diff --git a/spaces/0xHacked/zkProver/Dockerfile b/spaces/0xHacked/zkProver/Dockerfile deleted file mode 100644 index 48b42c021f80740492facb573bdfffea5696cf78..0000000000000000000000000000000000000000 --- a/spaces/0xHacked/zkProver/Dockerfile +++ /dev/null @@ -1,21 +0,0 @@ -FROM nvidia/cuda:12.1.1-devel-ubuntu20.04 -ARG DEBIAN_FRONTEND=noninteractive -ENV TZ=Asia/Hong_Kong -RUN apt-get update && apt-get install --no-install-recommends -y tzdata python3.9 python3.9-dev python3.9-venv build-essential && \ - apt-get clean && rm -rf /var/lib/apt/lists/* - -RUN useradd -m -u 1000 user -USER user - -ENV HOME=/home/user \ - PATH=/home/user/.local/bin:$PATH - -WORKDIR $HOME/app -COPY --chown=user . $HOME/app - -RUN python3.9 -m venv $HOME/app/venv && $HOME/app/venv/bin/pip install --no-cache-dir --upgrade pip -RUN $HOME/app/venv/bin/pip install --no-cache-dir --upgrade -r requirements.txt - -RUN cd $HOME/app && chmod +x $HOME/app/bin/* - -CMD ["/home/user/app/venv/bin/python", "app.py"] \ No newline at end of file diff --git a/spaces/1368565466ki/ZSTRD/attentions.py b/spaces/1368565466ki/ZSTRD/attentions.py deleted file mode 100644 index 86bc73b5fe98cc7b443e9078553920346c996707..0000000000000000000000000000000000000000 --- a/spaces/1368565466ki/ZSTRD/attentions.py +++ /dev/null @@ -1,300 +0,0 @@ -import math -import torch -from torch import nn -from torch.nn import functional as F - -import commons -from modules import LayerNorm - - -class Encoder(nn.Module): - def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs): - super().__init__() - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.window_size = window_size - - self.drop = nn.Dropout(p_dropout) - self.attn_layers = nn.ModuleList() - self.norm_layers_1 = nn.ModuleList() - self.ffn_layers = nn.ModuleList() - self.norm_layers_2 = nn.ModuleList() - for i in range(self.n_layers): - self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size)) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)) - self.norm_layers_2.append(LayerNorm(hidden_channels)) - - def forward(self, x, x_mask): - attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) - x = x * x_mask - for i in range(self.n_layers): - y = self.attn_layers[i](x, x, attn_mask) - y = self.drop(y) - x = self.norm_layers_1[i](x + y) - - y = self.ffn_layers[i](x, x_mask) - y = self.drop(y) - x = self.norm_layers_2[i](x + y) - x = x * x_mask - return x - - -class Decoder(nn.Module): - def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs): - super().__init__() - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.proximal_bias = proximal_bias - self.proximal_init = proximal_init - - self.drop = nn.Dropout(p_dropout) - self.self_attn_layers = nn.ModuleList() - self.norm_layers_0 = nn.ModuleList() - self.encdec_attn_layers = nn.ModuleList() - self.norm_layers_1 = nn.ModuleList() - self.ffn_layers = nn.ModuleList() - self.norm_layers_2 = nn.ModuleList() - for i in range(self.n_layers): - self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init)) - self.norm_layers_0.append(LayerNorm(hidden_channels)) - self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True)) - self.norm_layers_2.append(LayerNorm(hidden_channels)) - - def forward(self, x, x_mask, h, h_mask): - """ - x: decoder input - h: encoder output - """ - self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) - encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) - x = x * x_mask - for i in range(self.n_layers): - y = self.self_attn_layers[i](x, x, self_attn_mask) - y = self.drop(y) - x = self.norm_layers_0[i](x + y) - - y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) - y = self.drop(y) - x = self.norm_layers_1[i](x + y) - - y = self.ffn_layers[i](x, x_mask) - y = self.drop(y) - x = self.norm_layers_2[i](x + y) - x = x * x_mask - return x - - -class MultiHeadAttention(nn.Module): - def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False): - super().__init__() - assert channels % n_heads == 0 - - self.channels = channels - self.out_channels = out_channels - self.n_heads = n_heads - self.p_dropout = p_dropout - self.window_size = window_size - self.heads_share = heads_share - self.block_length = block_length - self.proximal_bias = proximal_bias - self.proximal_init = proximal_init - self.attn = None - - self.k_channels = channels // n_heads - self.conv_q = nn.Conv1d(channels, channels, 1) - self.conv_k = nn.Conv1d(channels, channels, 1) - self.conv_v = nn.Conv1d(channels, channels, 1) - self.conv_o = nn.Conv1d(channels, out_channels, 1) - self.drop = nn.Dropout(p_dropout) - - if window_size is not None: - n_heads_rel = 1 if heads_share else n_heads - rel_stddev = self.k_channels**-0.5 - self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) - self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) - - nn.init.xavier_uniform_(self.conv_q.weight) - nn.init.xavier_uniform_(self.conv_k.weight) - nn.init.xavier_uniform_(self.conv_v.weight) - if proximal_init: - with torch.no_grad(): - self.conv_k.weight.copy_(self.conv_q.weight) - self.conv_k.bias.copy_(self.conv_q.bias) - - def forward(self, x, c, attn_mask=None): - q = self.conv_q(x) - k = self.conv_k(c) - v = self.conv_v(c) - - x, self.attn = self.attention(q, k, v, mask=attn_mask) - - x = self.conv_o(x) - return x - - def attention(self, query, key, value, mask=None): - # reshape [b, d, t] -> [b, n_h, t, d_k] - b, d, t_s, t_t = (*key.size(), query.size(2)) - query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) - key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) - value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) - - scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) - if self.window_size is not None: - assert t_s == t_t, "Relative attention is only available for self-attention." - key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) - rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings) - scores_local = self._relative_position_to_absolute_position(rel_logits) - scores = scores + scores_local - if self.proximal_bias: - assert t_s == t_t, "Proximal bias is only available for self-attention." - scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) - if mask is not None: - scores = scores.masked_fill(mask == 0, -1e4) - if self.block_length is not None: - assert t_s == t_t, "Local attention is only available for self-attention." - block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) - scores = scores.masked_fill(block_mask == 0, -1e4) - p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] - p_attn = self.drop(p_attn) - output = torch.matmul(p_attn, value) - if self.window_size is not None: - relative_weights = self._absolute_position_to_relative_position(p_attn) - value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) - output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) - output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] - return output, p_attn - - def _matmul_with_relative_values(self, x, y): - """ - x: [b, h, l, m] - y: [h or 1, m, d] - ret: [b, h, l, d] - """ - ret = torch.matmul(x, y.unsqueeze(0)) - return ret - - def _matmul_with_relative_keys(self, x, y): - """ - x: [b, h, l, d] - y: [h or 1, m, d] - ret: [b, h, l, m] - """ - ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) - return ret - - def _get_relative_embeddings(self, relative_embeddings, length): - max_relative_position = 2 * self.window_size + 1 - # Pad first before slice to avoid using cond ops. - pad_length = max(length - (self.window_size + 1), 0) - slice_start_position = max((self.window_size + 1) - length, 0) - slice_end_position = slice_start_position + 2 * length - 1 - if pad_length > 0: - padded_relative_embeddings = F.pad( - relative_embeddings, - commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]])) - else: - padded_relative_embeddings = relative_embeddings - used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position] - return used_relative_embeddings - - def _relative_position_to_absolute_position(self, x): - """ - x: [b, h, l, 2*l-1] - ret: [b, h, l, l] - """ - batch, heads, length, _ = x.size() - # Concat columns of pad to shift from relative to absolute indexing. - x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]])) - - # Concat extra elements so to add up to shape (len+1, 2*len-1). - x_flat = x.view([batch, heads, length * 2 * length]) - x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]])) - - # Reshape and slice out the padded elements. - x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:] - return x_final - - def _absolute_position_to_relative_position(self, x): - """ - x: [b, h, l, l] - ret: [b, h, l, 2*l-1] - """ - batch, heads, length, _ = x.size() - # padd along column - x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]])) - x_flat = x.view([batch, heads, length**2 + length*(length -1)]) - # add 0's in the beginning that will skew the elements after reshape - x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) - x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:] - return x_final - - def _attention_bias_proximal(self, length): - """Bias for self-attention to encourage attention to close positions. - Args: - length: an integer scalar. - Returns: - a Tensor with shape [1, 1, length, length] - """ - r = torch.arange(length, dtype=torch.float32) - diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) - return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) - - -class FFN(nn.Module): - def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.activation = activation - self.causal = causal - - if causal: - self.padding = self._causal_padding - else: - self.padding = self._same_padding - - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) - self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) - self.drop = nn.Dropout(p_dropout) - - def forward(self, x, x_mask): - x = self.conv_1(self.padding(x * x_mask)) - if self.activation == "gelu": - x = x * torch.sigmoid(1.702 * x) - else: - x = torch.relu(x) - x = self.drop(x) - x = self.conv_2(self.padding(x * x_mask)) - return x * x_mask - - def _causal_padding(self, x): - if self.kernel_size == 1: - return x - pad_l = self.kernel_size - 1 - pad_r = 0 - padding = [[0, 0], [0, 0], [pad_l, pad_r]] - x = F.pad(x, commons.convert_pad_shape(padding)) - return x - - def _same_padding(self, x): - if self.kernel_size == 1: - return x - pad_l = (self.kernel_size - 1) // 2 - pad_r = self.kernel_size // 2 - padding = [[0, 0], [0, 0], [pad_l, pad_r]] - x = F.pad(x, commons.convert_pad_shape(padding)) - return x diff --git a/spaces/17TheWord/RealESRGAN/tests/test_discriminator_arch.py b/spaces/17TheWord/RealESRGAN/tests/test_discriminator_arch.py deleted file mode 100644 index c56a40c7743630aa63b3e99bca8dc1a85949c4c5..0000000000000000000000000000000000000000 --- a/spaces/17TheWord/RealESRGAN/tests/test_discriminator_arch.py +++ /dev/null @@ -1,19 +0,0 @@ -import torch - -from realesrgan.archs.discriminator_arch import UNetDiscriminatorSN - - -def test_unetdiscriminatorsn(): - """Test arch: UNetDiscriminatorSN.""" - - # model init and forward (cpu) - net = UNetDiscriminatorSN(num_in_ch=3, num_feat=4, skip_connection=True) - img = torch.rand((1, 3, 32, 32), dtype=torch.float32) - output = net(img) - assert output.shape == (1, 1, 32, 32) - - # model init and forward (gpu) - if torch.cuda.is_available(): - net.cuda() - output = net(img.cuda()) - assert output.shape == (1, 1, 32, 32) diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Contoh Surat Rasmi Permohonan Tapak Jualan.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Contoh Surat Rasmi Permohonan Tapak Jualan.md deleted file mode 100644 index 836d5a0981804081cd50300fd8bab00030733638..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Contoh Surat Rasmi Permohonan Tapak Jualan.md +++ /dev/null @@ -1,66 +0,0 @@ - -

Contoh Surat Rasmi Permohonan Tapak Jualan

-

Apakah anda ingin memohon tapak jualan untuk menjalankan perniagaan anda? Jika ya, anda perlu menulis surat rasmi permohonan tapak jualan yang betul dan lengkap. Surat rasmi permohonan tapak jualan adalah surat yang ditulis oleh pemohon kepada pihak berkuasa yang menguruskan tapak jualan, seperti majlis perbandaran, pejabat tanah, atau pihak swasta. Surat ini bertujuan untuk meminta kebenaran dan persetujuan untuk menyewa atau menggunakan tapak jualan yang diingini.

-

Contoh Surat Rasmi Permohonan Tapak Jualan


DOWNLOAD 🔗 https://byltly.com/2uKx6I



-

Surat rasmi permohonan tapak jualan harus mengandungi beberapa maklumat penting, seperti:

- -

Berikut adalah contoh surat rasmi permohonan tapak jualan yang boleh dijadikan rujukan:

- -
SI FULAN BIN SI FULAN
-No. 100, Kampung Tiada Nama
-58900 Kuala Tiada
-Negeri Darul Ikhlas
-
-Kepada,
-Pihak Pengurusan Tapak Jualan
-Majlis Perbandaran Kuala Tiada
-58900 Kuala Tiada
-Negeri Darul Ikhlas
-
-12 April 2023
-
-Tuan/Puan,
-
-PERMOHONAN SEWA TAPAK JUALAN DI TAMAN REKREASI KUALA TIADA
-
-Merujuk perkara di atas, saya Si Fulan Bin Si Fulan ingin memohon untuk menyewa satu tapak jualan di Taman Rekreasi Kuala Tiada. Tujuan saya memohon sewa tapak jualan ini adalah untuk menjalankan perniagaan saya iaitu menjual makanan ringan dan minuman sejuk.
-
-Dibawah ini disertakan butir-butir perniagaan saya untuk rujukan pihak tuan/puan:
-
-Nama: Si Fulan Bin Si Fulan
-No. Kad Pengenalan: 830101-01-1234
-No. Telefon: 012-3456789
-Alamat Tetap: No. 100, Kampung Tiada Nama, 58900 Kuala Tiada, Negeri Darul Ikhlas
-Pekerjaan Tetap: Guru Sekolah Menengah Kebangsaan Kuala Tiada
-Jenis Perniagaan: Menjual makanan ringan dan minuman sejuk
-Masa Perniagaan: Setiap hujung minggu dari jam 10 pagi hingga 6 petang
-
-Disini saya sertakan sekali dokumen-dokumen sokongan saya, iaitu salinan kad pengenalan, sijil pendaftaran perniagaan (SSM), lesen perniagaan (MPK), pelan lokasi tapak jualan yang dikehendaki, dan gambar tapak jualan tersebut di bahagian lampiran.
-
-Semoga permohonan saya ini dapat dipertimbangkan dengan sebaiknya oleh pihak tuan/puan. Saya amat berharap dapat
-
-
menyewa tapak jualan di Taman Rekreasi Kuala Tiada untuk menambah pendapatan saya dan memberi perkhidmatan yang baik kepada pengunjung taman.
-
-Segala kerjasama dan bantuan dari pihak tuan/puan saya dahulukan dengan ribuan terima kasih. Sekiranya ada sebarang pertanyaan atau maklum balas, sila hubungi saya di nombor telefon yang diberikan.
-
-Sekian, terima kasih.
-
-Yang benar,
-
-..................................
-(SI FULAN BIN SI FULAN)
-No. Telefon: 012-3456789
-

-

cec2833e83
-
-
\ No newline at end of file diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Cours archicad 15 gratuit Matrisez le logiciel de modlisation BIM.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Cours archicad 15 gratuit Matrisez le logiciel de modlisation BIM.md deleted file mode 100644 index b9e39100b580cb7786dabb54d4232da08273bfba..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Cours archicad 15 gratuit Matrisez le logiciel de modlisation BIM.md +++ /dev/null @@ -1,75 +0,0 @@ - -
- What are the benefits of learning Archicad 15
- How to access free courses and tutorials on Archicad 15 | | H2: Archicad basics | - How to install and set up Archicad 15
- How to use the interface and tools of Archicad 15
- How to create and edit 2D and 3D objects in Archicad 15 | | H2: Archicad advanced | - How to use graphic overrides and substitutions in Archicad 15
- How to create custom stairs, railings, roofs, and slabs in Archicad 15
- How to use libraries, attributes, and layers in Archicad 15 | | H2: Archicad projects | - How to create a floor plan, a section, a elevation, and a detail in Archicad 15
- How to generate photorealistic renderings and animations in Archicad 15
- How to print and export drawings and models in Archicad 15 | | H2: Archicad resources | - How to find and download free Archicad templates, objects, and materials
- How to access online courses, tutorials, and forums on Archicad 15
- How to get certified and improve your skills on Archicad 15 | | H1: Conclusion | - A summary of the main points of the article
- A call to action for the readers to start learning Archicad 15 | # Article with HTML formatting

Introduction

-

Are you an architect, a designer, or a student who wants to create stunning architectural projects with ease and efficiency? If so, you might want to learn how to use Archicad, one of the most popular and powerful software for building information modeling (BIM).

-

Cours archicad 15 gratuit


Download 🆗 https://byltly.com/2uKwi0



-

Archicad is a software that allows you to design, model, document, and visualize your projects in 2D and 3D. You can create realistic models of buildings, structures, interiors, landscapes, and more. You can also produce high-quality drawings, renderings, animations, and reports with Archicad.

-

But how can you learn how to use Archicad without spending a fortune on courses or books? The answer is simple: you can access free courses and tutorials on Archicad 15 online. In this article, we will show you how you can learn everything you need to know about Archicad 15 for free. We will cover the basics, the advanced features, the projects, and the resources that you can use to master Archicad 15.

-

Archicad basics

-

Before you start working on your projects with Archicad 15, you need to learn some basic concepts and skills. In this section, we will show you how to install and set up Archicad 15, how to use the interface and tools of Archicad 15, and how to create and edit 2D and 3D objects in Archicad 15.

-

How to install and set up Archicad 15

-

To install Archicad 15 on your computer, you need to download the installer from the official website of Graphisoft, the developer of Archicad. You can choose between Windows or Mac versions depending on your operating system. You can also select your preferred language from a list of options.

-

Formation archicad 15 en ligne gratuite
-Tutoriel archicad 15 pour débutants gratuit
-Apprendre archicad 15 pas à pas gratuitement
-Cours archicad 15 pdf télécharger gratuitement
-Vidéo cours archicad 15 complet gratuit
-Cours archicad 15 niveau avancé gratuit
-Cours archicad 15 en français gratuit
-Cours archicad 15 avec certificat gratuit
-Cours archicad 15 sur udemy gratuit
-Cours archicad 15 sur youtube gratuit
-Cours archicad 15 avec exercices pratiques gratuit
-Cours archicad 15 pour architectes gratuit
-Cours archicad 15 pour étudiants gratuit
-Cours archicad 15 pour professionnels gratuit
-Cours archicad 15 pour débutants gratuit
-Cours archicad 15 pour maîtriser le logiciel gratuit
-Cours archicad 15 pour apprendre les bases gratuit
-Cours archicad 15 pour créer des plans gratuits
-Cours archicad 15 pour réaliser des projets gratuits
-Cours archicad 15 pour dessiner en 3D gratuit
-Cours archicad 15 pour modéliser des bâtiments gratuits
-Cours archicad 15 pour concevoir des structures gratuites
-Cours archicad 15 pour optimiser des espaces gratuits
-Cours archicad 15 pour gérer des documents gratuits
-Cours archicad 15 pour collaborer avec d'autres utilisateurs gratuits
-Cours archicad 15 pour exporter des fichiers gratuits
-Cours archicad 15 pour importer des données gratuites
-Cours archicad 15 pour personnaliser des paramètres gratuits
-Cours archicad 15 pour utiliser des outils gratuits
-Cours archicad 15 pour appliquer des effets gratuits
-Cours archicad 15 pour animer des scènes gratuites
-Cours archicad 15 pour simuler des éclairages gratuits
-Cours archicad 15 pour calculer des coûts gratuits
-Cours archicad 15 pour respecter des normes gratuites
-Cours archicad 15 pour intégrer des éléments gratuits
-Cours archicad 15 pour ajouter des textures gratuites
-Cours archicad 15 pour modifier des couleurs gratuites
-Cours archicad 15 pour insérer des objets gratuits
-Cours archicad 15 pour composer des vues gratuites
-Cours archicad 15 pour générer des rendus gratuits
-Cours archicad 15 pour imprimer des plans gratuits
-Cours archicad 15 pour publier des rapports gratuits
-Cours archicad 15 pour partager des résultats gratuits
-Cours archicad 15 pour sauvegarder des travaux gratuits
-Cours archicad 15 pour restaurer des versions gratuites
-Cours archicad 15 pour corriger des erreurs gratuites
-Cours archicad 15 pour améliorer la qualité gratuite
-Cours archicad 15 pour augmenter la productivité gratuite

-

Once you have downloaded the installer, you need to run it and follow the instructions on the screen. You will need to accept the license agreement, choose a destination folder, and enter your serial number if you have one. If you don't have a serial number, you can use the trial version of Archicad 15 for 30 days.

-

After the installation is complete, you can launch Archicad 15 from your desktop or start menu. You will see a welcome screen that will guide you through some initial settings. You can choose your project type (residential or commercial), your measurement system (metric or imperial), your working environment (standard or customized), and your template file (default or user-defined).

-

How to use the interface and tools of Archicad 15

-

The interface of Archicad 15 consists of several elements that help you navigate and work on your projects. The main elements are:

-