diff --git a/spaces/123harsh/gradio-easywriter/app.py b/spaces/123harsh/gradio-easywriter/app.py
deleted file mode 100644
index bb63e8a8421d0948b223f948edc0240ba660f478..0000000000000000000000000000000000000000
--- a/spaces/123harsh/gradio-easywriter/app.py
+++ /dev/null
@@ -1,8 +0,0 @@
-import wikipedia
-import gradio as gr
-def ai_text(input):
- value = wikipedia.summary(input)
- print(type(value))
- return value
-iface = gr.Interface(fn = ai_text, inputs="text",outputs="text",title= "Answer Generator", description= "AI Generated Answer" )
-iface.launch(debug=False)
diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Cat Et 2009c Keygen A Complete Guide to Using CAT ET 2009C Software for Caterpillar Vehicles.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Cat Et 2009c Keygen A Complete Guide to Using CAT ET 2009C Software for Caterpillar Vehicles.md
deleted file mode 100644
index 88d12de8069af4354bcaf347e4d5fdd38488b98f..0000000000000000000000000000000000000000
--- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Cat Et 2009c Keygen A Complete Guide to Using CAT ET 2009C Software for Caterpillar Vehicles.md
+++ /dev/null
@@ -1,56 +0,0 @@
-
-
Cat Et 2009c Keygen: What Is It and How to Use It?
-
If you are a CAT equipment owner or operator, you probably know how important it is to have a reliable diagnostic tool that can help you monitor, test, and troubleshoot your machines. That's where Cat Et 2009c Keygen comes in handy. In this article, we will explain what Cat Et 2009c Keygen is, what it does, how to download it, how to install it, and how to use it. By the end of this article, you will be able to use Cat Et 2009c Keygen and software like a pro.
Cat Et 2009c Keygen is a small program that can generate license keys for Cat Et 2009c software. Cat Et stands for Caterpillar Electronic Technician, which is a diagnostic software that allows you to communicate with your CAT equipment using a data link adapter. With Cat Et software, you can perform various tasks such as:
-
-
View live data and status parameters of your CAT equipment
-
Run diagnostic tests and calibrations on your CAT equipment
-
Read and clear diagnostic codes and event logs of your CAT equipment
-
Configure and customize settings of your CAT equipment
-
Update firmware and software of your CAT equipment
-
-
Cat Et software is compatible with most CAT equipment models such as engines, generators, trucks, loaders, excavators, graders, etc. However, Cat Et software is not free. You need to purchase a license key from Caterpillar or an authorized dealer to activate the software. This can be expensive and inconvenient for some users who want to use the software for personal or educational purposes.
-
That's why some users resort to using Cat Et 2009c Keygen, which can generate license keys for free. By using Cat Et 2009c Keygen, you can activate Cat Et 2009c software without paying anything. However, you should be aware that using Cat Et 2009c Keygen may be illegal or unethical in some countries or regions. You should also be careful about downloading Cat Et 2009c Keygen from unknown or untrusted sources, as they may contain viruses or malware that can harm your computer or device.
-
If you want to download Cat Et 2009c Keygen, you can find it on some online forums or websites that specialize in automotive software. One example is MHH AUTO (https://mhhauto.com/), which is a popular forum for automotive enthusiasts and professionals. You can find several threads on MHH AUTO that provide links to download Cat Et 2009c Keygen and software. However, you need to register as a member of MHH AUTO before you can access these links. You also need to use a torrent client such as uTorrent or BitTorrent to download the files.
-
How to Install Cat Et 2009c Keygen
-
Once you have downloaded Cat Et 2009c Keygen and software, you need to install them on your computer or device. Here are the steps to install Cat Et 2009c Keygen and software:
-
-
Extract the downloaded files using a program such as WinRAR or WinZip.
-
Open the folder that contains the extracted files.
-
Run the setup.exe file to install Cat Et 2009c software.
-
Follow the instructions on the screen to complete the installation.
-
Do not launch the Cat Et software yet.
-
Open the folder that contains Cat Et 2009c Keygen.
-
Run the keygen.exe file.
-
Select your version of Cat ET (in this case, select ET2K8C).
-
Select your level of service (in this case, select Factory).
-
Select your expiration date (in this case, select Never Expire).
-
Click on Generate License Key button.
-
Copy the generated license key.
-
Paste the license key into a text file and save it as lic.dat.
-
Copy the lic.dat file.
-
Paste the lic.dat file into the folder where you installed Cat ET (usually C:\Program Files\Caterpillar\Electronic Technician).
-
You have successfully installed Cat ET Software.
-
-
How to Use Cat ET Software
-
Now that you have installed Cat ET Software, you can start using it to communicate with your CAT equipment. Here are the steps to use Cat ET Software:
-
-
Connect your data link adapter (such as Nexiq USB Link) to your computer or device using a USB cable.
-
Connect your data link adapter to your CAT equipment using an appropriate cable (such as J1939 or J1708).
-
Turn on your CAT equipment.
-
Launch the Cat ET Software.
-
Select Utilities > Preferences > Communications from the menu bar.
-
Select your data link adapter from the drop-down list (such as Nexiq USB Link).
-
Select OK.
-
Select Connect > Connect from the menu bar or click on Connect icon on the toolbar.
-
The Cat ET Software will scan for available devices on the data link.
-
Select your desired device from the list (such as Engine ECM) and click OK.
-
The Cat ET Software will establish communication with your selected device.
-
You can now view live data, run tests, read codes, configure settings, update firmware, etc. using Cat ET Software.
-
Conclusion
-
In conclusion,Cat ET Software is a powerful diagnostic tool that can help you monitor,test,and troubleshoot your CAT equipment.Cat ET Software requires a license key to activate,but you can useCat ET Software
-
If you want to useCat ET Software,you need to downloadCat ET Software,andCat ET Software.You can find them on some online forums or websites that specialize in automotive software,such as MHH AUTO.You also need a data link adapter,such as Nexiq USB Link,to connectCat ET Software,to
0a6ba089eb
-
-
\ No newline at end of file
diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Clonebd Crack.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Clonebd Crack.md
deleted file mode 100644
index 75f46637590602387b17e66033bb274e3e3ebc3d..0000000000000000000000000000000000000000
--- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Clonebd Crack.md
+++ /dev/null
@@ -1,33 +0,0 @@
-
-
CloneBD: A Complete Multimedia Solution for Blu-ray and DVD Movies
-
If you are looking for a software that can copy, rip, backup, burn, convert, and download Blu-ray and DVD movies, you should check out CloneBD. CloneBD is a comprehensive and versatile tool that can handle all your Blu-ray and DVD needs with ease and efficiency.
-
CloneBD is a product of Elaborate Bytes, a company that has been developing high-quality software for optical media since 1998. CloneBD is one of their flagship products, along with CloneDVD and Virtual CloneDrive. CloneBD offers eight powerful and useful multimedia software in one pack:
Blu-ray Copy: This software lets you copy any unprotected Blu-ray to your hard drive or any blank Blu-ray disc. You can choose to make a partial or complete copy of selected titles, audio languages, and subtitle languages. You can also compress BD-50 to a single BD-25, BD-9 or BD-5.
-
Blu-ray Ripper: This software lets you rip and convert Blu-ray movies to popular video formats, such as MP4, MKV, AVI, etc. You can also convert them to devices like Android, iPhone/iPad, Smart TV, etc. You can also extract audio from Blu-ray movies and save them as MP3, WAV, AAC, etc.
-
Blu-ray Creator: This software lets you convert and burn all popular videos to Blu-ray disc. You can also create Blu-ray menus and customize them with your own style.
-
DVD Copy: This software lets you copy any DVD movies to your computer or backup DVD to blank DVD disc. You can also make movie-only copies without trailers, bonuses, etc.
-
DVD Ripper: This software lets you rip and convert DVD movies to popular video formats, such as MP4, MKV, AVI, etc. You can also convert them to devices like Android, iPhone/iPad, Smart TV, etc. You can also extract audio from DVD movies and save them as MP3, WAV, AAC, etc.
-
DVD Creator: This software lets you convert and burn all popular videos to DVD disc. You can also create DVD menus and customize them with your own style.
-
Video Converter: This software lets you convert all popular common and HD video/audio files for play on mobile devices. You can also edit videos with features like crop, trim, merge, rotate, add watermark, subtitle, etc.
-
YouTube Downloader: This software lets you download YouTube videos and other online videos from Facebook, etc. You can also convert downloaded videos to 180+ formats.
-
-
With CloneBD, you can enjoy your Blu-ray and DVD movies anytime and anywhere. You can also share them with your friends and family via email or social media. It's a must-have software for Blu-ray and DVD lovers.
-
How to Use CloneBD
-
Using CloneBD is very simple and intuitive. Here are the steps to follow:
-
-
Download and install CloneBD on your computer. You can get it from the official website or click the button below.
-
Launch the software and choose the function you want to use from the main interface.
-
Follow the instructions on the screen to complete the task.
-
-
That's it! You have successfully used CloneBD to handle your Blu-ray and DVD movies. You can repeat the same steps for other functions you want to use.
-
Why Choose CloneBD
-
CloneBD is not just another Blu-ray and DVD software. It has many advantages that make it stand out from the crowd. Here are some of them:
-
-
It supports all regions (A,B,C) of Blu-ray and DVD discs.
-
It supports copying/ripping/burning/converting HD and 4K videos with high quality and fast speed.
-
It supports 3D Blu-ray movies (currently MKV output only).
-
It supports UHD HEVC 10 bit HDR input and output ddb901b051
-
-
\ No newline at end of file
diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download phn mm dit virus kaspersky full crack from a Trusted Website.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download phn mm dit virus kaspersky full crack from a Trusted Website.md
deleted file mode 100644
index 73af49cba4a4d47309d2823fa97e1c22529e4998..0000000000000000000000000000000000000000
--- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Download phn mm dit virus kaspersky full crack from a Trusted Website.md
+++ /dev/null
@@ -1,20 +0,0 @@
-
-
How to download and install phần má»m diá»t virus kaspersky full crack for free
-
If you are looking for a reliable and powerful antivirus software for your PC, you might want to try phần má»m diá»t virus kaspersky full crack. This is a cracked version of the popular Kaspersky antivirus software that can protect your computer from various threats such as viruses, malware, ransomware, spyware, and more.
-
However, downloading and installing phần má»m diá»t virus kaspersky full crack is not as easy as it sounds. You need to be careful about the source of the file, the compatibility of your system, and the activation process. In this article, we will show you how to download and install phần má»m diá»t virus kaspersky full crack for free in a few simple steps.
Step 1: Download phần má»m diá»t virus kaspersky full crack from a trusted website
-
The first thing you need to do is to find a website that offers phần má»m diá»t virus kaspersky full crack for free. There are many websites that claim to provide this software, but some of them may contain viruses or malware that can harm your PC. Therefore, you should only download phần má»m diá»t virus kaspersky full crack from a trusted website that has positive reviews and feedback from other users.
-
One of the websites that we recommend is phanmemdietvirus.com. This website has been providing phần má»m diá»t virus kaspersky full crack for a long time and has a good reputation among users. You can download phần má»m diá»t virus kaspersky full crack from this website by clicking on the link below:
Step 2: Extract the downloaded file and run the setup file
-
After you have downloaded phần má»m diá»t virus kaspersky full crack from the website, you need to extract the file using a software such as WinRAR or 7-Zip. You will get a folder containing several files, including the setup file for phần má»m diá»t virus kaspersky full crack.
-
You need to run the setup file as an administrator by right-clicking on it and choosing "Run as administrator". This will start the installation process of phần má»m diá»t virus kaspersky full crack on your PC. You need to follow the instructions on the screen and choose the options that suit your preferences.
-
Step 3: Activate phần má»m diá»t virus kaspersky full crack using the license key
-
The final step is to activate phần má»m diá»t virus kaspersky full crack using the license key that is provided in the folder. You need to open phần má»m diá»t virus kaspersky full crack after installing it and go to the "Settings" section. There, you need to click on the "License" option and enter the license key that is given in the folder.
-
The license key will activate phần má»m diá»t virus kaspersky full crack for a period of one year. You can enjoy all the features and benefits of phần má»m diá»t virus kaspersky full crack without any limitations or restrictions.
-
Conclusion
-
Phần má»m diá»t virus kaspersky full crack is a great antivirus software that can protect your PC from various threats and enhance its performance. However, you need to be careful when downloading and installing it, as some websites may offer fake or infected files. You should only download phần má»m diá»t virus kaspersky full crack from a trusted website such as phanmemdietvirus.com and follow the steps above to install and activate it successfully.
- ddb901b051
-
-
\ No newline at end of file
diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/FBX 2019 Free Download With Crack The Best Way to Convert and Export Your 3D Models.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/FBX 2019 Free Download With Crack The Best Way to Convert and Export Your 3D Models.md
deleted file mode 100644
index ebb34a381f7e5136b061a8cd1d872afc403084ca..0000000000000000000000000000000000000000
--- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/FBX 2019 Free Download With Crack The Best Way to Convert and Export Your 3D Models.md
+++ /dev/null
@@ -1,165 +0,0 @@
-
-
FBX 2019 Free Download With Crack: What You Need to Know
-
If you are a 3D artist or a game developer, you probably have heard of FBX, the most widely used file format for 3D content. But do you know what FBX is, why you need it, and how to get it for free with crack? In this article, we will answer these questions and more. We will also show you how to use FBX 2019 for your 3D projects and how to avoid the risks and issues of using cracked software.
-
What is FBX?
-
FBX stands for Filmbox, a proprietary file format developed by Kaydara and later acquired by Autodesk. It is a platform-independent format that allows you to transfer 3D data between different software applications, such as Maya, 3ds Max, Blender, Cinema 4D, Unity, Unreal Engine, and more.
FBX files can store various types of 3D data, such as meshes, materials, textures, animations, cameras, lights, custom properties, and more. They can also support N-gons (polygons with more than four vertices), multiple material sets, multiple UV sets, multiple vertex color sets, meshes attached to bones, mesh instances, dummy nodes, shape key animation, non-linear animation, and more.
-
FBX files are compatible with all versions of FBX, from ASCII to binary, from FBX 5.3 to FBX 2020. They can also be compressed or encrypted to reduce file size or protect intellectual property.
-
FBX SDK and its benefits
-
The Autodesk® FBX® SDK is a free, easy-to-use, C++ software development platform and API toolkit that allows application and content vendors to transfer existing content into the FBX format with minimal effort. It also enables developers to create custom tools and plugins for importing and exporting FBX files in their own applications.
-
The benefits of using the FBX SDK include:
-
How to get FBX 2019 full version for free
-FBX 2019 cracked software download link
-FBX 2019 license key generator online
-FBX 2019 patch file download and installation guide
-FBX 2019 activation code free no survey
-FBX 2019 serial number crack working 100%
-FBX 2019 torrent download with crack included
-FBX 2019 direct download from official website
-FBX 2019 latest update download with crack
-FBX 2019 offline installer download with crack
-FBX 2019 portable version download with crack
-FBX 2019 crack only download no virus
-FBX 2019 keygen download and how to use it
-FBX 2019 registration code free and easy
-FBX 2019 product key crack valid for lifetime
-FBX 2019 best alternative software free download
-FBX 2019 review and features comparison
-FBX 2019 system requirements and compatibility
-FBX 2019 tips and tricks to optimize performance
-FBX 2019 tutorial and user manual pdf download
-FBX 2019 support and customer service contact
-FBX 2019 refund policy and guarantee
-FBX 2019 discount code and coupon code
-FBX 2019 free trial download and how to extend it
-FBX 2019 pros and cons and honest feedback
-FBX 2019 testimonials and user reviews
-FBX 2019 awards and recognition
-FBX 2019 FAQs and common issues
-FBX 2019 forum and community discussion
-FBX 2019 blog and news updates
-FBX 2019 video tutorial and demo download
-FBX 2019 webinar and live training session
-FBX 2019 case study and success story
-FBX 2019 affiliate program and how to join it
-FBX 2019 bonus and free gift offer
-FBX 2019 giveaway and sweepstakes entry
-FBX 2019 cheat sheet and quick reference guide
-FBX 2019 checklist and best practices
-FBX 2019 infographic and visual summary
-FBX 2019 comparison chart and matrix
-FBX 2019 mind map and brainstorming tool
-FBX 2019 template and sample download
-FBX 2019 plugin and add-on download
-FBX 2019 extension and integration download
-FBX 2019 API and SDK download
-FBX 2019 source code and script download
-FBX 2019 mod and hack download
-FBX 2019 premium account and membership access
-FBX 2019 resell rights and master resell rights license
-
-
Accessing the latest features and improvements of the FBX format
-
Ensuring compatibility and interoperability with other software applications
-
Reducing development time and cost
-
Increasing performance and stability
-
Supporting multiple platforms (Windows, Mac OS X, Linux)
-
-
Why do you need FBX 2019?
-
If you are working with 3D content, you may need to use the latest version of FBX for several reasons:
-
New features and improvements in FBX 2019
-
FBX 2019 introduces some new features and improvements that enhance the functionality and usability of the file format. Some of these include:
-
-
Support for vertex animation of Maya format (.mc/.mcx) and 3ds Max format (.pc2)
-
Support for exporting smoothing groups
-
Support for automatic bone orientation
-
New Clean Up Scene tool that reduces the size of archived files
-
New Camera Switcher feature that compiles takes from multiple camera views
-
New ripple editing option that syncs the lengths of shots and clips
-
New look for character controls
-
Bug fixes and performance enhancements
-
-
Compatibility and support for various 3D software and game engines
-
FBX 2019 is compatible with most popular 3D software applications and game engines that support the FBX file format. These include:
-
-
Autodesk Maya
-
Autodesk 3ds Max
-
Autodesk MotionBuilder
-
Autodesk Mudbox
-
Cinema 4D
-
Blender
-
ZBrush
-
Houdini
-
Mixamo
-
Daz Studio
-
Marmoset Toolbag
-
Substance Painter/Designer
-
Mari
-
Unity Engine
-
Unreal Engine
-
CryEngine
-
Lumberyard Engine
-
Godot Engine
-
Gamemaker Studio
-
RPG Maker MV/MZ
-
and more...
-
-
How to download FBX 2019 for free with crack?
-
You may be tempted to download FBX 2019 for free with crack from some websites that offer pirated software. However, this is not a good idea for several reasons:
-
The risks and drawbacks of using cracked software
-
Using cracked software can expose you to various risks and drawbacks that can compromise your work quality, security, privacy, reputation, and legal status. Some of these are:
-
-
Viruses, malware, spyware, ransomware, trojans, worms, etc. that can infect your computer system or network.
-
Data loss or corruption due to faulty or malicious code.
-
Lack of updates or technical support from the official vendor.
-
Incompatibility or instability issues with other software applications or hardware devices.
-
Poor performance or quality due to missing features or bugs.
-
Limited functionality or access due to activation or validation errors.
-
Lack of documentation or tutorials on how to use the software properly.
-
The legal and ethical issues of pirating software
-
Pirating software is not only risky but also illegal and unethical. It violates the intellectual property rights of the software developers who invested time, money, effort, and creativity into creating their products. It also deprives them of their rightful income that they deserve for their work. Furthermore, it harms the entire software industry by reducing innovation, competition, quality standards, customer satisfaction, and trust.
-
Pirating software can result in serious legal consequences such as fines, lawsuits, criminal charges, or imprisonment. It can also damage your reputation or credibility as a professional or a student in the field of 3D art or game development.
-
The best and safest way to get FBX 2019 for free <\h4>
-
The best and safest way to get FBX 2019 for free is to download it from the official website of Autodesk. You can get a free trial version that lasts for 30 days, or a free educational version that lasts for three years if you are a student, teacher, or academic institution. You can also get a free personal learning edition that has no time limit, but has some limitations on functionality and usage.
-
To download FBX 2019 for free from Autodesk, you need to create an account, sign in, and follow the instructions on the website. You will need to provide some information about yourself, your purpose, and your system requirements. You will also need to agree to the terms and conditions of use.
-
How to use FBX 2019 for your
How to use FBX 2019 for your 3D projects?
-
Once you have downloaded and installed FBX 2019, you can use it for your 3D projects in various ways:
-
How to import and export FBX files in different 3D software
-
Most 3D software applications have built-in support for importing and exporting FBX files. You can usually find these options in the File menu or the Import/Export menu. You may need to adjust some settings or preferences to ensure the best results. For example, you may need to specify the units, scale, axis, coordinate system, animation range, etc.
-
Some 3D software applications also have plugins or add-ons that enhance the functionality or compatibility of FBX files. For example, Blender has a Better FBX Importer & Exporter add-on that supports more features and versions of FBX files. You can download and install these plugins or add-ons from their respective websites or sources.
-
How to edit and animate FBX files with MotionBuilder 2019
-
MotionBuilder 2019 is a powerful motion capture playback and editing application that supports FBX files. It has a new Clean Up Scene tool that reduces the size of archived files, a new Camera Switcher feature that compiles takes from multiple camera views, and a new look for character controls. You can use MotionBuilder 2019 to edit and animate FBX files in various ways:
-
-
You can import FBX files from different sources, such as cameras, devices, software applications, etc.
-
You can edit the properties, attributes, and settings of the FBX files, such as meshes, materials, textures, animations, cameras, lights, etc.
-
You can apply various tools and effects to the FBX files, such as filters, constraints, solvers, retargeting, blending, layering, etc.
-
You can create and modify animations for the FBX files using keyframes, curves, motion capture data, story clips, etc.
-
You can export the edited and animated FBX files to different destinations, such as software applications, game engines, renderers, etc.
-
-
How to optimize and convert FBX files for game engines
-
If you want to use your FBX files for game development, you may need to optimize and convert them for different game engines. This can improve the performance and quality of your games. Some of the ways to optimize and convert FBX files for game engines are:
-
-
You can reduce the polygon count of your meshes by using decimation or simplification tools.
-
You can reduce the file size of your textures by using compression or optimization tools.
-
You can reduce the number of materials and textures by using atlasing or baking tools.
-
You can reduce the number of animations by using trimming or merging tools.
-
You can convert your FBX files to other file formats that are supported by your game engine by using conversion or export tools.
-
-
Conclusion
-
In conclusion, FBX 2019 is a versatile and powerful file format for 3D content that allows you to transfer and share your 3D data between different software applications and game engines. It also offers new features and improvements that enhance the functionality and usability of the file format. However, you should avoid downloading FBX 2019 for free with crack, as it can expose you to various risks and issues that can compromise your work quality, security, privacy, reputation, and legal status. The best and safest way to get FBX 2019 for free is to download it from the official website of Autodesk, where you can get a free trial version, a free educational version, or a free personal learning edition. You can also use FBX 2019 for your 3D projects by importing and exporting FBX files in different 3D software, editing and animating FBX files with MotionBuilder 2019, and optimizing and converting FBX files for game engines.
-
FAQs
-
Here are some frequently asked questions about FBX 2019:
-
Q: What is the difference between FBX Binary and FBX ASCII?
-
A: FBX Binary is a binary file format that is more compact and faster to read and write than FBX ASCII. However, it is less human-readable and editable than FBX ASCII. FBX ASCII is a text file format that is more human-readable and editable than FBX Binary. However, it is less compact and slower to read and write than FBX Binary.
-
Q: How can I view or edit FBX files without installing any software?
-
A: You can use online tools or websites that allow you to view or edit FBX files without installing any software. For example, you can use Autodesk Viewer (https://viewer.autodesk.com/) to view FBX files online. You can also use Claro (https://www.clar.io/) to edit FBX files online.
-
Q: How can I convert FBX files to other file formats?
-
A: You can use various software applications or online tools that allow you to convert FBX files to other file formats. For example, you can use Autodesk Converter (https://www.autodesk.com/products/fbx/fbx-converter-archive) to convert FBX files to OBJ or DAE files. You can also use Online Convert (https://www.online-convert.com/) to convert FBX files to various file formats online.
-
Q: How can I optimize my FBX files for game engines?
-
A: You can use various software applications or online tools that allow you to optimize your FBX files for game engines. For example, you can use Simplygon (https://www.simplygon.com/) to reduce the polygon count of your meshes. You can also use Texture Packer (https://www.codeandweb.com/texturepacker) to reduce the number of textures by creating texture atlases.
-
Q: How can I learn more about FBX 2019?
-
A: You can learn more about FBX 2019 by visiting the official website of Autodesk (https://www.autodesk.com/products/fbx/overview). You can also read the documentation (https://help.autodesk.com/view/FBX/2020/ENU/) or watch the tutorials (https://area.autodesk.com/tutorials/fbx/) on how to use FBX 2019.
- 0a6ba089eb
-
-
\ No newline at end of file
diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/Dartfish Team Pro 5 5 Full Crack.md b/spaces/1gistliPinn/ChatGPT4/Examples/Dartfish Team Pro 5 5 Full Crack.md
deleted file mode 100644
index 4970274dec84eb01c518b13b37a665214929b0bd..0000000000000000000000000000000000000000
--- a/spaces/1gistliPinn/ChatGPT4/Examples/Dartfish Team Pro 5 5 Full Crack.md
+++ /dev/null
@@ -1,31 +0,0 @@
-
-
How to Download and Install Dartfish Team Pro 5.5 Full Crack
-
Dartfish Team Pro 5.5 is a powerful video analysis software that helps coaches, athletes, and teachers improve their performance and skills. With Dartfish Team Pro 5.5, you can capture, edit, annotate, and share video clips of your training sessions, games, or lessons. You can also use Dartfish Team Pro 5.5 to create interactive presentations, reports, and feedback tools.
However, Dartfish Team Pro 5.5 is not a free software. You need to purchase a license to use it legally and access all its features. If you are looking for a way to download and install Dartfish Team Pro 5.5 full crack for free, you may be tempted by some websites that claim to offer it. But be careful: these websites may contain viruses, malware, or spyware that can harm your computer or steal your personal information.
-
In this article, we will show you how to download and install Dartfish Team Pro 5.5 full crack safely and easily. Follow these steps:
-
-
Go to https://www.dartfish.com/services/download.aspx and download the demo version of Dartfish Team Pro 5.5. This is the official website of Dartfish, so you can trust that the file is clean and secure.
-
Install the demo version of Dartfish Team Pro 5.5 on your computer by following the instructions on the screen.
Extract the crack file using a program like WinRAR or 7-Zip.
-
Copy the crack file and paste it into the folder where you installed Dartfish Team Pro 5.5. Usually, this folder is located at C:\Program Files\Dartfish\Dartfish Software\Dartfish TeamPro 5.5.
-
Run the crack file as administrator by right-clicking on it and selecting "Run as administrator".
-
Wait for the crack to finish its process. You should see a message saying "Crack successful".
-
Launch Dartfish Team Pro 5.5 from your desktop or start menu. You should now have access to the full version of Dartfish Team Pro 5.5 without any limitations or restrictions.
-
-
Congratulations! You have successfully downloaded and installed Dartfish Team Pro 5.5 full crack on your computer. Now you can enjoy using this amazing video analysis software for free.
-
-
Note: This article is for educational purposes only. We do not condone or encourage piracy or illegal use of software. If you like Dartfish Team Pro 5.5, please support the developers by buying a license from their official website.
-
-
Dartfish Team Pro 5.5 is a versatile and user-friendly software that can help you with various aspects of video analysis. Here are some of the features and benefits of Dartfish Team Pro 5.5:
-
-
You can capture video from multiple sources, such as cameras, webcams, smartphones, tablets, or online platforms. You can also import video files from your computer or external devices.
-
You can edit video clips using tools like trimming, splitting, merging, cropping, rotating, zooming, or changing the speed. You can also apply filters, effects, transitions, or audio enhancements to your video clips.
-
You can annotate video clips using tools like drawing, text, shapes, symbols, or measurements. You can also use Dartfish's patented stromotion and simulcam features to highlight movement patterns or compare different performances.
-
You can share video clips with your team members, clients, or students using Dartfish's online platform or mobile app. You can also export video clips to various formats or upload them to social media or cloud services.
-
You can create interactive presentations, reports, or feedback tools using Dartfish's templates or customizing your own. You can also use Dartfish's live tagging feature to capture and analyze data in real time.
-
-
With Dartfish Team Pro 5.5, you can take your video analysis to the next level and achieve your goals faster and easier. Whether you are a coach, an athlete, a teacher, a student, or a professional, Dartfish Team Pro 5.5 can help you improve your performance and skills.
d5da3c52bf
-
-
\ No newline at end of file
diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/Decent Icons Download Windows 7 Ultimate [BETTER].md b/spaces/1gistliPinn/ChatGPT4/Examples/Decent Icons Download Windows 7 Ultimate [BETTER].md
deleted file mode 100644
index 447ee1a614cab9c9437f08c5f889908ecfbbf789..0000000000000000000000000000000000000000
--- a/spaces/1gistliPinn/ChatGPT4/Examples/Decent Icons Download Windows 7 Ultimate [BETTER].md
+++ /dev/null
@@ -1,6 +0,0 @@
-
-
-Decent Icons is a Game Launcher for Windows that gives you complete creative freedom. ... A: Windows only, tested on 7, 8.1, and 10. ... Downloading and Using Icon Packs To download and use icon packs with Steam Workshop, subscribe to ... 4d29de3e1b
-
-
-
diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/Edius 6 Full Indir Gezginler.md b/spaces/1gistliPinn/ChatGPT4/Examples/Edius 6 Full Indir Gezginler.md
deleted file mode 100644
index 0ea06bf65f8758ee7cfb09f99fb87f9965cfe99a..0000000000000000000000000000000000000000
--- a/spaces/1gistliPinn/ChatGPT4/Examples/Edius 6 Full Indir Gezginler.md
+++ /dev/null
@@ -1,6 +0,0 @@
-
-
- d5da3c52bf
-
-
-
diff --git a/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Dolphin Emulator Gold APK The Best Way to Enjoy GameCube Classics on Your Phone.md b/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Dolphin Emulator Gold APK The Best Way to Enjoy GameCube Classics on Your Phone.md
deleted file mode 100644
index 48649d18b5a7472a8a57fe74a6d77f07eb8c45a4..0000000000000000000000000000000000000000
--- a/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Dolphin Emulator Gold APK The Best Way to Enjoy GameCube Classics on Your Phone.md
+++ /dev/null
@@ -1,136 +0,0 @@
-
-
Introduction
-
Dolphin emulator apk gold is a modified version of the Dolphin emulator, a free and open-source program that allows you to play Nintendo GameCube and Wii games on your computer or mobile device. Dolphin emulator apk gold claims to be the fastest GameCube emulator in the world, and it offers several enhancements over the original Dolphin emulator, such as:
If you are a fan of GameCube and Wii games and want to enjoy them on your Android device with improved graphics and performance, then dolphin emulator apk gold might be a good option for you. However, before you download and install it, you should be aware of its features, pros and cons, installation, compatibility, and alternatives.
-
Features
-
Dolphin emulator apk gold has many features that make it stand out from other GameCube emulators for Android devices. Some of these features are:
-
-
High-definition graphics: Dolphin emulator apk gold allows you to play GameCube games in 1080p full HD mode, which is much better than the original resolution of 480p. You can also enable anti-aliasing, anisotropic filtering, texture scaling, and other graphical enhancements to make the games look even more stunning.
-
Customizable controls: Dolphin emulator apk gold supports all Android HID gamepad, which means you can use any controller that is compatible with your device. You can also customize the button layout, sensitivity, vibration, and motion controls to suit your preferences.
-
Turbo speed: Dolphin emulator apk gold has a turbo speed feature that lets you increase or decrease the emulation speed with a simple button press. This can be useful for skipping cutscenes, fast-forwarding boring parts, or slowing down difficult sections.
-
Networked multiplayer: Dolphin emulator apk gold supports networked multiplayer, which means you can play online with other players who are using the same emulator. You can also use Netplay to play local multiplayer games over the internet.
-
Cheat codes: Dolphin emulator apk gold supports cheat codes for GameCube games, which can be enabled or disabled from the settings menu. You can use cheat codes to unlock hidden features, modify game parameters, or just have fun.
-
-
Pros and Cons
-
Dolphin emulator apk gold has many advantages over other GameCube emulators for Android devices, but it also has some drawbacks that you should consider before using it. Here are some of the pros and cons of dolphin emulator apk gold:
-
-
Pros
Cons
-
- It is free and open-source
- It may not work on some devices or Android versions
-
- It has high compatibility with GameCube games
- It may have some bugs or glitches
-
- It has many features and enhancements
- It may require a powerful device to run smoothly
-
- It supports networked multiplayer
- It may have compatibility issues with some controllers or games
-
- It supports cheat codes
- It may not be updated frequently
-
-
Installation
-
To download and install dolphin emulator apk gold on your Android device, you need to follow these simple steps:
-
-
Search for dolphin emulator apk gold on APKPure.com or APKCombo.com, or use the links provided below .
-
Tap the Download APK button to begin downloading it to your device.
-
Once the download is completed, begin installing the app. You may need to enable unknown sources in your device settings to allow the installation of third-party apps.
-
Once the installation is finished, launch dolphin emulator apk gold and start playing!
-
-
Note: dolphin emulator apk gold is not available on Google Play Store, so you need to download it from other sources. Be careful when downloading apps from unknown sources, as they may contain malware or viruses. Always scan the downloaded files with a reliable antivirus program before installing them.
-
Compatibility
-
Dolphin emulator apk gold has high compatibility with GameCube games, but it may not work on some devices or Android versions. The following are the system requirements for dolphin emulator apk gold:
-
-
Android 5.0 or higher
-
A 64-bit processor (AArch64/ARMv8 or x86_64)
-
A version of Android that supports 64-bit applications
-
A graphics processor that supports OpenGL ES 3.0 or higher
-
-
If your device meets these requirements, you should be able to run dolphin emulator apk gold without any major issues. However, some games may still have bugs or glitches, or may not run at full speed. You can check the compatibility list of dolphin emulator apk gold to see how well each game works on the emulator. You can also adjust the settings of dolphin emulator apk gold to optimize the performance and graphics of each game.
-
Alternatives
-
Dolphin emulator apk gold is one of the best GameCube emulators for Android devices, but it is not the only one. There are some other emulators that can run GameCube and Wii games on Android devices, such as:
-
-
Cemu: Cemu is a free and open-source Wii U emulator that can also run some GameCube and Wii games. It has high compatibility and performance, and supports many features and enhancements. However, it is only available for Windows and Linux platforms, and requires a powerful device to run smoothly.
-
OpenEmu: OpenEmu is a free and open-source multi-system emulator that can run games from various consoles, including GameCube and Wii. It has a simple and elegant user interface, and supports many features and enhancements. However, it is only available for Mac OS X platforms, and requires a powerful device to run smoothly.
-
PrimeHack: PrimeHack is a fork of Dolphin emulator that focuses on improving the experience of playing Metroid Prime Trilogy on PC. It has many features and enhancements, such as mouse and keyboard support, custom FOV, HUD scaling, and more. However, it is only compatible with Metroid Prime Trilogy, and requires a powerful device to run smoothly.
-
WhineCube: WhineCube is a free and open-source GameCube emulator that can run some commercial and homebrew games. It has a simple and easy-to-use user interface, and supports some features and enhancements. However, it has low compatibility and performance, and does not support networked multiplayer or cheat codes.
-
Touchmote: Touchmote is a free program that allows you to use your Windows 8 or Windows 10 touch device as a wireless controller for Dolphin emulator. It supports up to four touch devices at once, and can emulate various controller types, such as Wii Remote, Nunchuk, Classic Controller, GameCube Controller, and more. However, it does not support motion controls or networked multiplayer.
-
-
Conclusion
-
Dolphin emulator apk gold is a modified version of Dolphin emulator that offers several enhancements over the original version. It allows you to play Nintendo GameCube and Wii games on your Android device with improved graphics and performance. It also supports networked multiplayer, cheat codes, customizable controls, turbo speed, and more. However, it may not work on some devices or Android versions, and it may have some bugs or glitches. You should also be careful when downloading it from unknown sources, as it may contain malware or viruses.
If you are looking for a way to enjoy your favorite GameCube and Wii games on your Android device with enhanced features and performance, then dolphin emulator apk gold might be a good option for you. However, you should also consider the alternatives that are available for other platforms or devices, such as Cemu, OpenEmu, PrimeHack, WhineCube, or Touchmote. These emulators may have different features, compatibility, and performance than dolphin emulator apk gold, and may suit your needs better. I hope this article has given you some useful information about dolphin emulator apk gold, its features, pros and cons, installation, compatibility, and alternatives. If you have any questions or feedback, please feel free to leave a comment below. Thank you for reading!
FAQs
-
Here are some frequently asked questions about dolphin emulator apk gold:
-
-
Is dolphin emulator apk gold legal?
-
Dolphin emulator apk gold is legal as long as you own the original GameCube or Wii games that you want to play on it. You can dump your own games using a Wii and a SD card, or download them from legitimate sources. However, downloading games that you do not own is illegal and may result in legal consequences.
-
Is dolphin emulator apk gold safe?
-
Dolphin emulator apk gold is safe as long as you download it from trusted sources, such as APKPure.com or APKCombo.com. You should also scan the downloaded files with a reliable antivirus program before installing them. However, dolphin emulator apk gold is not endorsed by the official Dolphin team, so use it at your own risk.
-
How to update dolphin emulator apk gold?
-
Dolphin emulator apk gold does not have an automatic update feature, so you need to manually check for updates on the websites where you downloaded it from. You can also follow the developer's social media accounts or blogs to get the latest news and updates about dolphin emulator apk gold.
-
How to fix dolphin emulator apk gold crashing or freezing?
-
Dolphin emulator apk gold may crash or freeze due to various reasons, such as low device specifications, incompatible games, corrupted files, or incorrect settings. To fix these issues, you can try the following solutions:
-
-
Restart your device and clear the cache of dolphin emulator apk gold
-
Update your device software and drivers
-
Check the compatibility list of dolphin emulator apk gold and avoid playing games that are not supported
-
Reinstall dolphin emulator apk gold or download a different version
-
Adjust the settings of dolphin emulator apk gold to optimize the performance and graphics of each game
-
-
How to contact the developer of dolphin emulator apk gold?
-
The developer of dolphin emulator apk gold is not affiliated with the official Dolphin team, so you cannot contact them through the official Dolphin website or forums. However, you can try to contact them through their social media accounts or blogs, such as:
-
- : https://apkpure.com/dolphin-emulator-gold-gamecube-emulator-emulator/com.dolphin.emulator.gold : https://apkcombo.com/dolphin-emulator-gold-gamecube-emulator-emulator/com.dolphin.emulator.gold/ : https://dolphin-emu.org/docs/faq/#what-are-the-system-requirements : https://wiki.dolphin-emu.org/index.php?title=GameCube : https://cemu.info/ : https://openemu.org/ : https://github.com/shiiion/dolphin : http://www.whinecube.com/ 197e85843d
-
-
\ No newline at end of file
diff --git a/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Download Feel Good by Cleyton M - The Hottest Kuduro Song of 2023.md b/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Download Feel Good by Cleyton M - The Hottest Kuduro Song of 2023.md
deleted file mode 100644
index 540d9d46bd1b373f7e8200a664c0632193d904d1..0000000000000000000000000000000000000000
--- a/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Download Feel Good by Cleyton M - The Hottest Kuduro Song of 2023.md
+++ /dev/null
@@ -1,138 +0,0 @@
-
-
Download Feel Good Cleyton M: How to Enjoy the New African Superstar's Music
-
If you are looking for some fresh and upbeat music to brighten up your day, you might want to check out Feel Good by Cleyton M, a rising star from Angola who is making waves in the African music scene. In this article, we will tell you who Cleyton M is, what Feel Good is about, how to download Feel Good Cleyton M, and how to enjoy his music in different ways.
Cleyton M is a singer and songwriter from Angola who specializes in kuduro, a genre of dance music that originated in his country. He started his musical career in 2019 with his debut single Girl Friend, which was followed by several other hits such as Bring It, Slow Motion, and Classic Duro. He is also known for his collaborations with other artists such as The Twins, Bicho e o Bruxo, and 3 Finer.
-
Cleyton M has a distinctive style that combines catchy melodies, energetic beats, and positive lyrics. He aims to inspire his listeners with his message of happiness, love, and empowerment. He is also passionate about promoting Angolan culture and showcasing its diversity and richness through his music.
-
What is Feel Good?
-
Feel Good is the latest song by Cleyton M, released in 2022. It is a kuduro track that features a lively rhythm, a catchy chorus, and a fun vibe. The song is about feeling good about yourself and enjoying life to the fullest. It has been praised by critics and fans alike for its uplifting mood and catchy tune.
-
download feel good cleyton m mp3
-download feel good cleyton m kuduro
-download feel good cleyton m jox musik
-download feel good cleyton m shazam
-download feel good cleyton m soundcloud
-download feel good cleyton m single
-download feel good cleyton m 2022
-download feel good cleyton m 224 kbps
-download feel good cleyton m 6.9 mb
-download feel good cleyton m lyrics
-download feel good cleyton m music video
-download feel good cleyton m apple music
-download feel good cleyton m spotify
-download feel good cleyton m youtube
-download feel good cleyton m free
-download feel good cleyton m online
-download feel good cleyton m fast
-download feel good cleyton m new scientist
-download feel good cleyton m the sun
-download feel good cleyton m yahoo news
-download feel good cleyton m the twins
-download feel good cleyton m nino flow
-download feel good cleyton m slow motion
-download feel good cleyton m girl friend
-download feel good cleyton m moon walk
-download feel good cleyton m jakylsa
-download feel good cleyton m arrasta esse pé
-download feel good cleyton m bicho e o bruxo
-download feel good cleyton m bring it
-download feel good cleyton m ja esta
-download feel good cleyton m dj vado poster
-download feel good cleyton m emagrece
-download feel good cleyton m kuya kuya
-download feel good cleyton m to bem limpo
-download feel good cleyton m toque nice
-download feel good cleyton m malunne
-download feel good cleyton m ruth piluka
-download feel good cleyton m xé moça
-download feel good cleyton m gattuso
-download feel good cleyton m dança milionaria
-download feel good cleyton m scro que cuia
-download feel good cleyton m angola musicas
-download feel good cleyton m afro house
-download feel good cleyton m afro beat
-download feel good cleyton m afro pop
-download feel good cleyton m afro naija
-download feel good cleyton m rap
-download feel good cleyton m r&b
-
Feel Good has also become a viral sensation on social media platforms such as YouTube, TikTok, and Instagram. The song has over 490K views on YouTube, where it also has a dance challenge that encourages people to show off their moves. The song is also popular on Spotify, where it has over 8K streams.
-
How to download Feel Good Cleyton M?
-
If you want to download Feel Good Cleyton M and add it to your music library, you have several options depending on your device and preference. You can either buy the song from an online store or download it for free from a third-party website. Here are some of the ways you can do so:
-
Buying music on desktop
-
Using iTunes to purchase and download the song
-
If you are using a Windows or Mac computer, you can use iTunes to buy and download Feel Good Cleyton M. iTunes is a popular software that allows you to manage your music collection and access millions of songs from various artists. To use iTunes, you will need an Apple ID account and a payment method such as a credit card or PayPal. To buy and download Feel Good Cleyton M using iTunes, follow these steps:
Click on the Buy button and confirm your purchase.
-
The song will be downloaded to your iTunes library and you can play it anytime you want.
-
-
Buying music on mobile
-
Using iTunes Store on iPhone or Play Music on Android to buy and download the song
-
If you are using a smartphone, you can also buy and download Feel Good Cleyton M from the iTunes Store on iPhone or Play Music on Android. These are apps that let you browse, buy, and download music from various artists. To use these apps, you will need an Apple ID account for iPhone or a Google account for Android, as well as a payment method. To buy and download Feel Good Cleyton M using these apps, follow these steps:
The song will be downloaded to your app library and you can play it anytime you want.
-
-
Downloading free music from YouTube and SoundCloud
-
Using 4K YouTube to MP3 or SoundCloud Downloader to get the song for free
-
If you don't want to spend money on buying Feel Good Cleyton M, you can also download it for free from YouTube or SoundCloud. These are websites that host millions of songs and videos from various artists. However, to download music from these websites, you will need a third-party tool such as 4K YouTube to MP3 or SoundCloud Downloader. These are software that allow you to convert and download any YouTube or SoundCloud link to an MP3 file. To use these tools, you will need a computer and an internet connection. To download Feel Good Cleyton M using these tools, follow these steps:
Copy the URL of the video or audio that you want to download.
-
Paste the URL into the 4K YouTube to MP3 or SoundCloud Downloader software and click on the Download button.
-
The song will be downloaded to your computer as an MP3 file and you can play it anytime you want.
-
-
How to enjoy Feel Good Cleyton M?
-
Now that you have downloaded Feel Good C Cleyton M, you might be wondering how to enjoy his music in different ways. There are many options to choose from depending on your mood, preference, and device. Here are some of the ways you can enjoy Feel Good Cleyton M:
-
Listening to the song on various devices and platforms
-
Using headphones, speakers, or streaming services to play the song
-
One of the simplest ways to enjoy Feel Good Cleyton M is to play it on your device using headphones or speakers. You can use any device that supports MP3 files, such as your computer, smartphone, tablet, or MP3 player. You can also use a Bluetooth speaker or a wireless headphone to connect your device and play the song wirelessly.
-
Another way to enjoy Feel Good Cleyton M is to stream it online using a streaming service such as Spotify, YouTube Music, or Apple Music. These are apps that let you access millions of songs from various artists and genres. You can also create playlists, discover new music, and share your favorites with your friends. To use these apps, you will need an internet connection and a subscription plan for some of them. To stream Feel Good Cleyton M using these apps, follow these steps:
-
-
Download and install the app of your choice on your device from the app store or the website.
-
Launch the app and sign in with your account or create one if you don't have one already.
Exploring more music by Cleyton M and other African artists
-
Checking out his other songs and albums on Spotify, YouTube, or SoundCloud
-
If you like Feel Good Cleyton M, you might also want to check out his other songs and albums. He has released several singles and albums since his debut in 2019, such as Girl Friend, Bring It, Slow Motion, Classic Duro, and Kuduro Vibes. You can find his music on Spotify, YouTube, or SoundCloud, where you can also follow him and get updates on his latest releases.
-
To explore more music by Cleyton M on these platforms, follow these steps:
Browse through his songs and albums and choose the ones you want to listen to.
-
Tap on the Play button and enjoy his music.
-
-
Discovering new music from similar genres and regions on Bandcamp, DatPiff, or Free Music Archive
-
If you want to discover new music from similar genres and regions as Cleyton M, you can also use platforms such as Bandcamp, DatPiff, or Free Music Archive. These are websites that host independent music from various artists and genres. You can also download some of the music for free or support the artists by buying their music.
-
To discover new music from similar genres and regions as Cleyton M on these platforms, follow these steps:
Browse through the music and choose the ones you want to listen to or download.
-
Tap on the Play or Download button and enjoy the music.
-
-
Conclusion
-
In conclusion, Feel Good Cleyton M is a great song that you can download and enjoy in various ways. You can buy the song from an online store or download it for free from a third-party website. You can also listen to the song on different devices and platforms using headphones, speakers, or streaming services. Moreover, you can explore more music by Cleyton M and other African artists using platforms such as Spotify, YouTube, SoundCloud, Bandcamp, DatPiff, or Free Music Archive.
-
So what are you waiting for? Download Feel Good Cleyton M today and feel good about yourself and your life. You won't regret it!
-
FAQs
-
Here are some of the frequently asked questions about Feel Good Cleyton M:
-
-
Q: What is kuduro?
-
A: Kuduro is a genre of dance music that originated in Angola in the late 1980s. It is characterized by fast-paced beats, electronic sounds, and energetic vocals. It is influenced by genres such as soca, zouk, rap, and house. It is also a dance style that involves rapid and complex movements of the legs and hips.
-
Q: Who are some of the other famous kuduro artists?
-
A: Some of the other famous kuduro artists are Buraka Som Sistema, Os Lambas, Titica, Noite e Dia, and Puto Prata.
-
Q: How can I support Cleyton M and his music?
-
A: You can support Cleyton M and his music by buying his songs and albums from online stores or streaming services. You can also follow him on social media platforms such as Facebook, Instagram, Twitter, and TikTok. You can also share his music with your friends and family and join his fan club.
-
Q: Where can I find more information about Cleyton M and his music?
-
A: You can find more information about Cleyton M and his music on his official website https://www.cleytonm.com/, where you can also contact him for bookings, collaborations, or feedback.
-
Q: How can I learn how to dance kuduro?
-
A: You can learn how to dance kuduro by watching online tutorials on YouTube or other websites. You can also join a kuduro dance class or club in your area or online. You can also practice by yourself or with your friends while listening to kuduro music.
`;
- const params = new URLSearchParams({
- title: titleTxt,
- description: descriptionMd,
- });
- const paramsStr = params.toString();
- window.open(`https://huggingface.co/spaces/huggingface-projects/magic-diffusion/new?${paramsStr}`, '_blank');
- shareBtnEl.style.removeProperty('pointer-events');
- shareIconEl.style.removeProperty('display');
- loadingIconEl.style.display = 'none';
-}"""
\ No newline at end of file
diff --git a/spaces/801artistry/RVC801/infer/lib/uvr5_pack/lib_v5/nets_123821KB.py b/spaces/801artistry/RVC801/infer/lib/uvr5_pack/lib_v5/nets_123821KB.py
deleted file mode 100644
index 167d4cb2198863cf43e93440f7e63c5342fc7605..0000000000000000000000000000000000000000
--- a/spaces/801artistry/RVC801/infer/lib/uvr5_pack/lib_v5/nets_123821KB.py
+++ /dev/null
@@ -1,122 +0,0 @@
-import torch
-import torch.nn.functional as F
-from torch import nn
-
-from . import layers_123821KB as layers
-
-
-class BaseASPPNet(nn.Module):
- def __init__(self, nin, ch, dilations=(4, 8, 16)):
- super(BaseASPPNet, self).__init__()
- self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
- self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
- self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
- self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
-
- self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
-
- self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
- self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
- self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
- self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
-
- def __call__(self, x):
- h, e1 = self.enc1(x)
- h, e2 = self.enc2(h)
- h, e3 = self.enc3(h)
- h, e4 = self.enc4(h)
-
- h = self.aspp(h)
-
- h = self.dec4(h, e4)
- h = self.dec3(h, e3)
- h = self.dec2(h, e2)
- h = self.dec1(h, e1)
-
- return h
-
-
-class CascadedASPPNet(nn.Module):
- def __init__(self, n_fft):
- super(CascadedASPPNet, self).__init__()
- self.stg1_low_band_net = BaseASPPNet(2, 32)
- self.stg1_high_band_net = BaseASPPNet(2, 32)
-
- self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
- self.stg2_full_band_net = BaseASPPNet(16, 32)
-
- self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
- self.stg3_full_band_net = BaseASPPNet(32, 64)
-
- self.out = nn.Conv2d(64, 2, 1, bias=False)
- self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
- self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
-
- self.max_bin = n_fft // 2
- self.output_bin = n_fft // 2 + 1
-
- self.offset = 128
-
- def forward(self, x, aggressiveness=None):
- mix = x.detach()
- x = x.clone()
-
- x = x[:, :, : self.max_bin]
-
- bandw = x.size()[2] // 2
- aux1 = torch.cat(
- [
- self.stg1_low_band_net(x[:, :, :bandw]),
- self.stg1_high_band_net(x[:, :, bandw:]),
- ],
- dim=2,
- )
-
- h = torch.cat([x, aux1], dim=1)
- aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
-
- h = torch.cat([x, aux1, aux2], dim=1)
- h = self.stg3_full_band_net(self.stg3_bridge(h))
-
- mask = torch.sigmoid(self.out(h))
- mask = F.pad(
- input=mask,
- pad=(0, 0, 0, self.output_bin - mask.size()[2]),
- mode="replicate",
- )
-
- if self.training:
- aux1 = torch.sigmoid(self.aux1_out(aux1))
- aux1 = F.pad(
- input=aux1,
- pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
- mode="replicate",
- )
- aux2 = torch.sigmoid(self.aux2_out(aux2))
- aux2 = F.pad(
- input=aux2,
- pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
- mode="replicate",
- )
- return mask * mix, aux1 * mix, aux2 * mix
- else:
- if aggressiveness:
- mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
- mask[:, :, : aggressiveness["split_bin"]],
- 1 + aggressiveness["value"] / 3,
- )
- mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
- mask[:, :, aggressiveness["split_bin"] :],
- 1 + aggressiveness["value"],
- )
-
- return mask * mix
-
- def predict(self, x_mag, aggressiveness=None):
- h = self.forward(x_mag, aggressiveness)
-
- if self.offset > 0:
- h = h[:, :, :, self.offset : -self.offset]
- assert h.size()[3] > 0
-
- return h
diff --git a/spaces/A-Roucher/Quotes/README.md b/spaces/A-Roucher/Quotes/README.md
deleted file mode 100644
index ed3e08f64e2db210ff7ec61d3059efa9c6c811bc..0000000000000000000000000000000000000000
--- a/spaces/A-Roucher/Quotes/README.md
+++ /dev/null
@@ -1,12 +0,0 @@
----
-title: Quotes
-emoji: 🪶
-colorFrom: green
-colorTo: blue
-sdk: streamlit
-sdk_version: 1.28.1
-app_file: app.py
-pinned: false
----
-
-Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
diff --git a/spaces/AIGC-Audio/AudioGPT/NeuralSeq/README.md b/spaces/AIGC-Audio/AudioGPT/NeuralSeq/README.md
deleted file mode 100644
index ac390032c587ed007db56faa13d6100dce7b2a76..0000000000000000000000000000000000000000
--- a/spaces/AIGC-Audio/AudioGPT/NeuralSeq/README.md
+++ /dev/null
@@ -1,9 +0,0 @@
----
-title: DiffSinger🎶 Diffusion for Singing Voice Synthesis
-emoji: 🎶
-colorFrom: purple
-colorTo: blue
-sdk: gradio
-app_file: "inference/svs/gradio/infer.py"
-pinned: false
----
diff --git a/spaces/AIGC-Audio/AudioGPT/NeuralSeq/data_gen/tts/txt_processors/__init__.py b/spaces/AIGC-Audio/AudioGPT/NeuralSeq/data_gen/tts/txt_processors/__init__.py
deleted file mode 100644
index 7bff3e9af7d634363116c6605f22a52aad614dea..0000000000000000000000000000000000000000
--- a/spaces/AIGC-Audio/AudioGPT/NeuralSeq/data_gen/tts/txt_processors/__init__.py
+++ /dev/null
@@ -1 +0,0 @@
-from . import en
\ No newline at end of file
diff --git a/spaces/AIML-TUDA/does-clip-know-my-face/app.py b/spaces/AIML-TUDA/does-clip-know-my-face/app.py
deleted file mode 100644
index 18691e645dd46dc1d02aa4282f38cd5416601953..0000000000000000000000000000000000000000
--- a/spaces/AIML-TUDA/does-clip-know-my-face/app.py
+++ /dev/null
@@ -1,611 +0,0 @@
-import glob
-import tempfile
-from decimal import Decimal
-from pathlib import Path
-from typing import List, Dict, Any
-
-import gradio as gr
-from PIL import Image
-import open_clip
-import torch
-import os
-import pandas as pd
-import numpy as np
-from gradio import processing_utils, utils
-
-from download_example_images import read_actor_files, save_images_to_folder
-
-DEFAULT_INITIAL_NAME = "John Doe"
-PROMPTS = [
- '{0}',
- 'an image of {0}',
- 'a photo of {0}',
- '{0} on a photo',
- 'a photo of a person named {0}',
- 'a person named {0}',
- 'a man named {0}',
- 'a woman named {0}',
- 'the name of the person is {0}',
- 'a photo of a person with the name {0}',
- '{0} at a gala',
- 'a photo of the celebrity {0}',
- 'actor {0}',
- 'actress {0}',
- 'a colored photo of {0}',
- 'a black and white photo of {0}',
- 'a cool photo of {0}',
- 'a cropped photo of {0}',
- 'a cropped image of {0}',
- '{0} in a suit',
- '{0} in a dress'
-]
-OPEN_CLIP_LAION400M_MODEL_NAMES = ['ViT-B-32', 'ViT-B-16', 'ViT-L-14']
-OPEN_CLIP_LAION2B_MODEL_NAMES = [('ViT-B-32', 'laion2b_s34b_b79k'), ('ViT-L-14', 'laion2b_s32b_b82k')]
-OPEN_AI_MODELS = ['ViT-B-32', 'ViT-B-16', 'ViT-L-14']
-NUM_TOTAL_NAMES = 1_000
-SEED = 42
-MIN_NUM_CORRECT_PROMPT_PREDS = 1
-EDAMPLE_IMAGE_DIR = './example_images/'
-IMG_BATCHSIZE = 16
-
-DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
-
-EXAMPLE_IMAGE_URLS = read_actor_files(EDAMPLE_IMAGE_DIR)
-save_images_to_folder(os.path.join(EDAMPLE_IMAGE_DIR, 'images'), EXAMPLE_IMAGE_URLS)
-
-MODELS = {}
-for model_name in OPEN_CLIP_LAION400M_MODEL_NAMES:
- dataset = 'LAION400M'
- model, _, preprocess = open_clip.create_model_and_transforms(
- model_name,
- pretrained=f'{dataset.lower()}_e32'
- )
- model = model.eval()
- MODELS[f'OpenClip {model_name} trained on {dataset}'] = {
- 'model_instance': model,
- 'preprocessing': preprocess,
- 'model_name': model_name,
- 'tokenizer': open_clip.get_tokenizer(model_name),
- 'prompt_text_embeddings': torch.load(f'./prompt_text_embeddings/{model_name}_{dataset.lower()}_prompt_text_embeddings.pt')
- }
-
-for model_name, dataset_name in OPEN_CLIP_LAION2B_MODEL_NAMES:
- dataset = 'LAION2B'
- model, _, preprocess = open_clip.create_model_and_transforms(
- model_name,
- pretrained=dataset_name
- )
- model = model.eval()
- MODELS[f'OpenClip {model_name} trained on {dataset}'] = {
- 'model_instance': model,
- 'preprocessing': preprocess,
- 'model_name': model_name,
- 'tokenizer': open_clip.get_tokenizer(model_name),
- 'prompt_text_embeddings': torch.load(f'./prompt_text_embeddings/{model_name}_{dataset.lower()}_prompt_text_embeddings.pt')
- }
-
-for model_name in OPEN_AI_MODELS:
- dataset = 'OpenAI'
- model, _, preprocess = open_clip.create_model_and_transforms(
- model_name,
- pretrained=dataset.lower()
- )
- model = model.eval()
- MODELS[f'OpenClip {model_name} trained by {dataset}'] = {
- 'model_instance': model,
- 'preprocessing': preprocess,
- 'model_name': model_name,
- 'tokenizer': open_clip.get_tokenizer(model_name),
- 'prompt_text_embeddings': torch.load(f'./prompt_text_embeddings/{model_name}_{dataset.lower()}_prompt_text_embeddings.pt')
- }
-
-FULL_NAMES_DF = pd.read_csv('full_names.csv', index_col=0)
-LAION_MEMBERSHIP_OCCURENCE = pd.read_csv('laion_membership_occurence_count.csv', index_col=0)
-
-EXAMPLE_ACTORS_BY_MODEL = {
- ("ViT-B-32", "laion400m"): ["T._J._Thyne"],
- ("ViT-B-16", "laion400m"): ["Barbara_Schöneberger", "Carolin_Kebekus"],
- ("ViT-L-14", "laion400m"): ["Max_Giermann", "Nicole_De_Boer"]
-}
-
-EXAMPLES = []
-for (model_name, dataset_name), person_names in EXAMPLE_ACTORS_BY_MODEL.items():
- for name in person_names:
- image_folder = os.path.join("./example_images/images/", name)
- for dd_model_name in MODELS.keys():
- if not (model_name.lower() in dd_model_name.lower() and dataset_name.lower() in dd_model_name.lower()):
- continue
-
- EXAMPLES.append([
- dd_model_name,
- name.replace("_", " "),
- [[x.format(name.replace("_", " ")) for x in PROMPTS]],
- [os.path.join(image_folder, x) for x in os.listdir(image_folder)]
- ])
-
-LICENSE_DETAILS = """
-See [README.md](https://huggingface.co/spaces/AIML-TUDA/does-clip-know-my-face/blob/main/README.md) for more information about the licenses of the example images.
-"""
-
-CORRECT_RESULT_INTERPRETATION = """
-
{0} is in the Training Data!
-The name of {0} has been correctly predicted for {1} out of {2} prompts. This means that {0} was in
-the training data and was used to train the model.
-Keep in mind that the probability of correctly predicting the name for {3} by chance {4} times with {5} possible names for the model to
-choose from, is only (1 ⁄ {5}){6} = {7}%.
-"""
-
-INDECISIVE_RESULT_INTERPRETATION = """
-
{0} might be in the Training Data!
-For none of the {1} prompts the majority vote for the name of {0} was correct. However, while the majority votes are not
-correct, the name of {0} was correctly predicted {2} times for {3}. This is an indication that the model has seen {0}
-during training. A different selection of images might have a clearer result. Keep in mind that the probability
-that the name is correctly predicted by chance {2} times for {3} is
-(1 ⁄ {4}){2} = {5}%.
-"""
-
-INCORRECT_RESULT_INTERPRETATION = """
-
{0} is most likely not in the Training Data!
-The name of {0} has not been correctly predicted for any of the {1} prompts. This is an indication that {0} has
-most likely not been used for training the model.
-"""
-
-OCCURENCE_INFORMATION = """
-According to our analysis {0} appeared {1} times among 400 million image-text pairs in the LAION-400M training dataset.
-"""
-
-CSS = """
- .footer {
- margin-bottom: 45px;
- margin-top: 35px;
- text-align: center;
- border-bottom: 1px solid #e5e5e5;
- }
- #file_upload {
- max-height: 250px;
- overflow-y: auto !important;
- }
- .footer>p {
- font-size: .8rem;
- display: inline-block;
- padding: 0 10px;
- transform: translateY(10px);
- background: white;
- }
-
- .dark .footer {
- border-color: #303030;
- }
- .dark .footer>p {
- background: #0b0f19;
- }
- .acknowledgments h4{
- margin: 1.25em 0 .25em 0;
- font-weight: bold;
- font-size: 115%;
- }
-"""
-
-
-# monkey patch the update function of the Files component since otherwise it is not possible to access the original
-# file name
-def preprocess(
- self, x: List[Dict[str, Any]] | None
-) -> bytes | tempfile._TemporaryFileWrapper | List[
- bytes | tempfile._TemporaryFileWrapper
- ] | None:
- """
- Parameters:
- x: List of JSON objects with filename as 'name' property and base64 data as 'data' property
- Returns:
- File objects in requested format
- """
- if x is None:
- return None
-
- def process_single_file(f) -> bytes | tempfile._TemporaryFileWrapper:
- file_name, orig_name, data, is_file = (
- f["name"] if "name" in f.keys() else f["orig_name"],
- f["orig_name"] if "orig_name" in f.keys() else f["name"],
- f["data"],
- f.get("is_file", False),
- )
- if self.type == "file":
- if is_file:
- temp_file_path = self.make_temp_copy_if_needed(file_name)
- file = tempfile.NamedTemporaryFile(delete=False)
- file.name = temp_file_path
- file.orig_name = os.path.basename(orig_name.replace(self.hash_file(file_name), "")) # type: ignore
- else:
- file = processing_utils.decode_base64_to_file(
- data, file_path=file_name
- )
- file.orig_name = file_name # type: ignore
- self.temp_files.add(str(utils.abspath(file.name)))
- return file
- elif (
- self.type == "binary" or self.type == "bytes"
- ): # "bytes" is included for backwards compatibility
- if is_file:
- with open(file_name, "rb") as file_data:
- return file_data.read()
- return processing_utils.decode_base64_to_binary(data)[0]
- else:
- raise ValueError(
- "Unknown type: "
- + str(self.type)
- + ". Please choose from: 'file', 'bytes'."
- )
-
- if self.file_count == "single":
- if isinstance(x, list):
- return process_single_file(x[0])
- else:
- return process_single_file(x)
- else:
- if isinstance(x, list):
- return [process_single_file(f) for f in x]
- else:
- return process_single_file(x)
-
-
-gr.Files.preprocess = preprocess
-
-
-@torch.no_grad()
-def calculate_text_embeddings(model_name, prompts):
- tokenizer = MODELS[model_name]['tokenizer']
- context_vecs = tokenizer(prompts)
-
- model_instance = MODELS[model_name]['model_instance']
-
- model_instance = model_instance.to(DEVICE)
- context_vecs = context_vecs.to(DEVICE)
-
- text_features = model_instance.encode_text(context_vecs, normalize=True).cpu()
-
- model_instance = model_instance.cpu()
- context_vecs = context_vecs.cpu()
-
- return text_features
-
-
-@torch.no_grad()
-def calculate_image_embeddings(model_name, images):
- preprocessing = MODELS[model_name]['preprocessing']
- model_instance = MODELS[model_name]['model_instance']
-
- # load the given images
- user_imgs = []
- for tmp_file_img in images:
- img = Image.open(tmp_file_img.name)
- # preprocess the images
- user_imgs.append(preprocessing(img))
-
- # calculate the image embeddings
- image_embeddings = []
- model_instance = model_instance.to(DEVICE)
- for batch_idx in range(0, len(user_imgs), IMG_BATCHSIZE):
- imgs = user_imgs[batch_idx:batch_idx + IMG_BATCHSIZE]
- imgs = torch.stack(imgs)
- imgs = imgs.to(DEVICE)
-
- emb = model_instance.encode_image(imgs, normalize=True).cpu()
- image_embeddings.append(emb)
-
- imgs = imgs.cpu()
- model_instance = model_instance.cpu()
-
- return torch.cat(image_embeddings)
-
-
-def get_possible_names(true_name):
- possible_names = FULL_NAMES_DF
- possible_names['full_names'] = FULL_NAMES_DF['first_name'].astype(str) + ' ' + FULL_NAMES_DF['last_name'].astype(
- str)
-
- possible_names = possible_names[possible_names['full_names'] != true_name]
-
- # sample the same amount of male and female names
- sampled_names = possible_names.groupby('sex').sample(int(NUM_TOTAL_NAMES / 2), random_state=42)
- # shuffle the rows randomly
- sampled_names = sampled_names.sample(frac=1)
- # get only the full names since we don't need first and last name and gender anymore
- possible_full_names = sampled_names['full_names']
-
- return possible_full_names
-
-
-def round_to_first_digit(value: Decimal):
- tmp = np.format_float_positional(value)
-
- prob_str = []
- for c in str(tmp):
- if c in ("0", "."):
- prob_str.append(c)
- else:
- prob_str.append(c)
- break
-
- return "".join(prob_str)
-
-
-def get_majority_predictions(predictions: pd.Series, values_only=False, counts_only=False, value=None):
- """Takes a series of predictions and returns the unique values and the number of prediction occurrences
- in descending order."""
- values, counts = np.unique(predictions, return_counts=True)
- descending_counts_indices = counts.argsort()[::-1]
- values, counts = values[descending_counts_indices], counts[descending_counts_indices]
-
- idx_most_often_pred_names = np.argwhere(counts == counts.max()).flatten()
-
- if values_only:
- return values[idx_most_often_pred_names]
- elif counts_only:
- return counts[idx_most_often_pred_names]
- elif value is not None:
- if value not in values:
- return [0]
- # return how often the values appears in the predictions
- return counts[np.where(values == value)[0]]
- else:
- return values[idx_most_often_pred_names], counts[idx_most_often_pred_names]
-
-
-def on_submit_btn_click(model_name, true_name, prompts, images):
- # assert that the name is in the prompts
- if not prompts.iloc[0].str.contains(true_name).sum() == len(prompts.T):
- return None, None, """
-
-
- The given name does not match the name in the prompts. Sometimes the UI is responding slow.
- Please retype the name and check that it is inserted fully into the prompts.
-
-
- """
-
- if images is None or len(images) < 1:
- return None, None, f"""
-
-
- No images are given. Images are needed to determin whether {true_name} was in the dataset. Please upload at least a single image of {true_name}.
-
-
- """
-
- # calculate the image embeddings
- img_embeddings = calculate_image_embeddings(model_name, images)
-
- # calculate the text embeddings of the populated prompts
- user_text_emb = calculate_text_embeddings(model_name, prompts.values[0].tolist())
-
- # get the indices of the possible names
- possible_names = get_possible_names(true_name)
- # get the text embeddings of the possible names
- prompt_text_embeddings = MODELS[model_name]['prompt_text_embeddings']
- text_embeddings_used_for_prediction = prompt_text_embeddings.index_select(1,
- torch.tensor(possible_names.index.values))
-
- # add the true name and the text embeddings to the possible names
- names_used_for_prediction = pd.concat([possible_names, pd.Series(true_name)], ignore_index=True)
- text_embeddings_used_for_prediction = torch.cat([text_embeddings_used_for_prediction, user_text_emb.unsqueeze(1)],
- dim=1)
-
- # calculate the similarity of the images and the given texts
- with torch.no_grad():
- logits_per_image = MODELS[model_name][
- 'model_instance'
- ].logit_scale.exp().cpu() * img_embeddings @ text_embeddings_used_for_prediction.swapaxes(-1, -2)
- preds = logits_per_image.argmax(-1)
-
- # get the predicted names for each prompt
- predicted_names = []
- for pred in preds:
- predicted_names.append(names_used_for_prediction.iloc[pred])
- predicted_names = np.array(predicted_names)
-
- # convert the predictions into a dataframe
- name_predictions = pd.DataFrame(predicted_names).T.reset_index().rename(
- columns={i: f'Prompt {i + 1}' for i in range(len(predicted_names))}
- ).rename(columns={'index': 'Image'})
- # add the image names
- name_predictions['Image'] = [x.orig_name for x in images]
-
- # get the majority votes
- majority_preds = name_predictions[[f'Prompt {i + 1}' for i in range(len(PROMPTS))]].apply(
- lambda x: get_majority_predictions(x, values_only=True)
- )
- # get how often the majority name was predicted
- majority_preds_counts = name_predictions[[f'Prompt {i + 1}' for i in range(len(PROMPTS))]].apply(
- lambda x: get_majority_predictions(x, counts_only=True)
- ).apply(lambda x: x[0])
- # get how often the correct name was predicted - even if no majority
- true_name_preds_counts = name_predictions[[f'Prompt {i + 1}' for i in range(len(PROMPTS))]].apply(
- lambda x: get_majority_predictions(x, value=true_name)
- ).apply(lambda x: x[0])
-
- # convert the majority preds to a series of lists if it is a dataframe
- majority_preds = majority_preds.T.squeeze().apply(lambda x: [x]) if len(majority_preds) == 1 else majority_preds
-
- # create the results dataframe for display
- result = pd.concat(
- [name_predictions,
- pd.concat([pd.Series({'Image': 'Correct Name Predictions'}), true_name_preds_counts]).to_frame().T],
- ignore_index=True
- )
- result = pd.concat(
- [result, pd.concat([pd.Series({'Image': 'Majority Vote'}), majority_preds]).to_frame().T],
- ignore_index=True
- )
- result = pd.concat(
- [result, pd.concat([pd.Series({'Image': 'Majority Vote Counts'}), majority_preds_counts]).to_frame().T],
- ignore_index=True
- )
- result = result.set_index('Image')
-
- # check whether there is only one majority vote. If not, display Not Applicable
- result.loc['Majority Vote'] = result.loc['Majority Vote'].apply(
- lambda x: x[0] if len(x) == 1 else "N/A")
-
- # check whether the majority prediction is the correct name
- result.loc['Correct Majority Prediction'] = result.apply(lambda x: x['Majority Vote'] == true_name, axis=0)
-
- result = result[[f'Prompt {i + 1}' for i in range(len(PROMPTS))]].sort_values(
- ['Correct Name Predictions', 'Majority Vote Counts', "Correct Majority Prediction"], axis=1, ascending=False
- )
-
- predictions = result.loc[[x.orig_name for x in images]]
- prediction_results = result.loc[['Correct Name Predictions', 'Majority Vote', 'Correct Majority Prediction']]
-
- # if there are correct predictions
- num_correct_maj_preds = prediction_results.loc['Correct Majority Prediction'].sum()
- num_correct_name_preds = result.loc['Correct Name Predictions'].max()
- if num_correct_maj_preds > 0:
- interpretation = CORRECT_RESULT_INTERPRETATION.format(
- true_name,
- num_correct_maj_preds,
- len(PROMPTS),
- prediction_results.columns[0],
- prediction_results.iloc[0, 0],
- len(possible_names),
- predictions.iloc[:, 0].value_counts()[true_name],
- round_to_first_digit(
- (
- (Decimal(1) / Decimal(len(possible_names))) ** predictions.iloc[:, 0].value_counts()[true_name]
- ) * Decimal(100)
- )
- )
- elif num_correct_name_preds > 0:
- interpretation = INDECISIVE_RESULT_INTERPRETATION.format(
- true_name,
- len(PROMPTS),
- num_correct_name_preds,
- prediction_results.columns[result.loc['Correct Name Predictions'].to_numpy().argmax()],
- len(possible_names),
- round_to_first_digit(
- (
- (Decimal(1) / Decimal(len(possible_names))) ** Decimal(num_correct_name_preds)
- ) * Decimal(100)
- )
- )
- else:
- interpretation = INCORRECT_RESULT_INTERPRETATION.format(
- true_name,
- len(PROMPTS)
- )
-
- if 'laion400m' in model_name.lower() and true_name.lower() in LAION_MEMBERSHIP_OCCURENCE['name'].str.lower().values:
- row = LAION_MEMBERSHIP_OCCURENCE[LAION_MEMBERSHIP_OCCURENCE['name'].str.lower() == true_name.lower()]
- interpretation = interpretation + OCCURENCE_INFORMATION.format(true_name, row['count'].values[0])
-
- return predictions.reset_index(), prediction_results.reset_index(names=[""]), interpretation
-
-
-def populate_prompts(name):
- return [[x.format(name) for x in PROMPTS]]
-
-
-def load_uploaded_imgs(images):
- if images is None:
- return None
-
- imgs = []
- for file_wrapper in images:
- img = Image.open(file_wrapper.name)
- imgs.append((img, file_wrapper.orig_name))
-
- return imgs
-
-
-block = gr.Blocks(css=CSS)
-with block as demo:
- gr.HTML(
- """
-
-
-
-
- Does CLIP Know My Face?
-
-
-
- Want to know whether you were used to train a CLIP model? Below you can choose a model, enter your name and upload some pictures.
- If the model correctly predicts your name for multiple images, it is very likely that you were part of the training data.
- Pick some of the examples below and try it out!
- How does it work? We are giving CLIP your images and let it choose from 1000 possible names.
- As CLIP is predicting the names that match the given images, we can probe whether the model has seen your images
- during training. The more images you upload the more confident you can be in the result!
-
- Disclaimer: In order to process the images, they are cached on the server. The images are only used for predicting whether the person was in the training data.
-
- """
- )
-
-if __name__ == "__main__":
- demo.launch()
diff --git a/spaces/ASJMO/freegpt/README.md b/spaces/ASJMO/freegpt/README.md
deleted file mode 100644
index 35279f351cdd06266746ff798cdb9bac48681082..0000000000000000000000000000000000000000
--- a/spaces/ASJMO/freegpt/README.md
+++ /dev/null
@@ -1,195 +0,0 @@
----
-title: FreeGPT WebUI
-emoji: 🚀
-colorFrom: blue
-colorTo: yellow
-sdk: docker
-sdk_version: 1.24.0
-app_file: run.py
-pinned: true
-app_port: 1338
-duplicated_from: monra/freegpt-webui
----
-
-# FreeGPT WebUI
-## GPT 3.5/4
-
-NOT REQUIRE ANY API KEY ❌🔑
-
-This project features a WebUI utilizing the [G4F API](https://github.com/xtekky/gpt4free).
-Experience the power of ChatGPT with a user-friendly interface, enhanced jailbreaks, and completely free.
-
-## Known bugs 🚧
-- Stream mode not working properly.
-
-## News 📢
-I have created a new version of FreeGPT WebUI using the [ChimeraGPT API](https://chimeragpt.adventblocks.cc/).
-
-
-This free API allows you to use various AI chat models, including GPT-4, GPT-4-32k, Claude-2, Claude-2-100k, and more.
-Check out the project here: [FreeGPT WebUI - Chimera Version](https://github.com/ramonvc/freegpt-webui/tree/chimeragpt-version).
-
-## Project Hosting and Demonstration 🌐🚀
-The project is hosted on multiple platforms to be tested and modified.
-|Plataform|Status|API Key|Free|Repo|Demo|
-|--|--|--|--|--|--|
-|[replit](https://replit.com/)||◼️|☑️|[FreeGPT WebUI](https://replit.com/@ramonvc/freegpt-webui)|[Chat](https://freegpt-webui.ramonvc.repl.co/chat/)
-|[hugging face](https://huggingface.co)||◼️|☑️|[FreeGPT WebUI](https://huggingface.co/spaces/monra/freegpt-webui/tree/main)|[Chat](https://huggingface.co/spaces/monra/freegpt-webui)
-|[replit](https://replit.com/)||☑️|☑️|[FreeGPT WebUI - Chimera Version](https://replit.com/@ramonvc/freegpt-webui-chimera)|[Chat](https://freegpt-webui-chimera.ramonvc.repl.co/chat/)
-
-## Note ℹ️
-
- FreeGPT is a project that utilizes various free AI conversation API Providers. Each Provider is an API that provides responses generated by different AI models. The source code related to these services is available in G4F folder.
-
-It is important to note that, due to the extensive reach of this project, the free services registered here may receive a significant number of requests, which can result in temporary unavailability or access limitations. Therefore, it is common to encounter these services being offline or unstable.
-
-We recommend that you search for your own Providers and add them to your personal projects to avoid service instability and unavailability. Within the project, in the Providers folder, you will find several examples of Providers that have worked in the past or are still functioning. It is easy to follow the logic of these examples to find free GPT services and incorporate the requests into your specific FreeGPT project.
-
-Please note that the choice and integration of additional Providers are the user's responsibility and are not directly related to the FreeGPT project, as the project serves as an example of how to combine the G4F API with a web interface.
-
-
-## Table of Contents
-- [To-Do List](#to-do-list-%EF%B8%8F)
-- [Getting Started](#getting-started-white_check_mark)
- - [Cloning the Repository](#cloning-the-repository-inbox_tray)
- - [Install Dependencies](#install-dependencies-wrench)
-- [Running the Application](#running-the-application-rocket)
-- [Docker](#docker-)
- - [Prerequisites](#prerequisites)
- - [Running the Docker](#running-the-docker)
-- [Incorporated Projects](#incorporated-projects-busts_in_silhouette)
- - [WebUI](#webui)
- - [API FreeGPT](#api-g4f)
-- [Star History](#star-history)
-- [Legal Notice](#legal-notice)
-
-##
-
-## To-Do List ✔️
-
-- [x] Integrate the free GPT API into the WebUI
-- [x] Create Docker support
-- [x] Improve the Jailbreak functionality
-- [x] Add the GPT-4 model
-- [x] Enhance the user interface
-- [ ] Check status of API Providers (online/offline)
-- [ ] Enable editing and creating Jailbreaks/Roles in the WebUI
-- [ ] Refactor web client
-
-## Getting Started :white_check_mark:
-To get started with this project, you'll need to clone the repository and have [Python](https://www.python.org/downloads/) installed on your system.
-
-### Cloning the Repository :inbox_tray:
-Run the following command to clone the repository:
-
-```
-git clone https://github.com/ramonvc/freegpt-webui.git
-```
-
-### Install Dependencies :wrench:
-Navigate to the project directory:
-```
-cd freegpt-webui
-```
-
-Install the dependencies:
-```
-pip install -r requirements.txt
-```
-## Running the Application :rocket:
-To run the application, run the following command:
-```
-python run.py
-```
-
-Access the application in your browser using the URL:
-```
-http://127.0.0.1:1338
-```
-or
-```
-http://localhost:1338
-```
-
-
-## Docker 🐳
-### Prerequisites
-Before you start, make sure you have installed [Docker](https://www.docker.com/get-started) on your machine.
-
-### Running the Docker
-Pull the Docker image from Docker Hub:
-```
-docker pull ramonvc/freegpt-webui
-```
-
-Run the application using Docker:
-```
-docker run -p 1338:1338 ramonvc/freegpt-webui
-```
-
-Access the application in your browser using the URL:
-```
-http://127.0.0.1:1338
-```
-or
-```
-http://localhost:1338
-```
-
-When you're done using the application, stop the Docker containers using the following command:
-```
-docker stop
-```
-
-## Incorporated Projects :busts_in_silhouette:
-I highly recommend visiting and supporting both projects.
-
-### WebUI
-The application interface was incorporated from the [chatgpt-clone](https://github.com/xtekky/chatgpt-clone) repository.
-
-### API G4F
-The free GPT-4 API was incorporated from the [GPT4Free](https://github.com/xtekky/gpt4free) repository.
-
-
-
-## Star History
-[](https://star-history.com/#ramonvc/freegpt-webui&Timeline)
-
-
-
-## Legal Notice
-This repository is _not_ associated with or endorsed by providers of the APIs contained in this GitHub repository. This
-project is intended **for educational purposes only**. This is just a little personal project. Sites may contact me to
-improve their security or request the removal of their site from this repository.
-
-Please note the following:
-
-1. **Disclaimer**: The APIs, services, and trademarks mentioned in this repository belong to their respective owners.
- This project is _not_ claiming any right over them nor is it affiliated with or endorsed by any of the providers
- mentioned.
-
-2. **Responsibility**: The author of this repository is _not_ responsible for any consequences, damages, or losses
- arising from the use or misuse of this repository or the content provided by the third-party APIs. Users are solely
- responsible for their actions and any repercussions that may follow. We strongly recommend the users to follow the
- TOS of the each Website.
-
-3. **Educational Purposes Only**: This repository and its content are provided strictly for educational purposes. By
- using the information and code provided, users acknowledge that they are using the APIs and models at their own risk
- and agree to comply with any applicable laws and regulations.
-
-4. **Copyright**: All content in this repository, including but not limited to code, images, and documentation, is the
- intellectual property of the repository author, unless otherwise stated. Unauthorized copying, distribution, or use
- of any content in this repository is strictly prohibited without the express written consent of the repository
- author.
-
-5. **Indemnification**: Users agree to indemnify, defend, and hold harmless the author of this repository from and
- against any and all claims, liabilities, damages, losses, or expenses, including legal fees and costs, arising out of
- or in any way connected with their use or misuse of this repository, its content, or related third-party APIs.
-
-6. **Updates and Changes**: The author reserves the right to modify, update, or remove any content, information, or
- features in this repository at any time without prior notice. Users are responsible for regularly reviewing the
- content and any changes made to this repository.
-
-By using this repository or any code related to it, you agree to these terms. The author is not responsible for any
-copies, forks, or reuploads made by other users. This is the author's only account and repository. To prevent
-impersonation or irresponsible actions, you may comply with the GNU GPL license this Repository uses.
diff --git a/spaces/ASJMO/freegpt/run.py b/spaces/ASJMO/freegpt/run.py
deleted file mode 100644
index 3b9ca0f439c4dd6a791f7eed62d942d096562b61..0000000000000000000000000000000000000000
--- a/spaces/ASJMO/freegpt/run.py
+++ /dev/null
@@ -1,48 +0,0 @@
-import secrets
-
-from server.bp import bp
-from server.website import Website
-from server.backend import Backend_Api
-from server.babel import create_babel
-from json import load
-from flask import Flask
-
-if __name__ == '__main__':
-
- # Load configuration from config.json
- config = load(open('config.json', 'r'))
- site_config = config['site_config']
- url_prefix = config.pop('url_prefix')
-
- # Create the app
- app = Flask(__name__)
- app.secret_key = secrets.token_hex(16)
-
- # Set up Babel
- create_babel(app)
-
- # Set up the website routes
- site = Website(bp, url_prefix)
- for route in site.routes:
- bp.add_url_rule(
- route,
- view_func=site.routes[route]['function'],
- methods=site.routes[route]['methods'],
- )
-
- # Set up the backend API routes
- backend_api = Backend_Api(bp, config)
- for route in backend_api.routes:
- bp.add_url_rule(
- route,
- view_func=backend_api.routes[route]['function'],
- methods=backend_api.routes[route]['methods'],
- )
-
- # Register the blueprint
- app.register_blueprint(bp, url_prefix=url_prefix)
-
- # Run the Flask server
- print(f"Running on {site_config['port']}{url_prefix}")
- app.run(**site_config)
- print(f"Closing port {site_config['port']}")
diff --git a/spaces/AdityaMahimkar/ParaPhraser/app.py b/spaces/AdityaMahimkar/ParaPhraser/app.py
deleted file mode 100644
index 70de74dd5d8f7ec1e784179320e9e08f16660ddf..0000000000000000000000000000000000000000
--- a/spaces/AdityaMahimkar/ParaPhraser/app.py
+++ /dev/null
@@ -1,36 +0,0 @@
-# https://huggingface.co/tuner007/pegasus_paraphrase
-
-import nltk
-from nltk import sent_tokenize
-nltk.download('punkt')
-
-import gradio as gr
-
-import torch
-from transformers import PegasusForConditionalGeneration, PegasusTokenizer
-
-import warnings
-warnings.filterwarnings('ignore')
-
-model_name = 'tuner007/pegasus_paraphrase'
-torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
-tokenizer = PegasusTokenizer.from_pretrained(model_name)
-model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device)
-
-def paraphraser(input_text,num_return_sequences=1):
- sentence_list = sent_tokenize(input_text)
-
- output = []
- for sentence in sentence_list:
- batch = tokenizer.prepare_seq2seq_batch([sentence],truncation=True,padding='longest',max_length=60, return_tensors="pt").to(torch_device)
- translated = model.generate(**batch,max_length=60,num_beams=10, num_return_sequences=num_return_sequences, temperature=1.5)
- tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
- output.extend(tgt_text)
-
- paraphrase = [' '.join(x for x in output)]
- paraphrased_text = str(paraphrase).strip('[]').strip("'")
-
- return paraphrased_text
-
-paraphraseUI = gr.Interface(fn=paraphraser, inputs='textbox', outputs='text', title="ParaPhraser", theme='dark')
-paraphraseUI.launch(inbrowser=True, share=True)
\ No newline at end of file
diff --git a/spaces/Al-Chan/Vits_League_of_Legends_Yuumi_TTS/losses.py b/spaces/Al-Chan/Vits_League_of_Legends_Yuumi_TTS/losses.py
deleted file mode 100644
index fb22a0e834dd87edaa37bb8190eee2c3c7abe0d5..0000000000000000000000000000000000000000
--- a/spaces/Al-Chan/Vits_League_of_Legends_Yuumi_TTS/losses.py
+++ /dev/null
@@ -1,61 +0,0 @@
-import torch
-from torch.nn import functional as F
-
-import commons
-
-
-def feature_loss(fmap_r, fmap_g):
- loss = 0
- for dr, dg in zip(fmap_r, fmap_g):
- for rl, gl in zip(dr, dg):
- rl = rl.float().detach()
- gl = gl.float()
- loss += torch.mean(torch.abs(rl - gl))
-
- return loss * 2
-
-
-def discriminator_loss(disc_real_outputs, disc_generated_outputs):
- loss = 0
- r_losses = []
- g_losses = []
- for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
- dr = dr.float()
- dg = dg.float()
- r_loss = torch.mean((1-dr)**2)
- g_loss = torch.mean(dg**2)
- loss += (r_loss + g_loss)
- r_losses.append(r_loss.item())
- g_losses.append(g_loss.item())
-
- return loss, r_losses, g_losses
-
-
-def generator_loss(disc_outputs):
- loss = 0
- gen_losses = []
- for dg in disc_outputs:
- dg = dg.float()
- l = torch.mean((1-dg)**2)
- gen_losses.append(l)
- loss += l
-
- return loss, gen_losses
-
-
-def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
- """
- z_p, logs_q: [b, h, t_t]
- m_p, logs_p: [b, h, t_t]
- """
- z_p = z_p.float()
- logs_q = logs_q.float()
- m_p = m_p.float()
- logs_p = logs_p.float()
- z_mask = z_mask.float()
-
- kl = logs_p - logs_q - 0.5
- kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
- kl = torch.sum(kl * z_mask)
- l = kl / torch.sum(z_mask)
- return l
diff --git a/spaces/AlexWang/lama/saicinpainting/evaluation/masks/countless/countless2d.py b/spaces/AlexWang/lama/saicinpainting/evaluation/masks/countless/countless2d.py
deleted file mode 100644
index dc27b73affa20ab1a8a199542469a10aaf1f555a..0000000000000000000000000000000000000000
--- a/spaces/AlexWang/lama/saicinpainting/evaluation/masks/countless/countless2d.py
+++ /dev/null
@@ -1,529 +0,0 @@
-from __future__ import print_function, division
-
-"""
-COUNTLESS performance test in Python.
-
-python countless2d.py ./images/NAMEOFIMAGE
-"""
-
-import six
-from six.moves import range
-from collections import defaultdict
-from functools import reduce
-import operator
-import io
-import os
-from PIL import Image
-import math
-import numpy as np
-import random
-import sys
-import time
-from tqdm import tqdm
-from scipy import ndimage
-
-def simplest_countless(data):
- """
- Vectorized implementation of downsampling a 2D
- image by 2 on each side using the COUNTLESS algorithm.
-
- data is a 2D numpy array with even dimensions.
- """
- sections = []
-
- # This loop splits the 2D array apart into four arrays that are
- # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
- # and (1,1) representing the A, B, C, and D positions from Figure 1.
- factor = (2,2)
- for offset in np.ndindex(factor):
- part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
- sections.append(part)
-
- a, b, c, d = sections
-
- ab = a * (a == b) # PICK(A,B)
- ac = a * (a == c) # PICK(A,C)
- bc = b * (b == c) # PICK(B,C)
-
- a = ab | ac | bc # Bitwise OR, safe b/c non-matches are zeroed
-
- return a + (a == 0) * d # AB || AC || BC || D
-
-def quick_countless(data):
- """
- Vectorized implementation of downsampling a 2D
- image by 2 on each side using the COUNTLESS algorithm.
-
- data is a 2D numpy array with even dimensions.
- """
- sections = []
-
- # This loop splits the 2D array apart into four arrays that are
- # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
- # and (1,1) representing the A, B, C, and D positions from Figure 1.
- factor = (2,2)
- for offset in np.ndindex(factor):
- part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
- sections.append(part)
-
- a, b, c, d = sections
-
- ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
- bc = b * (b == c) # PICK(B,C)
-
- a = ab_ac | bc # (PICK(A,B) || PICK(A,C)) or PICK(B,C)
- return a + (a == 0) * d # AB || AC || BC || D
-
-def quickest_countless(data):
- """
- Vectorized implementation of downsampling a 2D
- image by 2 on each side using the COUNTLESS algorithm.
-
- data is a 2D numpy array with even dimensions.
- """
- sections = []
-
- # This loop splits the 2D array apart into four arrays that are
- # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
- # and (1,1) representing the A, B, C, and D positions from Figure 1.
- factor = (2,2)
- for offset in np.ndindex(factor):
- part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
- sections.append(part)
-
- a, b, c, d = sections
-
- ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
- ab_ac |= b * (b == c) # PICK(B,C)
- return ab_ac + (ab_ac == 0) * d # AB || AC || BC || D
-
-def quick_countless_xor(data):
- """
- Vectorized implementation of downsampling a 2D
- image by 2 on each side using the COUNTLESS algorithm.
-
- data is a 2D numpy array with even dimensions.
- """
- sections = []
-
- # This loop splits the 2D array apart into four arrays that are
- # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
- # and (1,1) representing the A, B, C, and D positions from Figure 1.
- factor = (2,2)
- for offset in np.ndindex(factor):
- part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
- sections.append(part)
-
- a, b, c, d = sections
-
- ab = a ^ (a ^ b) # a or b
- ab += (ab != a) * ((ab ^ (ab ^ c)) - b) # b or c
- ab += (ab == c) * ((ab ^ (ab ^ d)) - c) # c or d
- return ab
-
-def stippled_countless(data):
- """
- Vectorized implementation of downsampling a 2D
- image by 2 on each side using the COUNTLESS algorithm
- that treats zero as "background" and inflates lone
- pixels.
-
- data is a 2D numpy array with even dimensions.
- """
- sections = []
-
- # This loop splits the 2D array apart into four arrays that are
- # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
- # and (1,1) representing the A, B, C, and D positions from Figure 1.
- factor = (2,2)
- for offset in np.ndindex(factor):
- part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
- sections.append(part)
-
- a, b, c, d = sections
-
- ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
- ab_ac |= b * (b == c) # PICK(B,C)
-
- nonzero = a + (a == 0) * (b + (b == 0) * c)
- return ab_ac + (ab_ac == 0) * (d + (d == 0) * nonzero) # AB || AC || BC || D
-
-def zero_corrected_countless(data):
- """
- Vectorized implementation of downsampling a 2D
- image by 2 on each side using the COUNTLESS algorithm.
-
- data is a 2D numpy array with even dimensions.
- """
- # allows us to prevent losing 1/2 a bit of information
- # at the top end by using a bigger type. Without this 255 is handled incorrectly.
- data, upgraded = upgrade_type(data)
-
- # offset from zero, raw countless doesn't handle 0 correctly
- # we'll remove the extra 1 at the end.
- data += 1
-
- sections = []
-
- # This loop splits the 2D array apart into four arrays that are
- # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
- # and (1,1) representing the A, B, C, and D positions from Figure 1.
- factor = (2,2)
- for offset in np.ndindex(factor):
- part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
- sections.append(part)
-
- a, b, c, d = sections
-
- ab = a * (a == b) # PICK(A,B)
- ac = a * (a == c) # PICK(A,C)
- bc = b * (b == c) # PICK(B,C)
-
- a = ab | ac | bc # Bitwise OR, safe b/c non-matches are zeroed
-
- result = a + (a == 0) * d - 1 # a or d - 1
-
- if upgraded:
- return downgrade_type(result)
-
- # only need to reset data if we weren't upgraded
- # b/c no copy was made in that case
- data -= 1
-
- return result
-
-def countless_extreme(data):
- nonzeros = np.count_nonzero(data)
- # print("nonzeros", nonzeros)
-
- N = reduce(operator.mul, data.shape)
-
- if nonzeros == N:
- print("quick")
- return quick_countless(data)
- elif np.count_nonzero(data + 1) == N:
- print("quick")
- # print("upper", nonzeros)
- return quick_countless(data)
- else:
- return countless(data)
-
-
-def countless(data):
- """
- Vectorized implementation of downsampling a 2D
- image by 2 on each side using the COUNTLESS algorithm.
-
- data is a 2D numpy array with even dimensions.
- """
- # allows us to prevent losing 1/2 a bit of information
- # at the top end by using a bigger type. Without this 255 is handled incorrectly.
- data, upgraded = upgrade_type(data)
-
- # offset from zero, raw countless doesn't handle 0 correctly
- # we'll remove the extra 1 at the end.
- data += 1
-
- sections = []
-
- # This loop splits the 2D array apart into four arrays that are
- # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
- # and (1,1) representing the A, B, C, and D positions from Figure 1.
- factor = (2,2)
- for offset in np.ndindex(factor):
- part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
- sections.append(part)
-
- a, b, c, d = sections
-
- ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
- ab_ac |= b * (b == c) # PICK(B,C)
- result = ab_ac + (ab_ac == 0) * d - 1 # (matches or d) - 1
-
- if upgraded:
- return downgrade_type(result)
-
- # only need to reset data if we weren't upgraded
- # b/c no copy was made in that case
- data -= 1
-
- return result
-
-def upgrade_type(arr):
- dtype = arr.dtype
-
- if dtype == np.uint8:
- return arr.astype(np.uint16), True
- elif dtype == np.uint16:
- return arr.astype(np.uint32), True
- elif dtype == np.uint32:
- return arr.astype(np.uint64), True
-
- return arr, False
-
-def downgrade_type(arr):
- dtype = arr.dtype
-
- if dtype == np.uint64:
- return arr.astype(np.uint32)
- elif dtype == np.uint32:
- return arr.astype(np.uint16)
- elif dtype == np.uint16:
- return arr.astype(np.uint8)
-
- return arr
-
-def odd_to_even(image):
- """
- To facilitate 2x2 downsampling segmentation, change an odd sized image into an even sized one.
- Works by mirroring the starting 1 pixel edge of the image on odd shaped sides.
-
- e.g. turn a 3x3x5 image into a 4x4x5 (the x and y are what are getting downsampled)
-
- For example: [ 3, 2, 4 ] => [ 3, 3, 2, 4 ] which is now easy to downsample.
-
- """
- shape = np.array(image.shape)
-
- offset = (shape % 2)[:2] # x,y offset
-
- # detect if we're dealing with an even
- # image. if so it's fine, just return.
- if not np.any(offset):
- return image
-
- oddshape = image.shape[:2] + offset
- oddshape = np.append(oddshape, shape[2:])
- oddshape = oddshape.astype(int)
-
- newimg = np.empty(shape=oddshape, dtype=image.dtype)
-
- ox,oy = offset
- sx,sy = oddshape
-
- newimg[0,0] = image[0,0] # corner
- newimg[ox:sx,0] = image[:,0] # x axis line
- newimg[0,oy:sy] = image[0,:] # y axis line
-
- return newimg
-
-def counting(array):
- factor = (2, 2, 1)
- shape = array.shape
-
- while len(shape) < 4:
- array = np.expand_dims(array, axis=-1)
- shape = array.shape
-
- output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(shape, factor))
- output = np.zeros(output_shape, dtype=array.dtype)
-
- for chan in range(0, shape[3]):
- for z in range(0, shape[2]):
- for x in range(0, shape[0], 2):
- for y in range(0, shape[1], 2):
- block = array[ x:x+2, y:y+2, z, chan ] # 2x2 block
-
- hashtable = defaultdict(int)
- for subx, suby in np.ndindex(block.shape[0], block.shape[1]):
- hashtable[block[subx, suby]] += 1
-
- best = (0, 0)
- for segid, val in six.iteritems(hashtable):
- if best[1] < val:
- best = (segid, val)
-
- output[ x // 2, y // 2, chan ] = best[0]
-
- return output
-
-def ndzoom(array):
- if len(array.shape) == 3:
- ratio = ( 1 / 2.0, 1 / 2.0, 1.0 )
- else:
- ratio = ( 1 / 2.0, 1 / 2.0)
- return ndimage.interpolation.zoom(array, ratio, order=1)
-
-def countless_if(array):
- factor = (2, 2, 1)
- shape = array.shape
-
- if len(shape) < 3:
- array = array[ :,:, np.newaxis ]
- shape = array.shape
-
- output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(shape, factor))
- output = np.zeros(output_shape, dtype=array.dtype)
-
- for chan in range(0, shape[2]):
- for x in range(0, shape[0], 2):
- for y in range(0, shape[1], 2):
- block = array[ x:x+2, y:y+2, chan ] # 2x2 block
-
- if block[0,0] == block[1,0]:
- pick = block[0,0]
- elif block[0,0] == block[0,1]:
- pick = block[0,0]
- elif block[1,0] == block[0,1]:
- pick = block[1,0]
- else:
- pick = block[1,1]
-
- output[ x // 2, y // 2, chan ] = pick
-
- return np.squeeze(output)
-
-def downsample_with_averaging(array):
- """
- Downsample x by factor using averaging.
-
- @return: The downsampled array, of the same type as x.
- """
-
- if len(array.shape) == 3:
- factor = (2,2,1)
- else:
- factor = (2,2)
-
- if np.array_equal(factor[:3], np.array([1,1,1])):
- return array
-
- output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(array.shape, factor))
- temp = np.zeros(output_shape, float)
- counts = np.zeros(output_shape, np.int)
- for offset in np.ndindex(factor):
- part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
- indexing_expr = tuple(np.s_[:s] for s in part.shape)
- temp[indexing_expr] += part
- counts[indexing_expr] += 1
- return np.cast[array.dtype](temp / counts)
-
-def downsample_with_max_pooling(array):
-
- factor = (2,2)
-
- if np.all(np.array(factor, int) == 1):
- return array
-
- sections = []
-
- for offset in np.ndindex(factor):
- part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
- sections.append(part)
-
- output = sections[0].copy()
-
- for section in sections[1:]:
- np.maximum(output, section, output)
-
- return output
-
-def striding(array):
- """Downsample x by factor using striding.
-
- @return: The downsampled array, of the same type as x.
- """
- factor = (2,2)
- if np.all(np.array(factor, int) == 1):
- return array
- return array[tuple(np.s_[::f] for f in factor)]
-
-def benchmark():
- filename = sys.argv[1]
- img = Image.open(filename)
- data = np.array(img.getdata(), dtype=np.uint8)
-
- if len(data.shape) == 1:
- n_channels = 1
- reshape = (img.height, img.width)
- else:
- n_channels = min(data.shape[1], 3)
- data = data[:, :n_channels]
- reshape = (img.height, img.width, n_channels)
-
- data = data.reshape(reshape).astype(np.uint8)
-
- methods = [
- simplest_countless,
- quick_countless,
- quick_countless_xor,
- quickest_countless,
- stippled_countless,
- zero_corrected_countless,
- countless,
- downsample_with_averaging,
- downsample_with_max_pooling,
- ndzoom,
- striding,
- # countless_if,
- # counting,
- ]
-
- formats = {
- 1: 'L',
- 3: 'RGB',
- 4: 'RGBA'
- }
-
- if not os.path.exists('./results'):
- os.mkdir('./results')
-
- N = 500
- img_size = float(img.width * img.height) / 1024.0 / 1024.0
- print("N = %d, %dx%d (%.2f MPx) %d chan, %s" % (N, img.width, img.height, img_size, n_channels, filename))
- print("Algorithm\tMPx/sec\tMB/sec\tSec")
- for fn in methods:
- print(fn.__name__, end='')
- sys.stdout.flush()
-
- start = time.time()
- # tqdm is here to show you what's going on the first time you run it.
- # Feel free to remove it to get slightly more accurate timing results.
- for _ in tqdm(range(N), desc=fn.__name__, disable=True):
- result = fn(data)
- end = time.time()
- print("\r", end='')
-
- total_time = (end - start)
- mpx = N * img_size / total_time
- mbytes = N * img_size * n_channels / total_time
- # Output in tab separated format to enable copy-paste into excel/numbers
- print("%s\t%.3f\t%.3f\t%.2f" % (fn.__name__, mpx, mbytes, total_time))
- outimg = Image.fromarray(np.squeeze(result), formats[n_channels])
- outimg.save('./results/{}.png'.format(fn.__name__, "PNG"))
-
-if __name__ == '__main__':
- benchmark()
-
-
-# Example results:
-# N = 5, 1024x1024 (1.00 MPx) 1 chan, images/gray_segmentation.png
-# Function MPx/sec MB/sec Sec
-# simplest_countless 752.855 752.855 0.01
-# quick_countless 920.328 920.328 0.01
-# zero_corrected_countless 534.143 534.143 0.01
-# countless 644.247 644.247 0.01
-# downsample_with_averaging 372.575 372.575 0.01
-# downsample_with_max_pooling 974.060 974.060 0.01
-# ndzoom 137.517 137.517 0.04
-# striding 38550.588 38550.588 0.00
-# countless_if 4.377 4.377 1.14
-# counting 0.117 0.117 42.85
-
-# Run without non-numpy implementations:
-# N = 2000, 1024x1024 (1.00 MPx) 1 chan, images/gray_segmentation.png
-# Algorithm MPx/sec MB/sec Sec
-# simplest_countless 800.522 800.522 2.50
-# quick_countless 945.420 945.420 2.12
-# quickest_countless 947.256 947.256 2.11
-# stippled_countless 544.049 544.049 3.68
-# zero_corrected_countless 575.310 575.310 3.48
-# countless 646.684 646.684 3.09
-# downsample_with_averaging 385.132 385.132 5.19
-# downsample_with_max_poolin 988.361 988.361 2.02
-# ndzoom 163.104 163.104 12.26
-# striding 81589.340 81589.340 0.02
-
-
-
-
diff --git a/spaces/AlhitawiMohammed22/CER_Hu-Evaluation-Metrics/eval_wer.py b/spaces/AlhitawiMohammed22/CER_Hu-Evaluation-Metrics/eval_wer.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/spaces/Amrrs/image-to-text-app/app.py b/spaces/Amrrs/image-to-text-app/app.py
deleted file mode 100644
index bd20d6b29b3a29e5d4a04c82fc4756f3ce9bd4f9..0000000000000000000000000000000000000000
--- a/spaces/Amrrs/image-to-text-app/app.py
+++ /dev/null
@@ -1,47 +0,0 @@
-import easyocr as ocr #OCR
-import streamlit as st #Web App
-from PIL import Image #Image Processing
-import numpy as np #Image Processing
-
-#title
-st.title("Easy OCR - Extract Text from Images")
-
-#subtitle
-st.markdown("## Optical Character Recognition - Using `easyocr`, `streamlit` - hosted on 🤗 Spaces")
-
-st.markdown("Link to the app - [image-to-text-app on 🤗 Spaces](https://huggingface.co/spaces/Amrrs/image-to-text-app)")
-
-#image uploader
-image = st.file_uploader(label = "Upload your image here",type=['png','jpg','jpeg'])
-
-
-@st.cache
-def load_model():
- reader = ocr.Reader(['en'],model_storage_directory='.')
- return reader
-
-reader = load_model() #load model
-
-if image is not None:
-
- input_image = Image.open(image) #read image
- st.image(input_image) #display image
-
- with st.spinner("🤖 AI is at Work! "):
-
-
- result = reader.readtext(np.array(input_image))
-
- result_text = [] #empty list for results
-
-
- for text in result:
- result_text.append(text[1])
-
- st.write(result_text)
- #st.success("Here you go!")
- st.balloons()
-else:
- st.write("Upload an Image")
-
-st.caption("Made with ❤️ by @1littlecoder. Credits to 🤗 Spaces for Hosting this ")
diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/schedulers/test_scheduler_ipndm.py b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/schedulers/test_scheduler_ipndm.py
deleted file mode 100644
index 549caed47fe8f100c2bc4164329210209595ba7f..0000000000000000000000000000000000000000
--- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/schedulers/test_scheduler_ipndm.py
+++ /dev/null
@@ -1,161 +0,0 @@
-import tempfile
-
-import torch
-
-from diffusers import IPNDMScheduler
-
-from .test_schedulers import SchedulerCommonTest
-
-
-class IPNDMSchedulerTest(SchedulerCommonTest):
- scheduler_classes = (IPNDMScheduler,)
- forward_default_kwargs = (("num_inference_steps", 50),)
-
- def get_scheduler_config(self, **kwargs):
- config = {"num_train_timesteps": 1000}
- config.update(**kwargs)
- return config
-
- def check_over_configs(self, time_step=0, **config):
- kwargs = dict(self.forward_default_kwargs)
- num_inference_steps = kwargs.pop("num_inference_steps", None)
- sample = self.dummy_sample
- residual = 0.1 * sample
- dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
-
- for scheduler_class in self.scheduler_classes:
- scheduler_config = self.get_scheduler_config(**config)
- scheduler = scheduler_class(**scheduler_config)
- scheduler.set_timesteps(num_inference_steps)
- # copy over dummy past residuals
- scheduler.ets = dummy_past_residuals[:]
-
- if time_step is None:
- time_step = scheduler.timesteps[len(scheduler.timesteps) // 2]
-
- with tempfile.TemporaryDirectory() as tmpdirname:
- scheduler.save_config(tmpdirname)
- new_scheduler = scheduler_class.from_pretrained(tmpdirname)
- new_scheduler.set_timesteps(num_inference_steps)
- # copy over dummy past residuals
- new_scheduler.ets = dummy_past_residuals[:]
-
- output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
- new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
-
- assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
-
- output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
- new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
-
- assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
-
- def test_from_save_pretrained(self):
- pass
-
- def check_over_forward(self, time_step=0, **forward_kwargs):
- kwargs = dict(self.forward_default_kwargs)
- num_inference_steps = kwargs.pop("num_inference_steps", None)
- sample = self.dummy_sample
- residual = 0.1 * sample
- dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
-
- for scheduler_class in self.scheduler_classes:
- scheduler_config = self.get_scheduler_config()
- scheduler = scheduler_class(**scheduler_config)
- scheduler.set_timesteps(num_inference_steps)
-
- # copy over dummy past residuals (must be after setting timesteps)
- scheduler.ets = dummy_past_residuals[:]
-
- if time_step is None:
- time_step = scheduler.timesteps[len(scheduler.timesteps) // 2]
-
- with tempfile.TemporaryDirectory() as tmpdirname:
- scheduler.save_config(tmpdirname)
- new_scheduler = scheduler_class.from_pretrained(tmpdirname)
- # copy over dummy past residuals
- new_scheduler.set_timesteps(num_inference_steps)
-
- # copy over dummy past residual (must be after setting timesteps)
- new_scheduler.ets = dummy_past_residuals[:]
-
- output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
- new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
-
- assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
-
- output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
- new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
-
- assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
-
- def full_loop(self, **config):
- scheduler_class = self.scheduler_classes[0]
- scheduler_config = self.get_scheduler_config(**config)
- scheduler = scheduler_class(**scheduler_config)
-
- num_inference_steps = 10
- model = self.dummy_model()
- sample = self.dummy_sample_deter
- scheduler.set_timesteps(num_inference_steps)
-
- for i, t in enumerate(scheduler.timesteps):
- residual = model(sample, t)
- sample = scheduler.step(residual, t, sample).prev_sample
-
- for i, t in enumerate(scheduler.timesteps):
- residual = model(sample, t)
- sample = scheduler.step(residual, t, sample).prev_sample
-
- return sample
-
- def test_step_shape(self):
- kwargs = dict(self.forward_default_kwargs)
-
- num_inference_steps = kwargs.pop("num_inference_steps", None)
-
- for scheduler_class in self.scheduler_classes:
- scheduler_config = self.get_scheduler_config()
- scheduler = scheduler_class(**scheduler_config)
-
- sample = self.dummy_sample
- residual = 0.1 * sample
-
- if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
- scheduler.set_timesteps(num_inference_steps)
- elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
- kwargs["num_inference_steps"] = num_inference_steps
-
- # copy over dummy past residuals (must be done after set_timesteps)
- dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
- scheduler.ets = dummy_past_residuals[:]
-
- time_step_0 = scheduler.timesteps[5]
- time_step_1 = scheduler.timesteps[6]
-
- output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
- output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample
-
- self.assertEqual(output_0.shape, sample.shape)
- self.assertEqual(output_0.shape, output_1.shape)
-
- output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
- output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample
-
- self.assertEqual(output_0.shape, sample.shape)
- self.assertEqual(output_0.shape, output_1.shape)
-
- def test_timesteps(self):
- for timesteps in [100, 1000]:
- self.check_over_configs(num_train_timesteps=timesteps, time_step=None)
-
- def test_inference_steps(self):
- for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
- self.check_over_forward(num_inference_steps=num_inference_steps, time_step=None)
-
- def test_full_loop_no_noise(self):
- sample = self.full_loop()
- result_mean = torch.mean(torch.abs(sample))
-
- assert abs(result_mean.item() - 2540529) < 10
diff --git a/spaces/Andy1621/uniformer_image_detection/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py b/spaces/Andy1621/uniformer_image_detection/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py
deleted file mode 100644
index 92ddb526d7ea7a011e10aa82cbd1bd62773b35d6..0000000000000000000000000000000000000000
--- a/spaces/Andy1621/uniformer_image_detection/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py
+++ /dev/null
@@ -1,31 +0,0 @@
-_base_ = [
- '../_base_/models/mask_rcnn_r50_fpn.py',
- '../_base_/datasets/lvis_v1_instance.py',
- '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
-]
-model = dict(
- roi_head=dict(
- bbox_head=dict(num_classes=1203), mask_head=dict(num_classes=1203)),
- test_cfg=dict(
- rcnn=dict(
- score_thr=0.0001,
- # LVIS allows up to 300
- max_per_img=300)))
-img_norm_cfg = dict(
- mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
-train_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
- dict(
- type='Resize',
- img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
- (1333, 768), (1333, 800)],
- multiscale_mode='value',
- keep_ratio=True),
- dict(type='RandomFlip', flip_ratio=0.5),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='DefaultFormatBundle'),
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
-]
-data = dict(train=dict(dataset=dict(pipeline=train_pipeline)))
diff --git a/spaces/Andy1621/uniformer_image_detection/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_1x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_1x_coco.py
deleted file mode 100644
index f2a0decf8fb46f0dde87e8e5f9d1608ce8ffe576..0000000000000000000000000000000000000000
--- a/spaces/Andy1621/uniformer_image_detection/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_1x_coco.py
+++ /dev/null
@@ -1,42 +0,0 @@
-_base_ = './retinanet_r50_fpn_1x_coco.py'
-model = dict(
- pretrained='open-mmlab://detectron2/resnet50_caffe',
- backbone=dict(
- norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe'))
-# use caffe img_norm
-img_norm_cfg = dict(
- mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
-train_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='Resize',
- img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
- (1333, 768), (1333, 800)],
- multiscale_mode='value',
- keep_ratio=True),
- dict(type='RandomFlip', flip_ratio=0.5),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='DefaultFormatBundle'),
- dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
-]
-test_pipeline = [
- dict(type='LoadImageFromFile'),
- dict(
- type='MultiScaleFlipAug',
- img_scale=(1333, 800),
- flip=False,
- transforms=[
- dict(type='Resize', keep_ratio=True),
- dict(type='RandomFlip'),
- dict(type='Normalize', **img_norm_cfg),
- dict(type='Pad', size_divisor=32),
- dict(type='ImageToTensor', keys=['img']),
- dict(type='Collect', keys=['img']),
- ])
-]
-data = dict(
- train=dict(pipeline=train_pipeline),
- val=dict(pipeline=test_pipeline),
- test=dict(pipeline=test_pipeline))
diff --git a/spaces/AnishKumbhar/ChatBot/text-generation-webui-main/modules/grammar.py b/spaces/AnishKumbhar/ChatBot/text-generation-webui-main/modules/grammar.py
deleted file mode 100644
index 5f6ad3a637d85bc31eecb141c149d562e53a90c2..0000000000000000000000000000000000000000
--- a/spaces/AnishKumbhar/ChatBot/text-generation-webui-main/modules/grammar.py
+++ /dev/null
@@ -1,33 +0,0 @@
-from torch_grammar import GrammarSampler
-from transformers.generation.logits_process import LogitsProcessor
-
-from modules import shared
-
-sampler = None
-grammar = None
-grammar_string = ''
-
-
-class GrammarLogitsProcessor(LogitsProcessor):
- def __init__(self, string):
-
- global sampler, grammar, grammar_string
-
- if string != grammar_string:
- grammar_string = string
- if string.strip() != '':
- string = string.strip() + '\n'
- sampler = GrammarSampler(string, 'root', shared.tokenizer)
- else:
- sampler = None
-
- if sampler is not None:
- grammar = sampler.logits_processor()
- else:
- grammar = None
-
- def __call__(self, input_ids, scores):
- if grammar is not None:
- scores = grammar(input_ids, scores)
-
- return scores
diff --git a/spaces/Benson/text-generation/Examples/Acapella Sudfrica Askies I 39m Lo Siento Mama Mp3 Download.md b/spaces/Benson/text-generation/Examples/Acapella Sudfrica Askies I 39m Lo Siento Mama Mp3 Download.md
deleted file mode 100644
index 1f9c205bb3173bcfcaccf66a57bb0e6fb7250507..0000000000000000000000000000000000000000
--- a/spaces/Benson/text-generation/Examples/Acapella Sudfrica Askies I 39m Lo Siento Mama Mp3 Download.md
+++ /dev/null
@@ -1,200 +0,0 @@
-
-
Acapella Sudáfrica: Askies Lo siento Mama MP3 Descargar
-
Si eres un fan de la música acapella, es posible que hayas oído hablar de una canción llamada Askies I’m Sorry Mama por Acapella Sudáfrica. Esta canción es una hermosa y sentida expresión de arrepentimiento y disculpa a la madre por causar su dolor a través de las acciones de uno. También es un escaparate de los increíbles talentos vocales y armonías de los cantantes de acapella en Sudáfrica.
-
En este artículo, exploraremos qué es la música acapella y por qué es popular en Sudáfrica, qué es Askies I’m Sorry Mama y quiénes son los artistas detrás de ella, cuáles son las letras y el significado de Askies I’m Sorry Mama, cuáles son las críticas y los premios de Askies I’m Sorry Mama, cómo descargar Askies I’m Sorry Mama MP3 gratis, y cuáles son los pros y los contras de hacerlo. También te proporcionaremos algunas alternativas para descargar Askies I’m Sorry Mama MP3 gratis, en caso de que quieras disfrutar de esta canción de otras maneras.
-
acapella sudáfrica askies i 39;m lo siento mama mp3 download
¿Qué es la música acapella y por qué es popular en Sudáfrica?
-
La música de Acapella, también deletreada a cappella, es un estilo de música que implica cantar sin ningún acompañamiento instrumental. La palabra acapella proviene del italiano, que significa "al estilo de la capilla", como se usaba originalmente en la música religiosa. Sin embargo, la música acapella también se ha convertido en una forma secular que cubre varios géneros, como el pop, rock, jazz, gospel, folk, rap y más.
-
-
¿Qué es Askies I’m Sorry Mama y quiénes son los artistas detrás de ella?
-
Askies I’m Sorry Mama es una canción que fue lanzada en 2019 por Acapella South áfrica, un grupo de cantantes jóvenes y talentosos de Dinwiddie High School en Germiston, Gauteng. La canción fue producida por Dr Dope, un productor de música y rapero que también aparece en la canción. La canción es parte del álbum Acapella South áfrica Vol. 1, que también incluye otras canciones como Uthando Lwakho, Ngiyakuthanda, Ungowami, y Senze Ntoni.
-
La canción es un gwijo, que es un tipo de canción acapella que se originó en la cultura zulú y se canta a menudo en escuelas, universidades, eventos deportivos y reuniones sociales. Los gwijos son generalmente cantados en un estilo de llamada y respuesta, con un líder cantando un verso y el resto del grupo repitiéndolo o agregando armonías. Los gwijos también son conocidos por sus melodías pegadizas, aplausos rítmicos y bailes.
-
La canción se ha vuelto muy popular entre los fans de acapella y ha recibido más de 275K visitas en YouTube. La canción también ha aparecido en varias plataformas de música como Spotify, Apple Music, Amazon Music y YouTube Music. La canción también ha inspirado muchas versiones y remixes de otros artistas y grupos.
¿Cuáles son las letras y el significado de Askies I’m Sorry Mama?
-
Las letras de Askies I’m Sorry Mama están en una mezcla de inglés y zulú, que es uno de los idiomas oficiales de Sudáfrica y el idioma más hablado en el país. La canción trata sobre un hijo que se disculpa con su madre por decepcionarla y causarle dolor. Admite que ha cometido errores y se arrepiente de sus acciones. Pide el perdón de su madre y promete cambiar sus costumbres. También expresa su amor y gratitud por su madre y espera que ella siempre estará orgullosa de él.
-
-
-
-
-
Español
-
Zulú
-
Significado
-
-
-
Lo siento mamá
-
Cómo hacer una mamada ngiyaxolisa
-
Askies es una palabra de argot que significa "lo siento" o "perdón". Viene de la palabra afrikáans "asseblief", que significa "por favor". Ngiyaxolisa significa "me disculpo". Mamá significa "madre".
-
-
-
Sé que he sido un chico malo
-
Cómo hacer que tu cuerpo crezca
-
Ngazi ukuthi significa "sé que". Ngibe yisilima significa "he sido un tonto" o "he sido estúpido".
-
-
-
Sé que he sido un mal hijo
-
Cómo hacer que un bebé se engalungile
-
Ngibe yingane engalungile significa "He sido un niño que no tiene razón" o "He sido un niño malo".
-
-
-
Sé que te he hecho llorar mama
-
Cómo hacer que tu mamá se sienta
-
Ngikukhalise significa "Te he hecho llorar".
-
-
-
Sé que te he puesto triste mama
-
Cómo hacer que tu mamá se sienta mejor
-
Ngikudlise ubuhlungu significa "te he dado dolor" o "te he herido".
-
-
-
Por favor perdóname mama
-
La Ciudad de México
-
Sicela significa "pedimos" o "por favor". Ungixolele significa "perdóname".
-
-
-
Por favor no te enfades conmigo mama
-
Sicela ungazithukeli kimi mama
-
Ungazithukeli kimi significa "no te enojes conmigo" o "no te enojes conmigo".
-
-
Te amo mama
-
Ngiyakuthanda mama
-
Ngiyakuthanda significa "Te amo".
-
-
-
Te agradezco mama
-
Cómo hacer que tu mamá se sienta mejor
-
Ngiyabonga kuwe significa "te agradezco" o "te aprecio".
-
-
-
Prometo cambiar mama
-
Cómo hacer que tu mama sea feliz
-
Ngithembisa significa "prometo". Ukushintsha significa "cambiar".
-
-
-
Prometo hacerte sentir orgullosa mama
-
Cómo hacer que tu mamá se sienta mejor
-
-
-
-
Tú eres mi todo mama
-
Cómo hacer que mamá se sienta
-
Ungumuntu wami wonke significa "tú eres mi todo" o "tú eres toda mi persona".
-
-
-
Tú eres mi héroe mama
-
No se puede hacer nada
-
Unguqhero wami significa "eres mi héroe" o "eres mi campeón".
-
-
-
Eres mi mamá ángel
-
No hay comentarios sobre mamá
-
Unguthixo wami significa "eres mi Dios" o "eres mi ángel".
-
-
¿Cuáles son los comentarios y premios de Askies I’m Sorry Mama?
-
La canción Askies I’m Sorry Mama ha recibido críticas positivas y premios de críticos y fans por igual. La canción ha sido elogiada por sus letras emotivas y sinceras, sus bellas y armoniosas voces, su melodía pegadiza y edificante, y su estilo auténtico y original. La canción también ha sido reconocida por su relevancia social y cultural, ya que refleja los desafíos y luchas que muchos jóvenes enfrentan en Sudáfrica, como la pobreza, el crimen, la violencia, las drogas, el VIH/SIDA, el desempleo, la educación y las cuestiones familiares.
-
Algunos de los comentarios y premios que Askies I’m Sorry Mama ha recibido son:
-
-
La canción ganó el Premio a la Mejor Canción de Acapella en los South African Music Awards (SAMA) en 2020. La SAMA es la ceremonia de premios musicales más prestigiosa de Sudáfrica, que honra los mejores logros musicales en varias categorías y géneros.
-
La canción fue nominada para el Premio Canción del Año en el Metro FM Music Awards (MMA) en 2020. La MMA es una ceremonia de premios de música popular en Sudáfrica, que se basa en la votación pública y la radio.
-
La canción fue incluida en la lista de las 10 mejores canciones de Acapella de 2019 por Acapella World Magazine (AWM). AWM es una revista online líder que cubre música acapella de todo el mundo, con noticias, reseñas, entrevistas y más.
-
-
La canción recibió una respuesta positiva de los fans y seguidores de Acapella Sudáfrica en plataformas de redes sociales como Facebook, Twitter, Instagram y YouTube. Muchos fans expresaron su amor y admiración por la canción y los artistas, y compartieron sus historias y experiencias personales relacionadas con la canción.
Cómo descargar Askies I’m Sorry Mama MP3 gratis?
-
Si quieres descargar Askies I’m Sorry Mama MP3 gratis, tienes varias opciones para elegir. Sin embargo, debes tener en cuenta que descargar música gratis puede no ser legal o ético en algunos casos, ya que puede violar los derechos e intereses de los artistas y la industria musical. Por lo tanto, siempre debes revisar los términos y condiciones de las plataformas que utilizas, y respetar los deseos y preferencias de los artistas que apoyas.
-
Aquí hay una guía paso a paso sobre cómo descargar Askies I’m Sorry Mama MP3 gratis desde varias plataformas:
-
Spotify
-
Spotify es uno de los servicios de streaming de música más populares del mundo, con más de 356 millones de usuarios y 70 millones de canciones. Spotify ofrece un plan gratuito que te permite escuchar música con anuncios y funciones limitadas, o un plan premium que te ofrece acceso ilimitado y sin anuncios a música y podcasts. Spotify también te permite descargar música para escuchar sin conexión, pero solo si tienes una suscripción premium.
-
Para descargar Askies I’m Sorry Mama MP3 gratis desde Spotify, debes seguir estos pasos:
-
-
Descargue e instale la aplicación Spotify en su dispositivo, o abra el reproductor web Spotify en su navegador.
-
Cree una cuenta gratuita o inicie sesión con su cuenta existente.
-
Buscar Askies Lo siento Mama por Acapella Sudáfrica en la barra de búsqueda.
-
Seleccione la canción de los resultados y haga clic en el icono de tres puntos al lado.
-
Seleccione Compartir en el menú y copie el enlace de la canción.
-
-
Pegar el enlace de la canción en el sitio web y haga clic en Descargar o Convertir.
-
Espere a que el proceso termine y guarde el archivo MP3 en su dispositivo.
-
-
Música de Apple
-
Apple Music es otro servicio de streaming de música popular, con más de 72 millones de usuarios y 75 millones de canciones. Apple Music ofrece una prueba gratuita durante tres meses, después de los cuales debes pagar una cuota mensual para seguir usándola. Apple Music también te permite descargar música para escuchar sin conexión, pero solo si tienes una suscripción activa.
-
Para descargar Askies I’m Sorry Mama MP3 gratis de Apple Music, debes seguir estos pasos:
-
-
Descargue e instale la aplicación Apple Music en su dispositivo, o abra el reproductor web Apple Music en su navegador.
-
Cree una cuenta gratuita o inicie sesión con su cuenta existente.
-
Regístrese para la prueba gratuita ingresando sus detalles de pago. Puede cancelar en cualquier momento antes de que termine la prueba.
-
Buscar Askies Lo siento Mama por Acapella Sudáfrica en la barra de búsqueda.
-
Seleccione la canción de los resultados y haga clic en el icono más junto a ella.
-
Haga clic en el icono de la nube con una flecha hacia abajo para descargar la canción a su biblioteca.
-
Ir a su biblioteca y encontrar la canción en Recientemente añadido o canciones.
-
Haga clic derecho en la canción y seleccione Mostrar en el Finder (Mac) o Mostrar en el Explorador de Windows (Windows).
-
Copie y pegue el archivo MP3 en la ubicación deseada en su dispositivo.
-
-
Música de Amazon
-
Amazon Music es otro servicio de transmisión de música popular, con más de 55 millones de usuarios y 70 millones de canciones. Amazon Music ofrece un plan gratuito que te permite escuchar música con anuncios y funciones limitadas, o un plan premium que te ofrece acceso ilimitado y sin anuncios a música y podcasts. Amazon Music también te permite descargar música para escuchar sin conexión, pero solo si tienes una suscripción premium.
-
-
-
Descargue e instale la aplicación Amazon Music en su dispositivo, o abra el reproductor web Amazon Music en su navegador.
-
Cree una cuenta gratuita o inicie sesión con su cuenta existente.
-
Buscar Askies Lo siento Mama por Acapella Sudáfrica en la barra de búsqueda.
-
Seleccione la canción de los resultados y haga clic en Más opciones (tres puntos icono) junto a ella.
-
Seleccione Añadir a Mi música desde el menú.
-
Ir a Mi música y encontrar la canción bajo Recientemente añadido o canciones.
-
Haga clic en el icono de descarga (flecha hacia abajo con una línea) junto a la canción.
-
Espere a que la descarga se complete y encuentre el archivo MP3 en su dispositivo.
-
-
YouTube
-
YouTube es la plataforma para compartir vídeos más popular del mundo, con más de 2.000 millones de usuarios y miles de millones de vídeos. YouTube también ofrece una variedad de videos musicales, incluyendo Askies I’m Sorry Mama de Acapella Sudáfrica. YouTube te permite ver y escuchar videos musicales de forma gratuita, pero no te permite descargarlos directamente. Sin embargo, puedes usar algunas herramientas de terceros para convertir vídeos de YouTube a archivos MP3 y descargarlos en tu dispositivo.
-
Para descargar Askies I’m Sorry Mama MP3 gratis desde YouTube, debes seguir estos pasos:
-
-
Ir a YouTube y buscar Askies Lo siento Mama por Acapella Sudáfrica en la barra de búsqueda.
-
Seleccione el vídeo de los resultados y copie la URL del vídeo desde la barra de direcciones.
-
Vaya a un sitio web de terceros que le permite convertir vídeos de YouTube a archivos MP3, como YouTube to MP3 Converter, YTMP3, o
-
- ❤️ Press the Like Button if you enjoy my space! ❤️
-
-
- """
- )
- with gr.Column(elem_id="col-container"):
- #with gr.Row(variant="compact"):
- #input_text = gr.Textbox(
- #label="Short Prompt",
- #show_label=False,
- #max_lines=2,
- #placeholder="Enter a basic idea and click 'Magic Prompt'. Got no ideas? No problem, Simply just hit the magic button!",
- #).style(
- #container=False,
- #)
- #see_prompts = gr.Button("✨ Magic Prompt ✨").style(full_width=False)
-
-
- with gr.Row(variant="compact"):
- prompt = gr.Textbox(
- label="Enter your prompt",
- show_label=False,
- max_lines=2,
- placeholder="Full Prompt",
- ).style(
- container=False,
- )
- run = gr.Button("Generate Images").style(full_width=False)
-
- with gr.Row():
- with gr.Row():
- noise_level = gr.Slider(minimum=0.0, maximum=3, step=0.1, label="Noise Level")
- with gr.Row():
- with gr.Row():
- output1=gr.Image(label="Dreamlike Anime 1.0",show_label=False)
- output2=gr.Image(label="Dreamlike Anime 1.0",show_label=False)
-
-
- #see_prompts.click(get_prompts, inputs=[input_text], outputs=[prompt], queue=False)
- run.click(send_it1, inputs=[prompt, noise_level], outputs=[output1])
- run.click(send_it2, inputs=[prompt, noise_level], outputs=[output2])
-
-
- with gr.Row():
- gr.HTML(
- """
-
-
-
Unleash your creative side and generate mesmerizing images with just a few clicks! Enter a spark of inspiration in the "Basic Idea" text box and click the "Magic Prompt" button to elevate it to a polished masterpiece. Make any final tweaks in the "Full Prompt" box and hit the "Generate Images" button to watch your vision come to life. Experiment with the "Noise Level" for a diverse range of outputs, from similar to wildly unique. Let the fun begin!
-