
- * Smash the dummy mod apk vs mutilate a doll 2 mod apk<br />
54
- * Best ragdoll games like smash the dummy mod apk<br />
55
- * How to update smash the dummy mod apk to latest version<br />
56
- * How to uninstall smash the dummy mod apk from device<br />
57
- * How to backup smash the dummy mod apk data and progress<br />
58
- * How to restore smash the dummy mod apk data and progress<br />
59
- * How to fix smash the dummy mod apk not working or crashing issues<br />
60
- * How to contact smash the dummy mod apk developer or support team<br />
61
- * How to rate and review smash the dummy mod apk on app store or play store<br />
62
- * How to share smash the dummy mod apk with friends and family<br />
63
- * How to earn money by playing smash the dummy mod apk online or offline mode</p>
64
- <h2>Benefits of Playing Smash the Dummy Mod Apk</h2>
65
- <h3>Relieve Stress and Anger</h3>
66
- <p>One of the main benefits of playing smash the dummy mod apk is that it can help you relieve stress and anger. Sometimes, life can be stressful and frustrating, and you may feel like taking out your emotions on something or someone. However, doing so in real life can have negative consequences for yourself and others. That's why playing smash the dummy mod apk can be a safe and fun way to vent your emotions and have fun. You can smash the dummy as much as you want without hurting anyone or anything. You can also choose a dummy that resembles someone or something that annoys you or makes you angry, such as your boss, your ex, or a politician.</p>
67
- <h3>Improve Your Reflexes and Coordination</h3>
68
- <p>Another benefit of playing smash the dummy mod apk is that it can improve your reflexes and coordination. Playing smash the dummy mod apk requires you to use your fingers to perform various gestures and actions on the screen. This can enhance your hand-eye coordination and reaction time. You can also challenge yourself by trying to smash the dummy as fast as possible or by using different weapons and features. Playing smash the dummy mod apk can also improve your concentration and focus as you try to smash the dummy without missing or getting distracted.</p>
69
- <h3>Enjoy Unlimited Resources and Features</h3>
70
- <p>A third benefit of playing smash the dummy mod apk is that it can give you access to unlimited resources and features that are not available in the original version of the game. With smash the dummy mod apk, you can enjoy unlimited coins, diamonds, dummies, weapons, and other features that can make your game more enjoyable. You can unlock all the dummies and weapons for free and use them without any limitations. You can also use the modded features of the game to activate special effects, such as slow motion, ragdoll physics, explosions, and more. Playing smash the dummy mod apk can make your game more fun and exciting.</p>
71
- <h2>Drawbacks of Playing Smash the Dummy Mod Apk</h2>
72
- <h3>Risk of Malware and Viruses</h3>
73
- <p>One of the main drawbacks of playing smash the dummy mod apk is that it can expose your device to malware and viruses that can harm your data and privacy. Since smash the dummy mod apk is not from the official Google Play Store, you will need to download and install it from unknown sources that may not be safe or reliable. Some of these sources may contain malicious files or codes that can infect your device and steal your personal information, such as your contacts, photos, messages, passwords, and more. You may also experience unwanted ads, pop-ups, redirects, or crashes on your device. Therefore, you should be careful when downloading and installing smash the dummy mod apk and use a good antivirus software to scan your device regularly.</p>
74
- <h3>Risk of Ban and Suspension</h3>
75
- <p>Another drawback of playing smash the dummy mod apk is that it can violate the terms and conditions of the original game developer and result in your account being banned or suspended. Since smash the dummy mod apk is a modified version of the original game, Smash the Dummy: Beat Boss Kick Buddy Ragdoll Game, it can give you an unfair advantage over other players who play the original game. This can affect the balance and fairness of the game and make it less enjoyable for others. The original game developer may detect your use of smash the dummy mod apk and ban or suspend your account for cheating or hacking. You may also lose your progress, achievements, and rewards in the game. Therefore, you should be aware of the risks and consequences of playing smash the dummy mod apk and respect the rules and rights of the original game developer.</p>
76
- <h3>Risk of Addiction and Violence</h3>
77
- <p>A third drawback of playing smash the dummy mod apk is that it can become addictive and influence your behavior and attitude towards violence in real life. Playing smash the dummy mod apk can be very entertaining and satisfying, but it can also make you spend too much time and energy on it. You may neglect your other responsibilities, such as your work, school, family, or friends. You may also become obsessed with smashing the dummy and forget about other hobbies or interests. Playing smash the dummy mod apk can also affect your mental health and well-being, as you may develop aggression, hostility, or desensitization towards violence. You may start to enjoy hurting or harming others, even if they are virtual or fictional. You may also lose empathy or compassion for others who suffer from violence in real life. Therefore, you should play smash the dummy mod apk in moderation and balance it with other activities that are healthy and positive.</p>
78
- <h2>Conclusion</h2>
79
- <p>Smash the dummy mod apk is a fun and stress-relieving game that lets you punch, shoot, and kick a virtual dummy or voodoo doll. It is a modified version of the original game that gives you unlimited resources and features to enjoy. However, it also has some drawbacks that you should be aware of before playing it. In this article, we have explained what smash the dummy mod apk is, why it is popular, how to download and install it, how to play it, what are its benefits and drawbacks, and our final verdict on it.</p>
80
- <p>In our opinion, smash the dummy mod apk is a good game to play if you want to relieve stress and anger, improve your reflexes and coordination , and enjoy unlimited resources and features. However, you should also be careful of the risks of malware and viruses, ban and suspension, and addiction and violence. You should also respect the original game developer and play the game in moderation and balance. We hope you found this article helpful and informative. If you have any questions or feedback, please feel free to share them in the comments section below.</p>
81
- <h2>FAQs</h2>
82
- <p>Here are some of the frequently asked questions about smash the dummy mod apk:</p>
83
- <ol>
84
- <li>What is the difference between smash the dummy mod apk and the original game?</li>
85
- <p>The main difference between smash the dummy mod apk and the original game is that the modded version gives you unlimited coins, diamonds, dummies, weapons, and other features that are not available in the original game. You can also use the modded features to activate special effects, such as slow motion, ragdoll physics, explosions, and more.</p>
86
- <li>Is smash the dummy mod apk safe to download and install?</li>
87
- <p>Smash the dummy mod apk is not from the official Google Play Store, so you will need to download and install it from unknown sources that may not be safe or reliable. Some of these sources may contain malicious files or codes that can infect your device and steal your personal information. Therefore, you should be careful when downloading and installing smash the dummy mod apk and use a good antivirus software to scan your device regularly.</p>
88
- <li>Can I play smash the dummy mod apk online with other players?</li>
89
- <p>No, smash the dummy mod apk is not an online game, so you cannot play it with other players. It is a single-player game that you can play offline on your device. However, you may need an internet connection to access some of the features of the game, such as watching ads or downloading new dummies and weapons.</p>
90
- <li>How can I update smash the dummy mod apk to the latest version?</li>
91
- <p>If you want to update smash the dummy mod apk to the latest version, you will need to visit the website where you downloaded it from and check if there is a new version available. If there is, you can download and install it on your device following the same steps as before. However, you may lose your progress and data in the game if you update it, so you may want to back up your files before doing so.</p>
92
- <li>How can I uninstall smash the dummy mod apk from my device?</li>
93
- <p>If you want to uninstall smash the dummy mod apk from your device, you can follow these steps:</p>
94
- <ul>
95
- <li>Go to your device settings and select apps or applications.</li>
96
- <li>Find and tap on smash the dummy mod apk from the list of apps.</li>
97
- <li>Select uninstall or remove and confirm your choice.</li>
98
- <li>Wait for the app to be uninstalled from your device.</li>
99
- </ul></p> 401be4b1e0<br />
100
- <br />
101
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Free Download M-PESA App and Send Money with Gifs Description and Profile Picture.md DELETED
@@ -1,114 +0,0 @@
1
-
2
- <h1>Free Download M-Pesa App: How to Enjoy the Benefits of Mobile Money Transfer</h1>
3
- <p>Do you want to make your life easier by managing your finances on your phone? Do you want to send and receive money, pay bills, buy goods and services, and more with just a few taps? Do you want to enjoy convenience, security, affordability, and accessibility with mobile money transfer? If you answered yes to any of these questions, then you should download the M-Pesa app today.</p>
4
- <h2>What is M-Pesa and why should you use it?</h2>
5
- <p>M-Pesa is a mobile money service that allows you to send and receive money, pay bills, buy goods and services, and more using your phone. It is operated by Safaricom, the leading mobile network operator in Kenya. M-Pesa has over 40 million users in Kenya and other countries such as Tanzania, Lesotho, Mozambique, Ghana, Egypt, India, Romania, Albania, South Africa.</p>
6
- <h2>free download m pesa app</h2><br /><p><b><b>Download</b> ===> <a href="https://jinyurl.com/2uNKbe">https://jinyurl.com/2uNKbe</a></b></p><br /><br />
7
- <h3>M-Pesa has many benefits such as convenience, security, affordability, and accessibility</h3>
8
- <p>Some of the benefits of using M-Pesa are:</p>
9
- <ul>
10
- <li><strong>Convenience:</strong> You can perform various transactions anytime and anywhere using your phone. You don't need to carry cash or visit a bank or an agent. You can also access other services such as travel, lifestyle, and utility apps directly from the M-Pesa app without having to download them.</li>
11
- <li><strong>Security:</strong> You can protect your money and transactions using your M-Pesa PIN or biometric authentication. You can also download and share e-receipts for proof of payment. You don't have to worry about losing your money or being robbed.</li>
12
- <li><strong>Affordability:</strong> You can enjoy low transaction fees and competitive exchange rates when using M-Pesa. You can also save money on transport costs and time by avoiding queues and delays.</li>
13
- <li><strong>Accessibility:</strong> You can access M-Pesa even if you don't have a bank account or a smartphone. You can use any type of phone and SIM card to access M-Pesa. You can also use M-Pesa across different countries and currencies.</li>
14
- </ul>
15
- <p>With M-Pesa, you can enjoy the benefits of mobile money transfer without any hassle.</p>
16
- <h2>How to download and install the M-Pesa app on your phone?</h2>
17
- <p>If you want to enjoy the benefits of M-Pesa, you need to download and install the M-Pesa app on your phone. The M-Pesa app is available for both Android and iOS devices. Here are the steps to download and install the app:</p>
18
- <h3>The M-Pesa app is available for both Android and iOS devices</h3>
19
- <p>You can download the app from the Google Play Store or the Apple Store for free. You can also scan the QR code below to download the app:</p>
20
- <table>
21
- <tr>
22
- <td><img src="https://www.safaricom.co.ke/images/2020/MPESA-APP-QR-CODE.png" alt="M-Pesa app QR code for Android"></td>
23
- <td><img src="https://www.safaricom.co.ke/images/2020/MPESA-APP-QR-CODE-APPLE.png" alt="M-Pesa app QR code for iOS"></td>
24
- </tr>
25
- <tr>
26
- <td>Android</td>
27
- <td>iOS</td>
28
- </tr>
29
- </table>
30
- <h3>You need to have an active M-Pesa account and a registered SIM card to use the app</h3>
31
- <p>If you don't have an M-Pesa account, you need to register for one at any Safaricom shop or agent. You will need to provide your ID and phone number. You will also receive a PIN that you will use to access your account.</p>
32
- <p>free download m pesa app for android<br />
33
- free download m pesa app apk<br />
34
- free download m pesa app for pc<br />
35
- free download m pesa app for windows 10<br />
36
- free download m pesa app for ios<br />
37
- free download m pesa app latest version<br />
38
- free download m pesa app offline mode<br />
39
- free download m pesa app with biometric authentication<br />
40
- free download m pesa app with pochi la biashara<br />
41
- free download m pesa app with my spend feature<br />
42
- free download m pesa app with statement and receipts<br />
43
- free download m pesa app with favourites and frequents<br />
44
- free download m pesa app with m pesa global service<br />
45
- free download m pesa app with due bills notification<br />
46
- free download m pesa app with bundles purchase<br />
47
- free download m pesa app with gifs and description<br />
48
- free download m pesa app with profile picture<br />
49
- free download m pesa app with qr code<br />
50
- how to free download m pesa app on google play store<br />
51
- how to free download m pesa app on apkcombo<br />
52
- how to free download m pesa app on my phone<br />
53
- how to free download m pesa app on laptop<br />
54
- how to free download m pesa app on macbook<br />
55
- how to free download m pesa app on iphone<br />
56
- how to free download m pesa app on ipad<br />
57
- how to use free downloaded m pesa app for send money<br />
58
- how to use free downloaded m pesa app for buy goods<br />
59
- how to use free downloaded m pesa app for pay bill<br />
60
- how to use free downloaded m pesa app for withdraw cash<br />
61
- how to use free downloaded m pesa app for buy airtime<br />
62
- how to use free downloaded m pesa app without internet connection<br />
63
- how to use free downloaded m pesa app with face or fingerprint login<br />
64
- how to use free downloaded m pesa app for pochi la biashara transactions<br />
65
- how to use free downloaded m pesa app for tracking my spend<br />
66
- how to use free downloaded m pesa app for viewing and exporting my statement<br />
67
- how to use free downloaded m pesa app for downloading and sharing e-receipts<br />
68
- how to use free downloaded m pesa app for sending money to favourites and frequents<br />
69
- how to use free downloaded m pesa app for sending money globally via western union or paypal<br />
70
- how to use free downloaded m pesa app for paying due bills from participating billers<br />
71
- how to use free downloaded m pesa app for buying safaricom data, voice and sms bundles<br />
72
- how to use free downloaded m pesa app for adding context when sending money with gifs or description<br />
73
- how to use free downloaded m pesa app for uploading and displaying my profile picture when receiving money<br />
74
- how to use free downloaded m pesa app for scanning and generating qr codes for payments</p>
75
- <p>If you already have an M-Pesa account, you need to make sure that your SIM card is registered and active. You can check your SIM registration status by dialing *234# on your phone.</p>
76
- <h3>You can log in to the app using your M-Pesa PIN or biometric authentication</h3>
77
- <p>Once you have downloaded and installed the app, you can open it and log in using your M-Pesa PIN or biometric authentication. Biometric authentication is a feature that allows you to use your fingerprint or face recognition to access your account. You can enable this feature in the settings of the app.</p>
78
- <p>After logging in, you will see your account balance and a menu of options that you can use to perform various transactions.</p> <h2>How to use the M-Pesa app to perform various transactions?</h2>
79
- <p>The M-Pesa app has a simple and user-friendly interface that allows you to access all the core M-Pesa features. You can send money, buy goods, pay bills, withdraw cash, buy airtime, and more using the app. You can also access other features such as M-Pesa Global, Pochi la Biashara, Due Bills, Buy Bundles, and Mini Apps. Here are some of the ways you can use the M-Pesa app to perform various transactions:</p>
80
- <h3>You can send money, buy goods, pay bills, withdraw cash, buy airtime, and more using the app</h3>
81
- <p>To send money, you can select the Send Money option from the menu and enter the recipient's phone number or name from your contacts. You can also scan or generate a QR code to send money. You can then enter the amount and confirm with your PIN or biometric authentication.</p>
82
- <p>To buy goods, you can select the Lipa Na M-Pesa option from the menu and enter the till number or name of the merchant. You can also scan or generate a QR code to buy goods. You can then enter the amount and confirm with your PIN or biometric authentication.</p>
83
- <p>To pay bills, you can select the Pay Bill option from the menu and enter the business number or name of the biller. You can also scan or generate a QR code to pay bills. You can then enter the account number and amount and confirm with your PIN or biometric authentication.</p>
84
- <p>To withdraw cash, you can select the Withdraw Cash option from the menu and enter the agent number or name of the agent. You can also scan or generate a QR code to withdraw cash. You can then enter the amount and confirm with your PIN or biometric authentication.</p>
85
- <p>To buy airtime, you can select the Buy Airtime option from the menu and enter your phone number or name from your contacts. You can then enter the amount and confirm with your PIN or biometric authentication.</p>
86
- <h3>You can also access other features such as M-Pesa Global, Pochi la Biashara, Due Bills, Buy Bundles, and Mini Apps</h3>
87
- <p>M-Pesa Global is a feature that allows you to send and receive money across different countries and currencies. You can select the M-Pesa Global option from the menu and choose whether you want to send money abroad or receive money from abroad. You can then follow the instructions on the screen to complete your transaction.</p>
88
- <p>Pochi la Biashara is a feature that allows you to receive payments from customers without revealing your personal details. You can select the Pochi la Biashara option from the menu and create your own Pochi la Biashara account. You can then share your Pochi la Biashara name with your customers and receive payments directly to your account.</p>
89
- <p>Due Bills is a feature that allows you to view and pay your pending bills in one place. You can select the Due Bills option from the menu and see all your due bills from different billers. You can then choose which bills you want to pay and confirm with your PIN or biometric authentication.</p>
90
- <p>Buy Bundles is a feature that allows you to buy data, voice, SMS, and other bundles using your M-Pesa balance. You can select the Buy Bundles option from the menu and choose which bundle you want to buy. You can then confirm with your PIN or biometric authentication.</p>
91
- <p>Mini Apps is a feature that allows you to access various apps such as travel, lifestyle, utility, and more without having to download them. You can select the Mini Apps option from the menu and browse through different categories of apps. You can then choose which app you want to use and enjoy its services.</p> <h2>How to track your spending and transactions in real-time using the My Spend and Statement features</h2>
92
- <p>The M-Pesa app also allows you to track your spending and transactions in real-time using the My Spend and Statement features. These features help you to manage your finances and budget better. Here is how you can use them:</p>
93
- <h3>You can track your spending and transactions in real-time using the My Spend feature</h3>
94
- <p>The My Spend feature shows you how much you have spent on different categories such as food, transport, entertainment, and more. You can also see how much you have saved, invested, or donated. You can access the My Spend feature by selecting the My Spend option from the menu. You can then see a graphical representation of your spending habits and trends. You can also filter your spending by date, category, or amount.</p>
95
- <h3>You can track your spending and transactions in real-time using the Statement feature</h3>
96
- <p>The Statement feature shows you a detailed history of all your transactions such as sending money, buying goods, paying bills, withdrawing cash, buying airtime, and more. You can also see the status, date, time, amount, and fee of each transaction. You can access the Statement feature by selecting the Statement option from the menu. You can then see a list of all your transactions and search for a specific transaction by date, amount, or description.</p>
97
- <h2>Conclusion</h2>
98
- <p>The M-Pesa app is a great way to enjoy the benefits of mobile money transfer. The app is free, easy to use, secure, and offers many features and services. You can download the app today and start your journey to convenience with M-Pesa.</p>
99
- <h2>FAQs</h2>
100
- <p>Here are some of the frequently asked questions about the M-Pesa app:</p>
101
- <ul>
102
- <li><strong>Q: How do I update my M-Pesa app?</strong></li>
103
- <li>A: You can update your M-Pesa app by visiting the Google Play Store or the Apple Store and checking for any available updates. You can also enable automatic updates in your settings.</li>
104
- <li><strong>Q: How do I change my M-Pesa PIN?</strong></li>
105
- <li>A: You can change your M-Pesa PIN by selecting the Change PIN option from the menu and entering your current PIN and your new PIN. You can also change your PIN by dialing *334# on your phone.</li>
106
- <li><strong>Q: How do I reset my M-Pesa PIN if I forget it?</strong></li>
107
- <li>A: You can reset your M-Pesa PIN by selecting the Forgot PIN option from the login screen and entering your ID number and phone number. You will then receive a verification code that you will use to create a new PIN. You can also reset your PIN by calling or emailing the M-Pesa customer care team.</li>
108
- <li><strong>Q: How do I check my M-Pesa balance?</strong></li>
109
- <li>A: You can check your M-Pesa balance by selecting the Balance option from the menu and entering your PIN or biometric authentication. You will then see your account balance on the screen. You can also check your balance by dialing *334# on your phone.</li>
110
- <li><strong>Q: How do I transfer money from my M-Pesa account to my bank account or vice versa?</strong></li>
111
- <li>A: You can transfer money from your M-Pesa account to your bank account or vice versa by selecting the Bank Transfer option from the menu and choosing which direction you want to transfer money. You will then enter the bank name, account number, and amount and confirm with your PIN or biometric authentication.</li>
112
- </ul></p> 401be4b1e0<br />
113
- <br />
114
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1toTree/lora_test/ppdiffusers/models/unet_1d.py DELETED
@@ -1,247 +0,0 @@
1
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
- # Copyright 2022 The HuggingFace Team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- from dataclasses import dataclass
17
- from typing import Optional, Tuple, Union
18
-
19
- import paddle
20
- import paddle.nn as nn
21
-
22
- from ..configuration_utils import ConfigMixin, register_to_config
23
- from ..modeling_utils import ModelMixin
24
- from ..utils import BaseOutput
25
- from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
26
- from .unet_1d_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
27
-
28
-
29
- @dataclass
30
- class UNet1DOutput(BaseOutput):
31
- """
32
- Args:
33
- sample (`paddle.Tensor` of shape `(batch_size, num_channels, sample_size)`):
34
- Hidden states output. Output of last layer of model.
35
- """
36
-
37
- sample: paddle.Tensor
38
-
39
-
40
- class UNet1DModel(ModelMixin, ConfigMixin):
41
- r"""
42
- UNet1DModel is a 1D UNet model that takes in a noisy sample and a timestep and returns sample shaped output.
43
-
44
- This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
45
- implements for all the model (such as downloading or saving, etc.)
46
-
47
- Parameters:
48
- sample_size (`int`, *optional*): Default length of sample. Should be adaptable at runtime.
49
- in_channels (`int`, *optional*, defaults to 2): Number of channels in the input sample.
50
- out_channels (`int`, *optional*, defaults to 2): Number of channels in the output.
51
- time_embedding_type (`str`, *optional*, defaults to `"fourier"`): Type of time embedding to use.
52
- freq_shift (`float`, *optional*, defaults to 0.0): Frequency shift for fourier time embedding.
53
- flip_sin_to_cos (`bool`, *optional*, defaults to :
54
- obj:`False`): Whether to flip sin to cos for fourier time embedding.
55
- down_block_types (`Tuple[str]`, *optional*, defaults to :
56
- obj:`("DownBlock1D", "DownBlock1DNoSkip", "AttnDownBlock1D")`): Tuple of downsample block types.
57
- up_block_types (`Tuple[str]`, *optional*, defaults to :
58
- obj:`("UpBlock1D", "UpBlock1DNoSkip", "AttnUpBlock1D")`): Tuple of upsample block types.
59
- block_out_channels (`Tuple[int]`, *optional*, defaults to :
60
- obj:`(32, 32, 64)`): Tuple of block output channels.
61
- mid_block_type (`str`, *optional*, defaults to "UNetMidBlock1D"): block type for middle of UNet.
62
- out_block_type (`str`, *optional*, defaults to `None`): optional output processing of UNet.
63
- act_fn (`str`, *optional*, defaults to None): optional activitation function in UNet blocks.
64
- norm_num_groups (`int`, *optional*, defaults to 8): group norm member count in UNet blocks.
65
- layers_per_block (`int`, *optional*, defaults to 1): added number of layers in a UNet block.
66
- downsample_each_block (`int`, *optional*, defaults to False:
67
- experimental feature for using a UNet without upsampling.
68
- """
69
-
70
- @register_to_config
71
- def __init__(
72
- self,
73
- sample_size: int = 65536,
74
- sample_rate: Optional[int] = None,
75
- in_channels: int = 2,
76
- out_channels: int = 2,
77
- extra_in_channels: int = 0,
78
- time_embedding_type: str = "fourier",
79
- flip_sin_to_cos: bool = True,
80
- use_timestep_embedding: bool = False,
81
- freq_shift: float = 0.0,
82
- down_block_types: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"),
83
- up_block_types: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"),
84
- mid_block_type: Tuple[str] = "UNetMidBlock1D",
85
- out_block_type: str = None,
86
- block_out_channels: Tuple[int] = (32, 32, 64),
87
- act_fn: str = None,
88
- norm_num_groups: int = 8,
89
- layers_per_block: int = 1,
90
- downsample_each_block: bool = False,
91
- ):
92
- super().__init__()
93
- self.sample_size = sample_size
94
-
95
- # time
96
- if time_embedding_type == "fourier":
97
- self.time_proj = GaussianFourierProjection(
98
- embedding_size=8, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
99
- )
100
- timestep_input_dim = 2 * block_out_channels[0]
101
- elif time_embedding_type == "positional":
102
- self.time_proj = Timesteps(
103
- block_out_channels[0], flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=freq_shift
104
- )
105
- timestep_input_dim = block_out_channels[0]
106
-
107
- if use_timestep_embedding:
108
- time_embed_dim = block_out_channels[0] * 4
109
- self.time_mlp = TimestepEmbedding(
110
- in_channels=timestep_input_dim,
111
- time_embed_dim=time_embed_dim,
112
- act_fn=act_fn,
113
- out_dim=block_out_channels[0],
114
- )
115
-
116
- self.down_blocks = nn.LayerList([])
117
- self.mid_block = None
118
- self.up_blocks = nn.LayerList([])
119
- self.out_block = None
120
-
121
- # down
122
- output_channel = in_channels
123
- for i, down_block_type in enumerate(down_block_types):
124
- input_channel = output_channel
125
- output_channel = block_out_channels[i]
126
-
127
- if i == 0:
128
- input_channel += extra_in_channels
129
-
130
- is_final_block = i == len(block_out_channels) - 1
131
-
132
- down_block = get_down_block(
133
- down_block_type,
134
- num_layers=layers_per_block,
135
- in_channels=input_channel,
136
- out_channels=output_channel,
137
- temb_channels=block_out_channels[0],
138
- add_downsample=not is_final_block or downsample_each_block,
139
- )
140
- self.down_blocks.append(down_block)
141
-
142
- # mid
143
- self.mid_block = get_mid_block(
144
- mid_block_type,
145
- in_channels=block_out_channels[-1],
146
- mid_channels=block_out_channels[-1],
147
- out_channels=block_out_channels[-1],
148
- embed_dim=block_out_channels[0],
149
- num_layers=layers_per_block,
150
- add_downsample=downsample_each_block,
151
- )
152
-
153
- # up
154
- reversed_block_out_channels = list(reversed(block_out_channels))
155
- output_channel = reversed_block_out_channels[0]
156
- if out_block_type is None:
157
- final_upsample_channels = out_channels
158
- else:
159
- final_upsample_channels = block_out_channels[0]
160
-
161
- for i, up_block_type in enumerate(up_block_types):
162
- prev_output_channel = output_channel
163
- output_channel = (
164
- reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else final_upsample_channels
165
- )
166
-
167
- is_final_block = i == len(block_out_channels) - 1
168
-
169
- up_block = get_up_block(
170
- up_block_type,
171
- num_layers=layers_per_block,
172
- in_channels=prev_output_channel,
173
- out_channels=output_channel,
174
- temb_channels=block_out_channels[0],
175
- add_upsample=not is_final_block,
176
- )
177
- self.up_blocks.append(up_block)
178
- prev_output_channel = output_channel
179
-
180
- # out
181
- num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
182
- self.out_block = get_out_block(
183
- out_block_type=out_block_type,
184
- num_groups_out=num_groups_out,
185
- embed_dim=block_out_channels[0],
186
- out_channels=out_channels,
187
- act_fn=act_fn,
188
- fc_dim=block_out_channels[-1] // 4,
189
- )
190
-
191
- def forward(
192
- self,
193
- sample: paddle.Tensor,
194
- timestep: Union[paddle.Tensor, float, int],
195
- return_dict: bool = True,
196
- ) -> Union[UNet1DOutput, Tuple]:
197
- r"""
198
- Args:
199
- sample (`paddle.Tensor`): `(batch_size, sample_size, num_channels)` noisy inputs tensor
200
- timestep (`paddle.Tensor` or `float` or `int): (batch) timesteps
201
- return_dict (`bool`, *optional*, defaults to `True`):
202
- Whether or not to return a [`~models.unet_1d.UNet1DOutput`] instead of a plain tuple.
203
-
204
- Returns:
205
- [`~models.unet_1d.UNet1DOutput`] or `tuple`: [`~models.unet_1d.UNet1DOutput`] if `return_dict` is True,
206
- otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
207
- """
208
-
209
- # 1. time
210
- timesteps = timestep
211
- if not paddle.is_tensor(timesteps):
212
- timesteps = paddle.to_tensor([timesteps], dtype="int64")
213
- elif paddle.is_tensor(timesteps) and len(timesteps.shape) == 0:
214
- timesteps = timesteps[None]
215
-
216
- timestep_embed = self.time_proj(timesteps)
217
- if self.config.use_timestep_embedding:
218
- timestep_embed = self.time_mlp(timestep_embed)
219
- else:
220
- timestep_embed = timestep_embed[..., None]
221
- timestep_embed = timestep_embed.tile([1, 1, sample.shape[2]]).cast(sample.dtype)
222
- timestep_embed = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]))
223
-
224
- # 2. down
225
- down_block_res_samples = ()
226
- for downsample_block in self.down_blocks:
227
- sample, res_samples = downsample_block(hidden_states=sample, temb=timestep_embed)
228
- down_block_res_samples += res_samples
229
-
230
- # 3. mid
231
- if self.mid_block:
232
- sample = self.mid_block(sample, timestep_embed)
233
-
234
- # 4. up
235
- for i, upsample_block in enumerate(self.up_blocks):
236
- res_samples = down_block_res_samples[-1:]
237
- down_block_res_samples = down_block_res_samples[:-1]
238
- sample = upsample_block(sample, res_hidden_states_tuple=res_samples, temb=timestep_embed)
239
-
240
- # 5. post-process
241
- if self.out_block:
242
- sample = self.out_block(sample, timestep_embed)
243
-
244
- if not return_dict:
245
- return (sample,)
246
-
247
- return UNet1DOutput(sample=sample)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/4Taps/SadTalker/src/face3d/models/arcface_torch/eval_ijbc.py DELETED
@@ -1,483 +0,0 @@
1
- # coding: utf-8
2
-
3
- import os
4
- import pickle
5
-
6
- import matplotlib
7
- import pandas as pd
8
-
9
- matplotlib.use('Agg')
10
- import matplotlib.pyplot as plt
11
- import timeit
12
- import sklearn
13
- import argparse
14
- import cv2
15
- import numpy as np
16
- import torch
17
- from skimage import transform as trans
18
- from backbones import get_model
19
- from sklearn.metrics import roc_curve, auc
20
-
21
- from menpo.visualize.viewmatplotlib import sample_colours_from_colourmap
22
- from prettytable import PrettyTable
23
- from pathlib import Path
24
-
25
- import sys
26
- import warnings
27
-
28
- sys.path.insert(0, "../")
29
- warnings.filterwarnings("ignore")
30
-
31
- parser = argparse.ArgumentParser(description='do ijb test')
32
- # general
33
- parser.add_argument('--model-prefix', default='', help='path to load model.')
34
- parser.add_argument('--image-path', default='', type=str, help='')
35
- parser.add_argument('--result-dir', default='.', type=str, help='')
36
- parser.add_argument('--batch-size', default=128, type=int, help='')
37
- parser.add_argument('--network', default='iresnet50', type=str, help='')
38
- parser.add_argument('--job', default='insightface', type=str, help='job name')
39
- parser.add_argument('--target', default='IJBC', type=str, help='target, set to IJBC or IJBB')
40
- args = parser.parse_args()
41
-
42
- target = args.target
43
- model_path = args.model_prefix
44
- image_path = args.image_path
45
- result_dir = args.result_dir
46
- gpu_id = None
47
- use_norm_score = True # if Ture, TestMode(N1)
48
- use_detector_score = True # if Ture, TestMode(D1)
49
- use_flip_test = True # if Ture, TestMode(F1)
50
- job = args.job
51
- batch_size = args.batch_size
52
-
53
-
54
- class Embedding(object):
55
- def __init__(self, prefix, data_shape, batch_size=1):
56
- image_size = (112, 112)
57
- self.image_size = image_size
58
- weight = torch.load(prefix)
59
- resnet = get_model(args.network, dropout=0, fp16=False).cuda()
60
- resnet.load_state_dict(weight)
61
- model = torch.nn.DataParallel(resnet)
62
- self.model = model
63
- self.model.eval()
64
- src = np.array([
65
- [30.2946, 51.6963],
66
- [65.5318, 51.5014],
67
- [48.0252, 71.7366],
68
- [33.5493, 92.3655],
69
- [62.7299, 92.2041]], dtype=np.float32)
70
- src[:, 0] += 8.0
71
- self.src = src
72
- self.batch_size = batch_size
73
- self.data_shape = data_shape
74
-
75
- def get(self, rimg, landmark):
76
-
77
- assert landmark.shape[0] == 68 or landmark.shape[0] == 5
78
- assert landmark.shape[1] == 2
79
- if landmark.shape[0] == 68:
80
- landmark5 = np.zeros((5, 2), dtype=np.float32)
81
- landmark5[0] = (landmark[36] + landmark[39]) / 2
82
- landmark5[1] = (landmark[42] + landmark[45]) / 2
83
- landmark5[2] = landmark[30]
84
- landmark5[3] = landmark[48]
85
- landmark5[4] = landmark[54]
86
- else:
87
- landmark5 = landmark
88
- tform = trans.SimilarityTransform()
89
- tform.estimate(landmark5, self.src)
90
- M = tform.params[0:2, :]
91
- img = cv2.warpAffine(rimg,
92
- M, (self.image_size[1], self.image_size[0]),
93
- borderValue=0.0)
94
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
95
- img_flip = np.fliplr(img)
96
- img = np.transpose(img, (2, 0, 1)) # 3*112*112, RGB
97
- img_flip = np.transpose(img_flip, (2, 0, 1))
98
- input_blob = np.zeros((2, 3, self.image_size[1], self.image_size[0]), dtype=np.uint8)
99
- input_blob[0] = img
100
- input_blob[1] = img_flip
101
- return input_blob
102
-
103
- @torch.no_grad()
104
- def forward_db(self, batch_data):
105
- imgs = torch.Tensor(batch_data).cuda()
106
- imgs.div_(255).sub_(0.5).div_(0.5)
107
- feat = self.model(imgs)
108
- feat = feat.reshape([self.batch_size, 2 * feat.shape[1]])
109
- return feat.cpu().numpy()
110
-
111
-
112
- # 将一个list尽量均分成n份,限制len(list)==n,份数大于原list内元素个数则分配空list[]
113
- def divideIntoNstrand(listTemp, n):
114
- twoList = [[] for i in range(n)]
115
- for i, e in enumerate(listTemp):
116
- twoList[i % n].append(e)
117
- return twoList
118
-
119
-
120
- def read_template_media_list(path):
121
- # ijb_meta = np.loadtxt(path, dtype=str)
122
- ijb_meta = pd.read_csv(path, sep=' ', header=None).values
123
- templates = ijb_meta[:, 1].astype(np.int)
124
- medias = ijb_meta[:, 2].astype(np.int)
125
- return templates, medias
126
-
127
-
128
- # In[ ]:
129
-
130
-
131
- def read_template_pair_list(path):
132
- # pairs = np.loadtxt(path, dtype=str)
133
- pairs = pd.read_csv(path, sep=' ', header=None).values
134
- # print(pairs.shape)
135
- # print(pairs[:, 0].astype(np.int))
136
- t1 = pairs[:, 0].astype(np.int)
137
- t2 = pairs[:, 1].astype(np.int)
138
- label = pairs[:, 2].astype(np.int)
139
- return t1, t2, label
140
-
141
-
142
- # In[ ]:
143
-
144
-
145
- def read_image_feature(path):
146
- with open(path, 'rb') as fid:
147
- img_feats = pickle.load(fid)
148
- return img_feats
149
-
150
-
151
- # In[ ]:
152
-
153
-
154
- def get_image_feature(img_path, files_list, model_path, epoch, gpu_id):
155
- batch_size = args.batch_size
156
- data_shape = (3, 112, 112)
157
-
158
- files = files_list
159
- print('files:', len(files))
160
- rare_size = len(files) % batch_size
161
- faceness_scores = []
162
- batch = 0
163
- img_feats = np.empty((len(files), 1024), dtype=np.float32)
164
-
165
- batch_data = np.empty((2 * batch_size, 3, 112, 112))
166
- embedding = Embedding(model_path, data_shape, batch_size)
167
- for img_index, each_line in enumerate(files[:len(files) - rare_size]):
168
- name_lmk_score = each_line.strip().split(' ')
169
- img_name = os.path.join(img_path, name_lmk_score[0])
170
- img = cv2.imread(img_name)
171
- lmk = np.array([float(x) for x in name_lmk_score[1:-1]],
172
- dtype=np.float32)
173
- lmk = lmk.reshape((5, 2))
174
- input_blob = embedding.get(img, lmk)
175
-
176
- batch_data[2 * (img_index - batch * batch_size)][:] = input_blob[0]
177
- batch_data[2 * (img_index - batch * batch_size) + 1][:] = input_blob[1]
178
- if (img_index + 1) % batch_size == 0:
179
- print('batch', batch)
180
- img_feats[batch * batch_size:batch * batch_size +
181
- batch_size][:] = embedding.forward_db(batch_data)
182
- batch += 1
183
- faceness_scores.append(name_lmk_score[-1])
184
-
185
- batch_data = np.empty((2 * rare_size, 3, 112, 112))
186
- embedding = Embedding(model_path, data_shape, rare_size)
187
- for img_index, each_line in enumerate(files[len(files) - rare_size:]):
188
- name_lmk_score = each_line.strip().split(' ')
189
- img_name = os.path.join(img_path, name_lmk_score[0])
190
- img = cv2.imread(img_name)
191
- lmk = np.array([float(x) for x in name_lmk_score[1:-1]],
192
- dtype=np.float32)
193
- lmk = lmk.reshape((5, 2))
194
- input_blob = embedding.get(img, lmk)
195
- batch_data[2 * img_index][:] = input_blob[0]
196
- batch_data[2 * img_index + 1][:] = input_blob[1]
197
- if (img_index + 1) % rare_size == 0:
198
- print('batch', batch)
199
- img_feats[len(files) -
200
- rare_size:][:] = embedding.forward_db(batch_data)
201
- batch += 1
202
- faceness_scores.append(name_lmk_score[-1])
203
- faceness_scores = np.array(faceness_scores).astype(np.float32)
204
- # img_feats = np.ones( (len(files), 1024), dtype=np.float32) * 0.01
205
- # faceness_scores = np.ones( (len(files), ), dtype=np.float32 )
206
- return img_feats, faceness_scores
207
-
208
-
209
- # In[ ]:
210
-
211
-
212
- def image2template_feature(img_feats=None, templates=None, medias=None):
213
- # ==========================================================
214
- # 1. face image feature l2 normalization. img_feats:[number_image x feats_dim]
215
- # 2. compute media feature.
216
- # 3. compute template feature.
217
- # ==========================================================
218
- unique_templates = np.unique(templates)
219
- template_feats = np.zeros((len(unique_templates), img_feats.shape[1]))
220
-
221
- for count_template, uqt in enumerate(unique_templates):
222
-
223
- (ind_t,) = np.where(templates == uqt)
224
- face_norm_feats = img_feats[ind_t]
225
- face_medias = medias[ind_t]
226
- unique_medias, unique_media_counts = np.unique(face_medias,
227
- return_counts=True)
228
- media_norm_feats = []
229
- for u, ct in zip(unique_medias, unique_media_counts):
230
- (ind_m,) = np.where(face_medias == u)
231
- if ct == 1:
232
- media_norm_feats += [face_norm_feats[ind_m]]
233
- else: # image features from the same video will be aggregated into one feature
234
- media_norm_feats += [
235
- np.mean(face_norm_feats[ind_m], axis=0, keepdims=True)
236
- ]
237
- media_norm_feats = np.array(media_norm_feats)
238
- # media_norm_feats = media_norm_feats / np.sqrt(np.sum(media_norm_feats ** 2, -1, keepdims=True))
239
- template_feats[count_template] = np.sum(media_norm_feats, axis=0)
240
- if count_template % 2000 == 0:
241
- print('Finish Calculating {} template features.'.format(
242
- count_template))
243
- # template_norm_feats = template_feats / np.sqrt(np.sum(template_feats ** 2, -1, keepdims=True))
244
- template_norm_feats = sklearn.preprocessing.normalize(template_feats)
245
- # print(template_norm_feats.shape)
246
- return template_norm_feats, unique_templates
247
-
248
-
249
- # In[ ]:
250
-
251
-
252
- def verification(template_norm_feats=None,
253
- unique_templates=None,
254
- p1=None,
255
- p2=None):
256
- # ==========================================================
257
- # Compute set-to-set Similarity Score.
258
- # ==========================================================
259
- template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
260
- for count_template, uqt in enumerate(unique_templates):
261
- template2id[uqt] = count_template
262
-
263
- score = np.zeros((len(p1),)) # save cosine distance between pairs
264
-
265
- total_pairs = np.array(range(len(p1)))
266
- batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
267
- sublists = [
268
- total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)
269
- ]
270
- total_sublists = len(sublists)
271
- for c, s in enumerate(sublists):
272
- feat1 = template_norm_feats[template2id[p1[s]]]
273
- feat2 = template_norm_feats[template2id[p2[s]]]
274
- similarity_score = np.sum(feat1 * feat2, -1)
275
- score[s] = similarity_score.flatten()
276
- if c % 10 == 0:
277
- print('Finish {}/{} pairs.'.format(c, total_sublists))
278
- return score
279
-
280
-
281
- # In[ ]:
282
- def verification2(template_norm_feats=None,
283
- unique_templates=None,
284
- p1=None,
285
- p2=None):
286
- template2id = np.zeros((max(unique_templates) + 1, 1), dtype=int)
287
- for count_template, uqt in enumerate(unique_templates):
288
- template2id[uqt] = count_template
289
- score = np.zeros((len(p1),)) # save cosine distance between pairs
290
- total_pairs = np.array(range(len(p1)))
291
- batchsize = 100000 # small batchsize instead of all pairs in one batch due to the memory limiation
292
- sublists = [
293
- total_pairs[i:i + batchsize] for i in range(0, len(p1), batchsize)
294
- ]
295
- total_sublists = len(sublists)
296
- for c, s in enumerate(sublists):
297
- feat1 = template_norm_feats[template2id[p1[s]]]
298
- feat2 = template_norm_feats[template2id[p2[s]]]
299
- similarity_score = np.sum(feat1 * feat2, -1)
300
- score[s] = similarity_score.flatten()
301
- if c % 10 == 0:
302
- print('Finish {}/{} pairs.'.format(c, total_sublists))
303
- return score
304
-
305
-
306
- def read_score(path):
307
- with open(path, 'rb') as fid:
308
- img_feats = pickle.load(fid)
309
- return img_feats
310
-
311
-
312
- # # Step1: Load Meta Data
313
-
314
- # In[ ]:
315
-
316
- assert target == 'IJBC' or target == 'IJBB'
317
-
318
- # =============================================================
319
- # load image and template relationships for template feature embedding
320
- # tid --> template id, mid --> media id
321
- # format:
322
- # image_name tid mid
323
- # =============================================================
324
- start = timeit.default_timer()
325
- templates, medias = read_template_media_list(
326
- os.path.join('%s/meta' % image_path,
327
- '%s_face_tid_mid.txt' % target.lower()))
328
- stop = timeit.default_timer()
329
- print('Time: %.2f s. ' % (stop - start))
330
-
331
- # In[ ]:
332
-
333
- # =============================================================
334
- # load template pairs for template-to-template verification
335
- # tid : template id, label : 1/0
336
- # format:
337
- # tid_1 tid_2 label
338
- # =============================================================
339
- start = timeit.default_timer()
340
- p1, p2, label = read_template_pair_list(
341
- os.path.join('%s/meta' % image_path,
342
- '%s_template_pair_label.txt' % target.lower()))
343
- stop = timeit.default_timer()
344
- print('Time: %.2f s. ' % (stop - start))
345
-
346
- # # Step 2: Get Image Features
347
-
348
- # In[ ]:
349
-
350
- # =============================================================
351
- # load image features
352
- # format:
353
- # img_feats: [image_num x feats_dim] (227630, 512)
354
- # =============================================================
355
- start = timeit.default_timer()
356
- img_path = '%s/loose_crop' % image_path
357
- img_list_path = '%s/meta/%s_name_5pts_score.txt' % (image_path, target.lower())
358
- img_list = open(img_list_path)
359
- files = img_list.readlines()
360
- # files_list = divideIntoNstrand(files, rank_size)
361
- files_list = files
362
-
363
- # img_feats
364
- # for i in range(rank_size):
365
- img_feats, faceness_scores = get_image_feature(img_path, files_list,
366
- model_path, 0, gpu_id)
367
- stop = timeit.default_timer()
368
- print('Time: %.2f s. ' % (stop - start))
369
- print('Feature Shape: ({} , {}) .'.format(img_feats.shape[0],
370
- img_feats.shape[1]))
371
-
372
- # # Step3: Get Template Features
373
-
374
- # In[ ]:
375
-
376
- # =============================================================
377
- # compute template features from image features.
378
- # =============================================================
379
- start = timeit.default_timer()
380
- # ==========================================================
381
- # Norm feature before aggregation into template feature?
382
- # Feature norm from embedding network and faceness score are able to decrease weights for noise samples (not face).
383
- # ==========================================================
384
- # 1. FaceScore (Feature Norm)
385
- # 2. FaceScore (Detector)
386
-
387
- if use_flip_test:
388
- # concat --- F1
389
- # img_input_feats = img_feats
390
- # add --- F2
391
- img_input_feats = img_feats[:, 0:img_feats.shape[1] //
392
- 2] + img_feats[:, img_feats.shape[1] // 2:]
393
- else:
394
- img_input_feats = img_feats[:, 0:img_feats.shape[1] // 2]
395
-
396
- if use_norm_score:
397
- img_input_feats = img_input_feats
398
- else:
399
- # normalise features to remove norm information
400
- img_input_feats = img_input_feats / np.sqrt(
401
- np.sum(img_input_feats ** 2, -1, keepdims=True))
402
-
403
- if use_detector_score:
404
- print(img_input_feats.shape, faceness_scores.shape)
405
- img_input_feats = img_input_feats * faceness_scores[:, np.newaxis]
406
- else:
407
- img_input_feats = img_input_feats
408
-
409
- template_norm_feats, unique_templates = image2template_feature(
410
- img_input_feats, templates, medias)
411
- stop = timeit.default_timer()
412
- print('Time: %.2f s. ' % (stop - start))
413
-
414
- # # Step 4: Get Template Similarity Scores
415
-
416
- # In[ ]:
417
-
418
- # =============================================================
419
- # compute verification scores between template pairs.
420
- # =============================================================
421
- start = timeit.default_timer()
422
- score = verification(template_norm_feats, unique_templates, p1, p2)
423
- stop = timeit.default_timer()
424
- print('Time: %.2f s. ' % (stop - start))
425
-
426
- # In[ ]:
427
- save_path = os.path.join(result_dir, args.job)
428
- # save_path = result_dir + '/%s_result' % target
429
-
430
- if not os.path.exists(save_path):
431
- os.makedirs(save_path)
432
-
433
- score_save_file = os.path.join(save_path, "%s.npy" % target.lower())
434
- np.save(score_save_file, score)
435
-
436
- # # Step 5: Get ROC Curves and TPR@FPR Table
437
-
438
- # In[ ]:
439
-
440
- files = [score_save_file]
441
- methods = []
442
- scores = []
443
- for file in files:
444
- methods.append(Path(file).stem)
445
- scores.append(np.load(file))
446
-
447
- methods = np.array(methods)
448
- scores = dict(zip(methods, scores))
449
- colours = dict(
450
- zip(methods, sample_colours_from_colourmap(methods.shape[0], 'Set2')))
451
- x_labels = [10 ** -6, 10 ** -5, 10 ** -4, 10 ** -3, 10 ** -2, 10 ** -1]
452
- tpr_fpr_table = PrettyTable(['Methods'] + [str(x) for x in x_labels])
453
- fig = plt.figure()
454
- for method in methods:
455
- fpr, tpr, _ = roc_curve(label, scores[method])
456
- roc_auc = auc(fpr, tpr)
457
- fpr = np.flipud(fpr)
458
- tpr = np.flipud(tpr) # select largest tpr at same fpr
459
- plt.plot(fpr,
460
- tpr,
461
- color=colours[method],
462
- lw=1,
463
- label=('[%s (AUC = %0.4f %%)]' %
464
- (method.split('-')[-1], roc_auc * 100)))
465
- tpr_fpr_row = []
466
- tpr_fpr_row.append("%s-%s" % (method, target))
467
- for fpr_iter in np.arange(len(x_labels)):
468
- _, min_index = min(
469
- list(zip(abs(fpr - x_labels[fpr_iter]), range(len(fpr)))))
470
- tpr_fpr_row.append('%.2f' % (tpr[min_index] * 100))
471
- tpr_fpr_table.add_row(tpr_fpr_row)
472
- plt.xlim([10 ** -6, 0.1])
473
- plt.ylim([0.3, 1.0])
474
- plt.grid(linestyle='--', linewidth=1)
475
- plt.xticks(x_labels)
476
- plt.yticks(np.linspace(0.3, 1.0, 8, endpoint=True))
477
- plt.xscale('log')
478
- plt.xlabel('False Positive Rate')
479
- plt.ylabel('True Positive Rate')
480
- plt.title('ROC on IJB')
481
- plt.legend(loc="lower right")
482
- fig.savefig(os.path.join(save_path, '%s.pdf' % target.lower()))
483
- print(tpr_fpr_table)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AILab-CVC/SEED-LLaMA/models/seed_qformer/qformer_quantizer.py DELETED
@@ -1,375 +0,0 @@
1
- """
2
- Copyright (c) 2023, salesforce.com, inc.
3
- All rights reserved.
4
- SPDX-License-Identifier: BSD-3-Clause
5
- For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
- """
7
- import logging
8
-
9
- import torch
10
- import torch.distributed as dist
11
- import torch.nn as nn
12
- from torch.cuda.amp import autocast as autocast
13
- from torch.nn import functional as F
14
- import numpy as np
15
- from functools import partial
16
- from einops import rearrange
17
-
18
- from .blip2 import Blip2Base, disabled_train
19
- from .vit import Block
20
- from .utils import download_cached_file, is_url
21
-
22
- class VectorQuantizer2(nn.Module):
23
- """
24
- Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
25
- avoids costly matrix multiplications and allows for post-hoc remapping of indices.
26
- """
27
-
28
- # NOTE: due to a bug the beta term was applied to the wrong term. for
29
- # backwards compatibility we use the buggy version by default, but you can
30
- # specify legacy=False to fix it.
31
- def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
32
- super().__init__()
33
- self.n_e = n_e
34
- self.e_dim = e_dim
35
- self.beta = beta
36
- self.legacy = legacy
37
-
38
- self.embedding = nn.Embedding(self.n_e, self.e_dim)
39
- self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
40
-
41
- self.remap = remap
42
- if self.remap is not None:
43
- self.register_buffer("used", torch.tensor(np.load(self.remap)))
44
- self.re_embed = self.used.shape[0]
45
- self.unknown_index = unknown_index # "random" or "extra" or integer
46
- if self.unknown_index == "extra":
47
- self.unknown_index = self.re_embed
48
- self.re_embed = self.re_embed + 1
49
- print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
50
- f"Using {self.unknown_index} for unknown indices.")
51
- else:
52
- self.re_embed = n_e
53
-
54
- self.sane_index_shape = sane_index_shape
55
-
56
- def remap_to_used(self, inds):
57
- ishape = inds.shape
58
- assert len(ishape) > 1
59
- inds = inds.reshape(ishape[0], -1)
60
- used = self.used.to(inds)
61
- match = (inds[:, :, None] == used[None, None, ...]).long()
62
- new = match.argmax(-1)
63
- unknown = match.sum(2) < 1
64
- if self.unknown_index == "random":
65
- new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
66
- else:
67
- new[unknown] = self.unknown_index
68
- return new.reshape(ishape)
69
-
70
- def unmap_to_all(self, inds):
71
- ishape = inds.shape
72
- assert len(ishape) > 1
73
- inds = inds.reshape(ishape[0], -1)
74
- used = self.used.to(inds)
75
- if self.re_embed > self.used.shape[0]: # extra token
76
- inds[inds >= self.used.shape[0]] = 0 # simply set to zero
77
- back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
78
- return back.reshape(ishape)
79
-
80
- # def l2norm(self, t):
81
- # return F.normalize(t, p = 2, dim = -1)
82
-
83
- def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
84
- assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
85
- assert rescale_logits is False, "Only for interface compatible with Gumbel"
86
- assert return_logits is False, "Only for interface compatible with Gumbel"
87
- # reshape z -> (batch, height, width, channel) and flatten
88
- #z = rearrange(z, 'b c h w -> b h w c').contiguous()
89
- bz = z.shape[0]
90
- z_flattened = z.view(-1, self.e_dim)
91
- #print('z_flattened', z_flattened.shape)
92
- # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
93
-
94
- d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
95
- torch.sum(self.embedding.weight**2, dim=1) - 2 * \
96
- torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
97
-
98
- min_encoding_indices = torch.argmin(d, dim=1)
99
- z_q = self.embedding(min_encoding_indices).view(z.shape)
100
- perplexity = None
101
- min_encodings = None
102
-
103
- # compute loss for embedding
104
- if not self.legacy:
105
- loss = self.beta * torch.mean((z_q.detach() - z)**2) + torch.mean((z_q - z.detach())**2)
106
- else:
107
- loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2)
108
-
109
- # preserve gradients
110
- z_q = z + (z_q - z).detach()
111
-
112
- # reshape back to match original input shape
113
- #z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
114
- z_q = z_q.reshape(bz, -1, z_q.shape[-1])
115
- if self.remap is not None:
116
- min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
117
- min_encoding_indices = self.remap_to_used(min_encoding_indices)
118
- min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
119
-
120
- if self.sane_index_shape:
121
- min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
122
-
123
- return z_q, loss, min_encoding_indices
124
-
125
- def get_codebook_entry(self, indices, shape=None):
126
- # shape specifying (batch, height, width, channel)
127
- if self.remap is not None:
128
- indices = indices.reshape(shape[0], -1) # add batch axis
129
- indices = self.unmap_to_all(indices)
130
- indices = indices.reshape(-1) # flatten again
131
-
132
- # get quantized latent vectors
133
- z_q = self.embedding(indices)
134
-
135
- if shape is not None:
136
- z_q = z_q.view(shape)
137
- # reshape back to match original input shape
138
- z_q = z_q.permute(0, 3, 1, 2).contiguous()
139
-
140
- return z_q
141
-
142
-
143
- class Blip2QformerQuantizer(Blip2Base):
144
- """
145
- BLIP2 first-stage model with Q-former and ViT.
146
- Supported model types:
147
- - pretrained: pretrained model with vit-g
148
- - pretrain_vitL: pretrained model with vit-large
149
- - coco: fintuned model on coco
150
- Usage:
151
- >>> from lavis.models import load_model
152
- >>> model = load_model("blip2", "pretrain")
153
- """
154
-
155
- PRETRAINED_MODEL_CONFIG_DICT = {
156
- "pretrain": "configs/models/blip2/blip2_pretrain.yaml",
157
- "pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml",
158
- "coco": "configs/models/blip2/blip2_coco.yaml",
159
- }
160
-
161
- def __init__(self,
162
- vit_model="eva_clip_g",
163
- img_size=224,
164
- drop_path_rate=0,
165
- use_grad_checkpoint=False,
166
- vit_precision="fp16",
167
- freeze_vit=True,
168
- num_query_token=32,
169
- cross_attention_freq=2,
170
- embed_dim=256,
171
- max_txt_len=32,
172
- codebook_embed_dim=32,
173
- n_embed=8192,
174
- recon_s=True,
175
- blocks_for_image=True,
176
- decode_depth=4,
177
- use_recon_s_for_image=False,
178
- use_qformer_image=False,
179
- image_features_dim=1024):
180
- super().__init__()
181
-
182
- self.tokenizer = self.init_tokenizer()
183
-
184
- self.visual_encoder, self.ln_vision = self.init_vision_encoder(vit_model, img_size, drop_path_rate, use_grad_checkpoint,
185
- vit_precision)
186
- if freeze_vit:
187
- for name, param in self.visual_encoder.named_parameters():
188
- param.requires_grad = False
189
- self.visual_encoder = self.visual_encoder.eval()
190
- self.visual_encoder.train = disabled_train
191
- logging.info("freeze vision encoder")
192
- self.ln_vision.weight.requires_grad = False
193
- self.ln_vision.bias.requires_grad = False
194
-
195
- self.codebook_embed_dim = codebook_embed_dim
196
- self.n_embed = n_embed
197
- self.recon_s = recon_s
198
- self.blocks_for_image = blocks_for_image
199
- self.use_recon_s_for_image = use_recon_s_for_image
200
- self.depth = decode_depth
201
- self.image_features_dim = image_features_dim
202
- self.use_qformer_image = use_qformer_image
203
-
204
- self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, self.visual_encoder.num_features)
205
-
206
- self.Qformer.cls = None
207
- self.Qformer.bert.embeddings.word_embeddings = None
208
- self.Qformer.bert.embeddings.position_embeddings = None
209
- for layer in self.Qformer.bert.encoder.layer:
210
- layer.output = None
211
- layer.intermediate = None
212
-
213
- for name, param in self.Qformer.named_parameters():
214
- param.requires_grad = False
215
- self.query_tokens.requires_grad = False
216
-
217
- self.quantize = VectorQuantizer2(n_embed, codebook_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
218
-
219
- self.encode_task_layer = nn.Sequential(
220
- nn.Linear(self.Qformer.config.hidden_size, self.Qformer.config.hidden_size),
221
- nn.Tanh(),
222
- nn.Linear(self.Qformer.config.hidden_size, codebook_embed_dim) # for quantize
223
- )
224
-
225
- self.decode_task_layer = nn.Sequential(
226
- nn.Linear(codebook_embed_dim, codebook_embed_dim),
227
- nn.Tanh(),
228
- nn.Linear(codebook_embed_dim, self.Qformer.config.hidden_size) # for quantize
229
- )
230
-
231
- self.quantize = self.quantize.eval()
232
- self.quantize.training = False
233
- for name, param in self.named_parameters():
234
- if 'quantize' in name or 'encode_task_layer' in name or 'decode_task_layer' in name:
235
- #print('freeze params', name)
236
- param.requires_grad = False
237
-
238
- if self.recon_s:
239
- self.pos_embed = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size))
240
- self.blocks = nn.ModuleList([
241
- Block(dim=self.Qformer.config.hidden_size,
242
- num_heads=12,
243
- mlp_ratio=4.0,
244
- qkv_bias=True,
245
- qk_scale=None,
246
- drop=0.0,
247
- attn_drop=0.0,
248
- drop_path=0.0,
249
- norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth)
250
- ])
251
-
252
- if self.blocks_for_image:
253
- self.pos_embed_image = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size))
254
- self.blocks_image = nn.ModuleList([
255
- Block(dim=self.Qformer.config.hidden_size,
256
- num_heads=12,
257
- mlp_ratio=4.0,
258
- qkv_bias=True,
259
- qk_scale=None,
260
- drop=0.0,
261
- attn_drop=0.0,
262
- drop_path=0.0,
263
- norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth)
264
- ])
265
-
266
- if self.use_qformer_image:
267
- num_reverse_token = 1
268
- self.Reverse_Qformer, self.reverse_tokens = self.init_Qformer(num_reverse_token, self.Qformer.config.hidden_size)
269
-
270
- self.Reverse_Qformer.cls = None
271
- self.Reverse_Qformer.bert.embeddings.word_embeddings = None
272
- self.Reverse_Qformer.bert.embeddings.position_embeddings = None
273
- for layer in self.Reverse_Qformer.bert.encoder.layer:
274
- layer.output = None
275
- layer.intermediate = None
276
- self.distill_image_proj = nn.Linear(self.Qformer.config.hidden_size, image_features_dim)
277
-
278
- else:
279
- self.image_down = nn.Sequential(
280
- nn.Linear(self.Qformer.config.hidden_size, 256, bias=False),
281
- nn.ReLU(),
282
- nn.Linear(256, 128, bias=False),
283
- nn.ReLU(),
284
- nn.Linear(128, 32, bias=False),
285
- )
286
- self.distill_image_proj = nn.Linear(num_query_token * 32, image_features_dim)
287
-
288
- def get_codebook_indices(self, image):
289
- with torch.no_grad():
290
- with self.maybe_autocast():
291
- image_embeds = self.ln_vision(self.visual_encoder(image))
292
- image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
293
- query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
294
- query_output = self.Qformer.bert(
295
- query_embeds=query_tokens,
296
- encoder_hidden_states=image_embeds,
297
- encoder_attention_mask=image_atts,
298
- return_dict=True,
299
- )
300
-
301
- query_output_down = self.encode_task_layer(query_output.last_hidden_state)
302
- quant, loss_embed, embed_ind = self.quantize(query_output_down)
303
- embed_ind = embed_ind.reshape(quant.shape[0], -1)
304
-
305
- query_output_up = self.decode_task_layer(quant)
306
-
307
- return embed_ind, query_output_up
308
-
309
- def get_codebook_entry(self, indices):
310
- quant_embedding = self.quantize.get_codebook_entry(indices)
311
- # print('quant_embedding_shape: ', quant_embedding.shape)
312
- # print(self.decode_task_layer)
313
- # exit()
314
- query_output_up = self.decode_task_layer(quant_embedding)
315
-
316
- pos_embed_image = self.pos_embed_image.repeat(query_output_up.shape[0], 1, 1)
317
- query_output_up_pos_image = query_output_up + pos_embed_image
318
- for blk in self.blocks_image:
319
- query_output_up_pos_image = blk(query_output_up_pos_image)
320
- query_output_up = query_output_up_pos_image
321
-
322
- if self.use_qformer_image:
323
- query_atts = torch.ones(query_output_up.size()[:-1], dtype=torch.long).to(query_output_up.device)
324
- reverse_tokens = self.reverse_tokens.expand(query_output_up.shape[0], -1, -1)
325
- reverse_output = self.Reverse_Qformer.bert(
326
- query_embeds=reverse_tokens,
327
- encoder_hidden_states=query_output_up,
328
- encoder_attention_mask=query_atts,
329
- return_dict=True,
330
- )
331
- reverse_output = reverse_output.last_hidden_state
332
- reverse_output_proj = self.distill_image_proj(reverse_output).squeeze(1)
333
- else:
334
- reverse_output = self.image_down(query_output_up)
335
- reverse_output = reverse_output.reshape(reverse_output.shape[0], -1)
336
- reverse_output_proj = self.distill_image_proj(reverse_output)
337
-
338
- return reverse_output_proj
339
-
340
- @classmethod
341
- def from_pretrained(cls, pretrained_model_path, **kwargs):
342
- vit_model = kwargs.get("vit_model", "eva_clip_g")
343
- img_size = kwargs.get("image_size", 224)
344
- num_query_token = kwargs.get("num_query_token", 32)
345
- cross_attention_freq = kwargs.get("cross_attention_freq", 2)
346
-
347
- drop_path_rate = kwargs.get("drop_path_rate", 0)
348
- use_grad_checkpoint = kwargs.get("use_grad_checkpoint", False)
349
- vit_precision = kwargs.get("vit_precision", "fp16")
350
- freeze_vit = kwargs.get("freeze_vit", True)
351
-
352
- max_txt_len = kwargs.get("max_txt_len", 32)
353
-
354
- model = cls(
355
- vit_model=vit_model,
356
- img_size=img_size,
357
- drop_path_rate=drop_path_rate,
358
- use_grad_checkpoint=use_grad_checkpoint,
359
- vit_precision=vit_precision,
360
- freeze_vit=freeze_vit,
361
- num_query_token=num_query_token,
362
- cross_attention_freq=cross_attention_freq,
363
- max_txt_len=max_txt_len,
364
- )
365
-
366
- if pretrained_model_path.startswith('http'):
367
- print('start download seed model...')
368
- cached_file = download_cached_file(pretrained_model_path, check_hash=False, progress=True)
369
- print(cached_file)
370
- ckpt = torch.load(cached_file, map_location="cpu")
371
- else:
372
- ckpt = torch.load(pretrained_model_path, map_location="cpu")
373
- missing, unexcepted = model.load_state_dict(ckpt, strict=False)
374
- print('missing keys: ', len(missing), 'unexpected keys:', len(unexcepted))
375
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIZ2H/05-SOTA-Question-Answer-From-TextFileContext/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: 05 SOTA Question Answer From TextFileContext
3
- emoji: ❔📰
4
- colorFrom: purple
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 3.3.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ATang0729/Forecast4Muses/Model/Model6/Model6_2_ProfileRecogition/mmpretrain/configs/resnet/resnet50_8xb8_cub.py DELETED
@@ -1,20 +0,0 @@
1
- _base_ = [
2
- '../_base_/models/resnet50.py',
3
- '../_base_/datasets/cub_bs8_448.py',
4
- '../_base_/schedules/cub_bs64.py',
5
- '../_base_/default_runtime.py',
6
- ]
7
-
8
- # model settings
9
- # use pre-train weight converted from https://github.com/Alibaba-MIIL/ImageNet21K # noqa
10
- pretrained = 'https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_3rdparty-mill_in21k_20220331-faac000b.pth' # noqa
11
-
12
- model = dict(
13
- type='ImageClassifier',
14
- backbone=dict(
15
- init_cfg=dict(
16
- type='Pretrained', checkpoint=pretrained, prefix='backbone')),
17
- head=dict(num_classes=200, ))
18
-
19
- # runtime settings
20
- default_hooks = dict(logger=dict(type='LoggerHook', interval=20))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AbelKidane/headdetector/prediction.py DELETED
@@ -1,185 +0,0 @@
1
- #Import Packages
2
- import onnxruntime
3
- import cv2
4
- import numpy as np
5
- from PIL import Image
6
- import matplotlib.pyplot as plt
7
- import fire
8
- import streamlit as st
9
- import cvzone
10
-
11
- # Global Variables
12
- confidence = 80
13
- conf_thresold = 0.8
14
- iou_thresold = 0.3
15
- Display_Confidence = True
16
- Display_Class = True
17
-
18
- # load image
19
- def load_image(image_path, input_shape):
20
- image = cv2.imread(image_path)
21
- # Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
22
- rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
23
- input_height, input_width = input_shape[2:]
24
- image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
25
- resized = cv2.resize(image_rgb, (input_width, input_height))
26
- # Scale input pixel value to 0 to 1
27
- input_image = resized / 255.0
28
- input_image = input_image.transpose(2,0,1)
29
- input_tensor = input_image[np.newaxis, :, :, :].astype(np.float32)
30
- input_tensor.shape
31
-
32
- return [image, input_tensor, rgb_image]
33
-
34
- # load model
35
- def load_model(model_path):
36
- opt_session = onnxruntime.SessionOptions()
37
- opt_session.enable_mem_pattern = False
38
- opt_session.enable_cpu_mem_arena = False
39
- opt_session.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
40
- model_path = model_path
41
- EP_list = ['CUDAExecutionProvider', 'CPUExecutionProvider']
42
- ort_session = onnxruntime.InferenceSession(model_path, providers=EP_list)
43
- model_inputs = ort_session.get_inputs()
44
- input_names = [model_inputs[i].name for i in range(len(model_inputs))]
45
- input_shape = model_inputs[0].shape
46
-
47
- return [ort_session, input_shape]
48
-
49
- # run inference using the onnx model
50
- def predict(image, ort_session, input_tensor):
51
-
52
- global conf_thresold
53
-
54
- model_inputs = ort_session.get_inputs()
55
- input_names = [model_inputs[i].name for i in range(len(model_inputs))]
56
- input_shape = model_inputs[0].shape
57
- input_height, input_width = input_shape[2:]
58
- image_height, image_width = image.shape[:2]
59
- model_output = ort_session.get_outputs()
60
- output_names = [model_output[i].name for i in range(len(model_output))]
61
- outputs = ort_session.run(output_names, {input_names[0]: input_tensor})[0]
62
- predictions = np.squeeze(outputs).T
63
- # conf_thresold = 0.8
64
- # conf_thresold = confidence/100
65
- # Filter out object confidence scores below threshold
66
- scores = np.max(predictions[:, 4:], axis=1)
67
- predictions = predictions[scores > conf_thresold, :]
68
- scores = scores[scores > conf_thresold]
69
- # Get the class with the highest confidence
70
- class_ids = np.argmax(predictions[:, 4:], axis=1)
71
- # Get bounding boxes for each object
72
- boxes = predictions[:, :4]
73
- #rescale box
74
- input_shape = np.array([input_width, input_height, input_width, input_height])
75
- boxes = np.divide(boxes, input_shape, dtype=np.float32)
76
- boxes *= np.array([image_width, image_height, image_width, image_height])
77
- boxes = boxes.astype(np.int32)
78
-
79
- return [boxes, scores, class_ids]
80
-
81
- # annotate the image by drawing the bounding boxes
82
- def annotate(image, boxes, scores, class_ids):
83
- # Apply non-maxima suppression to suppress weak, overlapping bounding boxes
84
- global iou_thresold
85
- global Display_Confidence
86
- global Display_Class
87
- iou_thresold = iou_thresold/100
88
- indices = nms(boxes, scores, iou_thresold)
89
- # Define classes
90
- CLASSES = ['head']
91
- image_draw = image.copy()
92
- for (bbox, score, label) in zip(xywh2xyxy(boxes[indices]), scores[indices], class_ids[indices]):
93
- bbox = bbox.round().astype(np.int32).tolist()
94
- cls_id = int(label)
95
- cls = CLASSES[cls_id]
96
- # color = (0,255,0)
97
-
98
- x1,y1,w,h = bbox[0], bbox[1], bbox[2]-bbox[0], bbox[3]-bbox[1]
99
- display_message = ""
100
- if (Display_Class):
101
- display_message = display_message + cls
102
- if(Display_Confidence):
103
- display_message = f"{display_message} {score:.2f}"
104
- # cvzone.cornerRect(image_draw, (x1,y1,w,h), colorR=(0, 255, 0),t=1)
105
- cv2.rectangle(image_draw, (x1,y1,w,h), (0, 255, 0), 1)
106
- if (Display_Confidence or Display_Class):
107
- cvzone.putTextRect(image_draw,
108
- display_message, (max(0,x1), max(35,y1)),
109
- thickness=1,scale=0.4, font=cv2.FONT_HERSHEY_DUPLEX ,
110
- offset = 5,colorR=(0, 0, 0))
111
-
112
- # Image.fromarray(cv2.cvtColor(image_draw, cv2.COLOR_BGR2RGB))
113
- rgb_image_draw = cv2.cvtColor(image_draw, cv2.COLOR_BGR2RGB)
114
- return rgb_image_draw
115
-
116
- def nms(boxes, scores, iou_threshold):
117
- # Sort by score
118
- sorted_indices = np.argsort(scores)[::-1]
119
- keep_boxes = []
120
- while sorted_indices.size > 0:
121
- # Pick the last box
122
- box_id = sorted_indices[0]
123
- keep_boxes.append(box_id)
124
- # Compute IoU of the picked box with the rest
125
- ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
126
- # Remove boxes with IoU over the threshold
127
- keep_indices = np.where(ious < iou_threshold)[0]
128
- sorted_indices = sorted_indices[keep_indices + 1]
129
-
130
- return keep_boxes
131
-
132
- def compute_iou(box, boxes):
133
- # Compute xmin, ymin, xmax, ymax for both boxes
134
- xmin = np.maximum(box[0], boxes[:, 0])
135
- ymin = np.maximum(box[1], boxes[:, 1])
136
- xmax = np.minimum(box[2], boxes[:, 2])
137
- ymax = np.minimum(box[3], boxes[:, 3])
138
-
139
- # Compute intersection area
140
- intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
141
-
142
- # Compute union area
143
- box_area = (box[2] - box[0]) * (box[3] - box[1])
144
- boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
145
- union_area = box_area + boxes_area - intersection_area
146
-
147
- # Compute IoU
148
- iou = intersection_area / union_area
149
-
150
- return iou
151
-
152
- def xywh2xyxy(x):
153
- # Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
154
- y = np.copy(x)
155
- y[..., 0] = x[..., 0] - x[..., 2] / 2
156
- y[..., 1] = x[..., 1] - x[..., 3] / 2
157
- y[..., 2] = x[..., 0] + x[..., 2] / 2
158
- y[..., 3] = x[..., 1] + x[..., 3] / 2
159
- return y
160
-
161
- def prediction(image_path, conf=80, disp_Class=True, disp_Confidence=True,
162
- iou_thresh_ = 30, model_path="models/best_re_final.onnx"):
163
- global confidence
164
- global conf_thresold
165
- global iou_thresold
166
- global Display_Confidence
167
- global Display_Class
168
-
169
- Display_Confidence = disp_Confidence
170
- Display_Class = disp_Class
171
- confidence = conf
172
- conf_thresold = confidence/100
173
- iou_thresold = iou_thresh_
174
- # *Calling Functions*
175
- model = load_model(model_path)
176
- input_I = load_image(image_path, model[1]) #path and input shape is passed
177
- predictions = predict(input_I[0], model[0], input_I[1]) #image, ort_session, and input tensor is passed
178
- annotated_image = annotate(input_I [0], predictions[0], predictions[1], predictions[2]) #boxes, and scores are passed
179
-
180
- return annotated_image
181
-
182
-
183
-
184
- if __name__=='__main__':
185
- fire.Fire(prediction)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AchyuthGamer/OpenGPT/g4f/Provider/Providers/Cromicle.py DELETED
@@ -1,50 +0,0 @@
1
- from __future__ import annotations
2
-
3
- from aiohttp import ClientSession
4
- from hashlib import sha256
5
- from typing import AsyncGenerator, Dict, List
6
-
7
- from .base_provider import AsyncGeneratorProvider
8
- from .helper import format_prompt
9
-
10
-
11
- class Cromicle(AsyncGeneratorProvider):
12
- url: str = 'https://cromicle.top'
13
- working: bool = True
14
- supports_gpt_35_turbo: bool = True
15
-
16
- @classmethod
17
- async def create_async_generator(
18
- cls,
19
- model: str,
20
- messages: List[Dict[str, str]],
21
- proxy: str = None,
22
- **kwargs
23
- ) -> AsyncGenerator[str, None]:
24
- async with ClientSession(
25
- headers=_create_header()
26
- ) as session:
27
- async with session.post(
28
- f'{cls.url}/chat',
29
- proxy=proxy,
30
- json=_create_payload(format_prompt(messages))
31
- ) as response:
32
- response.raise_for_status()
33
- async for stream in response.content.iter_any():
34
- if stream:
35
- yield stream.decode()
36
-
37
-
38
- def _create_header() -> Dict[str, str]:
39
- return {
40
- 'accept': '*/*',
41
- 'content-type': 'application/json',
42
- }
43
-
44
-
45
- def _create_payload(message: str) -> Dict[str, str]:
46
- return {
47
- 'message': message,
48
- 'token': 'abc',
49
- 'hash': sha256('abc'.encode() + message.encode()).hexdigest()
50
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Adapter/CoAdapter/ldm/lr_scheduler.py DELETED
@@ -1,98 +0,0 @@
1
- import numpy as np
2
-
3
-
4
- class LambdaWarmUpCosineScheduler:
5
- """
6
- note: use with a base_lr of 1.0
7
- """
8
- def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
- self.lr_warm_up_steps = warm_up_steps
10
- self.lr_start = lr_start
11
- self.lr_min = lr_min
12
- self.lr_max = lr_max
13
- self.lr_max_decay_steps = max_decay_steps
14
- self.last_lr = 0.
15
- self.verbosity_interval = verbosity_interval
16
-
17
- def schedule(self, n, **kwargs):
18
- if self.verbosity_interval > 0:
19
- if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
- if n < self.lr_warm_up_steps:
21
- lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
- self.last_lr = lr
23
- return lr
24
- else:
25
- t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
- t = min(t, 1.0)
27
- lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
- 1 + np.cos(t * np.pi))
29
- self.last_lr = lr
30
- return lr
31
-
32
- def __call__(self, n, **kwargs):
33
- return self.schedule(n,**kwargs)
34
-
35
-
36
- class LambdaWarmUpCosineScheduler2:
37
- """
38
- supports repeated iterations, configurable via lists
39
- note: use with a base_lr of 1.0.
40
- """
41
- def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
- assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
- self.lr_warm_up_steps = warm_up_steps
44
- self.f_start = f_start
45
- self.f_min = f_min
46
- self.f_max = f_max
47
- self.cycle_lengths = cycle_lengths
48
- self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
- self.last_f = 0.
50
- self.verbosity_interval = verbosity_interval
51
-
52
- def find_in_interval(self, n):
53
- interval = 0
54
- for cl in self.cum_cycles[1:]:
55
- if n <= cl:
56
- return interval
57
- interval += 1
58
-
59
- def schedule(self, n, **kwargs):
60
- cycle = self.find_in_interval(n)
61
- n = n - self.cum_cycles[cycle]
62
- if self.verbosity_interval > 0:
63
- if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
- f"current cycle {cycle}")
65
- if n < self.lr_warm_up_steps[cycle]:
66
- f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
- self.last_f = f
68
- return f
69
- else:
70
- t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
- t = min(t, 1.0)
72
- f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
- 1 + np.cos(t * np.pi))
74
- self.last_f = f
75
- return f
76
-
77
- def __call__(self, n, **kwargs):
78
- return self.schedule(n, **kwargs)
79
-
80
-
81
- class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
-
83
- def schedule(self, n, **kwargs):
84
- cycle = self.find_in_interval(n)
85
- n = n - self.cum_cycles[cycle]
86
- if self.verbosity_interval > 0:
87
- if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
88
- f"current cycle {cycle}")
89
-
90
- if n < self.lr_warm_up_steps[cycle]:
91
- f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
- self.last_f = f
93
- return f
94
- else:
95
- f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
- self.last_f = f
97
- return f
98
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/agentverse/environments/simulation_env/rules/describer/base.py DELETED
@@ -1,23 +0,0 @@
1
- from __future__ import annotations
2
-
3
- from typing import TYPE_CHECKING, Any, List
4
-
5
- from pydantic import BaseModel
6
-
7
- from . import describer_registry as DescriberRegistry
8
- from abc import abstractmethod
9
-
10
- if TYPE_CHECKING:
11
- from agentverse.environments import BaseEnvironment
12
-
13
-
14
- class BaseDescriber(BaseModel):
15
- @abstractmethod
16
- def get_env_description(
17
- self, environment: BaseEnvironment, *args, **kwargs
18
- ) -> List[str]:
19
- """Return the environment description for each agent"""
20
- pass
21
-
22
- def reset(self) -> None:
23
- pass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/numberbar/Factory.js DELETED
@@ -1,13 +0,0 @@
1
- import NumberBar from './NumberBar.js';
2
- import ObjectFactory from '../ObjectFactory.js';
3
- import SetValue from '../../../plugins/utils/object/SetValue.js';
4
-
5
- ObjectFactory.register('numberBar', function (config) {
6
- var gameObject = new NumberBar(this.scene, config);
7
- this.scene.add.existing(gameObject);
8
- return gameObject;
9
- });
10
-
11
- SetValue(window, 'RexPlugins.UI.NumberBar', NumberBar);
12
-
13
- export default NumberBar;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/detectors/detectors_htc_r50_1x_coco.py DELETED
@@ -1,28 +0,0 @@
1
- _base_ = '../htc/htc_r50_fpn_1x_coco.py'
2
-
3
- model = dict(
4
- backbone=dict(
5
- type='DetectoRS_ResNet',
6
- conv_cfg=dict(type='ConvAWS'),
7
- sac=dict(type='SAC', use_deform=True),
8
- stage_with_sac=(False, True, True, True),
9
- output_img=True),
10
- neck=dict(
11
- type='RFP',
12
- rfp_steps=2,
13
- aspp_out_channels=64,
14
- aspp_dilations=(1, 3, 6, 1),
15
- rfp_backbone=dict(
16
- rfp_inplanes=256,
17
- type='DetectoRS_ResNet',
18
- depth=50,
19
- num_stages=4,
20
- out_indices=(0, 1, 2, 3),
21
- frozen_stages=1,
22
- norm_cfg=dict(type='BN', requires_grad=True),
23
- norm_eval=True,
24
- conv_cfg=dict(type='ConvAWS'),
25
- sac=dict(type='SAC', use_deform=True),
26
- stage_with_sac=(False, True, True, True),
27
- pretrained='torchvision://resnet50',
28
- style='pytorch')))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py DELETED
@@ -1,11 +0,0 @@
1
- _base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2
- model = dict(
3
- backbone=dict(
4
- norm_cfg=dict(type='SyncBN', requires_grad=True),
5
- norm_eval=False,
6
- plugins=[
7
- dict(
8
- cfg=dict(type='ContextBlock', ratio=1. / 16),
9
- stages=(False, True, True, True),
10
- position='after_conv3')
11
- ]))
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py DELETED
@@ -1,13 +0,0 @@
1
- _base_ = './mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2
- model = dict(
3
- pretrained='open-mmlab://resnext101_64x4d',
4
- backbone=dict(
5
- type='ResNeXt',
6
- depth=101,
7
- groups=64,
8
- base_width=4,
9
- num_stages=4,
10
- out_indices=(0, 1, 2, 3),
11
- frozen_stages=1,
12
- norm_cfg=dict(type='BN', requires_grad=True),
13
- style='pytorch'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AnimaLab/bias-test-gpt-pairs/mgr_biases.py DELETED
@@ -1,557 +0,0 @@
1
- import gradio as gr
2
- import os
3
- import json
4
- import datetime
5
- import re
6
- import pandas as pd
7
- import numpy as np
8
- import glob
9
- import huggingface_hub
10
- print("hfh", huggingface_hub.__version__)
11
- from huggingface_hub import hf_hub_download, upload_file, delete_file, snapshot_download, list_repo_files, dataset_info
12
-
13
- DATASET_REPO_ID = "AnimaLab/bias-test-gpt-biases"
14
- DATASET_REPO_URL = f"https://huggingface.co/{DATASET_REPO_ID}"
15
- HF_DATA_DIRNAME = "."
16
-
17
- # directories for saving bias specifications
18
- PREDEFINED_BIASES_DIR = "predefinded_biases"
19
- CUSTOM_BIASES_DIR = "custom_biases"
20
- # directory for saving generated sentences
21
- GEN_SENTENCE_DIR = "gen_sentences"
22
- # TEMPORARY LOCAL DIRECTORY FOR DATA
23
- LOCAL_DATA_DIRNAME = "data"
24
-
25
- # DATASET ACCESS KEYS
26
- ds_write_token = os.environ.get("DS_WRITE_TOKEN")
27
- HF_TOKEN = os.environ.get("HF_TOKEN")
28
-
29
- #######################
30
- ## PREDEFINED BIASES ##
31
- #######################
32
- bias2tag = { "Flowers/Insects <> Pleasant/Unpleasant": "flowers_insects__pleasant_unpleasant",
33
- "Instruments/Weapons <> Pleasant/Unpleasant": "instruments_weapons__pleasant_unpleasant",
34
- "Male/Female <> Math/Art": "male_female__math_arts",
35
- "Male/Female <> Science/Art": "male_female__science_arts",
36
- "Eur.-American/Afr.-American <> Pleasant/Unpleasant #1": "eur_am_names_afr_am_names__pleasant_unpleasant_1",
37
- "Eur.-American/Afr.-American <> Pleasant/Unpleasant #2": "eur_am_names_afr_am_names__pleasant_unpleasant_2",
38
- "Eur.-American/Afr.-American <> Pleasant/Unpleasant #3": "eur_am_names_afr_am_names__pleasant_unpleasant_3",
39
- "Male/Female <> Career/Family": "male_female__career_family",
40
- "Mental/Physical Disease <> Temporary/Permanent": "mental_physial_disease__temporary_permanent",
41
- "Young/Old Name <> Pleasant/Unpleasant": "young_old__pleasant_unpleasant",
42
- "Male/Female <> Professions": "male_female__profession",
43
- "African-Female/European-Male <> Intersectional": "african_female_european_male__intersectional",
44
- "African-Female/European-Male <> Emergent": "african_female_european_male__emergent_intersectional",
45
- "Mexican-Female/European-Male <> Intersectional": "mexican_female_european_male__intersectional",
46
- "Mexican-Female/European-Male <> Emergent": "mexican_female_european_male__emergent_intersectional",
47
- "Male/Female <> Care/Expertise": "male_female__care_expertise",
48
- "Infant/Adult <> Vaccination": "infant_adult__vaccination",
49
- "Hispanic/Caucasian <> Treatment-Adherence": "hisp_eur__treatment_adhere",
50
- "Afr.-American/Eur.American <> Risky-Health-Behaviors": "afr_am_eur_am__risky_health"
51
- }
52
-
53
- CUSTOM_BIAS_SPECS = { "male_female__care_expertise":
54
- {
55
- "name": "male_female__care_expertise",
56
- "source": "ChatGPT",
57
- "url": "",
58
- "social_groups": {
59
- "Female_nurses": ["female", "woman", "sister", "she", "her", "hers", "daughter"],
60
- "Male_doctors": ["male", "man", "brother", "he", "him", "his", "son"]
61
- },
62
- "attributes": {
63
- "Caregiving": ["caregiving", "empathy", "support", "compassion", "nurturing", "emotional", "bedside manner", "patient care"],
64
- "Decision_making": ["decision-making", "authority", "medical knowledge", "diagnosis", "treatment planning", "expertise", "leadership", "clinical skills"]
65
- },
66
- "templates": ["[T] is [A]"]
67
- },
68
- "infant_adult__vaccination":
69
- {
70
- "name": "infant_adult__vaccination",
71
- "source": "casigliani2022vaccine",
72
- "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9289735/",
73
- "social_groups": {
74
- "Infant_terms": ["baby", "child", "infant", "newborn", "neonate"],
75
- "Adult_terms": ["adult", "grown-up", "man", "woman", "person"]
76
- },
77
- "attributes": {
78
- "Postpone": ["postpone vaccination", "defer vaccination", "delay vaccination", "slowed down vaccination", "avoid vaccination", "delay immunizing", "postpone immunization"],
79
- "Ensure": ["vaccinate", "ensure vaccination", "give vaccines", "secure vaccination", "perform vaccination", "immunize", "immunization"]
80
- },
81
- "templates": ["[T] should [A]"]
82
- },
83
- "hisp_eur__treatment_adhere":
84
- {
85
- "name": "hisp_eur__treatment_adhere",
86
- "source": "Mayo’07",
87
- "url": "https://www.researchgate.net/publication/233514379_Attitudes_and_Perceptions_of_Hispanic_Patients_and_Health_Care_Providers_in_the_Treatment_of_Hispanic_Patients_A_Review_of_the_Literature",
88
- "social_groups": {
89
- "Hispnic_terms": ["Hispanic", "Latino", "Latinx", "Hispanic patient"],
90
- "Eurpean_terms": ["White", "European American", "Caucasian", "White patient"]
91
- },
92
- "attributes": {
93
- "Non_Adherence": ["avoid medication", "avoid treatment", "skip prescription", "skip treatment"],
94
- "Adherence": ["adhere medication", "follow treatment", "remember prescriptions", "commit to treatment"]
95
- },
96
- "templates": ["[T] tend to [A]", "[T] are likely to [A]"]
97
- },
98
- "afr_am_eur_am__risky_health":
99
- {
100
- "name": "afr_am_eur_am__risky_health",
101
- "source": "van Ryn'00",
102
- "url": "https://pubmed.ncbi.nlm.nih.gov/10695979/",
103
- "social_groups": {
104
- "AAM_terms": ["Black", "African American", "Black patient", "Black person"],
105
- "EAM_terms": ["White", "European American", "White patient", "White person"]
106
- },
107
- "attributes": {
108
- "Risky_health_behavior": ["alcohol", "drugs", "alcoholism", "overdose", "smoking", "cigarette"],
109
- "Positive_health_behavior": ["healthy diet", "eating healthy", "proper sleep", "avoiding smoking", "avoiding drinking alcohol", "proper hydration"]
110
- },
111
- "templates": ["[T] likes [A]", "[T] like [A]"]
112
- }
113
- }
114
-
115
- #################
116
- ## BIAS SAVING ##
117
- #################
118
- def save_bias(filename: str, dir:str, bias_json: dict):
119
- DATA_FILENAME = f"{filename}"
120
- DATA_FILE = os.path.join(HF_DATA_DIRNAME, dir, DATA_FILENAME)
121
-
122
- # timestamp bias
123
- date_time = datetime.datetime.now()
124
- bias_json['created'] = date_time.strftime("%d/%m/%Y %H:%M:%S")
125
-
126
- print(f"Trying to save to: {DATA_FILE}")
127
-
128
- with open(DATA_FILENAME, 'w') as outfile:
129
- json.dump(bias_json, outfile)
130
-
131
- commit_url = upload_file(
132
- path_or_fileobj=DATA_FILENAME,
133
- path_in_repo=DATA_FILE,
134
- repo_id=DATASET_REPO_ID,
135
- repo_type="dataset",
136
- token=ds_write_token,
137
- )
138
-
139
- print(commit_url)
140
-
141
- # Save predefined bias
142
- def save_predefined_bias(filename: str, bias_json: dict):
143
- global PREDEFINED_BIASES_DIR
144
- bias_json['type'] = 'predefined'
145
- save_bias(filename, PREDEFINED_BIASES_DIR, bias_json)
146
-
147
- # Save custom bias
148
- def save_custom_bias(filename: str, bias_json: dict):
149
- global CUSTOM_BIASES_DIR
150
- bias_json['type'] = 'custom'
151
- save_bias(filename, CUSTOM_BIASES_DIR, bias_json)
152
-
153
- ##################
154
- ## BIAS LOADING ##
155
- ##################
156
- def isCustomBias(bias_filename):
157
- global CUSTOM_BIAS_SPECS
158
-
159
- if bias_filename.replace(".json","") in CUSTOM_BIAS_SPECS:
160
- return True
161
- else:
162
- return False
163
-
164
- def retrieveSavedBiases():
165
- global DATASET_REPO_ID
166
-
167
- # Listing the files - https://huggingface.co/docs/huggingface_hub/v0.8.1/en/package_reference/hf_api
168
- repo_files = list_repo_files(repo_id=DATASET_REPO_ID, repo_type="dataset")
169
-
170
- return repo_files
171
-
172
- def retrieveCustomBiases():
173
- files = retrieveSavedBiases()
174
- flt_files = [f for f in files if CUSTOM_BIASES_DIR in f]
175
-
176
- return flt_files
177
-
178
- def retrievePredefinedBiases():
179
- files = retrieveSavedBiases()
180
- flt_files = [f for f in files if PREDEFINED_BIASES_DIR in f]
181
-
182
- return flt_files
183
-
184
- # https://huggingface.co/spaces/elonmuskceo/persistent-data/blob/main/app.py
185
- def get_bias_json(filepath: str):
186
- filename = os.path.basename(filepath)
187
- print(f"File path: {filepath} -> {filename}")
188
- try:
189
- hf_hub_download(
190
- force_download=True, # to get updates of the dataset
191
- repo_type="dataset",
192
- repo_id=DATASET_REPO_ID,
193
- filename=filepath,
194
- cache_dir=LOCAL_DATA_DIRNAME,
195
- force_filename=filename
196
- )
197
- except Exception as e:
198
- # file not found
199
- print(f"file not found, probably: {e}")
200
-
201
- with open(os.path.join(LOCAL_DATA_DIRNAME, filename)) as f:
202
- bias_json = json.load(f)
203
-
204
- return bias_json
205
-
206
- # Get custom bias spec by name
207
- def loadCustomBiasSpec(filename: str):
208
- global CUSTOM_BIASES_DIR, CUSTOM_BIAS_SPECS
209
- #return get_bias_json(os.path.join(CUSTOM_BIASES_DIR, filename))
210
- return CUSTOM_BIAS_SPECS[filename.replace(".json","")]
211
-
212
- # Get predefined bias spec by name
213
- def loadPredefinedBiasSpec(filename: str):
214
- global PREDEFINED_BIASES_DIR
215
- return get_bias_json(os.path.join(PREDEFINED_BIASES_DIR, filename))
216
-
217
- ##################################
218
- ## EXTRACT TERMS FROM BIAS SPEC ##
219
- ##################################
220
-
221
- # Get Social Group Terms
222
- def getSocialGroupTerms(bias_spec):
223
- return [list(bias_spec['social_groups'].items())[0][1],
224
- list(bias_spec['social_groups'].items())[1][1],
225
- ]
226
-
227
- # Get Attribute Terms
228
- def getAttributeTerms(bias_spec):
229
- return [list(bias_spec['attributes'].items())[0][1],
230
- list(bias_spec['attributes'].items())[1][1],
231
- ]
232
-
233
- if __name__ == '__main__':
234
- print("ds_write_token:", ds_write_token)
235
- print("hf_token:", HF_TOKEN!=None)
236
- print("hfh_verssion", huggingface_hub.__version__)
237
-
238
- bias_specs = {
239
- "male_female__math_arts":{
240
- "name": "Math_Arts_vs_Male_Female",
241
- "social_groups": {
242
- "Male_terms": ["male", "man", "boy", "brother", "he", "him", "his", "son"],
243
- "Female_terms": ["female", "woman", "girl", "sister", "she", "her", "hers", "daughter"]
244
- },
245
- "attributes": {
246
- "Math": ["math", "algebra", "geometry", "calculus", "equations", "computation", "numbers", "addition"],
247
- "Arts": ["poetry", "art", "dance", "literature", "novel", "symphony", "drama", "sculpture"]
248
- },
249
- "templates": ["[T] likes [A]", "[T] like [A]", "[T] is interested in [A]"],
250
- "sentences": [],
251
- "source": "Caliskan - Weat 7",
252
- "url": "CaliskanEtAl_authors_full.pdf"
253
-
254
- },
255
- "male_female__science_arts": {
256
- "name": "Science_Arts_vs_Male_Female",
257
- "social_groups": {
258
- "Male_terms": ["brother", "father", "uncle", "grandfather", "son", "he", "his", "him"],
259
- "Female_terms": ["sister", "mother", "aunt", "grandmother", "daughter", "she", "hers", "her"]
260
- },
261
- "attributes": {
262
- "Science": ["science", "technology", "physics", "chemistry", "Einstein", "NASA", "experiment", "astronomy"],
263
- "Arts": ["poetry", "art", "Shakespeare", "dance", "literature", "novel", "symphony", "drama"]
264
- },
265
- "templates": ["[T] likes [A]", "[T] like [A]", "[T] is interested in [A]"],
266
- "sentences": [],
267
- "source": "Caliskan - Weat 8",
268
- "url": "CaliskanEtAl_authors_full.pdf"
269
- },
270
- "flowers_insects__pleasant_unpleasant": {
271
- "name": "Flowers_Insects_vs_Pleasant_Unpleasant",
272
- "social_groups": {
273
- "Flowers": ["aster", "clover", "hyacinth", "marigold", "poppy", "azalea", "crocus","iris", "orchid", "rose",
274
- "bluebell", "daffodil", "lilac", "pansy", "tulip", "buttercup", "daisy", "lily", "peony", "violet",
275
- "carnation", "gladiola", "magnolia", "petunia", "zinnia"],
276
- "Insects": ["ant", "caterpillar", "flea", "locust", "spider", "bedbug", "centipede", "fly", "maggot",
277
- "tarantula", "bee", "cockroach", "gnat", "mosquito", "termite", "beetle", "cricket", "hornet", "moth",
278
- "wasp", "blackfly", "dragonfly", "horsefly", "roach", "weevil"]
279
- },
280
- "attributes": {
281
- "Pleasant_terms": ["caress", "freedom", "health", "love", "peace", "cheer", "friend", "heaven", "loyal",
282
- "pleasure", "diamond", "gentle", "honest", "lucky", "rainbow", "diploma", "gift", "honor", "miracle",
283
- "sunrise", "family", "happy", "laughter", "paradise", "vacation"],
284
- "Unpleasant_terms": ["abuse", "crash", "filth", "murder", "sickness", "accident", "death", "grief", "poison",
285
- "stink", "assault", "disaster", "hatred", "pollute", "tragedy", "divorce", "jail", "poverty", "ugly",
286
- "cancer", "kill", "rotten", "vomit", "agony", "prison"]
287
- },
288
- "templates": ["[T] are [A]", "[T] is [A]"],
289
- "sentences": [],
290
- "source": "Caliskan - Weat 1",
291
- "url": "CaliskanEtAl_authors_full.pdf"
292
- },
293
- "instruments_weapons__pleasant_unpleasant": {
294
- "name": "Instruments_Weapons_vs_Pleasant_Unpleasant",
295
- "social_groups": {
296
- "Instruments": ["bagpipe", "cello", "guitar", "lute", "trombone", "banjo", "clarinet",
297
- "harmonica", "mandolin", "trumpet", "bassoon", "drum", "harp", "oboe", "tuba",
298
- "bell", "fiddle", "harpsichord", "piano", "viola", "bongo", "flute", "horn",
299
- "saxophone", "violin"],
300
- "Weapons": ["arrow", "club", "gun", "missile", "spear", "ax", "dagger", "harpoon",
301
- "pistol", "sword", "blade", "dynamite", "hatchet", "rifle", "tank", "bomb",
302
- "firearm", "knife", "shotgun", "teargas", "cannon", "grenade", "mace", "slingshot",
303
- "whip"]
304
- },
305
- "attributes": {
306
- "Pleasant_terms": ["caress", "freedom", "health", "love", "peace", "cheer", "friend",
307
- "heaven", "loyal", "pleasure", "diamond", "gentle", "honest", "lucky", "rainbow",
308
- "diploma", "gift", "honor", "miracle", "sunrise", "family", "happy", "laughter",
309
- "paradise", "vacation"],
310
- "Unpleasant_terms": ["abuse", "crash", "filth", "murder", "sickness", "accident",
311
- "death", "grief", "poison", "stink", "assault", "disaster", "hatred", "pollute",
312
- "tragedy", "divorce", "jail", "poverty", "ugly", "cancer", "kill", "rotten",
313
- "vomit", "agony", "prison"]
314
- },
315
- "templates": ["[T] are [A]", "[T] is [A]"],
316
- "sentences": [],
317
- "source": "Caliskan - Weat 2",
318
- "url": "CaliskanEtAl_authors_full.pdf"
319
- },
320
- "eur_am_names_afr_am_names__pleasant_unpleasant_1": {
321
- "name": "Eur-AmericanNames_Afr-AmericanNames_vs_Pleasant_Unpleasant_1",
322
- "social_groups": {
323
- "European_AmericanNames": ["Adam", "Harry", "Josh", "Roger", "Alan", "Frank", "Justin", "Ryan", "Andrew", "Jack",
324
- "Matthew", "Stephen", "Brad", "Greg", "Paul", "Jonathan", "Peter", "Amanda", "Courtney", "Heather", "Melanie",
325
- "Katie", "Betsy", "Kristin", "Nancy", "Stephanie", "Ellen", "Lauren", "Peggy", "Colleen", "Emily", "Megan",
326
- "Rachel"],
327
- "African_AmericanNames": ["Alonzo", "Jamel", "Theo", "Alphonse", "Jerome", "Leroy", "Torrance", "Darnell", "Lamar",
328
- "Lionel", "Tyree", "Deion", "Lamont", "Malik", "Terrence", "Tyrone", "Lavon", "Marcellus", "Wardell", "Nichelle",
329
- "Shereen", "Temeka", "Ebony", "Latisha", "Shaniqua", "Jasmine", "Tanisha", "Tia", "Lakisha", "Latoya", "Yolanda",
330
- "Malika", "Yvette"]
331
- },
332
- "attributes": {
333
- "Pleasant_terms": ["caress", "freedom", "health", "love", "peace", "cheer", "friend", "heaven", "loyal",
334
- "pleasure", "diamond", "gentle", "honest", "lucky", "rainbow", "diploma", "gift", "honor", "miracle",
335
- "sunrise", "family", "happy", "laughter", "paradise", "vacation"],
336
- "Unpleasant_terms": ["abuse", "crash", "filth", "murder", "sickness", "accident", "death", "grief", "poison",
337
- "stink", "assault", "disaster", "hatred", "pollute", "tragedy", "divorce", "jail", "poverty", "ugly",
338
- "cancer", "kill", "rotten", "vomit", "agony", "prison"]
339
- },
340
- "templates": ["[T] are [A]", "[T] is [A]"],
341
- "sentences": [],
342
- "source": "Caliskan - Weat 3",
343
- "url": "CaliskanEtAl_authors_full.pdf"
344
- },
345
- "eur_am_names_afr_am_names__pleasant_unpleasant_2": {
346
- "name": "Eur_AmericanNames_Afr_AmericanNames_vs_Pleasant_Unpleasant_2",
347
- "social_groups": {
348
- "Eur_AmericanNames_reduced": ["Brad", "Brendan", "Geoffrey", "Greg", "Brett", "Matthew", "Neil", "Todd", "Allison",
349
- "Anne", "Carrie", "Emily", "Jill", "Laurie", "Meredith", "Sarah"],
350
- "Afr_AmericanNames_reduced": ["Darnell", "Hakim", "Jermaine", "Kareem", "Jamal", "Leroy", "Rasheed",
351
- "Tyrone", "Aisha", "Ebony", "Keisha", "Kenya", "Lakisha", "Latoya", "Tamika", "Tanisha"]
352
- },
353
- "attributes": {
354
- "Pleasant_terms": ["caress", "freedom", "health", "love", "peace", "cheer", "friend", "heaven", "loyal",
355
- "pleasure", "diamond", "gentle", "honest", "lucky", "rainbow", "diploma", "gift", "honor", "miracle",
356
- "sunrise", "family", "happy", "laughter", "paradise", "vacation"],
357
- "Unpleasant_terms": ["abuse", "crash", "filth", "murder", "sickness", "accident", "death", "grief", "poison",
358
- "stink", "assault", "disaster", "hatred", "pollute", "tragedy", "divorce", "jail", "poverty", "ugly",
359
- "cancer", "kill", "rotten", "vomit", "agony", "prison"]
360
- },
361
- "templates": ["[T] are [A]", "[T] is [A]"],
362
- "sentences": [],
363
- "source": "Caliskan - Weat 4",
364
- "url": "CaliskanEtAl_authors_full.pdf",
365
- },
366
- "eur_am_names_afr_am_names__pleasant_unpleasant_3": {
367
- "name": "Eur-AmericanNames_Afr-AmericanNames_vs_Pleasant_Unpleasant_3",
368
- "social_groups": {
369
- "Eur-AmericanNames_reduced": ["Brad", "Brendan", "Geoffrey", "Greg", "Brett", "Matthew", "Neil", "Todd", "Allison",
370
- "Anne", "Carrie", "Emily", "Jill", "Laurie", "Meredith", "Sarah"],
371
- "Afr-AmericanNames_reduced": ["Darnell", "Hakim", "Jermaine", "Kareem", "Jamal", "Leroy", "Rasheed",
372
- "Tyrone", "Aisha", "Ebony", "Keisha", "Kenya", "Lakisha", "Latoya", "Tamika", "Tanisha"]
373
- },
374
- "attributes": {
375
- "Pleasant_terms": ["joy", "love", "peace", "wonderful", "pleasure", "friend", "laughter", "happy"],
376
- "Unpleasant_terms": ["agony", "terrible", "horrible", "nasty", "evil", "war", "awful", "failure"]
377
- },
378
- "templates": ["[T] are [A]", "[T] is [A]"],
379
- "sentences": [],
380
- "source": "Caliskan'17 - Weat 5",
381
- "url": "https://purehost.bath.ac.uk/ws/portalfiles/portal/168480066/CaliskanEtAl_authors_full.pdf"
382
- },
383
- "male_female__career_family": {
384
- "name": "Career_Family_vs_MaleName_FemaleName",
385
- "social_groups": {
386
- "Male_Names": ["John", "Paul", "Mike", "Kevin", "Steve", "Greg", "Jeff", "Bill"],
387
- "Female_Names": ["Amy", "Joan", "Lisa", "Sarah", "Diana", "Kate", "Ann", "Donna"]
388
- },
389
- "attributes": {
390
- "Career": ["executive", "management", "professional", "corporation", "salary", "office", "business", "career"],
391
- "Family": ["home", "parents", "children", "family", "cousins", "marriage", "wedding", "relatives"]
392
- },
393
- "templates": ["[T] likes [A]", "[T] like [A]", "[T] is interested in [A]"],
394
- "sentences": [],
395
- "source": "Caliskan'17 - Weat 6",
396
- "url": "https://purehost.bath.ac.uk/ws/portalfiles/portal/168480066/CaliskanEtAl_authors_full.pdf"
397
- },
398
- "mental_physial_disease__temporary_permanent": {
399
- "name": "MentalDisease_PhysicalDisease_vs_Temporary_Permanent",
400
- "social_groups": {
401
- "MentalDisease": ["sad", "hopeless", "gloomy", "tearful", "miserable", "depressed"],
402
- "PhysicalDisease": ["sick", "illness", "influenza", "disease", "virus", "cancer"]
403
- },
404
- "attributes": {
405
- "Temporary": ["impermanent", "unstable", "variable", "fleeting", "short-term", "brief", "occasional"],
406
- "Permanent": ["stable", "always", "constant", "persistent", "chronic", "prolonged", "forever"]
407
- },
408
- "templates": ["[T] are [A]", "[T] is [A]"],
409
- "sentences": [],
410
- "source": "Caliskan'17 - Weat 9",
411
- "url": "https://purehost.bath.ac.uk/ws/portalfiles/portal/168480066/CaliskanEtAl_authors_full.pdf"
412
- },
413
- "young_old__pleasant_unpleasant": {
414
- "name": "YoungName_OldName_vs_Pleasant_Unpleasant",
415
- "social_groups": {
416
- "YoungName": ["Tiffany", "Michelle", "Cindy", "Kristy", "Brad", "Eric", "Joey", "Billy"],
417
- "OldName": ["Ethel", "Bernice", "Gertrude", "Agnes", "Cecil", "Wilbert", "Mortimer", "Edgar"]
418
- },
419
- "attributes": {
420
- "Pleasant_terms": ["joy", "love", "peace", "wonderful", "pleasure", "friend", "laughter", "happy"],
421
- "Unpleasant_terms": ["agony", "terrible", "horrible", "nasty", "evil", "war", "awful", "failure"]
422
- },
423
- "templates": ["[T] likes [A]", "[T] like [A]", "[T] is interested in [A]"],
424
- "sentences": [],
425
- "source": "Caliskan'17 - Weat 10",
426
- "url": "https://purehost.bath.ac.uk/ws/portalfiles/portal/168480066/CaliskanEtAl_authors_full.pdf"
427
- },
428
- "male_female__profession": {
429
- "name": "Professions_vs_Gender",
430
- "social_groups": {
431
- "Male_terms": ["he", "man", "brother", "son", "husband", "boyfriend", "father", "uncle", "dad"],
432
- "Female_terms": ["she", "woman", "sister", "daughter", "wife", "girlfriend", "mother", "aunt", "mom"]
433
- },
434
- "attributes": {
435
- "male_professions": ["taper", "steel worker", "mobile equipment mechanic", "bus mechanic",
436
- "service technician", "heating mechanic", "electrical installer", "operating engineer",
437
- "logging worker", "floor installer", "roofer", "mining machine operator", "electrician",
438
- "repairer", "conductor", "plumber", "carpenter", "security system installer", "mason",
439
- "firefighter"],
440
- "female_professions": ["kindergarten teacher", "dental hygienist", "speech-language pathologist",
441
- "dental assistant", "childcare worker", "medical records technician", "secretary",
442
- "medical assistant", "hairdresser", "dietitian", "vocational nurse", "teacher assistant",
443
- "paralegal", "billing clerk", "phlebotomist", "receptionist", "housekeeper",
444
- "registered nurse", "bookkeeper", "health aide"],
445
- "balanced_professions": ["salesperson", "director of religious activities", "crossing guard",
446
- "photographer", "lifeguard", "lodging manager", "healthcare practitioner", "sales agent",
447
- "mail clerk", "electrical assembler", "insurance sales agent", "insurance underwriter",
448
- "medical scientist", "statistician", "training specialist", "judge", "bartender",
449
- "dispatcher", "order clerk", "mail sorter"]
450
- },
451
- "templates": ["[T] is a [A].", "[T] works as a [A].", "[T] applied for the position of [A]",
452
- "[T], the [A], had a good day at work.", "[T] wants to become a [A]."],
453
- "sentences": [],
454
- "source": "Bartl '20 simplified professions",
455
- "url": "https://arxiv.org/pdf/2010.14534.pdf"
456
- },
457
- "african_female_european_male__intersectional": {
458
- "name": "African_Female_European_Male_intersectional",
459
- "social_groups": {
460
- "african_female_names": ["Yvette", "Aisha", "Malika", "Latisha", "Keisha", "Tanisha",
461
- "Tamika", "Yolanda", "Nichelle", "Latoya", "Lakisha", "Shereen"],
462
- "european_male_names": [ "Frank", "Roger", "Neil", "Geoffrey", "Brad", "Stephen",
463
- "Peter", "Josh", "Andrew", "Jack", "Matthew", "Jonathan"]
464
- },
465
- "attributes": {
466
- "af_bias": ["loud", "ghetto", "unrefined", "athletic", "unintelligent", "bigbutt",
467
- "overweight", "confident", "darkskinned", "promiscuous", "unfeminine",
468
- "aggressive", "chicken"],
469
- "em_bias_foraf": ["rich", "intelligent", "arrogant", "status", "blond", "racist",
470
- "American", "leader", "privileged", "attractive", "tall", "sexist", "successful"]
471
- },
472
- "templates": ["[T] is [A]"],
473
- "sentences": [],
474
- "source": "Guo '21",
475
- "url": "https://dl.,acm.org/doi/pdf/10.1145/3461702.3462536"
476
- },
477
- "african_female_european_male__emergent_intersectional": {
478
- "name": "African_Female_European_Male_vs_AFemergent_EMintersectional",
479
- "social_groups": {
480
- "african_female_names": ["Yvette", "Aisha", "Malika", "Latisha", "Keisha", "Tanisha",
481
- "Tamika", "Yolanda", "Nichelle", "Latoya", "Lakisha", "Shereen"],
482
- "european_male_names": [ "Frank", "Roger", "Neil", "Geoffrey", "Brad", "Stephen",
483
- "Peter", "Josh", "Andrew", "Jack", "Matthew", "Jonathan"]
484
- },
485
- "attributes": {
486
- "af_unique_bias": ["bigbutt", "overweight", "confident", "darkskinned", "promiscuous",
487
- "unfeminine", "aggressive", "chicken"],
488
- "em_unique_bias_foraf": ["rich", "tall", "intelligent", "arrogant", "successful",
489
- "status", "blond", "racist"]
490
- },
491
- "templates": ["[T] is [A]"],
492
- "sentences": [],
493
- "source": "Guo '21",
494
- "url": "https://dl.acm.org/doi/pdf/10.1145/3461702.3462536"
495
- },
496
- "mexican_female_european_male__intersectional": {
497
- "name": "Mexican_Female_European_Male_intersectional",
498
- "social_groups": {
499
- "mexican_female_names": ["Maria", "Yesenia", "Adriana", "Liset", "Mayra", "Alma",
500
- "Carolina", "Iliana", "Sonia", "Karina", "Alejandra", "Brenda"],
501
- "european_male_names": [ "Frank", "Roger", "Neil", "Geoffrey", "Brad", "Stephen",
502
- "Peter", "Josh", "Andrew", "Jack", "Matthew", "Jonathan"]
503
- },
504
- "attributes": {
505
- "lf_bias": ["feisty", "curvy", "loud", "cook", "darkskinned", "uneducated",
506
- "hardworker", "promiscuous", "unintelligent", "short", "sexy", "maids"],
507
- "em_bias_forlf": ["rich", "intelligent", "arrogant", "status", "blond", "racist",
508
- "American", "leader", "privileged", "tall", "sexist", "successful"]
509
- },
510
- "templates": ["[T] is [A]"],
511
- "sentences": [],
512
- "source": "Guo '21",
513
- "url": "https://dl.acm.org/doi/pdf/10.1145/3461702.3462536"
514
- },
515
- "mexican_female_european_male__emergent_intersectional": {
516
- "name": "Mexican_Female_European_Male_vs_MFemergent_EMintersectional",
517
- "social_groups": {
518
- "mexican_female_names": ["Maria", "Yesenia", "Adriana", "Liset", "Mayra", "Alma",
519
- "Carolina", "Iliana", "Sonia", "Karina", "Alejandra", "Brenda"],
520
- "european_male_names": [ "Frank", "Roger", "Neil", "Geoffrey", "Brad", "Stephen",
521
- "Peter", "Josh", "Andrew", "Jack", "Matthew", "Jonathan"]
522
- },
523
- "attributes": {
524
- "lf_unique_bias": ["feisty", "curvy", "cook", "promiscuous", "sexy", "maids"],
525
- "em_unique_bias_forlf": ["rich", "tall", "intelligent", "assertive", "arrogant",
526
- "successful"]
527
- },
528
- "templates": ["[T] is [A]"],
529
- "sentences": [],
530
- "source": "Guo '21",
531
- "url": "https://dl.acm.org/doi/pdf/10.1145/3461702.3462536"
532
- }
533
- }
534
-
535
- for save_name, spec_json in bias_specs.items():
536
- save_predefined_bias(f"{save_name}.json", spec_json)
537
-
538
- #save_custom_bias("male_female__math_arts.json", bias_spec_json)
539
-
540
- #custom_biases = retrieveCustomBiases()
541
- #predefined_biases = retrievePredefinedBiases()
542
-
543
- #print(f"Custom biases: {custom_biases}")
544
- #print(f"Predefined biases: {predefined_biases}")
545
-
546
- #bias_json = get_bias_json(custom_biases[0])
547
- #bias_json = loadCustomBiasSpec("male_female__math_arts.json")
548
- #print(f"Loaded bias: \n {json.dumps(bias_json)}") #, sort_keys=True, indent=2)}")
549
-
550
- #print(f"Social group terms: {getSocialGroupTerms(bias_json)}")
551
- #print(f"Attribute terms: {getAttributeTerms(bias_json)}")
552
-
553
-
554
-
555
-
556
-
557
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/cnn/bricks/norm.py DELETED
@@ -1,144 +0,0 @@
1
- # Copyright (c) OpenMMLab. All rights reserved.
2
- import inspect
3
-
4
- import torch.nn as nn
5
-
6
- from annotator.uniformer.mmcv.utils import is_tuple_of
7
- from annotator.uniformer.mmcv.utils.parrots_wrapper import SyncBatchNorm, _BatchNorm, _InstanceNorm
8
- from .registry import NORM_LAYERS
9
-
10
- NORM_LAYERS.register_module('BN', module=nn.BatchNorm2d)
11
- NORM_LAYERS.register_module('BN1d', module=nn.BatchNorm1d)
12
- NORM_LAYERS.register_module('BN2d', module=nn.BatchNorm2d)
13
- NORM_LAYERS.register_module('BN3d', module=nn.BatchNorm3d)
14
- NORM_LAYERS.register_module('SyncBN', module=SyncBatchNorm)
15
- NORM_LAYERS.register_module('GN', module=nn.GroupNorm)
16
- NORM_LAYERS.register_module('LN', module=nn.LayerNorm)
17
- NORM_LAYERS.register_module('IN', module=nn.InstanceNorm2d)
18
- NORM_LAYERS.register_module('IN1d', module=nn.InstanceNorm1d)
19
- NORM_LAYERS.register_module('IN2d', module=nn.InstanceNorm2d)
20
- NORM_LAYERS.register_module('IN3d', module=nn.InstanceNorm3d)
21
-
22
-
23
- def infer_abbr(class_type):
24
- """Infer abbreviation from the class name.
25
-
26
- When we build a norm layer with `build_norm_layer()`, we want to preserve
27
- the norm type in variable names, e.g, self.bn1, self.gn. This method will
28
- infer the abbreviation to map class types to abbreviations.
29
-
30
- Rule 1: If the class has the property "_abbr_", return the property.
31
- Rule 2: If the parent class is _BatchNorm, GroupNorm, LayerNorm or
32
- InstanceNorm, the abbreviation of this layer will be "bn", "gn", "ln" and
33
- "in" respectively.
34
- Rule 3: If the class name contains "batch", "group", "layer" or "instance",
35
- the abbreviation of this layer will be "bn", "gn", "ln" and "in"
36
- respectively.
37
- Rule 4: Otherwise, the abbreviation falls back to "norm".
38
-
39
- Args:
40
- class_type (type): The norm layer type.
41
-
42
- Returns:
43
- str: The inferred abbreviation.
44
- """
45
- if not inspect.isclass(class_type):
46
- raise TypeError(
47
- f'class_type must be a type, but got {type(class_type)}')
48
- if hasattr(class_type, '_abbr_'):
49
- return class_type._abbr_
50
- if issubclass(class_type, _InstanceNorm): # IN is a subclass of BN
51
- return 'in'
52
- elif issubclass(class_type, _BatchNorm):
53
- return 'bn'
54
- elif issubclass(class_type, nn.GroupNorm):
55
- return 'gn'
56
- elif issubclass(class_type, nn.LayerNorm):
57
- return 'ln'
58
- else:
59
- class_name = class_type.__name__.lower()
60
- if 'batch' in class_name:
61
- return 'bn'
62
- elif 'group' in class_name:
63
- return 'gn'
64
- elif 'layer' in class_name:
65
- return 'ln'
66
- elif 'instance' in class_name:
67
- return 'in'
68
- else:
69
- return 'norm_layer'
70
-
71
-
72
- def build_norm_layer(cfg, num_features, postfix=''):
73
- """Build normalization layer.
74
-
75
- Args:
76
- cfg (dict): The norm layer config, which should contain:
77
-
78
- - type (str): Layer type.
79
- - layer args: Args needed to instantiate a norm layer.
80
- - requires_grad (bool, optional): Whether stop gradient updates.
81
- num_features (int): Number of input channels.
82
- postfix (int | str): The postfix to be appended into norm abbreviation
83
- to create named layer.
84
-
85
- Returns:
86
- (str, nn.Module): The first element is the layer name consisting of
87
- abbreviation and postfix, e.g., bn1, gn. The second element is the
88
- created norm layer.
89
- """
90
- if not isinstance(cfg, dict):
91
- raise TypeError('cfg must be a dict')
92
- if 'type' not in cfg:
93
- raise KeyError('the cfg dict must contain the key "type"')
94
- cfg_ = cfg.copy()
95
-
96
- layer_type = cfg_.pop('type')
97
- if layer_type not in NORM_LAYERS:
98
- raise KeyError(f'Unrecognized norm type {layer_type}')
99
-
100
- norm_layer = NORM_LAYERS.get(layer_type)
101
- abbr = infer_abbr(norm_layer)
102
-
103
- assert isinstance(postfix, (int, str))
104
- name = abbr + str(postfix)
105
-
106
- requires_grad = cfg_.pop('requires_grad', True)
107
- cfg_.setdefault('eps', 1e-5)
108
- if layer_type != 'GN':
109
- layer = norm_layer(num_features, **cfg_)
110
- if layer_type == 'SyncBN' and hasattr(layer, '_specify_ddp_gpu_num'):
111
- layer._specify_ddp_gpu_num(1)
112
- else:
113
- assert 'num_groups' in cfg_
114
- layer = norm_layer(num_channels=num_features, **cfg_)
115
-
116
- for param in layer.parameters():
117
- param.requires_grad = requires_grad
118
-
119
- return name, layer
120
-
121
-
122
- def is_norm(layer, exclude=None):
123
- """Check if a layer is a normalization layer.
124
-
125
- Args:
126
- layer (nn.Module): The layer to be checked.
127
- exclude (type | tuple[type]): Types to be excluded.
128
-
129
- Returns:
130
- bool: Whether the layer is a norm layer.
131
- """
132
- if exclude is not None:
133
- if not isinstance(exclude, tuple):
134
- exclude = (exclude, )
135
- if not is_tuple_of(exclude, type):
136
- raise TypeError(
137
- f'"exclude" must be either None or type or a tuple of types, '
138
- f'but got {type(exclude)}: {exclude}')
139
-
140
- if exclude and isinstance(layer, exclude):
141
- return False
142
-
143
- all_norm_bases = (_BatchNorm, _InstanceNorm, nn.GroupNorm, nn.LayerNorm)
144
- return isinstance(layer, all_norm_bases)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AnonymousSub/Ayurveda4U/app.py DELETED
@@ -1,48 +0,0 @@
1
- from transformers import AutoModelForCausalLM, AutoTokenizer
2
- import gradio as gr
3
- import torch
4
-
5
-
6
- title = "Ayurveda4U"
7
- description = "LLM-Powered Medical Chatbot that will answer all your health-related queries with the help of Ayurvedic texts ynder the hood!"
8
- examples = [["How can you cure common cold using Ayurveda?"], ["What is the Ayurvedic equivalent of Paracetamol?"]]
9
-
10
- model_path = 'tloen/alpaca-lora-7b' #'microsoft/phi-1_5'#'microsoft/DialoGPT-large' #'microsoft/biogpt' #'microsoft/BioGPT-large' #microsoft/DialoGPT-large
11
-
12
- tokenizer = AutoTokenizer.from_pretrained(model_path)
13
- model = AutoModelForCausalLM.from_pretrained(model_path)
14
-
15
-
16
- def predict(input, history=[]):
17
- # tokenize the new input sentence
18
- new_user_input_ids = tokenizer.encode(
19
- input + tokenizer.eos_token, return_tensors="pt"
20
- )
21
-
22
- # append the new user input tokens to the chat history
23
- bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
24
-
25
- # generate a response
26
- history = model.generate(
27
- bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
28
- ).tolist()
29
-
30
- # convert the tokens to text, and then split the responses into lines
31
- response = tokenizer.decode(history[0]).split("<|endoftext|>")
32
- # print('decoded_response-->>'+str(response))
33
- response = [
34
- (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
35
- ] # convert to tuples of list
36
- # print('response-->>'+str(response))
37
- return response, history
38
-
39
-
40
- gr.Interface(
41
- fn=predict,
42
- title=title,
43
- description=description,
44
- examples=examples,
45
- inputs=["text", "state"],
46
- outputs=["chatbot", "state"],
47
- theme="finlaymacklon/boxy_violet",
48
- ).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AriaMei/TTSdemo/attentions.py DELETED
@@ -1,303 +0,0 @@
1
- import copy
2
- import math
3
- import numpy as np
4
- import torch
5
- from torch import nn
6
- from torch.nn import functional as F
7
-
8
- import commons
9
- import modules
10
- from modules import LayerNorm
11
-
12
-
13
- class Encoder(nn.Module):
14
- def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15
- super().__init__()
16
- self.hidden_channels = hidden_channels
17
- self.filter_channels = filter_channels
18
- self.n_heads = n_heads
19
- self.n_layers = n_layers
20
- self.kernel_size = kernel_size
21
- self.p_dropout = p_dropout
22
- self.window_size = window_size
23
-
24
- self.drop = nn.Dropout(p_dropout)
25
- self.attn_layers = nn.ModuleList()
26
- self.norm_layers_1 = nn.ModuleList()
27
- self.ffn_layers = nn.ModuleList()
28
- self.norm_layers_2 = nn.ModuleList()
29
- for i in range(self.n_layers):
30
- self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31
- self.norm_layers_1.append(LayerNorm(hidden_channels))
32
- self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33
- self.norm_layers_2.append(LayerNorm(hidden_channels))
34
-
35
- def forward(self, x, x_mask):
36
- attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37
- x = x * x_mask
38
- for i in range(self.n_layers):
39
- y = self.attn_layers[i](x, x, attn_mask)
40
- y = self.drop(y)
41
- x = self.norm_layers_1[i](x + y)
42
-
43
- y = self.ffn_layers[i](x, x_mask)
44
- y = self.drop(y)
45
- x = self.norm_layers_2[i](x + y)
46
- x = x * x_mask
47
- return x
48
-
49
-
50
- class Decoder(nn.Module):
51
- def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52
- super().__init__()
53
- self.hidden_channels = hidden_channels
54
- self.filter_channels = filter_channels
55
- self.n_heads = n_heads
56
- self.n_layers = n_layers
57
- self.kernel_size = kernel_size
58
- self.p_dropout = p_dropout
59
- self.proximal_bias = proximal_bias
60
- self.proximal_init = proximal_init
61
-
62
- self.drop = nn.Dropout(p_dropout)
63
- self.self_attn_layers = nn.ModuleList()
64
- self.norm_layers_0 = nn.ModuleList()
65
- self.encdec_attn_layers = nn.ModuleList()
66
- self.norm_layers_1 = nn.ModuleList()
67
- self.ffn_layers = nn.ModuleList()
68
- self.norm_layers_2 = nn.ModuleList()
69
- for i in range(self.n_layers):
70
- self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71
- self.norm_layers_0.append(LayerNorm(hidden_channels))
72
- self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73
- self.norm_layers_1.append(LayerNorm(hidden_channels))
74
- self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75
- self.norm_layers_2.append(LayerNorm(hidden_channels))
76
-
77
- def forward(self, x, x_mask, h, h_mask):
78
- """
79
- x: decoder input
80
- h: encoder output
81
- """
82
- self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83
- encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84
- x = x * x_mask
85
- for i in range(self.n_layers):
86
- y = self.self_attn_layers[i](x, x, self_attn_mask)
87
- y = self.drop(y)
88
- x = self.norm_layers_0[i](x + y)
89
-
90
- y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91
- y = self.drop(y)
92
- x = self.norm_layers_1[i](x + y)
93
-
94
- y = self.ffn_layers[i](x, x_mask)
95
- y = self.drop(y)
96
- x = self.norm_layers_2[i](x + y)
97
- x = x * x_mask
98
- return x
99
-
100
-
101
- class MultiHeadAttention(nn.Module):
102
- def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103
- super().__init__()
104
- assert channels % n_heads == 0
105
-
106
- self.channels = channels
107
- self.out_channels = out_channels
108
- self.n_heads = n_heads
109
- self.p_dropout = p_dropout
110
- self.window_size = window_size
111
- self.heads_share = heads_share
112
- self.block_length = block_length
113
- self.proximal_bias = proximal_bias
114
- self.proximal_init = proximal_init
115
- self.attn = None
116
-
117
- self.k_channels = channels // n_heads
118
- self.conv_q = nn.Conv1d(channels, channels, 1)
119
- self.conv_k = nn.Conv1d(channels, channels, 1)
120
- self.conv_v = nn.Conv1d(channels, channels, 1)
121
- self.conv_o = nn.Conv1d(channels, out_channels, 1)
122
- self.drop = nn.Dropout(p_dropout)
123
-
124
- if window_size is not None:
125
- n_heads_rel = 1 if heads_share else n_heads
126
- rel_stddev = self.k_channels**-0.5
127
- self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128
- self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129
-
130
- nn.init.xavier_uniform_(self.conv_q.weight)
131
- nn.init.xavier_uniform_(self.conv_k.weight)
132
- nn.init.xavier_uniform_(self.conv_v.weight)
133
- if proximal_init:
134
- with torch.no_grad():
135
- self.conv_k.weight.copy_(self.conv_q.weight)
136
- self.conv_k.bias.copy_(self.conv_q.bias)
137
-
138
- def forward(self, x, c, attn_mask=None):
139
- q = self.conv_q(x)
140
- k = self.conv_k(c)
141
- v = self.conv_v(c)
142
-
143
- x, self.attn = self.attention(q, k, v, mask=attn_mask)
144
-
145
- x = self.conv_o(x)
146
- return x
147
-
148
- def attention(self, query, key, value, mask=None):
149
- # reshape [b, d, t] -> [b, n_h, t, d_k]
150
- b, d, t_s, t_t = (*key.size(), query.size(2))
151
- query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152
- key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153
- value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154
-
155
- scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156
- if self.window_size is not None:
157
- assert t_s == t_t, "Relative attention is only available for self-attention."
158
- key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159
- rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160
- scores_local = self._relative_position_to_absolute_position(rel_logits)
161
- scores = scores + scores_local
162
- if self.proximal_bias:
163
- assert t_s == t_t, "Proximal bias is only available for self-attention."
164
- scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165
- if mask is not None:
166
- scores = scores.masked_fill(mask == 0, -1e4)
167
- if self.block_length is not None:
168
- assert t_s == t_t, "Local attention is only available for self-attention."
169
- block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170
- scores = scores.masked_fill(block_mask == 0, -1e4)
171
- p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172
- p_attn = self.drop(p_attn)
173
- output = torch.matmul(p_attn, value)
174
- if self.window_size is not None:
175
- relative_weights = self._absolute_position_to_relative_position(p_attn)
176
- value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177
- output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178
- output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179
- return output, p_attn
180
-
181
- def _matmul_with_relative_values(self, x, y):
182
- """
183
- x: [b, h, l, m]
184
- y: [h or 1, m, d]
185
- ret: [b, h, l, d]
186
- """
187
- ret = torch.matmul(x, y.unsqueeze(0))
188
- return ret
189
-
190
- def _matmul_with_relative_keys(self, x, y):
191
- """
192
- x: [b, h, l, d]
193
- y: [h or 1, m, d]
194
- ret: [b, h, l, m]
195
- """
196
- ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197
- return ret
198
-
199
- def _get_relative_embeddings(self, relative_embeddings, length):
200
- max_relative_position = 2 * self.window_size + 1
201
- # Pad first before slice to avoid using cond ops.
202
- pad_length = max(length - (self.window_size + 1), 0)
203
- slice_start_position = max((self.window_size + 1) - length, 0)
204
- slice_end_position = slice_start_position + 2 * length - 1
205
- if pad_length > 0:
206
- padded_relative_embeddings = F.pad(
207
- relative_embeddings,
208
- commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209
- else:
210
- padded_relative_embeddings = relative_embeddings
211
- used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212
- return used_relative_embeddings
213
-
214
- def _relative_position_to_absolute_position(self, x):
215
- """
216
- x: [b, h, l, 2*l-1]
217
- ret: [b, h, l, l]
218
- """
219
- batch, heads, length, _ = x.size()
220
- # Concat columns of pad to shift from relative to absolute indexing.
221
- x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222
-
223
- # Concat extra elements so to add up to shape (len+1, 2*len-1).
224
- x_flat = x.view([batch, heads, length * 2 * length])
225
- x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226
-
227
- # Reshape and slice out the padded elements.
228
- x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229
- return x_final
230
-
231
- def _absolute_position_to_relative_position(self, x):
232
- """
233
- x: [b, h, l, l]
234
- ret: [b, h, l, 2*l-1]
235
- """
236
- batch, heads, length, _ = x.size()
237
- # padd along column
238
- x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239
- x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240
- # add 0's in the beginning that will skew the elements after reshape
241
- x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242
- x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243
- return x_final
244
-
245
- def _attention_bias_proximal(self, length):
246
- """Bias for self-attention to encourage attention to close positions.
247
- Args:
248
- length: an integer scalar.
249
- Returns:
250
- a Tensor with shape [1, 1, length, length]
251
- """
252
- r = torch.arange(length, dtype=torch.float32)
253
- diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254
- return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
255
-
256
-
257
- class FFN(nn.Module):
258
- def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259
- super().__init__()
260
- self.in_channels = in_channels
261
- self.out_channels = out_channels
262
- self.filter_channels = filter_channels
263
- self.kernel_size = kernel_size
264
- self.p_dropout = p_dropout
265
- self.activation = activation
266
- self.causal = causal
267
-
268
- if causal:
269
- self.padding = self._causal_padding
270
- else:
271
- self.padding = self._same_padding
272
-
273
- self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274
- self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275
- self.drop = nn.Dropout(p_dropout)
276
-
277
- def forward(self, x, x_mask):
278
- x = self.conv_1(self.padding(x * x_mask))
279
- if self.activation == "gelu":
280
- x = x * torch.sigmoid(1.702 * x)
281
- else:
282
- x = torch.relu(x)
283
- x = self.drop(x)
284
- x = self.conv_2(self.padding(x * x_mask))
285
- return x * x_mask
286
-
287
- def _causal_padding(self, x):
288
- if self.kernel_size == 1:
289
- return x
290
- pad_l = self.kernel_size - 1
291
- pad_r = 0
292
- padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293
- x = F.pad(x, commons.convert_pad_shape(padding))
294
- return x
295
-
296
- def _same_padding(self, x):
297
- if self.kernel_size == 1:
298
- return x
299
- pad_l = (self.kernel_size - 1) // 2
300
- pad_r = self.kernel_size // 2
301
- padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302
- x = F.pad(x, commons.convert_pad_shape(padding))
303
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ArtGAN/Diffusion-API/app.py DELETED
@@ -1,48 +0,0 @@
1
- import gradio as gr
2
-
3
- from diffusion_webui import (
4
- StableDiffusionControlNetGenerator,
5
- StableDiffusionControlNetInpaintGenerator,
6
- StableDiffusionImage2ImageGenerator,
7
- StableDiffusionInpaintGenerator,
8
- StableDiffusionText2ImageGenerator,
9
- )
10
-
11
-
12
- def diffusion_app():
13
- app = gr.Blocks()
14
- with app:
15
- gr.HTML(
16
- """
17
- <h1 style='text-align: center'>
18
- Stable Diffusion + ControlNet + Inpaint
19
- </h1>
20
- """
21
- )
22
- gr.HTML(
23
- """
24
- <h3 style='text-align: center'>
25
- Follow me for more!
26
- <a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a>
27
- </h3>
28
- """
29
- )
30
- with gr.Row():
31
- with gr.Column():
32
- with gr.Tab(label="Text2Image"):
33
- StableDiffusionText2ImageGenerator.app()
34
- with gr.Tab(label="Image2Image"):
35
- StableDiffusionImage2ImageGenerator.app()
36
- with gr.Tab(label="Inpaint"):
37
- StableDiffusionInpaintGenerator.app()
38
- with gr.Tab(label="Controlnet"):
39
- StableDiffusionControlNetGenerator.app()
40
- with gr.Tab(label="Controlnet Inpaint"):
41
- StableDiffusionControlNetInpaintGenerator.app()
42
-
43
- app.queue(concurrency_count=1)
44
- app.launch(debug=True, enable_queue=True)
45
-
46
-
47
- if __name__ == "__main__":
48
- diffusion_app()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/build_env.py DELETED
@@ -1,311 +0,0 @@
1
- """Build Environment used for isolation during sdist building
2
- """
3
-
4
- import logging
5
- import os
6
- import pathlib
7
- import site
8
- import sys
9
- import textwrap
10
- from collections import OrderedDict
11
- from types import TracebackType
12
- from typing import TYPE_CHECKING, Iterable, List, Optional, Set, Tuple, Type, Union
13
-
14
- from pip._vendor.certifi import where
15
- from pip._vendor.packaging.requirements import Requirement
16
- from pip._vendor.packaging.version import Version
17
-
18
- from pip import __file__ as pip_location
19
- from pip._internal.cli.spinners import open_spinner
20
- from pip._internal.locations import get_platlib, get_purelib, get_scheme
21
- from pip._internal.metadata import get_default_environment, get_environment
22
- from pip._internal.utils.subprocess import call_subprocess
23
- from pip._internal.utils.temp_dir import TempDirectory, tempdir_kinds
24
-
25
- if TYPE_CHECKING:
26
- from pip._internal.index.package_finder import PackageFinder
27
-
28
- logger = logging.getLogger(__name__)
29
-
30
-
31
- def _dedup(a: str, b: str) -> Union[Tuple[str], Tuple[str, str]]:
32
- return (a, b) if a != b else (a,)
33
-
34
-
35
- class _Prefix:
36
- def __init__(self, path: str) -> None:
37
- self.path = path
38
- self.setup = False
39
- scheme = get_scheme("", prefix=path)
40
- self.bin_dir = scheme.scripts
41
- self.lib_dirs = _dedup(scheme.purelib, scheme.platlib)
42
-
43
-
44
- def get_runnable_pip() -> str:
45
- """Get a file to pass to a Python executable, to run the currently-running pip.
46
-
47
- This is used to run a pip subprocess, for installing requirements into the build
48
- environment.
49
- """
50
- source = pathlib.Path(pip_location).resolve().parent
51
-
52
- if not source.is_dir():
53
- # This would happen if someone is using pip from inside a zip file. In that
54
- # case, we can use that directly.
55
- return str(source)
56
-
57
- return os.fsdecode(source / "__pip-runner__.py")
58
-
59
-
60
- def _get_system_sitepackages() -> Set[str]:
61
- """Get system site packages
62
-
63
- Usually from site.getsitepackages,
64
- but fallback on `get_purelib()/get_platlib()` if unavailable
65
- (e.g. in a virtualenv created by virtualenv<20)
66
-
67
- Returns normalized set of strings.
68
- """
69
- if hasattr(site, "getsitepackages"):
70
- system_sites = site.getsitepackages()
71
- else:
72
- # virtualenv < 20 overwrites site.py without getsitepackages
73
- # fallback on get_purelib/get_platlib.
74
- # this is known to miss things, but shouldn't in the cases
75
- # where getsitepackages() has been removed (inside a virtualenv)
76
- system_sites = [get_purelib(), get_platlib()]
77
- return {os.path.normcase(path) for path in system_sites}
78
-
79
-
80
- class BuildEnvironment:
81
- """Creates and manages an isolated environment to install build deps"""
82
-
83
- def __init__(self) -> None:
84
- temp_dir = TempDirectory(kind=tempdir_kinds.BUILD_ENV, globally_managed=True)
85
-
86
- self._prefixes = OrderedDict(
87
- (name, _Prefix(os.path.join(temp_dir.path, name)))
88
- for name in ("normal", "overlay")
89
- )
90
-
91
- self._bin_dirs: List[str] = []
92
- self._lib_dirs: List[str] = []
93
- for prefix in reversed(list(self._prefixes.values())):
94
- self._bin_dirs.append(prefix.bin_dir)
95
- self._lib_dirs.extend(prefix.lib_dirs)
96
-
97
- # Customize site to:
98
- # - ensure .pth files are honored
99
- # - prevent access to system site packages
100
- system_sites = _get_system_sitepackages()
101
-
102
- self._site_dir = os.path.join(temp_dir.path, "site")
103
- if not os.path.exists(self._site_dir):
104
- os.mkdir(self._site_dir)
105
- with open(
106
- os.path.join(self._site_dir, "sitecustomize.py"), "w", encoding="utf-8"
107
- ) as fp:
108
- fp.write(
109
- textwrap.dedent(
110
- """
111
- import os, site, sys
112
-
113
- # First, drop system-sites related paths.
114
- original_sys_path = sys.path[:]
115
- known_paths = set()
116
- for path in {system_sites!r}:
117
- site.addsitedir(path, known_paths=known_paths)
118
- system_paths = set(
119
- os.path.normcase(path)
120
- for path in sys.path[len(original_sys_path):]
121
- )
122
- original_sys_path = [
123
- path for path in original_sys_path
124
- if os.path.normcase(path) not in system_paths
125
- ]
126
- sys.path = original_sys_path
127
-
128
- # Second, add lib directories.
129
- # ensuring .pth file are processed.
130
- for path in {lib_dirs!r}:
131
- assert not path in sys.path
132
- site.addsitedir(path)
133
- """
134
- ).format(system_sites=system_sites, lib_dirs=self._lib_dirs)
135
- )
136
-
137
- def __enter__(self) -> None:
138
- self._save_env = {
139
- name: os.environ.get(name, None)
140
- for name in ("PATH", "PYTHONNOUSERSITE", "PYTHONPATH")
141
- }
142
-
143
- path = self._bin_dirs[:]
144
- old_path = self._save_env["PATH"]
145
- if old_path:
146
- path.extend(old_path.split(os.pathsep))
147
-
148
- pythonpath = [self._site_dir]
149
-
150
- os.environ.update(
151
- {
152
- "PATH": os.pathsep.join(path),
153
- "PYTHONNOUSERSITE": "1",
154
- "PYTHONPATH": os.pathsep.join(pythonpath),
155
- }
156
- )
157
-
158
- def __exit__(
159
- self,
160
- exc_type: Optional[Type[BaseException]],
161
- exc_val: Optional[BaseException],
162
- exc_tb: Optional[TracebackType],
163
- ) -> None:
164
- for varname, old_value in self._save_env.items():
165
- if old_value is None:
166
- os.environ.pop(varname, None)
167
- else:
168
- os.environ[varname] = old_value
169
-
170
- def check_requirements(
171
- self, reqs: Iterable[str]
172
- ) -> Tuple[Set[Tuple[str, str]], Set[str]]:
173
- """Return 2 sets:
174
- - conflicting requirements: set of (installed, wanted) reqs tuples
175
- - missing requirements: set of reqs
176
- """
177
- missing = set()
178
- conflicting = set()
179
- if reqs:
180
- env = (
181
- get_environment(self._lib_dirs)
182
- if hasattr(self, "_lib_dirs")
183
- else get_default_environment()
184
- )
185
- for req_str in reqs:
186
- req = Requirement(req_str)
187
- # We're explicitly evaluating with an empty extra value, since build
188
- # environments are not provided any mechanism to select specific extras.
189
- if req.marker is not None and not req.marker.evaluate({"extra": ""}):
190
- continue
191
- dist = env.get_distribution(req.name)
192
- if not dist:
193
- missing.add(req_str)
194
- continue
195
- if isinstance(dist.version, Version):
196
- installed_req_str = f"{req.name}=={dist.version}"
197
- else:
198
- installed_req_str = f"{req.name}==={dist.version}"
199
- if not req.specifier.contains(dist.version, prereleases=True):
200
- conflicting.add((installed_req_str, req_str))
201
- # FIXME: Consider direct URL?
202
- return conflicting, missing
203
-
204
- def install_requirements(
205
- self,
206
- finder: "PackageFinder",
207
- requirements: Iterable[str],
208
- prefix_as_string: str,
209
- *,
210
- kind: str,
211
- ) -> None:
212
- prefix = self._prefixes[prefix_as_string]
213
- assert not prefix.setup
214
- prefix.setup = True
215
- if not requirements:
216
- return
217
- self._install_requirements(
218
- get_runnable_pip(),
219
- finder,
220
- requirements,
221
- prefix,
222
- kind=kind,
223
- )
224
-
225
- @staticmethod
226
- def _install_requirements(
227
- pip_runnable: str,
228
- finder: "PackageFinder",
229
- requirements: Iterable[str],
230
- prefix: _Prefix,
231
- *,
232
- kind: str,
233
- ) -> None:
234
- args: List[str] = [
235
- sys.executable,
236
- pip_runnable,
237
- "install",
238
- "--ignore-installed",
239
- "--no-user",
240
- "--prefix",
241
- prefix.path,
242
- "--no-warn-script-location",
243
- ]
244
- if logger.getEffectiveLevel() <= logging.DEBUG:
245
- args.append("-v")
246
- for format_control in ("no_binary", "only_binary"):
247
- formats = getattr(finder.format_control, format_control)
248
- args.extend(
249
- (
250
- "--" + format_control.replace("_", "-"),
251
- ",".join(sorted(formats or {":none:"})),
252
- )
253
- )
254
-
255
- index_urls = finder.index_urls
256
- if index_urls:
257
- args.extend(["-i", index_urls[0]])
258
- for extra_index in index_urls[1:]:
259
- args.extend(["--extra-index-url", extra_index])
260
- else:
261
- args.append("--no-index")
262
- for link in finder.find_links:
263
- args.extend(["--find-links", link])
264
-
265
- for host in finder.trusted_hosts:
266
- args.extend(["--trusted-host", host])
267
- if finder.allow_all_prereleases:
268
- args.append("--pre")
269
- if finder.prefer_binary:
270
- args.append("--prefer-binary")
271
- args.append("--")
272
- args.extend(requirements)
273
- extra_environ = {"_PIP_STANDALONE_CERT": where()}
274
- with open_spinner(f"Installing {kind}") as spinner:
275
- call_subprocess(
276
- args,
277
- command_desc=f"pip subprocess to install {kind}",
278
- spinner=spinner,
279
- extra_environ=extra_environ,
280
- )
281
-
282
-
283
- class NoOpBuildEnvironment(BuildEnvironment):
284
- """A no-op drop-in replacement for BuildEnvironment"""
285
-
286
- def __init__(self) -> None:
287
- pass
288
-
289
- def __enter__(self) -> None:
290
- pass
291
-
292
- def __exit__(
293
- self,
294
- exc_type: Optional[Type[BaseException]],
295
- exc_val: Optional[BaseException],
296
- exc_tb: Optional[TracebackType],
297
- ) -> None:
298
- pass
299
-
300
- def cleanup(self) -> None:
301
- pass
302
-
303
- def install_requirements(
304
- self,
305
- finder: "PackageFinder",
306
- requirements: Iterable[str],
307
- prefix_as_string: str,
308
- *,
309
- kind: str,
310
- ) -> None:
311
- raise NotImplementedError()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/distlib/database.py DELETED
@@ -1,1350 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- #
3
- # Copyright (C) 2012-2017 The Python Software Foundation.
4
- # See LICENSE.txt and CONTRIBUTORS.txt.
5
- #
6
- """PEP 376 implementation."""
7
-
8
- from __future__ import unicode_literals
9
-
10
- import base64
11
- import codecs
12
- import contextlib
13
- import hashlib
14
- import logging
15
- import os
16
- import posixpath
17
- import sys
18
- import zipimport
19
-
20
- from . import DistlibException, resources
21
- from .compat import StringIO
22
- from .version import get_scheme, UnsupportedVersionError
23
- from .metadata import (Metadata, METADATA_FILENAME, WHEEL_METADATA_FILENAME,
24
- LEGACY_METADATA_FILENAME)
25
- from .util import (parse_requirement, cached_property, parse_name_and_version,
26
- read_exports, write_exports, CSVReader, CSVWriter)
27
-
28
-
29
- __all__ = ['Distribution', 'BaseInstalledDistribution',
30
- 'InstalledDistribution', 'EggInfoDistribution',
31
- 'DistributionPath']
32
-
33
-
34
- logger = logging.getLogger(__name__)
35
-
36
- EXPORTS_FILENAME = 'pydist-exports.json'
37
- COMMANDS_FILENAME = 'pydist-commands.json'
38
-
39
- DIST_FILES = ('INSTALLER', METADATA_FILENAME, 'RECORD', 'REQUESTED',
40
- 'RESOURCES', EXPORTS_FILENAME, 'SHARED')
41
-
42
- DISTINFO_EXT = '.dist-info'
43
-
44
-
45
- class _Cache(object):
46
- """
47
- A simple cache mapping names and .dist-info paths to distributions
48
- """
49
- def __init__(self):
50
- """
51
- Initialise an instance. There is normally one for each DistributionPath.
52
- """
53
- self.name = {}
54
- self.path = {}
55
- self.generated = False
56
-
57
- def clear(self):
58
- """
59
- Clear the cache, setting it to its initial state.
60
- """
61
- self.name.clear()
62
- self.path.clear()
63
- self.generated = False
64
-
65
- def add(self, dist):
66
- """
67
- Add a distribution to the cache.
68
- :param dist: The distribution to add.
69
- """
70
- if dist.path not in self.path:
71
- self.path[dist.path] = dist
72
- self.name.setdefault(dist.key, []).append(dist)
73
-
74
-
75
- class DistributionPath(object):
76
- """
77
- Represents a set of distributions installed on a path (typically sys.path).
78
- """
79
- def __init__(self, path=None, include_egg=False):
80
- """
81
- Create an instance from a path, optionally including legacy (distutils/
82
- setuptools/distribute) distributions.
83
- :param path: The path to use, as a list of directories. If not specified,
84
- sys.path is used.
85
- :param include_egg: If True, this instance will look for and return legacy
86
- distributions as well as those based on PEP 376.
87
- """
88
- if path is None:
89
- path = sys.path
90
- self.path = path
91
- self._include_dist = True
92
- self._include_egg = include_egg
93
-
94
- self._cache = _Cache()
95
- self._cache_egg = _Cache()
96
- self._cache_enabled = True
97
- self._scheme = get_scheme('default')
98
-
99
- def _get_cache_enabled(self):
100
- return self._cache_enabled
101
-
102
- def _set_cache_enabled(self, value):
103
- self._cache_enabled = value
104
-
105
- cache_enabled = property(_get_cache_enabled, _set_cache_enabled)
106
-
107
- def clear_cache(self):
108
- """
109
- Clears the internal cache.
110
- """
111
- self._cache.clear()
112
- self._cache_egg.clear()
113
-
114
-
115
- def _yield_distributions(self):
116
- """
117
- Yield .dist-info and/or .egg(-info) distributions.
118
- """
119
- # We need to check if we've seen some resources already, because on
120
- # some Linux systems (e.g. some Debian/Ubuntu variants) there are
121
- # symlinks which alias other files in the environment.
122
- seen = set()
123
- for path in self.path:
124
- finder = resources.finder_for_path(path)
125
- if finder is None:
126
- continue
127
- r = finder.find('')
128
- if not r or not r.is_container:
129
- continue
130
- rset = sorted(r.resources)
131
- for entry in rset:
132
- r = finder.find(entry)
133
- if not r or r.path in seen:
134
- continue
135
- try:
136
- if self._include_dist and entry.endswith(DISTINFO_EXT):
137
- possible_filenames = [METADATA_FILENAME,
138
- WHEEL_METADATA_FILENAME,
139
- LEGACY_METADATA_FILENAME]
140
- for metadata_filename in possible_filenames:
141
- metadata_path = posixpath.join(entry, metadata_filename)
142
- pydist = finder.find(metadata_path)
143
- if pydist:
144
- break
145
- else:
146
- continue
147
-
148
- with contextlib.closing(pydist.as_stream()) as stream:
149
- metadata = Metadata(fileobj=stream, scheme='legacy')
150
- logger.debug('Found %s', r.path)
151
- seen.add(r.path)
152
- yield new_dist_class(r.path, metadata=metadata,
153
- env=self)
154
- elif self._include_egg and entry.endswith(('.egg-info',
155
- '.egg')):
156
- logger.debug('Found %s', r.path)
157
- seen.add(r.path)
158
- yield old_dist_class(r.path, self)
159
- except Exception as e:
160
- msg = 'Unable to read distribution at %s, perhaps due to bad metadata: %s'
161
- logger.warning(msg, r.path, e)
162
- import warnings
163
- warnings.warn(msg % (r.path, e), stacklevel=2)
164
-
165
- def _generate_cache(self):
166
- """
167
- Scan the path for distributions and populate the cache with
168
- those that are found.
169
- """
170
- gen_dist = not self._cache.generated
171
- gen_egg = self._include_egg and not self._cache_egg.generated
172
- if gen_dist or gen_egg:
173
- for dist in self._yield_distributions():
174
- if isinstance(dist, InstalledDistribution):
175
- self._cache.add(dist)
176
- else:
177
- self._cache_egg.add(dist)
178
-
179
- if gen_dist:
180
- self._cache.generated = True
181
- if gen_egg:
182
- self._cache_egg.generated = True
183
-
184
- @classmethod
185
- def distinfo_dirname(cls, name, version):
186
- """
187
- The *name* and *version* parameters are converted into their
188
- filename-escaped form, i.e. any ``'-'`` characters are replaced
189
- with ``'_'`` other than the one in ``'dist-info'`` and the one
190
- separating the name from the version number.
191
-
192
- :parameter name: is converted to a standard distribution name by replacing
193
- any runs of non- alphanumeric characters with a single
194
- ``'-'``.
195
- :type name: string
196
- :parameter version: is converted to a standard version string. Spaces
197
- become dots, and all other non-alphanumeric characters
198
- (except dots) become dashes, with runs of multiple
199
- dashes condensed to a single dash.
200
- :type version: string
201
- :returns: directory name
202
- :rtype: string"""
203
- name = name.replace('-', '_')
204
- return '-'.join([name, version]) + DISTINFO_EXT
205
-
206
- def get_distributions(self):
207
- """
208
- Provides an iterator that looks for distributions and returns
209
- :class:`InstalledDistribution` or
210
- :class:`EggInfoDistribution` instances for each one of them.
211
-
212
- :rtype: iterator of :class:`InstalledDistribution` and
213
- :class:`EggInfoDistribution` instances
214
- """
215
- if not self._cache_enabled:
216
- for dist in self._yield_distributions():
217
- yield dist
218
- else:
219
- self._generate_cache()
220
-
221
- for dist in self._cache.path.values():
222
- yield dist
223
-
224
- if self._include_egg:
225
- for dist in self._cache_egg.path.values():
226
- yield dist
227
-
228
- def get_distribution(self, name):
229
- """
230
- Looks for a named distribution on the path.
231
-
232
- This function only returns the first result found, as no more than one
233
- value is expected. If nothing is found, ``None`` is returned.
234
-
235
- :rtype: :class:`InstalledDistribution`, :class:`EggInfoDistribution`
236
- or ``None``
237
- """
238
- result = None
239
- name = name.lower()
240
- if not self._cache_enabled:
241
- for dist in self._yield_distributions():
242
- if dist.key == name:
243
- result = dist
244
- break
245
- else:
246
- self._generate_cache()
247
-
248
- if name in self._cache.name:
249
- result = self._cache.name[name][0]
250
- elif self._include_egg and name in self._cache_egg.name:
251
- result = self._cache_egg.name[name][0]
252
- return result
253
-
254
- def provides_distribution(self, name, version=None):
255
- """
256
- Iterates over all distributions to find which distributions provide *name*.
257
- If a *version* is provided, it will be used to filter the results.
258
-
259
- This function only returns the first result found, since no more than
260
- one values are expected. If the directory is not found, returns ``None``.
261
-
262
- :parameter version: a version specifier that indicates the version
263
- required, conforming to the format in ``PEP-345``
264
-
265
- :type name: string
266
- :type version: string
267
- """
268
- matcher = None
269
- if version is not None:
270
- try:
271
- matcher = self._scheme.matcher('%s (%s)' % (name, version))
272
- except ValueError:
273
- raise DistlibException('invalid name or version: %r, %r' %
274
- (name, version))
275
-
276
- for dist in self.get_distributions():
277
- # We hit a problem on Travis where enum34 was installed and doesn't
278
- # have a provides attribute ...
279
- if not hasattr(dist, 'provides'):
280
- logger.debug('No "provides": %s', dist)
281
- else:
282
- provided = dist.provides
283
-
284
- for p in provided:
285
- p_name, p_ver = parse_name_and_version(p)
286
- if matcher is None:
287
- if p_name == name:
288
- yield dist
289
- break
290
- else:
291
- if p_name == name and matcher.match(p_ver):
292
- yield dist
293
- break
294
-
295
- def get_file_path(self, name, relative_path):
296
- """
297
- Return the path to a resource file.
298
- """
299
- dist = self.get_distribution(name)
300
- if dist is None:
301
- raise LookupError('no distribution named %r found' % name)
302
- return dist.get_resource_path(relative_path)
303
-
304
- def get_exported_entries(self, category, name=None):
305
- """
306
- Return all of the exported entries in a particular category.
307
-
308
- :param category: The category to search for entries.
309
- :param name: If specified, only entries with that name are returned.
310
- """
311
- for dist in self.get_distributions():
312
- r = dist.exports
313
- if category in r:
314
- d = r[category]
315
- if name is not None:
316
- if name in d:
317
- yield d[name]
318
- else:
319
- for v in d.values():
320
- yield v
321
-
322
-
323
- class Distribution(object):
324
- """
325
- A base class for distributions, whether installed or from indexes.
326
- Either way, it must have some metadata, so that's all that's needed
327
- for construction.
328
- """
329
-
330
- build_time_dependency = False
331
- """
332
- Set to True if it's known to be only a build-time dependency (i.e.
333
- not needed after installation).
334
- """
335
-
336
- requested = False
337
- """A boolean that indicates whether the ``REQUESTED`` metadata file is
338
- present (in other words, whether the package was installed by user
339
- request or it was installed as a dependency)."""
340
-
341
- def __init__(self, metadata):
342
- """
343
- Initialise an instance.
344
- :param metadata: The instance of :class:`Metadata` describing this
345
- distribution.
346
- """
347
- self.metadata = metadata
348
- self.name = metadata.name
349
- self.key = self.name.lower() # for case-insensitive comparisons
350
- self.version = metadata.version
351
- self.locator = None
352
- self.digest = None
353
- self.extras = None # additional features requested
354
- self.context = None # environment marker overrides
355
- self.download_urls = set()
356
- self.digests = {}
357
-
358
- @property
359
- def source_url(self):
360
- """
361
- The source archive download URL for this distribution.
362
- """
363
- return self.metadata.source_url
364
-
365
- download_url = source_url # Backward compatibility
366
-
367
- @property
368
- def name_and_version(self):
369
- """
370
- A utility property which displays the name and version in parentheses.
371
- """
372
- return '%s (%s)' % (self.name, self.version)
373
-
374
- @property
375
- def provides(self):
376
- """
377
- A set of distribution names and versions provided by this distribution.
378
- :return: A set of "name (version)" strings.
379
- """
380
- plist = self.metadata.provides
381
- s = '%s (%s)' % (self.name, self.version)
382
- if s not in plist:
383
- plist.append(s)
384
- return plist
385
-
386
- def _get_requirements(self, req_attr):
387
- md = self.metadata
388
- reqts = getattr(md, req_attr)
389
- logger.debug('%s: got requirements %r from metadata: %r', self.name, req_attr,
390
- reqts)
391
- return set(md.get_requirements(reqts, extras=self.extras,
392
- env=self.context))
393
-
394
- @property
395
- def run_requires(self):
396
- return self._get_requirements('run_requires')
397
-
398
- @property
399
- def meta_requires(self):
400
- return self._get_requirements('meta_requires')
401
-
402
- @property
403
- def build_requires(self):
404
- return self._get_requirements('build_requires')
405
-
406
- @property
407
- def test_requires(self):
408
- return self._get_requirements('test_requires')
409
-
410
- @property
411
- def dev_requires(self):
412
- return self._get_requirements('dev_requires')
413
-
414
- def matches_requirement(self, req):
415
- """
416
- Say if this instance matches (fulfills) a requirement.
417
- :param req: The requirement to match.
418
- :rtype req: str
419
- :return: True if it matches, else False.
420
- """
421
- # Requirement may contain extras - parse to lose those
422
- # from what's passed to the matcher
423
- r = parse_requirement(req)
424
- scheme = get_scheme(self.metadata.scheme)
425
- try:
426
- matcher = scheme.matcher(r.requirement)
427
- except UnsupportedVersionError:
428
- # XXX compat-mode if cannot read the version
429
- logger.warning('could not read version %r - using name only',
430
- req)
431
- name = req.split()[0]
432
- matcher = scheme.matcher(name)
433
-
434
- name = matcher.key # case-insensitive
435
-
436
- result = False
437
- for p in self.provides:
438
- p_name, p_ver = parse_name_and_version(p)
439
- if p_name != name:
440
- continue
441
- try:
442
- result = matcher.match(p_ver)
443
- break
444
- except UnsupportedVersionError:
445
- pass
446
- return result
447
-
448
- def __repr__(self):
449
- """
450
- Return a textual representation of this instance,
451
- """
452
- if self.source_url:
453
- suffix = ' [%s]' % self.source_url
454
- else:
455
- suffix = ''
456
- return '<Distribution %s (%s)%s>' % (self.name, self.version, suffix)
457
-
458
- def __eq__(self, other):
459
- """
460
- See if this distribution is the same as another.
461
- :param other: The distribution to compare with. To be equal to one
462
- another. distributions must have the same type, name,
463
- version and source_url.
464
- :return: True if it is the same, else False.
465
- """
466
- if type(other) is not type(self):
467
- result = False
468
- else:
469
- result = (self.name == other.name and
470
- self.version == other.version and
471
- self.source_url == other.source_url)
472
- return result
473
-
474
- def __hash__(self):
475
- """
476
- Compute hash in a way which matches the equality test.
477
- """
478
- return hash(self.name) + hash(self.version) + hash(self.source_url)
479
-
480
-
481
- class BaseInstalledDistribution(Distribution):
482
- """
483
- This is the base class for installed distributions (whether PEP 376 or
484
- legacy).
485
- """
486
-
487
- hasher = None
488
-
489
- def __init__(self, metadata, path, env=None):
490
- """
491
- Initialise an instance.
492
- :param metadata: An instance of :class:`Metadata` which describes the
493
- distribution. This will normally have been initialised
494
- from a metadata file in the ``path``.
495
- :param path: The path of the ``.dist-info`` or ``.egg-info``
496
- directory for the distribution.
497
- :param env: This is normally the :class:`DistributionPath`
498
- instance where this distribution was found.
499
- """
500
- super(BaseInstalledDistribution, self).__init__(metadata)
501
- self.path = path
502
- self.dist_path = env
503
-
504
- def get_hash(self, data, hasher=None):
505
- """
506
- Get the hash of some data, using a particular hash algorithm, if
507
- specified.
508
-
509
- :param data: The data to be hashed.
510
- :type data: bytes
511
- :param hasher: The name of a hash implementation, supported by hashlib,
512
- or ``None``. Examples of valid values are ``'sha1'``,
513
- ``'sha224'``, ``'sha384'``, '``sha256'``, ``'md5'`` and
514
- ``'sha512'``. If no hasher is specified, the ``hasher``
515
- attribute of the :class:`InstalledDistribution` instance
516
- is used. If the hasher is determined to be ``None``, MD5
517
- is used as the hashing algorithm.
518
- :returns: The hash of the data. If a hasher was explicitly specified,
519
- the returned hash will be prefixed with the specified hasher
520
- followed by '='.
521
- :rtype: str
522
- """
523
- if hasher is None:
524
- hasher = self.hasher
525
- if hasher is None:
526
- hasher = hashlib.md5
527
- prefix = ''
528
- else:
529
- hasher = getattr(hashlib, hasher)
530
- prefix = '%s=' % self.hasher
531
- digest = hasher(data).digest()
532
- digest = base64.urlsafe_b64encode(digest).rstrip(b'=').decode('ascii')
533
- return '%s%s' % (prefix, digest)
534
-
535
-
536
- class InstalledDistribution(BaseInstalledDistribution):
537
- """
538
- Created with the *path* of the ``.dist-info`` directory provided to the
539
- constructor. It reads the metadata contained in ``pydist.json`` when it is
540
- instantiated., or uses a passed in Metadata instance (useful for when
541
- dry-run mode is being used).
542
- """
543
-
544
- hasher = 'sha256'
545
-
546
- def __init__(self, path, metadata=None, env=None):
547
- self.modules = []
548
- self.finder = finder = resources.finder_for_path(path)
549
- if finder is None:
550
- raise ValueError('finder unavailable for %s' % path)
551
- if env and env._cache_enabled and path in env._cache.path:
552
- metadata = env._cache.path[path].metadata
553
- elif metadata is None:
554
- r = finder.find(METADATA_FILENAME)
555
- # Temporary - for Wheel 0.23 support
556
- if r is None:
557
- r = finder.find(WHEEL_METADATA_FILENAME)
558
- # Temporary - for legacy support
559
- if r is None:
560
- r = finder.find(LEGACY_METADATA_FILENAME)
561
- if r is None:
562
- raise ValueError('no %s found in %s' % (METADATA_FILENAME,
563
- path))
564
- with contextlib.closing(r.as_stream()) as stream:
565
- metadata = Metadata(fileobj=stream, scheme='legacy')
566
-
567
- super(InstalledDistribution, self).__init__(metadata, path, env)
568
-
569
- if env and env._cache_enabled:
570
- env._cache.add(self)
571
-
572
- r = finder.find('REQUESTED')
573
- self.requested = r is not None
574
- p = os.path.join(path, 'top_level.txt')
575
- if os.path.exists(p):
576
- with open(p, 'rb') as f:
577
- data = f.read().decode('utf-8')
578
- self.modules = data.splitlines()
579
-
580
- def __repr__(self):
581
- return '<InstalledDistribution %r %s at %r>' % (
582
- self.name, self.version, self.path)
583
-
584
- def __str__(self):
585
- return "%s %s" % (self.name, self.version)
586
-
587
- def _get_records(self):
588
- """
589
- Get the list of installed files for the distribution
590
- :return: A list of tuples of path, hash and size. Note that hash and
591
- size might be ``None`` for some entries. The path is exactly
592
- as stored in the file (which is as in PEP 376).
593
- """
594
- results = []
595
- r = self.get_distinfo_resource('RECORD')
596
- with contextlib.closing(r.as_stream()) as stream:
597
- with CSVReader(stream=stream) as record_reader:
598
- # Base location is parent dir of .dist-info dir
599
- #base_location = os.path.dirname(self.path)
600
- #base_location = os.path.abspath(base_location)
601
- for row in record_reader:
602
- missing = [None for i in range(len(row), 3)]
603
- path, checksum, size = row + missing
604
- #if not os.path.isabs(path):
605
- # path = path.replace('/', os.sep)
606
- # path = os.path.join(base_location, path)
607
- results.append((path, checksum, size))
608
- return results
609
-
610
- @cached_property
611
- def exports(self):
612
- """
613
- Return the information exported by this distribution.
614
- :return: A dictionary of exports, mapping an export category to a dict
615
- of :class:`ExportEntry` instances describing the individual
616
- export entries, and keyed by name.
617
- """
618
- result = {}
619
- r = self.get_distinfo_resource(EXPORTS_FILENAME)
620
- if r:
621
- result = self.read_exports()
622
- return result
623
-
624
- def read_exports(self):
625
- """
626
- Read exports data from a file in .ini format.
627
-
628
- :return: A dictionary of exports, mapping an export category to a list
629
- of :class:`ExportEntry` instances describing the individual
630
- export entries.
631
- """
632
- result = {}
633
- r = self.get_distinfo_resource(EXPORTS_FILENAME)
634
- if r:
635
- with contextlib.closing(r.as_stream()) as stream:
636
- result = read_exports(stream)
637
- return result
638
-
639
- def write_exports(self, exports):
640
- """
641
- Write a dictionary of exports to a file in .ini format.
642
- :param exports: A dictionary of exports, mapping an export category to
643
- a list of :class:`ExportEntry` instances describing the
644
- individual export entries.
645
- """
646
- rf = self.get_distinfo_file(EXPORTS_FILENAME)
647
- with open(rf, 'w') as f:
648
- write_exports(exports, f)
649
-
650
- def get_resource_path(self, relative_path):
651
- """
652
- NOTE: This API may change in the future.
653
-
654
- Return the absolute path to a resource file with the given relative
655
- path.
656
-
657
- :param relative_path: The path, relative to .dist-info, of the resource
658
- of interest.
659
- :return: The absolute path where the resource is to be found.
660
- """
661
- r = self.get_distinfo_resource('RESOURCES')
662
- with contextlib.closing(r.as_stream()) as stream:
663
- with CSVReader(stream=stream) as resources_reader:
664
- for relative, destination in resources_reader:
665
- if relative == relative_path:
666
- return destination
667
- raise KeyError('no resource file with relative path %r '
668
- 'is installed' % relative_path)
669
-
670
- def list_installed_files(self):
671
- """
672
- Iterates over the ``RECORD`` entries and returns a tuple
673
- ``(path, hash, size)`` for each line.
674
-
675
- :returns: iterator of (path, hash, size)
676
- """
677
- for result in self._get_records():
678
- yield result
679
-
680
- def write_installed_files(self, paths, prefix, dry_run=False):
681
- """
682
- Writes the ``RECORD`` file, using the ``paths`` iterable passed in. Any
683
- existing ``RECORD`` file is silently overwritten.
684
-
685
- prefix is used to determine when to write absolute paths.
686
- """
687
- prefix = os.path.join(prefix, '')
688
- base = os.path.dirname(self.path)
689
- base_under_prefix = base.startswith(prefix)
690
- base = os.path.join(base, '')
691
- record_path = self.get_distinfo_file('RECORD')
692
- logger.info('creating %s', record_path)
693
- if dry_run:
694
- return None
695
- with CSVWriter(record_path) as writer:
696
- for path in paths:
697
- if os.path.isdir(path) or path.endswith(('.pyc', '.pyo')):
698
- # do not put size and hash, as in PEP-376
699
- hash_value = size = ''
700
- else:
701
- size = '%d' % os.path.getsize(path)
702
- with open(path, 'rb') as fp:
703
- hash_value = self.get_hash(fp.read())
704
- if path.startswith(base) or (base_under_prefix and
705
- path.startswith(prefix)):
706
- path = os.path.relpath(path, base)
707
- writer.writerow((path, hash_value, size))
708
-
709
- # add the RECORD file itself
710
- if record_path.startswith(base):
711
- record_path = os.path.relpath(record_path, base)
712
- writer.writerow((record_path, '', ''))
713
- return record_path
714
-
715
- def check_installed_files(self):
716
- """
717
- Checks that the hashes and sizes of the files in ``RECORD`` are
718
- matched by the files themselves. Returns a (possibly empty) list of
719
- mismatches. Each entry in the mismatch list will be a tuple consisting
720
- of the path, 'exists', 'size' or 'hash' according to what didn't match
721
- (existence is checked first, then size, then hash), the expected
722
- value and the actual value.
723
- """
724
- mismatches = []
725
- base = os.path.dirname(self.path)
726
- record_path = self.get_distinfo_file('RECORD')
727
- for path, hash_value, size in self.list_installed_files():
728
- if not os.path.isabs(path):
729
- path = os.path.join(base, path)
730
- if path == record_path:
731
- continue
732
- if not os.path.exists(path):
733
- mismatches.append((path, 'exists', True, False))
734
- elif os.path.isfile(path):
735
- actual_size = str(os.path.getsize(path))
736
- if size and actual_size != size:
737
- mismatches.append((path, 'size', size, actual_size))
738
- elif hash_value:
739
- if '=' in hash_value:
740
- hasher = hash_value.split('=', 1)[0]
741
- else:
742
- hasher = None
743
-
744
- with open(path, 'rb') as f:
745
- actual_hash = self.get_hash(f.read(), hasher)
746
- if actual_hash != hash_value:
747
- mismatches.append((path, 'hash', hash_value, actual_hash))
748
- return mismatches
749
-
750
- @cached_property
751
- def shared_locations(self):
752
- """
753
- A dictionary of shared locations whose keys are in the set 'prefix',
754
- 'purelib', 'platlib', 'scripts', 'headers', 'data' and 'namespace'.
755
- The corresponding value is the absolute path of that category for
756
- this distribution, and takes into account any paths selected by the
757
- user at installation time (e.g. via command-line arguments). In the
758
- case of the 'namespace' key, this would be a list of absolute paths
759
- for the roots of namespace packages in this distribution.
760
-
761
- The first time this property is accessed, the relevant information is
762
- read from the SHARED file in the .dist-info directory.
763
- """
764
- result = {}
765
- shared_path = os.path.join(self.path, 'SHARED')
766
- if os.path.isfile(shared_path):
767
- with codecs.open(shared_path, 'r', encoding='utf-8') as f:
768
- lines = f.read().splitlines()
769
- for line in lines:
770
- key, value = line.split('=', 1)
771
- if key == 'namespace':
772
- result.setdefault(key, []).append(value)
773
- else:
774
- result[key] = value
775
- return result
776
-
777
- def write_shared_locations(self, paths, dry_run=False):
778
- """
779
- Write shared location information to the SHARED file in .dist-info.
780
- :param paths: A dictionary as described in the documentation for
781
- :meth:`shared_locations`.
782
- :param dry_run: If True, the action is logged but no file is actually
783
- written.
784
- :return: The path of the file written to.
785
- """
786
- shared_path = os.path.join(self.path, 'SHARED')
787
- logger.info('creating %s', shared_path)
788
- if dry_run:
789
- return None
790
- lines = []
791
- for key in ('prefix', 'lib', 'headers', 'scripts', 'data'):
792
- path = paths[key]
793
- if os.path.isdir(paths[key]):
794
- lines.append('%s=%s' % (key, path))
795
- for ns in paths.get('namespace', ()):
796
- lines.append('namespace=%s' % ns)
797
-
798
- with codecs.open(shared_path, 'w', encoding='utf-8') as f:
799
- f.write('\n'.join(lines))
800
- return shared_path
801
-
802
- def get_distinfo_resource(self, path):
803
- if path not in DIST_FILES:
804
- raise DistlibException('invalid path for a dist-info file: '
805
- '%r at %r' % (path, self.path))
806
- finder = resources.finder_for_path(self.path)
807
- if finder is None:
808
- raise DistlibException('Unable to get a finder for %s' % self.path)
809
- return finder.find(path)
810
-
811
- def get_distinfo_file(self, path):
812
- """
813
- Returns a path located under the ``.dist-info`` directory. Returns a
814
- string representing the path.
815
-
816
- :parameter path: a ``'/'``-separated path relative to the
817
- ``.dist-info`` directory or an absolute path;
818
- If *path* is an absolute path and doesn't start
819
- with the ``.dist-info`` directory path,
820
- a :class:`DistlibException` is raised
821
- :type path: str
822
- :rtype: str
823
- """
824
- # Check if it is an absolute path # XXX use relpath, add tests
825
- if path.find(os.sep) >= 0:
826
- # it's an absolute path?
827
- distinfo_dirname, path = path.split(os.sep)[-2:]
828
- if distinfo_dirname != self.path.split(os.sep)[-1]:
829
- raise DistlibException(
830
- 'dist-info file %r does not belong to the %r %s '
831
- 'distribution' % (path, self.name, self.version))
832
-
833
- # The file must be relative
834
- if path not in DIST_FILES:
835
- raise DistlibException('invalid path for a dist-info file: '
836
- '%r at %r' % (path, self.path))
837
-
838
- return os.path.join(self.path, path)
839
-
840
- def list_distinfo_files(self):
841
- """
842
- Iterates over the ``RECORD`` entries and returns paths for each line if
843
- the path is pointing to a file located in the ``.dist-info`` directory
844
- or one of its subdirectories.
845
-
846
- :returns: iterator of paths
847
- """
848
- base = os.path.dirname(self.path)
849
- for path, checksum, size in self._get_records():
850
- # XXX add separator or use real relpath algo
851
- if not os.path.isabs(path):
852
- path = os.path.join(base, path)
853
- if path.startswith(self.path):
854
- yield path
855
-
856
- def __eq__(self, other):
857
- return (isinstance(other, InstalledDistribution) and
858
- self.path == other.path)
859
-
860
- # See http://docs.python.org/reference/datamodel#object.__hash__
861
- __hash__ = object.__hash__
862
-
863
-
864
- class EggInfoDistribution(BaseInstalledDistribution):
865
- """Created with the *path* of the ``.egg-info`` directory or file provided
866
- to the constructor. It reads the metadata contained in the file itself, or
867
- if the given path happens to be a directory, the metadata is read from the
868
- file ``PKG-INFO`` under that directory."""
869
-
870
- requested = True # as we have no way of knowing, assume it was
871
- shared_locations = {}
872
-
873
- def __init__(self, path, env=None):
874
- def set_name_and_version(s, n, v):
875
- s.name = n
876
- s.key = n.lower() # for case-insensitive comparisons
877
- s.version = v
878
-
879
- self.path = path
880
- self.dist_path = env
881
- if env and env._cache_enabled and path in env._cache_egg.path:
882
- metadata = env._cache_egg.path[path].metadata
883
- set_name_and_version(self, metadata.name, metadata.version)
884
- else:
885
- metadata = self._get_metadata(path)
886
-
887
- # Need to be set before caching
888
- set_name_and_version(self, metadata.name, metadata.version)
889
-
890
- if env and env._cache_enabled:
891
- env._cache_egg.add(self)
892
- super(EggInfoDistribution, self).__init__(metadata, path, env)
893
-
894
- def _get_metadata(self, path):
895
- requires = None
896
-
897
- def parse_requires_data(data):
898
- """Create a list of dependencies from a requires.txt file.
899
-
900
- *data*: the contents of a setuptools-produced requires.txt file.
901
- """
902
- reqs = []
903
- lines = data.splitlines()
904
- for line in lines:
905
- line = line.strip()
906
- if line.startswith('['):
907
- logger.warning('Unexpected line: quitting requirement scan: %r',
908
- line)
909
- break
910
- r = parse_requirement(line)
911
- if not r:
912
- logger.warning('Not recognised as a requirement: %r', line)
913
- continue
914
- if r.extras:
915
- logger.warning('extra requirements in requires.txt are '
916
- 'not supported')
917
- if not r.constraints:
918
- reqs.append(r.name)
919
- else:
920
- cons = ', '.join('%s%s' % c for c in r.constraints)
921
- reqs.append('%s (%s)' % (r.name, cons))
922
- return reqs
923
-
924
- def parse_requires_path(req_path):
925
- """Create a list of dependencies from a requires.txt file.
926
-
927
- *req_path*: the path to a setuptools-produced requires.txt file.
928
- """
929
-
930
- reqs = []
931
- try:
932
- with codecs.open(req_path, 'r', 'utf-8') as fp:
933
- reqs = parse_requires_data(fp.read())
934
- except IOError:
935
- pass
936
- return reqs
937
-
938
- tl_path = tl_data = None
939
- if path.endswith('.egg'):
940
- if os.path.isdir(path):
941
- p = os.path.join(path, 'EGG-INFO')
942
- meta_path = os.path.join(p, 'PKG-INFO')
943
- metadata = Metadata(path=meta_path, scheme='legacy')
944
- req_path = os.path.join(p, 'requires.txt')
945
- tl_path = os.path.join(p, 'top_level.txt')
946
- requires = parse_requires_path(req_path)
947
- else:
948
- # FIXME handle the case where zipfile is not available
949
- zipf = zipimport.zipimporter(path)
950
- fileobj = StringIO(
951
- zipf.get_data('EGG-INFO/PKG-INFO').decode('utf8'))
952
- metadata = Metadata(fileobj=fileobj, scheme='legacy')
953
- try:
954
- data = zipf.get_data('EGG-INFO/requires.txt')
955
- tl_data = zipf.get_data('EGG-INFO/top_level.txt').decode('utf-8')
956
- requires = parse_requires_data(data.decode('utf-8'))
957
- except IOError:
958
- requires = None
959
- elif path.endswith('.egg-info'):
960
- if os.path.isdir(path):
961
- req_path = os.path.join(path, 'requires.txt')
962
- requires = parse_requires_path(req_path)
963
- path = os.path.join(path, 'PKG-INFO')
964
- tl_path = os.path.join(path, 'top_level.txt')
965
- metadata = Metadata(path=path, scheme='legacy')
966
- else:
967
- raise DistlibException('path must end with .egg-info or .egg, '
968
- 'got %r' % path)
969
-
970
- if requires:
971
- metadata.add_requirements(requires)
972
- # look for top-level modules in top_level.txt, if present
973
- if tl_data is None:
974
- if tl_path is not None and os.path.exists(tl_path):
975
- with open(tl_path, 'rb') as f:
976
- tl_data = f.read().decode('utf-8')
977
- if not tl_data:
978
- tl_data = []
979
- else:
980
- tl_data = tl_data.splitlines()
981
- self.modules = tl_data
982
- return metadata
983
-
984
- def __repr__(self):
985
- return '<EggInfoDistribution %r %s at %r>' % (
986
- self.name, self.version, self.path)
987
-
988
- def __str__(self):
989
- return "%s %s" % (self.name, self.version)
990
-
991
- def check_installed_files(self):
992
- """
993
- Checks that the hashes and sizes of the files in ``RECORD`` are
994
- matched by the files themselves. Returns a (possibly empty) list of
995
- mismatches. Each entry in the mismatch list will be a tuple consisting
996
- of the path, 'exists', 'size' or 'hash' according to what didn't match
997
- (existence is checked first, then size, then hash), the expected
998
- value and the actual value.
999
- """
1000
- mismatches = []
1001
- record_path = os.path.join(self.path, 'installed-files.txt')
1002
- if os.path.exists(record_path):
1003
- for path, _, _ in self.list_installed_files():
1004
- if path == record_path:
1005
- continue
1006
- if not os.path.exists(path):
1007
- mismatches.append((path, 'exists', True, False))
1008
- return mismatches
1009
-
1010
- def list_installed_files(self):
1011
- """
1012
- Iterates over the ``installed-files.txt`` entries and returns a tuple
1013
- ``(path, hash, size)`` for each line.
1014
-
1015
- :returns: a list of (path, hash, size)
1016
- """
1017
-
1018
- def _md5(path):
1019
- f = open(path, 'rb')
1020
- try:
1021
- content = f.read()
1022
- finally:
1023
- f.close()
1024
- return hashlib.md5(content).hexdigest()
1025
-
1026
- def _size(path):
1027
- return os.stat(path).st_size
1028
-
1029
- record_path = os.path.join(self.path, 'installed-files.txt')
1030
- result = []
1031
- if os.path.exists(record_path):
1032
- with codecs.open(record_path, 'r', encoding='utf-8') as f:
1033
- for line in f:
1034
- line = line.strip()
1035
- p = os.path.normpath(os.path.join(self.path, line))
1036
- # "./" is present as a marker between installed files
1037
- # and installation metadata files
1038
- if not os.path.exists(p):
1039
- logger.warning('Non-existent file: %s', p)
1040
- if p.endswith(('.pyc', '.pyo')):
1041
- continue
1042
- #otherwise fall through and fail
1043
- if not os.path.isdir(p):
1044
- result.append((p, _md5(p), _size(p)))
1045
- result.append((record_path, None, None))
1046
- return result
1047
-
1048
- def list_distinfo_files(self, absolute=False):
1049
- """
1050
- Iterates over the ``installed-files.txt`` entries and returns paths for
1051
- each line if the path is pointing to a file located in the
1052
- ``.egg-info`` directory or one of its subdirectories.
1053
-
1054
- :parameter absolute: If *absolute* is ``True``, each returned path is
1055
- transformed into a local absolute path. Otherwise the
1056
- raw value from ``installed-files.txt`` is returned.
1057
- :type absolute: boolean
1058
- :returns: iterator of paths
1059
- """
1060
- record_path = os.path.join(self.path, 'installed-files.txt')
1061
- if os.path.exists(record_path):
1062
- skip = True
1063
- with codecs.open(record_path, 'r', encoding='utf-8') as f:
1064
- for line in f:
1065
- line = line.strip()
1066
- if line == './':
1067
- skip = False
1068
- continue
1069
- if not skip:
1070
- p = os.path.normpath(os.path.join(self.path, line))
1071
- if p.startswith(self.path):
1072
- if absolute:
1073
- yield p
1074
- else:
1075
- yield line
1076
-
1077
- def __eq__(self, other):
1078
- return (isinstance(other, EggInfoDistribution) and
1079
- self.path == other.path)
1080
-
1081
- # See http://docs.python.org/reference/datamodel#object.__hash__
1082
- __hash__ = object.__hash__
1083
-
1084
- new_dist_class = InstalledDistribution
1085
- old_dist_class = EggInfoDistribution
1086
-
1087
-
1088
- class DependencyGraph(object):
1089
- """
1090
- Represents a dependency graph between distributions.
1091
-
1092
- The dependency relationships are stored in an ``adjacency_list`` that maps
1093
- distributions to a list of ``(other, label)`` tuples where ``other``
1094
- is a distribution and the edge is labeled with ``label`` (i.e. the version
1095
- specifier, if such was provided). Also, for more efficient traversal, for
1096
- every distribution ``x``, a list of predecessors is kept in
1097
- ``reverse_list[x]``. An edge from distribution ``a`` to
1098
- distribution ``b`` means that ``a`` depends on ``b``. If any missing
1099
- dependencies are found, they are stored in ``missing``, which is a
1100
- dictionary that maps distributions to a list of requirements that were not
1101
- provided by any other distributions.
1102
- """
1103
-
1104
- def __init__(self):
1105
- self.adjacency_list = {}
1106
- self.reverse_list = {}
1107
- self.missing = {}
1108
-
1109
- def add_distribution(self, distribution):
1110
- """Add the *distribution* to the graph.
1111
-
1112
- :type distribution: :class:`distutils2.database.InstalledDistribution`
1113
- or :class:`distutils2.database.EggInfoDistribution`
1114
- """
1115
- self.adjacency_list[distribution] = []
1116
- self.reverse_list[distribution] = []
1117
- #self.missing[distribution] = []
1118
-
1119
- def add_edge(self, x, y, label=None):
1120
- """Add an edge from distribution *x* to distribution *y* with the given
1121
- *label*.
1122
-
1123
- :type x: :class:`distutils2.database.InstalledDistribution` or
1124
- :class:`distutils2.database.EggInfoDistribution`
1125
- :type y: :class:`distutils2.database.InstalledDistribution` or
1126
- :class:`distutils2.database.EggInfoDistribution`
1127
- :type label: ``str`` or ``None``
1128
- """
1129
- self.adjacency_list[x].append((y, label))
1130
- # multiple edges are allowed, so be careful
1131
- if x not in self.reverse_list[y]:
1132
- self.reverse_list[y].append(x)
1133
-
1134
- def add_missing(self, distribution, requirement):
1135
- """
1136
- Add a missing *requirement* for the given *distribution*.
1137
-
1138
- :type distribution: :class:`distutils2.database.InstalledDistribution`
1139
- or :class:`distutils2.database.EggInfoDistribution`
1140
- :type requirement: ``str``
1141
- """
1142
- logger.debug('%s missing %r', distribution, requirement)
1143
- self.missing.setdefault(distribution, []).append(requirement)
1144
-
1145
- def _repr_dist(self, dist):
1146
- return '%s %s' % (dist.name, dist.version)
1147
-
1148
- def repr_node(self, dist, level=1):
1149
- """Prints only a subgraph"""
1150
- output = [self._repr_dist(dist)]
1151
- for other, label in self.adjacency_list[dist]:
1152
- dist = self._repr_dist(other)
1153
- if label is not None:
1154
- dist = '%s [%s]' % (dist, label)
1155
- output.append(' ' * level + str(dist))
1156
- suboutput = self.repr_node(other, level + 1)
1157
- subs = suboutput.split('\n')
1158
- output.extend(subs[1:])
1159
- return '\n'.join(output)
1160
-
1161
- def to_dot(self, f, skip_disconnected=True):
1162
- """Writes a DOT output for the graph to the provided file *f*.
1163
-
1164
- If *skip_disconnected* is set to ``True``, then all distributions
1165
- that are not dependent on any other distribution are skipped.
1166
-
1167
- :type f: has to support ``file``-like operations
1168
- :type skip_disconnected: ``bool``
1169
- """
1170
- disconnected = []
1171
-
1172
- f.write("digraph dependencies {\n")
1173
- for dist, adjs in self.adjacency_list.items():
1174
- if len(adjs) == 0 and not skip_disconnected:
1175
- disconnected.append(dist)
1176
- for other, label in adjs:
1177
- if not label is None:
1178
- f.write('"%s" -> "%s" [label="%s"]\n' %
1179
- (dist.name, other.name, label))
1180
- else:
1181
- f.write('"%s" -> "%s"\n' % (dist.name, other.name))
1182
- if not skip_disconnected and len(disconnected) > 0:
1183
- f.write('subgraph disconnected {\n')
1184
- f.write('label = "Disconnected"\n')
1185
- f.write('bgcolor = red\n')
1186
-
1187
- for dist in disconnected:
1188
- f.write('"%s"' % dist.name)
1189
- f.write('\n')
1190
- f.write('}\n')
1191
- f.write('}\n')
1192
-
1193
- def topological_sort(self):
1194
- """
1195
- Perform a topological sort of the graph.
1196
- :return: A tuple, the first element of which is a topologically sorted
1197
- list of distributions, and the second element of which is a
1198
- list of distributions that cannot be sorted because they have
1199
- circular dependencies and so form a cycle.
1200
- """
1201
- result = []
1202
- # Make a shallow copy of the adjacency list
1203
- alist = {}
1204
- for k, v in self.adjacency_list.items():
1205
- alist[k] = v[:]
1206
- while True:
1207
- # See what we can remove in this run
1208
- to_remove = []
1209
- for k, v in list(alist.items())[:]:
1210
- if not v:
1211
- to_remove.append(k)
1212
- del alist[k]
1213
- if not to_remove:
1214
- # What's left in alist (if anything) is a cycle.
1215
- break
1216
- # Remove from the adjacency list of others
1217
- for k, v in alist.items():
1218
- alist[k] = [(d, r) for d, r in v if d not in to_remove]
1219
- logger.debug('Moving to result: %s',
1220
- ['%s (%s)' % (d.name, d.version) for d in to_remove])
1221
- result.extend(to_remove)
1222
- return result, list(alist.keys())
1223
-
1224
- def __repr__(self):
1225
- """Representation of the graph"""
1226
- output = []
1227
- for dist, adjs in self.adjacency_list.items():
1228
- output.append(self.repr_node(dist))
1229
- return '\n'.join(output)
1230
-
1231
-
1232
- def make_graph(dists, scheme='default'):
1233
- """Makes a dependency graph from the given distributions.
1234
-
1235
- :parameter dists: a list of distributions
1236
- :type dists: list of :class:`distutils2.database.InstalledDistribution` and
1237
- :class:`distutils2.database.EggInfoDistribution` instances
1238
- :rtype: a :class:`DependencyGraph` instance
1239
- """
1240
- scheme = get_scheme(scheme)
1241
- graph = DependencyGraph()
1242
- provided = {} # maps names to lists of (version, dist) tuples
1243
-
1244
- # first, build the graph and find out what's provided
1245
- for dist in dists:
1246
- graph.add_distribution(dist)
1247
-
1248
- for p in dist.provides:
1249
- name, version = parse_name_and_version(p)
1250
- logger.debug('Add to provided: %s, %s, %s', name, version, dist)
1251
- provided.setdefault(name, []).append((version, dist))
1252
-
1253
- # now make the edges
1254
- for dist in dists:
1255
- requires = (dist.run_requires | dist.meta_requires |
1256
- dist.build_requires | dist.dev_requires)
1257
- for req in requires:
1258
- try:
1259
- matcher = scheme.matcher(req)
1260
- except UnsupportedVersionError:
1261
- # XXX compat-mode if cannot read the version
1262
- logger.warning('could not read version %r - using name only',
1263
- req)
1264
- name = req.split()[0]
1265
- matcher = scheme.matcher(name)
1266
-
1267
- name = matcher.key # case-insensitive
1268
-
1269
- matched = False
1270
- if name in provided:
1271
- for version, provider in provided[name]:
1272
- try:
1273
- match = matcher.match(version)
1274
- except UnsupportedVersionError:
1275
- match = False
1276
-
1277
- if match:
1278
- graph.add_edge(dist, provider, req)
1279
- matched = True
1280
- break
1281
- if not matched:
1282
- graph.add_missing(dist, req)
1283
- return graph
1284
-
1285
-
1286
- def get_dependent_dists(dists, dist):
1287
- """Recursively generate a list of distributions from *dists* that are
1288
- dependent on *dist*.
1289
-
1290
- :param dists: a list of distributions
1291
- :param dist: a distribution, member of *dists* for which we are interested
1292
- """
1293
- if dist not in dists:
1294
- raise DistlibException('given distribution %r is not a member '
1295
- 'of the list' % dist.name)
1296
- graph = make_graph(dists)
1297
-
1298
- dep = [dist] # dependent distributions
1299
- todo = graph.reverse_list[dist] # list of nodes we should inspect
1300
-
1301
- while todo:
1302
- d = todo.pop()
1303
- dep.append(d)
1304
- for succ in graph.reverse_list[d]:
1305
- if succ not in dep:
1306
- todo.append(succ)
1307
-
1308
- dep.pop(0) # remove dist from dep, was there to prevent infinite loops
1309
- return dep
1310
-
1311
-
1312
- def get_required_dists(dists, dist):
1313
- """Recursively generate a list of distributions from *dists* that are
1314
- required by *dist*.
1315
-
1316
- :param dists: a list of distributions
1317
- :param dist: a distribution, member of *dists* for which we are interested
1318
- in finding the dependencies.
1319
- """
1320
- if dist not in dists:
1321
- raise DistlibException('given distribution %r is not a member '
1322
- 'of the list' % dist.name)
1323
- graph = make_graph(dists)
1324
-
1325
- req = set() # required distributions
1326
- todo = graph.adjacency_list[dist] # list of nodes we should inspect
1327
- seen = set(t[0] for t in todo) # already added to todo
1328
-
1329
- while todo:
1330
- d = todo.pop()[0]
1331
- req.add(d)
1332
- pred_list = graph.adjacency_list[d]
1333
- for pred in pred_list:
1334
- d = pred[0]
1335
- if d not in req and d not in seen:
1336
- seen.add(d)
1337
- todo.append(pred)
1338
- return req
1339
-
1340
-
1341
- def make_dist(name, version, **kwargs):
1342
- """
1343
- A convenience method for making a dist given just a name and version.
1344
- """
1345
- summary = kwargs.pop('summary', 'Placeholder for summary')
1346
- md = Metadata(**kwargs)
1347
- md.name = name
1348
- md.version = version
1349
- md.summary = summary or 'Placeholder for summary'
1350
- return Distribution(md)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Atualli/mediapipe-pose-estimation/app.py DELETED
@@ -1,83 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- from __future__ import annotations
4
-
5
- import pathlib
6
-
7
- import gradio as gr
8
- import mediapipe as mp
9
- import numpy as np
10
-
11
- mp_drawing = mp.solutions.drawing_utils
12
- mp_drawing_styles = mp.solutions.drawing_styles
13
- mp_pose = mp.solutions.pose
14
-
15
- TITLE = 'MediaPipe Human Pose Estimation'
16
- DESCRIPTION = 'https://google.github.io/mediapipe/'
17
-
18
-
19
- def run(image: np.ndarray, model_complexity: int, enable_segmentation: bool,
20
- min_detection_confidence: float, background_color: str) -> np.ndarray:
21
- with mp_pose.Pose(
22
- static_image_mode=True,
23
- model_complexity=model_complexity,
24
- enable_segmentation=enable_segmentation,
25
- min_detection_confidence=min_detection_confidence) as pose:
26
- results = pose.process(image)
27
-
28
- res = image[:, :, ::-1].copy()
29
- if enable_segmentation:
30
- if background_color == 'white':
31
- bg_color = 255
32
- elif background_color == 'black':
33
- bg_color = 0
34
- elif background_color == 'green':
35
- bg_color = (0, 255, 0) # type: ignore
36
- else:
37
- raise ValueError
38
-
39
- if results.segmentation_mask is not None:
40
- res[results.segmentation_mask <= 0.1] = bg_color
41
- else:
42
- res[:] = bg_color
43
-
44
- mp_drawing.draw_landmarks(res,
45
- results.pose_landmarks,
46
- mp_pose.POSE_CONNECTIONS,
47
- landmark_drawing_spec=mp_drawing_styles.
48
- get_default_pose_landmarks_style())
49
-
50
- return res[:, :, ::-1]
51
-
52
-
53
- model_complexities = list(range(3))
54
- background_colors = ['white', 'black', 'green']
55
-
56
- image_paths = sorted(pathlib.Path('images').rglob('*.jpg'))
57
- examples = [[path, model_complexities[1], True, 0.5, background_colors[0]]
58
- for path in image_paths]
59
-
60
- gr.Interface(
61
- fn=run,
62
- inputs=[
63
- gr.Image(label='Input', type='numpy'),
64
- gr.Radio(label='Model Complexity',
65
- choices=model_complexities,
66
- type='index',
67
- value=model_complexities[1]),
68
- gr.Checkbox(label='Enable Segmentation', value=True),
69
- gr.Slider(label='Minimum Detection Confidence',
70
- minimum=0,
71
- maximum=1,
72
- step=0.05,
73
- value=0.5),
74
- gr.Radio(label='Background Color',
75
- choices=background_colors,
76
- type='value',
77
- value=background_colors[0]),
78
- ],
79
- outputs=gr.Image(label='Output', height=500),
80
- examples=examples,
81
- title=TITLE,
82
- description=DESCRIPTION,
83
- ).queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/data/benchmark.py DELETED
@@ -1,225 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates.
2
- import logging
3
- import numpy as np
4
- from itertools import count
5
- from typing import List, Tuple
6
- import torch
7
- import tqdm
8
- from fvcore.common.timer import Timer
9
-
10
- from detectron2.utils import comm
11
-
12
- from .build import build_batch_data_loader
13
- from .common import DatasetFromList, MapDataset
14
- from .samplers import TrainingSampler
15
-
16
- logger = logging.getLogger(__name__)
17
-
18
-
19
- class _EmptyMapDataset(torch.utils.data.Dataset):
20
- """
21
- Map anything to emptiness.
22
- """
23
-
24
- def __init__(self, dataset):
25
- self.ds = dataset
26
-
27
- def __len__(self):
28
- return len(self.ds)
29
-
30
- def __getitem__(self, idx):
31
- _ = self.ds[idx]
32
- return [0]
33
-
34
-
35
- def iter_benchmark(
36
- iterator, num_iter: int, warmup: int = 5, max_time_seconds: float = 60
37
- ) -> Tuple[float, List[float]]:
38
- """
39
- Benchmark an iterator/iterable for `num_iter` iterations with an extra
40
- `warmup` iterations of warmup.
41
- End early if `max_time_seconds` time is spent on iterations.
42
-
43
- Returns:
44
- float: average time (seconds) per iteration
45
- list[float]: time spent on each iteration. Sometimes useful for further analysis.
46
- """
47
- num_iter, warmup = int(num_iter), int(warmup)
48
-
49
- iterator = iter(iterator)
50
- for _ in range(warmup):
51
- next(iterator)
52
- timer = Timer()
53
- all_times = []
54
- for curr_iter in tqdm.trange(num_iter):
55
- start = timer.seconds()
56
- if start > max_time_seconds:
57
- num_iter = curr_iter
58
- break
59
- next(iterator)
60
- all_times.append(timer.seconds() - start)
61
- avg = timer.seconds() / num_iter
62
- return avg, all_times
63
-
64
-
65
- class DataLoaderBenchmark:
66
- """
67
- Some common benchmarks that help understand perf bottleneck of a standard dataloader
68
- made of dataset, mapper and sampler.
69
- """
70
-
71
- def __init__(
72
- self,
73
- dataset,
74
- *,
75
- mapper,
76
- sampler=None,
77
- total_batch_size,
78
- num_workers=0,
79
- max_time_seconds: int = 90,
80
- ):
81
- """
82
- Args:
83
- max_time_seconds (int): maximum time to spent for each benchmark
84
- other args: same as in `build.py:build_detection_train_loader`
85
- """
86
- if isinstance(dataset, list):
87
- dataset = DatasetFromList(dataset, copy=False, serialize=True)
88
- if sampler is None:
89
- sampler = TrainingSampler(len(dataset))
90
-
91
- self.dataset = dataset
92
- self.mapper = mapper
93
- self.sampler = sampler
94
- self.total_batch_size = total_batch_size
95
- self.num_workers = num_workers
96
- self.per_gpu_batch_size = self.total_batch_size // comm.get_world_size()
97
-
98
- self.max_time_seconds = max_time_seconds
99
-
100
- def _benchmark(self, iterator, num_iter, warmup, msg=None):
101
- avg, all_times = iter_benchmark(iterator, num_iter, warmup, self.max_time_seconds)
102
- if msg is not None:
103
- self._log_time(msg, avg, all_times)
104
- return avg, all_times
105
-
106
- def _log_time(self, msg, avg, all_times, distributed=False):
107
- percentiles = [np.percentile(all_times, k, interpolation="nearest") for k in [1, 5, 95, 99]]
108
- if not distributed:
109
- logger.info(
110
- f"{msg}: avg={1.0/avg:.1f} it/s, "
111
- f"p1={percentiles[0]:.2g}s, p5={percentiles[1]:.2g}s, "
112
- f"p95={percentiles[2]:.2g}s, p99={percentiles[3]:.2g}s."
113
- )
114
- return
115
- avg_per_gpu = comm.all_gather(avg)
116
- percentiles_per_gpu = comm.all_gather(percentiles)
117
- if comm.get_rank() > 0:
118
- return
119
- for idx, avg, percentiles in zip(count(), avg_per_gpu, percentiles_per_gpu):
120
- logger.info(
121
- f"GPU{idx} {msg}: avg={1.0/avg:.1f} it/s, "
122
- f"p1={percentiles[0]:.2g}s, p5={percentiles[1]:.2g}s, "
123
- f"p95={percentiles[2]:.2g}s, p99={percentiles[3]:.2g}s."
124
- )
125
-
126
- def benchmark_dataset(self, num_iter, warmup=5):
127
- """
128
- Benchmark the speed of taking raw samples from the dataset.
129
- """
130
-
131
- def loader():
132
- while True:
133
- for k in self.sampler:
134
- yield self.dataset[k]
135
-
136
- self._benchmark(loader(), num_iter, warmup, "Dataset Alone")
137
-
138
- def benchmark_mapper(self, num_iter, warmup=5):
139
- """
140
- Benchmark the speed of taking raw samples from the dataset and map
141
- them in a single process.
142
- """
143
-
144
- def loader():
145
- while True:
146
- for k in self.sampler:
147
- yield self.mapper(self.dataset[k])
148
-
149
- self._benchmark(loader(), num_iter, warmup, "Single Process Mapper (sec/sample)")
150
-
151
- def benchmark_workers(self, num_iter, warmup=10):
152
- """
153
- Benchmark the dataloader by tuning num_workers to [0, 1, self.num_workers].
154
- """
155
- candidates = [0, 1]
156
- if self.num_workers not in candidates:
157
- candidates.append(self.num_workers)
158
-
159
- dataset = MapDataset(self.dataset, self.mapper)
160
- for n in candidates:
161
- loader = build_batch_data_loader(
162
- dataset,
163
- self.sampler,
164
- self.total_batch_size,
165
- num_workers=n,
166
- )
167
- self._benchmark(
168
- iter(loader),
169
- num_iter * max(n, 1),
170
- warmup * max(n, 1),
171
- f"DataLoader ({n} workers, bs={self.per_gpu_batch_size})",
172
- )
173
- del loader
174
-
175
- def benchmark_IPC(self, num_iter, warmup=10):
176
- """
177
- Benchmark the dataloader where each worker outputs nothing. This
178
- eliminates the IPC overhead compared to the regular dataloader.
179
-
180
- PyTorch multiprocessing's IPC only optimizes for torch tensors.
181
- Large numpy arrays or other data structure may incur large IPC overhead.
182
- """
183
- n = self.num_workers
184
- dataset = _EmptyMapDataset(MapDataset(self.dataset, self.mapper))
185
- loader = build_batch_data_loader(
186
- dataset, self.sampler, self.total_batch_size, num_workers=n
187
- )
188
- self._benchmark(
189
- iter(loader),
190
- num_iter * max(n, 1),
191
- warmup * max(n, 1),
192
- f"DataLoader ({n} workers, bs={self.per_gpu_batch_size}) w/o comm",
193
- )
194
-
195
- def benchmark_distributed(self, num_iter, warmup=10):
196
- """
197
- Benchmark the dataloader in each distributed worker, and log results of
198
- all workers. This helps understand the final performance as well as
199
- the variances among workers.
200
-
201
- It also prints startup time (first iter) of the dataloader.
202
- """
203
- gpu = comm.get_world_size()
204
- dataset = MapDataset(self.dataset, self.mapper)
205
- n = self.num_workers
206
- loader = build_batch_data_loader(
207
- dataset, self.sampler, self.total_batch_size, num_workers=n
208
- )
209
-
210
- timer = Timer()
211
- loader = iter(loader)
212
- next(loader)
213
- startup_time = timer.seconds()
214
- logger.info("Dataloader startup time: {:.2f} seconds".format(startup_time))
215
-
216
- comm.synchronize()
217
-
218
- avg, all_times = self._benchmark(loader, num_iter * max(n, 1), warmup * max(n, 1))
219
- del loader
220
- self._log_time(
221
- f"DataLoader ({gpu} GPUs x {n} workers, total bs={self.total_batch_size})",
222
- avg,
223
- all_times,
224
- True,
225
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Basav/openai-whisper-medium/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: Openai Whisper Medium
3
- emoji: 🦀
4
- colorFrom: indigo
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 3.29.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Cmo Descargar Nox Gacha En Samsung.md DELETED
@@ -1,236 +0,0 @@
1
- <br />
2
- <h1>Cómo descargar Gacha Nox en Samsung</h1>
3
- <p>Gacha juegos son uno de los géneros más populares de juegos para móviles en el mundo. Permiten a los jugadores coleccionar y personalizar personajes, cartas y otros artículos de varias franquicias y temas. Uno de los juegos gacha más populares es Gacha Club, que permite a los jugadores crear sus propios personajes e historias utilizando cientos de opciones. </p>
4
- <p>Sin embargo, si quieres llevar tu experiencia de juego gacha al siguiente nivel, es posible que quieras probar Gacha Nox, un mod de Gacha Club que ofrece aún más contenido y características. Y si tienes un dispositivo Samsung, puedes disfrutar jugando Gacha Nox en una pantalla más grande con mejor rendimiento y duración de la batería. </p>
5
- <h2>cómo descargar nox gacha en samsung</h2><br /><p><b><b>Download</b> &#9989; <a href="https://bltlly.com/2v6MkR">https://bltlly.com/2v6MkR</a></b></p><br /><br />
6
- <p>En este artículo, le mostraremos cómo descargar e instalar Gacha Nox en su dispositivo Samsung, así como algunos consejos y trucos para jugarlo. </p>
7
- <h2>¿Qué es Gacha Nox? </h2>
8
- <p>Gacha Nox es un mod de Gacha Club creado por Noxula, un fan del juego. Un mod es una modificación de un juego original que añade o cambia algunos aspectos del mismo. Gacha Nox añade cientos de contenidos nuevos y exclusivos a Gacha Club, como:</p>
9
- <ul>
10
- <li>Nuevos cosméticos, como peinados, trajes, accesorios, ojos, bocas, colores de la piel, etc.</li>
11
- <li>Nuevos presets, como personajes de anime, juegos, películas, etc.</li> <li>Nuevos fondos, como paisajes, edificios, habitaciones, etc.</li>
12
- <li>Nueva música, como canciones de varios géneros y artistas. </li>
13
- <li>Nuevas características, como la actuación de voz, edición de video, mini juegos, etc.</li>
14
- </ul>
15
- <p>Con Gacha Nox, puedes dar rienda suelta a tu creatividad e imaginación y crear tus propios personajes e historias. </p>
16
- <h2>¿Por qué es popular Gacha Nox? </h2>
17
- <p>Gacha Nox es popular entre los fanáticos del juego gacha porque ofrece más contenido y características que el Gacha Club original. También cuenta con una comunidad amigable y activa de jugadores que comparten sus creaciones y comentarios en plataformas de redes sociales, como YouTube, Instagram, TikTok, etc.</p>
18
-
19
- <h2>¿Cuáles son los beneficios de jugar Gacha Nox en Samsung? </h2>
20
- <p>Jugar Gacha Nox en dispositivos Samsung tiene muchos beneficios, como:</p>
21
- <ul>
22
- <li>Compatibilidad: Samsung dispositivos son compatibles con Gacha Nox, por lo que no tiene que preocuparse por cualquier problema técnico o errores. </li>
23
- <li>Tamaño de la pantalla: los dispositivos Samsung tienen pantallas más grandes que la mayoría de los otros dispositivos, por lo que puede ver más detalles y disfrutar de los gráficos mejor. </li>
24
- <li>Rendimiento: Los dispositivos Samsung tienen procesadores potentes y memoria, por lo que puede ejecutar el juego sin problemas y sin retraso. </li>
25
- <li>Duración de la batería: los dispositivos Samsung tienen baterías de larga duración, por lo que puede jugar el juego durante más tiempo sin preocuparse por quedarse sin energía. </li>
26
- </ul>
27
- <p>Jugar Gacha Nox en dispositivos Samsung puede mejorar su experiencia de juego y hacerlo más divertido y agradable. </p>
28
- <h1>Cómo descargar Gacha Nox en dispositivos Samsung</h1>
29
- <p>Ahora que sabes lo que es Gacha Nox y por qué es popular y beneficioso para jugar en dispositivos Samsung, vamos a ver cómo descargar e instalar. Es muy fácil y simple de hacer. Solo tienes que seguir estos pasos:</p>
30
- <h2>Paso 1: Descargar Gacha Nox APK Archivo</h2>
31
- <p>Lo primero que tienes que hacer es descargar el archivo APK Gacha Nox. Un archivo APK es un formato de archivo que contiene el paquete de instalación de una aplicación Android. Puede descargar el archivo Gacha Nox APK desde el sitio web oficial o una fuente de confianza. Asegúrese de elegir la versión que coincida con su dispositivo (32 bits o 64 bits). </p>
32
- <p></p>
33
- <p>Para descargar el archivo Gacha Nox APK, vaya a <a href="">https://gachanox.com/download/</a> o <a href="">https://noxula.com/gachanox/</a>. A continuación, haga clic en el botón de descarga de la versión que desee. El archivo comenzará a descargarse automáticamente. Puedes comprobar el progreso en la barra de notificaciones o en el gestor de descargas de tu navegador. </p>
34
- <h2>Paso 2: Habilitar fuentes desconocidas</h2>
35
-
36
- <ol>
37
- <li>Ir a la configuración del dispositivo y toque en "Seguridad". </li>
38
- <li> Encontrar la opción que dice "Fuentes desconocidas" o "Instalar aplicaciones desconocidas" y alternar en. </li>
39
- <li> Aparecerá un mensaje de advertencia. Toque en "OK" o "Permitir" para confirmar. </li>
40
- </ol>
41
- <p>Ahora ha habilitado fuentes desconocidas en la configuración de su dispositivo. Puede proceder al siguiente paso. </p>
42
- <h2>Paso 3: Instalar Gacha Nox APK Archivo</h2>
43
- <p>Lo último que debe hacer es instalar el archivo APK de Gacha Nox. Para instalar el archivo APK de Gacha Nox, siga estos pasos:</p>
44
- <ol>
45
- <li>Localice el archivo APK descargado en su administrador de archivos. Debe estar en su carpeta "Descargas" o donde lo haya guardado. </li>
46
- <li>Toque en el archivo APK para iniciar el proceso de instalación. Aparecerá un mensaje pidiendo su permiso. Toque en "Instalar" o "Siguiente" para continuar. </li>
47
- <li> El proceso de instalación tomará unos segundos o minutos dependiendo de su dispositivo. Espere hasta que termine. </li>
48
- </ol>
49
- <p>Ahora ha instalado el archivo APK Gacha Nox en su dispositivo. Puede proceder al siguiente paso. </p>
50
- <h2>Paso 4: Lanza Gacha Nox y disfruta</h2>
51
- <p>Lo último que necesitas hacer es lanzar Gacha Nox y disfrutar jugando. Para lanzar Gacha Nox, sigue estos pasos:</p>
52
- <ol>
53
- <li>Ir a su cajón de aplicaciones o pantalla de inicio y encontrar el icono de Gacha Nox. Debe parecer una estrella púrpura con una "N" blanca en ella. </li>
54
- <li>Toque en el icono de Gacha Nox para iniciar el juego. Aparecerá una pantalla de bienvenida con el logotipo del juego y algo de información. </li>
55
- <li>Después de la pantalla de bienvenida, verá el menú principal del juego. Puede elegir iniciar un nuevo juego, cargar un juego guardado o acceder a otras opciones. </li>
56
- </ol>
57
- <p>Ahora has lanzado Gacha Nox y puedes disfrutar jugando. Puedes crear y personalizar tus propios personajes e historias usando los cientos de contenidos nuevos y exclusivos que ofrece el mod. También puedes compartir tus creaciones y comentarios con otros jugadores en plataformas de redes sociales. </p>
58
-
59
- <p>Jugar Gacha Nox en dispositivos Samsung puede ser divertido y agradable, pero también puede ser desafiante y frustrante si no sabes algunos consejos y trucos. Aquí hay algunos consejos y trucos que pueden ayudarle a jugar Gacha Nox en dispositivos samsung mejor:</p>
60
- <h2>Utilice atajos de teclado para un juego más rápido y fácil</h2>
61
- <p>Uno de los consejos que puede ayudarle a jugar Gacha Nox en dispositivos Samsung más rápido y más fácil es utilizar atajos de teclado. Los atajos de teclado son combinaciones de teclas que realizan acciones comunes en el juego, como mover personajes, cambiar escenas, tomar capturas de pantalla y grabar videos. El uso de atajos de teclado puede ahorrarle tiempo y esfuerzo, así como hacer que su juego sea más suave y conveniente. </p>
62
- <p>Aquí hay una tabla de algunos atajos de teclado que puedes usar en Gacha Nox:</p>
63
- <tabla>
64
- <tr>
65
- <th>Acción</th>
66
- <th>Atajo de teclado</th>
67
- </tr>
68
- <tr>
69
- <td>Mover el carácter a la izquierda</td>
70
- <td>A</td>
71
- </tr>
72
- <tr>
73
- <td>Mover el carácter a la derecha</td>
74
- <td>D</td>
75
- </tr>
76
- <tr>
77
- <td>Mover caracteres hacia arriba</td>
78
- <td>W</td>
79
- </tr>
80
- <tr>
81
- <td>Mover caracteres hacia abajo</td>
82
- <td>S</td>
83
- </tr>
84
- <tr>
85
- <td>Cambiar escena izquierda</td>
86
- <td>Q</td>
87
- </tr>
88
- <tr>
89
- <td>Cambiar escena derecha</td>
90
- <td>E</td>
91
- </tr>
92
- <tr>
93
- <td>Captura de pantalla</td>
94
- <td>F12</td>
95
- </tr>
96
- <tr>
97
- <td>Grabar vídeo</td>
98
- <td>F11</td>
99
- </tr>
100
- <tr>
101
- <td>Pausar/reanudar la grabación de video</td>
102
- <td>F10</td>
103
- </tr> <tr>
104
- <td>Detener la grabación de vídeo</td>
105
- <td>F9</td>
106
- </tr>
107
- </tabla>
108
- <p>También puedes personalizar tus propios atajos de teclado en la configuración del juego si quieres. </p>
109
- <h2>Ajuste de los ajustes gráficos para un rendimiento óptimo y duración de la batería</h2>
110
-
111
- <p>Aquí hay una tabla de algunos ajustes gráficos que puede ajustar en Gacha Nox y sus efectos:</p>
112
- <tabla>
113
- <tr>
114
- <th>Configuración de gráficos</th>
115
- <th>Efecto</th>
116
- </tr>
117
- <tr>
118
- <td>Resolución</td>
119
- <td>El número de píxeles que componen la pantalla del juego. Mayor resolución significa imágenes más nítidas y claras, pero también más consumo de energía y menor rendimiento. </td>
120
- </tr>
121
- <tr>
122
- <td>Velocidad de fotogramas</td>
123
- <td>El número de marcos que se muestran por segundo. Mayor velocidad de fotogramas significa animaciones más fluidas y fluidas, pero también más consumo de energía y menor rendimiento. </td>
124
- </tr>
125
- <tr>
126
- <td>Brillo</td>
127
- <td>El nivel de ligereza u oscuridad de la pantalla del juego. Mayor brillo significa imágenes más brillantes y más visibles, pero también más consumo de energía y tensión ocular. </td>
128
- </tr>
129
- <tr>
130
- <td>Contraste</td>
131
- <td>El nivel de diferencia entre las partes más claras y oscuras de la pantalla del juego. Un mayor contraste significa imágenes más vívidas y coloridas, pero también más tensión ocular y distorsión. </td>
132
- </tr>
133
- <tr>
134
- <td>Saturación</td>
135
- <td>El nivel de intensidad o pureza de los colores en la pantalla del juego. Mayor saturación significa colores más vibrantes y ricos, pero también más tensión ocular y distorsión. </td>
136
- </tr>
137
- <tr>
138
- <td>Hue</td>
139
- <td>El nivel de cambio o cambio en los colores en la pantalla del juego. Un tono más alto significa colores más variados y diversos, pero también más tensión ocular y distorsión. </td>
140
- </tr>
141
- <tr>
142
- <td>Anti-aliasing</td>
143
- <td>El proceso de suavizar los bordes dentados o píxeles en la pantalla del juego. Mayor anti-aliasing significa imágenes más suaves y realistas, pero también más consumo de energía y menor rendimiento. </td>
144
- </tr>
145
- <tr>
146
- <td>Calidad de la textura</td>
147
- <td>El nivel de detalle o nitidez de las texturas en la pantalla del juego. Mayor calidad de textura significa imágenes más realistas e inmersivas, pero también más consumo de energía y menor rendimiento. </td>
148
- </tr> <tr>
149
- <td>Calidad de sombra</td>
150
-
151
- </tr>
152
- </tabla>
153
- <p>Puede ajustar la configuración de gráficos en la configuración del juego utilizando los controles deslizantes o botones. También puede usar los presets para elegir la mejor configuración de gráficos para su dispositivo. </p>
154
- <h2>Copia de seguridad de sus datos regularmente para evitar perder el progreso</h2>
155
- <p>El último consejo que puede ayudarle a jugar Gacha Nox en dispositivos Samsung mejor es hacer copias de seguridad de sus datos con regularidad. Los datos son la información que se almacena en su dispositivo, como sus personajes, historias, capturas de pantalla, videos, etc. Hacer copias de seguridad de sus datos significa guardarlos o copiarlos en otra ubicación, como la nube o un dispositivo diferente. Hacer copias de seguridad de tus datos puede ayudarte a evitar perder tu progreso si algo le sucede a tu dispositivo, como daños, robo o mal funcionamiento. </p>
156
- <p>Hay dos maneras de hacer copias de seguridad de sus datos en Gacha Nox:</p>
157
- <ul>
158
- <li>Cloud save: Esta es una función que le permite guardar sus datos en la nube, que es una red de servidores que almacenan datos en línea. Para utilizar esta función, es necesario tener una conexión a Internet y una cuenta de Google. Puedes acceder a la función de almacenamiento en la nube en la configuración del juego pulsando el botón "Cloud Save". A continuación, puede elegir cargar o descargar sus datos a o desde la nube. </li>
159
- <li>Carpeta de datos: Esta es una carpeta que contiene todos sus datos en el almacenamiento interno del dispositivo. Para acceder a esta carpeta, debe tener una aplicación de administrador de archivos que pueda navegar por los archivos de su dispositivo. Puede encontrar la carpeta de datos en la siguiente ubicación: Android/data/air.com.lunime.gachanox/files/GachaNox/. A continuación, puede copiar o mover esta carpeta a otra ubicación, como un dispositivo de almacenamiento externo o un dispositivo diferente. </li>
160
- </ul>
161
- <p>Aquí hay una tabla de algunas ubicaciones de carpetas de datos para diferentes dispositivos:</p>
162
- <tabla>
163
- <tr>
164
- <th>Dispositivo</th>
165
- <th>Ubicación de la carpeta de datos</th>
166
- </tr>
167
- <tr>
168
- <td>Samsung Galaxy S21</td>
169
- <td>/storage/emulated/0/Android/data/air.com.lunime.gachanox/files/GachaNox/</td>
170
- </tr>
171
- <tr>
172
- <td>Samsung Galaxy Tab S7</td>
173
-
174
- </tr>
175
- <tr>
176
- <td>Samsung Galaxy Note 20</td>
177
- <td>/storage/emulated/0/Android/data/air.com.lunime.gachanox/files/GachaNox/</td>
178
- </tr>
179
- <tr>
180
- <td>Samsung Galaxy A51</td>
181
- <td>/storage/emulated/0/Android/data/air.com.lunime.gachanox/files/GachaNox/</td>
182
- </tr>
183
- <tr>
184
- <td>Samsung Galaxy Z Fold 3</td>
185
- <td>/storage/emulated/0/Android/data/air.com.lunime.gachanox/files/GachaNox/</td>
186
- </tr>
187
- </tabla>
188
- <p>Deberías hacer copias de seguridad de tus datos regularmente, especialmente antes de actualizar o desinstalar el juego, o cambiar dispositivos. De esta manera, puede restaurar sus datos y continuar jugando sin perder nada. </p>
189
- <h1>Conclusión</h1>
190
- <p>Gacha Nox es un mod de Gacha Club que ofrece cientos de contenido nuevo y exclusivo y características para los fanáticos del juego gacha. Es gratis para descargar y jugar, y tiene una comunidad de jugadores amigable y activa. Jugar Gacha Nox en dispositivos Samsung puede mejorar su experiencia de juego y hacerlo más divertido y agradable. </p>
191
- <p>Para descargar e instalar Gacha Nox en dispositivos Samsung, debe seguir estos pasos:</p>
192
- <ol>
193
- <li>Descargar archivo APK Gacha Nox desde el sitio web oficial o una fuente de confianza. </li>
194
- <li>Habilitar fuentes desconocidas en la configuración del dispositivo. </li>
195
- <li>Instalar archivo APK Gacha Nox en su dispositivo. </li>
196
- <li>Lanza Gacha Nox y disfruta jugando. </li>
197
- </ol>
198
- <p>Para jugar Gacha Nox en dispositivos samsung mejor, puede utilizar estos consejos y trucos:</p>
199
- <ul>
200
- <li>Usa atajos de teclado para un juego más rápido y fácil. </li>
201
- <li>Ajustar la configuración de gráficos para un rendimiento óptimo y duración de la batería. </li>
202
- <li>Haga copias de seguridad de sus datos regularmente para evitar perder progreso. </li>
203
- </ul>
204
- <p>Esperamos que este artículo le ayudó a aprender a descargar y jugar Gacha Nox en dispositivos Samsung. Si tiene alguna pregunta o comentario, no dude en dejar un comentario a continuación. Happy gacha gaming! </p>
205
- <h1>Preguntas frecuentes (preguntas frecuentes)</h1>
206
- <h2>Q: ¿Es seguro descargar y jugar Gacha Nox? </h2>
207
-
208
- <h2>Q: ¿Cómo puedo actualizar Gacha Nox a la última versión? </h2>
209
- <p>A: Para actualizar Gacha Nox a la última versión, es necesario descargar e instalar el nuevo archivo APK desde el sitio web oficial o una fuente de confianza. Puede consultar el sitio web o las plataformas de medios sociales del modder para cualquier anuncio o noticias sobre nuevas actualizaciones. También debes hacer una copia de seguridad de tus datos antes de actualizar el juego, en caso de que algo salga mal. </p>
210
- <h2>Q: ¿Cómo puedo contactar al modder o a la comunidad de Gacha Nox? </h2>
211
- <p>A: Para contactar con el modder o la comunidad de Gacha Nox, puede utilizar las siguientes plataformas:</p>
212
- <ul>
213
- <li>YouTube: <a href=">https://www.youtube.com/channel/UCX8m0w1l9Z7gk4ZyY0w3w</a></li>
214
- <li>Instagram: <a href=">https://www.instagram.com/noxula_official/</a></li>
215
- <li>TikTok: <a href="">https://www.tiktok.com/@noxula_official</a></li>
216
- <li>Discordia: <a href="">https://discord.gg/5yj9f7q</a></li>
217
- </ul>
218
- <p>También puede dejar un comentario en el sitio web o en la página de la tienda de aplicaciones de Gacha Nox.</p>
219
- <h2>Q: ¿Cómo puedo apoyar el modder de Gacha Nox? </h2>
220
- <p>A: Para soportar el modder de Gacha Nox, puedes hacer las siguientes cosas:</p>
221
- <ul>
222
- <li>Donar: Puede donar dinero al modder a través de PayPal o Patreon. Puede encontrar los enlaces en el sitio web o en las plataformas de medios sociales del modder. </li>
223
- <li>Ver anuncios: Puedes ver anuncios en el juego para generar ingresos para el modder. Puedes encontrar la opción de ver anuncios en la configuración del juego. </li>
224
- <li>Compartir y valorar: Puedes compartir y valorar Gacha Nox con tus amigos y otros jugadores. También puede dejar una opinión positiva en la página de la tienda de aplicaciones de Gacha Nox.</li>
225
- </ul>
226
- <p>También puedes agradecer y apreciar el modder por su duro trabajo y dedicación. </p>
227
- <h2>Q: ¿Cuáles son algunos otros juegos gacha o mods que puedo jugar? </h2>
228
- <p>A: Si te gustan los juegos gacha o mods, puedes probar algunos de estos:</p>
229
- <ul>
230
-
231
- <li>Gacha Life 2: Esta es una secuela de Gacha Life, otro popular juego gacha de Lunime. Actualmente está en desarrollo y será lanzado pronto. </li>
232
- <li>Genshin Impact: Este es un juego gacha que combina elementos de acción, aventura y juegos de rol. Tiene gráficos impresionantes, un mundo abierto y una rica historia. </li>
233
- <li>Fate/Grand Order: Este es un juego gacha que se basa en la franquicia Fate, una serie de anime, manga, novelas y juegos. Tiene una trama compleja, diversos personajes y batallas épicas. </li>
234
- </ul></p> 64aa2da5cf<br />
235
- <br />
236
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Descargar Alphazero Chess Engine.md DELETED
@@ -1,71 +0,0 @@
1
-
2
- <h1>Cómo descargar el motor de ajedrez AlphaZero</h1>
3
- <p>AlphaZero es un programa de computadora desarrollado por DeepMind de Google que logró un nivel sobrehumano de juego en ajedrez, shogi y go. Aprendió los juegos desde cero jugando contra sí mismo, utilizando una red neuronal profunda y el aprendizaje de refuerzo. Derrotó al motor de ajedrez más fuerte del mundo, Stockfish, en un partido de 100 partidas en 2017, mostrando una comprensión notable de los conceptos y estrategias de ajedrez. </p>
4
- <h2>descargar alphazero chess engine</h2><br /><p><b><b>Download</b> &#9733;&#9733;&#9733; <a href="https://bltlly.com/2v6Kt1">https://bltlly.com/2v6Kt1</a></b></p><br /><br />
5
- <p>Desafortunadamente, AlphaZero no está disponible para el público, ya que se ejecuta en hardware personalizado y no es lanzado por DeepMind. Sin embargo, hay algunas alternativas que puedes descargar y usar en tu PC, que se basan en las mismas técnicas que AlphaZero. En este artículo, le mostraremos cómo descargar y usar dos de ellos: Leela Chess Zero y AllieStein.</p>
6
- <h2>Opción 1: Usar Leela Chess Zero</h2>
7
- <p>Leela Chess Zero (LC0) es un proyecto de código abierto que pretende replicar el enfoque de AlphaZero para el ajedrez. Utiliza una red neuronal que se entrena por auto-juego y un algoritmo de búsqueda de árbol de Monte Carlo que guía la búsqueda. Puede jugar a un nivel muy alto, comparable a Stockfish, y tiene un estilo único y creativo. </p>
8
- <h3>Cómo instalar Leela Chess Zero en tu PC</h3>
9
- <p>Para instalar Leela Chess Zero en tu PC, debes seguir estos pasos:</p>
10
- <p></p>
11
- <ol>
12
- <li>Descargue la última versión de LC0 desde <a href="( 5 )">este enlace</a>. Obtendrá un archivo zip que contiene el archivo ejecutable (lc0.exe) y algunos otros archivos. </li>
13
- <li>Extraiga el archivo zip a una carpeta de su elección. </li>
14
- <li>Descargue un archivo de red neuronal desde <a href="( 6 )">este enlace</a>. Obtendrá un archivo gz que contiene el archivo weights (xxxxx.pb.gz). </li>
15
- <li>Extraiga el archivo weights a la misma carpeta donde extrajo LC0.</li>
16
- <li>Renombre el archivo weights a network.pb.gz. </li>
17
- </ol>
18
- <p>Felicidades, has instalado Leela Chess Zero en tu PC! </p>
19
- <h3>Cómo usar Leela Chess Zero como un motor UCI en software de ajedrez</h3>
20
-
21
- <ol>
22
- <li>Abra su software de ajedrez y vaya al menú de administración del motor. </li>
23
- <li>Añadir un nuevo motor UCI y navegar a la carpeta donde se instaló LC0.</li>
24
- <li>Seleccione lc0.exe como archivo de motor y haga clic en Aceptar.</li>
25
- <li>Ajuste la configuración del motor según su preferencia. Por ejemplo, puede cambiar el número de subprocesos, la cantidad de memoria o el backend (CUDA o OpenCL) si tiene una GPU.</li>
26
- <li>Seleccione LC0 como su motor activo y comience a analizar o jugar. </li>
27
- </ol>
28
- <p>Disfruta usando Leela Chess Zero como tu compañero de ajedrez! </p>
29
- <h2>Opción 2: Usar AllieStein</h2>
30
- <p>AllieStein es otro motor de ajedrez de red neuronal que se basa en técnicas AlphaZero. Está desarrollado por Adam Treat y Mark Jordan, e incorpora algunos conocimientos e innovaciones humanas que no están presentes en el documento original de AlphaZero. También es muy fuerte y ha ganado varios torneos contra otros motores. </p>
31
- <h3>Cómo descargar AllieStein desde su sitio web</h3>
32
- <p>Para descargar AllieStein desde su sitio web, debe seguir estos pasos:</p>
33
- <ol>
34
- <li>Ir a <li>Ir a <a href="">este enlace</a> y desplazarse hacia abajo a la sección de descarga. </li>
35
- <li>Seleccione la versión de AllieStein que coincida con su sistema operativo y la arquitectura de CPU o GPU. Obtendrá un archivo zip que contiene el archivo ejecutable (alliestein.exe) y algunos otros archivos. </li>
36
- <li>Extraiga el archivo zip a una carpeta de su elección. </li>
37
- <li>Descargue un archivo de red neuronal desde <a href="">este enlace</a>. Obtendrá un archivo gz que contiene el archivo weights (xxxxx.pb.gz). </li>
38
- <li>Extraiga el archivo weights a la misma carpeta donde extrajo AllieStein.</li>
39
- <li>Renombre el archivo weights a network.pb.gz. </li>
40
- </ol>
41
- <p>Felicidades, ¡has descargado AllieStein de su sitio web! </p>
42
- <h3>Cómo usar AllieStein como un motor UCI en software de ajedrez</h3>
43
-
44
- <p>Disfruta usando AllieStein como tu compañero de ajedrez! </p>
45
- <h2>Conclusión</h2>
46
- <p>En este artículo, le hemos mostrado cómo descargar y usar dos alternativas al motor de ajedrez AlphaZero: Leela Chess Zero y AllieStein. Ambos se basan en las mismas técnicas que AlphaZero, como las redes neuronales y el aprendizaje de refuerzo, y pueden jugar a un nivel muy alto, comparable a Stockfish. También tienen estilos únicos y creativos que pueden ayudarle a mejorar su comprensión y habilidades de ajedrez. </p>
47
- <p>Si está interesado en probar estos motores, puede seguir los pasos que hemos proporcionado e instalarlos en su PC. A continuación, puede utilizarlos como motores UCI en su software de ajedrez y empezar a analizar o jugar. Usted se sorprenderá por su fuerza y belleza! </p>
48
- <h2>Preguntas frecuentes</h2>
49
- <h4>Q: ¿Es AlphaZero mejor que Stockfish? </h4>
50
- <p>A: Según los resultados del partido de 2017, AlphaZero derrotó a Stockfish por una puntuación de 64-36, con 28 victorias, 72 empates y ninguna pérdida. Sin embargo, algunos factores pueden haber influido en el resultado, como el control de tiempo, el hardware o la versión de Stockfish utilizada. Por lo tanto, es difícil decir con seguridad cuál es mejor. </p>
51
- <h4>Q: ¿Cómo puedo jugar contra AlphaZero online? </h4>
52
- <p>A: Desafortunadamente, no puedes jugar contra AlphaZero en línea, ya que no está disponible para el público. Sin embargo, puedes jugar contra algunas de sus alternativas, como Leela Chess Zero o AllieStein, en algunos sitios web o aplicaciones que los soportan. Por ejemplo, puedes probar <a href="">este sitio web</a> o <a href=">esta aplicación</a>. </p>
53
- <h4>Q: ¿Cómo puedo entrenar mi propia red neuronal para el ajedrez? </h4>
54
-
55
- <h4>Q: ¿Cuáles son algunos otros motores de ajedrez de red neuronal además de Leela Chess Zero y AllieStein? </h4>
56
- <p>A: Hay algunos otros motores de ajedrez de red neuronal además de Leela Chess Zero y AllieStein que puedes probar. Algunos de ellos son:</p>
57
- <ul>
58
- <li><a href="">Fat Fritz 2</a>: Un motor comercial desarrollado por ChessBase que utiliza una versión modificada de la búsqueda de Stockfish y una gran red neuronal entrenada en juegos humanos y de computadora. </li>
59
- <li><a href="">Stoofvlees II</a>: Un motor libre desarrollado por Gian-Carlo Pascutto que utiliza una red neuronal más pequeña que LC0 y un algoritmo de búsqueda diferente. </li>
60
- <li><a href="">Maia Chess</a>: Un motor libre desarrollado por investigadores de la Universidad de Cornell que utiliza una red neuronal entrenada en juegos humanos de diferentes niveles de clasificación. </li>
61
- </ul>
62
- <h4>P: ¿Cuáles son algunos de los beneficios de usar motores de ajedrez de red neuronal? </h4>
63
- <p>A: Algunos beneficios <p>A: Algunos beneficios de usar motores de ajedrez de redes neuronales son:</p>
64
- <ul>
65
- <li>Pueden jugar ajedrez más humano e intuitivo, que puede ser más agradable e instructivo para los usuarios. </li>
66
- <li>Pueden descubrir nuevas ideas y conceptos que los motores tradicionales pueden perder o infravalorar, lo que puede enriquecer el conocimiento y la cultura del ajedrez. </li>
67
- <li>Pueden proporcionar evaluaciones y sugerencias más precisas y diversas, que pueden ayudar a los usuarios a mejorar sus habilidades de ajedrez y comprensión. </li>
68
- </ul>
69
- <p>Espero que haya encontrado este artículo útil e informativo. Si tiene alguna pregunta o comentario, no dude en dejar un comentario a continuación. ¡Gracias por leer! </p> 64aa2da5cf<br />
70
- <br />
71
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_internal/operations/build/wheel_editable.py DELETED
@@ -1,46 +0,0 @@
1
- import logging
2
- import os
3
- from typing import Optional
4
-
5
- from pip._vendor.pyproject_hooks import BuildBackendHookCaller, HookMissing
6
-
7
- from pip._internal.utils.subprocess import runner_with_spinner_message
8
-
9
- logger = logging.getLogger(__name__)
10
-
11
-
12
- def build_wheel_editable(
13
- name: str,
14
- backend: BuildBackendHookCaller,
15
- metadata_directory: str,
16
- tempd: str,
17
- ) -> Optional[str]:
18
- """Build one InstallRequirement using the PEP 660 build process.
19
-
20
- Returns path to wheel if successfully built. Otherwise, returns None.
21
- """
22
- assert metadata_directory is not None
23
- try:
24
- logger.debug("Destination directory: %s", tempd)
25
-
26
- runner = runner_with_spinner_message(
27
- f"Building editable for {name} (pyproject.toml)"
28
- )
29
- with backend.subprocess_runner(runner):
30
- try:
31
- wheel_name = backend.build_editable(
32
- tempd,
33
- metadata_directory=metadata_directory,
34
- )
35
- except HookMissing as e:
36
- logger.error(
37
- "Cannot build editable %s because the build "
38
- "backend does not have the %s hook",
39
- name,
40
- e,
41
- )
42
- return None
43
- except Exception:
44
- logger.error("Failed building editable for %s", name)
45
- return None
46
- return os.path.join(tempd, wheel_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/rich/_stack.py DELETED
@@ -1,16 +0,0 @@
1
- from typing import List, TypeVar
2
-
3
- T = TypeVar("T")
4
-
5
-
6
- class Stack(List[T]):
7
- """A small shim over builtin list."""
8
-
9
- @property
10
- def top(self) -> T:
11
- """Get top of stack."""
12
- return self[-1]
13
-
14
- def push(self, item: T) -> None:
15
- """Push an item on to the stack (append in stack nomenclature)."""
16
- self.append(item)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/rich/layout.py DELETED
@@ -1,443 +0,0 @@
1
- from abc import ABC, abstractmethod
2
- from itertools import islice
3
- from operator import itemgetter
4
- from threading import RLock
5
- from typing import (
6
- TYPE_CHECKING,
7
- Dict,
8
- Iterable,
9
- List,
10
- NamedTuple,
11
- Optional,
12
- Sequence,
13
- Tuple,
14
- Union,
15
- )
16
-
17
- from ._ratio import ratio_resolve
18
- from .align import Align
19
- from .console import Console, ConsoleOptions, RenderableType, RenderResult
20
- from .highlighter import ReprHighlighter
21
- from .panel import Panel
22
- from .pretty import Pretty
23
- from .region import Region
24
- from .repr import Result, rich_repr
25
- from .segment import Segment
26
- from .style import StyleType
27
-
28
- if TYPE_CHECKING:
29
- from pip._vendor.rich.tree import Tree
30
-
31
-
32
- class LayoutRender(NamedTuple):
33
- """An individual layout render."""
34
-
35
- region: Region
36
- render: List[List[Segment]]
37
-
38
-
39
- RegionMap = Dict["Layout", Region]
40
- RenderMap = Dict["Layout", LayoutRender]
41
-
42
-
43
- class LayoutError(Exception):
44
- """Layout related error."""
45
-
46
-
47
- class NoSplitter(LayoutError):
48
- """Requested splitter does not exist."""
49
-
50
-
51
- class _Placeholder:
52
- """An internal renderable used as a Layout placeholder."""
53
-
54
- highlighter = ReprHighlighter()
55
-
56
- def __init__(self, layout: "Layout", style: StyleType = "") -> None:
57
- self.layout = layout
58
- self.style = style
59
-
60
- def __rich_console__(
61
- self, console: Console, options: ConsoleOptions
62
- ) -> RenderResult:
63
- width = options.max_width
64
- height = options.height or options.size.height
65
- layout = self.layout
66
- title = (
67
- f"{layout.name!r} ({width} x {height})"
68
- if layout.name
69
- else f"({width} x {height})"
70
- )
71
- yield Panel(
72
- Align.center(Pretty(layout), vertical="middle"),
73
- style=self.style,
74
- title=self.highlighter(title),
75
- border_style="blue",
76
- height=height,
77
- )
78
-
79
-
80
- class Splitter(ABC):
81
- """Base class for a splitter."""
82
-
83
- name: str = ""
84
-
85
- @abstractmethod
86
- def get_tree_icon(self) -> str:
87
- """Get the icon (emoji) used in layout.tree"""
88
-
89
- @abstractmethod
90
- def divide(
91
- self, children: Sequence["Layout"], region: Region
92
- ) -> Iterable[Tuple["Layout", Region]]:
93
- """Divide a region amongst several child layouts.
94
-
95
- Args:
96
- children (Sequence(Layout)): A number of child layouts.
97
- region (Region): A rectangular region to divide.
98
- """
99
-
100
-
101
- class RowSplitter(Splitter):
102
- """Split a layout region in to rows."""
103
-
104
- name = "row"
105
-
106
- def get_tree_icon(self) -> str:
107
- return "[layout.tree.row]⬌"
108
-
109
- def divide(
110
- self, children: Sequence["Layout"], region: Region
111
- ) -> Iterable[Tuple["Layout", Region]]:
112
- x, y, width, height = region
113
- render_widths = ratio_resolve(width, children)
114
- offset = 0
115
- _Region = Region
116
- for child, child_width in zip(children, render_widths):
117
- yield child, _Region(x + offset, y, child_width, height)
118
- offset += child_width
119
-
120
-
121
- class ColumnSplitter(Splitter):
122
- """Split a layout region in to columns."""
123
-
124
- name = "column"
125
-
126
- def get_tree_icon(self) -> str:
127
- return "[layout.tree.column]⬍"
128
-
129
- def divide(
130
- self, children: Sequence["Layout"], region: Region
131
- ) -> Iterable[Tuple["Layout", Region]]:
132
- x, y, width, height = region
133
- render_heights = ratio_resolve(height, children)
134
- offset = 0
135
- _Region = Region
136
- for child, child_height in zip(children, render_heights):
137
- yield child, _Region(x, y + offset, width, child_height)
138
- offset += child_height
139
-
140
-
141
- @rich_repr
142
- class Layout:
143
- """A renderable to divide a fixed height in to rows or columns.
144
-
145
- Args:
146
- renderable (RenderableType, optional): Renderable content, or None for placeholder. Defaults to None.
147
- name (str, optional): Optional identifier for Layout. Defaults to None.
148
- size (int, optional): Optional fixed size of layout. Defaults to None.
149
- minimum_size (int, optional): Minimum size of layout. Defaults to 1.
150
- ratio (int, optional): Optional ratio for flexible layout. Defaults to 1.
151
- visible (bool, optional): Visibility of layout. Defaults to True.
152
- """
153
-
154
- splitters = {"row": RowSplitter, "column": ColumnSplitter}
155
-
156
- def __init__(
157
- self,
158
- renderable: Optional[RenderableType] = None,
159
- *,
160
- name: Optional[str] = None,
161
- size: Optional[int] = None,
162
- minimum_size: int = 1,
163
- ratio: int = 1,
164
- visible: bool = True,
165
- ) -> None:
166
- self._renderable = renderable or _Placeholder(self)
167
- self.size = size
168
- self.minimum_size = minimum_size
169
- self.ratio = ratio
170
- self.name = name
171
- self.visible = visible
172
- self.splitter: Splitter = self.splitters["column"]()
173
- self._children: List[Layout] = []
174
- self._render_map: RenderMap = {}
175
- self._lock = RLock()
176
-
177
- def __rich_repr__(self) -> Result:
178
- yield "name", self.name, None
179
- yield "size", self.size, None
180
- yield "minimum_size", self.minimum_size, 1
181
- yield "ratio", self.ratio, 1
182
-
183
- @property
184
- def renderable(self) -> RenderableType:
185
- """Layout renderable."""
186
- return self if self._children else self._renderable
187
-
188
- @property
189
- def children(self) -> List["Layout"]:
190
- """Gets (visible) layout children."""
191
- return [child for child in self._children if child.visible]
192
-
193
- @property
194
- def map(self) -> RenderMap:
195
- """Get a map of the last render."""
196
- return self._render_map
197
-
198
- def get(self, name: str) -> Optional["Layout"]:
199
- """Get a named layout, or None if it doesn't exist.
200
-
201
- Args:
202
- name (str): Name of layout.
203
-
204
- Returns:
205
- Optional[Layout]: Layout instance or None if no layout was found.
206
- """
207
- if self.name == name:
208
- return self
209
- else:
210
- for child in self._children:
211
- named_layout = child.get(name)
212
- if named_layout is not None:
213
- return named_layout
214
- return None
215
-
216
- def __getitem__(self, name: str) -> "Layout":
217
- layout = self.get(name)
218
- if layout is None:
219
- raise KeyError(f"No layout with name {name!r}")
220
- return layout
221
-
222
- @property
223
- def tree(self) -> "Tree":
224
- """Get a tree renderable to show layout structure."""
225
- from pip._vendor.rich.styled import Styled
226
- from pip._vendor.rich.table import Table
227
- from pip._vendor.rich.tree import Tree
228
-
229
- def summary(layout: "Layout") -> Table:
230
-
231
- icon = layout.splitter.get_tree_icon()
232
-
233
- table = Table.grid(padding=(0, 1, 0, 0))
234
-
235
- text: RenderableType = (
236
- Pretty(layout) if layout.visible else Styled(Pretty(layout), "dim")
237
- )
238
- table.add_row(icon, text)
239
- _summary = table
240
- return _summary
241
-
242
- layout = self
243
- tree = Tree(
244
- summary(layout),
245
- guide_style=f"layout.tree.{layout.splitter.name}",
246
- highlight=True,
247
- )
248
-
249
- def recurse(tree: "Tree", layout: "Layout") -> None:
250
- for child in layout._children:
251
- recurse(
252
- tree.add(
253
- summary(child),
254
- guide_style=f"layout.tree.{child.splitter.name}",
255
- ),
256
- child,
257
- )
258
-
259
- recurse(tree, self)
260
- return tree
261
-
262
- def split(
263
- self,
264
- *layouts: Union["Layout", RenderableType],
265
- splitter: Union[Splitter, str] = "column",
266
- ) -> None:
267
- """Split the layout in to multiple sub-layouts.
268
-
269
- Args:
270
- *layouts (Layout): Positional arguments should be (sub) Layout instances.
271
- splitter (Union[Splitter, str]): Splitter instance or name of splitter.
272
- """
273
- _layouts = [
274
- layout if isinstance(layout, Layout) else Layout(layout)
275
- for layout in layouts
276
- ]
277
- try:
278
- self.splitter = (
279
- splitter
280
- if isinstance(splitter, Splitter)
281
- else self.splitters[splitter]()
282
- )
283
- except KeyError:
284
- raise NoSplitter(f"No splitter called {splitter!r}")
285
- self._children[:] = _layouts
286
-
287
- def add_split(self, *layouts: Union["Layout", RenderableType]) -> None:
288
- """Add a new layout(s) to existing split.
289
-
290
- Args:
291
- *layouts (Union[Layout, RenderableType]): Positional arguments should be renderables or (sub) Layout instances.
292
-
293
- """
294
- _layouts = (
295
- layout if isinstance(layout, Layout) else Layout(layout)
296
- for layout in layouts
297
- )
298
- self._children.extend(_layouts)
299
-
300
- def split_row(self, *layouts: Union["Layout", RenderableType]) -> None:
301
- """Split the layout in to a row (layouts side by side).
302
-
303
- Args:
304
- *layouts (Layout): Positional arguments should be (sub) Layout instances.
305
- """
306
- self.split(*layouts, splitter="row")
307
-
308
- def split_column(self, *layouts: Union["Layout", RenderableType]) -> None:
309
- """Split the layout in to a column (layouts stacked on top of each other).
310
-
311
- Args:
312
- *layouts (Layout): Positional arguments should be (sub) Layout instances.
313
- """
314
- self.split(*layouts, splitter="column")
315
-
316
- def unsplit(self) -> None:
317
- """Reset splits to initial state."""
318
- del self._children[:]
319
-
320
- def update(self, renderable: RenderableType) -> None:
321
- """Update renderable.
322
-
323
- Args:
324
- renderable (RenderableType): New renderable object.
325
- """
326
- with self._lock:
327
- self._renderable = renderable
328
-
329
- def refresh_screen(self, console: "Console", layout_name: str) -> None:
330
- """Refresh a sub-layout.
331
-
332
- Args:
333
- console (Console): Console instance where Layout is to be rendered.
334
- layout_name (str): Name of layout.
335
- """
336
- with self._lock:
337
- layout = self[layout_name]
338
- region, _lines = self._render_map[layout]
339
- (x, y, width, height) = region
340
- lines = console.render_lines(
341
- layout, console.options.update_dimensions(width, height)
342
- )
343
- self._render_map[layout] = LayoutRender(region, lines)
344
- console.update_screen_lines(lines, x, y)
345
-
346
- def _make_region_map(self, width: int, height: int) -> RegionMap:
347
- """Create a dict that maps layout on to Region."""
348
- stack: List[Tuple[Layout, Region]] = [(self, Region(0, 0, width, height))]
349
- push = stack.append
350
- pop = stack.pop
351
- layout_regions: List[Tuple[Layout, Region]] = []
352
- append_layout_region = layout_regions.append
353
- while stack:
354
- append_layout_region(pop())
355
- layout, region = layout_regions[-1]
356
- children = layout.children
357
- if children:
358
- for child_and_region in layout.splitter.divide(children, region):
359
- push(child_and_region)
360
-
361
- region_map = {
362
- layout: region
363
- for layout, region in sorted(layout_regions, key=itemgetter(1))
364
- }
365
- return region_map
366
-
367
- def render(self, console: Console, options: ConsoleOptions) -> RenderMap:
368
- """Render the sub_layouts.
369
-
370
- Args:
371
- console (Console): Console instance.
372
- options (ConsoleOptions): Console options.
373
-
374
- Returns:
375
- RenderMap: A dict that maps Layout on to a tuple of Region, lines
376
- """
377
- render_width = options.max_width
378
- render_height = options.height or console.height
379
- region_map = self._make_region_map(render_width, render_height)
380
- layout_regions = [
381
- (layout, region)
382
- for layout, region in region_map.items()
383
- if not layout.children
384
- ]
385
- render_map: Dict["Layout", "LayoutRender"] = {}
386
- render_lines = console.render_lines
387
- update_dimensions = options.update_dimensions
388
-
389
- for layout, region in layout_regions:
390
- lines = render_lines(
391
- layout.renderable, update_dimensions(region.width, region.height)
392
- )
393
- render_map[layout] = LayoutRender(region, lines)
394
- return render_map
395
-
396
- def __rich_console__(
397
- self, console: Console, options: ConsoleOptions
398
- ) -> RenderResult:
399
- with self._lock:
400
- width = options.max_width or console.width
401
- height = options.height or console.height
402
- render_map = self.render(console, options.update_dimensions(width, height))
403
- self._render_map = render_map
404
- layout_lines: List[List[Segment]] = [[] for _ in range(height)]
405
- _islice = islice
406
- for (region, lines) in render_map.values():
407
- _x, y, _layout_width, layout_height = region
408
- for row, line in zip(
409
- _islice(layout_lines, y, y + layout_height), lines
410
- ):
411
- row.extend(line)
412
-
413
- new_line = Segment.line()
414
- for layout_row in layout_lines:
415
- yield from layout_row
416
- yield new_line
417
-
418
-
419
- if __name__ == "__main__":
420
- from pip._vendor.rich.console import Console
421
-
422
- console = Console()
423
- layout = Layout()
424
-
425
- layout.split_column(
426
- Layout(name="header", size=3),
427
- Layout(ratio=1, name="main"),
428
- Layout(size=10, name="footer"),
429
- )
430
-
431
- layout["main"].split_row(Layout(name="side"), Layout(name="body", ratio=2))
432
-
433
- layout["body"].split_row(Layout(name="content", ratio=2), Layout(name="s2"))
434
-
435
- layout["s2"].split_column(
436
- Layout(name="top"), Layout(name="middle"), Layout(name="bottom")
437
- )
438
-
439
- layout["side"].split_column(Layout(layout.tree, name="left1"), Layout(name="left2"))
440
-
441
- layout["content"].update("foo")
442
-
443
- console.print(layout)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Bishnupada/Fine-tuning-using-Hugging-face-transformers/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: Fine Tuning Using Hugging Face Transformers
3
- emoji: 🔥
4
- colorFrom: pink
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 3.27.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/BlinkDL/ChatRWKV-gradio/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: ChatRWKV
3
- emoji: 💻
4
- colorFrom: gray
5
- colorTo: blue
6
- sdk: gradio
7
- sdk_version: 3.28.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/BrunoBall/Kaludi-ARTificialJourney-v1.0-768/app.py DELETED
@@ -1,3 +0,0 @@
1
- import gradio as gr
2
-
3
- gr.Interface.load("models/Kaludi/ARTificialJourney-v1.0-768").launch()
 
 
 
 
spaces/CVPR/CVPR2022_papers/app.py DELETED
@@ -1,66 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- from __future__ import annotations
4
-
5
- import gradio as gr
6
-
7
- from paper_list import PaperList
8
-
9
- DESCRIPTION = '# CVPR 2022 Papers'
10
- NOTES = '''
11
- - [CVPR 2022](https://cvpr2022.thecvf.com/)
12
- - [Proceedings](https://openaccess.thecvf.com/CVPR2022)
13
- '''
14
-
15
- paper_list = PaperList()
16
-
17
- with gr.Blocks(css='style.css') as demo:
18
- gr.Markdown(DESCRIPTION)
19
-
20
- search_box = gr.Textbox(
21
- label='Search Title',
22
- placeholder=
23
- 'You can search for titles with regular expressions. e.g. (?<!sur)face'
24
- )
25
- case_sensitive = gr.Checkbox(label='Case Sensitive')
26
- filter_names = gr.CheckboxGroup(label='Filter',
27
- choices=[
28
- 'Supp',
29
- 'arXiv',
30
- 'GitHub',
31
- 'HF Space',
32
- 'HF Model',
33
- 'HF Dataset',
34
- ])
35
- search_button = gr.Button('Search')
36
-
37
- number_of_papers = gr.Textbox(label='Number of Papers Found')
38
- table = gr.HTML(show_label=False)
39
-
40
- gr.Markdown(NOTES)
41
-
42
- demo.load(
43
- fn=paper_list.render,
44
- inputs=[
45
- search_box,
46
- case_sensitive,
47
- filter_names,
48
- ],
49
- outputs=[
50
- number_of_papers,
51
- table,
52
- ],
53
- )
54
- search_button.click(
55
- fn=paper_list.render,
56
- inputs=[
57
- search_box,
58
- case_sensitive,
59
- filter_names,
60
- ],
61
- outputs=[
62
- number_of_papers,
63
- table,
64
- ],
65
- )
66
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/detectron2/modeling/backbone/resnet.py DELETED
@@ -1,566 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2
- import numpy as np
3
- import fvcore.nn.weight_init as weight_init
4
- import torch
5
- import torch.nn.functional as F
6
- from torch import nn
7
-
8
- from detectron2.layers import (
9
- Conv2d,
10
- DeformConv,
11
- FrozenBatchNorm2d,
12
- ModulatedDeformConv,
13
- ShapeSpec,
14
- get_norm,
15
- )
16
-
17
- from .backbone import Backbone
18
- from .build import BACKBONE_REGISTRY
19
-
20
- __all__ = [
21
- "ResNetBlockBase",
22
- "BasicBlock",
23
- "BottleneckBlock",
24
- "DeformBottleneckBlock",
25
- "BasicStem",
26
- "ResNet",
27
- "make_stage",
28
- "build_resnet_backbone",
29
- ]
30
-
31
-
32
- class ResNetBlockBase(nn.Module):
33
- def __init__(self, in_channels, out_channels, stride):
34
- """
35
- The `__init__` method of any subclass should also contain these arguments.
36
-
37
- Args:
38
- in_channels (int):
39
- out_channels (int):
40
- stride (int):
41
- """
42
- super().__init__()
43
- self.in_channels = in_channels
44
- self.out_channels = out_channels
45
- self.stride = stride
46
-
47
- def freeze(self):
48
- for p in self.parameters():
49
- p.requires_grad = False
50
- FrozenBatchNorm2d.convert_frozen_batchnorm(self)
51
- return self
52
-
53
-
54
- class BasicBlock(ResNetBlockBase):
55
- def __init__(self, in_channels, out_channels, *, stride=1, norm="BN"):
56
- """
57
- The standard block type for ResNet18 and ResNet34.
58
-
59
- Args:
60
- in_channels (int): Number of input channels.
61
- out_channels (int): Number of output channels.
62
- stride (int): Stride for the first conv.
63
- norm (str or callable): A callable that takes the number of
64
- channels and returns a `nn.Module`, or a pre-defined string
65
- (one of {"FrozenBN", "BN", "GN"}).
66
- """
67
- super().__init__(in_channels, out_channels, stride)
68
-
69
- if in_channels != out_channels:
70
- self.shortcut = Conv2d(
71
- in_channels,
72
- out_channels,
73
- kernel_size=1,
74
- stride=stride,
75
- bias=False,
76
- norm=get_norm(norm, out_channels),
77
- )
78
- else:
79
- self.shortcut = None
80
-
81
- self.conv1 = Conv2d(
82
- in_channels,
83
- out_channels,
84
- kernel_size=3,
85
- stride=stride,
86
- padding=1,
87
- bias=False,
88
- norm=get_norm(norm, out_channels),
89
- )
90
-
91
- self.conv2 = Conv2d(
92
- out_channels,
93
- out_channels,
94
- kernel_size=3,
95
- stride=1,
96
- padding=1,
97
- bias=False,
98
- norm=get_norm(norm, out_channels),
99
- )
100
-
101
- for layer in [self.conv1, self.conv2, self.shortcut]:
102
- if layer is not None: # shortcut can be None
103
- weight_init.c2_msra_fill(layer)
104
-
105
- def forward(self, x):
106
- out = self.conv1(x)
107
- out = F.relu_(out)
108
- out = self.conv2(out)
109
-
110
- if self.shortcut is not None:
111
- shortcut = self.shortcut(x)
112
- else:
113
- shortcut = x
114
-
115
- out += shortcut
116
- out = F.relu_(out)
117
- return out
118
-
119
-
120
- class BottleneckBlock(ResNetBlockBase):
121
- def __init__(
122
- self,
123
- in_channels,
124
- out_channels,
125
- *,
126
- bottleneck_channels,
127
- stride=1,
128
- num_groups=1,
129
- norm="BN",
130
- stride_in_1x1=False,
131
- dilation=1,
132
- ):
133
- """
134
- Args:
135
- norm (str or callable): a callable that takes the number of
136
- channels and return a `nn.Module`, or a pre-defined string
137
- (one of {"FrozenBN", "BN", "GN"}).
138
- stride_in_1x1 (bool): when stride==2, whether to put stride in the
139
- first 1x1 convolution or the bottleneck 3x3 convolution.
140
- """
141
- super().__init__(in_channels, out_channels, stride)
142
-
143
- if in_channels != out_channels:
144
- self.shortcut = Conv2d(
145
- in_channels,
146
- out_channels,
147
- kernel_size=1,
148
- stride=stride,
149
- bias=False,
150
- norm=get_norm(norm, out_channels),
151
- )
152
- else:
153
- self.shortcut = None
154
-
155
- # The original MSRA ResNet models have stride in the first 1x1 conv
156
- # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
157
- # stride in the 3x3 conv
158
- stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
159
-
160
- self.conv1 = Conv2d(
161
- in_channels,
162
- bottleneck_channels,
163
- kernel_size=1,
164
- stride=stride_1x1,
165
- bias=False,
166
- norm=get_norm(norm, bottleneck_channels),
167
- )
168
-
169
- self.conv2 = Conv2d(
170
- bottleneck_channels,
171
- bottleneck_channels,
172
- kernel_size=3,
173
- stride=stride_3x3,
174
- padding=1 * dilation,
175
- bias=False,
176
- groups=num_groups,
177
- dilation=dilation,
178
- norm=get_norm(norm, bottleneck_channels),
179
- )
180
-
181
- self.conv3 = Conv2d(
182
- bottleneck_channels,
183
- out_channels,
184
- kernel_size=1,
185
- bias=False,
186
- norm=get_norm(norm, out_channels),
187
- )
188
-
189
- for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
190
- if layer is not None: # shortcut can be None
191
- weight_init.c2_msra_fill(layer)
192
-
193
- # Zero-initialize the last normalization in each residual branch,
194
- # so that at the beginning, the residual branch starts with zeros,
195
- # and each residual block behaves like an identity.
196
- # See Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
197
- # "For BN layers, the learnable scaling coefficient γ is initialized
198
- # to be 1, except for each residual block's last BN
199
- # where γ is initialized to be 0."
200
-
201
- # nn.init.constant_(self.conv3.norm.weight, 0)
202
- # TODO this somehow hurts performance when training GN models from scratch.
203
- # Add it as an option when we need to use this code to train a backbone.
204
-
205
- def forward(self, x):
206
- out = self.conv1(x)
207
- out = F.relu_(out)
208
-
209
- out = self.conv2(out)
210
- out = F.relu_(out)
211
-
212
- out = self.conv3(out)
213
-
214
- if self.shortcut is not None:
215
- shortcut = self.shortcut(x)
216
- else:
217
- shortcut = x
218
-
219
- out += shortcut
220
- out = F.relu_(out)
221
- return out
222
-
223
-
224
- class DeformBottleneckBlock(ResNetBlockBase):
225
- def __init__(
226
- self,
227
- in_channels,
228
- out_channels,
229
- *,
230
- bottleneck_channels,
231
- stride=1,
232
- num_groups=1,
233
- norm="BN",
234
- stride_in_1x1=False,
235
- dilation=1,
236
- deform_modulated=False,
237
- deform_num_groups=1,
238
- ):
239
- """
240
- Similar to :class:`BottleneckBlock`, but with deformable conv in the 3x3 convolution.
241
- """
242
- super().__init__(in_channels, out_channels, stride)
243
- self.deform_modulated = deform_modulated
244
-
245
- if in_channels != out_channels:
246
- self.shortcut = Conv2d(
247
- in_channels,
248
- out_channels,
249
- kernel_size=1,
250
- stride=stride,
251
- bias=False,
252
- norm=get_norm(norm, out_channels),
253
- )
254
- else:
255
- self.shortcut = None
256
-
257
- stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)
258
-
259
- self.conv1 = Conv2d(
260
- in_channels,
261
- bottleneck_channels,
262
- kernel_size=1,
263
- stride=stride_1x1,
264
- bias=False,
265
- norm=get_norm(norm, bottleneck_channels),
266
- )
267
-
268
- if deform_modulated:
269
- deform_conv_op = ModulatedDeformConv
270
- # offset channels are 2 or 3 (if with modulated) * kernel_size * kernel_size
271
- offset_channels = 27
272
- else:
273
- deform_conv_op = DeformConv
274
- offset_channels = 18
275
-
276
- self.conv2_offset = Conv2d(
277
- bottleneck_channels,
278
- offset_channels * deform_num_groups,
279
- kernel_size=3,
280
- stride=stride_3x3,
281
- padding=1 * dilation,
282
- dilation=dilation,
283
- )
284
- self.conv2 = deform_conv_op(
285
- bottleneck_channels,
286
- bottleneck_channels,
287
- kernel_size=3,
288
- stride=stride_3x3,
289
- padding=1 * dilation,
290
- bias=False,
291
- groups=num_groups,
292
- dilation=dilation,
293
- deformable_groups=deform_num_groups,
294
- norm=get_norm(norm, bottleneck_channels),
295
- )
296
-
297
- self.conv3 = Conv2d(
298
- bottleneck_channels,
299
- out_channels,
300
- kernel_size=1,
301
- bias=False,
302
- norm=get_norm(norm, out_channels),
303
- )
304
-
305
- for layer in [self.conv1, self.conv2, self.conv3, self.shortcut]:
306
- if layer is not None: # shortcut can be None
307
- weight_init.c2_msra_fill(layer)
308
-
309
- nn.init.constant_(self.conv2_offset.weight, 0)
310
- nn.init.constant_(self.conv2_offset.bias, 0)
311
-
312
- def forward(self, x):
313
- out = self.conv1(x)
314
- out = F.relu_(out)
315
-
316
- if self.deform_modulated:
317
- offset_mask = self.conv2_offset(out)
318
- offset_x, offset_y, mask = torch.chunk(offset_mask, 3, dim=1)
319
- offset = torch.cat((offset_x, offset_y), dim=1)
320
- mask = mask.sigmoid()
321
- out = self.conv2(out, offset, mask)
322
- else:
323
- offset = self.conv2_offset(out)
324
- out = self.conv2(out, offset)
325
- out = F.relu_(out)
326
-
327
- out = self.conv3(out)
328
-
329
- if self.shortcut is not None:
330
- shortcut = self.shortcut(x)
331
- else:
332
- shortcut = x
333
-
334
- out += shortcut
335
- out = F.relu_(out)
336
- return out
337
-
338
-
339
- def make_stage(block_class, num_blocks, first_stride, **kwargs):
340
- """
341
- Create a resnet stage by creating many blocks.
342
-
343
- Args:
344
- block_class (class): a subclass of ResNetBlockBase
345
- num_blocks (int):
346
- first_stride (int): the stride of the first block. The other blocks will have stride=1.
347
- A `stride` argument will be passed to the block constructor.
348
- kwargs: other arguments passed to the block constructor.
349
-
350
- Returns:
351
- list[nn.Module]: a list of block module.
352
- """
353
- blocks = []
354
- for i in range(num_blocks):
355
- blocks.append(block_class(stride=first_stride if i == 0 else 1, **kwargs))
356
- kwargs["in_channels"] = kwargs["out_channels"]
357
- return blocks
358
-
359
-
360
- class BasicStem(nn.Module):
361
- def __init__(self, in_channels=3, out_channels=64, norm="BN"):
362
- """
363
- Args:
364
- norm (str or callable): a callable that takes the number of
365
- channels and return a `nn.Module`, or a pre-defined string
366
- (one of {"FrozenBN", "BN", "GN"}).
367
- """
368
- super().__init__()
369
- self.conv1 = Conv2d(
370
- in_channels,
371
- out_channels,
372
- kernel_size=7,
373
- stride=2,
374
- padding=3,
375
- bias=False,
376
- norm=get_norm(norm, out_channels),
377
- )
378
- weight_init.c2_msra_fill(self.conv1)
379
-
380
- def forward(self, x):
381
- x = self.conv1(x)
382
- x = F.relu_(x)
383
- x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
384
- return x
385
-
386
- @property
387
- def out_channels(self):
388
- return self.conv1.out_channels
389
-
390
- @property
391
- def stride(self):
392
- return 4 # = stride 2 conv -> stride 2 max pool
393
-
394
-
395
- class ResNet(Backbone):
396
- def __init__(self, stem, stages, num_classes=None, out_features=None):
397
- """
398
- Args:
399
- stem (nn.Module): a stem module
400
- stages (list[list[ResNetBlock]]): several (typically 4) stages,
401
- each contains multiple :class:`ResNetBlockBase`.
402
- num_classes (None or int): if None, will not perform classification.
403
- out_features (list[str]): name of the layers whose outputs should
404
- be returned in forward. Can be anything in "stem", "linear", or "res2" ...
405
- If None, will return the output of the last layer.
406
- """
407
- super(ResNet, self).__init__()
408
- self.stem = stem
409
- self.num_classes = num_classes
410
-
411
- current_stride = self.stem.stride
412
- self._out_feature_strides = {"stem": current_stride}
413
- self._out_feature_channels = {"stem": self.stem.out_channels}
414
-
415
- self.stages_and_names = []
416
- for i, blocks in enumerate(stages):
417
- for block in blocks:
418
- assert isinstance(block, ResNetBlockBase), block
419
- curr_channels = block.out_channels
420
- stage = nn.Sequential(*blocks)
421
- name = "res" + str(i + 2)
422
- self.add_module(name, stage)
423
- self.stages_and_names.append((stage, name))
424
- self._out_feature_strides[name] = current_stride = int(
425
- current_stride * np.prod([k.stride for k in blocks])
426
- )
427
- self._out_feature_channels[name] = blocks[-1].out_channels
428
-
429
- if num_classes is not None:
430
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
431
- self.linear = nn.Linear(curr_channels, num_classes)
432
-
433
- # Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
434
- # "The 1000-way fully-connected layer is initialized by
435
- # drawing weights from a zero-mean Gaussian with standard deviation of 0.01."
436
- nn.init.normal_(self.linear.weight, std=0.01)
437
- name = "linear"
438
-
439
- if out_features is None:
440
- out_features = [name]
441
- self._out_features = out_features
442
- assert len(self._out_features)
443
- children = [x[0] for x in self.named_children()]
444
- for out_feature in self._out_features:
445
- assert out_feature in children, "Available children: {}".format(", ".join(children))
446
-
447
- def forward(self, x):
448
- outputs = {}
449
- x = self.stem(x)
450
- if "stem" in self._out_features:
451
- outputs["stem"] = x
452
- for stage, name in self.stages_and_names:
453
- x = stage(x)
454
- if name in self._out_features:
455
- outputs[name] = x
456
- if self.num_classes is not None:
457
- x = self.avgpool(x)
458
- x = torch.flatten(x, 1)
459
- x = self.linear(x)
460
- if "linear" in self._out_features:
461
- outputs["linear"] = x
462
- return outputs
463
-
464
- def output_shape(self):
465
- return {
466
- name: ShapeSpec(
467
- channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
468
- )
469
- for name in self._out_features
470
- }
471
-
472
-
473
- @BACKBONE_REGISTRY.register()
474
- def build_resnet_backbone(cfg, input_shape):
475
- """
476
- Create a ResNet instance from config.
477
-
478
- Returns:
479
- ResNet: a :class:`ResNet` instance.
480
- """
481
- # need registration of new blocks/stems?
482
- norm = cfg.MODEL.RESNETS.NORM
483
- stem = BasicStem(
484
- in_channels=input_shape.channels,
485
- out_channels=cfg.MODEL.RESNETS.STEM_OUT_CHANNELS,
486
- norm=norm,
487
- )
488
- freeze_at = cfg.MODEL.BACKBONE.FREEZE_AT
489
-
490
- if freeze_at >= 1:
491
- for p in stem.parameters():
492
- p.requires_grad = False
493
- stem = FrozenBatchNorm2d.convert_frozen_batchnorm(stem)
494
-
495
- # fmt: off
496
- out_features = cfg.MODEL.RESNETS.OUT_FEATURES
497
- depth = cfg.MODEL.RESNETS.DEPTH
498
- num_groups = cfg.MODEL.RESNETS.NUM_GROUPS
499
- width_per_group = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
500
- bottleneck_channels = num_groups * width_per_group
501
- in_channels = cfg.MODEL.RESNETS.STEM_OUT_CHANNELS
502
- out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS
503
- stride_in_1x1 = cfg.MODEL.RESNETS.STRIDE_IN_1X1
504
- res5_dilation = cfg.MODEL.RESNETS.RES5_DILATION
505
- deform_on_per_stage = cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE
506
- deform_modulated = cfg.MODEL.RESNETS.DEFORM_MODULATED
507
- deform_num_groups = cfg.MODEL.RESNETS.DEFORM_NUM_GROUPS
508
- # fmt: on
509
- assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)
510
-
511
- num_blocks_per_stage = {
512
- 18: [2, 2, 2, 2],
513
- 34: [3, 4, 6, 3],
514
- 50: [3, 4, 6, 3],
515
- 101: [3, 4, 23, 3],
516
- 152: [3, 8, 36, 3],
517
- }[depth]
518
-
519
- if depth in [18, 34]:
520
- assert out_channels == 64, "Must set MODEL.RESNETS.RES2_OUT_CHANNELS = 64 for R18/R34"
521
- assert not any(
522
- deform_on_per_stage
523
- ), "MODEL.RESNETS.DEFORM_ON_PER_STAGE unsupported for R18/R34"
524
- assert res5_dilation == 1, "Must set MODEL.RESNETS.RES5_DILATION = 1 for R18/R34"
525
- assert num_groups == 1, "Must set MODEL.RESNETS.NUM_GROUPS = 1 for R18/R34"
526
-
527
- stages = []
528
-
529
- # Avoid creating variables without gradients
530
- # It consumes extra memory and may cause allreduce to fail
531
- out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features]
532
- max_stage_idx = max(out_stage_idx)
533
- for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
534
- dilation = res5_dilation if stage_idx == 5 else 1
535
- first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
536
- stage_kargs = {
537
- "num_blocks": num_blocks_per_stage[idx],
538
- "first_stride": first_stride,
539
- "in_channels": in_channels,
540
- "out_channels": out_channels,
541
- "norm": norm,
542
- }
543
- # Use BasicBlock for R18 and R34.
544
- if depth in [18, 34]:
545
- stage_kargs["block_class"] = BasicBlock
546
- else:
547
- stage_kargs["bottleneck_channels"] = bottleneck_channels
548
- stage_kargs["stride_in_1x1"] = stride_in_1x1
549
- stage_kargs["dilation"] = dilation
550
- stage_kargs["num_groups"] = num_groups
551
- if deform_on_per_stage[idx]:
552
- stage_kargs["block_class"] = DeformBottleneckBlock
553
- stage_kargs["deform_modulated"] = deform_modulated
554
- stage_kargs["deform_num_groups"] = deform_num_groups
555
- else:
556
- stage_kargs["block_class"] = BottleneckBlock
557
- blocks = make_stage(**stage_kargs)
558
- in_channels = out_channels
559
- out_channels *= 2
560
- bottleneck_channels *= 2
561
-
562
- if freeze_at >= stage_idx:
563
- for block in blocks:
564
- block.freeze()
565
- stages.append(blocks)
566
- return ResNet(stem, stages, out_features=out_features)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/iterator/detail/any_assign.h DELETED
@@ -1,55 +0,0 @@
1
- /*
2
- * Copyright 2008-2013 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a copy of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
- #pragma once
18
-
19
- #include <thrust/detail/config.h>
20
-
21
- namespace thrust
22
- {
23
- namespace detail
24
- {
25
-
26
-
27
- // a type which may be assigned any other type
28
- struct any_assign
29
- {
30
- inline __host__ __device__ any_assign()
31
- {}
32
-
33
- template<typename T>
34
- inline __host__ __device__ any_assign(T)
35
- {}
36
-
37
- template<typename T>
38
- inline __host__ __device__
39
- any_assign &operator=(T)
40
- {
41
- if(0)
42
- {
43
- // trick the compiler into silencing "warning: this expression has no effect"
44
- int *x = 0;
45
- *x = 13;
46
- } // end if
47
-
48
- return *this;
49
- }
50
- };
51
-
52
-
53
- } // end detail
54
- } // end thrust
55
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Chandrasekahar2k/KVCSekharGenAIBot/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: KVCSekharGenAIBot
3
- emoji: 📈
4
- colorFrom: pink
5
- colorTo: gray
6
- sdk: gradio
7
- sdk_version: 3.39.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ChristopherMarais/Andrew_AI-BB_classification-beta/mysite/mysite/asgi.py DELETED
@@ -1,16 +0,0 @@
1
- """
2
- ASGI config for mysite project.
3
-
4
- It exposes the ASGI callable as a module-level variable named ``application``.
5
-
6
- For more information on this file, see
7
- https://docs.djangoproject.com/en/4.2/howto/deployment/asgi/
8
- """
9
-
10
- import os
11
-
12
- from django.core.asgi import get_asgi_application
13
-
14
- os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mysite.settings')
15
-
16
- application = get_asgi_application()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CikeyQI/Yunzai/Yunzai/plugins/ws-plugin/resources/help/imgs/config.js DELETED
@@ -1,24 +0,0 @@
1
- export const style = {
2
- // 主文字颜色
3
- fontColor: '#ceb78b',
4
- // 主文字阴影: 横向距离 垂直距离 阴影大小 阴影颜色
5
- // fontShadow: '0px 0px 1px rgba(6, 21, 31, .9)',
6
- fontShadow: 'none',
7
- // 描述文字颜色
8
- descColor: '#eee',
9
-
10
- /* 面板整体底色,会叠加在标题栏及帮助行之下,方便整体帮助有一个基础底色
11
- * 若无需此项可将rgba最后一位置为0即为完全透明
12
- * 注意若综合透明度较低,或颜色与主文字颜色过近或太透明可能导致阅读困难 */
13
- contBgColor: 'rgba(6, 21, 31, .5)',
14
-
15
- // 面板底图毛玻璃效果,数字越大越模糊,0-10 ,可为小数
16
- contBgBlur: 3,
17
-
18
- // 板块标题栏底色
19
- headerBgColor: 'rgba(6, 21, 31, .4)',
20
- // 帮助奇数行底色
21
- rowBgColor1: 'rgba(6, 21, 31, .2)',
22
- // 帮助偶数行底色
23
- rowBgColor2: 'rgba(6, 21, 31, .35)'
24
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ClaudioX/mg_sd_esp/app.py DELETED
@@ -1,61 +0,0 @@
1
- import gradio as gr, random, re
2
- import torch
3
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline, set_seed
4
-
5
- tokenizer_en_es = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-es-en")
6
- model_en_es = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-es-en")
7
- en_es_translator = pipeline("translation_es_to_en", model = model_en_es, tokenizer = tokenizer_en_es)
8
-
9
- gpt2_pipe = pipeline('text-generation', model='Gustavosta/MagicPrompt-Stable-Diffusion', tokenizer='gpt2')
10
-
11
- with open("ideas.txt", "r") as f:
12
- line = f.readlines()
13
-
14
-
15
- def generate(inputs):
16
- resultado = en_es_translator(inputs)
17
- starting_text = resultado[0]['translation_text']
18
-
19
- for count in range(4):
20
- seed = random.randint(100, 1000000)
21
- set_seed(seed)
22
-
23
- if starting_text == "":
24
- starting_text: str = line[random.randrange(0, len(line))].replace("\n", "").lower().capitalize()
25
- starting_text: str = re.sub(r"[,:\-–.!;?_]", '', starting_text)
26
- print(starting_text)
27
-
28
- response = gpt2_pipe(starting_text, max_length=(len(starting_text) + random.randint(60, 90)), num_return_sequences=4)
29
- response_list = []
30
- for x in response:
31
- resp = x['generated_text'].strip()
32
- if resp != starting_text and len(resp) > (len(starting_text) + 4) and resp.endswith((":", "-", "—")) is False:
33
- response_list.append(resp+'\n')
34
-
35
- response_end = "\n".join(response_list)
36
- response_end = re.sub('[^ ]+\.[^ ]+','', response_end)
37
- response_end = response_end.replace("<", "").replace(">", "")
38
-
39
- if response_end != "":
40
- return response_end
41
- if count == 4:
42
- return response_end
43
-
44
-
45
- txt = gr.Textbox(lines=1, label="Texto inicial", placeholder="Texto en Español")
46
- out = gr.Textbox(lines=4, label="Sugerencia generada")
47
-
48
-
49
- title = "Generador de sugerencia para Stable Diffusion (SD)"
50
- description = 'Esta es una demostración de la serie de modelos: "MagicPrompt", en este caso, dirigida a: Stable Diffusion. Para utilizarlo, simplemente envíe su texto.'
51
- article = ""
52
-
53
- gr.Interface(fn=generate,
54
- inputs=txt,
55
- outputs=out,
56
- title=title,
57
- description=description,
58
- article=article,
59
- allow_flagging='never',
60
- cache_examples=False,
61
- theme="default").launch(enable_queue=True, debug=True)