diff --git "a/spaces/CVPR/LIVE/thrust/thrust/set_operations.h" "b/spaces/CVPR/LIVE/thrust/thrust/set_operations.h" deleted file mode 100644--- "a/spaces/CVPR/LIVE/thrust/thrust/set_operations.h" +++ /dev/null @@ -1,2963 +0,0 @@ -/* - * Copyright 2008-2013 NVIDIA Corporation - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - - -/*! \file set_operations.h - * \brief Set theoretic operations for sorted ranges - */ - -#pragma once - -#include -#include -#include - -namespace thrust -{ - - -/*! \addtogroup set_operations Set Operations - * \ingroup algorithms - * \{ - */ - - -/*! \p set_difference constructs a sorted range that is the set difference of the sorted - * ranges [first1, last1) and [first2, last2). The return value is the - * end of the output range. - * - * In the simplest case, \p set_difference performs the "difference" operation from set - * theory: the output range contains a copy of every element that is contained in - * [first1, last1) and not contained in [first2, last1). The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements - * that are equivalent to each other and if [first2, last2) contains \c n - * elements that are equivalent to them, the last max(m-n,0) elements from - * [first1, last1) range shall be copied to the output range. - * - * This version of \p set_difference compares elements using \c operator<. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \return The end of the output range. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to operator<. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_difference to compute the - * set difference of two sets of integers sorted in ascending order using the \p thrust::host execution - * policy for parallelization: - * - * \code - * #include - * #include - * ... - * int A1[6] = {0, 1, 3, 4, 5, 6, 9}; - * int A2[5] = {1, 3, 5, 7, 9}; - * - * int result[3]; - * - * int *result_end = thrust::set_difference(thrust::host, A1, A1 + 6, A2, A2 + 5, result); - * // result is now {0, 4, 6} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_difference.html - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template -__host__ __device__ - OutputIterator set_difference(const thrust::detail::execution_policy_base &exec, - InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result); - - -/*! \p set_difference constructs a sorted range that is the set difference of the sorted - * ranges [first1, last1) and [first2, last2). The return value is the - * end of the output range. - * - * In the simplest case, \p set_difference performs the "difference" operation from set - * theory: the output range contains a copy of every element that is contained in - * [first1, last1) and not contained in [first2, last1). The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements - * that are equivalent to each other and if [first2, last2) contains \c n - * elements that are equivalent to them, the last max(m-n,0) elements from - * [first1, last1) range shall be copied to the output range. - * - * This version of \p set_difference compares elements using \c operator<. - * - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \return The end of the output range. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to operator<. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_difference to compute the - * set difference of two sets of integers sorted in ascending order. - * - * \code - * #include - * ... - * int A1[6] = {0, 1, 3, 4, 5, 6, 9}; - * int A2[5] = {1, 3, 5, 7, 9}; - * - * int result[3]; - * - * int *result_end = thrust::set_difference(A1, A1 + 6, A2, A2 + 5, result); - * // result is now {0, 4, 6} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_difference.html - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template - OutputIterator set_difference(InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result); - - -/*! \p set_difference constructs a sorted range that is the set difference of the sorted - * ranges [first1, last1) and [first2, last2). The return value is the - * end of the output range. - * - * In the simplest case, \p set_difference performs the "difference" operation from set - * theory: the output range contains a copy of every element that is contained in - * [first1, last1) and not contained in [first2, last1). The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements - * that are equivalent to each other and if [first2, last2) contains \c n - * elements that are equivalent to them, the last max(m-n,0) elements from - * [first1, last1) range shall be copied to the output range. - * - * This version of \p set_difference compares elements using a function object \p comp. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \param comp Comparison operator. - * \return The end of the output range. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1's \c value_type is convertable to \p StrictWeakCompare's \c first_argument_type. - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2's \c value_type is convertable to \p StrictWeakCompare's \c second_argument_type. - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to \p comp. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_difference to compute the - * set difference of two sets of integers sorted in descending order using the \p thrust::host execution - * policy for parallelization: - * - * \code - * #include - * #include - * #include - * ... - * int A1[6] = {9, 6, 5, 4, 3, 1, 0}; - * int A2[5] = {9, 7, 5, 3, 1}; - * - * int result[3]; - * - * int *result_end = thrust::set_difference(thrust::host, A1, A1 + 6, A2, A2 + 5, result, thrust::greater()); - * // result is now {6, 4, 0} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_difference.html - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template -__host__ __device__ - OutputIterator set_difference(const thrust::detail::execution_policy_base &exec, - InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result, - StrictWeakCompare comp); - - -/*! \p set_difference constructs a sorted range that is the set difference of the sorted - * ranges [first1, last1) and [first2, last2). The return value is the - * end of the output range. - * - * In the simplest case, \p set_difference performs the "difference" operation from set - * theory: the output range contains a copy of every element that is contained in - * [first1, last1) and not contained in [first2, last1). The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements - * that are equivalent to each other and if [first2, last2) contains \c n - * elements that are equivalent to them, the last max(m-n,0) elements from - * [first1, last1) range shall be copied to the output range. - * - * This version of \p set_difference compares elements using a function object \p comp. - * - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \param comp Comparison operator. - * \return The end of the output range. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1's \c value_type is convertable to \p StrictWeakCompare's \c first_argument_type. - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2's \c value_type is convertable to \p StrictWeakCompare's \c second_argument_type. - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to \p comp. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_difference to compute the - * set difference of two sets of integers sorted in descending order. - * - * \code - * #include - * #include - * ... - * int A1[6] = {9, 6, 5, 4, 3, 1, 0}; - * int A2[5] = {9, 7, 5, 3, 1}; - * - * int result[3]; - * - * int *result_end = thrust::set_difference(A1, A1 + 6, A2, A2 + 5, result, thrust::greater()); - * // result is now {6, 4, 0} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_difference.html - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template - OutputIterator set_difference(InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result, - StrictWeakCompare comp); - - -/*! \p set_intersection constructs a sorted range that is the - * intersection of sorted ranges [first1, last1) and - * [first2, last2). The return value is the end of the - * output range. - * - * In the simplest case, \p set_intersection performs the - * "intersection" operation from set theory: the output range - * contains a copy of every element that is contained in both - * [first1, last1) and [first2, last2). The - * general case is more complicated, because the input ranges may - * contain duplicate elements. The generalization is that if a value - * appears \c m times in [first1, last1) and \c n times in - * [first2, last2) (where \c m may be zero), then it - * appears min(m,n) times in the output range. - * \p set_intersection is stable, meaning that both elements are - * copied from the first range rather than the second, and that the - * relative order of elements in the output range is the same as in - * the first input range. - * - * This version of \p set_intersection compares objects using - * \c operator<. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \return The end of the output range. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to operator<. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_intersection to compute the - * set intersection of two sets of integers sorted in ascending order using the \p thrust::host execution - * policy for parallelization: - * - * \code - * #include - * #include - * ... - * int A1[6] = {1, 3, 5, 7, 9, 11}; - * int A2[7] = {1, 1, 2, 3, 5, 8, 13}; - * - * int result[7]; - * - * int *result_end = thrust::set_intersection(thrust::host, A1, A1 + 6, A2, A2 + 7, result); - * // result is now {1, 3, 5} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_intersection.html - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template -__host__ __device__ - OutputIterator set_intersection(const thrust::detail::execution_policy_base &exec, - InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result); - - -/*! \p set_intersection constructs a sorted range that is the - * intersection of sorted ranges [first1, last1) and - * [first2, last2). The return value is the end of the - * output range. - * - * In the simplest case, \p set_intersection performs the - * "intersection" operation from set theory: the output range - * contains a copy of every element that is contained in both - * [first1, last1) and [first2, last2). The - * general case is more complicated, because the input ranges may - * contain duplicate elements. The generalization is that if a value - * appears \c m times in [first1, last1) and \c n times in - * [first2, last2) (where \c m may be zero), then it - * appears min(m,n) times in the output range. - * \p set_intersection is stable, meaning that both elements are - * copied from the first range rather than the second, and that the - * relative order of elements in the output range is the same as in - * the first input range. - * - * This version of \p set_intersection compares objects using - * \c operator<. - * - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \return The end of the output range. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to operator<. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_intersection to compute the - * set intersection of two sets of integers sorted in ascending order. - * - * \code - * #include - * ... - * int A1[6] = {1, 3, 5, 7, 9, 11}; - * int A2[7] = {1, 1, 2, 3, 5, 8, 13}; - * - * int result[7]; - * - * int *result_end = thrust::set_intersection(A1, A1 + 6, A2, A2 + 7, result); - * // result is now {1, 3, 5} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_intersection.html - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template - OutputIterator set_intersection(InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result); - - -/*! \p set_intersection constructs a sorted range that is the - * intersection of sorted ranges [first1, last1) and - * [first2, last2). The return value is the end of the - * output range. - * - * In the simplest case, \p set_intersection performs the - * "intersection" operation from set theory: the output range - * contains a copy of every element that is contained in both - * [first1, last1) and [first2, last2). The - * general case is more complicated, because the input ranges may - * contain duplicate elements. The generalization is that if a value - * appears \c m times in [first1, last1) and \c n times in - * [first2, last2) (where \c m may be zero), then it - * appears min(m,n) times in the output range. - * \p set_intersection is stable, meaning that both elements are - * copied from the first range rather than the second, and that the - * relative order of elements in the output range is the same as in - * the first input range. - * - * This version of \p set_intersection compares elements using a function object \p comp. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \param comp Comparison operator. - * \return The end of the output range. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to \p comp. - * \pre The resulting range shall not overlap with either input range. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * The following code snippet demonstrates how to use \p set_intersection to compute - * the set intersection of sets of integers sorted in descending order using the \p thrust::host execution - * policy for parallelization: - * - * \code - * #include - * #include - * ... - * int A1[6] = {11, 9, 7, 5, 3, 1}; - * int A2[7] = {13, 8, 5, 3, 2, 1, 1}; - * - * int result[3]; - * - * int *result_end = thrust::set_intersection(thrust::host, A1, A1 + 6, A2, A2 + 7, result, thrust::greater()); - * // result is now {5, 3, 1} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_intersection.html - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template -__host__ __device__ - OutputIterator set_intersection(const thrust::detail::execution_policy_base &exec, - InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result, - StrictWeakCompare comp); - - -/*! \p set_intersection constructs a sorted range that is the - * intersection of sorted ranges [first1, last1) and - * [first2, last2). The return value is the end of the - * output range. - * - * In the simplest case, \p set_intersection performs the - * "intersection" operation from set theory: the output range - * contains a copy of every element that is contained in both - * [first1, last1) and [first2, last2). The - * general case is more complicated, because the input ranges may - * contain duplicate elements. The generalization is that if a value - * appears \c m times in [first1, last1) and \c n times in - * [first2, last2) (where \c m may be zero), then it - * appears min(m,n) times in the output range. - * \p set_intersection is stable, meaning that both elements are - * copied from the first range rather than the second, and that the - * relative order of elements in the output range is the same as in - * the first input range. - * - * This version of \p set_intersection compares elements using a function object \p comp. - * - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \param comp Comparison operator. - * \return The end of the output range. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to \p comp. - * \pre The resulting range shall not overlap with either input range. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * The following code snippet demonstrates how to use \p set_intersection to compute - * the set intersection of sets of integers sorted in descending order. - * - * \code - * #include - * ... - * int A1[6] = {11, 9, 7, 5, 3, 1}; - * int A2[7] = {13, 8, 5, 3, 2, 1, 1}; - * - * int result[3]; - * - * int *result_end = thrust::set_intersection(A1, A1 + 6, A2, A2 + 7, result, thrust::greater()); - * // result is now {5, 3, 1} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_intersection.html - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template - OutputIterator set_intersection(InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result, - StrictWeakCompare comp); - - -/*! \p set_symmetric_difference constructs a sorted range that is the set symmetric - * difference of the sorted ranges [first1, last1) and [first2, last2). - * The return value is the end of the output range. - * - * In the simplest case, \p set_symmetric_difference performs a set theoretic calculation: - * it constructs the union of the two sets A - B and B - A, where A and B are the two - * input ranges. That is, the output range contains a copy of every element that is - * contained in [first1, last1) but not [first2, last1), and a copy of - * every element that is contained in [first2, last2) but not [first1, last1). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements that are - * equivalent to each other and [first2, last1) contains \c n elements that are - * equivalent to them, then |m - n| of those elements shall be copied to the output - * range: the last m - n elements from [first1, last1) if m > n, and - * the last n - m of these elements from [first2, last2) if m < n. - * - * This version of \p set_union compares elements using \c operator<. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \return The end of the output range. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to operator<. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference to compute - * the symmetric difference of two sets of integers sorted in ascending order using the \p thrust::host - * execution policy for parallelization: - * - * \code - * #include - * #include - * ... - * int A1[6] = {0, 1, 2, 2, 4, 6, 7}; - * int A2[5] = {1, 1, 2, 5, 8}; - * - * int result[6]; - * - * int *result_end = thrust::set_symmetric_difference(thrust::host, A1, A1 + 6, A2, A2 + 5, result); - * // result = {0, 4, 5, 6, 7, 8} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_symmetric_difference.html - * \see \p merge - * \see \p includes - * \see \p set_difference - * \see \p set_union - * \see \p set_intersection - * \see \p sort - * \see \p is_sorted - */ -template -__host__ __device__ - OutputIterator set_symmetric_difference(const thrust::detail::execution_policy_base &exec, - InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result); - - -/*! \p set_symmetric_difference constructs a sorted range that is the set symmetric - * difference of the sorted ranges [first1, last1) and [first2, last2). - * The return value is the end of the output range. - * - * In the simplest case, \p set_symmetric_difference performs a set theoretic calculation: - * it constructs the union of the two sets A - B and B - A, where A and B are the two - * input ranges. That is, the output range contains a copy of every element that is - * contained in [first1, last1) but not [first2, last1), and a copy of - * every element that is contained in [first2, last2) but not [first1, last1). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements that are - * equivalent to each other and [first2, last1) contains \c n elements that are - * equivalent to them, then |m - n| of those elements shall be copied to the output - * range: the last m - n elements from [first1, last1) if m > n, and - * the last n - m of these elements from [first2, last2) if m < n. - * - * This version of \p set_union compares elements using \c operator<. - * - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \return The end of the output range. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to operator<. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference to compute - * the symmetric difference of two sets of integers sorted in ascending order. - * - * \code - * #include - * ... - * int A1[6] = {0, 1, 2, 2, 4, 6, 7}; - * int A2[5] = {1, 1, 2, 5, 8}; - * - * int result[6]; - * - * int *result_end = thrust::set_symmetric_difference(A1, A1 + 6, A2, A2 + 5, result); - * // result = {0, 4, 5, 6, 7, 8} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_symmetric_difference.html - * \see \p merge - * \see \p includes - * \see \p set_difference - * \see \p set_union - * \see \p set_intersection - * \see \p sort - * \see \p is_sorted - */ -template - OutputIterator set_symmetric_difference(InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result); - - -/*! \p set_symmetric_difference constructs a sorted range that is the set symmetric - * difference of the sorted ranges [first1, last1) and [first2, last2). - * The return value is the end of the output range. - * - * In the simplest case, \p set_symmetric_difference performs a set theoretic calculation: - * it constructs the union of the two sets A - B and B - A, where A and B are the two - * input ranges. That is, the output range contains a copy of every element that is - * contained in [first1, last1) but not [first2, last1), and a copy of - * every element that is contained in [first2, last2) but not [first1, last1). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements that are - * equivalent to each other and [first2, last1) contains \c n elements that are - * equivalent to them, then |m - n| of those elements shall be copied to the output - * range: the last m - n elements from [first1, last1) if m > n, and - * the last n - m of these elements from [first2, last2) if m < n. - * - * This version of \p set_union compares elements using a function object \p comp. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \param comp Comparison operator. - * \return The end of the output range. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to \p comp. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference to compute - * the symmetric difference of two sets of integers sorted in descending order using the \p thrust::host - * execution policy for parallelization: - * - * \code - * #include - * #include - * ... - * int A1[6] = {7, 6, 4, 2, 2, 1, 0}; - * int A2[5] = {8, 5, 2, 1, 1}; - * - * int result[6]; - * - * int *result_end = thrust::set_symmetric_difference(thrust::host, A1, A1 + 6, A2, A2 + 5, result); - * // result = {8, 7, 6, 5, 4, 0} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_symmetric_difference.html - * \see \p merge - * \see \p includes - * \see \p set_difference - * \see \p set_union - * \see \p set_intersection - * \see \p sort - * \see \p is_sorted - */ -template -__host__ __device__ - OutputIterator set_symmetric_difference(const thrust::detail::execution_policy_base &exec, - InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result, - StrictWeakCompare comp); - - -/*! \p set_symmetric_difference constructs a sorted range that is the set symmetric - * difference of the sorted ranges [first1, last1) and [first2, last2). - * The return value is the end of the output range. - * - * In the simplest case, \p set_symmetric_difference performs a set theoretic calculation: - * it constructs the union of the two sets A - B and B - A, where A and B are the two - * input ranges. That is, the output range contains a copy of every element that is - * contained in [first1, last1) but not [first2, last1), and a copy of - * every element that is contained in [first2, last2) but not [first1, last1). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements that are - * equivalent to each other and [first2, last1) contains \c n elements that are - * equivalent to them, then |m - n| of those elements shall be copied to the output - * range: the last m - n elements from [first1, last1) if m > n, and - * the last n - m of these elements from [first2, last2) if m < n. - * - * This version of \p set_union compares elements using a function object \p comp. - * - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \param comp Comparison operator. - * \return The end of the output range. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to \p comp. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference to compute - * the symmetric difference of two sets of integers sorted in descending order. - * - * \code - * #include - * ... - * int A1[6] = {7, 6, 4, 2, 2, 1, 0}; - * int A2[5] = {8, 5, 2, 1, 1}; - * - * int result[6]; - * - * int *result_end = thrust::set_symmetric_difference(A1, A1 + 6, A2, A2 + 5, result); - * // result = {8, 7, 6, 5, 4, 0} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_symmetric_difference.html - * \see \p merge - * \see \p includes - * \see \p set_difference - * \see \p set_union - * \see \p set_intersection - * \see \p sort - * \see \p is_sorted - */ -template - OutputIterator set_symmetric_difference(InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result, - StrictWeakCompare comp); - - -/*! \p set_union constructs a sorted range that is the union of the sorted ranges - * [first1, last1) and [first2, last2). The return value is the - * end of the output range. - * - * In the simplest case, \p set_union performs the "union" operation from set - * theory: the output range contains a copy of every element that is contained in - * [first1, last1), [first2, last1), or both. The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements - * that are equivalent to each other and if [first2, last2) contains \c n - * elements that are equivalent to them, then all \c m elements from the first - * range shall be copied to the output range, in order, and then max(n - m, 0) - * elements from the second range shall be copied to the output, in order. - * - * This version of \p set_union compares elements using \c operator<. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \return The end of the output range. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to operator<. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_union to compute the union of - * two sets of integers sorted in ascending order using the \p thrust::host execution policy for - * parallelization: - * - * \code - * #include - * #include - * ... - * int A1[7] = {0, 2, 4, 6, 8, 10, 12}; - * int A2[5] = {1, 3, 5, 7, 9}; - * - * int result[11]; - * - * int *result_end = thrust::set_union(thrust::host, A1, A1 + 7, A2, A2 + 5, result); - * // result = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_union.html - * \see \p merge - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template -__host__ __device__ - OutputIterator set_union(const thrust::detail::execution_policy_base &exec, - InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result); - - -/*! \p set_union constructs a sorted range that is the union of the sorted ranges - * [first1, last1) and [first2, last2). The return value is the - * end of the output range. - * - * In the simplest case, \p set_union performs the "union" operation from set - * theory: the output range contains a copy of every element that is contained in - * [first1, last1), [first2, last1), or both. The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements - * that are equivalent to each other and if [first2, last2) contains \c n - * elements that are equivalent to them, then all \c m elements from the first - * range shall be copied to the output range, in order, and then max(n - m, 0) - * elements from the second range shall be copied to the output, in order. - * - * This version of \p set_union compares elements using \c operator<. - * - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \return The end of the output range. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to operator<. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_union to compute the union of - * two sets of integers sorted in ascending order. - * - * \code - * #include - * ... - * int A1[7] = {0, 2, 4, 6, 8, 10, 12}; - * int A2[5] = {1, 3, 5, 7, 9}; - * - * int result[11]; - * - * int *result_end = thrust::set_union(A1, A1 + 7, A2, A2 + 5, result); - * // result = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_union.html - * \see \p merge - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template - OutputIterator set_union(InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result); - - -/*! \p set_union constructs a sorted range that is the union of the sorted ranges - * [first1, last1) and [first2, last2). The return value is the - * end of the output range. - * - * In the simplest case, \p set_union performs the "union" operation from set - * theory: the output range contains a copy of every element that is contained in - * [first1, last1), [first2, last1), or both. The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements - * that are equivalent to each other and if [first2, last2) contains \c n - * elements that are equivalent to them, then all \c m elements from the first - * range shall be copied to the output range, in order, and then max(n - m, 0) - * elements from the second range shall be copied to the output, in order. - * - * This version of \p set_union compares elements using a function object \p comp. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \param comp Comparison operator. - * \return The end of the output range. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1's \c value_type is convertable to \p StrictWeakCompare's \c first_argument_type. - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2's \c value_type is convertable to \p StrictWeakCompare's \c second_argument_type. - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to \p comp. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_union to compute the union of - * two sets of integers sorted in ascending order using the \p thrust::host execution policy for - * parallelization: - * - * \code - * #include - * #include - * #include - * ... - * int A1[7] = {12, 10, 8, 6, 4, 2, 0}; - * int A2[5] = {9, 7, 5, 3, 1}; - * - * int result[11]; - * - * int *result_end = thrust::set_union(thrust::host, A1, A1 + 7, A2, A2 + 5, result, thrust::greater()); - * // result = {12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_union.html - * \see \p merge - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template -__host__ __device__ - OutputIterator set_union(const thrust::detail::execution_policy_base &exec, - InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result, - StrictWeakCompare comp); - - -/*! \p set_union constructs a sorted range that is the union of the sorted ranges - * [first1, last1) and [first2, last2). The return value is the - * end of the output range. - * - * In the simplest case, \p set_union performs the "union" operation from set - * theory: the output range contains a copy of every element that is contained in - * [first1, last1), [first2, last1), or both. The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [first1, last1) contains \c m elements - * that are equivalent to each other and if [first2, last2) contains \c n - * elements that are equivalent to them, then all \c m elements from the first - * range shall be copied to the output range, in order, and then max(n - m, 0) - * elements from the second range shall be copied to the output, in order. - * - * This version of \p set_union compares elements using a function object \p comp. - * - * \param first1 The beginning of the first input range. - * \param last1 The end of the first input range. - * \param first2 The beginning of the second input range. - * \param last2 The end of the second input range. - * \param result The beginning of the output range. - * \param comp Comparison operator. - * \return The end of the output range. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1's \c value_type is convertable to \p StrictWeakCompare's \c first_argument_type. - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2's \c value_type is convertable to \p StrictWeakCompare's \c second_argument_type. - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam OutputIterator is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [first1, last1) and [first2, last2) shall be sorted with respect to \p comp. - * \pre The resulting range shall not overlap with either input range. - * - * The following code snippet demonstrates how to use \p set_union to compute the union of - * two sets of integers sorted in ascending order. - * - * \code - * #include - * #include - * ... - * int A1[7] = {12, 10, 8, 6, 4, 2, 0}; - * int A2[5] = {9, 7, 5, 3, 1}; - * - * int result[11]; - * - * int *result_end = thrust::set_union(A1, A1 + 7, A2, A2 + 5, result, thrust::greater()); - * // result = {12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0} - * \endcode - * - * \see http://www.sgi.com/tech/stl/set_union.html - * \see \p merge - * \see \p includes - * \see \p set_union - * \see \p set_intersection - * \see \p set_symmetric_difference - * \see \p sort - * \see \p is_sorted - */ -template - OutputIterator set_union(InputIterator1 first1, - InputIterator1 last1, - InputIterator2 first2, - InputIterator2 last2, - OutputIterator result, - StrictWeakCompare comp); - - -/*! \p set_difference_by_key performs a key-value difference operation from set theory. - * \p set_difference_by_key constructs a sorted range that is the difference of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_difference_by_key performs the "difference" operation from set - * theory: the keys output range contains a copy of every element that is contained in - * [keys_first1, keys_last1) and not contained in [keys_first2, keys_last2). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements - * that are equivalent to each other and if [keys_first2, keys_last2) contains \c n - * elements that are equivalent to them, the last max(m-n,0) elements from - * [keys_first1, keys_last1) range shall be copied to the output range. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_difference_by_key compares key elements using \c operator<. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to operator<. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_difference_by_key to compute the - * set difference of two sets of integers sorted in ascending order with their values using the \p thrust::host - * execution policy for parallelization: - * - * \code - * #include - * #include - * ... - * int A_keys[6] = {0, 1, 3, 4, 5, 6, 9}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {1, 3, 5, 7, 9}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[3]; - * int vals_result[3]; - * - * thrust::pair end = thrust::set_difference_by_key(thrust::host, A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result); - * // keys_result is now {0, 4, 6} - * // vals_result is now {0, 0, 0} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_intersection_by_key - * \see \p set_symmetric_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template -__host__ __device__ - thrust::pair - set_difference_by_key(const thrust::detail::execution_policy_base &exec, - InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result); - - -/*! \p set_difference_by_key performs a key-value difference operation from set theory. - * \p set_difference_by_key constructs a sorted range that is the difference of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_difference_by_key performs the "difference" operation from set - * theory: the keys output range contains a copy of every element that is contained in - * [keys_first1, keys_last1) and not contained in [keys_first2, keys_last2). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements - * that are equivalent to each other and if [keys_first2, keys_last2) contains \c n - * elements that are equivalent to them, the last max(m-n,0) elements from - * [keys_first1, keys_last1) range shall be copied to the output range. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_difference_by_key compares key elements using \c operator<. - * - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to operator<. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_difference_by_key to compute the - * set difference of two sets of integers sorted in ascending order with their values. - * - * \code - * #include - * ... - * int A_keys[6] = {0, 1, 3, 4, 5, 6, 9}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {1, 3, 5, 7, 9}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[3]; - * int vals_result[3]; - * - * thrust::pair end = thrust::set_difference_by_key(A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result); - * // keys_result is now {0, 4, 6} - * // vals_result is now {0, 0, 0} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_intersection_by_key - * \see \p set_symmetric_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template - thrust::pair - set_difference_by_key(InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result); - - -/*! \p set_difference_by_key performs a key-value difference operation from set theory. - * \p set_difference_by_key constructs a sorted range that is the difference of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_difference_by_key performs the "difference" operation from set - * theory: the keys output range contains a copy of every element that is contained in - * [keys_first1, keys_last1) and not contained in [keys_first2, keys_last2). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements - * that are equivalent to each other and if [keys_first2, keys_last2) contains \c n - * elements that are equivalent to them, the last max(m-n,0) elements from - * [keys_first1, keys_last1) range shall be copied to the output range. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_difference_by_key compares key elements using a function object \p comp. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \param comp Comparison operator. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to \p comp. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_difference_by_key to compute the - * set difference of two sets of integers sorted in descending order with their values using the \p thrust::host - * execution policy for parallelization: - * - * \code - * #include - * #include - * #include - * ... - * int A_keys[6] = {9, 6, 5, 4, 3, 1, 0}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {9, 7, 5, 3, 1}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[3]; - * int vals_result[3]; - * - * thrust::pair end = thrust::set_difference_by_key(thrust::host, A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result, thrust::greater()); - * // keys_result is now {0, 4, 6} - * // vals_result is now {0, 0, 0} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_intersection_by_key - * \see \p set_symmetric_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template -__host__ __device__ - thrust::pair - set_difference_by_key(const thrust::detail::execution_policy_base &exec, - InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result, - StrictWeakCompare comp); - - -/*! \p set_difference_by_key performs a key-value difference operation from set theory. - * \p set_difference_by_key constructs a sorted range that is the difference of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_difference_by_key performs the "difference" operation from set - * theory: the keys output range contains a copy of every element that is contained in - * [keys_first1, keys_last1) and not contained in [keys_first2, keys_last2). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements - * that are equivalent to each other and if [keys_first2, keys_last2) contains \c n - * elements that are equivalent to them, the last max(m-n,0) elements from - * [keys_first1, keys_last1) range shall be copied to the output range. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_difference_by_key compares key elements using a function object \p comp. - * - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \param comp Comparison operator. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to \p comp. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_difference_by_key to compute the - * set difference of two sets of integers sorted in descending order with their values. - * - * \code - * #include - * #include - * ... - * int A_keys[6] = {9, 6, 5, 4, 3, 1, 0}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {9, 7, 5, 3, 1}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[3]; - * int vals_result[3]; - * - * thrust::pair end = thrust::set_difference_by_key(A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result, thrust::greater()); - * // keys_result is now {0, 4, 6} - * // vals_result is now {0, 0, 0} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_intersection_by_key - * \see \p set_symmetric_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template - thrust::pair - set_difference_by_key(InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result, - StrictWeakCompare comp); - - -/*! \p set_intersection_by_key performs a key-value intersection operation from set theory. - * \p set_intersection_by_key constructs a sorted range that is the intersection of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_intersection_by_key performs the "intersection" operation from set - * theory: the keys output range contains a copy of every element that is contained in both - * [keys_first1, keys_last1) [keys_first2, keys_last2). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if an element appears \c m times in [keys_first1, keys_last1) - * and \c n times in [keys_first2, keys_last2) (where \c m may be zero), then it - * appears min(m,n) times in the keys output range. - * \p set_intersection_by_key is stable, meaning both that elements are copied from the first - * input range rather than the second, and that the relative order of elements in the output range - * is the same as the first input range. - * - * Each time a key element is copied from [keys_first1, keys_last1) to the keys output range, - * the corresponding value element is copied from [values_first1, values_last1) to the values - * output range. - * - * This version of \p set_intersection_by_key compares objects using \c operator<. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \note Unlike the other key-value set operations, \p set_intersection_by_key is unique in that it has no - * \c values_first2 parameter because elements from the second input range are never copied to the output range. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to operator<. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_intersection_by_key to compute the - * set intersection of two sets of integers sorted in ascending order with their values using the \p thrust::host - * execution policy for parallelization: - * - * \code - * #include - * #include - * ... - * int A_keys[6] = {1, 3, 5, 7, 9, 11}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0}; - * - * int B_keys[7] = {1, 1, 2, 3, 5, 8, 13}; - * - * int keys_result[7]; - * int vals_result[7]; - * - * thrust::pair end = thrust::set_intersection_by_key(thrust::host, A_keys, A_keys + 6, B_keys, B_keys + 7, A_vals, keys_result, vals_result); - * - * // keys_result is now {1, 3, 5} - * // vals_result is now {0, 0, 0} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_difference_by_key - * \see \p set_symmetric_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template -__host__ __device__ - thrust::pair - set_intersection_by_key(const thrust::detail::execution_policy_base &exec, - InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - OutputIterator1 keys_result, - OutputIterator2 values_result); - - -/*! \p set_intersection_by_key performs a key-value intersection operation from set theory. - * \p set_intersection_by_key constructs a sorted range that is the intersection of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_intersection_by_key performs the "intersection" operation from set - * theory: the keys output range contains a copy of every element that is contained in both - * [keys_first1, keys_last1) [keys_first2, keys_last2). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if an element appears \c m times in [keys_first1, keys_last1) - * and \c n times in [keys_first2, keys_last2) (where \c m may be zero), then it - * appears min(m,n) times in the keys output range. - * \p set_intersection_by_key is stable, meaning both that elements are copied from the first - * input range rather than the second, and that the relative order of elements in the output range - * is the same as the first input range. - * - * Each time a key element is copied from [keys_first1, keys_last1) to the keys output range, - * the corresponding value element is copied from [values_first1, values_last1) to the values - * output range. - * - * This version of \p set_intersection_by_key compares objects using \c operator<. - * - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \note Unlike the other key-value set operations, \p set_intersection_by_key is unique in that it has no - * \c values_first2 parameter because elements from the second input range are never copied to the output range. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to operator<. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_intersection_by_key to compute the - * set intersection of two sets of integers sorted in ascending order with their values. - * - * \code - * #include - * ... - * int A_keys[6] = {1, 3, 5, 7, 9, 11}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0}; - * - * int B_keys[7] = {1, 1, 2, 3, 5, 8, 13}; - * - * int keys_result[7]; - * int vals_result[7]; - * - * thrust::pair end = thrust::set_intersection_by_key(A_keys, A_keys + 6, B_keys, B_keys + 7, A_vals, keys_result, vals_result); - * - * // keys_result is now {1, 3, 5} - * // vals_result is now {0, 0, 0} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_difference_by_key - * \see \p set_symmetric_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template - thrust::pair - set_intersection_by_key(InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - OutputIterator1 keys_result, - OutputIterator2 values_result); - - -/*! \p set_intersection_by_key performs a key-value intersection operation from set theory. - * \p set_intersection_by_key constructs a sorted range that is the intersection of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_intersection_by_key performs the "intersection" operation from set - * theory: the keys output range contains a copy of every element that is contained in both - * [keys_first1, keys_last1) [keys_first2, keys_last2). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if an element appears \c m times in [keys_first1, keys_last1) - * and \c n times in [keys_first2, keys_last2) (where \c m may be zero), then it - * appears min(m,n) times in the keys output range. - * \p set_intersection_by_key is stable, meaning both that elements are copied from the first - * input range rather than the second, and that the relative order of elements in the output range - * is the same as the first input range. - * - * Each time a key element is copied from [keys_first1, keys_last1) to the keys output range, - * the corresponding value element is copied from [values_first1, values_last1) to the values - * output range. - * - * This version of \p set_intersection_by_key compares objects using a function object \p comp. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \param comp Comparison operator. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \note Unlike the other key-value set operations, \p set_intersection_by_key is unique in that it has no - * \c values_first2 parameter because elements from the second input range are never copied to the output range. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to \p comp. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_intersection_by_key to compute the - * set intersection of two sets of integers sorted in descending order with their values using the - * \p thrust::host execution policy for parallelization: - * - * \code - * #include - * #include - * #include - * ... - * int A_keys[6] = {11, 9, 7, 5, 3, 1}; - * int A_vals[6] = { 0, 0, 0, 0, 0, 0}; - * - * int B_keys[7] = {13, 8, 5, 3, 2, 1, 1}; - * - * int keys_result[7]; - * int vals_result[7]; - * - * thrust::pair end = thrust::set_intersection_by_key(thrust::host, A_keys, A_keys + 6, B_keys, B_keys + 7, A_vals, keys_result, vals_result, thrust::greater()); - * - * // keys_result is now {5, 3, 1} - * // vals_result is now {0, 0, 0} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_difference_by_key - * \see \p set_symmetric_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template -__host__ __device__ - thrust::pair - set_intersection_by_key(const thrust::detail::execution_policy_base &exec, - InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - OutputIterator1 keys_result, - OutputIterator2 values_result, - StrictWeakCompare comp); - - -/*! \p set_intersection_by_key performs a key-value intersection operation from set theory. - * \p set_intersection_by_key constructs a sorted range that is the intersection of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_intersection_by_key performs the "intersection" operation from set - * theory: the keys output range contains a copy of every element that is contained in both - * [keys_first1, keys_last1) [keys_first2, keys_last2). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if an element appears \c m times in [keys_first1, keys_last1) - * and \c n times in [keys_first2, keys_last2) (where \c m may be zero), then it - * appears min(m,n) times in the keys output range. - * \p set_intersection_by_key is stable, meaning both that elements are copied from the first - * input range rather than the second, and that the relative order of elements in the output range - * is the same as the first input range. - * - * Each time a key element is copied from [keys_first1, keys_last1) to the keys output range, - * the corresponding value element is copied from [values_first1, values_last1) to the values - * output range. - * - * This version of \p set_intersection_by_key compares objects using a function object \p comp. - * - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \param comp Comparison operator. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \note Unlike the other key-value set operations, \p set_intersection_by_key is unique in that it has no - * \c values_first2 parameter because elements from the second input range are never copied to the output range. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to \p comp. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_intersection_by_key to compute the - * set intersection of two sets of integers sorted in descending order with their values. - * - * \code - * #include - * #include - * ... - * int A_keys[6] = {11, 9, 7, 5, 3, 1}; - * int A_vals[6] = { 0, 0, 0, 0, 0, 0}; - * - * int B_keys[7] = {13, 8, 5, 3, 2, 1, 1}; - * - * int keys_result[7]; - * int vals_result[7]; - * - * thrust::pair end = thrust::set_intersection_by_key(A_keys, A_keys + 6, B_keys, B_keys + 7, A_vals, keys_result, vals_result, thrust::greater()); - * - * // keys_result is now {5, 3, 1} - * // vals_result is now {0, 0, 0} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_difference_by_key - * \see \p set_symmetric_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template - thrust::pair - set_intersection_by_key(InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - OutputIterator1 keys_result, - OutputIterator2 values_result, - StrictWeakCompare comp); - - -/*! \p set_symmetric_difference_by_key performs a key-value symmetric difference operation from set theory. - * \p set_difference_by_key constructs a sorted range that is the symmetric difference of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_symmetric_difference_by_key performs a set theoretic calculation: - * it constructs the union of the two sets A - B and B - A, where A and B are the two - * input ranges. That is, the output range contains a copy of every element that is - * contained in [keys_first1, keys_last1) but not [keys_first2, keys_last1), and a copy of - * every element that is contained in [keys_first2, keys_last2) but not [keys_first1, keys_last1). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements that are - * equivalent to each other and [keys_first2, keys_last1) contains \c n elements that are - * equivalent to them, then |m - n| of those elements shall be copied to the output - * range: the last m - n elements from [keys_first1, keys_last1) if m > n, and - * the last n - m of these elements from [keys_first2, keys_last2) if m < n. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_symmetric_difference_by_key compares key elements using \c operator<. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to operator<. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference_by_key to compute the - * symmetric difference of two sets of integers sorted in ascending order with their values using the - * \p thrust::host execution policy for parallelization: - * - * \code - * #include - * #include - * ... - * int A_keys[6] = {0, 1, 2, 2, 4, 6, 7}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {1, 1, 2, 5, 8}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[6]; - * int vals_result[6]; - * - * thrust::pair end = thrust::set_symmetric_difference_by_key(thrust::host, A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result); - * // keys_result is now {0, 4, 5, 6, 7, 8} - * // vals_result is now {0, 0, 1, 0, 0, 1} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_intersection_by_key - * \see \p set_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template -__host__ __device__ - thrust::pair - set_symmetric_difference_by_key(const thrust::detail::execution_policy_base &exec, - InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result); - - -/*! \p set_symmetric_difference_by_key performs a key-value symmetric difference operation from set theory. - * \p set_difference_by_key constructs a sorted range that is the symmetric difference of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_symmetric_difference_by_key performs a set theoretic calculation: - * it constructs the union of the two sets A - B and B - A, where A and B are the two - * input ranges. That is, the output range contains a copy of every element that is - * contained in [keys_first1, keys_last1) but not [keys_first2, keys_last1), and a copy of - * every element that is contained in [keys_first2, keys_last2) but not [keys_first1, keys_last1). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements that are - * equivalent to each other and [keys_first2, keys_last1) contains \c n elements that are - * equivalent to them, then |m - n| of those elements shall be copied to the output - * range: the last m - n elements from [keys_first1, keys_last1) if m > n, and - * the last n - m of these elements from [keys_first2, keys_last2) if m < n. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_symmetric_difference_by_key compares key elements using \c operator<. - * - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to operator<. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference_by_key to compute the - * symmetric difference of two sets of integers sorted in ascending order with their values. - * - * \code - * #include - * ... - * int A_keys[6] = {0, 1, 2, 2, 4, 6, 7}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {1, 1, 2, 5, 8}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[6]; - * int vals_result[6]; - * - * thrust::pair end = thrust::set_symmetric_difference_by_key(A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result); - * // keys_result is now {0, 4, 5, 6, 7, 8} - * // vals_result is now {0, 0, 1, 0, 0, 1} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_intersection_by_key - * \see \p set_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template - thrust::pair - set_symmetric_difference_by_key(InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result); - - -/*! \p set_symmetric_difference_by_key performs a key-value symmetric difference operation from set theory. - * \p set_difference_by_key constructs a sorted range that is the symmetric difference of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_symmetric_difference_by_key performs a set theoretic calculation: - * it constructs the union of the two sets A - B and B - A, where A and B are the two - * input ranges. That is, the output range contains a copy of every element that is - * contained in [keys_first1, keys_last1) but not [keys_first2, keys_last1), and a copy of - * every element that is contained in [keys_first2, keys_last2) but not [keys_first1, keys_last1). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements that are - * equivalent to each other and [keys_first2, keys_last1) contains \c n elements that are - * equivalent to them, then |m - n| of those elements shall be copied to the output - * range: the last m - n elements from [keys_first1, keys_last1) if m > n, and - * the last n - m of these elements from [keys_first2, keys_last2) if m < n. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_symmetric_difference_by_key compares key elements using a function object \c comp. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \param comp Comparison operator. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to \p comp. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference_by_key to compute the - * symmetric difference of two sets of integers sorted in descending order with their values using the - * \p thrust::host execution policy for parallelization: - * - * \code - * #include - * #include - * #include - * ... - * int A_keys[6] = {7, 6, 4, 2, 2, 1, 0}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {8, 5, 2, 1, 1}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[6]; - * int vals_result[6]; - * - * thrust::pair end = thrust::set_symmetric_difference_by_key(thrust::host, A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result); - * // keys_result is now {8, 7, 6, 5, 4, 0} - * // vals_result is now {1, 0, 0, 1, 0, 0} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_intersection_by_key - * \see \p set_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template -__host__ __device__ - thrust::pair - set_symmetric_difference_by_key(const thrust::detail::execution_policy_base &exec, - InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result, - StrictWeakCompare comp); - - -/*! \p set_symmetric_difference_by_key performs a key-value symmetric difference operation from set theory. - * \p set_difference_by_key constructs a sorted range that is the symmetric difference of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_symmetric_difference_by_key performs a set theoretic calculation: - * it constructs the union of the two sets A - B and B - A, where A and B are the two - * input ranges. That is, the output range contains a copy of every element that is - * contained in [keys_first1, keys_last1) but not [keys_first2, keys_last1), and a copy of - * every element that is contained in [keys_first2, keys_last2) but not [keys_first1, keys_last1). - * The general case is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements that are - * equivalent to each other and [keys_first2, keys_last1) contains \c n elements that are - * equivalent to them, then |m - n| of those elements shall be copied to the output - * range: the last m - n elements from [keys_first1, keys_last1) if m > n, and - * the last n - m of these elements from [keys_first2, keys_last2) if m < n. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_symmetric_difference_by_key compares key elements using a function object \c comp. - * - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \param comp Comparison operator. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to \p comp. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference_by_key to compute the - * symmetric difference of two sets of integers sorted in descending order with their values. - * - * \code - * #include - * #include - * ... - * int A_keys[6] = {7, 6, 4, 2, 2, 1, 0}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {8, 5, 2, 1, 1}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[6]; - * int vals_result[6]; - * - * thrust::pair end = thrust::set_symmetric_difference_by_key(A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result); - * // keys_result is now {8, 7, 6, 5, 4, 0} - * // vals_result is now {1, 0, 0, 1, 0, 0} - * \endcode - * - * \see \p set_union_by_key - * \see \p set_intersection_by_key - * \see \p set_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template - thrust::pair - set_symmetric_difference_by_key(InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result, - StrictWeakCompare comp); - - -/*! \p set_union_by_key performs a key-value union operation from set theory. - * \p set_union_by_key constructs a sorted range that is the union of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_union_by_key performs the "union" operation from set theory: - * the output range contains a copy of every element that is contained in - * [keys_first1, keys_last1), [keys_first2, keys_last1), or both. The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements - * that are equivalent to each other and if [keys_first2, keys_last2) contains \c n - * elements that are equivalent to them, then all \c m elements from the first - * range shall be copied to the output range, in order, and then max(n - m, 0) - * elements from the second range shall be copied to the output, in order. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_union_by_key compares key elements using \c operator<. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to operator<. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference_by_key to compute the - * symmetric difference of two sets of integers sorted in ascending order with their values using the - * \p thrust::host execution policy for parallelization: - * - * \code - * #include - * #include - * ... - * int A_keys[6] = {0, 2, 4, 6, 8, 10, 12}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {1, 3, 5, 7, 9}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[11]; - * int vals_result[11]; - * - * thrust::pair end = thrust::set_symmetric_difference_by_key(thrust::host, A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result); - * // keys_result is now {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} - * // vals_result is now {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0} - * \endcode - * - * \see \p set_symmetric_difference_by_key - * \see \p set_intersection_by_key - * \see \p set_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template -__host__ __device__ - thrust::pair - set_union_by_key(const thrust::detail::execution_policy_base &exec, - InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result); - - -/*! \p set_union_by_key performs a key-value union operation from set theory. - * \p set_union_by_key constructs a sorted range that is the union of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_union_by_key performs the "union" operation from set theory: - * the output range contains a copy of every element that is contained in - * [keys_first1, keys_last1), [keys_first2, keys_last1), or both. The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements - * that are equivalent to each other and if [keys_first2, keys_last2) contains \c n - * elements that are equivalent to them, then all \c m elements from the first - * range shall be copied to the output range, in order, and then max(n - m, 0) - * elements from the second range shall be copied to the output, in order. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_union_by_key compares key elements using \c operator<. - * - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to operator<. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference_by_key to compute the - * symmetric difference of two sets of integers sorted in ascending order with their values. - * - * \code - * #include - * ... - * int A_keys[6] = {0, 2, 4, 6, 8, 10, 12}; - * int A_vals[6] = {0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {1, 3, 5, 7, 9}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[11]; - * int vals_result[11]; - * - * thrust::pair end = thrust::set_symmetric_difference_by_key(A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result); - * // keys_result is now {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} - * // vals_result is now {0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0} - * \endcode - * - * \see \p set_symmetric_difference_by_key - * \see \p set_intersection_by_key - * \see \p set_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template - thrust::pair - set_union_by_key(InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result); - - -/*! \p set_union_by_key performs a key-value union operation from set theory. - * \p set_union_by_key constructs a sorted range that is the union of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_union_by_key performs the "union" operation from set theory: - * the output range contains a copy of every element that is contained in - * [keys_first1, keys_last1), [keys_first2, keys_last1), or both. The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements - * that are equivalent to each other and if [keys_first2, keys_last2) contains \c n - * elements that are equivalent to them, then all \c m elements from the first - * range shall be copied to the output range, in order, and then max(n - m, 0) - * elements from the second range shall be copied to the output, in order. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_union_by_key compares key elements using a function object \c comp. - * - * The algorithm's execution is parallelized as determined by \p exec. - * - * \param exec The execution policy to use for parallelization. - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \param comp Comparison operator. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam DerivedPolicy The name of the derived execution policy. - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to \p comp. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference_by_key to compute the - * symmetric difference of two sets of integers sorted in descending order with their values using the - * \p thrust::host execution policy for parallelization: - * - * \code - * #include - * #include - * #include - * ... - * int A_keys[6] = {12, 10, 8, 6, 4, 2, 0}; - * int A_vals[6] = { 0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {9, 7, 5, 3, 1}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[11]; - * int vals_result[11]; - * - * thrust::pair end = thrust::set_symmetric_difference_by_key(thrust::host, A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result, thrust::greater()); - * // keys_result is now {12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0} - * // vals_result is now { 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0} - * \endcode - * - * \see \p set_symmetric_difference_by_key - * \see \p set_intersection_by_key - * \see \p set_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template -__host__ __device__ - thrust::pair - set_union_by_key(const thrust::detail::execution_policy_base &exec, - InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result, - StrictWeakCompare comp); - - -/*! \p set_union_by_key performs a key-value union operation from set theory. - * \p set_union_by_key constructs a sorted range that is the union of the sorted - * ranges [keys_first1, keys_last1) and [keys_first2, keys_last2). Associated - * with each element from the input and output key ranges is a value element. The associated input - * value ranges need not be sorted. - * - * In the simplest case, \p set_union_by_key performs the "union" operation from set theory: - * the output range contains a copy of every element that is contained in - * [keys_first1, keys_last1), [keys_first2, keys_last1), or both. The general case - * is more complicated, because the input ranges may contain duplicate elements. - * The generalization is that if [keys_first1, keys_last1) contains \c m elements - * that are equivalent to each other and if [keys_first2, keys_last2) contains \c n - * elements that are equivalent to them, then all \c m elements from the first - * range shall be copied to the output range, in order, and then max(n - m, 0) - * elements from the second range shall be copied to the output, in order. - * - * Each time a key element is copied from [keys_first1, keys_last1) or - * [keys_first2, keys_last2) is copied to the keys output range, the - * corresponding value element is copied from the corresponding values input range (beginning at - * \p values_first1 or \p values_first2) to the values output range. - * - * This version of \p set_union_by_key compares key elements using a function object \c comp. - * - * \param keys_first1 The beginning of the first input range of keys. - * \param keys_last1 The end of the first input range of keys. - * \param keys_first2 The beginning of the second input range of keys. - * \param keys_last2 The end of the second input range of keys. - * \param values_first1 The beginning of the first input range of values. - * \param values_first2 The beginning of the first input range of values. - * \param keys_result The beginning of the output range of keys. - * \param values_result The beginning of the output range of values. - * \param comp Comparison operator. - * \return A \p pair \c p such that p.first is the end of the output range of keys, - * and such that p.second is the end of the output range of values. - * - * \tparam InputIterator1 is a model of Input Iterator, - * \p InputIterator1 and \p InputIterator2 have the same \c value_type, - * \p InputIterator1's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator1's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator1's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator2 is a model of Input Iterator, - * \p InputIterator2 and \p InputIterator1 have the same \c value_type, - * \p InputIterator2's \c value_type is a model of LessThan Comparable, - * the ordering on \p InputIterator2's \c value_type is a strict weak ordering, as defined in the LessThan Comparable requirements, - * and \p InputIterator2's \c value_type is convertable to a type in \p OutputIterator's set of \c value_types. - * \tparam InputIterator3 is a model of Input Iterator, - * and \p InputIterator3's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam InputIterator4 is a model of Input Iterator, - * and \p InputIterator4's \c value_type is convertible to a type in \p OutputIterator2's set of \c value_types. - * \tparam OutputIterator1 is a model of Output Iterator. - * \tparam OutputIterator2 is a model of Output Iterator. - * \tparam StrictWeakCompare is a model of Strict Weak Ordering. - * - * \pre The ranges [keys_first1, keys_last1) and [keys_first2, keys_last2) shall be sorted with respect to \p comp. - * \pre The resulting ranges shall not overlap with any input range. - * - * The following code snippet demonstrates how to use \p set_symmetric_difference_by_key to compute the - * symmetric difference of two sets of integers sorted in descending order with their values. - * - * \code - * #include - * #include - * ... - * int A_keys[6] = {12, 10, 8, 6, 4, 2, 0}; - * int A_vals[6] = { 0, 0, 0, 0, 0, 0, 0}; - * - * int B_keys[5] = {9, 7, 5, 3, 1}; - * int B_vals[5] = {1, 1, 1, 1, 1}; - * - * int keys_result[11]; - * int vals_result[11]; - * - * thrust::pair end = thrust::set_symmetric_difference_by_key(A_keys, A_keys + 6, B_keys, B_keys + 5, A_vals, B_vals, keys_result, vals_result, thrust::greater()); - * // keys_result is now {12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0} - * // vals_result is now { 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0} - * \endcode - * - * \see \p set_symmetric_difference_by_key - * \see \p set_intersection_by_key - * \see \p set_difference_by_key - * \see \p sort_by_key - * \see \p is_sorted - */ -template - thrust::pair - set_union_by_key(InputIterator1 keys_first1, - InputIterator1 keys_last1, - InputIterator2 keys_first2, - InputIterator2 keys_last2, - InputIterator3 values_first1, - InputIterator4 values_first2, - OutputIterator1 keys_result, - OutputIterator2 values_result, - StrictWeakCompare comp); - - -/*! \} // end set_operations - */ - - -} // end thrust - -#include -