parquet-converter commited on
Commit
445dc2a
·
1 Parent(s): be92391

Update parquet files (step 64 of 121)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. spaces/0x90e/ESRGAN-MANGA/ESRGAN_plus/block.py +0 -287
  2. spaces/1368565466ki/ZSTRD/modules.py +0 -388
  3. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Autocad 2012 Crack Kickass Torre The Best Way to Enjoy Autocad without Paying a Dime.md +0 -108
  4. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Elysian cracked roblox download 13 Full lua loadstrings scripts and more.md +0 -92
  5. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Excel 2013 Free Download A Step-by-Step Guide for Windows 10 Users.md +0 -38
  6. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Far Cry 3 Blood Dragon Crack Only Enjoy the Kick- Action with No-DVD [FTS] or [Reloaded].md +0 -118
  7. spaces/1gistliPinn/ChatGPT4/Examples/Astro Vision Lifesign With Remedies 12.5 Free Download ((FREE)).rar.md +0 -110
  8. spaces/1gistliPinn/ChatGPT4/Examples/Athlean X Workout PDF Learn from the Expert Jeff Cavaliere.md +0 -5
  9. spaces/1gistliPinn/ChatGPT4/Examples/Digikam Handbuch Deutsch Pdf 205.md +0 -93
  10. spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Burger Place Mod APK 0.15.0 Review Rating and Download Link.md +0 -119
  11. spaces/1phancelerku/anime-remove-background/Clash Mini APK Hack Download and Install Unlimited Money and Gems Mod.md +0 -96
  12. spaces/1phancelerku/anime-remove-background/Download Demolition Derby 3 Hack Mod APK with Unlimited Money Feature.md +0 -80
  13. spaces/1phancelerku/anime-remove-background/Download Green Farm 3 and Experience Farming Adventure on Your PC.md +0 -142
  14. spaces/1phancelerku/anime-remove-background/Download Nulls Brawl Mod APK 49.194 with Unlimited Money and Infinite Gems.md +0 -82
  15. spaces/1phancelerku/anime-remove-background/Download Stick War Legacy MOD APK for Android - Unlimited Gems and More.md +0 -116
  16. spaces/1phancelerku/anime-remove-background/Enjoy the Best Gaming Experience with Clash of Clans Mod Menu APK Latest Version.md +0 -151
  17. spaces/AI-Hobbyist/Hoyo-RVC/uvr5_pack/lib_v5/nets_537227KB.py +0 -123
  18. spaces/AIConsultant/MusicGen/audiocraft/grids/musicgen/_explorers.py +0 -93
  19. spaces/ATang0729/Forecast4Muses/Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-120e_deepfashion2_sling_256x192/td_hm_res50_4xb64-120e_deepfashion2_sling_256x192.py +0 -2861
  20. spaces/AUBADA-ALARABI/poetry2023/app.py +0 -53
  21. spaces/AchyuthGamer/OpenGPT/g4f/requests.py +0 -181
  22. spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/plugins/arcadetcrp-plugin.js +0 -39
  23. spaces/Akmyradov/dost.ai/README.md +0 -13
  24. spaces/Alashazam/StoryGenerator/README.md +0 -34
  25. spaces/Alpaca233/SadTalker/src/utils/init_path.py +0 -47
  26. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/examples/community/stable_diffusion_reference.py +0 -796
  27. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/examples/dreambooth/README.md +0 -743
  28. spaces/Andy1621/uniformer_image_detection/mmdet/core/bbox/demodata.py +0 -41
  29. spaces/Andy1621/uniformer_image_detection/mmdet/datasets/coco.py +0 -546
  30. spaces/Andy1621/uniformer_image_detection/mmdet/datasets/custom.py +0 -323
  31. spaces/AnishKumbhar/ChatBot/text-generation-webui-main/modules/github.py +0 -38
  32. spaces/Anonymous-123/ImageNet-Editing/app.py +0 -102
  33. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/commands/download.py +0 -143
  34. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/configuration.py +0 -374
  35. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/models/index.py +0 -28
  36. spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/engine/__init__.py +0 -12
  37. spaces/Bart92/RVC_HF/lib/uvr5_pack/lib_v5/nets_new.py +0 -132
  38. spaces/Benson/text-generation/Examples/Apps Juegos Gratis Descargar Solitario.md +0 -76
  39. spaces/Benson/text-generation/Examples/Ataque En Titan Tributo Juego Versin Antigua.md +0 -213
  40. spaces/Benson/text-generation/Examples/Bus Simulator Indonesia Mod Apk Obb.md +0 -76
  41. spaces/Benson/text-generation/Examples/Coche De La Calle Apk Sin Verificacin.md +0 -77
  42. spaces/Benson/text-generation/Examples/Cuando Se Agot El Tiempo 1980 Descarga Gratuita.md +0 -49
  43. spaces/BernardoOlisan/vqganclip/README.md +0 -33
  44. spaces/BetterAPI/BetterChat/src/routes/+layout.server.ts +0 -33
  45. spaces/BetterAPI/BetterChat_new/src/lib/shareConversation.ts +0 -27
  46. spaces/CVPR/LIVE/thrust/thrust/system/tbb/detail/unique.h +0 -59
  47. spaces/CVPR/regionclip-demo/detectron2/export/torchscript_patch.py +0 -377
  48. spaces/CikeyQI/meme-api/meme_generator/memes/ask/__init__.py +0 -83
  49. spaces/CofAI/chat.b4/g4f/Provider/Providers/Vercel.py +0 -162
  50. spaces/Cong723/gpt-academic-public/crazy_functional.py +0 -240
spaces/0x90e/ESRGAN-MANGA/ESRGAN_plus/block.py DELETED
@@ -1,287 +0,0 @@
1
- from collections import OrderedDict
2
- import torch
3
- import torch.nn as nn
4
-
5
- ####################
6
- # Basic blocks
7
- ####################
8
-
9
-
10
- def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1):
11
- # helper selecting activation
12
- # neg_slope: for leakyrelu and init of prelu
13
- # n_prelu: for p_relu num_parameters
14
- act_type = act_type.lower()
15
- if act_type == 'relu':
16
- layer = nn.ReLU(inplace)
17
- elif act_type == 'leakyrelu':
18
- layer = nn.LeakyReLU(neg_slope, inplace)
19
- elif act_type == 'prelu':
20
- layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
21
- else:
22
- raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type))
23
- return layer
24
-
25
-
26
- def norm(norm_type, nc):
27
- # helper selecting normalization layer
28
- norm_type = norm_type.lower()
29
- if norm_type == 'batch':
30
- layer = nn.BatchNorm2d(nc, affine=True)
31
- elif norm_type == 'instance':
32
- layer = nn.InstanceNorm2d(nc, affine=False)
33
- else:
34
- raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type))
35
- return layer
36
-
37
-
38
- def pad(pad_type, padding):
39
- # helper selecting padding layer
40
- # if padding is 'zero', do by conv layers
41
- pad_type = pad_type.lower()
42
- if padding == 0:
43
- return None
44
- if pad_type == 'reflect':
45
- layer = nn.ReflectionPad2d(padding)
46
- elif pad_type == 'replicate':
47
- layer = nn.ReplicationPad2d(padding)
48
- else:
49
- raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type))
50
- return layer
51
-
52
-
53
- def get_valid_padding(kernel_size, dilation):
54
- kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
55
- padding = (kernel_size - 1) // 2
56
- return padding
57
-
58
-
59
- class ConcatBlock(nn.Module):
60
- # Concat the output of a submodule to its input
61
- def __init__(self, submodule):
62
- super(ConcatBlock, self).__init__()
63
- self.sub = submodule
64
-
65
- def forward(self, x):
66
- output = torch.cat((x, self.sub(x)), dim=1)
67
- return output
68
-
69
- def __repr__(self):
70
- tmpstr = 'Identity .. \n|'
71
- modstr = self.sub.__repr__().replace('\n', '\n|')
72
- tmpstr = tmpstr + modstr
73
- return tmpstr
74
-
75
-
76
- class ShortcutBlock(nn.Module):
77
- #Elementwise sum the output of a submodule to its input
78
- def __init__(self, submodule):
79
- super(ShortcutBlock, self).__init__()
80
- self.sub = submodule
81
-
82
- def forward(self, x):
83
- output = x + self.sub(x)
84
- return output
85
-
86
- def __repr__(self):
87
- tmpstr = 'Identity + \n|'
88
- modstr = self.sub.__repr__().replace('\n', '\n|')
89
- tmpstr = tmpstr + modstr
90
- return tmpstr
91
-
92
-
93
- def sequential(*args):
94
- # Flatten Sequential. It unwraps nn.Sequential.
95
- if len(args) == 1:
96
- if isinstance(args[0], OrderedDict):
97
- raise NotImplementedError('sequential does not support OrderedDict input.')
98
- return args[0] # No sequential is needed.
99
- modules = []
100
- for module in args:
101
- if isinstance(module, nn.Sequential):
102
- for submodule in module.children():
103
- modules.append(submodule)
104
- elif isinstance(module, nn.Module):
105
- modules.append(module)
106
- return nn.Sequential(*modules)
107
-
108
-
109
- def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True, \
110
- pad_type='zero', norm_type=None, act_type='relu', mode='CNA'):
111
- '''
112
- Conv layer with padding, normalization, activation
113
- mode: CNA --> Conv -> Norm -> Act
114
- NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
115
- '''
116
- assert mode in ['CNA', 'NAC', 'CNAC'], 'Wong conv mode [{:s}]'.format(mode)
117
- padding = get_valid_padding(kernel_size, dilation)
118
- p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
119
- padding = padding if pad_type == 'zero' else 0
120
-
121
- c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding, \
122
- dilation=dilation, bias=bias, groups=groups)
123
- a = act(act_type) if act_type else None
124
- if 'CNA' in mode:
125
- n = norm(norm_type, out_nc) if norm_type else None
126
- return sequential(p, c, n, a)
127
- elif mode == 'NAC':
128
- if norm_type is None and act_type is not None:
129
- a = act(act_type, inplace=False)
130
- # Important!
131
- # input----ReLU(inplace)----Conv--+----output
132
- # |________________________|
133
- # inplace ReLU will modify the input, therefore wrong output
134
- n = norm(norm_type, in_nc) if norm_type else None
135
- return sequential(n, a, p, c)
136
-
137
-
138
- def conv1x1(in_planes, out_planes, stride=1):
139
- """1x1 convolution"""
140
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
141
-
142
-
143
- class GaussianNoise(nn.Module):
144
- def __init__(self, sigma=0.1, is_relative_detach=False):
145
- super().__init__()
146
- self.sigma = sigma
147
- self.is_relative_detach = is_relative_detach
148
- self.noise = torch.tensor(0, dtype=torch.float).to(torch.device('cuda'))
149
-
150
- def forward(self, x):
151
- if self.training and self.sigma != 0:
152
- scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
153
- sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
154
- x = x + sampled_noise
155
- return x
156
-
157
-
158
- ####################
159
- # Useful blocks
160
- ####################
161
-
162
-
163
- class ResNetBlock(nn.Module):
164
- '''
165
- ResNet Block, 3-3 style
166
- with extra residual scaling used in EDSR
167
- (Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
168
- '''
169
-
170
- def __init__(self, in_nc, mid_nc, out_nc, kernel_size=3, stride=1, dilation=1, groups=1, \
171
- bias=True, pad_type='zero', norm_type=None, act_type='relu', mode='CNA', res_scale=1):
172
- super(ResNetBlock, self).__init__()
173
- conv0 = conv_block(in_nc, mid_nc, kernel_size, stride, dilation, groups, bias, pad_type, \
174
- norm_type, act_type, mode)
175
- if mode == 'CNA':
176
- act_type = None
177
- if mode == 'CNAC': # Residual path: |-CNAC-|
178
- act_type = None
179
- norm_type = None
180
- conv1 = conv_block(mid_nc, out_nc, kernel_size, stride, dilation, groups, bias, pad_type, \
181
- norm_type, act_type, mode)
182
- # if in_nc != out_nc:
183
- # self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
184
- # None, None)
185
- # print('Need a projecter in ResNetBlock.')
186
- # else:
187
- # self.project = lambda x:x
188
- self.res = sequential(conv0, conv1)
189
- self.res_scale = res_scale
190
-
191
- def forward(self, x):
192
- res = self.res(x).mul(self.res_scale)
193
- return x + res
194
-
195
-
196
- class ResidualDenseBlock_5C(nn.Module):
197
- '''
198
- Residual Dense Block
199
- style: 5 convs
200
- The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
201
- '''
202
-
203
- def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
204
- norm_type=None, act_type='leakyrelu', mode='CNA', noise_input=True):
205
- super(ResidualDenseBlock_5C, self).__init__()
206
- # gc: growth channel, i.e. intermediate channels
207
- self.noise = GaussianNoise() if noise_input else None
208
- self.conv1x1 = conv1x1(nc, gc)
209
- self.conv1 = conv_block(nc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
210
- norm_type=norm_type, act_type=act_type, mode=mode)
211
- self.conv2 = conv_block(nc+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
212
- norm_type=norm_type, act_type=act_type, mode=mode)
213
- self.conv3 = conv_block(nc+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
214
- norm_type=norm_type, act_type=act_type, mode=mode)
215
- self.conv4 = conv_block(nc+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type, \
216
- norm_type=norm_type, act_type=act_type, mode=mode)
217
- if mode == 'CNA':
218
- last_act = None
219
- else:
220
- last_act = act_type
221
- self.conv5 = conv_block(nc+4*gc, nc, 3, stride, bias=bias, pad_type=pad_type, \
222
- norm_type=norm_type, act_type=last_act, mode=mode)
223
-
224
- def forward(self, x):
225
- x1 = self.conv1(x)
226
- x2 = self.conv2(torch.cat((x, x1), 1))
227
- x2 = x2 + self.conv1x1(x)
228
- x3 = self.conv3(torch.cat((x, x1, x2), 1))
229
- x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
230
- x4 = x4 + x2
231
- x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
232
- return self.noise(x5.mul(0.2) + x)
233
-
234
-
235
- class RRDB(nn.Module):
236
- '''
237
- Residual in Residual Dense Block
238
- (ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
239
- '''
240
-
241
- def __init__(self, nc, kernel_size=3, gc=32, stride=1, bias=True, pad_type='zero', \
242
- norm_type=None, act_type='leakyrelu', mode='CNA'):
243
- super(RRDB, self).__init__()
244
- self.RDB1 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
245
- norm_type, act_type, mode)
246
- self.RDB2 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
247
- norm_type, act_type, mode)
248
- self.RDB3 = ResidualDenseBlock_5C(nc, kernel_size, gc, stride, bias, pad_type, \
249
- norm_type, act_type, mode)
250
- self.noise = GaussianNoise()
251
-
252
- def forward(self, x):
253
- out = self.RDB1(x)
254
- out = self.RDB2(out)
255
- out = self.RDB3(out)
256
- return self.noise(out.mul(0.2) + x)
257
-
258
-
259
- ####################
260
- # Upsampler
261
- ####################
262
-
263
-
264
- def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, \
265
- pad_type='zero', norm_type=None, act_type='relu'):
266
- '''
267
- Pixel shuffle layer
268
- (Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
269
- Neural Network, CVPR17)
270
- '''
271
- conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias, \
272
- pad_type=pad_type, norm_type=None, act_type=None)
273
- pixel_shuffle = nn.PixelShuffle(upscale_factor)
274
-
275
- n = norm(norm_type, out_nc) if norm_type else None
276
- a = act(act_type) if act_type else None
277
- return sequential(conv, pixel_shuffle, n, a)
278
-
279
-
280
- def upconv_blcok(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True, \
281
- pad_type='zero', norm_type=None, act_type='relu', mode='nearest'):
282
- # Up conv
283
- # described in https://distill.pub/2016/deconv-checkerboard/
284
- upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
285
- conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias, \
286
- pad_type=pad_type, norm_type=norm_type, act_type=act_type)
287
- return sequential(upsample, conv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1368565466ki/ZSTRD/modules.py DELETED
@@ -1,388 +0,0 @@
1
- import math
2
- import numpy as np
3
- import torch
4
- from torch import nn
5
- from torch.nn import functional as F
6
-
7
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
8
- from torch.nn.utils import weight_norm, remove_weight_norm
9
-
10
- import commons
11
- from commons import init_weights, get_padding
12
- from transforms import piecewise_rational_quadratic_transform
13
-
14
-
15
- LRELU_SLOPE = 0.1
16
-
17
-
18
- class LayerNorm(nn.Module):
19
- def __init__(self, channels, eps=1e-5):
20
- super().__init__()
21
- self.channels = channels
22
- self.eps = eps
23
-
24
- self.gamma = nn.Parameter(torch.ones(channels))
25
- self.beta = nn.Parameter(torch.zeros(channels))
26
-
27
- def forward(self, x):
28
- x = x.transpose(1, -1)
29
- x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
30
- return x.transpose(1, -1)
31
-
32
-
33
- class ConvReluNorm(nn.Module):
34
- def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
35
- super().__init__()
36
- self.in_channels = in_channels
37
- self.hidden_channels = hidden_channels
38
- self.out_channels = out_channels
39
- self.kernel_size = kernel_size
40
- self.n_layers = n_layers
41
- self.p_dropout = p_dropout
42
- assert n_layers > 1, "Number of layers should be larger than 0."
43
-
44
- self.conv_layers = nn.ModuleList()
45
- self.norm_layers = nn.ModuleList()
46
- self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
47
- self.norm_layers.append(LayerNorm(hidden_channels))
48
- self.relu_drop = nn.Sequential(
49
- nn.ReLU(),
50
- nn.Dropout(p_dropout))
51
- for _ in range(n_layers-1):
52
- self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
53
- self.norm_layers.append(LayerNorm(hidden_channels))
54
- self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
55
- self.proj.weight.data.zero_()
56
- self.proj.bias.data.zero_()
57
-
58
- def forward(self, x, x_mask):
59
- x_org = x
60
- for i in range(self.n_layers):
61
- x = self.conv_layers[i](x * x_mask)
62
- x = self.norm_layers[i](x)
63
- x = self.relu_drop(x)
64
- x = x_org + self.proj(x)
65
- return x * x_mask
66
-
67
-
68
- class DDSConv(nn.Module):
69
- """
70
- Dialted and Depth-Separable Convolution
71
- """
72
- def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
73
- super().__init__()
74
- self.channels = channels
75
- self.kernel_size = kernel_size
76
- self.n_layers = n_layers
77
- self.p_dropout = p_dropout
78
-
79
- self.drop = nn.Dropout(p_dropout)
80
- self.convs_sep = nn.ModuleList()
81
- self.convs_1x1 = nn.ModuleList()
82
- self.norms_1 = nn.ModuleList()
83
- self.norms_2 = nn.ModuleList()
84
- for i in range(n_layers):
85
- dilation = kernel_size ** i
86
- padding = (kernel_size * dilation - dilation) // 2
87
- self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
88
- groups=channels, dilation=dilation, padding=padding
89
- ))
90
- self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
91
- self.norms_1.append(LayerNorm(channels))
92
- self.norms_2.append(LayerNorm(channels))
93
-
94
- def forward(self, x, x_mask, g=None):
95
- if g is not None:
96
- x = x + g
97
- for i in range(self.n_layers):
98
- y = self.convs_sep[i](x * x_mask)
99
- y = self.norms_1[i](y)
100
- y = F.gelu(y)
101
- y = self.convs_1x1[i](y)
102
- y = self.norms_2[i](y)
103
- y = F.gelu(y)
104
- y = self.drop(y)
105
- x = x + y
106
- return x * x_mask
107
-
108
-
109
- class WN(torch.nn.Module):
110
- def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
111
- super(WN, self).__init__()
112
- assert(kernel_size % 2 == 1)
113
- self.hidden_channels =hidden_channels
114
- self.kernel_size = kernel_size,
115
- self.dilation_rate = dilation_rate
116
- self.n_layers = n_layers
117
- self.gin_channels = gin_channels
118
- self.p_dropout = p_dropout
119
-
120
- self.in_layers = torch.nn.ModuleList()
121
- self.res_skip_layers = torch.nn.ModuleList()
122
- self.drop = nn.Dropout(p_dropout)
123
-
124
- if gin_channels != 0:
125
- cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
126
- self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
127
-
128
- for i in range(n_layers):
129
- dilation = dilation_rate ** i
130
- padding = int((kernel_size * dilation - dilation) / 2)
131
- in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
132
- dilation=dilation, padding=padding)
133
- in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
134
- self.in_layers.append(in_layer)
135
-
136
- # last one is not necessary
137
- if i < n_layers - 1:
138
- res_skip_channels = 2 * hidden_channels
139
- else:
140
- res_skip_channels = hidden_channels
141
-
142
- res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
143
- res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
144
- self.res_skip_layers.append(res_skip_layer)
145
-
146
- def forward(self, x, x_mask, g=None, **kwargs):
147
- output = torch.zeros_like(x)
148
- n_channels_tensor = torch.IntTensor([self.hidden_channels])
149
-
150
- if g is not None:
151
- g = self.cond_layer(g)
152
-
153
- for i in range(self.n_layers):
154
- x_in = self.in_layers[i](x)
155
- if g is not None:
156
- cond_offset = i * 2 * self.hidden_channels
157
- g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
158
- else:
159
- g_l = torch.zeros_like(x_in)
160
-
161
- acts = commons.fused_add_tanh_sigmoid_multiply(
162
- x_in,
163
- g_l,
164
- n_channels_tensor)
165
- acts = self.drop(acts)
166
-
167
- res_skip_acts = self.res_skip_layers[i](acts)
168
- if i < self.n_layers - 1:
169
- res_acts = res_skip_acts[:,:self.hidden_channels,:]
170
- x = (x + res_acts) * x_mask
171
- output = output + res_skip_acts[:,self.hidden_channels:,:]
172
- else:
173
- output = output + res_skip_acts
174
- return output * x_mask
175
-
176
- def remove_weight_norm(self):
177
- if self.gin_channels != 0:
178
- torch.nn.utils.remove_weight_norm(self.cond_layer)
179
- for l in self.in_layers:
180
- torch.nn.utils.remove_weight_norm(l)
181
- for l in self.res_skip_layers:
182
- torch.nn.utils.remove_weight_norm(l)
183
-
184
-
185
- class ResBlock1(torch.nn.Module):
186
- def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
187
- super(ResBlock1, self).__init__()
188
- self.convs1 = nn.ModuleList([
189
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
190
- padding=get_padding(kernel_size, dilation[0]))),
191
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
192
- padding=get_padding(kernel_size, dilation[1]))),
193
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
194
- padding=get_padding(kernel_size, dilation[2])))
195
- ])
196
- self.convs1.apply(init_weights)
197
-
198
- self.convs2 = nn.ModuleList([
199
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
200
- padding=get_padding(kernel_size, 1))),
201
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202
- padding=get_padding(kernel_size, 1))),
203
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204
- padding=get_padding(kernel_size, 1)))
205
- ])
206
- self.convs2.apply(init_weights)
207
-
208
- def forward(self, x, x_mask=None):
209
- for c1, c2 in zip(self.convs1, self.convs2):
210
- xt = F.leaky_relu(x, LRELU_SLOPE)
211
- if x_mask is not None:
212
- xt = xt * x_mask
213
- xt = c1(xt)
214
- xt = F.leaky_relu(xt, LRELU_SLOPE)
215
- if x_mask is not None:
216
- xt = xt * x_mask
217
- xt = c2(xt)
218
- x = xt + x
219
- if x_mask is not None:
220
- x = x * x_mask
221
- return x
222
-
223
- def remove_weight_norm(self):
224
- for l in self.convs1:
225
- remove_weight_norm(l)
226
- for l in self.convs2:
227
- remove_weight_norm(l)
228
-
229
-
230
- class ResBlock2(torch.nn.Module):
231
- def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
232
- super(ResBlock2, self).__init__()
233
- self.convs = nn.ModuleList([
234
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
235
- padding=get_padding(kernel_size, dilation[0]))),
236
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
237
- padding=get_padding(kernel_size, dilation[1])))
238
- ])
239
- self.convs.apply(init_weights)
240
-
241
- def forward(self, x, x_mask=None):
242
- for c in self.convs:
243
- xt = F.leaky_relu(x, LRELU_SLOPE)
244
- if x_mask is not None:
245
- xt = xt * x_mask
246
- xt = c(xt)
247
- x = xt + x
248
- if x_mask is not None:
249
- x = x * x_mask
250
- return x
251
-
252
- def remove_weight_norm(self):
253
- for l in self.convs:
254
- remove_weight_norm(l)
255
-
256
-
257
- class Log(nn.Module):
258
- def forward(self, x, x_mask, reverse=False, **kwargs):
259
- if not reverse:
260
- y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
261
- logdet = torch.sum(-y, [1, 2])
262
- return y, logdet
263
- else:
264
- x = torch.exp(x) * x_mask
265
- return x
266
-
267
-
268
- class Flip(nn.Module):
269
- def forward(self, x, *args, reverse=False, **kwargs):
270
- x = torch.flip(x, [1])
271
- if not reverse:
272
- logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
273
- return x, logdet
274
- else:
275
- return x
276
-
277
-
278
- class ElementwiseAffine(nn.Module):
279
- def __init__(self, channels):
280
- super().__init__()
281
- self.channels = channels
282
- self.m = nn.Parameter(torch.zeros(channels,1))
283
- self.logs = nn.Parameter(torch.zeros(channels,1))
284
-
285
- def forward(self, x, x_mask, reverse=False, **kwargs):
286
- if not reverse:
287
- y = self.m + torch.exp(self.logs) * x
288
- y = y * x_mask
289
- logdet = torch.sum(self.logs * x_mask, [1,2])
290
- return y, logdet
291
- else:
292
- x = (x - self.m) * torch.exp(-self.logs) * x_mask
293
- return x
294
-
295
-
296
- class ResidualCouplingLayer(nn.Module):
297
- def __init__(self,
298
- channels,
299
- hidden_channels,
300
- kernel_size,
301
- dilation_rate,
302
- n_layers,
303
- p_dropout=0,
304
- gin_channels=0,
305
- mean_only=False):
306
- assert channels % 2 == 0, "channels should be divisible by 2"
307
- super().__init__()
308
- self.channels = channels
309
- self.hidden_channels = hidden_channels
310
- self.kernel_size = kernel_size
311
- self.dilation_rate = dilation_rate
312
- self.n_layers = n_layers
313
- self.half_channels = channels // 2
314
- self.mean_only = mean_only
315
-
316
- self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
317
- self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
318
- self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
319
- self.post.weight.data.zero_()
320
- self.post.bias.data.zero_()
321
-
322
- def forward(self, x, x_mask, g=None, reverse=False):
323
- x0, x1 = torch.split(x, [self.half_channels]*2, 1)
324
- h = self.pre(x0) * x_mask
325
- h = self.enc(h, x_mask, g=g)
326
- stats = self.post(h) * x_mask
327
- if not self.mean_only:
328
- m, logs = torch.split(stats, [self.half_channels]*2, 1)
329
- else:
330
- m = stats
331
- logs = torch.zeros_like(m)
332
-
333
- if not reverse:
334
- x1 = m + x1 * torch.exp(logs) * x_mask
335
- x = torch.cat([x0, x1], 1)
336
- logdet = torch.sum(logs, [1,2])
337
- return x, logdet
338
- else:
339
- x1 = (x1 - m) * torch.exp(-logs) * x_mask
340
- x = torch.cat([x0, x1], 1)
341
- return x
342
-
343
-
344
- class ConvFlow(nn.Module):
345
- def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
346
- super().__init__()
347
- self.in_channels = in_channels
348
- self.filter_channels = filter_channels
349
- self.kernel_size = kernel_size
350
- self.n_layers = n_layers
351
- self.num_bins = num_bins
352
- self.tail_bound = tail_bound
353
- self.half_channels = in_channels // 2
354
-
355
- self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
356
- self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
357
- self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
358
- self.proj.weight.data.zero_()
359
- self.proj.bias.data.zero_()
360
-
361
- def forward(self, x, x_mask, g=None, reverse=False):
362
- x0, x1 = torch.split(x, [self.half_channels]*2, 1)
363
- h = self.pre(x0)
364
- h = self.convs(h, x_mask, g=g)
365
- h = self.proj(h) * x_mask
366
-
367
- b, c, t = x0.shape
368
- h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
369
-
370
- unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
371
- unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
372
- unnormalized_derivatives = h[..., 2 * self.num_bins:]
373
-
374
- x1, logabsdet = piecewise_rational_quadratic_transform(x1,
375
- unnormalized_widths,
376
- unnormalized_heights,
377
- unnormalized_derivatives,
378
- inverse=reverse,
379
- tails='linear',
380
- tail_bound=self.tail_bound
381
- )
382
-
383
- x = torch.cat([x0, x1], 1) * x_mask
384
- logdet = torch.sum(logabsdet * x_mask, [1,2])
385
- if not reverse:
386
- return x, logdet
387
- else:
388
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Autocad 2012 Crack Kickass Torre The Best Way to Enjoy Autocad without Paying a Dime.md DELETED
@@ -1,108 +0,0 @@
1
- <br />
2
- <h1>Autocad 2012 Crack Kickass Torre: What You Need to Know</h1>
3
- <p>If you are looking for a way to get Autocad 2012, a popular software for designing and drafting, for free, you might have come across the term "Autocad 2012 Crack Kickass Torre". But what does it mean and how can you use it? In this article, we will explain everything you need to know about Autocad 2012 Crack Kickass Torre, including what it is, how it works, and what are the risks and benefits of using it. We will also provide you with a step-by-step guide on how to download and install Autocad 2012 Crack from Kickass Torre, as well as some tips and tricks for using it successfully.</p>
4
- <h2>What is Autocad 2012?</h2>
5
- <p>Autocad 2012 is a software developed by Autodesk that allows you to create and edit 2D and 3D designs. It is widely used by architects, engineers, designers, and other professionals who need to create accurate and detailed drawings. Autocad 2012 has many features and benefits that make it a powerful and versatile tool for design and drafting.</p>
6
- <h2>Autocad 2012 Crack Kickass Torre</h2><br /><p><b><b>DOWNLOAD</b> &ndash;&ndash;&ndash; <a href="https://byltly.com/2uKzpM">https://byltly.com/2uKzpM</a></b></p><br /><br />
7
- <h3>Features and Benefits of Autocad 2012</h3>
8
- <p>Some of the features and benefits of Autocad 2012 are:</p>
9
- <ul>
10
- <li>It has a user-friendly interface that lets you access various tools and commands easily.</li>
11
- <li>It supports multiple file formats, such as DWG, DXF, DWF, PDF, JPG, PNG, etc.</li>
12
- <li>It allows you to create complex shapes and objects with the help of advanced modeling tools.</li>
13
- <li>It enables you to add dimensions, annotations, text, hatches, tables, leaders, etc. to your drawings.</li>
14
- <li>It allows you to customize your workspace with different layouts, views, styles, palettes, etc.</li>
15
- <li>It has a built-in rendering engine that lets you create realistic images and animations of your designs.</li>
16
- <li>It has a cloud service that lets you store, share, and access your files online.</li>
17
- <li>It has a collaboration feature that lets you work with other users on the same project.</li>
18
- <li>It has a parametric drawing feature that lets you define relationships between objects and modify them automatically.</li>
19
- <li>It has an array feature that lets you create multiple copies of objects in a pattern.</li>
20
- </ul>
21
- <h3>System Requirements and Compatibility of Autocad 2012</h3>
22
- <p>To run Autocad 2012 smoothly on your computer, you need to meet the following system requirements:</p>
23
- <p>Autocad 2012 full version with crack torrent download<br />
24
- How to install Autocad 2012 cracked by kickass<br />
25
- Autocad 2012 keygen free download kickass<br />
26
- Autocad 2012 activation code generator torrent<br />
27
- Autocad 2012 64 bit crack kickass torrent<br />
28
- Autocad 2012 serial number and product key torrent<br />
29
- Autocad 2012 patch file download kickass<br />
30
- Autocad 2012 license key crack torrent<br />
31
- Autocad 2012 crack only download kickass<br />
32
- Autocad 2012 xforce keygen torrent download<br />
33
- Autocad 2012 crack for mac kickass torrent<br />
34
- Autocad 2012 portable edition torrent kickass<br />
35
- Autocad 2012 crack kickass torre alternative sites<br />
36
- Autocad 2012 crack kickass torre proxy list<br />
37
- Autocad 2012 crack kickass torre magnet link<br />
38
- Autocad 2012 crack kickass torre VPN service<br />
39
- Autocad 2012 crack kickass torre safe or not<br />
40
- Autocad 2012 crack kickass torre legal or illegal<br />
41
- Autocad 2012 crack kickass torre reviews and ratings<br />
42
- Autocad 2012 crack kickass torre problems and solutions<br />
43
- Autocad 2012 crack kickass torre tips and tricks<br />
44
- Autocad 2012 crack kickass torre best practices and guidelines<br />
45
- Autocad 2012 crack kickass torre advantages and disadvantages<br />
46
- Autocad 2012 crack kickass torre features and benefits<br />
47
- Autocad 2012 crack kickass torre comparison and contrast<br />
48
- Autocad 2012 crack kickass torre pros and cons<br />
49
- Autocad 2012 crack kickass torre FAQs and answers<br />
50
- Autocad 2012 crack kickass torre tutorials and guides<br />
51
- Autocad 2012 crack kickass torre videos and demos<br />
52
- Autocad 2012 crack kickass torre blogs and forums<br />
53
- Autocad 2012 crack kickass torre news and updates<br />
54
- Autocad 2012 crack kickass torre case studies and testimonials<br />
55
- Autocad 2012 crack kickass torre success stories and examples<br />
56
- Autocad 2012 crack kickass torre statistics and facts<br />
57
- Autocad 2012 crack kickass torre research and analysis<br />
58
- Autocad 2012 crack kickass torre tools and resources<br />
59
- Autocad 2012 crack kickass torre software and apps<br />
60
- Autocad 2012 crack kickass torre courses and training<br />
61
- Autocad 2012 crack kickass torre ebooks and reports<br />
62
- Autocad 2012 crack kickass torre infographics and images<br />
63
- Autocad 2012 crack kickass torre podcasts and audio<br />
64
- Autocad 2012 crack kickass torre webinars and events<br />
65
- Autocad 2012 crack kickass torre offers and discounts<br />
66
- Autocad 2012 crack kickass torre coupons and codes<br />
67
- Autocad 2012 crack kickass torre free trial and download<br />
68
- Autocad 2012 crack kickass torre bonus and giveaway<br />
69
- Autocad 2012 crack kickass torre affiliate program and commission <br />
70
- Autocad 2012 crack kickass torre customer service and support <br />
71
- Autocad 2012 crack kickass torre feedback and suggestions</p>
72
- <ul>
73
- <li>Operating system: Windows XP SP3 or later (32-bit or 64-bit), Windows Vista SP1 or later (32-bit or 64-bit), Windows 7 (32-bit or 64-bit)</li>
74
- <li>Processor: Intel Pentium 4 or AMD Athlon dual-core processor with SSE2 technology (3 GHz or higher)</li>
75
- <li>Memory: 2 GB RAM (4 GB recommended)</li>
76
- <li>Disk space: 6 GB free disk space for installation</li>
77
- <li>Display: 1024 x 768 resolution with true color (1600 x 1050 recommended)</li>
78
- <li>Graphics card: Microsoft DirectX®-compatible graphics card with hardware acceleration (256 MB or higher)</li>
79
- <li>Internet connection: Required for online services</li>
80
- </ul>
81
- <p>To use Autocad 2012 on your computer, you also need to have a valid license key that activates the software. A license key is a unique code that proves that you have purchased the software legally from Autodesk or an authorized reseller. A license key can be obtained by paying a subscription fee or buying a perpetual license. However, some people may not be able or willing to pay for the software, so they look for alternative ways to get it for free. One of these ways is using a crack.</p>
82
- <h2>What is a Crack?</h2>
83
- <p>A crack is a program or file that modifies or bypasses the original software's security features. A crack can be used to remove the license verification process or generate fake license keys that trick the software into thinking that it is activated. A crack can also be used to unlock additional features or functions that are not available in the original software. A crack can be applied to various types of software, such as games, applications, operating systems, etc.</p>
84
- <h3>How Cracks Work and Why People Use Them</h3>
85
- <p>A crack works by altering the code or data of the original software in some way. For example, a crack may change some values in the registry or memory that control the license verification process. A crack may also replace some files or folders in the installation directory that contain the security features. A crack may also inject some code into the running process of the software that disables the security features. A crack may also create some fake files or folders that mimic the original ones but contain different information.</p>
86
- <p>People use cracks for various reasons. Some of the common reasons are:</p>
87
- <ul>
88
- <li>To save money by not paying for the software.</li>
89
- <li>To test the software before buying it.</li>
90
- <li>To access additional features or functions that are not available in the original software.</li>
91
- <li>To bypass regional restrictions or censorship that prevent them from using the software.</li>
92
- <li>To avoid updating or registering the software.</li>
93
- </ul>
94
- <h3>Risks and Drawbacks of Using Cracks</h3>
95
- <p>While using cracks may seem tempting or convenient for some people, there are also many risks and drawbacks associated with them. Some of the common risks and drawbacks are:</p>
96
- <ul>
97
- <li>You may violate the intellectual property rights of the software developer or owner.</li>
98
- <li>You may expose your computer to viruses, malware, spyware, ransomware, etc. that may be hidden in the cracks.</li>
99
- <li>You may damage your computer system or files by installing corrupted or incompatible cracks.</li>
100
- <li>You may lose access to online services or updates that require an authentic license key.</li>
101
- <li>You may experience performance issues or errors due to conflicts between the cracks and the original software.</li>
102
- <li>You may compromise your personal information or data by using cracks from untrusted sources.</li>
103
- </ul>
104
- <p>Therefore, using cracks is not recommended as it may cause more harm than good. If you want to use Autocad 2012 legally and safely, you should buy it from Autodesk or an authorized reseller. However, if you still insist on using a crack for Autocad 2012, you should be aware of where to get it from and how to use it properly. One of the sources where people get cracks from is Kickass Torre.</p>
105
- <h2>What is Kickass Torre?</h2>
106
- <p>Kickass Torre is a website that hosts torrent files for various types of content, such as movies, music, games, software, etc. A torrent file is a small file that contains information about the content and how to download it from other users who have the content on their computers. A torrent file does not contain the content itself, but rather the metadata that helps to locate and download it. To download a torrent file, you need a torrent client, such as BitTorrent, uTorrent, or qBittorrent, that can read the torrent file and connect to other users who have the content on their computers. The process of downloading a torrent file is called seeding, and the process of uploading a torrent file is called leeching. The more seeders and le</p> 0a6ba089eb<br />
107
- <br />
108
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Elysian cracked roblox download 13 Full lua loadstrings scripts and more.md DELETED
@@ -1,92 +0,0 @@
1
-
2
- <h1>Elysian Cracked Roblox Download 13: Everything You Need to Know</h1>
3
- <p>Roblox is one of the most popular online gaming platforms in the world, with millions of players creating and exploring various games every day. However, some players may want to enhance their gaming experience by using exploits, which are tools that can modify the game's code and give them an advantage over other players. One of the most powerful and sought-after exploits for Roblox is Elysian, which can execute any script and bypass any anti-cheat system. In this article, we will tell you everything you need to know about Elysian cracked Roblox download 13, including what it is, how to get it, why use it, how to use it, and some tips and tricks for using it safely and effectively.</p>
4
- <h2>elysian cracked roblox download 13</h2><br /><p><b><b>DOWNLOAD</b> &#10004; <a href="https://byltly.com/2uKv5b">https://byltly.com/2uKv5b</a></b></p><br /><br />
5
- <h2>What is Elysian?</h2>
6
- <p>Elysian is a premium exploit for Roblox that can run any script with full Lua support, loadstrings, and more. It can also bypass any anti-exploit system that Roblox has, such as Filtering Enabled, Remote Spy, Script Dumper, etc. This means that you can use Elysian to execute any script that you want without getting detected or banned by Roblox. Some of the scripts that you can use with Elysian are aimbot, fly, noclip, speed, teleport, kill all, admin commands, and more.</p>
7
- <h3>Features of Elysian</h3>
8
- <p>Some of the features that make Elysian one of the best exploits for Roblox are:</p>
9
- <ul>
10
- <li>Full Lua support: You can run any Lua script with Elysian, including those that require loadstrings or require functions.</li>
11
- <li>Script hub: You can access a huge library of scripts that are compatible with Elysian from its built-in script hub. You can also add your own scripts or import scripts from other sources.</li>
12
- <li>Custom UI: You can customize the appearance and functionality of Elysian's user interface according to your preferences. You can change the theme, color, font, size, position, transparency, etc. of the UI elements.</li>
13
- <li>Auto-update: You don't have to worry about updating Elysian manually every time Roblox updates its game engine. Elysian has an auto-update feature that will automatically download and install the latest version of the exploit whenever it is available.</li>
14
- <li>Support: You can get help and support from the developers and the community of Elysian through its official website, Discord server, YouTube channel, etc.</li>
15
- </ul>
16
- <h3>How to get Elysian cracked version</h3>
17
- <p>Elysian is a premium exploit that costs $20 to buy from its official website. However, some people may not be able or willing to pay for it. In that case, they may look for a cracked version of Elysian that they can download for free from other sources. A cracked version is a modified version of the original exploit that bypasses its security features and allows anyone to use it without paying.</p>
18
- <p>However, getting a cracked version of Elysian is not easy or safe. Most of the websites or videos that claim to offer a free download link for Elysian cracked are fake or malicious. They may contain viruses, malware, spyware, ransomware, or other harmful programs that can infect your computer or steal your personal information. They may also ask you to complete surveys, download apps, enter your email or password, or perform other tasks that are scams or phishing attempts.</p>
19
- <p>elysian v2 full lua roblox exploit<br />
20
- roblox elysian cracked dll injector<br />
21
- elysian v3.7 roblox hack free download<br />
22
- how to use elysian scripts on roblox<br />
23
- roblox elysian exploit 2017 working<br />
24
- elysian cracked roblox download mega<br />
25
- roblox elysian v2 loadstrings scripts<br />
26
- elysian roblox exploit youtube video<br />
27
- roblox elysian hack 2017 sendspace<br />
28
- elysian v3.7 roblox rc7 cracked<br />
29
- roblox elysian exploit 2013 download<br />
30
- elysian v2 roblox hack credit aero<br />
31
- roblox elysian cracked easy fun<br />
32
- elysian v3.7 roblox exploit 2017<br />
33
- roblox elysian hack dll injector bitly<br />
34
- elysian v2 full lua loadstrings more<br />
35
- roblox elysian exploit yay download desc<br />
36
- elysian cracked roblox download virus<br />
37
- roblox elysian v2 scripts more astherix yt<br />
38
- elysian v3.7 roblox hack working 2017<br />
39
- roblox elysian cracked download injector<br />
40
- elysian v2 roblox exploit youtube astherix<br />
41
- roblox elysian hack 2013 dll bitly<br />
42
- elysian cracked roblox download mega nz<br />
43
- roblox elysian v2 loadstrings w scripts more<br />
44
- elysian roblox exploit youtube nobody 7<br />
45
- roblox elysian hack 2017 sendspace file<br />
46
- elysian v3.7 roblox rc7 download working<br />
47
- roblox elysian exploit 2013 yay desc nobody<br />
48
- elysian cracked roblox download not scared<br />
49
- roblox elysian v2 scripts more youtube video<br />
50
- elysian v3.7 roblox hack free sendspace com<br />
51
- roblox elysian cracked easy fun nobody 7<br />
52
- elysian v3.7 roblox exploit working 2017 youtube<br />
53
- roblox elysian hack dll injector http bitly <br />
54
- elysian v2 full lua more youtube video <br />
55
- roblox elysian exploit yay desc youtube nobody <br />
56
- elysian cracked roblox download virus scared <br />
57
- roblox elysian v2 loadstrings w scripts astherix <br />
58
- elysian v3.7 roblox rc7 free download sendspace <br />
59
- roblox elysian exploit 2013 download bitly <br />
60
- elysian v2 full lua credit aero youtube astherix <br />
61
- roblox elysian cracked easy fun youtube video <br />
62
- elysian v3.7 roblox exploit 2017 youtube video <br />
63
- roblox elysian hack dll injector bitly virus <br />
64
- elysian v2 full lua loadstrings more astherix yt <br />
65
- roblox elysian exploit yay download desc bitly <br />
66
- elysian cracked roblox download virus not scared <br />
67
- roblox elysian v2 loadstrings scripts more video</p>
68
- <p>Therefore, we do not recommend downloading or using a cracked version of Elysian. It is illegal, unethical, risky, and unreliable. If you want to use Elysian for Roblox, you should buy it from its official website and support its developers.</p>
69
- <h2>Why use Elysian for Roblox?</h2>
70
- <p>Elysian is one of the best exploits for Roblox because it can give you many advantages and benefits over other players. Some of the reasons why you may want to use Elysian for Roblox are:</p>
71
- <h3>Benefits of using Elysian</h3>
72
- <ul>
73
- <li>You can have more fun and enjoyment by using different scripts that can enhance your gameplay or let you do things that are normally impossible in Roblox.</li>
74
- <li>You can have more control and freedom over your game by modifying its code and changing its rules according to your wishes.</li>
75
- <li>You can have more power and dominance over other players by using scripts that can give you unfair advantages such as aimbot, fly, speed, kill all, etc.</li>
76
- <li>You can have more creativity and expression by using scripts that can let you create or customize your own game modes, maps, items, characters, etc.</li>
77
- <li>You can have more challenge and learning by using scripts that can test your skills or teach you new things about coding or game development.</li>
78
- </ul>
79
- <h3>Risks of using Elysian</h3>
80
- <ul>
81
- <li>You may get banned by Roblox if they detect that you are using an exploit or violating their terms of service. Although Elysian has a strong anti-detection system that can prevent most bans, there is still a small chance that you may get caught or reported by other players or moderators.</li>
82
- <li>You may get infected by malware or scammed by fake websites or videos if you download a cracked version of Elysian from untrusted sources. As we mentioned earlier, most of the links that offer a free download of Elysian cracked are fake or malicious and can harm your computer or steal your information.</li>
83
- <li>You may get bored or frustrated by using an exploit if you abuse it too much or use it for the wrong reasons. If you use an exploit to cheat or ruin other people's games without their consent or enjoyment, you may lose the fun and challenge of playing Roblox normally. You may also face backlash or hate from other players who dislike exploits or cheaters.</li>
84
- </ul>
85
- <h2>How to use Elysian for Roblox?</h2>
86
- <p>If you have bought Elysian from its official website and want to use it for Roblox, here are the steps that you need to follow:</p>
87
- <h3>Step 1: Download and install Elysian</h3>
88
- <p>After purchasing Elysian from its website <strong></strong>, you will receive an email with a download link for the exploit. Click on the link and download the zip file containing the exploit files. Extract the zip file to a folder on your computer and run the setup.exe file as administrator. Follow the instructions on the screen to install Elysian on your computer.</p>
89
- <h3>Step 2: Run Elysian and select a script</h3>
90
- <p>After installing Elysian on your computer</p> 0a6ba089eb<br />
91
- <br />
92
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Excel 2013 Free Download A Step-by-Step Guide for Windows 10 Users.md DELETED
@@ -1,38 +0,0 @@
1
-
2
- <h1>How to Get Excel 2013 Free Download for Windows 10</h1>
3
- <p>Excel 2013 is one of the most popular spreadsheet applications in the world. It allows you to create, edit, and analyze data in various formats, such as tables, charts, graphs, and pivot tables. Excel 2013 also has many advanced features, such as formulas, functions, macros, and data analysis tools. If you want to use Excel 2013 on your Windows 10 PC, you might be wondering how to get it for free. In this article, we will show you some ways to do that.</p>
4
- <h2>excel 2013 free download</h2><br /><p><b><b>Download File</b> &#8230; <a href="https://byltly.com/2uKvl3">https://byltly.com/2uKvl3</a></b></p><br /><br />
5
- <h2>Method 1: Use the Office 365 Trial</h2>
6
- <p>The easiest way to get Excel 2013 for free is to use the Office 365 trial. Office 365 is a subscription service that gives you access to the latest versions of Microsoft Office applications, including Excel. You can sign up for a free trial of Office 365 for one month and use Excel 2013 on your Windows 10 PC. Here are the steps to use the Office 365 trial:</p>
7
- <ol>
8
- <li>Go to <a href="https://www.microsoft.com/en-us/microsoft-365/try">https://www.microsoft.com/en-us/microsoft-365/try</a> and click on the Try 1 month free button.</li>
9
- <li>Sign in with your Microsoft account or create a new one.</li>
10
- <li>Enter your payment details and confirm your order. You will not be charged until the end of the trial period.</li>
11
- <li>Download and install Office 365 on your Windows 10 PC.</li>
12
- <li>Launch Excel 2013 and enjoy using it for free for one month.</li>
13
- </ol>
14
- <h2>Method 2: Use the Excel Online App</h2>
15
- <p>Another way to get Excel 2013 for free is to use the Excel Online app. This is a web-based version of Excel that lets you create and edit spreadsheets online. You can access it from any browser on your Windows 10 PC. You can also save your files to OneDrive or download them to your PC. Here are the steps to use the Excel Online app:</p>
16
- <ol>
17
- <li>Go to <a href="https://office.live.com/start/Excel.aspx">https://office.live.com/start/Excel.aspx</a> and sign in with your Microsoft account or create a new one.</li>
18
- <li>Click on the New blank workbook button or choose from the templates available.</li>
19
- <li>Create and edit your spreadsheet online using the familiar Excel interface and features.</li>
20
- <li>Save your file to OneDrive or download it to your PC.</li>
21
- </ol>
22
- <h2>Method 3: Use a Third-Party Software</h2>
23
- <p>A third way to get Excel 2013 for free is to use a third-party software that can open and edit Excel files. There are many free alternatives to Excel that offer similar functionality and compatibility. Some of them are:</p>
24
- <p></p>
25
- <ul>
26
- <li><a href="https://www.libreoffice.org/">LibreOffice Calc</a>: A free and open source software that is part of the LibreOffice suite. It can open and edit Excel files as well as other spreadsheet formats.</li>
27
- <li><a href="https://www.openoffice.org/">Apache OpenOffice Calc</a>: Another free and open source software that is part of the Apache OpenOffice suite. It can also open and edit Excel files as well as other spreadsheet formats.</li>
28
- <li><a href="https://www.wps.com/">WPS Office Spreadsheets</a>: A free software that is part of the WPS Office suite. It can open and edit Excel files as well as other spreadsheet formats. It also has a cloud version that lets you access your files online.</li>
29
- </ul>
30
- <p>To use a third-party software, follow these steps:</p>
31
- <ol>
32
- <li>Download and install the software of your choice on your Windows 10 PC.</li>
33
- <li>Launch the software and open an Excel file or create a new one.</li>
34
- <li>Edit your spreadsheet using the software's features and interface.</li>
35
- <li>Save your file in Excel format or another format of your choice.</li>
36
- </ol></p> ddb901b051<br />
37
- <br />
38
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Far Cry 3 Blood Dragon Crack Only Enjoy the Kick- Action with No-DVD [FTS] or [Reloaded].md DELETED
@@ -1,118 +0,0 @@
1
-
2
- <h1>Far Cry 3 Blood Dragon Crack Only: How to Play the Game for Free</h1>
3
- <h2>Introduction</h2>
4
- <p>Do you love shooting games with a twist of humor and nostalgia? Do you want to experience a cyberpunk adventure in a neon-lit world full of mutants, cyborgs, and blood dragons? Do you want to do all that without spending a dime? If you answered yes to any of these questions, then you might be interested in Far Cry 3 Blood Dragon Crack Only.</p>
5
- <h3>What is Far Cry 3 Blood Dragon?</h3>
6
- <p>Far Cry 3 Blood Dragon is a standalone expansion of the popular first-person shooter game Far Cry 3. It was released in 2013 by Ubisoft as a homage to the 1980s sci-fi and action movies. The game is set in an alternate version of 2007, where you play as Sergeant Rex "Power" Colt, a cybernetic commando who has to stop a rogue colonel from unleashing a nuclear war.</p>
7
- <h2>Far Cry 3 Blood Dragon Crack Only</h2><br /><p><b><b>DOWNLOAD</b> &rarr; <a href="https://byltly.com/2uKz7f">https://byltly.com/2uKz7f</a></b></p><br /><br />
8
- <p>The game features a retro-futuristic aesthetic, with neon colors, pixelated graphics, synth music, and cheesy dialogue. The game also parodies many tropes and cliches of the genre, such as hacking minigames, training montages, one-liners, and boss fights. The game is full of references and easter eggs to popular movies, games, and shows of the era, such as Terminator, RoboCop, Aliens, Rambo, Predator, Tron, Blade Runner, Star Wars, and more.</p>
9
- <h3>What is a crack and why do you need it?</h3>
10
- <p>A crack is a modified version of a game's executable file or other files that bypasses the copy protection or digital rights management (DRM) system of the game. A crack allows you to play a game without having to purchase it or activate it online. A crack can also enable features that are otherwise locked or restricted by the game's developer or publisher.</p>
11
- <p>You might need a crack for various reasons. Maybe you want to try out a game before buying it. Maybe you don't have enough money to buy it. Maybe you don't have an internet connection or don't want to deal with online activation. Maybe you want to mod the game or play it with custom settings. Whatever your reason is, a crack can help you enjoy a game for free.</p>
12
- <h2>How to download and install Far Cry 3 Blood Dragon Crack Only</h2>
13
- <h3>Step 1: Download Far Cry 3 Blood Dragon from a trusted source</h3>
14
- <p>The first thing you need to do is to download the full version of Far Cry 3 Blood Dragon from a trusted source. You can either buy it from an official store like Steam or Uplay, or download it from a torrent site like The Pirate Bay or Kickass Torrents. Make sure you download the latest version of the game (v1.02) and check the comments and ratings of the uploader before downloading.</p>
15
- <h3>Step 2: Install Far Cry 3 Blood Dragon on your PC</h3>
16
- <p>The next thing you need to do is to install Far Cry 3 Blood Dragon on your PC. You can either use an installer or extract the files manually. Follow the instructions on the screen or in the readme file. Choose a destination folder for the game and wait for the installation to finish.</p>
17
- <h3>Step 3: Download Far Cry 3 Blood Dragon Crack Only from a reliable site</h3>
18
- <p>The third thing you need to do is to download Far Cry 3 Blood Dragon Crack Only from a reliable site. You can find many sites that offer cracks for games, but not all of them are safe or working. Some of them might contain malware, viruses, adware, spyware, or other unwanted programs that can harm your PC or steal your data. Some of them might not work properly or cause errors or crashes in the game.</p>
19
- <p>To avoid these problems, you should download Far Cry 3 Blood Dragon Crack Only from a reputable site like MegaGames.com , which offers various fixes and patches for games. You can also check other sites like GameCopyWorld.com or SkidrowReloaded.com for alternative cracks.</p>
20
- <h4>Table: Comparison of different cracks for Far Cry 3 Blood Dragon</h4>
21
- <table>
22
- <tr>
23
- <th>Crack name</th>
24
- <th>Uploader</th>
25
- <th>Size</th>
26
- <th>Date</th>
27
- <th>Features</th>
28
- <th>Ratings</th>
29
- </tr>
30
- <tr>
31
- <td>FAR.CRY.3.BD.V1.02.ALL.FTS.NODVD.ZIP </td>
32
- <td>FTS</td>
33
- <td>689 KB</td>
34
- <td>July 8, 2013</td>
35
- <td>Bypasses Ubisoft DRM; includes update v1.02; credits RELOADED for uplay wrapper</td>
36
- <td>4/5 stars; 174 votes; positive comments</td>
37
- </tr>
38
- <tr>
39
- <td>FAR.CRY.3.BD.V1.02.ALL.RELOADED.NODVD.ZIP </td>
40
- <td>Reloaded</td>
41
- <td>689 KB</td>
42
- <td>July 9, 2013</td>
43
- <td>Bypasses Ubisoft DRM; includes update v1.02; uses own uplay wrapper</td>
44
- <td>4/5 stars; 98 votes; positive comments</td>
45
- </tr>
46
- <tr>
47
- <td>FAR.CRY.3.BD.V1.0.ALL.RELOADED.NODVD.ZIP </td>
48
- <td>Reloaded</td>
49
- <td>689 KB</td>
50
- <td>May 1, 2019</td>
51
- <td>Bypasses Ubisoft DRM; does not include update v1.02; uses own uplay wrapper</td>
52
- <td>4/5 stars; 67 votes; positive comments</td>
53
- </tr>
54
- <tr>
55
- <td>FAR.CRY.3.BD.V1.0.ALL.FTS.NODVD.ZIP </td>
56
- <td>FTS</td>
57
- <td>689 KB</td>
58
- <td>May 1,2019 </td>
59
- <td>Bypasses Ubisoft DRM; does not include update v1.02; credits RELOADED for uplay wrapper </td>
60
- <td>4/5 stars; 54 votes; positive comments </td>
61
- </tr>
62
- <tr>
63
- <td>FAR.CRY.3.BD.V1.0.ALL.FTS.NODVD.ZIP </td>
64
- <td>FTS </td>
65
- <td>689 KB </td>
66
- <td>May 1 ,2019 </td>
67
- <td>Bypasses Ubisoft DRM; does not include update v1.02; credits RELOADED for uplay wrapper </td>
68
- <td>4/5 stars; 54 votes; positive comments </td></tr></table><p>Note: The table above is based on information available at MegaGames.com as of May ,2020 . The information may change over time.</p>
69
- <p>Far Cry 3 Blood Dragon v1.02 No-DVD [FTS]<br />
70
- Far Cry 3 Blood Dragon Update v1.02 [FTS]<br />
71
- Far Cry 3 Blood Dragon v1.02 No-DVD [Reloaded]<br />
72
- Far Cry 3 Blood Dragon v1.0 No-DVD [3DM]<br />
73
- Far Cry 3 Blood Dragon Cyber Shooter Download<br />
74
- Far Cry 3 Blood Dragon Free Download PC Game<br />
75
- Far Cry 3 Blood Dragon Full Version Crack<br />
76
- Far Cry 3 Blood Dragon Torrent Download<br />
77
- Far Cry 3 Blood Dragon Skidrow Crack<br />
78
- Far Cry 3 Blood Dragon Repack by FitGirl<br />
79
- Far Cry 3 Blood Dragon Steam Unlocked<br />
80
- Far Cry 3 Blood Dragon Uplay Crack<br />
81
- Far Cry 3 Blood Dragon MegaGames Fix<br />
82
- Far Cry 3 Blood Dragon PC Game Highly Compressed<br />
83
- Far Cry 3 Blood Dragon Direct Download Link<br />
84
- Far Cry 3 Blood Dragon Offline Activation<br />
85
- Far Cry 3 Blood Dragon Keygen Generator<br />
86
- Far Cry 3 Blood Dragon Serial Number<br />
87
- Far Cry 3 Blood Dragon License Key<br />
88
- Far Cry 3 Blood Dragon CD Key<br />
89
- Far Cry 3 Blood Dragon Gameplay Walkthrough<br />
90
- Far Cry 3 Blood Dragon Cheats and Hacks<br />
91
- Far Cry 3 Blood Dragon Trainer and Mods<br />
92
- Far Cry 3 Blood Dragon Save Game Editor<br />
93
- Far Cry 3 Blood Dragon Tips and Tricks<br />
94
- Far Cry 3 Blood Dragon Review and Rating<br />
95
- Far Cry 3 Blood Dragon System Requirements<br />
96
- Far Cry 3 Blood Dragon Patch Notes<br />
97
- Far Cry 3 Blood Dragon Changelog.txt<br />
98
- Far Cry 3 Blood Dragon How to Install Guide<br />
99
- Far Cry 3 Blood Dragon Error Fix Solution<br />
100
- Far Cry 3 Blood Dragon Black Screen Problem<br />
101
- Far Cry 3 Blood Dragon Crash on Startup Issue<br />
102
- Far Cry 3 Blood Dragon Not Launching Solution<br />
103
- Far Cry 3 Blood Dragon Missing DLL Files Fix<br />
104
- Far Cry 3 Blood Dragon No Sound Problem Solution<br />
105
- Far Cry 3 Blood Dragon Low FPS Fix Solution<br />
106
- Far Cry 3 Blood Dragon Lag Fix Solution<br />
107
- Far Cry 3 Blood Dragon Stuttering Fix Solution<br />
108
- Far Cry 3 Blood Dragon Controller Support Fix Solution<br />
109
- Far Cry 3 Blood Dragon Keyboard and Mouse Fix Solution<br />
110
- Far Cry 3 Blood Dragon Resolution and Graphics Settings Fix Solution<br />
111
- Far Cry 3 Blood Dragon Multiplayer Crack Online Mode Fix Solution<br />
112
- Far Cry 3 Blood Dragon Co-op Crack Online Mode Fix Solution<br />
113
- Far Cry 3 Blood Dragon Steamworks Fix Online Mode Fix Solution<br />
114
- Far Cry 3 Blood Dragon LAN Play Fix Solution<br />
115
- Far Cry 3 Blood Dragon Split Screen Mode Fix Solution<br />
116
- Far Cry 3 Blood Dragon VR Mode Fix Solution</p><h <sup>: https://megagames.com/fixes/far-cry-3-blood-dragon-v102-all-no-dvd-fts<br>[^2]: https://megagames.com/download/316635/0<br>: https://skidrowreloaded.com/f</p> 0a6ba089eb<br />
117
- <br />
118
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Astro Vision Lifesign With Remedies 12.5 Free Download ((FREE)).rar.md DELETED
@@ -1,110 +0,0 @@
1
- <br />
2
- <h1>Astro Vision Lifesign with Remedies 12.5: A Comprehensive Software for Vedic Astrology</h1>
3
-
4
- <p>If you are interested in Vedic astrology and want to get accurate horoscopes and predictions based on your birth details, you might want to try Astro Vision Lifesign with Remedies 12.5. This is a software that allows you to create and analyze your own horoscope, as well as get remedies for any problems or obstacles you might face in life.</p>
5
-
6
- <h2>What is Astro Vision Lifesign with Remedies 12.5?</h2>
7
-
8
- <p>Astro Vision Lifesign with Remedies 12.5 is a software that is based on the principles of Vedic astrology, also known as Jyotish or Hindu astrology. Vedic astrology is an ancient system of knowledge that uses the positions of the planets and stars at the time of your birth to reveal your personality, destiny, and karma.</p>
9
- <h2>astro vision lifesign with remedies 12.5 free download.rar</h2><br /><p><b><b>Download Zip</b> &hArr; <a href="https://imgfil.com/2uy095">https://imgfil.com/2uy095</a></b></p><br /><br />
10
-
11
- <p>Astro Vision Lifesign with Remedies 12.5 can help you to generate your own horoscope, which is a graphical representation of the sky at the moment of your birth. The horoscope shows the placement of the 12 zodiac signs, the 9 planets, and the 27 lunar constellations or nakshatras in the 12 houses or bhavas. Each of these elements has a specific meaning and influence on your life.</p>
12
-
13
- <p>Astro Vision Lifesign with Remedies 12.5 can also help you to interpret your horoscope and get detailed predictions for various aspects of your life, such as career, education, marriage, health, wealth, family, etc. The software uses various methods of analysis, such as dasa system, ashtakavarga system, transit system, yogas, etc., to give you accurate and reliable results.</p>
14
-
15
- <h2>What are the benefits of Astro Vision Lifesign with Remedies 12.5?</h2>
16
-
17
- <p>Astro Vision Lifesign with Remedies 12.5 is not just a software for creating and reading horoscopes. It is also a software that can help you to overcome any difficulties or challenges you might face in life. The software can suggest remedies or parihara for any doshas or afflictions in your horoscope that might cause problems or delays in your life.</p>
18
-
19
- <p>The remedies are based on the principles of Vedic astrology and can include various types of solutions, such as mantras, yantras, gemstones, rudrakshas, donations, fasting, etc. The software can also recommend auspicious times or muhurthas for performing any important activities or events in your life.</p>
20
-
21
- <p>By using Astro Vision Lifesign with Remedies 12.5, you can get a better understanding of yourself and your life purpose. You can also get guidance and support for achieving your goals and fulfilling your potential.</p>
22
- <p></p>
23
-
24
- <h2>How to download Astro Vision Lifesign with Remedies 12.5 for free?</h2>
25
-
26
- <p>If you want to try Astro Vision Lifesign with Remedies 12.5 for yourself, you can download it for free from the internet. However, you need to be careful about the source of the download, as some websites might offer fake or corrupted files that might harm your computer or compromise your privacy.</p>
27
-
28
- <p>One of the safest and easiest ways to download Astro Vision Lifesign with Remedies 12.5 for free is to use a file sharing platform like Peatix or SoundCloud. These platforms allow users to upload and download files without any restrictions or fees. You can find the link to download Astro Vision Lifesign with Remedies 12.5 for free from these platforms below:</p>
29
-
30
- <ul>
31
- <li><a href="https://peatix.com/group/10561481/view">Astro Vision Lifesign With Remedies 12.5 Free Download.rar ##TOP##</a></li>
32
- <li><a href="https://soundcloud.com/baulearemo1979/astro-vision-lifesign-with-remedies-125-free-downloadrar-full">Astro Vision Lifesign With Remedies 12.5 Free Download.rar Full</a></li>
33
- </ul>
34
-
35
- <p>Once you have downloaded the file, you need to extract it using a software like WinRAR or 7-Zip. Then you need to install the software by following the instructions on the screen. You might need to enter a serial number or a crack code to activate the software.</p>
36
-
37
- <h2>Conclusion</h2>
38
-
39
- <p>Astro Vision Lifesign with Remedies 12.5 is a software that can help you to explore the fascinating world of Vedic astrology and get insights into your life and future. It can also help you to find solutions and remedies for any problems or obstacles you might encounter in life.</p>
40
-
41
- <p>If you want to download Astro Vision Lifesign with Remedies 12.5 for free, you can use the links provided above and enjoy the benefits of this software.</p>
42
- <h2>What are the features of Astro Vision Lifesign with Remedies 12.5?</h2>
43
-
44
- <p>Astro Vision Lifesign with Remedies 12.5 is a software that has many features and options to suit your needs and preferences. Some of the features of this software are:</p>
45
-
46
- <ul>
47
- <li>It supports multiple languages, such as English, Hindi, Tamil, Telugu, Malayalam, Kannada, Marathi, Bengali, Oriya, etc.</li>
48
- <li>It allows you to choose from various chart styles, such as North Indian, South Indian, East Indian, Kerala, etc.</li>
49
- <li>It provides detailed reports on various aspects of your life, such as personality, education, career, marriage, children, health, wealth, etc.</li>
50
- <li>It gives you predictions for the current year and the next 25 years based on the dasa system.</li>
51
- <li>It gives you remedies or parihara for any doshas or afflictions in your horoscope that might cause problems or delays in your life.</li>
52
- <li>It gives you auspicious times or muhurthas for performing any important activities or events in your life.</li>
53
- <li>It gives you compatibility analysis or porutham for marriage or partnership.</li>
54
- <li>It gives you gemstone recommendations based on your horoscope.</li>
55
- <li>It gives you panchanga or almanac information for any date and time.</li>
56
- <li>It gives you ayanamsa options such as Lahiri ayanamsa, Raman ayanamsa, Krishnamurthy ayanamsa, etc.</li>
57
- </ul>
58
-
59
- <h2>What are the reviews of Astro Vision Lifesign with Remedies 12.5?</h2>
60
-
61
- <p>Astro Vision Lifesign with Remedies 12.5 is a software that has received positive reviews from many users and experts. Some of the reviews of this software are:</p>
62
-
63
- <blockquote>"I have been using Astro Vision Lifesign with Remedies 12.5 for a long time and I am very satisfied with it. It is very accurate and easy to use. It has helped me to understand myself better and to make better decisions in life. It has also helped me to find solutions and remedies for any problems I faced in life. I would recommend this software to anyone who is interested in Vedic astrology." - S S Gopalakrishnan</blockquote>
64
-
65
- <blockquote>"Astro Vision Lifesign with Remedies 12.5 is a comprehensive software for Vedic astrology. It has everything you need to create and analyze your own horoscope and get predictions and remedies for various aspects of your life. It is very user-friendly and customizable. It supports multiple languages and chart styles. It is also very affordable and reliable. I have been using this software for years and I have never been disappointed." - Rajesh Kumar</blockquote>
66
-
67
- <blockquote>"Astro Vision Lifesign with Remedies 12.5 is a software that can help you to explore the fascinating world of Vedic astrology and get insights into your life and future. It can also help you to find solutions and remedies for any problems or obstacles you might encounter in life. It is a software that can change your life for the better." - Priya Sharma</blockquote>
68
-
69
- <h2>Conclusion</h2>
70
-
71
- <p>Astro Vision Lifesign with Remedies 12.5 is a software that can help you to create and analyze your own horoscope based on the principles of Vedic astrology. It can also help you to get predictions and remedies for various aspects of your life. It is a software that can help you to overcome any difficulties or challenges you might face in life.</p>
72
-
73
- <p>If you want to download Astro Vision Lifesign with Remedies 12.5 for free, you can use the links provided above and enjoy the benefits of this software.</p>
74
- <h2>How to use Astro Vision Lifesign with Remedies 12.5?</h2>
75
-
76
- <p>Astro Vision Lifesign with Remedies 12.5 is a software that is easy to use and user-friendly. You can follow these simple steps to use this software:</p>
77
-
78
- <ol>
79
- <li>Download Astro Vision Lifesign with Remedies 12.5 for free from the links provided above and extract the file using a software like WinRAR or 7-Zip.</li>
80
- <li>Install the software by following the instructions on the screen. You might need to enter a serial number or a crack code to activate the software.</li>
81
- <li>Launch the software and enter your name, date of birth, time of birth, and place of birth. You can also choose your preferred language, chart style, ayanamsa, etc.</li>
82
- <li>Click on the Generate Horoscope button and wait for a few seconds. The software will create your horoscope and display it on the screen.</li>
83
- <li>Click on the different tabs and buttons to view various reports and predictions for your life. You can also get remedies or parihara for any doshas or afflictions in your horoscope.</li>
84
- <li>Click on the Print or Save button to print or save your horoscope and reports for future reference.</li>
85
- </ol>
86
-
87
- <h2>Why choose Astro Vision Lifesign with Remedies 12.5?</h2>
88
-
89
- <p>Astro Vision Lifesign with Remedies 12.5 is a software that has many advantages and benefits over other astrology software. Some of the reasons why you should choose this software are:</p>
90
-
91
- <ul>
92
- <li>It is based on the principles of Vedic astrology, which is an ancient and authentic system of knowledge that can reveal your true nature and destiny.</li>
93
- <li>It is accurate and reliable, as it uses advanced mathematical calculations and algorithms to generate your horoscope and predictions.</li>
94
- <li>It is comprehensive and detailed, as it covers various aspects of your life, such as personality, education, career, marriage, health, wealth, family, etc.</li>
95
- <li>It is helpful and supportive, as it suggests remedies or parihara for any problems or obstacles you might face in life.</li>
96
- <li>It is affordable and accessible, as you can download it for free from the internet and use it on any Windows PC.</li>
97
- </ul>
98
-
99
- <h2>Conclusion</h2>
100
-
101
- <p>Astro Vision Lifesign with Remedies 12.5 is a software that can help you to create and analyze your own horoscope based on the principles of Vedic astrology. It can also help you to get predictions and remedies for various aspects of your life. It is a software that can help you to overcome any difficulties or challenges you might face in life.</p>
102
-
103
- <p>If you want to download Astro Vision Lifesign with Remedies 12.5 for free, you can use the links provided above and enjoy the benefits of this software.</p>
104
- <h2>Conclusion</h2>
105
-
106
- <p>Astro Vision Lifesign with Remedies 12.5 is a software that can help you to create and analyze your own horoscope based on the principles of Vedic astrology. It can also help you to get predictions and remedies for various aspects of your life. It is a software that can help you to overcome any difficulties or challenges you might face in life.</p>
107
-
108
- <p>If you want to download Astro Vision Lifesign with Remedies 12.5 for free, you can use the links provided above and enjoy the benefits of this software.</p> 3cee63e6c2<br />
109
- <br />
110
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Athlean X Workout PDF Learn from the Expert Jeff Cavaliere.md DELETED
@@ -1,5 +0,0 @@
1
- <br />
2
- <p>full body workout, ATHLEAN-X workout. </br> These are exercises that lend themselves to increased strength at a faster pace and also help to coordinate multiple muscle groups into one action, making them more athletically based and functionality ...full body workout, ATHLEAN-X workout. These are exercises that lend themselves to increased strength at a faster pace and also help to coordinate multiple muscle groups into one action, making them more athletically based and functionality. Given the fact that science will support the fact that stimulation and re-stimulation of a muscle ever 48 hours produces the mostvamound of muscle growth with the least amount of wasted time, you will find this workouts taking advantage of this.</br></br> Read more</p>
3
- <h2>athlean x workout pdf</h2><br /><p><b><b>Download File</b> >>>>> <a href="https://imgfil.com/2uy1Xn">https://imgfil.com/2uy1Xn</a></b></p><br /><br /> aaccfb2cb3<br />
4
- <br />
5
- <br />
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/Digikam Handbuch Deutsch Pdf 205.md DELETED
@@ -1,93 +0,0 @@
1
-
2
- <h1>Digikam Handbuch Deutsch Pdf 205: Ein umfassender Ratgeber für Fotofreunde</h1>
3
-
4
- <p>Digikam ist eine leistungsstarke und vielseitige Anwendung für die Verwaltung, Bearbeitung und Präsentation von digitalen Fotos. Mit Digikam können Sie Ihre Bilder organisieren, bewerten, kommentieren, verschlagworten, suchen und filtern. Sie können auch Ihre Kamera mit Digikam verbinden und Fotos direkt von dort importieren. Digikam bietet Ihnen außerdem zahlreiche Werkzeuge und Effekte zur Verbesserung Ihrer Bilder, wie z.B. Schärfen, Farbkorrektur, Belichtungskorrektur, Rote-Augen-Entfernung und vieles mehr. Sie können Ihre Bilder auch drucken, per E-Mail versenden oder in Online-Galerien hochladen.</p>
5
- <h2>Digikam Handbuch Deutsch Pdf 205</h2><br /><p><b><b>Download Zip</b> > <a href="https://imgfil.com/2uxXfa">https://imgfil.com/2uxXfa</a></b></p><br /><br />
6
-
7
- <p>Um alle Funktionen und Möglichkeiten von Digikam zu nutzen, empfehlen wir Ihnen, das Digikam Handbuch Deutsch Pdf 205 zu lesen. Dieses Handbuch ist eine umfassende und aktuelle Dokumentation zu Digikam, die Ihnen Schritt für Schritt erklärt, wie Sie die Anwendung einrichten und verwenden können. Das Handbuch enthält auch viele Tipps und Tricks für Profis, die ihre Fotos noch weiter optimieren wollen.</p>
8
-
9
- <h2>Was Sie im Digikam Handbuch Deutsch Pdf 205 finden</h2>
10
-
11
- <p>Das Digikam Handbuch Deutsch Pdf 205 ist in vier Hauptteile gegliedert:</p>
12
-
13
- <ul>
14
- <li>Einleitung: Hier erfahren Sie mehr über die Hintergründe und Ziele von Digikam, wie Sie Probleme melden oder Support erhalten können, wie Sie sich an der Entwicklung beteiligen können und welche Bildformate und Module Digikam unterstützt.</li>
15
- <li>Digikam benutzen: Hier lernen Sie die Grundlagen der Bedienung von Digikam kennen, wie z.B. das Hauptfenster, die Albenliste, die Stichwortliste, die Datumsliste und die Suchliste. Sie erfahren auch, wie Sie eine Digitalkamera mit Digikam verwenden können, wie Sie Ihre Bilder bearbeiten können und wie Sie Ihre Bilder drucken oder teilen können.</li>
16
- <li>Beschreibung der Menüs: Hier erhalten Sie eine detaillierte Beschreibung aller Menüs und Optionen von Digikam, sowohl im Hauptfenster als auch in der Bildbearbeitung.</li>
17
- <li>Mitwirkende und Lizenz: Hier finden Sie Informationen über die Autoren und Übersetzer des Handbuchs sowie die Lizenzbedingungen für Digikam.</li>
18
- </ul>
19
-
20
- <p>Darüber hinaus enthält das Handbuch einen Anhang mit Informationen zur Installation von Digikam sowie ein Abbildungsverzeichnis mit allen Screenshots aus dem Handbuch.</p>
21
-
22
- <h2>Wie Sie das Digikam Handbuch Deutsch Pdf 205 lesen können</h2>
23
-
24
- <p>Sie haben mehrere Möglichkeiten, das Digikam Handbuch Deutsch Pdf 205 zu lesen:</p>
25
-
26
- <ul>
27
- <li>Sie können es online lesen <a href="http://www.vorkon.de/VorKon-13.1-Leseprobe/drittanbieter/Anleitungen/vorkon/07112101/Doku/Doku/digikam/index.html">hier</a>.</li>
28
- <li>Sie können es im EPUB-Format herunterladen <a href="https://www.digikam.org/documentation/">hier</a> und es auf Ihrem E-Reader oder Tablet lesen.</li>
29
- <li>Sie können es als PDF-Datei herunterladen <a href="https://nesens.com/wp-content/uploads/2022/07/tantadl.pdf">hier</a> und es auf Ihrem Computer oder Drucker ausdrucken.</li>
30
- </ul>
31
-
32
- <p>Wir hoffen, dass Ihnen das Digikam Handbuch Deutsch Pdf 205 gefällt und Ihnen hilft, das Beste aus Ihren Fotos herauszuholen. Wenn Sie Fragen oder Anregungen haben, zögern Sie nicht, uns zu kontaktieren. Wir freuen uns über Ihr Feedback!</p>
33
- <p></p>
34
- <h2>Wie Sie Digikam installieren und einrichten</h2>
35
-
36
- <p>Um Digikam zu installieren, müssen Sie zunächst die passende Version für Ihr Betriebssystem herunterladen. Sie können Digikam für Windows, Linux oder Mac OS X von der offiziellen Website <a href="https://www.digikam.org/download/">hier</a> beziehen. Folgen Sie dann den Anweisungen auf dem Bildschirm, um die Installation abzuschließen.</p>
37
-
38
- <p>Nach der Installation müssen Sie Digikam einrichten, um Ihre Fotos zu verwalten. Dazu müssen Sie zunächst ein Album erstellen, in dem Sie Ihre Fotos speichern wollen. Sie können mehrere Alben für verschiedene Themen oder Projekte anlegen. Um ein Album zu erstellen, klicken Sie auf das Symbol "Neues Album" in der Albenliste oder wählen Sie "Album -> Neues Album" aus dem Menü. Geben Sie dann einen Namen und einen Speicherort für das Album an und klicken Sie auf "OK".</p>
39
-
40
- <p>Als nächstes müssen Sie Ihre Fotos in das Album importieren. Sie können dies auf verschiedene Weisen tun:</p>
41
-
42
- <ul>
43
- <li>Sie können Fotos von Ihrer Festplatte oder einem externen Speichermedium in das Album ziehen und ablegen.</li>
44
- <li>Sie können Fotos von Ihrer Digitalkamera direkt in das Album importieren, indem Sie Ihre Kamera mit Ihrem Computer verbinden und auf das Symbol "Kamera" in der Werkzeugleiste klicken oder "Kamera -> Kamera hinzufügen" aus dem Menü wählen.</li>
45
- <li>Sie können Fotos aus einer Online-Galerie wie Flickr, Google Photos oder Facebook in das Album importieren, indem Sie auf das Symbol "Online-Speicher" in der Werkzeugleiste klicken oder "Extras -> Online-Speicher" aus dem Menü wählen.</li>
46
- </ul>
47
-
48
- <p>Nachdem Sie Ihre Fotos in das Album importiert haben, können Sie sie nach verschiedenen Kriterien sortieren, filtern und durchsuchen. Sie können auch Stichworte, Kommentare, Bewertungen und andere Metadaten zu Ihren Fotos hinzufügen, um sie besser zu organisieren und zu finden.</p>
49
-
50
- <h2>Wie Sie Digikam zur Bildbearbeitung verwenden</h2>
51
-
52
- <p>Digikam bietet Ihnen eine Reihe von Werkzeugen und Effekten zur Verbesserung Ihrer Fotos. Um ein Foto zu bearbeiten, müssen Sie es zunächst aus dem Album auswählen und doppelklicken oder auf das Symbol "Bildbearbeitung" in der Werkzeugleiste klicken oder "Bild -> Bildbearbeitung" aus dem Menü wählen. Dies öffnet ein neues Fenster mit dem Foto und verschiedenen Optionen zur Bearbeitung.</p>
53
-
54
- <p>In der Bildbearbeitung können Sie folgende Aktionen ausführen:</p>
55
-
56
- <ul>
57
- <li>Sie können das Foto zuschneiden, drehen, spiegeln oder skalieren, indem Sie die entsprechenden Symbole in der Werkzeugleiste anklicken oder die Optionen unter dem Menü "Transformieren" wählen.</li>
58
- <li>Sie können die Schärfe, den Kontrast, die Helligkeit, die Sättigung, die Farbbalance oder die Belichtung des Fotos anpassen, indem Sie die entsprechenden Schieberegler im Reiter "Korrigieren" verwenden oder die Optionen unter dem Menü "Korrigieren" wählen.</li>
59
- <li>Sie können verschiedene Spezialeffekte und Filter auf das Foto anwenden, wie z.B. Schwarz-Weiß, Sepia, Ölgemälde, Cartoon oder Rauschreduzierung, indem Sie die entsprechenden Symbole im Reiter "Filter" anklicken oder die Optionen unter dem Menü "Filter" wählen.</li>
60
- <li>Sie können auch weitere Funktionen wie Rote-Augen-Entfernung, Perspektivenkorrektur, Weißabgleich oder Histogramm anzeigen lassen, indem Sie die entsprechenden Symbole im Reiter "Extras" anklicken oder die Optionen unter dem Menü "Extras" wählen.</li>
61
- </ul>
62
-
63
- <p>Nachdem Sie Ihre Änderungen vorgenommen haben, können Sie das Foto speichern, indem Sie auf das Symbol "Speichern" in der Werkzeugleiste klicken oder "Datei -> Speichern" aus dem Menü wählen. Sie können auch eine Kopie des Fotos speichern oder das Originalfoto wiederherstellen.</p>
64
- <h2>Wie Sie Digikam zur Präsentation Ihrer Fotos verwenden</h2>
65
-
66
- <p>Digikam bietet Ihnen auch verschiedene Möglichkeiten, Ihre Fotos zu präsentieren und zu teilen. Sie können Ihre Fotos als Diashow anzeigen lassen, indem Sie auf das Symbol "Diashow" in der Werkzeugleiste klicken oder "Bild -> Diashow" aus dem Menü wählen. Sie können dabei verschiedene Einstellungen wie die Übergangseffekte, die Anzeigedauer oder die Hintergrundmusik anpassen.</p>
67
-
68
- <p>Sie können Ihre Fotos auch als HTML-Galerie exportieren, indem Sie auf das Symbol "HTML-Galerie" in der Werkzeugleiste klicken oder "Extras -> HTML-Galerie" aus dem Menü wählen. Sie können dabei verschiedene Vorlagen, Farben und Schriftarten für Ihre Galerie auswählen und sie auf Ihrer Festplatte speichern oder per FTP auf einen Server hochladen.</p>
69
-
70
- <p>Sie können Ihre Fotos auch in eine Online-Galerie wie Flickr, Google Photos oder Facebook hochladen, indem Sie auf das Symbol "Online-Speicher" in der Werkzeugleiste klicken oder "Extras -> Online-Speicher" aus dem Menü wählen. Sie müssen sich dazu zunächst mit Ihrem Konto bei dem jeweiligen Dienst anmelden und die Berechtigungen für Digikam erteilen. Dann können Sie die Fotos auswählen, die Sie hochladen wollen, und die entsprechenden Einstellungen wie den Titel, die Beschreibung, die Stichworte oder die Privatsphäre angeben.</p>
71
-
72
- <h2>Wie Sie Digikam aktualisieren und erweitern können</h2>
73
-
74
- <p>Um Digikam auf dem neuesten Stand zu halten und von den neuesten Funktionen und Verbesserungen zu profitieren, empfehlen wir Ihnen, regelmäßig nach Updates zu suchen. Sie können dies tun, indem Sie auf das Symbol "Aktualisieren" in der Werkzeugleiste klicken oder "Einstellungen -> Aktualisieren" aus dem Menü wählen. Digikam wird dann überprüfen, ob eine neuere Version verfügbar ist, und Ihnen gegebenenfalls einen Download-Link anbieten.</p>
75
-
76
- <p>Um Digikam zu erweitern und neue Funktionen hinzuzufügen, können Sie verschiedene Plugins installieren. Plugins sind kleine Erweiterungen, die zusätzliche Werkzeuge oder Effekte für Digikam bereitstellen. Sie können Plugins für Digikam von der offiziellen Website <a href="https://www.digikam.org/plugins/">hier</a> herunterladen oder aus dem Menü "Einstellungen -> Plugins" installieren. Um ein Plugin zu verwenden, müssen Sie es zunächst aktivieren und dann die entsprechende Option im Menü oder in der Werkzeugleiste auswählen.</p>
77
- <h2>Wie Sie Digikam zur Scannung und Konvertierung Ihrer Fotos verwenden</h2>
78
-
79
- <p>Digikam ermöglicht Ihnen auch, Ihre analogen Fotos zu scannen und zu konvertieren. Sie können Ihre Fotos von einem Flachbettscanner oder einem Filmscanner importieren, indem Sie auf das Symbol "Scannen" in der Werkzeugleiste klicken oder "Extras -> Scannen" aus dem Menü wählen. Sie müssen dazu zunächst Ihren Scanner mit Ihrem Computer verbinden und die entsprechenden Treiber installieren.</p>
80
-
81
- <p>Nachdem Sie Ihren Scanner ausgewählt haben, können Sie die Scan-Einstellungen wie die Auflösung, den Farbmodus oder den Scan-Bereich anpassen. Sie können auch eine Vorschau des Scans anzeigen lassen und die Bildqualität überprüfen. Wenn Sie mit den Einstellungen zufrieden sind, können Sie den Scan starten und das Foto in einem Album Ihrer Wahl speichern.</p>
82
-
83
- <p>Sie können Ihre Fotos auch von einem anderen Dateiformat in ein anderes konvertieren, indem Sie auf das Symbol "Konvertieren" in der Werkzeugleiste klicken oder "Extras -> Konvertieren" aus dem Menü wählen. Sie können dabei mehrere Fotos gleichzeitig konvertieren und die Zielgröße, das Zielverzeichnis und das Zielformat angeben. Digikam unterstützt verschiedene Dateiformate wie JPEG, PNG, TIFF, RAW oder PDF.</p>
84
-
85
- <h2>Wie Sie Digikam zur Sicherung und Wiederherstellung Ihrer Fotos verwenden</h2>
86
-
87
- <p>Digikam bietet Ihnen auch verschiedene Möglichkeiten, Ihre Fotos zu sichern und wiederherzustellen. Sie können Ihre Fotos auf eine CD oder DVD brennen, indem Sie auf das Symbol "Brennen" in der Werkzeugleiste klicken oder "Extras -> Brennen" aus dem Menü wählen. Sie müssen dazu zunächst einen leeren Datenträger in Ihr Laufwerk einlegen und die Brenn-Einstellungen wie die Geschwindigkeit, das Dateisystem oder die Beschriftung anpassen.</p>
88
-
89
- <p>Sie können Ihre Fotos auch auf eine externe Festplatte oder einen USB-Stick kopieren, indem Sie auf das Symbol "Kopieren" in der Werkzeugleiste klicken oder "Extras -> Kopieren" aus dem Menü wählen. Sie müssen dazu zunächst Ihr Speichermedium mit Ihrem Computer verbinden und den Speicherort auswählen.</p>
90
-
91
- <p>Sie können Ihre Fotos auch aus einer Sicherung wiederherstellen, indem Sie auf das Symbol "Wiederherstellen" in der Werkzeugleiste klicken oder "Extras -> Wiederherstellen" aus dem Menü wählen. Sie müssen dazu zunächst Ihr Sicherungsmedium mit Ihrem Computer verbinden und die Quelle auswählen. Dann können Sie die Fotos auswählen, die Sie wiederherstellen wollen, und den Zielort angeben.</p> 3cee63e6c2<br />
92
- <br />
93
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Burger Place Mod APK 0.15.0 Review Rating and Download Link.md DELETED
@@ -1,119 +0,0 @@
1
- <br />
2
- <table>
3
- <tr>
4
- <td>
5
- <h1>Burger Place Mod APK 0.15.0: A Fun and Addictive Cooking Game</h1>
6
- <p>Do you love burgers? Do you want to run your own burger shop? Do you want to have unlimited money and no ads while playing? If you answered yes to any of these questions, then you should download <strong>Burger Place Mod APK 0.15.0</strong> right now!</p>
7
- <p>Burger Place Mod APK 0.15.0 is a modified version of the original game <a href="(^1^)">Burger Please</a>, which is a fun and addictive cooking game where you have to make burgers for your hungry customers. You can choose from different ingredients, toppings, sauces, breads, and sides to create your own unique burger recipes.</p>
8
- <h2>burger place mod apk 0.15.0</h2><br /><p><b><b>Download Zip</b> &#127379; <a href="https://urlin.us/2uSS0c">https://urlin.us/2uSS0c</a></b></p><br /><br />
9
- <p>But that's not all! With Burger Place Mod APK 0.15.0, you can also enjoy some amazing features that will make your gameplay more enjoyable and rewarding. Here are some of the features of Burger Place Mod APK 0.15.0:</p>
10
- <h2>Features of Burger Place Mod APK 0.15.0</h2>
11
- <h3>Unlimited money to buy ingredients and upgrades</h3>
12
- <p>With Burger Place Mod APK 0.15.0, you don't have to worry about running out of money to buy ingredients and upgrades for your burger shop. You can start with a huge amount of money and spend it as you wish. You can buy more ingredients, upgrade your equipment, expand your menu, and decorate your shop to attract more customers.</p>
13
- <h3>No ads to interrupt your gameplay</h3>
14
- <p>Another great feature of Burger Place Mod APK 0.15.0 is that it removes all the annoying ads that pop up in the original game. You can play without any interruptions or distractions from ads. You can focus on making burgers and satisfying your customers.</p>
15
- <p>burger place hack apk 0.15.0<br />
16
- burger place cheat apk 0.15.0<br />
17
- burger place unlimited money apk 0.15.0<br />
18
- burger place idle game mod apk 0.15.0<br />
19
- burger place simulation game mod apk 0.15.0<br />
20
- burger place android game mod apk 0.15.0<br />
21
- burger place latest version mod apk 0.15.0<br />
22
- burger place free download mod apk 0.15.0<br />
23
- burger place offline game mod apk 0.15.0<br />
24
- burger place fun game mod apk 0.15.0<br />
25
- burger place premium apk 0.15.0<br />
26
- burger place pro apk 0.15.0<br />
27
- burger place full version apk 0.15.0<br />
28
- burger place cracked apk 0.15.0<br />
29
- burger place unlocked apk 0.15.0<br />
30
- burger place no ads apk 0.15.0<br />
31
- burger place modded apk 0.15.0<br />
32
- burger place mega mod apk 0.15.0<br />
33
- burger place super mod apk 0.15.0<br />
34
- burger place vip mod apk 0.15.0<br />
35
- burger please mod apk 0.15.0<br />
36
- burger please hack apk 0.15.0<br />
37
- burger please cheat apk 0.15.0<br />
38
- burger please unlimited money apk 0.15.0<br />
39
- burger please idle game mod apk 0.15.0<br />
40
- burger please simulation game mod apk 0.15.0<br />
41
- burger please android game mod apk 0.15.0<br />
42
- burger please latest version mod apk 0.15.0<br />
43
- burger please free download mod apk 0.15.0<br />
44
- burger please offline game mod apk 0.15.0<br />
45
- burger please fun game mod apk 0.15.0<br />
46
- burger please premium apk 0.15.0<br />
47
- burger please pro apk 0.15.0<br />
48
- burger please full version apk 0.15.0<br />
49
- burger please cracked apk 0.15.0<br />
50
- burger please unlocked apk 0.15.0<br />
51
- burger please no ads apk 0.15.</p>
52
- <h3>Various levels and challenges to test your skills</h3>
53
- <p>Burger Place Mod APK 0.15.0 also offers you various levels and challenges to test your skills as a burger chef. You can serve different types of customers with different preferences and personalities. You can also face different scenarios and situations that will require you to think fast and act smart. You can earn stars and coins for completing each level and challenge.</p>
54
- <h3>Customizable burger shop and character</h3>
55
- <p>Another fun feature of Burger Place Mod APK 0.15.0 is that it allows you to customize your burger shop and character. You can choose from different styles and themes for your shop, such as retro, modern, or futuristic. You can also change the appearance of your character, such as the hair, clothes, and accessories.</p>
56
- <h3>Easy controls and graphics</h3>
57
- <p>Burger Place Mod APK 0.15.0 also has easy controls and graphics that make the game simple and enjoyable to play. You can use the touch screen to drag and drop ingredients, swipe to serve customers, and tap to collect money. The game also has colorful and cartoonish graphics that make the game look appealing and lively.</p>
58
- <h2>How to Download and Install Burger Place Mod APK 0.15.0</h2>
59
- <p>If you are interested in downloading and installing Burger Place Mod APK 0.15.0, you can follow these simple steps:</p>
60
- <h3>Download the APK file from a trusted source</h3>
61
- <p>The first step is to download the APK file from a trusted source, such as <a href="">this link</a>. Make sure you have enough storage space on your device before downloading the file.</p>
62
- <h3>Enable unknown sources on your device</h3>
63
- <p>The next step is to enable unknown sources on your device, which will allow you to install apps from sources other than the Google Play Store. To do this, go to your device settings, then security, then unknown sources, and toggle it on.</p>
64
- <h3>Install the APK file and launch the game</h3>
65
- <p>The final step is to install the APK file and launch the game. To do this, locate the downloaded file in your file manager or downloads folder, then tap on it to install it. Once the installation is done, you can launch the game from your app drawer or home screen.</p>
66
- <h3>Enjoy your unlimited money and no ads</h3>
67
- <p>Now you can enjoy your unlimited money and no ads while playing Burger Place Mod APK 0.15.0. You can buy ingredients and upgrades, serve customers, complete levels and challenges, customize your shop and character, and have fun making burgers.</p>
68
- <h2>Tips and Tricks for Playing Burger Place Mod APK 0.15.0</h2>
69
- <p>If you want to master Burger Place Mod APK 0.15.0, you can use these tips and tricks:</p>
70
- <h3>Upgrade your ingredients and equipment regularly</h3>
71
- <p>One of the best ways to improve your gameplay is to upgrade your ingredients and equipment regularly. This will allow you to make better burgers, serve more customers, earn more money, and unlock more items.</p>
72
- <h3>Serve your customers quickly and accurately</h3>
73
- <p>Another important tip is to serve your customers quickly and accurately. This will increase their satisfaction level, which will affect their tips and ratings. You can also earn bonuses for serving customers in a row without any mistakes.</p>
74
- <h3>Use boosters and power-ups wisely</h3>
75
- <p>Another useful tip is to use boosters and power-ups wisely. These are special items that can help you in different ways, such as speeding up your cooking time, freezing the customer's patience level, or doubling your earnings.</p>
76
- <h3>Complete daily tasks and achievements for extra rewards</h3>
77
- <p>Another helpful tip is to complete daily tasks and achievements for extra rewards. These are specific goals that you can accomplish by playing the game, such as serving a certain number of customers, making a certain amount of money, or using a certain booster. You can earn coins, stars, and gems for completing these tasks and achievements.</p>
78
- <h3>Have fun and experiment with different burger combinations</h3>
79
- <p>The last tip is to have fun and experiment with different burger combinations. You can try different ingredients, toppings, sauces, breads, and sides to create your own unique burger recipes. You can also see how your customers react to your creations and get feedback from them.</p>
80
- <h2>Conclusion</h2>
81
- <p>Burger Place Mod APK 0.15.0 is a fun and addictive cooking game that lets you run your own burger shop. You can make burgers for your hungry customers, buy ingredients and upgrades, customize your shop and character, and enjoy unlimited money and no ads. You can also challenge yourself with various levels and tasks, use boosters and power-ups, and have fun experimenting with different burger combinations.</p>
82
- <p>If you are looking for a game that will keep you entertained and engaged for hours, then you should download Burger Place Mod APK 0.15.0 today. You will not regret it!</p>
83
- <h2>FAQs</h2>
84
- <h3>Is Burger Place Mod APK 0.15.0 safe to download?</h3>
85
- <p>Yes, Burger Place Mod APK 0.15.0 is safe to download as long as you download it from a trusted source, such as <a href="">this link</a>. You should also scan the file with an antivirus program before installing it.</p>
86
- <h3>What are the minimum requirements for playing Burger Place Mod APK 0.15.0?</h3>
87
- <p>The minimum requirements for playing Burger Place Mod APK 0.15.0 are:</p>
88
- <ul>
89
- <li>Android 4.4 or higher</li>
90
- <li>At least 100 MB of free storage space</li>
91
- <li>A stable internet connection</li>
92
- </ul>
93
- <h3>How can I get more money in Burger Place Mod APK 0.15.0?</h3>
94
- <p>You can get more money in Burger Place Mod APK 0.15.0 by:</p>
95
- <ul>
96
- <li>Serving more customers and earning tips and ratings</li>
97
- <li>Completing levels and challenges and earning stars and coins</li>
98
- <li>Completing daily tasks and achievements and earning coins, stars, and gems</li>
99
- <li>Using boosters and power-ups that double your earnings</li>
100
- <li>Downloading the modded version that gives you unlimited money</li>
101
- </ul>
102
- <h3>How can I unlock more levels and items in Burger Place Mod APK 0.15.0?</h3>
103
- <p>You can unlock more levels and items in Burger Place Mod APK 0.15.0 by:</p>
104
- <ul>
105
- <li>Earning enough stars to unlock new levels</li>
106
- <li>Earning enough coins to buy new ingredients, equipment, and decorations</li>
107
- <li>Earning enough gems to buy premium items and boosters</li>
108
- <li>Downloading the modded version that unlocks everything</li>
109
- </ul>
110
- <h3>How can I contact the developer of Burger Place Mod APK 0.15.0?</h3>
111
- <p>You can contact the developer of Burger Place Mod APK 0.15.0 by:</p>
112
- <ul>
113
- <li>Sending an email to <a href="mailto:[email protected]">[email protected]</a></li>
114
- <li>Visiting their website at <a href="">www.burgerplace.com</a></li>
115
- <li>Following them on social media at <a href="">Facebook</a>, <a href="">Twitter</a>, or <a href="">Instagram</a></li>
116
- <li>Leaving a review or rating on the Google Play Store or App Store</li>
117
- </ul></p> 197e85843d<br />
118
- <br />
119
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Clash Mini APK Hack Download and Install Unlimited Money and Gems Mod.md DELETED
@@ -1,96 +0,0 @@
1
- <br />
2
- <h1>Clash Mini APK Hack Mediafıre: How to Get Unlimited Gems for Free</h1>
3
- <p>If you are a fan of strategy games, you might have heard of Clash Mini, the latest spin-off from the popular Clash of Clans franchise. In this game, you can create your own team of miniatures and battle against other players in fast-paced matches. However, to unlock more characters, skins, and items, you will need gems, the premium currency of the game. Gems are hard to come by, and they can be quite expensive to buy with real money. That's why many players are looking for ways to get free gems, such as using clash mini apk hack mediafıre.</p>
4
- <h2>clash mini apk hack mediafıre</h2><br /><p><b><b>DOWNLOAD</b> &#127379; <a href="https://jinyurl.com/2uNS9j">https://jinyurl.com/2uNS9j</a></b></p><br /><br />
5
- <h2>Introduction</h2>
6
- <p>In this article, we will tell you everything you need to know about clash mini apk hack mediafıre, including what it is, how to download and install it, how to use it, and what are its pros and cons. By the end of this article, you will be able to decide whether this hack is worth trying or not.</p>
7
- <h3>What is Clash Mini?</h3>
8
- <p>Clash Mini is a strategy game developed by Supercell, the same company behind Clash of Clans, Clash Royale, Brawl Stars, and Hay Day. It is set in the same universe as Clash of Clans, but with a different gameplay style. Instead of building your own base and raiding others, you can collect and upgrade various miniatures that represent different characters from the Clash world. You can then use them to form your own team and compete against other players in turn-based battles.</p>
9
- <h3>Why do you need gems in Clash Mini?</h3>
10
- <p>Gems are the premium currency of Clash Mini. You can use them to buy chests that contain random miniatures, skins, and items. You can also use them to speed up the upgrading process of your miniatures, or to unlock special offers and events. Gems can help you progress faster in the game and gain an edge over your opponents.</p>
11
- <h3>What is clash mini apk hack mediafıre?</h3>
12
- <p>Clash mini apk hack mediafıre is a modified version of the original Clash Mini app that allows you to generate unlimited gems for free. It is not an official app from Supercell, but rather a third-party app that has been hacked by some developers. It is usually hosted on mediafıre, a file-sharing platform that lets you download files without any registration or payment.</p>
13
- <p>clash mini mod apk unlimited gems<br />
14
- clash mini hack apk download for android<br />
15
- clash mini cheat apk free download<br />
16
- clash mini mod apk latest version mediafıre<br />
17
- clash mini hack apk no root no survey<br />
18
- clash mini mod apk offline mode<br />
19
- clash mini hack apk unlimited money and gold<br />
20
- clash mini mod apk android 1<br />
21
- clash mini cheat apk no verification<br />
22
- clash mini hack apk online generator<br />
23
- clash mini mod apk unlocked all characters<br />
24
- clash mini hack apk ios iphone ipad<br />
25
- clash mini cheat apk with obb data<br />
26
- clash mini mod apk revdl rexdl<br />
27
- clash mini hack apk 2023 update<br />
28
- clash mini mod apk god mode<br />
29
- clash mini cheat apk unlimited everything<br />
30
- clash mini hack apk mediafıre link<br />
31
- clash mini mod apk anti ban<br />
32
- clash mini cheat apk no human verification<br />
33
- clash mini hack apk without root<br />
34
- clash mini mod apk all troops unlocked<br />
35
- clash mini cheat apk unlimited coins and elixir<br />
36
- clash mini hack apk direct download link<br />
37
- clash mini mod apk vip features<br />
38
- clash mini cheat apk working 100%<br />
39
- clash mini hack apk no password no ads<br />
40
- clash mini mod apk unlimited health and damage<br />
41
- clash mini cheat apk easy to install<br />
42
- clash mini hack apk full version free</p>
43
- <h2>How to download and install clash mini apk hack mediafıre</h2>
44
- <p>If you want to try clash mini apk hack mediafıre, you will need to follow these steps:</p>
45
- <h3>Step 1: Find a reliable source for the apk file</h3>
46
- <p>The first thing you need to do is to find a trustworthy website that offers the clash mini apk hack mediafıre file. You can search for it on Google or any other search engine, but be careful not to click on any suspicious or malicious links that might harm your device or steal your personal information. You can also check the reviews and ratings of the website to see if other users have had a positive or negative experience with it.</p>
47
- <h3>Step 2: Enable unknown sources on your device</h3>
48
- <p>Before you can install the clash mini apk hack mediafıre file, you will need to enable unknown sources on your device. This is a security feature that prevents you from installing apps that are not from the official app store. To enable unknown sources, you will need to go to your device settings, then security, then toggle on the option that says "allow installation of apps from unknown sources". You might also need to confirm this action by tapping on "OK" or "Yes".</p>
49
- <h3>Step 3: Download and install the apk file</h3>
50
- <p>Once you have enabled unknown sources, you can proceed to download and install the clash mini apk hack mediafıre file. To do this, you will need to go to the website where you found the file, then click on the download button or link. You might have to wait for a few seconds or minutes for the download to complete, depending on your internet speed and the size of the file. After the download is done, you can open the file and tap on "install". You might also have to agree to some permissions and terms of service before the installation is complete.</p>
51
- <h2>How to use clash mini apk hack mediafıre</h2>
52
- <p>After you have successfully installed the clash mini apk hack mediafıre app, you can start using it to get free gems. Here are the steps you need to follow:</p>
53
- <h3>Step 1: Launch the app and log in with your account</h3>
54
- <p>The first thing you need to do is to launch the clash mini apk hack mediafıre app and log in with your existing Clash Mini account. If you don't have one, you can create one for free by entering your email and password. You can also use your Facebook or Google account to log in.</p>
55
- <h3>Step 2: Choose the amount of gems you want to generate</h3>
56
- <p>Once you have logged in, you will see a simple interface that shows your current balance of gems and a slider that lets you choose how many gems you want to generate. You can choose from 1000 to 99999 gems per day. The more gems you choose, the longer it will take for the hack to work.</p>
57
- <h3>Step 3: Wait for the verification process and enjoy your free gems</h3>
58
- <p>After you have chosen the amount of gems you want, you will need to wait for the verification process to complete. This is a security measure that prevents bots and spammers from abusing the hack. You might have to complete a human verification test, such as a captcha, a survey, or an offer. This should not take more than a few minutes. Once you have passed the verification, you will receive your free gems in your Clash Mini account. You can then use them to buy chests, upgrade your miniatures, and enjoy the game.</p>
59
- <h2>Pros and cons of clash mini apk hack mediafıre</h2>
60
- <p>Like any other hack, clash mini apk hack mediafıre has its advantages and disadvantages. Here are some of them:</p>
61
- <h3>Pros</h3>
62
- <ul>
63
- <li><h4>Unlimited gems for free</h4>
64
- <p>The main benefit of using clash mini apk hack mediafıre is that you can get unlimited gems for free without spending any real money. Gems are very useful in Clash Mini, as they can help you unlock more characters, skins, and items. They can also help you progress faster in the game and gain an edge over your opponents.</p></li>
65
- <li><h4>No root or jailbreak required</h4>
66
- <p>Another advantage of using clash mini apk hack mediafıre is that you don't need to root or jailbreak your device to use it. Rooting or jailbreaking is a process that gives you full access to your device's system, but it also voids your warranty and exposes your device to security risks. With clash mini apk hack mediafıre, you don't have to worry about any of that.</p></li>
67
- <li><h4>Easy to use and safe to download</h4>
68
- <p>The last advantage of using clash mini apk hack mediafıre is that it is very easy to use and safe to download. You don't need any technical skills or knowledge to use it. All you need is a device with an internet connection and a Clash Mini account. The app is also virus-free and malware-free, as long as you download it from a reliable source.</p></li>
69
- </ul>
70
- <h3>Cons</ <ul>
71
- <li><h4>Not compatible with the official version of Clash Mini</h4>
72
- <p>The first drawback of using clash mini apk hack mediafıre is that it is not compatible with the official version of Clash Mini. This means that you cannot play with other players who are using the original app, or access the official features and updates of the game. You can only play with other players who are using the same hack as you, which might limit your options and fun.</p></li>
73
- <li><h4>May contain malware or viruses</h4>
74
- <p>The second drawback of using clash mini apk hack mediafıre is that it may contain malware or viruses that can harm your device or steal your personal information. Even though we said that the app is safe to download from a reliable source, there is no guarantee that the source is always trustworthy or secure. There might be some hidden codes or scripts that can infect your device or compromise your data. Therefore, you should always scan the file before installing it, and use a reputable antivirus software to protect your device.</p></li>
75
- <li><h4>May get banned by the game developers</h4>
76
- <p>The last drawback of using clash mini apk hack mediafıre is that you may get banned by the game developers for violating their terms of service. Using hacks or cheats is considered unfair and unethical by most game developers, and they have the right to ban or suspend any account that is found to be using them. If you get banned, you will lose all your progress and achievements in the game, and you might not be able to play it again. Therefore, you should use this hack at your own risk, and be careful not to get caught by the game's anti-cheat system.</p></li>
77
- </ul>
78
- <h2>Conclusion</h2>
79
- <p>Clash mini apk hack mediafıre is a hack that allows you to get unlimited gems for free in Clash Mini, a strategy game developed by Supercell. It is a modified version of the original app that is hosted on mediafıre, a file-sharing platform. To use this hack, you need to download and install the apk file on your device, then launch the app and log in with your account. You can then choose the amount of gems you want to generate, and wait for the verification process to complete. You can use the gems to buy chests, upgrade your miniatures, and enjoy the game.</p>
80
- <p>However, this hack also has some drawbacks, such as being not compatible with the official version of Clash Mini, containing malware or viruses, and getting banned by the game developers. Therefore, you should weigh the pros and cons carefully before deciding whether to use this hack or not. You should also be aware of the risks and consequences of using hacks or cheats in any game.</p>
81
- <h2>FAQs</h2>
82
- <ul>
83
- <li><h3>Is clash mini apk hack mediafıre legal?</h3>
84
- <p>No, clash mini apk hack mediafıre is not legal, as it violates the terms of service of Clash Mini and Supercell. It also infringes on their intellectual property rights and copyrights. Using this hack can result in legal actions from the game developers or authorities.</p></li>
85
- <li><h3>Is clash mini apk hack mediafıre safe?</h3>
86
- <p>Not necessarily, clash mini apk hack mediafıre may not be safe, as it may contain malware or viruses that can harm your device or steal your personal information. It may also expose your account to security risks or hacking attempts. Therefore, you should always scan the file before installing it, and use a reputable antivirus software to protect your device.</p></li>
87
- <li><h3>Does clash mini apk hack mediafıre work?</h3>
88
- <p>Yes, clash mini apk hack mediafıre works, as it can generate unlimited gems for free in Clash Mini. However, it may not work with the latest version of Clash Mini or with other devices or platforms. It may also stop working if the game developers patch or update their anti-cheat system.</p></li>
89
- <li><h3>Where can I download clash mini apk hack mediafıre?</h3>
90
- <p>You can download clash mini apk hack mediafıre from various websites that offer it for free. However, you should be careful not to download it from any suspicious or malicious links that might harm your device or steal your personal information. You should also check the reviews and ratings of the website to see if other users have had a positive or negative experience with it.</p></li>
91
- <li><h3>Can I use clash mini apk hack mediafıre with my existing Clash Mini account?</h3>
92
- <p>Yes, you can use clash mini apk hack mediafıre with your existing Clash Mini account, as long as you log in with it when you launch the app. However, you should be aware that using this hack can put your account at risk of being banned or suspended by the game developers for violating their terms of service. If you get banned, you will lose all your progress and achievements in the game, and you might not be able to play it again. Therefore, you should use this hack at your own risk, and be careful not to get caught by the game's anti-cheat system.</p></li>
93
- </ul>
94
- <p>I hope this article has helped you understand more about clash mini apk hack mediafıre and how to use it. If you have any questions or feedback, feel free to leave a comment below. Thank you for reading and have a great day!</p> 401be4b1e0<br />
95
- <br />
96
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download Demolition Derby 3 Hack Mod APK with Unlimited Money Feature.md DELETED
@@ -1,80 +0,0 @@
1
-
2
- <h1>Demolition Derby 3 Mod APK Hack Unlimited Money: A Review</h1>
3
- <p>If you are a fan of racing games, especially the ones that involve smashing and crashing other cars, then you might have heard of Demolition Derby 3. This is a popular game that lets you experience the thrill and excitement of demolition derby racing. But what if you want to enjoy the game without any limitations or restrictions? Well, that's where Demolition Derby 3 Mod APK comes in. In this article, we will review the game and its modded version, and show you how to download and install it on your device.</p>
4
- <h2>demolition derby 3 mod apk hack unlimited money</h2><br /><p><b><b>Download</b> &#9733; <a href="https://jinyurl.com/2uNRtw">https://jinyurl.com/2uNRtw</a></b></p><br /><br />
5
- <h2>What is Demolition Derby 3?</h2>
6
- <p>Demolition Derby 3 is a racing game developed by Beer Money Games, the same studio that created Demolition Derby 2 and Demolition Derby Multiplayer. The game is a sequel to the previous titles, and it offers more features, cars, maps, and modes than ever before. The game is available for free on Google Play Store and App Store, but it also contains in-app purchases and ads.</p>
7
- <h3>Features of Demolition Derby 3</h3>
8
- <p>Demolition Derby 3 has many features that make it one of the best racing games on the market. Here are some of them:</p>
9
- <h4>- Realistic physics and graphics</h4>
10
- <p>The game uses a realistic physics engine that simulates the damage and destruction of the cars. You can see the parts flying off, the windows shattering, the tires bursting, and the smoke rising as you collide with other vehicles. The game also has stunning graphics that create a immersive environment for the races. You can see the details of the cars, the tracks, the weather effects, and the lighting.</p>
11
- <h4>- Multiple game modes and maps</h4>
12
- <p>The game offers various game modes that suit different preferences and play styles. You can choose from Career Mode, Quick Play Mode, Multiplayer Mode, Free Drive Mode, and Custom Events Mode. Each mode has its own objectives, challenges, rewards, and leaderboards. The game also has over 40 maps that range from arenas, stadiums, dirt tracks, highways, deserts, forests, and more. Each map has its own obstacles, hazards, ramps, loops, and shortcuts.</p>
13
- <p>demolition derby 3 mod apk free download with unlimited cash<br />
14
- demolition derby 3 hack apk latest version unlimited coins<br />
15
- demolition derby 3 mod apk unlocked all cars and maps<br />
16
- demolition derby 3 hack apk no root unlimited gems<br />
17
- demolition derby 3 mod apk offline unlimited money and gold<br />
18
- demolition derby 3 hack apk android unlimited everything<br />
19
- demolition derby 3 mod apk unlimited money and nitro<br />
20
- demolition derby 3 hack apk ios unlimited health<br />
21
- demolition derby 3 mod apk revdl unlimited money and fuel<br />
22
- demolition derby 3 hack apk rexdl unlimited damage<br />
23
- demolition derby 3 mod apk happymod unlimited money and xp<br />
24
- demolition derby 3 hack apk an1 unlimited turbo<br />
25
- demolition derby 3 mod apk android 1 unlimited money and energy<br />
26
- demolition derby 3 hack apk apkpure unlimited upgrades<br />
27
- demolition derby 3 mod apk mob.org unlimited money and parts<br />
28
- demolition derby 3 hack apk moddroid unlimited skins<br />
29
- demolition derby 3 mod apk platinmods unlimited money and tickets<br />
30
- demolition derby 3 hack apk blackmod unlimited weapons<br />
31
- demolition derby 3 mod apk lenov.ru unlimited money and keys<br />
32
- demolition derby 3 hack apk mediafıre unlimited boosters<br />
33
- demolition derby 3 mod apk vipmods unlimited money and diamonds<br />
34
- demolition derby 3 hack apk panda helper unlimited cars<br />
35
- demolition derby 3 mod apk ihackedit unlimited money and levels<br />
36
- demolition derby 3 hack apk tutuapp unlimited arenas<br />
37
- demolition derby 3 mod apk apkmody unlimited money and stars</p>
38
- <h4>- Customizable cars and upgrades</h4>
39
- <p>The game has over 80 cars that you can unlock, buy, and customize. You can choose from different categories such as muscle cars, sports cars, trucks, buses, vans, and even tanks. You can also modify your car's appearance by changing its color, paint job, decals, wheels, spoilers, bumpers, hoods, roofs, and more. You can also upgrade your car's performance by improving its engine, transmission, suspension, brakes, tires, armor, nitro, and more.</p>
40
- <h2>What is Demolition Derby 3 Mod APK?</h2>
41
- <p>Demolition Derby 3 Mod APK is a modified version of the original game that gives you access to unlimited money and coins. This means that you can buy any car you want, unlock any map you want, and upgrade your car to the fullest without spending any real money. The mod apk also removes all the ads from the game and does not require root access to work.</p>
42
- <h <h3>Benefits of Demolition Derby 3 Mod APK</h3>
43
- <p>Demolition Derby 3 Mod APK has many benefits that make it a better choice than the original game. Here are some of them:</p>
44
- <h4>- Unlimited money and coins</h4>
45
- <p>With Demolition Derby 3 Mod APK, you don't have to worry about running out of money or coins. You can use them to buy any car you want, unlock any map you want, and upgrade your car to the fullest. You can also use them to buy boosters, power-ups, and skins that can enhance your gameplay. You can enjoy the game without any limitations or restrictions.</p>
46
- <h4>- All cars and maps unlocked</h4>
47
- <p>With Demolition Derby 3 Mod APK, you don't have to wait for hours or days to unlock new cars and maps. You can access all of them from the start. You can choose from over 80 cars and over 40 maps that suit your taste and preference. You can also switch between them anytime you want. You can explore the game's content without any hassle or boredom.</p>
48
- <h4>- No ads and no root required</h4>
49
- <p>With Demolition Derby 3 Mod APK, you don't have to deal with annoying ads that pop up every few minutes. You can play the game without any interruptions or distractions. You can also play the game without rooting your device. You don't have to risk damaging your device or voiding your warranty. You can play the game safely and smoothly.</p>
50
- <h2>How to download and install Demolition Derby 3 Mod APK?</h2>
51
- <p>If you are interested in downloading and installing Demolition Derby 3 Mod APK, you can follow these simple steps:</p>
52
- <h3>Steps to download and install Demolition Derby 3 Mod APK</h3>
53
- <h4>- Step 1: Download the mod apk file from a trusted source</h4>
54
- <p>The first step is to download the mod apk file from a reliable source. You can use the link below to download the latest version of Demolition Derby 3 Mod APK. The file size is about 100 MB, so make sure you have enough storage space on your device.</p>
55
- <p><a href="">Download Demolition Derby 3 Mod APK</a></p>
56
- <h4>- Step 2: Enable unknown sources on your device settings</h4>
57
- <p>The second step is to enable unknown sources on your device settings. This will allow you to install apps from sources other than Google Play Store. To do this, go to your device settings, then security, then unknown sources, and toggle it on.</p>
58
- <h4>- Step 3: Install the mod apk file and launch the game</h4>
59
- <p>The third step is to install the mod apk file and launch the game. To do this, locate the downloaded file on your device, tap on it, and follow the instructions on the screen. Once the installation is complete, open the game and enjoy.</p>
60
- <h2>Conclusion</h2>
61
- <p>Demolition Derby 3 is a fun and exciting racing game that lets you smash and crash other cars in various modes and maps. However, if you want to enjoy the game without any limitations or restrictions, you should try Demolition Derby 3 Mod APK. This is a modified version of the game that gives you unlimited money and coins, all cars and maps unlocked, no ads, and no root required. You can download and install it easily by following the steps above. So what are you waiting for? Download Demolition Derby 3 Mod APK now and unleash your inner racer.</p>
62
- <h2>FAQs</h2>
63
- <p>Here are some frequently asked questions about Demolition Derby 3 Mod APK:</p>
64
- <ul>
65
- <li><b>Is Demolition Derby 3 Mod APK safe?</b></li>
66
- <p>Yes, Demolition Derby 3 Mod APK is safe to use. It does not contain any viruses or malware that can harm your device or data. However, you should always download it from a trusted source and scan it with an antivirus before installing it.</p>
67
- <li><b>Is Demolition Derby 3 Mod APK compatible with my device?</b></li>
68
- <p>Demolition Derby 3 Mod APK is compatible with most Android devices that run on Android 4.4 or higher. However, some devices may experience performance issues or crashes due to hardware limitations or compatibility issues.</p>
69
- <li><b>Can I play Demolition Derby 3 Mod APK online?</b></li>
70
- <p>Yes, you can play Demolition Derby 3 Mod APK online with other players around the world. However, you may encounter some problems such as lagging, disconnecting, or banning due to server issues or anti-cheat measures.</p <p>Here are some more frequently asked questions about Demolition Derby 3 Mod APK:</p>
71
- <ul>
72
- <li><b>Can I update Demolition Derby 3 Mod APK?</b></li>
73
- <p>Yes, you can update Demolition Derby 3 Mod APK whenever a new version is available. However, you may lose your modded features and progress if you update it from the Google Play Store. To avoid this, you should always update it from the same source where you downloaded it.</p>
74
- <li><b>Can I use Demolition Derby 3 Mod APK with my existing account?</b></li>
75
- <p>Yes, you can use Demolition Derby 3 Mod APK with your existing account. However, you may risk losing your account or getting banned if the game detects that you are using a modded version. To avoid this, you should always backup your account data and use a different account for the modded version.</p>
76
- <li><b>Can I request a feature or report a bug for Demolition Derby 3 Mod APK?</b></li>
77
- <p>Yes, you can request a feature or report a bug for Demolition Derby 3 Mod APK by contacting the developer or the source where you downloaded it. However, there is no guarantee that your request or report will be addressed or resolved.</p>
78
- </ul></p> 401be4b1e0<br />
79
- <br />
80
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download Green Farm 3 and Experience Farming Adventure on Your PC.md DELETED
@@ -1,142 +0,0 @@
1
- <br />
2
- <h1>Download Green Farm 3: A Fun and Relaxing Farming Adventure</h1>
3
- <p>Do you love farming games? Do you want to experience the joy of restoring an old manor and turning it into a thriving farm? If yes, then you should download Green Farm 3, a simulation game developed by Gameloft. In this game, you will inherit a rundown estate from your uncle and embark on a series of missions to bring it back to life. You will also have to manage your farm with the help of friends and neighbors, and enjoy a fresh new atmosphere, easier controls, and a rich storyline with new characters to meet and play with. In this article, we will tell you what Green Farm 3 is, how to download it, and some tips and tricks for playing it.</p>
4
- <h2>What is Green Farm 3?</h2>
5
- <p>Green Farm 3 is a casual simulation game that lets you rediscover farming adventure in a new and exciting way. It is the third installment of the popular Green Farm series, which has been downloaded by millions of players around the world. The game offers many new features and improvements over the previous versions, such as:</p>
6
- <h2>download green farm 3</h2><br /><p><b><b>Download</b> <a href="https://jinyurl.com/2uNSmX">https://jinyurl.com/2uNSmX</a></b></p><br /><br />
7
- <h3>The story and the gameplay</h3>
8
- <p>In Green Farm 3, you will play as a young farmer who inherits an old manor from your uncle. Your uncle was a famous adventurer who traveled around the world and collected many exotic items and animals. However, he also neglected his farm, which became dilapidated and abandoned. Your task is to restore the manor to its former glory, by completing various missions that involve farming, harvesting, crafting, and more. You will also have to deal with some challenges and surprises along the way, such as a mysterious rival who wants to sabotage your efforts, or a friendly ghost who haunts the manor.</p>
9
- <h3>The features and the benefits</h3>
10
- <p>Green Farm 3 has many features that make it fun and enjoyable to play, such as:</p>
11
- <ul>
12
- <li>A fresh new atmosphere, with more colorful environments and cooler characters to meet.</li>
13
- <li>Easier controls, that make managing your farm simpler and more fun.</li>
14
- <li>A rich storyline, with new characters to meet and play with, each with their own personality and backstory.</li>
15
- <li>Many missions to complete, each with different objectives and rewards.</li>
16
- <li>A variety of crops, animals, buildings, decorations, and products to grow and produce on your farm.</li>
17
- <li>A social aspect, that allows you to connect with friends and neighbors, help each other out, trade goods, or compete in events.</li>
18
- <li>A customization option, that lets you personalize your farm with your own style and preferences.</li>
19
- </ul>
20
- <p>By playing Green Farm 3, you will not only have fun, but also benefit from some positive effects, such as:</p>
21
- <ul>
22
- <li>Relaxing your mind and body, by immersing yourself in a peaceful and soothing environment.</li>
23
- <li>Stimulating your creativity and imagination, by designing your own farm layout and products.</li>
24
- <li>Improving your time management and planning skills, by organizing your tasks and resources efficiently.</li>
25
- <li>Learning about farming and nature, by discovering different types of plants and animals.</li>
26
- <li>Making new friends and socializing with others, by interacting with other players online.</li>
27
- </ul>
28
- <h2>How to download Green Farm 3?</h2>
29
- <p>If you are interested in playing Green Farm 3, you can download it for free from various platforms. Here are the steps for downloading it for different devices:</p>
30
- <h3>For Android devices</h3>
31
- <ol>
32
- <li>Go to the Google Play Store app on your device.</li>
33
- <li>Search for "Green Farm 3" in the search bar.</li>
34
- <li>Select the game from the list of results and tap on "Install".</li>
35
- <li>Wait for the game to download and install on your device.</li>
36
- <li>Open the game and enjoy playing it.</li>
37
- </ol>
38
- <h3>For iOS devices</h3>
39
- <ol>
40
- <li>Go to the App Store app on your device.</li>
41
- <li>Search for "Green Farm 3" in the search bar.</li>
42
- <li>Select the game from the list of results and tap on "Get".</li>
43
- <li>Enter your Apple ID and password if prompted.</li>
44
- <li>Wait for the game to download and install on your device.</li>
45
- <li>Open the game and enjoy playing it.</li>
46
- </ol>
47
- <h3>For PC and Mac</h3>
48
- <ol>
49
- <li>Go to the official website of Gameloft at <a href="">https://www.gameloft.com/en/</a>.</li>
50
- <li>Click on "Games" and select "Green Farm 3" from the list of games.</li>
51
- <li>Click on "Download" and choose your preferred platform (Windows or Mac).</li>
52
- <li>Follow the instructions on the screen to download and install the game on your computer.</li>
53
- <li>Open the game and enjoy playing it.</li>
54
- </ol>
55
- <h2>Tips and tricks for playing Green Farm 3</h2>
56
- <p>Now that you have downloaded Green Farm 3, you might be wondering how to play it well and make the most out of it. Here are some tips and tricks that will help you succeed in your farming adventure:</p>
57
- <p>download green farm 3 mod apk<br />
58
- download green farm 3 for pc<br />
59
- download green farm 3 offline<br />
60
- download green farm 3 hack<br />
61
- download green farm 3 unlimited money and cash<br />
62
- download green farm 3 latest version<br />
63
- download green farm 3 apk + data<br />
64
- download green farm 3 java<br />
65
- download green farm 3 android<br />
66
- download green farm 3 for windows 10<br />
67
- download green farm 3 mod apk revdl<br />
68
- download green farm 3 mod apk unlimited money and coins<br />
69
- download green farm 3 old version<br />
70
- download green farm 3 mod apk android 1<br />
71
- download green farm 3 cheat codes<br />
72
- download green farm 3 game for free<br />
73
- download green farm 3 mod apk rexdl<br />
74
- download green farm 3 full version<br />
75
- download green farm 3 mod apk terbaru<br />
76
- download green farm 3 for laptop<br />
77
- download green farm 3 mod apk offline<br />
78
- download green farm 3 unlimited coins and cash apk<br />
79
- download green farm 3 for nokia x2<br />
80
- download green farm 3 mod apk no root<br />
81
- download green farm 3 for blackberry<br />
82
- download green farm 3 for java phone<br />
83
- download green farm 3 mod apk unlimited everything<br />
84
- download green farm 3 for samsung galaxy y<br />
85
- download green farm 3 hack tool apk<br />
86
- download green farm 3 for nokia asha 501<br />
87
- download green farm 3 mod apk pure<br />
88
- download green farm 3 for ios<br />
89
- download green farm 3 hack version<br />
90
- download green farm 3 for nokia c2<br />
91
- download green farm 3 mod apk happymod<br />
92
- download green farm 3 for windows phone<br />
93
- download green farm 3 unlimited money and cash apk free<br />
94
- download green farm 3 for nokia e63<br />
95
- download green farm 3 mod apk obb<br />
96
- download green farm 3 for macbook pro<br />
97
- download green farm 3 cheat engine<br />
98
- download green farm 3 for nokia x2-01<br />
99
- download green farm 3 mod apk android oyun club<br />
100
- download green farm 3 for kindle fire hd<br />
101
- download green farm 3 unlimited money and cash mod apk latest version</p>
102
- <h3>Manage your resources wisely</h3>
103
- <p>In Green Farm 3, you will need various resources to run your farm, such as coins, cash, energy, seeds, water, feed, fertilizer, etc. You can earn these resources by completing missions, harvesting crops, selling products, or watching ads. However, you should also be careful not to waste them or run out of them. Here are some ways to manage your resources wisely:</p>
104
- <ul>
105
- <li>Plan ahead and prioritize your tasks. For example, plant crops that match your mission objectives, or craft products that have high demand in the market.</li>
106
- <li>Use your energy efficiently. Energy is used for almost every action in the game, such as planting, harvesting, feeding, etc. You can replenish your energy by waiting over time, eating food, or using cash. However, you should also avoid wasting energy by doing unnecessary actions or leaving crops unharvested.</li>
107
- <li>Save your cash for important purchases. Cash is the premium currency in the game, which can be used to buy special items, speed up processes, or unlock new features. You can earn cash by leveling up, completing achievements, or spending real money. However, you should also save your cash for important purchases, such as expanding your land, hiring workers, or buying rare animals.</li>
108
- </ul>
109
- <h3>Complete missions and achievements</h3>
110
- <p>In Green Farm 3, you will have many missions and achievements to complete, which will guide you through the game and reward you with various prizes. Missions are tasks that are given by different characters in the game, such as your uncle, your friends, or your rivals. Achievements are goals that are set by yourself, such as reaching a certain level, collecting a certain amount of products, or visiting a certain number of neighbors. Here are some benefits of completing missions and achievements:</p>
111
- <ul>
112
- <li>You will progress faster in the game and unlock new features and content.</li>
113
- <li>You will earn more coins, cash, energy, and other resources.</li>
114
- <li>You will learn more about the story and the characters of the game.</li>
115
- <li>You will have more fun and challenge yourself.</li>
116
- </ul>
117
- <h3>Connect with friends and neighbors</h3>
118
- <p>In Green Farm 3, you can also connect with other players online and become friends or neighbors. You can visit their farms, help them out with their tasks, trade goods with them, or chat with them. You can also join events and competitions with them and win exclusive rewards. Here are some advantages of connecting with friends and neighbors:</p>
119
- <ul>
120
- <li>You will make new friends and socialize with others who share your interest in farming games.</li>
121
- <li>You will get more help and support for your farm activities.</li>
122
- <li>You will get more opportunities to earn coins, cash, energy, and other resources.</li>
123
- <li>You will get more inspiration and ideas for your own farm design.</li>
124
- </ul>
125
- <h2>Conclusion</h2>
126
- <p>To sum up, Green Farm 3 is a fun and relaxing farming adventure that you can download for free on various platforms. It has many features and benefits that make it enjoyable to play, such as a fresh new atmosphere, easier controls, a rich storyline, many missions to complete, many crops, animals, buildings, decorations, and products to grow and produce, a social aspect, a customization option, and more. You can also download it easily for your Android, iOS, or PC and Mac devices. Moreover, you can improve your farming skills and have more fun by following some tips and tricks, such as managing your resources wisely, completing missions and achievements, and connecting with friends and neighbors. If you are looking for a farming game that is fun, relaxing, and rewarding, you should definitely download Green Farm 3 and start your adventure today.</p>
127
- <h2>FAQs</h2>
128
- <p>Here are some frequently asked questions about Green Farm 3:</p>
129
- <ol>
130
- <li>How can I get more cash in Green Farm 3?</li>
131
- <p>You can get more cash in Green Farm 3 by leveling up, completing achievements, watching ads, or spending real money. You can also get some cash by visiting your friends' farms and helping them out.</p>
132
- <li>How can I expand my land in Green Farm 3?</li>
133
- <p>You can expand your land in Green Farm 3 by using cash or coins. You will need to clear some obstacles first before you can buy more land. You can also unlock new areas by completing certain missions.</p>
134
- <li>How can I hire workers in Green Farm 3?</li>
135
- <p>You can hire workers in Green Farm 3 by using cash or coins. Workers can help you with various tasks on your farm, such as planting, harvesting, feeding, etc. You can also upgrade your workers to make them more efficient.</p>
136
- <li>How can I join events and competitions in Green Farm 3?</li>
137
- <p>You can join events and competitions in Green Farm 3 by tapping on the event icon on the top right corner of the screen. Events and competitions are time-limited challenges that require you to complete certain objectives or compete with other players. You can win exclusive rewards by participating in them.</p>
138
- <li>How can I contact the support team of Green Farm 3?</li>
139
- <p>You can contact the support team of Green Farm 3 by tapping on the settings icon on the top left corner of the screen. Then, tap on "Help & Support" and choose the option that suits your issue. You can also visit the official website of Gameloft at <a href="">https://www.gameloft.com/en/</a> for more information.</p>
140
- </ol></p> 401be4b1e0<br />
141
- <br />
142
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download Nulls Brawl Mod APK 49.194 with Unlimited Money and Infinite Gems.md DELETED
@@ -1,82 +0,0 @@
1
- <br />
2
- <h1>What is Nulls Brawl Mod APK?</h1>
3
- <p>If you are a fan of fast-paced multiplayer games, you might have heard of <strong>Brawl Stars</strong>, a popular game developed by Supercell, the makers of Clash of Clans and Clash Royale. Brawl Stars is a 3v3 shooter game where you can choose from dozens of unique characters, called <strong>brawlers</strong>, each with their own abilities, gadgets, and star powers. You can play with your friends or solo across various game modes, such as Gem Grab, Showdown, Brawl Ball, Bounty, Heist, and more. You can also collect skins, pins, trophies, and other rewards as you progress in the game.</p>
4
- <h2>download nulls brawl mod apk</h2><br /><p><b><b>Download Zip</b> &#9734; <a href="https://jinyurl.com/2uNSUX">https://jinyurl.com/2uNSUX</a></b></p><br /><br />
5
- <p>However, if you want to experience more features and fun in Brawl Stars, you might want to try <strong>Nulls Brawl Mod APK</strong>, a modified version of the game that offers many advantages over the original one. Nulls Brawl Mod APK is developed by Nulls Gg, a team of modders who create custom versions of popular games. With Nulls Brawl Mod APK, you can enjoy:</p>
6
- <ul>
7
- <li><strong>Infinite gems</strong>: Gems are the premium currency in Brawl Stars that you can use to buy skins, pins, brawl boxes, brawl passes, and other items. Normally, you have to spend real money or complete quests to get gems, but with Nulls Brawl Mod APK, you can get unlimited gems for free.</li>
8
- <li><strong>A lot of money</strong>: Money, or coins, are the basic currency in Brawl Stars that you can use to upgrade your brawlers and unlock their star powers. Normally, you have to win matches or open brawl boxes to get coins, but with Nulls Brawl Mod APK, you can get a lot of money for free.</li>
9
- <li><strong>All characters unlocked</strong>: Characters, or brawlers, are the main attraction of Brawl Stars. There are over 40 brawlers in the game, each with their own personality, style, and skills. Normally, you have to open brawl boxes or reach certain milestones to unlock new brawlers, but with Nulls Brawl Mod APK, you can access all characters from the start.</li>
10
- </ul>
11
- <p>As you can see, Nulls Brawl Mod APK is a great way to enhance your gaming experience and have more fun in B <h2>How to download Nulls Brawl Mod APK?</h2>
12
- <p>Now that you know what Nulls Brawl Mod APK is and why you should download it, you might be wondering how to do it. Well, don't worry, because it's very easy and simple. Just follow these steps and you'll be playing Nulls Brawl Mod APK in no time.</p>
13
- <h3>Step 1: Enable unknown sources</h3>
14
- <p>The first thing you need to do is to enable unknown sources on your Android device. This will allow you to install apps that are not from the Google Play Store, such as Nulls Brawl Mod APK. To do this, go to your device's settings, then security, then unknown sources, and turn it on. You might see a warning message, but just ignore it and tap OK.</p>
15
- <p>How to download nulls brawl mod apk for free<br />
16
- Nulls brawl mod apk unlimited money and gems<br />
17
- Download nulls brawl mod apk latest version 49.194<br />
18
- Nulls brawl mod apk with new brawlers and skins<br />
19
- Nulls brawl mod apk online multiplayer mode<br />
20
- Download nulls brawl mod apk for android devices<br />
21
- Nulls brawl mod apk offline installer<br />
22
- Download nulls brawl mod apk from happymod.com[^1^]<br />
23
- Nulls brawl mod apk features and gameplay<br />
24
- Download nulls brawl mod apk without root<br />
25
- Nulls brawl mod apk hack and cheats<br />
26
- Download nulls brawl mod apk for PC windows 10<br />
27
- Nulls brawl mod apk review and rating<br />
28
- Download nulls brawl mod apk from mediafire.com<br />
29
- Nulls brawl mod apk update and changelog<br />
30
- Download nulls brawl mod apk with obb data file<br />
31
- Nulls brawl mod apk tips and tricks<br />
32
- Download nulls brawl mod apk from apkpure.com<br />
33
- Nulls brawl mod apk comparison with original version<br />
34
- Download nulls brawl mod apk with custom maps and modes<br />
35
- Nulls brawl mod apk problems and solutions<br />
36
- Download nulls brawl mod apk from mega.nz<br />
37
- Nulls brawl mod apk best settings and configuration<br />
38
- Download nulls brawl mod apk with unlimited tickets and tokens<br />
39
- Nulls brawl mod apk pros and cons<br />
40
- Download nulls brawl mod apk from google drive<br />
41
- Nulls brawl mod apk system requirements and compatibility<br />
42
- Download nulls brawl mod apk with all characters unlocked<br />
43
- Nulls brawl mod apk feedback and comments<br />
44
- Download nulls brawl mod apk from uptodown.com</p>
45
- <h3>Step 2: Download the APK file</h3>
46
- <p>The next thing you need to do is to download the APK file of Nulls Brawl Mod APK. This is the file that contains the modded version of the game. You can find it on various websites, but make sure you choose a reputable and safe one. For example, you can use this link to download the latest version of Nulls Brawl Mod APK. Just click on the download button and wait for the file to be downloaded.</p>
47
- <h3>Step 3: Install the APK file</h3>
48
- <p>The last thing you need to do is to install the APK file on your device. To do this, locate the file in your device's storage, either using a file manager app or by going to your downloads folder. Then, tap on the file and follow the instructions on the screen. You might see a pop-up asking for permissions, but just allow them and continue. Once the installation is done, you can open the game and enjoy Nulls Brawl Mod APK.</p>
49
- <h2>How to play Nulls Brawl Mod APK?</h2>
50
- <p>Now that you have downloaded and installed Nulls Brawl Mod APK, you might be wondering how to play it. Well, it's very similar to the original Brawl Stars game, but with more features and fun. Here are some of the things you can do in Nulls Brawl Mod APK.</p>
51
- <h3>Choose your brawler</h3>
52
- <p>The first thing you need to do is to choose your brawler. As mentioned before, Nulls Brawl Mod APK gives you access to all brawlers from the start, so you can pick any one you like. You can also customize your brawler's appearance by changing their skin or pin. To do this, go to the brawlers menu and tap on the brawler you want to use. Then, tap on the skin or pin icon and select the one you want.</p>
53
- <h3>Join a game mode</h3>
54
- <p>The next thing you need to do is to join a game mode. Nulls Brawl Mod APK offers all the game modes that are available in the original Brawl Stars game, such as Gem Grab, Showdown, Brawl Ball, Bounty, Heist, and more. You can also play special events or friendly matches with your friends or club members. To join a game mode, go to the home screen and tap on the play button. Then, choose the game mode you want to play and tap on it.</p>
55
- <h3>Battle with other players</h3>
56
- <p>The last thing you need to do is to battle with other players. Nulls Brawl Mod APK lets you play with or against other players who are also using the modded version of the game. You can use your brawler's abilities, gadgets, and star powers to win matches and earn rewards. To battle with other players, just follow the instructions on the screen and have fun.</p> <h2>Tips and tricks for Nulls Brawl Mod APK</h2>
57
- <p>If you want to get the most out of Nulls Brawl Mod APK, you might want to follow some tips and tricks that can help you improve your gameplay and have more fun. Here are some of them:</p>
58
- <h3>Experiment with different brawlers</h3>
59
- <p>One of the best things about Nulls Brawl Mod APK is that you can use any brawler you want, without having to unlock them or spend gems or coins. This means you can experiment with different brawlers and find the ones that suit your playstyle and preference. You can also learn their strengths and weaknesses, and how to counter them in battles. To experiment with different brawlers, just go to the brawlers menu and tap on the random button. You will be assigned a random brawler that you can use in the next match.</p>
60
- <h3>Team up with your friends</h3>
61
- <p>Another great thing about Nulls Brawl Mod APK is that you can team up with your friends or other players who are also using the modded version of the game. This can make the game more fun and exciting, as you can communicate and coordinate with your teammates, and use strategies and tactics to win matches. To team up with your friends, just go to the social menu and tap on the invite button. You can then send an invitation to your friends or club members, or join an existing team.</p>
62
- <h3>Upgrade your brawlers</h3>
63
- <p>Even though Nulls Brawl Mod APK gives you unlimited gems and coins, you still need to use them wisely to upgrade your brawlers and unlock their star powers and gadgets. Upgrading your brawlers can make them more powerful and effective in battles, as they can deal more damage, have more health, and use more skills. To upgrade your brawlers, just go to the brawlers menu and tap on the brawler you want to upgrade. Then, tap on the upgrade button and spend the required amount of coins.</p>
64
- <h2>Conclusion</h2>
65
- <p>Nulls Brawl Mod APK is a modified version of Brawl Stars that offers many benefits over the original game, such as unlimited gems, money, and characters. It also lets you play with or against other players who are using the same modded version of the game. You can download and install Nulls Brawl Mod APK easily by following the steps mentioned above. You can also play Nulls Brawl Mod APK by choosing your brawler, joining a game mode, and battling with other players. You can also follow some tips and tricks to improve your gameplay and have more fun.</p>
66
- <p>If you are looking for a way to spice up your gaming experience and have more fun in Brawl Stars, you should definitely try Nulls Brawl Mod APK. It is a free, safe, and easy way to enjoy more features and fun in one of the most popular multiplayer games in the world. So what are you waiting for? Download Nulls Brawl Mod APK today and start brawling!</p>
67
- <h4>FAQs</h4>
68
- <p>Here are some of the frequently asked questions and answers about Nulls Brawl Mod APK:</p>
69
- <ul>
70
- <li><strong>Q: Is Nulls Brawl Mod APK safe?</strong></li>
71
- <li>A: Yes, Nulls Brawl Mod APK is safe to download and use. It does not contain any viruses or malware that can harm your device or data. However, you should always download it from a reputable source and scan it before installing it.</li>
72
- <li><strong>Q: Is Nulls Brawl Mod APK legal?</strong></li>
73
- <li>A: No, Nulls Brawl Mod APK is not legal. It is a modified version of Brawl Stars that violates the terms of service of Supercell, the developer of the game. Using Nulls Brawl Mod APK can result in a ban from the original game or legal action from Supercell.</li>
74
- <li><strong>Q: Can I play Nulls Brawl Mod APK with players who are using the original game?</strong></li>
75
- <li>A: No, you cannot play Nulls Brawl Mod APK with players who are using the original game. Nulls Brawl Mod APK uses a different server than the original game, so you can only play with or against other players who are using the same modded version of the game.</li>
76
- <li><strong>Q: Can I update Nulls Brawl Mod APK?</strong></li>
77
- <li>A: Yes, you can update Nulls Brawl Mod APK whenever there is a new version available. However, you cannot update it from the Google Play Store or the original game. You have to download the new version from a reputable source and install it manually.</li>
78
- <li><strong>Q: Can I transfer my progress from Nulls B <li><strong>Q: Can I transfer my progress from Nulls Brawl Mod APK to the original game?</strong></li>
79
- <li>A: No, you cannot transfer your progress from Nulls Brawl Mod APK to the original game. Nulls Brawl Mod APK uses a different account and data system than the original game, so you cannot sync or transfer your progress between them.</li>
80
- </ul></p> 197e85843d<br />
81
- <br />
82
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download Stick War Legacy MOD APK for Android - Unlimited Gems and More.md DELETED
@@ -1,116 +0,0 @@
1
-
2
- <h1>Download Stick War Legacy Mod APK Android: A Guide for Beginners</h1>
3
- <p>Are you a fan of strategy games? Do you want to experience a thrilling and addictive game that will challenge your skills and creativity? If yes, then you should try Stick War Legacy, one of the most popular and fun games on Android devices. And if you want to enjoy the game even more, you should download Stick War Legacy mod apk android, which will give you unlimited gems, gold, and other features that will make your gameplay easier and more enjoyable. In this article, we will tell you everything you need to know about Stick War Legacy and its mod apk version, including what it is, how to play it, why you should download it, and some tips and tricks to help you win. Let's get started!</p>
4
- <h2>download stick war legacy mod apk android</h2><br /><p><b><b>Download</b> &#10084;&#10084;&#10084; <a href="https://jinyurl.com/2uNNV6">https://jinyurl.com/2uNNV6</a></b></p><br /><br />
5
- <h2>What is Stick War Legacy?</h2>
6
- <p>Stick War Legacy is a strategy game developed by Max Games Studios, where you control an army of stick figures in a world called Inamorta. In this world, different nations have their own unique weapons and technologies, such as archers, spears, swords, mages, and even giants. Your goal is to conquer all the territories and become the ruler of Inamorta. You can do this by building your own fort, recruiting and training your units, and attacking your enemies with different strategies. You can also play in different modes, such as campaign mode, survival mode, tournament mode, and endless mode.</p>
7
- <h3>Features of Stick War Legacy</h3>
8
- <p>Stick War Legacy has many features that make it an exciting and addictive game. Some of them are:</p>
9
- <ul>
10
- <li>Stunning graphics and animations that bring the stick figures to life.</li>
11
- <li>Simple and intuitive controls that allow you to command your army with ease.</li>
12
- <li>A variety of units and skills that you can use to customize your army and strategy.</li>
13
- <li>A challenging and rewarding gameplay that tests your skills and creativity.</li>
14
- <li>A lot of content and modes that you can explore and enjoy.</li>
15
- </ul>
16
- <h3>How to play Stick War Legacy</h3>
17
- <p>Playing Stick War Legacy is easy and fun. Here are the basic steps that you need to follow:</p>
18
- <ol>
19
- <li>Choose a mode that you want to play. You can start with the campaign mode to learn the basics of the game.</li>
20
- <li>Select a difficulty level that suits your preference. You can choose from normal, hard, or insane.</li>
21
- <li>Start the game and build your fort. You can mine gold from the gold statue near your base. You can also build other structures, such as barracks, archery range, mage tower, etc.</li>
22
- <li>Recruit and train your units. You can choose from miners, swordwrath, archidons, speartons, magikill, or giants. Each unit has its own strengths and weaknesses.</li>
23
- <li>Attack your enemy's base. You can either control each unit individually or use the attack button to send all your units at once. You can also use special skills, such as heal, rage, summon minions, etc.</li>
24
- <li>Destroy your enemy's statue and win the game. You can also capture their gold statue to get more resources.</li>
25
- </ol>
26
- <h2>Why download Stick War Legacy mod apk android?</h2>
27
- <p>If you love playing Stick War Legacy but want to have more fun and convenience, then you should download Stick War Legacy mod apk android. This is a modified version of the game that gives you access to unlimited gems, gold, and other features that will enhance your gameplay. With Stick War Legacy mod apk android, you can:</p>
28
- <h3>Benefits of Stick War Legacy mod apk android</h3>
29
- <ul>
30
- <li>Get unlimited gems and gold that you can use to buy and upgrade anything you want in the game. You can also unlock all the skins and weapons for your units.</li>
31
- <li>Enjoy unlimited stamina and health for your units. You can make them invincible and unstoppable in the battlefield.</li>
32
- <li>Remove all the ads and pop-ups that may interrupt your gameplay. You can play the game without any distractions or annoyances.</li>
33
- <li>Access all the features and modes of the game without any restrictions. You can play any level, mode, or difficulty that you want.</li>
34
- </ul>
35
- <h3>How to download and install Stick War Legacy mod apk android</h3>
36
- <p>Downloading and installing Stick War Legacy mod apk android is easy and fast. Here are the steps that you need to follow:</p>
37
- <ol>
38
- <li>Click on the link below to download the Stick War Legacy mod apk file. The file size is about 100 MB, so make sure you have enough space on your device.</li>
39
- <li>After downloading the file, go to your device settings and enable the installation of apps from unknown sources. This will allow you to install the mod apk file.</li>
40
- <li>Locate the downloaded file on your device and tap on it to start the installation process. Follow the instructions on the screen and wait for a few seconds.</li>
41
- <li>Once the installation is complete, you can open the game and enjoy Stick War Legacy mod apk android. You will see that you have unlimited gems, gold, and other features in the game.</li>
42
- </ol>
43
- <h2>Tips and tricks for Stick War Legacy mod apk android</h2>
44
- <p>Now that you have downloaded and installed Stick War Legacy mod apk android, you may wonder how to play it better and win more games. Here are some tips and tricks that you can use:</p>
45
- <h3>Choose your strategy wisely</h3>
46
- <p>Stick War Legacy is a strategy game, so you need to plan your moves carefully and adapt to different situations. You can choose from different strategies, such as offensive, defensive, balanced, or creative. Each strategy has its own advantages and disadvantages, so you need to consider your enemy's strengths and weaknesses, as well as your own resources and goals. For example, if you want to attack quickly and aggressively, you can use an offensive strategy with swordwrath and archidons. But if you want to defend your base and wait for an opportunity, you can use a defensive strategy with speartons and magikill.</p>
47
- <h3>Upgrade your units and skills</h3>
48
- <p>One of the best ways to improve your gameplay is to upgrade your units and skills. You can do this by using gems and gold that you get from winning games or from Stick War Legacy mod apk android. You can upgrade your units' health, damage, speed, armor, etc. You can also upgrade your skills' cooldown, duration, effect, etc. Upgrading your units and skills will make them more powerful and efficient in combat.</p>
49
- <p>How to download stick war legacy mod apk for android devices<br />
50
- Stick war legacy mod apk unlimited gems and money download android<br />
51
- Download stick war legacy mod apk latest version 2023.2.85 for android<br />
52
- Stick war legacy mod apk android 1 download free<br />
53
- Download stick war legacy mod apk offline for android<br />
54
- Stick war legacy mod apk hack download android no root<br />
55
- Download stick war legacy mod apk revdl for android<br />
56
- Stick war legacy mod apk download android rexdl<br />
57
- Download stick war legacy mod apk with cheat menu for android<br />
58
- Stick war legacy mod apk download android happymod<br />
59
- Download stick war legacy mod apk unlocked everything for android<br />
60
- Stick war legacy mod apk download android apkpure<br />
61
- Download stick war legacy mod apk no ads for android<br />
62
- Stick war legacy mod apk download android 2023<br />
63
- Download stick war legacy mod apk new update for android<br />
64
- Stick war legacy mod apk download android unlimited health<br />
65
- Download stick war legacy mod apk full version for android<br />
66
- Stick war legacy mod apk download android mega<br />
67
- Download stick war legacy mod apk all skins unlocked for android<br />
68
- Stick war legacy mod apk download android mediafıre<br />
69
- Download stick war legacy mod apk free shopping for android<br />
70
- Stick war legacy mod apk download android 4.4.2<br />
71
- Download stick war legacy mod apk god mode for android<br />
72
- Stick war legacy mod apk download android 5.1.1<br />
73
- Download stick war legacy mod apk no verification for android<br />
74
- Stick war legacy mod apk download android 6.0.1<br />
75
- Download stick war legacy mod apk unlimited troops for android<br />
76
- Stick war legacy mod apk download android 7.0<br />
77
- Download stick war legacy mod apk with obb file for android<br />
78
- Stick war legacy mod apk download android 8.0<br />
79
- Download stick war legacy mod apk max level for android<br />
80
- Stick war legacy mod apk download android 9.0<br />
81
- Download stick war legacy mod apk infinite mana for android<br />
82
- Stick war legacy mod apk download android 10.0<br />
83
- Download stick war legacy mod apk no ban for android<br />
84
- Stick war legacy mod apk download android 11.0<br />
85
- Download stick war legacy mod apk all weapons unlocked for android<br />
86
- Stick war legacy mod apk download android zippyshare<br />
87
- Download stick war legacy mod apk high damage for android<br />
88
- Stick war legacy mod apk download android uptodown</p>
89
- <h3>Use gems and gold wisely</h3>
90
- <p>Gems and gold are the main currencies in Stick War Legacy. You can use them to buy and upgrade anything you want in the game. However, even though you have unlimited gems and gold from Stick War Legacy mod apk android, you should still use them wisely. You should not waste them on unnecessary things or buy everything at once. You should prioritize what you need most and save some for later. You should also balance your spending between units and skills, as well as between offense and defense.</p>
91
- <h2>Conclusion</h2>
92
- <p>Stick War Legacy is a fun and addictive strategy game that will keep you entertained for hours. You can control an army of stick figures in a world of war and conquer all the territories. You can also download Stick War Legacy mod apk android to get unlimited gems, gold, and other features that will make your gameplay easier and more enjoyable. In this article, we have told you everything you need to know about Stick War Legacy and its mod apk version, including what it is, how to play it, why you should download it, and some tips and tricks to help you win. We hope that this article has been helpful and informative for you. Now go ahead and download Stick War Legacy mod apk android and have fun!</p>
93
- <h3>Summary of the article</h3>
94
- <p>This article is a guide for beginners who want to download Stick War Legacy mod apk android. It covers the following topics:</p>
95
- <ul>
96
- <li>What is Stick War Legacy?</li>
97
- <li>Why download Stick War Legacy mod apk android?</li>
98
- <li>How to download and install Stick War Legacy mod apk android?</li>
99
- <li>Tips and tricks for Stick War Legacy mod apk android?</li>
100
- </ul>
101
- <h3>FAQs</h3>
102
- <p>Here are some frequently asked questions about Stick War Legacy mod apk android:</p>
103
- <ol>
104
- <li>Is Stick War Legacy mod apk android safe to use?</li>
105
- <p>Yes, Stick War Legacy mod apk android is safe to use, as long as you download it from a trusted source. However, you should always be careful when downloading and installing any mod apk file, as some of them may contain viruses or malware that can harm your device. You should also backup your data before installing any mod apk file, in case something goes wrong.</p>
106
- <li>Does Stick War Legacy mod apk android work on all devices?</li>
107
- <p>Stick War Legacy mod apk android works on most Android devices that support the original version of the game. However, some devices may not be compatible with the mod apk file, or may experience some glitches or errors. You should check the compatibility of your device before downloading and installing Stick War Legacy mod apk android.</p>
108
- <li>Can I play Stick War Legacy mod apk android online?</li>
109
- <p>No, Stick War Legacy mod apk android is not an online game. You can only play it offline, on your own device. You cannot play it with other players or connect it to any social media platforms. You also cannot update the game or access any online features.</p>
110
- <li>Can I uninstall Stick War Legacy mod apk android?</li>
111
- <p>Yes, you can uninstall Stick War Legacy mod apk android anytime you want. You can do this by going to your device settings and finding the app in the list of installed apps. Then, you can tap on the app and select the uninstall option. You can also delete the mod apk file from your device storage.</p>
112
- <li>Where can I download Stick War Legacy mod apk android?</li>
113
- <p>You can download Stick War Legacy mod apk android from the link below. This is a trusted and reliable source that provides the latest and working version of the mod apk file. You can also find more information and reviews about the mod apk file on this site.</p>
114
- </ol></p> 401be4b1e0<br />
115
- <br />
116
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Enjoy the Best Gaming Experience with Clash of Clans Mod Menu APK Latest Version.md DELETED
@@ -1,151 +0,0 @@
1
-
2
- <h1>Clash of Clans Mod Menu APK Latest Version: Everything You Need to Know</h1>
3
- <p>If you are a fan of strategy games, you have probably heard of Clash of Clans, one of the most popular and addictive games in the world. But did you know that there is a way to make your gaming experience even more fun and exciting? Yes, we are talking about Clash of Clans Mod Menu APK, a modified version of the game that gives you unlimited resources and features. In this article, we will tell you everything you need to know about Clash of Clans Mod Menu APK latest version, including what it is, how to download and install it, how to use it, and more. So, let's get started!</p>
4
- <h2>What is Clash of Clans?</h2>
5
- <h3>A brief introduction to the game</h3>
6
- <p>Clash of Clans is a freemium mobile strategy game developed and published by Supercell, a Finnish game company. The game was released in 2012 for iOS and in 2013 for Android devices. The game has over 500 million downloads on Google Play Store and over 10 million ratings on App Store.</p>
7
- <h2>clash of clans mod menu apk latest version</h2><br /><p><b><b>Download</b> &#10038; <a href="https://jinyurl.com/2uNPFl">https://jinyurl.com/2uNPFl</a></b></p><br /><br />
8
- <p>The game is set in a fantasy world where you have to build your own village, train your troops, and fight against other players online. You can also join or create clans with other players and participate in clan wars, clan games, and special events. The game is updated regularly with new content and features.</p>
9
- <h3>The main features of the game</h3>
10
- <p>Some of the main features of Clash of Clans are:</p>
11
- <ul>
12
- <li>Build your own village with various buildings, defenses, traps, and decorations.</li>
13
- <li>Train different types of troops with unique abilities and upgrade them with elixir or dark elixir.</li>
14
- <li>Collect resources such as gold, elixir, dark elixir, gems, and clan points by raiding other villages or completing tasks.</li>
15
- <li>Use spells and siege machines to support your attacks or defend your village.</li>
16
- <li>Compete with other players in various leagues and tournaments for trophies and rewards.</li>
17
- <li>Join or create clans with other players and chat, donate troops, request reinforcements, and cooperate in clan wars, clan games, and special events.</li>
18
- <li>Explore new areas such as the Builder Base, the Town Hall 13, and the Super Troops.</li>
19
- </ul>
20
- <h2>What is Clash of Clans Mod Menu APK?</h2>
21
- <h3>A modified version of the game with unlimited resources and features</h3>
22
- <p>Clash of Clans Mod Menu APK is a modified version of the original game that gives you access to unlimited resources and features. With this mod menu apk, you can enjoy the game without any limitations or restrictions. You can build your village as you wish, train any troops you want, attack any base you like, and join any clan you prefer.</p>
23
- <p>Some of the unlimited resources and features that you can get with Clash of Clans Mod Menu APK are:</p>
24
- <ul>
25
- <li>Unlimited gold, elixir, dark el </li>
26
- </ul>
27
- <h3>The benefits of using the mod menu apk</h3>
28
- <p>Some of the benefits of using Clash of Clans Mod Menu APK are:</p>
29
- <ul>
30
- <li>You can save your time and money. You don't have to spend hours or dollars to progress in the game. You can get everything you need for free and instantly.</li>
31
- <li>You can have more fun and excitement. You don't have to worry about running out of resources or losing battles. You can experiment with different strategies and tactics and enjoy the game to the fullest.</li>
32
- <li>You can challenge yourself and others. You don't have to settle for the easy or boring levels. You can try the harder or more interesting ones and test your skills and creativity. You can also compete with other players who use the mod menu apk and see who is the best.</li>
33
- </ul>
34
- <h2>How to download and install Clash of Clans Mod Menu APK latest version?</h2>
35
- <h3>The steps to download and install the mod menu apk</h3>
36
- <p>If you want to download and install Clash of Clans Mod Menu APK latest version, you need to follow these steps:</p>
37
- <ol>
38
- <li>Go to a trusted website that provides the mod menu apk file, such as [clashofclansmodapk.net].</li>
39
- <li>Click on the download button and wait for the file to be downloaded on your device.</li>
40
- <li>Go to your device settings and enable the installation of apps from unknown sources.</li>
41
- <li>Locate the downloaded file in your file manager and tap on it to start the installation process.</li>
42
- <li>Follow the instructions on the screen and wait for the installation to be completed.</li>
43
- <li>Launch the game and enjoy the mod menu apk.</li>
44
- </ol>
45
- <h3>The precautions to take before installing the mod menu apk</h3>
46
- <p>Before you install Clash of Clans Mod Menu APK latest version, you need to take some precautions to avoid any problems or risks. Here are some of them:</p>
47
- <ul>
48
- <li>Make sure that your device has enough storage space and battery life for the installation process.</li>
49
- <li>Make sure that you have a stable internet connection for the download process.</li>
50
- <li>Make sure that you download the mod menu apk file from a trusted and secure website, not from a random or suspicious one.</li>
51
- <li>Make sure that you backup your original game data before installing the mod menu apk, in case you want to switch back to the official version later.</li>
52
- <li>Make sure that you do not use your real account or personal information when playing with the mod menu apk, as it may result in a ban or a hack.</li>
53
- </ul>
54
- <h2>How to use Clash of Clans Mod Menu APK latest version?</h2> <h3>The main options and settings of the mod menu apk</h3>
55
- <p>Once you launch the game with the mod menu apk, you will see a floating icon on the screen that gives you access to the mod menu. By tapping on this icon, you can open the mod menu and choose from various options and settings. Some of the main options and settings of the mod menu apk are:</p>
56
- <p>clash of clans mod menu apk unlimited everything<br />
57
- clash of clans mod menu apk download for android<br />
58
- clash of clans mod menu apk offline mode<br />
59
- clash of clans mod menu apk no root required<br />
60
- clash of clans mod menu apk with save data<br />
61
- clash of clans mod menu apk free gems and gold<br />
62
- clash of clans mod menu apk anti ban protection<br />
63
- clash of clans mod menu apk latest update 2023<br />
64
- clash of clans mod menu apk hack online generator<br />
65
- clash of clans mod menu apk private server switcher<br />
66
- clash of clans mod menu apk custom troops and buildings<br />
67
- clash of clans mod menu apk unlock all heroes and skins<br />
68
- clash of clans mod menu apk unlimited dark elixir and elixir<br />
69
- clash of clans mod menu apk supercell id login<br />
70
- clash of clans mod menu apk easy installation guide<br />
71
- clash of clans mod menu apk working on all devices<br />
72
- clash of clans mod menu apk best strategy and tips<br />
73
- clash of clans mod menu apk unlimited clan wars and events<br />
74
- clash of clans mod menu apk fast and secure download link<br />
75
- clash of clans mod menu apk no survey or human verification<br />
76
- clash of clans mod menu apk unlimited builder base resources<br />
77
- clash of clans mod menu apk support all android versions<br />
78
- clash of clans mod menu apk friendly and responsive user interface<br />
79
- clash of clans mod menu apk auto update feature<br />
80
- clash of clans mod menu apk unlimited town hall 14 features<br />
81
- clash of clans mod menu apk real time multiplayer battles<br />
82
- clash of clans mod menu apk unlimited spells and troops training<br />
83
- clash of clans mod menu apk no ads or pop ups<br />
84
- clash of clans mod menu apk high quality graphics and sound effects<br />
85
- clash of clans mod menu apk unlimited siege machines and wall wreckers<br />
86
- clash of clans mod menu apk unlock all achievements and rewards<br />
87
- clash of clans mod menu apk unlimited builder potions and books<br />
88
- clash of clans mod menu apk support all languages and regions<br />
89
- clash of clans mod menu apk 100% safe and virus free<br />
90
- clash of clans mod menu apk unlimited royal champion and grand warden abilities<br />
91
- clash of clans mod menu apk unlimited clan games and challenges<br />
92
- clash of clans mod menu apk unlock all clan perks and badges<br />
93
- clash of clans mod menu apk unlimited season pass and gold pass benefits<br />
94
- clash of clans mod menu apk unlimited magic items and hammers<br />
95
- clash of clans mod menu apk support all game modes and scenarios</p>
96
- <ul>
97
- <li>Resources: You can adjust the amount of gold, elixir, dark elixir, gems, and clan points that you have in your account. You can also refill your resources whenever you want.</li>
98
- <li>Troops: You can select any troops that you want to train, even if they are not available in your town hall level or barracks. You can also change the level and quantity of your troops.</li>
99
- <li>Spells: You can select any spells that you want to use, even if they are not available in your town hall level or spell factory. You can also change the level and quantity of your spells.</li>
100
- <li>Siege Machines: You can select any siege machines that you want to use, even if they are not available in your town hall level or workshop. You can also change the level and quantity of your siege machines.</li>
101
- <li>Builder Base: You can access the Builder Base without any requirements or restrictions. You can also adjust the amount of gold, elixir, gems, and builder trophies that you have in your Builder Base account.</li>
102
- <li>Town Hall 13: You can access the Town Hall 13 without any requirements or restrictions. You can also upgrade your town hall, buildings, troops, spells, and siege machines to level 13.</li>
103
- <li>Super Troops: You can access the Super Troops without any requirements or restrictions. You can also select any Super Troops that you want to use and change their level and quantity.</li>
104
- <li>Customization: You can change your village name, clan name, clan badge, profile picture, and chat color as many times as you want.</li>
105
- <li>Cheats and Hacks: You can enable or disable various cheats and hacks that can enhance your gaming experience, such as auto-attack, auto-collect, auto-train, auto-upgrade, anti-ban, and more.</li>
106
- </ul>
107
- <h3>The tips and tricks to enjoy the mod menu apk</h3>
108
- <p>Here are some tips and tricks that can help you enjoy Clash of Clans Mod Menu APK latest version:</p>
109
- <ul>
110
- <li>Use the mod menu apk for fun and entertainment only. Do not use it for malicious or illegal purposes.</li>
111
- <li>Do not abuse the mod menu apk or spam other players with it. Be respectful and fair to other players.</li>
112
- <li>Do not share your mod menu apk account or personal information with anyone. Keep your account safe and secure.</li>
113
- <li>Do not update the game from the official sources or uninstall the mod menu apk without backing up your data. You may lose your progress or data.</li>
114
- <li>Do not play with the mod menu apk on public or unsecured networks. You may expose your device or account to viruses or hackers.</li>
115
- </ul>
116
- <h2>Conclusion</h2>
117
- <h3>A summary of the main points of the article</h3>
118
- <p>In conclusion, Clash of Clans Mod Menu APK latest version is a modified version of the original game that gives you unlimited resources and features. With this mod menu apk, you can enjoy the game without any limitations or restrictions. You can build your village as you wish, train any troops you want, attack any base you like, and join any clan you prefer. You can also explore new areas such as the Builder Base, the Town Hall 13, and the Super Troops. You can also customize your village name, clan name, clan badge, profile picture, and chat color as many times as you want. You can also use various cheats and hacks to enhance your gaming experience.</p>
119
- <h3>A call to action for the readers</h3>
120
- <p>If you are interested in trying out Clash of Clans Mod Menu APK latest version, you can download it from [clashofclansmodapk.net] and follow the steps to install it on your device. However, before you do that, make sure that you take some precautions to avoid any problems or risks. Also, make sure that you use the mod menu apk for fun and entertainment only and not for malicious or illegal purposes. And remember to be respectful and fair to other players who play with the official version of the game.</p>
121
- <p>We hope that this article has given you all the information you need to know about Clash of Clans Mod Menu APK latest version. If you have any questions or feedback, feel free to leave a comment below. And if you liked this article, please share it with your friends who might be interested in Clash of Clans Mod Menu APK. And don't forget to check out our other articles on similar topics. Thank you for reading and happy gaming!</p>
122
- <h2>FAQs</h2>
123
- <p>Here are some of the frequently asked questions about Clash of Clans Mod Menu APK latest version:</p>
124
- <table>
125
- <tr>
126
- <th>Question</th>
127
- <th>Answer</th>
128
- </tr>
129
- <tr>
130
- <td>Is Clash of Clans Mod Menu APK safe to use?</td>
131
- <td>Clash of Clans Mod Menu APK is safe to use as long as you download it from a trusted and secure website, such as [clashofclansmodapk.net]. However, you should always be careful when installing apps from unknown sources and take some precautions to protect your device and account.</td>
132
- </tr>
133
- <tr>
134
- <td>Is Clash of Clans Mod Menu APK legal to use?</td>
135
- <td>Clash of Clans Mod Menu APK is not legal to use, as it violates the terms and conditions of the original game. Using the mod menu apk may result in a ban or a hack from the official game servers. Therefore, you should use the mod menu apk at your own risk and responsibility.</td>
136
- </tr>
137
- <tr>
138
- <td>Can I play with the mod menu apk online?</td>
139
- <td>Yes, you can play with the mod menu apk online, as it connects to the same servers as the official game. However, you may encounter some problems or errors when playing with the mod menu apk online, such as lagging, crashing, or mismatching. Also, you may face some backlash or complaints from other players who play with the official version of the game.</td>
140
- </tr>
141
- <tr>
142
- <td>Can I play with the mod menu apk offline?</td>
143
- <td>Yes, you can play with the mod menu apk offline, as it does not require an internet connection to run. However, you may miss some features or updates that are only available online, such as clan wars, clan games, and special events.</td>
144
- </tr>
145
- <tr>
146
- <td>Can I switch back to the official version of the game after using the mod menu apk?</td>
147
- <td>Yes, you can switch back to the official version of the game after using the mod menu apk, as long as you backup your original game data before installing the mod menu apk. To switch back to the official version of the game, you need to uninstall the mod menu apk and reinstall the original game from the official sources.</td>
148
- </tr>
149
- </table></p> 401be4b1e0<br />
150
- <br />
151
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AI-Hobbyist/Hoyo-RVC/uvr5_pack/lib_v5/nets_537227KB.py DELETED
@@ -1,123 +0,0 @@
1
- import torch
2
- import numpy as np
3
- from torch import nn
4
- import torch.nn.functional as F
5
-
6
- from uvr5_pack.lib_v5 import layers_537238KB as layers
7
-
8
-
9
- class BaseASPPNet(nn.Module):
10
- def __init__(self, nin, ch, dilations=(4, 8, 16)):
11
- super(BaseASPPNet, self).__init__()
12
- self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
13
- self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
14
- self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
15
- self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
16
-
17
- self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
18
-
19
- self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
20
- self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
21
- self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
22
- self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
23
-
24
- def __call__(self, x):
25
- h, e1 = self.enc1(x)
26
- h, e2 = self.enc2(h)
27
- h, e3 = self.enc3(h)
28
- h, e4 = self.enc4(h)
29
-
30
- h = self.aspp(h)
31
-
32
- h = self.dec4(h, e4)
33
- h = self.dec3(h, e3)
34
- h = self.dec2(h, e2)
35
- h = self.dec1(h, e1)
36
-
37
- return h
38
-
39
-
40
- class CascadedASPPNet(nn.Module):
41
- def __init__(self, n_fft):
42
- super(CascadedASPPNet, self).__init__()
43
- self.stg1_low_band_net = BaseASPPNet(2, 64)
44
- self.stg1_high_band_net = BaseASPPNet(2, 64)
45
-
46
- self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
47
- self.stg2_full_band_net = BaseASPPNet(32, 64)
48
-
49
- self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0)
50
- self.stg3_full_band_net = BaseASPPNet(64, 128)
51
-
52
- self.out = nn.Conv2d(128, 2, 1, bias=False)
53
- self.aux1_out = nn.Conv2d(64, 2, 1, bias=False)
54
- self.aux2_out = nn.Conv2d(64, 2, 1, bias=False)
55
-
56
- self.max_bin = n_fft // 2
57
- self.output_bin = n_fft // 2 + 1
58
-
59
- self.offset = 128
60
-
61
- def forward(self, x, aggressiveness=None):
62
- mix = x.detach()
63
- x = x.clone()
64
-
65
- x = x[:, :, : self.max_bin]
66
-
67
- bandw = x.size()[2] // 2
68
- aux1 = torch.cat(
69
- [
70
- self.stg1_low_band_net(x[:, :, :bandw]),
71
- self.stg1_high_band_net(x[:, :, bandw:]),
72
- ],
73
- dim=2,
74
- )
75
-
76
- h = torch.cat([x, aux1], dim=1)
77
- aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
78
-
79
- h = torch.cat([x, aux1, aux2], dim=1)
80
- h = self.stg3_full_band_net(self.stg3_bridge(h))
81
-
82
- mask = torch.sigmoid(self.out(h))
83
- mask = F.pad(
84
- input=mask,
85
- pad=(0, 0, 0, self.output_bin - mask.size()[2]),
86
- mode="replicate",
87
- )
88
-
89
- if self.training:
90
- aux1 = torch.sigmoid(self.aux1_out(aux1))
91
- aux1 = F.pad(
92
- input=aux1,
93
- pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
94
- mode="replicate",
95
- )
96
- aux2 = torch.sigmoid(self.aux2_out(aux2))
97
- aux2 = F.pad(
98
- input=aux2,
99
- pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
100
- mode="replicate",
101
- )
102
- return mask * mix, aux1 * mix, aux2 * mix
103
- else:
104
- if aggressiveness:
105
- mask[:, :, : aggressiveness["split_bin"]] = torch.pow(
106
- mask[:, :, : aggressiveness["split_bin"]],
107
- 1 + aggressiveness["value"] / 3,
108
- )
109
- mask[:, :, aggressiveness["split_bin"] :] = torch.pow(
110
- mask[:, :, aggressiveness["split_bin"] :],
111
- 1 + aggressiveness["value"],
112
- )
113
-
114
- return mask * mix
115
-
116
- def predict(self, x_mag, aggressiveness=None):
117
- h = self.forward(x_mag, aggressiveness)
118
-
119
- if self.offset > 0:
120
- h = h[:, :, :, self.offset : -self.offset]
121
- assert h.size()[3] > 0
122
-
123
- return h
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIConsultant/MusicGen/audiocraft/grids/musicgen/_explorers.py DELETED
@@ -1,93 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
- #
4
- # This source code is licensed under the license found in the
5
- # LICENSE file in the root directory of this source tree.
6
-
7
- import typing as tp
8
-
9
- import treetable as tt
10
-
11
- from .._base_explorers import BaseExplorer
12
-
13
-
14
- class LMExplorer(BaseExplorer):
15
- eval_metrics: tp.List[str] = []
16
-
17
- def stages(self) -> tp.List[str]:
18
- return ['train', 'valid']
19
-
20
- def get_grid_metrics(self):
21
- """Return the metrics that should be displayed in the tracking table."""
22
- return [
23
- tt.group(
24
- 'train',
25
- [
26
- tt.leaf('epoch'),
27
- tt.leaf('duration', '.1f'), # duration in minutes
28
- tt.leaf('ping'),
29
- tt.leaf('ce', '.4f'), # cross entropy
30
- tt.leaf("ppl", '.3f'), # perplexity
31
- ],
32
- align='>',
33
- ),
34
- tt.group(
35
- 'valid',
36
- [
37
- tt.leaf('ce', '.4f'),
38
- tt.leaf('ppl', '.3f'),
39
- tt.leaf('best_ppl', '.3f'),
40
- ],
41
- align='>',
42
- ),
43
- ]
44
-
45
- def process_sheep(self, sheep, history):
46
- parts = super().process_sheep(sheep, history)
47
-
48
- track_by = {'ppl': 'lower'} # values should be in ['lower', 'higher']
49
- best_metrics = {k: (1 if v == 'lower' else -1) * float('inf') for k, v in track_by.items()}
50
-
51
- def comparator(mode, a, b):
52
- return a < b if mode == 'lower' else a > b
53
-
54
- for metrics in history:
55
- for key, sub in metrics.items():
56
- for metric in track_by:
57
- # for the validation set, keep track of best metrics (ppl in this example)
58
- # this is so we can conveniently compare metrics between runs in the grid
59
- if key == 'valid' and metric in sub and comparator(
60
- track_by[metric], sub[metric], best_metrics[metric]
61
- ):
62
- best_metrics[metric] = sub[metric]
63
-
64
- if 'valid' in parts:
65
- parts['valid'].update({f'best_{k}': v for k, v in best_metrics.items()})
66
- return parts
67
-
68
-
69
- class GenerationEvalExplorer(BaseExplorer):
70
- eval_metrics: tp.List[str] = []
71
-
72
- def stages(self) -> tp.List[str]:
73
- return ['evaluate']
74
-
75
- def get_grid_metrics(self):
76
- """Return the metrics that should be displayed in the tracking table."""
77
- return [
78
- tt.group(
79
- 'evaluate',
80
- [
81
- tt.leaf('epoch', '.3f'),
82
- tt.leaf('duration', '.1f'),
83
- tt.leaf('ping'),
84
- tt.leaf('ce', '.4f'),
85
- tt.leaf('ppl', '.3f'),
86
- tt.leaf('fad', '.3f'),
87
- tt.leaf('kld', '.3f'),
88
- tt.leaf('text_consistency', '.3f'),
89
- tt.leaf('chroma_cosine', '.3f'),
90
- ],
91
- align='>',
92
- ),
93
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/ATang0729/Forecast4Muses/Model/Model6/Model6_1_ClothesKeyPoint/work_dirs_1-x/td_hm_res50_4xb64-120e_deepfashion2_sling_256x192/td_hm_res50_4xb64-120e_deepfashion2_sling_256x192.py DELETED
@@ -1,2861 +0,0 @@
1
- default_scope = 'mmpose'
2
- default_hooks = dict(
3
- timer=dict(type='IterTimerHook'),
4
- logger=dict(type='LoggerHook', interval=50),
5
- param_scheduler=dict(type='ParamSchedulerHook'),
6
- checkpoint=dict(
7
- type='CheckpointHook', interval=10, save_best='PCK', rule='greater'),
8
- sampler_seed=dict(type='DistSamplerSeedHook'),
9
- visualization=dict(type='PoseVisualizationHook', enable=False))
10
- custom_hooks = [dict(type='SyncBuffersHook')]
11
- env_cfg = dict(
12
- cudnn_benchmark=False,
13
- mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
14
- dist_cfg=dict(backend='nccl'))
15
- vis_backends = [dict(type='LocalVisBackend')]
16
- visualizer = dict(
17
- type='PoseLocalVisualizer',
18
- vis_backends=[dict(type='LocalVisBackend'),
19
- dict(type='WandbVisBackend')],
20
- name='visualizer')
21
- log_processor = dict(
22
- type='LogProcessor', window_size=50, by_epoch=True, num_digits=6)
23
- log_level = 'INFO'
24
- load_from = None
25
- resume = False
26
- backend_args = dict(backend='local')
27
- train_cfg = dict(by_epoch=True, max_epochs=120, val_interval=10)
28
- val_cfg = dict()
29
- test_cfg = dict()
30
- colors = dict(
31
- sss=[255, 128, 0],
32
- lss=[255, 0, 128],
33
- sso=[128, 0, 255],
34
- lso=[0, 128, 255],
35
- vest=[0, 128, 128],
36
- sling=[0, 0, 128],
37
- shorts=[128, 128, 128],
38
- trousers=[128, 0, 128],
39
- skirt=[64, 128, 128],
40
- ssd=[64, 64, 128],
41
- lsd=[128, 64, 0],
42
- vd=[128, 64, 255],
43
- sd=[128, 64, 0])
44
- dataset_info = dict(
45
- dataset_name='deepfashion2',
46
- paper_info=dict(
47
- author=
48
- 'Yuying Ge and Ruimao Zhang and Lingyun Wu and Xiaogang Wang and Xiaoou Tang and Ping Luo',
49
- title=
50
- 'DeepFashion2: A Versatile Benchmark for Detection, Pose Estimation, Segmentation and Re-Identification of Clothing Images',
51
- container=
52
- 'Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)',
53
- year='2019',
54
- homepage='https://github.com/switchablenorms/DeepFashion2'),
55
- keypoint_info=dict({
56
- 0:
57
- dict(name='sss_kpt1', id=0, color=[255, 128, 0], type='', swap=''),
58
- 1:
59
- dict(
60
- name='sss_kpt2',
61
- id=1,
62
- color=[255, 128, 0],
63
- type='',
64
- swap='sss_kpt6'),
65
- 2:
66
- dict(
67
- name='sss_kpt3',
68
- id=2,
69
- color=[255, 128, 0],
70
- type='',
71
- swap='sss_kpt5'),
72
- 3:
73
- dict(name='sss_kpt4', id=3, color=[255, 128, 0], type='', swap=''),
74
- 4:
75
- dict(
76
- name='sss_kpt5',
77
- id=4,
78
- color=[255, 128, 0],
79
- type='',
80
- swap='sss_kpt3'),
81
- 5:
82
- dict(
83
- name='sss_kpt6',
84
- id=5,
85
- color=[255, 128, 0],
86
- type='',
87
- swap='sss_kpt2'),
88
- 6:
89
- dict(
90
- name='sss_kpt7',
91
- id=6,
92
- color=[255, 128, 0],
93
- type='',
94
- swap='sss_kpt25'),
95
- 7:
96
- dict(
97
- name='sss_kpt8',
98
- id=7,
99
- color=[255, 128, 0],
100
- type='',
101
- swap='sss_kpt24'),
102
- 8:
103
- dict(
104
- name='sss_kpt9',
105
- id=8,
106
- color=[255, 128, 0],
107
- type='',
108
- swap='sss_kpt23'),
109
- 9:
110
- dict(
111
- name='sss_kpt10',
112
- id=9,
113
- color=[255, 128, 0],
114
- type='',
115
- swap='sss_kpt22'),
116
- 10:
117
- dict(
118
- name='sss_kpt11',
119
- id=10,
120
- color=[255, 128, 0],
121
- type='',
122
- swap='sss_kpt21'),
123
- 11:
124
- dict(
125
- name='sss_kpt12',
126
- id=11,
127
- color=[255, 128, 0],
128
- type='',
129
- swap='sss_kpt20'),
130
- 12:
131
- dict(
132
- name='sss_kpt13',
133
- id=12,
134
- color=[255, 128, 0],
135
- type='',
136
- swap='sss_kpt19'),
137
- 13:
138
- dict(
139
- name='sss_kpt14',
140
- id=13,
141
- color=[255, 128, 0],
142
- type='',
143
- swap='sss_kpt18'),
144
- 14:
145
- dict(
146
- name='sss_kpt15',
147
- id=14,
148
- color=[255, 128, 0],
149
- type='',
150
- swap='sss_kpt17'),
151
- 15:
152
- dict(name='sss_kpt16', id=15, color=[255, 128, 0], type='', swap=''),
153
- 16:
154
- dict(
155
- name='sss_kpt17',
156
- id=16,
157
- color=[255, 128, 0],
158
- type='',
159
- swap='sss_kpt15'),
160
- 17:
161
- dict(
162
- name='sss_kpt18',
163
- id=17,
164
- color=[255, 128, 0],
165
- type='',
166
- swap='sss_kpt14'),
167
- 18:
168
- dict(
169
- name='sss_kpt19',
170
- id=18,
171
- color=[255, 128, 0],
172
- type='',
173
- swap='sss_kpt13'),
174
- 19:
175
- dict(
176
- name='sss_kpt20',
177
- id=19,
178
- color=[255, 128, 0],
179
- type='',
180
- swap='sss_kpt12'),
181
- 20:
182
- dict(
183
- name='sss_kpt21',
184
- id=20,
185
- color=[255, 128, 0],
186
- type='',
187
- swap='sss_kpt11'),
188
- 21:
189
- dict(
190
- name='sss_kpt22',
191
- id=21,
192
- color=[255, 128, 0],
193
- type='',
194
- swap='sss_kpt10'),
195
- 22:
196
- dict(
197
- name='sss_kpt23',
198
- id=22,
199
- color=[255, 128, 0],
200
- type='',
201
- swap='sss_kpt9'),
202
- 23:
203
- dict(
204
- name='sss_kpt24',
205
- id=23,
206
- color=[255, 128, 0],
207
- type='',
208
- swap='sss_kpt8'),
209
- 24:
210
- dict(
211
- name='sss_kpt25',
212
- id=24,
213
- color=[255, 128, 0],
214
- type='',
215
- swap='sss_kpt7'),
216
- 25:
217
- dict(name='lss_kpt1', id=25, color=[255, 0, 128], type='', swap=''),
218
- 26:
219
- dict(
220
- name='lss_kpt2',
221
- id=26,
222
- color=[255, 0, 128],
223
- type='',
224
- swap='lss_kpt6'),
225
- 27:
226
- dict(
227
- name='lss_kpt3',
228
- id=27,
229
- color=[255, 0, 128],
230
- type='',
231
- swap='lss_kpt5'),
232
- 28:
233
- dict(name='lss_kpt4', id=28, color=[255, 0, 128], type='', swap=''),
234
- 29:
235
- dict(
236
- name='lss_kpt5',
237
- id=29,
238
- color=[255, 0, 128],
239
- type='',
240
- swap='lss_kpt3'),
241
- 30:
242
- dict(
243
- name='lss_kpt6',
244
- id=30,
245
- color=[255, 0, 128],
246
- type='',
247
- swap='lss_kpt2'),
248
- 31:
249
- dict(
250
- name='lss_kpt7',
251
- id=31,
252
- color=[255, 0, 128],
253
- type='',
254
- swap='lss_kpt33'),
255
- 32:
256
- dict(
257
- name='lss_kpt8',
258
- id=32,
259
- color=[255, 0, 128],
260
- type='',
261
- swap='lss_kpt32'),
262
- 33:
263
- dict(
264
- name='lss_kpt9',
265
- id=33,
266
- color=[255, 0, 128],
267
- type='',
268
- swap='lss_kpt31'),
269
- 34:
270
- dict(
271
- name='lss_kpt10',
272
- id=34,
273
- color=[255, 0, 128],
274
- type='',
275
- swap='lss_kpt30'),
276
- 35:
277
- dict(
278
- name='lss_kpt11',
279
- id=35,
280
- color=[255, 0, 128],
281
- type='',
282
- swap='lss_kpt29'),
283
- 36:
284
- dict(
285
- name='lss_kpt12',
286
- id=36,
287
- color=[255, 0, 128],
288
- type='',
289
- swap='lss_kpt28'),
290
- 37:
291
- dict(
292
- name='lss_kpt13',
293
- id=37,
294
- color=[255, 0, 128],
295
- type='',
296
- swap='lss_kpt27'),
297
- 38:
298
- dict(
299
- name='lss_kpt14',
300
- id=38,
301
- color=[255, 0, 128],
302
- type='',
303
- swap='lss_kpt26'),
304
- 39:
305
- dict(
306
- name='lss_kpt15',
307
- id=39,
308
- color=[255, 0, 128],
309
- type='',
310
- swap='lss_kpt25'),
311
- 40:
312
- dict(
313
- name='lss_kpt16',
314
- id=40,
315
- color=[255, 0, 128],
316
- type='',
317
- swap='lss_kpt24'),
318
- 41:
319
- dict(
320
- name='lss_kpt17',
321
- id=41,
322
- color=[255, 0, 128],
323
- type='',
324
- swap='lss_kpt23'),
325
- 42:
326
- dict(
327
- name='lss_kpt18',
328
- id=42,
329
- color=[255, 0, 128],
330
- type='',
331
- swap='lss_kpt22'),
332
- 43:
333
- dict(
334
- name='lss_kpt19',
335
- id=43,
336
- color=[255, 0, 128],
337
- type='',
338
- swap='lss_kpt21'),
339
- 44:
340
- dict(name='lss_kpt20', id=44, color=[255, 0, 128], type='', swap=''),
341
- 45:
342
- dict(
343
- name='lss_kpt21',
344
- id=45,
345
- color=[255, 0, 128],
346
- type='',
347
- swap='lss_kpt19'),
348
- 46:
349
- dict(
350
- name='lss_kpt22',
351
- id=46,
352
- color=[255, 0, 128],
353
- type='',
354
- swap='lss_kpt18'),
355
- 47:
356
- dict(
357
- name='lss_kpt23',
358
- id=47,
359
- color=[255, 0, 128],
360
- type='',
361
- swap='lss_kpt17'),
362
- 48:
363
- dict(
364
- name='lss_kpt24',
365
- id=48,
366
- color=[255, 0, 128],
367
- type='',
368
- swap='lss_kpt16'),
369
- 49:
370
- dict(
371
- name='lss_kpt25',
372
- id=49,
373
- color=[255, 0, 128],
374
- type='',
375
- swap='lss_kpt15'),
376
- 50:
377
- dict(
378
- name='lss_kpt26',
379
- id=50,
380
- color=[255, 0, 128],
381
- type='',
382
- swap='lss_kpt14'),
383
- 51:
384
- dict(
385
- name='lss_kpt27',
386
- id=51,
387
- color=[255, 0, 128],
388
- type='',
389
- swap='lss_kpt13'),
390
- 52:
391
- dict(
392
- name='lss_kpt28',
393
- id=52,
394
- color=[255, 0, 128],
395
- type='',
396
- swap='lss_kpt12'),
397
- 53:
398
- dict(
399
- name='lss_kpt29',
400
- id=53,
401
- color=[255, 0, 128],
402
- type='',
403
- swap='lss_kpt11'),
404
- 54:
405
- dict(
406
- name='lss_kpt30',
407
- id=54,
408
- color=[255, 0, 128],
409
- type='',
410
- swap='lss_kpt10'),
411
- 55:
412
- dict(
413
- name='lss_kpt31',
414
- id=55,
415
- color=[255, 0, 128],
416
- type='',
417
- swap='lss_kpt9'),
418
- 56:
419
- dict(
420
- name='lss_kpt32',
421
- id=56,
422
- color=[255, 0, 128],
423
- type='',
424
- swap='lss_kpt8'),
425
- 57:
426
- dict(
427
- name='lss_kpt33',
428
- id=57,
429
- color=[255, 0, 128],
430
- type='',
431
- swap='lss_kpt7'),
432
- 58:
433
- dict(name='sso_kpt1', id=58, color=[128, 0, 255], type='', swap=''),
434
- 59:
435
- dict(
436
- name='sso_kpt2',
437
- id=59,
438
- color=[128, 0, 255],
439
- type='',
440
- swap='sso_kpt26'),
441
- 60:
442
- dict(
443
- name='sso_kpt3',
444
- id=60,
445
- color=[128, 0, 255],
446
- type='',
447
- swap='sso_kpt5'),
448
- 61:
449
- dict(
450
- name='sso_kpt4',
451
- id=61,
452
- color=[128, 0, 255],
453
- type='',
454
- swap='sso_kpt6'),
455
- 62:
456
- dict(
457
- name='sso_kpt5',
458
- id=62,
459
- color=[128, 0, 255],
460
- type='',
461
- swap='sso_kpt3'),
462
- 63:
463
- dict(
464
- name='sso_kpt6',
465
- id=63,
466
- color=[128, 0, 255],
467
- type='',
468
- swap='sso_kpt4'),
469
- 64:
470
- dict(
471
- name='sso_kpt7',
472
- id=64,
473
- color=[128, 0, 255],
474
- type='',
475
- swap='sso_kpt25'),
476
- 65:
477
- dict(
478
- name='sso_kpt8',
479
- id=65,
480
- color=[128, 0, 255],
481
- type='',
482
- swap='sso_kpt24'),
483
- 66:
484
- dict(
485
- name='sso_kpt9',
486
- id=66,
487
- color=[128, 0, 255],
488
- type='',
489
- swap='sso_kpt23'),
490
- 67:
491
- dict(
492
- name='sso_kpt10',
493
- id=67,
494
- color=[128, 0, 255],
495
- type='',
496
- swap='sso_kpt22'),
497
- 68:
498
- dict(
499
- name='sso_kpt11',
500
- id=68,
501
- color=[128, 0, 255],
502
- type='',
503
- swap='sso_kpt21'),
504
- 69:
505
- dict(
506
- name='sso_kpt12',
507
- id=69,
508
- color=[128, 0, 255],
509
- type='',
510
- swap='sso_kpt20'),
511
- 70:
512
- dict(
513
- name='sso_kpt13',
514
- id=70,
515
- color=[128, 0, 255],
516
- type='',
517
- swap='sso_kpt19'),
518
- 71:
519
- dict(
520
- name='sso_kpt14',
521
- id=71,
522
- color=[128, 0, 255],
523
- type='',
524
- swap='sso_kpt18'),
525
- 72:
526
- dict(
527
- name='sso_kpt15',
528
- id=72,
529
- color=[128, 0, 255],
530
- type='',
531
- swap='sso_kpt17'),
532
- 73:
533
- dict(
534
- name='sso_kpt16',
535
- id=73,
536
- color=[128, 0, 255],
537
- type='',
538
- swap='sso_kpt29'),
539
- 74:
540
- dict(
541
- name='sso_kpt17',
542
- id=74,
543
- color=[128, 0, 255],
544
- type='',
545
- swap='sso_kpt15'),
546
- 75:
547
- dict(
548
- name='sso_kpt18',
549
- id=75,
550
- color=[128, 0, 255],
551
- type='',
552
- swap='sso_kpt14'),
553
- 76:
554
- dict(
555
- name='sso_kpt19',
556
- id=76,
557
- color=[128, 0, 255],
558
- type='',
559
- swap='sso_kpt13'),
560
- 77:
561
- dict(
562
- name='sso_kpt20',
563
- id=77,
564
- color=[128, 0, 255],
565
- type='',
566
- swap='sso_kpt12'),
567
- 78:
568
- dict(
569
- name='sso_kpt21',
570
- id=78,
571
- color=[128, 0, 255],
572
- type='',
573
- swap='sso_kpt11'),
574
- 79:
575
- dict(
576
- name='sso_kpt22',
577
- id=79,
578
- color=[128, 0, 255],
579
- type='',
580
- swap='sso_kpt10'),
581
- 80:
582
- dict(
583
- name='sso_kpt23',
584
- id=80,
585
- color=[128, 0, 255],
586
- type='',
587
- swap='sso_kpt9'),
588
- 81:
589
- dict(
590
- name='sso_kpt24',
591
- id=81,
592
- color=[128, 0, 255],
593
- type='',
594
- swap='sso_kpt8'),
595
- 82:
596
- dict(
597
- name='sso_kpt25',
598
- id=82,
599
- color=[128, 0, 255],
600
- type='',
601
- swap='sso_kpt7'),
602
- 83:
603
- dict(
604
- name='sso_kpt26',
605
- id=83,
606
- color=[128, 0, 255],
607
- type='',
608
- swap='sso_kpt2'),
609
- 84:
610
- dict(
611
- name='sso_kpt27',
612
- id=84,
613
- color=[128, 0, 255],
614
- type='',
615
- swap='sso_kpt30'),
616
- 85:
617
- dict(
618
- name='sso_kpt28',
619
- id=85,
620
- color=[128, 0, 255],
621
- type='',
622
- swap='sso_kpt31'),
623
- 86:
624
- dict(
625
- name='sso_kpt29',
626
- id=86,
627
- color=[128, 0, 255],
628
- type='',
629
- swap='sso_kpt16'),
630
- 87:
631
- dict(
632
- name='sso_kpt30',
633
- id=87,
634
- color=[128, 0, 255],
635
- type='',
636
- swap='sso_kpt27'),
637
- 88:
638
- dict(
639
- name='sso_kpt31',
640
- id=88,
641
- color=[128, 0, 255],
642
- type='',
643
- swap='sso_kpt28'),
644
- 89:
645
- dict(name='lso_kpt1', id=89, color=[0, 128, 255], type='', swap=''),
646
- 90:
647
- dict(
648
- name='lso_kpt2',
649
- id=90,
650
- color=[0, 128, 255],
651
- type='',
652
- swap='lso_kpt6'),
653
- 91:
654
- dict(
655
- name='lso_kpt3',
656
- id=91,
657
- color=[0, 128, 255],
658
- type='',
659
- swap='lso_kpt5'),
660
- 92:
661
- dict(
662
- name='lso_kpt4',
663
- id=92,
664
- color=[0, 128, 255],
665
- type='',
666
- swap='lso_kpt34'),
667
- 93:
668
- dict(
669
- name='lso_kpt5',
670
- id=93,
671
- color=[0, 128, 255],
672
- type='',
673
- swap='lso_kpt3'),
674
- 94:
675
- dict(
676
- name='lso_kpt6',
677
- id=94,
678
- color=[0, 128, 255],
679
- type='',
680
- swap='lso_kpt2'),
681
- 95:
682
- dict(
683
- name='lso_kpt7',
684
- id=95,
685
- color=[0, 128, 255],
686
- type='',
687
- swap='lso_kpt33'),
688
- 96:
689
- dict(
690
- name='lso_kpt8',
691
- id=96,
692
- color=[0, 128, 255],
693
- type='',
694
- swap='lso_kpt32'),
695
- 97:
696
- dict(
697
- name='lso_kpt9',
698
- id=97,
699
- color=[0, 128, 255],
700
- type='',
701
- swap='lso_kpt31'),
702
- 98:
703
- dict(
704
- name='lso_kpt10',
705
- id=98,
706
- color=[0, 128, 255],
707
- type='',
708
- swap='lso_kpt30'),
709
- 99:
710
- dict(
711
- name='lso_kpt11',
712
- id=99,
713
- color=[0, 128, 255],
714
- type='',
715
- swap='lso_kpt29'),
716
- 100:
717
- dict(
718
- name='lso_kpt12',
719
- id=100,
720
- color=[0, 128, 255],
721
- type='',
722
- swap='lso_kpt28'),
723
- 101:
724
- dict(
725
- name='lso_kpt13',
726
- id=101,
727
- color=[0, 128, 255],
728
- type='',
729
- swap='lso_kpt27'),
730
- 102:
731
- dict(
732
- name='lso_kpt14',
733
- id=102,
734
- color=[0, 128, 255],
735
- type='',
736
- swap='lso_kpt26'),
737
- 103:
738
- dict(
739
- name='lso_kpt15',
740
- id=103,
741
- color=[0, 128, 255],
742
- type='',
743
- swap='lso_kpt25'),
744
- 104:
745
- dict(
746
- name='lso_kpt16',
747
- id=104,
748
- color=[0, 128, 255],
749
- type='',
750
- swap='lso_kpt24'),
751
- 105:
752
- dict(
753
- name='lso_kpt17',
754
- id=105,
755
- color=[0, 128, 255],
756
- type='',
757
- swap='lso_kpt23'),
758
- 106:
759
- dict(
760
- name='lso_kpt18',
761
- id=106,
762
- color=[0, 128, 255],
763
- type='',
764
- swap='lso_kpt22'),
765
- 107:
766
- dict(
767
- name='lso_kpt19',
768
- id=107,
769
- color=[0, 128, 255],
770
- type='',
771
- swap='lso_kpt21'),
772
- 108:
773
- dict(
774
- name='lso_kpt20',
775
- id=108,
776
- color=[0, 128, 255],
777
- type='',
778
- swap='lso_kpt37'),
779
- 109:
780
- dict(
781
- name='lso_kpt21',
782
- id=109,
783
- color=[0, 128, 255],
784
- type='',
785
- swap='lso_kpt19'),
786
- 110:
787
- dict(
788
- name='lso_kpt22',
789
- id=110,
790
- color=[0, 128, 255],
791
- type='',
792
- swap='lso_kpt18'),
793
- 111:
794
- dict(
795
- name='lso_kpt23',
796
- id=111,
797
- color=[0, 128, 255],
798
- type='',
799
- swap='lso_kpt17'),
800
- 112:
801
- dict(
802
- name='lso_kpt24',
803
- id=112,
804
- color=[0, 128, 255],
805
- type='',
806
- swap='lso_kpt16'),
807
- 113:
808
- dict(
809
- name='lso_kpt25',
810
- id=113,
811
- color=[0, 128, 255],
812
- type='',
813
- swap='lso_kpt15'),
814
- 114:
815
- dict(
816
- name='lso_kpt26',
817
- id=114,
818
- color=[0, 128, 255],
819
- type='',
820
- swap='lso_kpt14'),
821
- 115:
822
- dict(
823
- name='lso_kpt27',
824
- id=115,
825
- color=[0, 128, 255],
826
- type='',
827
- swap='lso_kpt13'),
828
- 116:
829
- dict(
830
- name='lso_kpt28',
831
- id=116,
832
- color=[0, 128, 255],
833
- type='',
834
- swap='lso_kpt12'),
835
- 117:
836
- dict(
837
- name='lso_kpt29',
838
- id=117,
839
- color=[0, 128, 255],
840
- type='',
841
- swap='lso_kpt11'),
842
- 118:
843
- dict(
844
- name='lso_kpt30',
845
- id=118,
846
- color=[0, 128, 255],
847
- type='',
848
- swap='lso_kpt10'),
849
- 119:
850
- dict(
851
- name='lso_kpt31',
852
- id=119,
853
- color=[0, 128, 255],
854
- type='',
855
- swap='lso_kpt9'),
856
- 120:
857
- dict(
858
- name='lso_kpt32',
859
- id=120,
860
- color=[0, 128, 255],
861
- type='',
862
- swap='lso_kpt8'),
863
- 121:
864
- dict(
865
- name='lso_kpt33',
866
- id=121,
867
- color=[0, 128, 255],
868
- type='',
869
- swap='lso_kpt7'),
870
- 122:
871
- dict(
872
- name='lso_kpt34',
873
- id=122,
874
- color=[0, 128, 255],
875
- type='',
876
- swap='lso_kpt4'),
877
- 123:
878
- dict(
879
- name='lso_kpt35',
880
- id=123,
881
- color=[0, 128, 255],
882
- type='',
883
- swap='lso_kpt38'),
884
- 124:
885
- dict(
886
- name='lso_kpt36',
887
- id=124,
888
- color=[0, 128, 255],
889
- type='',
890
- swap='lso_kpt39'),
891
- 125:
892
- dict(
893
- name='lso_kpt37',
894
- id=125,
895
- color=[0, 128, 255],
896
- type='',
897
- swap='lso_kpt20'),
898
- 126:
899
- dict(
900
- name='lso_kpt38',
901
- id=126,
902
- color=[0, 128, 255],
903
- type='',
904
- swap='lso_kpt35'),
905
- 127:
906
- dict(
907
- name='lso_kpt39',
908
- id=127,
909
- color=[0, 128, 255],
910
- type='',
911
- swap='lso_kpt36'),
912
- 128:
913
- dict(name='vest_kpt1', id=128, color=[0, 128, 128], type='', swap=''),
914
- 129:
915
- dict(
916
- name='vest_kpt2',
917
- id=129,
918
- color=[0, 128, 128],
919
- type='',
920
- swap='vest_kpt6'),
921
- 130:
922
- dict(
923
- name='vest_kpt3',
924
- id=130,
925
- color=[0, 128, 128],
926
- type='',
927
- swap='vest_kpt5'),
928
- 131:
929
- dict(name='vest_kpt4', id=131, color=[0, 128, 128], type='', swap=''),
930
- 132:
931
- dict(
932
- name='vest_kpt5',
933
- id=132,
934
- color=[0, 128, 128],
935
- type='',
936
- swap='vest_kpt3'),
937
- 133:
938
- dict(
939
- name='vest_kpt6',
940
- id=133,
941
- color=[0, 128, 128],
942
- type='',
943
- swap='vest_kpt2'),
944
- 134:
945
- dict(
946
- name='vest_kpt7',
947
- id=134,
948
- color=[0, 128, 128],
949
- type='',
950
- swap='vest_kpt15'),
951
- 135:
952
- dict(
953
- name='vest_kpt8',
954
- id=135,
955
- color=[0, 128, 128],
956
- type='',
957
- swap='vest_kpt14'),
958
- 136:
959
- dict(
960
- name='vest_kpt9',
961
- id=136,
962
- color=[0, 128, 128],
963
- type='',
964
- swap='vest_kpt13'),
965
- 137:
966
- dict(
967
- name='vest_kpt10',
968
- id=137,
969
- color=[0, 128, 128],
970
- type='',
971
- swap='vest_kpt12'),
972
- 138:
973
- dict(name='vest_kpt11', id=138, color=[0, 128, 128], type='', swap=''),
974
- 139:
975
- dict(
976
- name='vest_kpt12',
977
- id=139,
978
- color=[0, 128, 128],
979
- type='',
980
- swap='vest_kpt10'),
981
- 140:
982
- dict(name='vest_kpt13', id=140, color=[0, 128, 128], type='', swap=''),
983
- 141:
984
- dict(
985
- name='vest_kpt14',
986
- id=141,
987
- color=[0, 128, 128],
988
- type='',
989
- swap='vest_kpt8'),
990
- 142:
991
- dict(
992
- name='vest_kpt15',
993
- id=142,
994
- color=[0, 128, 128],
995
- type='',
996
- swap='vest_kpt7'),
997
- 143:
998
- dict(name='sling_kpt1', id=143, color=[0, 0, 128], type='', swap=''),
999
- 144:
1000
- dict(
1001
- name='sling_kpt2',
1002
- id=144,
1003
- color=[0, 0, 128],
1004
- type='',
1005
- swap='sling_kpt6'),
1006
- 145:
1007
- dict(
1008
- name='sling_kpt3',
1009
- id=145,
1010
- color=[0, 0, 128],
1011
- type='',
1012
- swap='sling_kpt5'),
1013
- 146:
1014
- dict(name='sling_kpt4', id=146, color=[0, 0, 128], type='', swap=''),
1015
- 147:
1016
- dict(
1017
- name='sling_kpt5',
1018
- id=147,
1019
- color=[0, 0, 128],
1020
- type='',
1021
- swap='sling_kpt3'),
1022
- 148:
1023
- dict(
1024
- name='sling_kpt6',
1025
- id=148,
1026
- color=[0, 0, 128],
1027
- type='',
1028
- swap='sling_kpt2'),
1029
- 149:
1030
- dict(
1031
- name='sling_kpt7',
1032
- id=149,
1033
- color=[0, 0, 128],
1034
- type='',
1035
- swap='sling_kpt15'),
1036
- 150:
1037
- dict(
1038
- name='sling_kpt8',
1039
- id=150,
1040
- color=[0, 0, 128],
1041
- type='',
1042
- swap='sling_kpt14'),
1043
- 151:
1044
- dict(
1045
- name='sling_kpt9',
1046
- id=151,
1047
- color=[0, 0, 128],
1048
- type='',
1049
- swap='sling_kpt13'),
1050
- 152:
1051
- dict(
1052
- name='sling_kpt10',
1053
- id=152,
1054
- color=[0, 0, 128],
1055
- type='',
1056
- swap='sling_kpt12'),
1057
- 153:
1058
- dict(name='sling_kpt11', id=153, color=[0, 0, 128], type='', swap=''),
1059
- 154:
1060
- dict(
1061
- name='sling_kpt12',
1062
- id=154,
1063
- color=[0, 0, 128],
1064
- type='',
1065
- swap='sling_kpt10'),
1066
- 155:
1067
- dict(
1068
- name='sling_kpt13',
1069
- id=155,
1070
- color=[0, 0, 128],
1071
- type='',
1072
- swap='sling_kpt9'),
1073
- 156:
1074
- dict(
1075
- name='sling_kpt14',
1076
- id=156,
1077
- color=[0, 0, 128],
1078
- type='',
1079
- swap='sling_kpt8'),
1080
- 157:
1081
- dict(
1082
- name='sling_kpt15',
1083
- id=157,
1084
- color=[0, 0, 128],
1085
- type='',
1086
- swap='sling_kpt7'),
1087
- 158:
1088
- dict(
1089
- name='shorts_kpt1',
1090
- id=158,
1091
- color=[128, 128, 128],
1092
- type='',
1093
- swap='shorts_kpt3'),
1094
- 159:
1095
- dict(
1096
- name='shorts_kpt2',
1097
- id=159,
1098
- color=[128, 128, 128],
1099
- type='',
1100
- swap=''),
1101
- 160:
1102
- dict(
1103
- name='shorts_kpt3',
1104
- id=160,
1105
- color=[128, 128, 128],
1106
- type='',
1107
- swap='shorts_kpt1'),
1108
- 161:
1109
- dict(
1110
- name='shorts_kpt4',
1111
- id=161,
1112
- color=[128, 128, 128],
1113
- type='',
1114
- swap='shorts_kpt10'),
1115
- 162:
1116
- dict(
1117
- name='shorts_kpt5',
1118
- id=162,
1119
- color=[128, 128, 128],
1120
- type='',
1121
- swap='shorts_kpt9'),
1122
- 163:
1123
- dict(
1124
- name='shorts_kpt6',
1125
- id=163,
1126
- color=[128, 128, 128],
1127
- type='',
1128
- swap='shorts_kpt8'),
1129
- 164:
1130
- dict(
1131
- name='shorts_kpt7',
1132
- id=164,
1133
- color=[128, 128, 128],
1134
- type='',
1135
- swap=''),
1136
- 165:
1137
- dict(
1138
- name='shorts_kpt8',
1139
- id=165,
1140
- color=[128, 128, 128],
1141
- type='',
1142
- swap='shorts_kpt6'),
1143
- 166:
1144
- dict(
1145
- name='shorts_kpt9',
1146
- id=166,
1147
- color=[128, 128, 128],
1148
- type='',
1149
- swap='shorts_kpt5'),
1150
- 167:
1151
- dict(
1152
- name='shorts_kpt10',
1153
- id=167,
1154
- color=[128, 128, 128],
1155
- type='',
1156
- swap='shorts_kpt4'),
1157
- 168:
1158
- dict(
1159
- name='trousers_kpt1',
1160
- id=168,
1161
- color=[128, 0, 128],
1162
- type='',
1163
- swap='trousers_kpt3'),
1164
- 169:
1165
- dict(
1166
- name='trousers_kpt2',
1167
- id=169,
1168
- color=[128, 0, 128],
1169
- type='',
1170
- swap=''),
1171
- 170:
1172
- dict(
1173
- name='trousers_kpt3',
1174
- id=170,
1175
- color=[128, 0, 128],
1176
- type='',
1177
- swap='trousers_kpt1'),
1178
- 171:
1179
- dict(
1180
- name='trousers_kpt4',
1181
- id=171,
1182
- color=[128, 0, 128],
1183
- type='',
1184
- swap='trousers_kpt14'),
1185
- 172:
1186
- dict(
1187
- name='trousers_kpt5',
1188
- id=172,
1189
- color=[128, 0, 128],
1190
- type='',
1191
- swap='trousers_kpt13'),
1192
- 173:
1193
- dict(
1194
- name='trousers_kpt6',
1195
- id=173,
1196
- color=[128, 0, 128],
1197
- type='',
1198
- swap='trousers_kpt12'),
1199
- 174:
1200
- dict(
1201
- name='trousers_kpt7',
1202
- id=174,
1203
- color=[128, 0, 128],
1204
- type='',
1205
- swap='trousers_kpt11'),
1206
- 175:
1207
- dict(
1208
- name='trousers_kpt8',
1209
- id=175,
1210
- color=[128, 0, 128],
1211
- type='',
1212
- swap='trousers_kpt10'),
1213
- 176:
1214
- dict(
1215
- name='trousers_kpt9',
1216
- id=176,
1217
- color=[128, 0, 128],
1218
- type='',
1219
- swap=''),
1220
- 177:
1221
- dict(
1222
- name='trousers_kpt10',
1223
- id=177,
1224
- color=[128, 0, 128],
1225
- type='',
1226
- swap='trousers_kpt8'),
1227
- 178:
1228
- dict(
1229
- name='trousers_kpt11',
1230
- id=178,
1231
- color=[128, 0, 128],
1232
- type='',
1233
- swap='trousers_kpt7'),
1234
- 179:
1235
- dict(
1236
- name='trousers_kpt12',
1237
- id=179,
1238
- color=[128, 0, 128],
1239
- type='',
1240
- swap='trousers_kpt6'),
1241
- 180:
1242
- dict(
1243
- name='trousers_kpt13',
1244
- id=180,
1245
- color=[128, 0, 128],
1246
- type='',
1247
- swap='trousers_kpt5'),
1248
- 181:
1249
- dict(
1250
- name='trousers_kpt14',
1251
- id=181,
1252
- color=[128, 0, 128],
1253
- type='',
1254
- swap='trousers_kpt4'),
1255
- 182:
1256
- dict(
1257
- name='skirt_kpt1',
1258
- id=182,
1259
- color=[64, 128, 128],
1260
- type='',
1261
- swap='skirt_kpt3'),
1262
- 183:
1263
- dict(
1264
- name='skirt_kpt2', id=183, color=[64, 128, 128], type='', swap=''),
1265
- 184:
1266
- dict(
1267
- name='skirt_kpt3',
1268
- id=184,
1269
- color=[64, 128, 128],
1270
- type='',
1271
- swap='skirt_kpt1'),
1272
- 185:
1273
- dict(
1274
- name='skirt_kpt4',
1275
- id=185,
1276
- color=[64, 128, 128],
1277
- type='',
1278
- swap='skirt_kpt8'),
1279
- 186:
1280
- dict(
1281
- name='skirt_kpt5',
1282
- id=186,
1283
- color=[64, 128, 128],
1284
- type='',
1285
- swap='skirt_kpt7'),
1286
- 187:
1287
- dict(
1288
- name='skirt_kpt6', id=187, color=[64, 128, 128], type='', swap=''),
1289
- 188:
1290
- dict(
1291
- name='skirt_kpt7',
1292
- id=188,
1293
- color=[64, 128, 128],
1294
- type='',
1295
- swap='skirt_kpt5'),
1296
- 189:
1297
- dict(
1298
- name='skirt_kpt8',
1299
- id=189,
1300
- color=[64, 128, 128],
1301
- type='',
1302
- swap='skirt_kpt4'),
1303
- 190:
1304
- dict(name='ssd_kpt1', id=190, color=[64, 64, 128], type='', swap=''),
1305
- 191:
1306
- dict(
1307
- name='ssd_kpt2',
1308
- id=191,
1309
- color=[64, 64, 128],
1310
- type='',
1311
- swap='ssd_kpt6'),
1312
- 192:
1313
- dict(
1314
- name='ssd_kpt3',
1315
- id=192,
1316
- color=[64, 64, 128],
1317
- type='',
1318
- swap='ssd_kpt5'),
1319
- 193:
1320
- dict(name='ssd_kpt4', id=193, color=[64, 64, 128], type='', swap=''),
1321
- 194:
1322
- dict(
1323
- name='ssd_kpt5',
1324
- id=194,
1325
- color=[64, 64, 128],
1326
- type='',
1327
- swap='ssd_kpt3'),
1328
- 195:
1329
- dict(
1330
- name='ssd_kpt6',
1331
- id=195,
1332
- color=[64, 64, 128],
1333
- type='',
1334
- swap='ssd_kpt2'),
1335
- 196:
1336
- dict(
1337
- name='ssd_kpt7',
1338
- id=196,
1339
- color=[64, 64, 128],
1340
- type='',
1341
- swap='ssd_kpt29'),
1342
- 197:
1343
- dict(
1344
- name='ssd_kpt8',
1345
- id=197,
1346
- color=[64, 64, 128],
1347
- type='',
1348
- swap='ssd_kpt28'),
1349
- 198:
1350
- dict(
1351
- name='ssd_kpt9',
1352
- id=198,
1353
- color=[64, 64, 128],
1354
- type='',
1355
- swap='ssd_kpt27'),
1356
- 199:
1357
- dict(
1358
- name='ssd_kpt10',
1359
- id=199,
1360
- color=[64, 64, 128],
1361
- type='',
1362
- swap='ssd_kpt26'),
1363
- 200:
1364
- dict(
1365
- name='ssd_kpt11',
1366
- id=200,
1367
- color=[64, 64, 128],
1368
- type='',
1369
- swap='ssd_kpt25'),
1370
- 201:
1371
- dict(
1372
- name='ssd_kpt12',
1373
- id=201,
1374
- color=[64, 64, 128],
1375
- type='',
1376
- swap='ssd_kpt24'),
1377
- 202:
1378
- dict(
1379
- name='ssd_kpt13',
1380
- id=202,
1381
- color=[64, 64, 128],
1382
- type='',
1383
- swap='ssd_kpt23'),
1384
- 203:
1385
- dict(
1386
- name='ssd_kpt14',
1387
- id=203,
1388
- color=[64, 64, 128],
1389
- type='',
1390
- swap='ssd_kpt22'),
1391
- 204:
1392
- dict(
1393
- name='ssd_kpt15',
1394
- id=204,
1395
- color=[64, 64, 128],
1396
- type='',
1397
- swap='ssd_kpt21'),
1398
- 205:
1399
- dict(
1400
- name='ssd_kpt16',
1401
- id=205,
1402
- color=[64, 64, 128],
1403
- type='',
1404
- swap='ssd_kpt20'),
1405
- 206:
1406
- dict(
1407
- name='ssd_kpt17',
1408
- id=206,
1409
- color=[64, 64, 128],
1410
- type='',
1411
- swap='ssd_kpt19'),
1412
- 207:
1413
- dict(name='ssd_kpt18', id=207, color=[64, 64, 128], type='', swap=''),
1414
- 208:
1415
- dict(
1416
- name='ssd_kpt19',
1417
- id=208,
1418
- color=[64, 64, 128],
1419
- type='',
1420
- swap='ssd_kpt17'),
1421
- 209:
1422
- dict(
1423
- name='ssd_kpt20',
1424
- id=209,
1425
- color=[64, 64, 128],
1426
- type='',
1427
- swap='ssd_kpt16'),
1428
- 210:
1429
- dict(
1430
- name='ssd_kpt21',
1431
- id=210,
1432
- color=[64, 64, 128],
1433
- type='',
1434
- swap='ssd_kpt15'),
1435
- 211:
1436
- dict(
1437
- name='ssd_kpt22',
1438
- id=211,
1439
- color=[64, 64, 128],
1440
- type='',
1441
- swap='ssd_kpt14'),
1442
- 212:
1443
- dict(
1444
- name='ssd_kpt23',
1445
- id=212,
1446
- color=[64, 64, 128],
1447
- type='',
1448
- swap='ssd_kpt13'),
1449
- 213:
1450
- dict(
1451
- name='ssd_kpt24',
1452
- id=213,
1453
- color=[64, 64, 128],
1454
- type='',
1455
- swap='ssd_kpt12'),
1456
- 214:
1457
- dict(
1458
- name='ssd_kpt25',
1459
- id=214,
1460
- color=[64, 64, 128],
1461
- type='',
1462
- swap='ssd_kpt11'),
1463
- 215:
1464
- dict(
1465
- name='ssd_kpt26',
1466
- id=215,
1467
- color=[64, 64, 128],
1468
- type='',
1469
- swap='ssd_kpt10'),
1470
- 216:
1471
- dict(
1472
- name='ssd_kpt27',
1473
- id=216,
1474
- color=[64, 64, 128],
1475
- type='',
1476
- swap='ssd_kpt9'),
1477
- 217:
1478
- dict(
1479
- name='ssd_kpt28',
1480
- id=217,
1481
- color=[64, 64, 128],
1482
- type='',
1483
- swap='ssd_kpt8'),
1484
- 218:
1485
- dict(
1486
- name='ssd_kpt29',
1487
- id=218,
1488
- color=[64, 64, 128],
1489
- type='',
1490
- swap='ssd_kpt7'),
1491
- 219:
1492
- dict(name='lsd_kpt1', id=219, color=[128, 64, 0], type='', swap=''),
1493
- 220:
1494
- dict(
1495
- name='lsd_kpt2',
1496
- id=220,
1497
- color=[128, 64, 0],
1498
- type='',
1499
- swap='lsd_kpt6'),
1500
- 221:
1501
- dict(
1502
- name='lsd_kpt3',
1503
- id=221,
1504
- color=[128, 64, 0],
1505
- type='',
1506
- swap='lsd_kpt5'),
1507
- 222:
1508
- dict(name='lsd_kpt4', id=222, color=[128, 64, 0], type='', swap=''),
1509
- 223:
1510
- dict(
1511
- name='lsd_kpt5',
1512
- id=223,
1513
- color=[128, 64, 0],
1514
- type='',
1515
- swap='lsd_kpt3'),
1516
- 224:
1517
- dict(
1518
- name='lsd_kpt6',
1519
- id=224,
1520
- color=[128, 64, 0],
1521
- type='',
1522
- swap='lsd_kpt2'),
1523
- 225:
1524
- dict(
1525
- name='lsd_kpt7',
1526
- id=225,
1527
- color=[128, 64, 0],
1528
- type='',
1529
- swap='lsd_kpt37'),
1530
- 226:
1531
- dict(
1532
- name='lsd_kpt8',
1533
- id=226,
1534
- color=[128, 64, 0],
1535
- type='',
1536
- swap='lsd_kpt36'),
1537
- 227:
1538
- dict(
1539
- name='lsd_kpt9',
1540
- id=227,
1541
- color=[128, 64, 0],
1542
- type='',
1543
- swap='lsd_kpt35'),
1544
- 228:
1545
- dict(
1546
- name='lsd_kpt10',
1547
- id=228,
1548
- color=[128, 64, 0],
1549
- type='',
1550
- swap='lsd_kpt34'),
1551
- 229:
1552
- dict(
1553
- name='lsd_kpt11',
1554
- id=229,
1555
- color=[128, 64, 0],
1556
- type='',
1557
- swap='lsd_kpt33'),
1558
- 230:
1559
- dict(
1560
- name='lsd_kpt12',
1561
- id=230,
1562
- color=[128, 64, 0],
1563
- type='',
1564
- swap='lsd_kpt32'),
1565
- 231:
1566
- dict(
1567
- name='lsd_kpt13',
1568
- id=231,
1569
- color=[128, 64, 0],
1570
- type='',
1571
- swap='lsd_kpt31'),
1572
- 232:
1573
- dict(
1574
- name='lsd_kpt14',
1575
- id=232,
1576
- color=[128, 64, 0],
1577
- type='',
1578
- swap='lsd_kpt30'),
1579
- 233:
1580
- dict(
1581
- name='lsd_kpt15',
1582
- id=233,
1583
- color=[128, 64, 0],
1584
- type='',
1585
- swap='lsd_kpt29'),
1586
- 234:
1587
- dict(
1588
- name='lsd_kpt16',
1589
- id=234,
1590
- color=[128, 64, 0],
1591
- type='',
1592
- swap='lsd_kpt28'),
1593
- 235:
1594
- dict(
1595
- name='lsd_kpt17',
1596
- id=235,
1597
- color=[128, 64, 0],
1598
- type='',
1599
- swap='lsd_kpt27'),
1600
- 236:
1601
- dict(
1602
- name='lsd_kpt18',
1603
- id=236,
1604
- color=[128, 64, 0],
1605
- type='',
1606
- swap='lsd_kpt26'),
1607
- 237:
1608
- dict(
1609
- name='lsd_kpt19',
1610
- id=237,
1611
- color=[128, 64, 0],
1612
- type='',
1613
- swap='lsd_kpt25'),
1614
- 238:
1615
- dict(
1616
- name='lsd_kpt20',
1617
- id=238,
1618
- color=[128, 64, 0],
1619
- type='',
1620
- swap='lsd_kpt24'),
1621
- 239:
1622
- dict(
1623
- name='lsd_kpt21',
1624
- id=239,
1625
- color=[128, 64, 0],
1626
- type='',
1627
- swap='lsd_kpt23'),
1628
- 240:
1629
- dict(name='lsd_kpt22', id=240, color=[128, 64, 0], type='', swap=''),
1630
- 241:
1631
- dict(
1632
- name='lsd_kpt23',
1633
- id=241,
1634
- color=[128, 64, 0],
1635
- type='',
1636
- swap='lsd_kpt21'),
1637
- 242:
1638
- dict(
1639
- name='lsd_kpt24',
1640
- id=242,
1641
- color=[128, 64, 0],
1642
- type='',
1643
- swap='lsd_kpt20'),
1644
- 243:
1645
- dict(
1646
- name='lsd_kpt25',
1647
- id=243,
1648
- color=[128, 64, 0],
1649
- type='',
1650
- swap='lsd_kpt19'),
1651
- 244:
1652
- dict(
1653
- name='lsd_kpt26',
1654
- id=244,
1655
- color=[128, 64, 0],
1656
- type='',
1657
- swap='lsd_kpt18'),
1658
- 245:
1659
- dict(
1660
- name='lsd_kpt27',
1661
- id=245,
1662
- color=[128, 64, 0],
1663
- type='',
1664
- swap='lsd_kpt17'),
1665
- 246:
1666
- dict(
1667
- name='lsd_kpt28',
1668
- id=246,
1669
- color=[128, 64, 0],
1670
- type='',
1671
- swap='lsd_kpt16'),
1672
- 247:
1673
- dict(
1674
- name='lsd_kpt29',
1675
- id=247,
1676
- color=[128, 64, 0],
1677
- type='',
1678
- swap='lsd_kpt15'),
1679
- 248:
1680
- dict(
1681
- name='lsd_kpt30',
1682
- id=248,
1683
- color=[128, 64, 0],
1684
- type='',
1685
- swap='lsd_kpt14'),
1686
- 249:
1687
- dict(
1688
- name='lsd_kpt31',
1689
- id=249,
1690
- color=[128, 64, 0],
1691
- type='',
1692
- swap='lsd_kpt13'),
1693
- 250:
1694
- dict(
1695
- name='lsd_kpt32',
1696
- id=250,
1697
- color=[128, 64, 0],
1698
- type='',
1699
- swap='lsd_kpt12'),
1700
- 251:
1701
- dict(
1702
- name='lsd_kpt33',
1703
- id=251,
1704
- color=[128, 64, 0],
1705
- type='',
1706
- swap='lsd_kpt11'),
1707
- 252:
1708
- dict(
1709
- name='lsd_kpt34',
1710
- id=252,
1711
- color=[128, 64, 0],
1712
- type='',
1713
- swap='lsd_kpt10'),
1714
- 253:
1715
- dict(
1716
- name='lsd_kpt35',
1717
- id=253,
1718
- color=[128, 64, 0],
1719
- type='',
1720
- swap='lsd_kpt9'),
1721
- 254:
1722
- dict(
1723
- name='lsd_kpt36',
1724
- id=254,
1725
- color=[128, 64, 0],
1726
- type='',
1727
- swap='lsd_kpt8'),
1728
- 255:
1729
- dict(
1730
- name='lsd_kpt37',
1731
- id=255,
1732
- color=[128, 64, 0],
1733
- type='',
1734
- swap='lsd_kpt7'),
1735
- 256:
1736
- dict(name='vd_kpt1', id=256, color=[128, 64, 255], type='', swap=''),
1737
- 257:
1738
- dict(
1739
- name='vd_kpt2',
1740
- id=257,
1741
- color=[128, 64, 255],
1742
- type='',
1743
- swap='vd_kpt6'),
1744
- 258:
1745
- dict(
1746
- name='vd_kpt3',
1747
- id=258,
1748
- color=[128, 64, 255],
1749
- type='',
1750
- swap='vd_kpt5'),
1751
- 259:
1752
- dict(name='vd_kpt4', id=259, color=[128, 64, 255], type='', swap=''),
1753
- 260:
1754
- dict(
1755
- name='vd_kpt5',
1756
- id=260,
1757
- color=[128, 64, 255],
1758
- type='',
1759
- swap='vd_kpt3'),
1760
- 261:
1761
- dict(
1762
- name='vd_kpt6',
1763
- id=261,
1764
- color=[128, 64, 255],
1765
- type='',
1766
- swap='vd_kpt2'),
1767
- 262:
1768
- dict(
1769
- name='vd_kpt7',
1770
- id=262,
1771
- color=[128, 64, 255],
1772
- type='',
1773
- swap='vd_kpt19'),
1774
- 263:
1775
- dict(
1776
- name='vd_kpt8',
1777
- id=263,
1778
- color=[128, 64, 255],
1779
- type='',
1780
- swap='vd_kpt18'),
1781
- 264:
1782
- dict(
1783
- name='vd_kpt9',
1784
- id=264,
1785
- color=[128, 64, 255],
1786
- type='',
1787
- swap='vd_kpt17'),
1788
- 265:
1789
- dict(
1790
- name='vd_kpt10',
1791
- id=265,
1792
- color=[128, 64, 255],
1793
- type='',
1794
- swap='vd_kpt16'),
1795
- 266:
1796
- dict(
1797
- name='vd_kpt11',
1798
- id=266,
1799
- color=[128, 64, 255],
1800
- type='',
1801
- swap='vd_kpt15'),
1802
- 267:
1803
- dict(
1804
- name='vd_kpt12',
1805
- id=267,
1806
- color=[128, 64, 255],
1807
- type='',
1808
- swap='vd_kpt14'),
1809
- 268:
1810
- dict(name='vd_kpt13', id=268, color=[128, 64, 255], type='', swap=''),
1811
- 269:
1812
- dict(
1813
- name='vd_kpt14',
1814
- id=269,
1815
- color=[128, 64, 255],
1816
- type='',
1817
- swap='vd_kpt12'),
1818
- 270:
1819
- dict(
1820
- name='vd_kpt15',
1821
- id=270,
1822
- color=[128, 64, 255],
1823
- type='',
1824
- swap='vd_kpt11'),
1825
- 271:
1826
- dict(
1827
- name='vd_kpt16',
1828
- id=271,
1829
- color=[128, 64, 255],
1830
- type='',
1831
- swap='vd_kpt10'),
1832
- 272:
1833
- dict(
1834
- name='vd_kpt17',
1835
- id=272,
1836
- color=[128, 64, 255],
1837
- type='',
1838
- swap='vd_kpt9'),
1839
- 273:
1840
- dict(
1841
- name='vd_kpt18',
1842
- id=273,
1843
- color=[128, 64, 255],
1844
- type='',
1845
- swap='vd_kpt8'),
1846
- 274:
1847
- dict(
1848
- name='vd_kpt19',
1849
- id=274,
1850
- color=[128, 64, 255],
1851
- type='',
1852
- swap='vd_kpt7'),
1853
- 275:
1854
- dict(name='sd_kpt1', id=275, color=[128, 64, 0], type='', swap=''),
1855
- 276:
1856
- dict(
1857
- name='sd_kpt2',
1858
- id=276,
1859
- color=[128, 64, 0],
1860
- type='',
1861
- swap='sd_kpt6'),
1862
- 277:
1863
- dict(
1864
- name='sd_kpt3',
1865
- id=277,
1866
- color=[128, 64, 0],
1867
- type='',
1868
- swap='sd_kpt5'),
1869
- 278:
1870
- dict(name='sd_kpt4', id=278, color=[128, 64, 0], type='', swap=''),
1871
- 279:
1872
- dict(
1873
- name='sd_kpt5',
1874
- id=279,
1875
- color=[128, 64, 0],
1876
- type='',
1877
- swap='sd_kpt3'),
1878
- 280:
1879
- dict(
1880
- name='sd_kpt6',
1881
- id=280,
1882
- color=[128, 64, 0],
1883
- type='',
1884
- swap='sd_kpt2'),
1885
- 281:
1886
- dict(
1887
- name='sd_kpt7',
1888
- id=281,
1889
- color=[128, 64, 0],
1890
- type='',
1891
- swap='sd_kpt19'),
1892
- 282:
1893
- dict(
1894
- name='sd_kpt8',
1895
- id=282,
1896
- color=[128, 64, 0],
1897
- type='',
1898
- swap='sd_kpt18'),
1899
- 283:
1900
- dict(
1901
- name='sd_kpt9',
1902
- id=283,
1903
- color=[128, 64, 0],
1904
- type='',
1905
- swap='sd_kpt17'),
1906
- 284:
1907
- dict(
1908
- name='sd_kpt10',
1909
- id=284,
1910
- color=[128, 64, 0],
1911
- type='',
1912
- swap='sd_kpt16'),
1913
- 285:
1914
- dict(
1915
- name='sd_kpt11',
1916
- id=285,
1917
- color=[128, 64, 0],
1918
- type='',
1919
- swap='sd_kpt15'),
1920
- 286:
1921
- dict(
1922
- name='sd_kpt12',
1923
- id=286,
1924
- color=[128, 64, 0],
1925
- type='',
1926
- swap='sd_kpt14'),
1927
- 287:
1928
- dict(name='sd_kpt13', id=287, color=[128, 64, 0], type='', swap=''),
1929
- 288:
1930
- dict(
1931
- name='sd_kpt14',
1932
- id=288,
1933
- color=[128, 64, 0],
1934
- type='',
1935
- swap='sd_kpt12'),
1936
- 289:
1937
- dict(
1938
- name='sd_kpt15',
1939
- id=289,
1940
- color=[128, 64, 0],
1941
- type='',
1942
- swap='sd_kpt11'),
1943
- 290:
1944
- dict(
1945
- name='sd_kpt16',
1946
- id=290,
1947
- color=[128, 64, 0],
1948
- type='',
1949
- swap='sd_kpt10'),
1950
- 291:
1951
- dict(
1952
- name='sd_kpt17',
1953
- id=291,
1954
- color=[128, 64, 0],
1955
- type='',
1956
- swap='sd_kpt9'),
1957
- 292:
1958
- dict(
1959
- name='sd_kpt18',
1960
- id=292,
1961
- color=[128, 64, 0],
1962
- type='',
1963
- swap='sd_kpt8'),
1964
- 293:
1965
- dict(
1966
- name='sd_kpt19',
1967
- id=293,
1968
- color=[128, 64, 0],
1969
- type='',
1970
- swap='sd_kpt7')
1971
- }),
1972
- skeleton_info=dict({
1973
- 0:
1974
- dict(link=('sss_kpt1', 'sss_kpt2'), id=0, color=[255, 128, 0]),
1975
- 1:
1976
- dict(link=('sss_kpt2', 'sss_kpt7'), id=1, color=[255, 128, 0]),
1977
- 2:
1978
- dict(link=('sss_kpt7', 'sss_kpt8'), id=2, color=[255, 128, 0]),
1979
- 3:
1980
- dict(link=('sss_kpt8', 'sss_kpt9'), id=3, color=[255, 128, 0]),
1981
- 4:
1982
- dict(link=('sss_kpt9', 'sss_kpt10'), id=4, color=[255, 128, 0]),
1983
- 5:
1984
- dict(link=('sss_kpt10', 'sss_kpt11'), id=5, color=[255, 128, 0]),
1985
- 6:
1986
- dict(link=('sss_kpt11', 'sss_kpt12'), id=6, color=[255, 128, 0]),
1987
- 7:
1988
- dict(link=('sss_kpt12', 'sss_kpt13'), id=7, color=[255, 128, 0]),
1989
- 8:
1990
- dict(link=('sss_kpt13', 'sss_kpt14'), id=8, color=[255, 128, 0]),
1991
- 9:
1992
- dict(link=('sss_kpt14', 'sss_kpt15'), id=9, color=[255, 128, 0]),
1993
- 10:
1994
- dict(link=('sss_kpt15', 'sss_kpt16'), id=10, color=[255, 128, 0]),
1995
- 11:
1996
- dict(link=('sss_kpt16', 'sss_kpt17'), id=11, color=[255, 128, 0]),
1997
- 12:
1998
- dict(link=('sss_kpt17', 'sss_kpt18'), id=12, color=[255, 128, 0]),
1999
- 13:
2000
- dict(link=('sss_kpt18', 'sss_kpt19'), id=13, color=[255, 128, 0]),
2001
- 14:
2002
- dict(link=('sss_kpt19', 'sss_kpt20'), id=14, color=[255, 128, 0]),
2003
- 15:
2004
- dict(link=('sss_kpt20', 'sss_kpt21'), id=15, color=[255, 128, 0]),
2005
- 16:
2006
- dict(link=('sss_kpt21', 'sss_kpt22'), id=16, color=[255, 128, 0]),
2007
- 17:
2008
- dict(link=('sss_kpt22', 'sss_kpt23'), id=17, color=[255, 128, 0]),
2009
- 18:
2010
- dict(link=('sss_kpt23', 'sss_kpt24'), id=18, color=[255, 128, 0]),
2011
- 19:
2012
- dict(link=('sss_kpt24', 'sss_kpt25'), id=19, color=[255, 128, 0]),
2013
- 20:
2014
- dict(link=('sss_kpt25', 'sss_kpt6'), id=20, color=[255, 128, 0]),
2015
- 21:
2016
- dict(link=('sss_kpt6', 'sss_kpt1'), id=21, color=[255, 128, 0]),
2017
- 22:
2018
- dict(link=('sss_kpt2', 'sss_kpt3'), id=22, color=[255, 128, 0]),
2019
- 23:
2020
- dict(link=('sss_kpt3', 'sss_kpt4'), id=23, color=[255, 128, 0]),
2021
- 24:
2022
- dict(link=('sss_kpt4', 'sss_kpt5'), id=24, color=[255, 128, 0]),
2023
- 25:
2024
- dict(link=('sss_kpt5', 'sss_kpt6'), id=25, color=[255, 128, 0]),
2025
- 26:
2026
- dict(link=('lss_kpt1', 'lss_kpt2'), id=26, color=[255, 0, 128]),
2027
- 27:
2028
- dict(link=('lss_kpt2', 'lss_kpt7'), id=27, color=[255, 0, 128]),
2029
- 28:
2030
- dict(link=('lss_kpt7', 'lss_kpt8'), id=28, color=[255, 0, 128]),
2031
- 29:
2032
- dict(link=('lss_kpt8', 'lss_kpt9'), id=29, color=[255, 0, 128]),
2033
- 30:
2034
- dict(link=('lss_kpt9', 'lss_kpt10'), id=30, color=[255, 0, 128]),
2035
- 31:
2036
- dict(link=('lss_kpt10', 'lss_kpt11'), id=31, color=[255, 0, 128]),
2037
- 32:
2038
- dict(link=('lss_kpt11', 'lss_kpt12'), id=32, color=[255, 0, 128]),
2039
- 33:
2040
- dict(link=('lss_kpt12', 'lss_kpt13'), id=33, color=[255, 0, 128]),
2041
- 34:
2042
- dict(link=('lss_kpt13', 'lss_kpt14'), id=34, color=[255, 0, 128]),
2043
- 35:
2044
- dict(link=('lss_kpt14', 'lss_kpt15'), id=35, color=[255, 0, 128]),
2045
- 36:
2046
- dict(link=('lss_kpt15', 'lss_kpt16'), id=36, color=[255, 0, 128]),
2047
- 37:
2048
- dict(link=('lss_kpt16', 'lss_kpt17'), id=37, color=[255, 0, 128]),
2049
- 38:
2050
- dict(link=('lss_kpt17', 'lss_kpt18'), id=38, color=[255, 0, 128]),
2051
- 39:
2052
- dict(link=('lss_kpt18', 'lss_kpt19'), id=39, color=[255, 0, 128]),
2053
- 40:
2054
- dict(link=('lss_kpt19', 'lss_kpt20'), id=40, color=[255, 0, 128]),
2055
- 41:
2056
- dict(link=('lss_kpt20', 'lss_kpt21'), id=41, color=[255, 0, 128]),
2057
- 42:
2058
- dict(link=('lss_kpt21', 'lss_kpt22'), id=42, color=[255, 0, 128]),
2059
- 43:
2060
- dict(link=('lss_kpt22', 'lss_kpt23'), id=43, color=[255, 0, 128]),
2061
- 44:
2062
- dict(link=('lss_kpt23', 'lss_kpt24'), id=44, color=[255, 0, 128]),
2063
- 45:
2064
- dict(link=('lss_kpt24', 'lss_kpt25'), id=45, color=[255, 0, 128]),
2065
- 46:
2066
- dict(link=('lss_kpt25', 'lss_kpt26'), id=46, color=[255, 0, 128]),
2067
- 47:
2068
- dict(link=('lss_kpt26', 'lss_kpt27'), id=47, color=[255, 0, 128]),
2069
- 48:
2070
- dict(link=('lss_kpt27', 'lss_kpt28'), id=48, color=[255, 0, 128]),
2071
- 49:
2072
- dict(link=('lss_kpt28', 'lss_kpt29'), id=49, color=[255, 0, 128]),
2073
- 50:
2074
- dict(link=('lss_kpt29', 'lss_kpt30'), id=50, color=[255, 0, 128]),
2075
- 51:
2076
- dict(link=('lss_kpt30', 'lss_kpt31'), id=51, color=[255, 0, 128]),
2077
- 52:
2078
- dict(link=('lss_kpt31', 'lss_kpt32'), id=52, color=[255, 0, 128]),
2079
- 53:
2080
- dict(link=('lss_kpt32', 'lss_kpt33'), id=53, color=[255, 0, 128]),
2081
- 54:
2082
- dict(link=('lss_kpt33', 'lss_kpt6'), id=54, color=[255, 0, 128]),
2083
- 55:
2084
- dict(link=('lss_kpt6', 'lss_kpt5'), id=55, color=[255, 0, 128]),
2085
- 56:
2086
- dict(link=('lss_kpt5', 'lss_kpt4'), id=56, color=[255, 0, 128]),
2087
- 57:
2088
- dict(link=('lss_kpt4', 'lss_kpt3'), id=57, color=[255, 0, 128]),
2089
- 58:
2090
- dict(link=('lss_kpt3', 'lss_kpt2'), id=58, color=[255, 0, 128]),
2091
- 59:
2092
- dict(link=('lss_kpt6', 'lss_kpt1'), id=59, color=[255, 0, 128]),
2093
- 60:
2094
- dict(link=('sso_kpt1', 'sso_kpt4'), id=60, color=[128, 0, 255]),
2095
- 61:
2096
- dict(link=('sso_kpt4', 'sso_kpt7'), id=61, color=[128, 0, 255]),
2097
- 62:
2098
- dict(link=('sso_kpt7', 'sso_kpt8'), id=62, color=[128, 0, 255]),
2099
- 63:
2100
- dict(link=('sso_kpt8', 'sso_kpt9'), id=63, color=[128, 0, 255]),
2101
- 64:
2102
- dict(link=('sso_kpt9', 'sso_kpt10'), id=64, color=[128, 0, 255]),
2103
- 65:
2104
- dict(link=('sso_kpt10', 'sso_kpt11'), id=65, color=[128, 0, 255]),
2105
- 66:
2106
- dict(link=('sso_kpt11', 'sso_kpt12'), id=66, color=[128, 0, 255]),
2107
- 67:
2108
- dict(link=('sso_kpt12', 'sso_kpt13'), id=67, color=[128, 0, 255]),
2109
- 68:
2110
- dict(link=('sso_kpt13', 'sso_kpt14'), id=68, color=[128, 0, 255]),
2111
- 69:
2112
- dict(link=('sso_kpt14', 'sso_kpt15'), id=69, color=[128, 0, 255]),
2113
- 70:
2114
- dict(link=('sso_kpt15', 'sso_kpt16'), id=70, color=[128, 0, 255]),
2115
- 71:
2116
- dict(link=('sso_kpt16', 'sso_kpt31'), id=71, color=[128, 0, 255]),
2117
- 72:
2118
- dict(link=('sso_kpt31', 'sso_kpt30'), id=72, color=[128, 0, 255]),
2119
- 73:
2120
- dict(link=('sso_kpt30', 'sso_kpt2'), id=73, color=[128, 0, 255]),
2121
- 74:
2122
- dict(link=('sso_kpt2', 'sso_kpt3'), id=74, color=[128, 0, 255]),
2123
- 75:
2124
- dict(link=('sso_kpt3', 'sso_kpt4'), id=75, color=[128, 0, 255]),
2125
- 76:
2126
- dict(link=('sso_kpt1', 'sso_kpt6'), id=76, color=[128, 0, 255]),
2127
- 77:
2128
- dict(link=('sso_kpt6', 'sso_kpt25'), id=77, color=[128, 0, 255]),
2129
- 78:
2130
- dict(link=('sso_kpt25', 'sso_kpt24'), id=78, color=[128, 0, 255]),
2131
- 79:
2132
- dict(link=('sso_kpt24', 'sso_kpt23'), id=79, color=[128, 0, 255]),
2133
- 80:
2134
- dict(link=('sso_kpt23', 'sso_kpt22'), id=80, color=[128, 0, 255]),
2135
- 81:
2136
- dict(link=('sso_kpt22', 'sso_kpt21'), id=81, color=[128, 0, 255]),
2137
- 82:
2138
- dict(link=('sso_kpt21', 'sso_kpt20'), id=82, color=[128, 0, 255]),
2139
- 83:
2140
- dict(link=('sso_kpt20', 'sso_kpt19'), id=83, color=[128, 0, 255]),
2141
- 84:
2142
- dict(link=('sso_kpt19', 'sso_kpt18'), id=84, color=[128, 0, 255]),
2143
- 85:
2144
- dict(link=('sso_kpt18', 'sso_kpt17'), id=85, color=[128, 0, 255]),
2145
- 86:
2146
- dict(link=('sso_kpt17', 'sso_kpt29'), id=86, color=[128, 0, 255]),
2147
- 87:
2148
- dict(link=('sso_kpt29', 'sso_kpt28'), id=87, color=[128, 0, 255]),
2149
- 88:
2150
- dict(link=('sso_kpt28', 'sso_kpt27'), id=88, color=[128, 0, 255]),
2151
- 89:
2152
- dict(link=('sso_kpt27', 'sso_kpt26'), id=89, color=[128, 0, 255]),
2153
- 90:
2154
- dict(link=('sso_kpt26', 'sso_kpt5'), id=90, color=[128, 0, 255]),
2155
- 91:
2156
- dict(link=('sso_kpt5', 'sso_kpt6'), id=91, color=[128, 0, 255]),
2157
- 92:
2158
- dict(link=('lso_kpt1', 'lso_kpt2'), id=92, color=[0, 128, 255]),
2159
- 93:
2160
- dict(link=('lso_kpt2', 'lso_kpt7'), id=93, color=[0, 128, 255]),
2161
- 94:
2162
- dict(link=('lso_kpt7', 'lso_kpt8'), id=94, color=[0, 128, 255]),
2163
- 95:
2164
- dict(link=('lso_kpt8', 'lso_kpt9'), id=95, color=[0, 128, 255]),
2165
- 96:
2166
- dict(link=('lso_kpt9', 'lso_kpt10'), id=96, color=[0, 128, 255]),
2167
- 97:
2168
- dict(link=('lso_kpt10', 'lso_kpt11'), id=97, color=[0, 128, 255]),
2169
- 98:
2170
- dict(link=('lso_kpt11', 'lso_kpt12'), id=98, color=[0, 128, 255]),
2171
- 99:
2172
- dict(link=('lso_kpt12', 'lso_kpt13'), id=99, color=[0, 128, 255]),
2173
- 100:
2174
- dict(link=('lso_kpt13', 'lso_kpt14'), id=100, color=[0, 128, 255]),
2175
- 101:
2176
- dict(link=('lso_kpt14', 'lso_kpt15'), id=101, color=[0, 128, 255]),
2177
- 102:
2178
- dict(link=('lso_kpt15', 'lso_kpt16'), id=102, color=[0, 128, 255]),
2179
- 103:
2180
- dict(link=('lso_kpt16', 'lso_kpt17'), id=103, color=[0, 128, 255]),
2181
- 104:
2182
- dict(link=('lso_kpt17', 'lso_kpt18'), id=104, color=[0, 128, 255]),
2183
- 105:
2184
- dict(link=('lso_kpt18', 'lso_kpt19'), id=105, color=[0, 128, 255]),
2185
- 106:
2186
- dict(link=('lso_kpt19', 'lso_kpt20'), id=106, color=[0, 128, 255]),
2187
- 107:
2188
- dict(link=('lso_kpt20', 'lso_kpt39'), id=107, color=[0, 128, 255]),
2189
- 108:
2190
- dict(link=('lso_kpt39', 'lso_kpt38'), id=108, color=[0, 128, 255]),
2191
- 109:
2192
- dict(link=('lso_kpt38', 'lso_kpt4'), id=109, color=[0, 128, 255]),
2193
- 110:
2194
- dict(link=('lso_kpt4', 'lso_kpt3'), id=110, color=[0, 128, 255]),
2195
- 111:
2196
- dict(link=('lso_kpt3', 'lso_kpt2'), id=111, color=[0, 128, 255]),
2197
- 112:
2198
- dict(link=('lso_kpt1', 'lso_kpt6'), id=112, color=[0, 128, 255]),
2199
- 113:
2200
- dict(link=('lso_kpt6', 'lso_kpt33'), id=113, color=[0, 128, 255]),
2201
- 114:
2202
- dict(link=('lso_kpt33', 'lso_kpt32'), id=114, color=[0, 128, 255]),
2203
- 115:
2204
- dict(link=('lso_kpt32', 'lso_kpt31'), id=115, color=[0, 128, 255]),
2205
- 116:
2206
- dict(link=('lso_kpt31', 'lso_kpt30'), id=116, color=[0, 128, 255]),
2207
- 117:
2208
- dict(link=('lso_kpt30', 'lso_kpt29'), id=117, color=[0, 128, 255]),
2209
- 118:
2210
- dict(link=('lso_kpt29', 'lso_kpt28'), id=118, color=[0, 128, 255]),
2211
- 119:
2212
- dict(link=('lso_kpt28', 'lso_kpt27'), id=119, color=[0, 128, 255]),
2213
- 120:
2214
- dict(link=('lso_kpt27', 'lso_kpt26'), id=120, color=[0, 128, 255]),
2215
- 121:
2216
- dict(link=('lso_kpt26', 'lso_kpt25'), id=121, color=[0, 128, 255]),
2217
- 122:
2218
- dict(link=('lso_kpt25', 'lso_kpt24'), id=122, color=[0, 128, 255]),
2219
- 123:
2220
- dict(link=('lso_kpt24', 'lso_kpt23'), id=123, color=[0, 128, 255]),
2221
- 124:
2222
- dict(link=('lso_kpt23', 'lso_kpt22'), id=124, color=[0, 128, 255]),
2223
- 125:
2224
- dict(link=('lso_kpt22', 'lso_kpt21'), id=125, color=[0, 128, 255]),
2225
- 126:
2226
- dict(link=('lso_kpt21', 'lso_kpt37'), id=126, color=[0, 128, 255]),
2227
- 127:
2228
- dict(link=('lso_kpt37', 'lso_kpt36'), id=127, color=[0, 128, 255]),
2229
- 128:
2230
- dict(link=('lso_kpt36', 'lso_kpt35'), id=128, color=[0, 128, 255]),
2231
- 129:
2232
- dict(link=('lso_kpt35', 'lso_kpt34'), id=129, color=[0, 128, 255]),
2233
- 130:
2234
- dict(link=('lso_kpt34', 'lso_kpt5'), id=130, color=[0, 128, 255]),
2235
- 131:
2236
- dict(link=('lso_kpt5', 'lso_kpt6'), id=131, color=[0, 128, 255]),
2237
- 132:
2238
- dict(link=('vest_kpt1', 'vest_kpt2'), id=132, color=[0, 128, 128]),
2239
- 133:
2240
- dict(link=('vest_kpt2', 'vest_kpt7'), id=133, color=[0, 128, 128]),
2241
- 134:
2242
- dict(link=('vest_kpt7', 'vest_kpt8'), id=134, color=[0, 128, 128]),
2243
- 135:
2244
- dict(link=('vest_kpt8', 'vest_kpt9'), id=135, color=[0, 128, 128]),
2245
- 136:
2246
- dict(link=('vest_kpt9', 'vest_kpt10'), id=136, color=[0, 128, 128]),
2247
- 137:
2248
- dict(link=('vest_kpt10', 'vest_kpt11'), id=137, color=[0, 128, 128]),
2249
- 138:
2250
- dict(link=('vest_kpt11', 'vest_kpt12'), id=138, color=[0, 128, 128]),
2251
- 139:
2252
- dict(link=('vest_kpt12', 'vest_kpt13'), id=139, color=[0, 128, 128]),
2253
- 140:
2254
- dict(link=('vest_kpt13', 'vest_kpt14'), id=140, color=[0, 128, 128]),
2255
- 141:
2256
- dict(link=('vest_kpt14', 'vest_kpt15'), id=141, color=[0, 128, 128]),
2257
- 142:
2258
- dict(link=('vest_kpt15', 'vest_kpt6'), id=142, color=[0, 128, 128]),
2259
- 143:
2260
- dict(link=('vest_kpt6', 'vest_kpt1'), id=143, color=[0, 128, 128]),
2261
- 144:
2262
- dict(link=('vest_kpt2', 'vest_kpt3'), id=144, color=[0, 128, 128]),
2263
- 145:
2264
- dict(link=('vest_kpt3', 'vest_kpt4'), id=145, color=[0, 128, 128]),
2265
- 146:
2266
- dict(link=('vest_kpt4', 'vest_kpt5'), id=146, color=[0, 128, 128]),
2267
- 147:
2268
- dict(link=('vest_kpt5', 'vest_kpt6'), id=147, color=[0, 128, 128]),
2269
- 148:
2270
- dict(link=('sling_kpt1', 'sling_kpt2'), id=148, color=[0, 0, 128]),
2271
- 149:
2272
- dict(link=('sling_kpt2', 'sling_kpt8'), id=149, color=[0, 0, 128]),
2273
- 150:
2274
- dict(link=('sling_kpt8', 'sling_kpt9'), id=150, color=[0, 0, 128]),
2275
- 151:
2276
- dict(link=('sling_kpt9', 'sling_kpt10'), id=151, color=[0, 0, 128]),
2277
- 152:
2278
- dict(link=('sling_kpt10', 'sling_kpt11'), id=152, color=[0, 0, 128]),
2279
- 153:
2280
- dict(link=('sling_kpt11', 'sling_kpt12'), id=153, color=[0, 0, 128]),
2281
- 154:
2282
- dict(link=('sling_kpt12', 'sling_kpt13'), id=154, color=[0, 0, 128]),
2283
- 155:
2284
- dict(link=('sling_kpt13', 'sling_kpt14'), id=155, color=[0, 0, 128]),
2285
- 156:
2286
- dict(link=('sling_kpt14', 'sling_kpt6'), id=156, color=[0, 0, 128]),
2287
- 157:
2288
- dict(link=('sling_kpt2', 'sling_kpt7'), id=157, color=[0, 0, 128]),
2289
- 158:
2290
- dict(link=('sling_kpt6', 'sling_kpt15'), id=158, color=[0, 0, 128]),
2291
- 159:
2292
- dict(link=('sling_kpt2', 'sling_kpt3'), id=159, color=[0, 0, 128]),
2293
- 160:
2294
- dict(link=('sling_kpt3', 'sling_kpt4'), id=160, color=[0, 0, 128]),
2295
- 161:
2296
- dict(link=('sling_kpt4', 'sling_kpt5'), id=161, color=[0, 0, 128]),
2297
- 162:
2298
- dict(link=('sling_kpt5', 'sling_kpt6'), id=162, color=[0, 0, 128]),
2299
- 163:
2300
- dict(link=('sling_kpt1', 'sling_kpt6'), id=163, color=[0, 0, 128]),
2301
- 164:
2302
- dict(
2303
- link=('shorts_kpt1', 'shorts_kpt4'), id=164, color=[128, 128,
2304
- 128]),
2305
- 165:
2306
- dict(
2307
- link=('shorts_kpt4', 'shorts_kpt5'), id=165, color=[128, 128,
2308
- 128]),
2309
- 166:
2310
- dict(
2311
- link=('shorts_kpt5', 'shorts_kpt6'), id=166, color=[128, 128,
2312
- 128]),
2313
- 167:
2314
- dict(
2315
- link=('shorts_kpt6', 'shorts_kpt7'), id=167, color=[128, 128,
2316
- 128]),
2317
- 168:
2318
- dict(
2319
- link=('shorts_kpt7', 'shorts_kpt8'), id=168, color=[128, 128,
2320
- 128]),
2321
- 169:
2322
- dict(
2323
- link=('shorts_kpt8', 'shorts_kpt9'), id=169, color=[128, 128,
2324
- 128]),
2325
- 170:
2326
- dict(
2327
- link=('shorts_kpt9', 'shorts_kpt10'),
2328
- id=170,
2329
- color=[128, 128, 128]),
2330
- 171:
2331
- dict(
2332
- link=('shorts_kpt10', 'shorts_kpt3'),
2333
- id=171,
2334
- color=[128, 128, 128]),
2335
- 172:
2336
- dict(
2337
- link=('shorts_kpt3', 'shorts_kpt2'), id=172, color=[128, 128,
2338
- 128]),
2339
- 173:
2340
- dict(
2341
- link=('shorts_kpt2', 'shorts_kpt1'), id=173, color=[128, 128,
2342
- 128]),
2343
- 174:
2344
- dict(
2345
- link=('trousers_kpt1', 'trousers_kpt4'),
2346
- id=174,
2347
- color=[128, 0, 128]),
2348
- 175:
2349
- dict(
2350
- link=('trousers_kpt4', 'trousers_kpt5'),
2351
- id=175,
2352
- color=[128, 0, 128]),
2353
- 176:
2354
- dict(
2355
- link=('trousers_kpt5', 'trousers_kpt6'),
2356
- id=176,
2357
- color=[128, 0, 128]),
2358
- 177:
2359
- dict(
2360
- link=('trousers_kpt6', 'trousers_kpt7'),
2361
- id=177,
2362
- color=[128, 0, 128]),
2363
- 178:
2364
- dict(
2365
- link=('trousers_kpt7', 'trousers_kpt8'),
2366
- id=178,
2367
- color=[128, 0, 128]),
2368
- 179:
2369
- dict(
2370
- link=('trousers_kpt8', 'trousers_kpt9'),
2371
- id=179,
2372
- color=[128, 0, 128]),
2373
- 180:
2374
- dict(
2375
- link=('trousers_kpt9', 'trousers_kpt10'),
2376
- id=180,
2377
- color=[128, 0, 128]),
2378
- 181:
2379
- dict(
2380
- link=('trousers_kpt10', 'trousers_kpt11'),
2381
- id=181,
2382
- color=[128, 0, 128]),
2383
- 182:
2384
- dict(
2385
- link=('trousers_kpt11', 'trousers_kpt12'),
2386
- id=182,
2387
- color=[128, 0, 128]),
2388
- 183:
2389
- dict(
2390
- link=('trousers_kpt12', 'trousers_kpt13'),
2391
- id=183,
2392
- color=[128, 0, 128]),
2393
- 184:
2394
- dict(
2395
- link=('trousers_kpt13', 'trousers_kpt14'),
2396
- id=184,
2397
- color=[128, 0, 128]),
2398
- 185:
2399
- dict(
2400
- link=('trousers_kpt14', 'trousers_kpt3'),
2401
- id=185,
2402
- color=[128, 0, 128]),
2403
- 186:
2404
- dict(
2405
- link=('trousers_kpt3', 'trousers_kpt2'),
2406
- id=186,
2407
- color=[128, 0, 128]),
2408
- 187:
2409
- dict(
2410
- link=('trousers_kpt2', 'trousers_kpt1'),
2411
- id=187,
2412
- color=[128, 0, 128]),
2413
- 188:
2414
- dict(link=('skirt_kpt1', 'skirt_kpt4'), id=188, color=[64, 128, 128]),
2415
- 189:
2416
- dict(link=('skirt_kpt4', 'skirt_kpt5'), id=189, color=[64, 128, 128]),
2417
- 190:
2418
- dict(link=('skirt_kpt5', 'skirt_kpt6'), id=190, color=[64, 128, 128]),
2419
- 191:
2420
- dict(link=('skirt_kpt6', 'skirt_kpt7'), id=191, color=[64, 128, 128]),
2421
- 192:
2422
- dict(link=('skirt_kpt7', 'skirt_kpt8'), id=192, color=[64, 128, 128]),
2423
- 193:
2424
- dict(link=('skirt_kpt8', 'skirt_kpt3'), id=193, color=[64, 128, 128]),
2425
- 194:
2426
- dict(link=('skirt_kpt3', 'skirt_kpt2'), id=194, color=[64, 128, 128]),
2427
- 195:
2428
- dict(link=('skirt_kpt2', 'skirt_kpt1'), id=195, color=[64, 128, 128]),
2429
- 196:
2430
- dict(link=('ssd_kpt1', 'ssd_kpt2'), id=196, color=[64, 64, 128]),
2431
- 197:
2432
- dict(link=('ssd_kpt2', 'ssd_kpt7'), id=197, color=[64, 64, 128]),
2433
- 198:
2434
- dict(link=('ssd_kpt7', 'ssd_kpt8'), id=198, color=[64, 64, 128]),
2435
- 199:
2436
- dict(link=('ssd_kpt8', 'ssd_kpt9'), id=199, color=[64, 64, 128]),
2437
- 200:
2438
- dict(link=('ssd_kpt9', 'ssd_kpt10'), id=200, color=[64, 64, 128]),
2439
- 201:
2440
- dict(link=('ssd_kpt10', 'ssd_kpt11'), id=201, color=[64, 64, 128]),
2441
- 202:
2442
- dict(link=('ssd_kpt11', 'ssd_kpt12'), id=202, color=[64, 64, 128]),
2443
- 203:
2444
- dict(link=('ssd_kpt12', 'ssd_kpt13'), id=203, color=[64, 64, 128]),
2445
- 204:
2446
- dict(link=('ssd_kpt13', 'ssd_kpt14'), id=204, color=[64, 64, 128]),
2447
- 205:
2448
- dict(link=('ssd_kpt14', 'ssd_kpt15'), id=205, color=[64, 64, 128]),
2449
- 206:
2450
- dict(link=('ssd_kpt15', 'ssd_kpt16'), id=206, color=[64, 64, 128]),
2451
- 207:
2452
- dict(link=('ssd_kpt16', 'ssd_kpt17'), id=207, color=[64, 64, 128]),
2453
- 208:
2454
- dict(link=('ssd_kpt17', 'ssd_kpt18'), id=208, color=[64, 64, 128]),
2455
- 209:
2456
- dict(link=('ssd_kpt18', 'ssd_kpt19'), id=209, color=[64, 64, 128]),
2457
- 210:
2458
- dict(link=('ssd_kpt19', 'ssd_kpt20'), id=210, color=[64, 64, 128]),
2459
- 211:
2460
- dict(link=('ssd_kpt20', 'ssd_kpt21'), id=211, color=[64, 64, 128]),
2461
- 212:
2462
- dict(link=('ssd_kpt21', 'ssd_kpt22'), id=212, color=[64, 64, 128]),
2463
- 213:
2464
- dict(link=('ssd_kpt22', 'ssd_kpt23'), id=213, color=[64, 64, 128]),
2465
- 214:
2466
- dict(link=('ssd_kpt23', 'ssd_kpt24'), id=214, color=[64, 64, 128]),
2467
- 215:
2468
- dict(link=('ssd_kpt24', 'ssd_kpt25'), id=215, color=[64, 64, 128]),
2469
- 216:
2470
- dict(link=('ssd_kpt25', 'ssd_kpt26'), id=216, color=[64, 64, 128]),
2471
- 217:
2472
- dict(link=('ssd_kpt26', 'ssd_kpt27'), id=217, color=[64, 64, 128]),
2473
- 218:
2474
- dict(link=('ssd_kpt27', 'ssd_kpt28'), id=218, color=[64, 64, 128]),
2475
- 219:
2476
- dict(link=('ssd_kpt28', 'ssd_kpt29'), id=219, color=[64, 64, 128]),
2477
- 220:
2478
- dict(link=('ssd_kpt29', 'ssd_kpt6'), id=220, color=[64, 64, 128]),
2479
- 221:
2480
- dict(link=('ssd_kpt6', 'ssd_kpt5'), id=221, color=[64, 64, 128]),
2481
- 222:
2482
- dict(link=('ssd_kpt5', 'ssd_kpt4'), id=222, color=[64, 64, 128]),
2483
- 223:
2484
- dict(link=('ssd_kpt4', 'ssd_kpt3'), id=223, color=[64, 64, 128]),
2485
- 224:
2486
- dict(link=('ssd_kpt3', 'ssd_kpt2'), id=224, color=[64, 64, 128]),
2487
- 225:
2488
- dict(link=('ssd_kpt6', 'ssd_kpt1'), id=225, color=[64, 64, 128]),
2489
- 226:
2490
- dict(link=('lsd_kpt1', 'lsd_kpt2'), id=226, color=[128, 64, 0]),
2491
- 227:
2492
- dict(link=('lsd_kpt2', 'lsd_kpt7'), id=228, color=[128, 64, 0]),
2493
- 228:
2494
- dict(link=('lsd_kpt7', 'lsd_kpt8'), id=228, color=[128, 64, 0]),
2495
- 229:
2496
- dict(link=('lsd_kpt8', 'lsd_kpt9'), id=229, color=[128, 64, 0]),
2497
- 230:
2498
- dict(link=('lsd_kpt9', 'lsd_kpt10'), id=230, color=[128, 64, 0]),
2499
- 231:
2500
- dict(link=('lsd_kpt10', 'lsd_kpt11'), id=231, color=[128, 64, 0]),
2501
- 232:
2502
- dict(link=('lsd_kpt11', 'lsd_kpt12'), id=232, color=[128, 64, 0]),
2503
- 233:
2504
- dict(link=('lsd_kpt12', 'lsd_kpt13'), id=233, color=[128, 64, 0]),
2505
- 234:
2506
- dict(link=('lsd_kpt13', 'lsd_kpt14'), id=234, color=[128, 64, 0]),
2507
- 235:
2508
- dict(link=('lsd_kpt14', 'lsd_kpt15'), id=235, color=[128, 64, 0]),
2509
- 236:
2510
- dict(link=('lsd_kpt15', 'lsd_kpt16'), id=236, color=[128, 64, 0]),
2511
- 237:
2512
- dict(link=('lsd_kpt16', 'lsd_kpt17'), id=237, color=[128, 64, 0]),
2513
- 238:
2514
- dict(link=('lsd_kpt17', 'lsd_kpt18'), id=238, color=[128, 64, 0]),
2515
- 239:
2516
- dict(link=('lsd_kpt18', 'lsd_kpt19'), id=239, color=[128, 64, 0]),
2517
- 240:
2518
- dict(link=('lsd_kpt19', 'lsd_kpt20'), id=240, color=[128, 64, 0]),
2519
- 241:
2520
- dict(link=('lsd_kpt20', 'lsd_kpt21'), id=241, color=[128, 64, 0]),
2521
- 242:
2522
- dict(link=('lsd_kpt21', 'lsd_kpt22'), id=242, color=[128, 64, 0]),
2523
- 243:
2524
- dict(link=('lsd_kpt22', 'lsd_kpt23'), id=243, color=[128, 64, 0]),
2525
- 244:
2526
- dict(link=('lsd_kpt23', 'lsd_kpt24'), id=244, color=[128, 64, 0]),
2527
- 245:
2528
- dict(link=('lsd_kpt24', 'lsd_kpt25'), id=245, color=[128, 64, 0]),
2529
- 246:
2530
- dict(link=('lsd_kpt25', 'lsd_kpt26'), id=246, color=[128, 64, 0]),
2531
- 247:
2532
- dict(link=('lsd_kpt26', 'lsd_kpt27'), id=247, color=[128, 64, 0]),
2533
- 248:
2534
- dict(link=('lsd_kpt27', 'lsd_kpt28'), id=248, color=[128, 64, 0]),
2535
- 249:
2536
- dict(link=('lsd_kpt28', 'lsd_kpt29'), id=249, color=[128, 64, 0]),
2537
- 250:
2538
- dict(link=('lsd_kpt29', 'lsd_kpt30'), id=250, color=[128, 64, 0]),
2539
- 251:
2540
- dict(link=('lsd_kpt30', 'lsd_kpt31'), id=251, color=[128, 64, 0]),
2541
- 252:
2542
- dict(link=('lsd_kpt31', 'lsd_kpt32'), id=252, color=[128, 64, 0]),
2543
- 253:
2544
- dict(link=('lsd_kpt32', 'lsd_kpt33'), id=253, color=[128, 64, 0]),
2545
- 254:
2546
- dict(link=('lsd_kpt33', 'lsd_kpt34'), id=254, color=[128, 64, 0]),
2547
- 255:
2548
- dict(link=('lsd_kpt34', 'lsd_kpt35'), id=255, color=[128, 64, 0]),
2549
- 256:
2550
- dict(link=('lsd_kpt35', 'lsd_kpt36'), id=256, color=[128, 64, 0]),
2551
- 257:
2552
- dict(link=('lsd_kpt36', 'lsd_kpt37'), id=257, color=[128, 64, 0]),
2553
- 258:
2554
- dict(link=('lsd_kpt37', 'lsd_kpt6'), id=258, color=[128, 64, 0]),
2555
- 259:
2556
- dict(link=('lsd_kpt6', 'lsd_kpt5'), id=259, color=[128, 64, 0]),
2557
- 260:
2558
- dict(link=('lsd_kpt5', 'lsd_kpt4'), id=260, color=[128, 64, 0]),
2559
- 261:
2560
- dict(link=('lsd_kpt4', 'lsd_kpt3'), id=261, color=[128, 64, 0]),
2561
- 262:
2562
- dict(link=('lsd_kpt3', 'lsd_kpt2'), id=262, color=[128, 64, 0]),
2563
- 263:
2564
- dict(link=('lsd_kpt6', 'lsd_kpt1'), id=263, color=[128, 64, 0]),
2565
- 264:
2566
- dict(link=('vd_kpt1', 'vd_kpt2'), id=264, color=[128, 64, 255]),
2567
- 265:
2568
- dict(link=('vd_kpt2', 'vd_kpt7'), id=265, color=[128, 64, 255]),
2569
- 266:
2570
- dict(link=('vd_kpt7', 'vd_kpt8'), id=266, color=[128, 64, 255]),
2571
- 267:
2572
- dict(link=('vd_kpt8', 'vd_kpt9'), id=267, color=[128, 64, 255]),
2573
- 268:
2574
- dict(link=('vd_kpt9', 'vd_kpt10'), id=268, color=[128, 64, 255]),
2575
- 269:
2576
- dict(link=('vd_kpt10', 'vd_kpt11'), id=269, color=[128, 64, 255]),
2577
- 270:
2578
- dict(link=('vd_kpt11', 'vd_kpt12'), id=270, color=[128, 64, 255]),
2579
- 271:
2580
- dict(link=('vd_kpt12', 'vd_kpt13'), id=271, color=[128, 64, 255]),
2581
- 272:
2582
- dict(link=('vd_kpt13', 'vd_kpt14'), id=272, color=[128, 64, 255]),
2583
- 273:
2584
- dict(link=('vd_kpt14', 'vd_kpt15'), id=273, color=[128, 64, 255]),
2585
- 274:
2586
- dict(link=('vd_kpt15', 'vd_kpt16'), id=274, color=[128, 64, 255]),
2587
- 275:
2588
- dict(link=('vd_kpt16', 'vd_kpt17'), id=275, color=[128, 64, 255]),
2589
- 276:
2590
- dict(link=('vd_kpt17', 'vd_kpt18'), id=276, color=[128, 64, 255]),
2591
- 277:
2592
- dict(link=('vd_kpt18', 'vd_kpt19'), id=277, color=[128, 64, 255]),
2593
- 278:
2594
- dict(link=('vd_kpt19', 'vd_kpt6'), id=278, color=[128, 64, 255]),
2595
- 279:
2596
- dict(link=('vd_kpt6', 'vd_kpt5'), id=279, color=[128, 64, 255]),
2597
- 280:
2598
- dict(link=('vd_kpt5', 'vd_kpt4'), id=280, color=[128, 64, 255]),
2599
- 281:
2600
- dict(link=('vd_kpt4', 'vd_kpt3'), id=281, color=[128, 64, 255]),
2601
- 282:
2602
- dict(link=('vd_kpt3', 'vd_kpt2'), id=282, color=[128, 64, 255]),
2603
- 283:
2604
- dict(link=('vd_kpt6', 'vd_kpt1'), id=283, color=[128, 64, 255]),
2605
- 284:
2606
- dict(link=('sd_kpt1', 'sd_kpt2'), id=284, color=[128, 64, 0]),
2607
- 285:
2608
- dict(link=('sd_kpt2', 'sd_kpt8'), id=285, color=[128, 64, 0]),
2609
- 286:
2610
- dict(link=('sd_kpt8', 'sd_kpt9'), id=286, color=[128, 64, 0]),
2611
- 287:
2612
- dict(link=('sd_kpt9', 'sd_kpt10'), id=287, color=[128, 64, 0]),
2613
- 288:
2614
- dict(link=('sd_kpt10', 'sd_kpt11'), id=288, color=[128, 64, 0]),
2615
- 289:
2616
- dict(link=('sd_kpt11', 'sd_kpt12'), id=289, color=[128, 64, 0]),
2617
- 290:
2618
- dict(link=('sd_kpt12', 'sd_kpt13'), id=290, color=[128, 64, 0]),
2619
- 291:
2620
- dict(link=('sd_kpt13', 'sd_kpt14'), id=291, color=[128, 64, 0]),
2621
- 292:
2622
- dict(link=('sd_kpt14', 'sd_kpt15'), id=292, color=[128, 64, 0]),
2623
- 293:
2624
- dict(link=('sd_kpt15', 'sd_kpt16'), id=293, color=[128, 64, 0]),
2625
- 294:
2626
- dict(link=('sd_kpt16', 'sd_kpt17'), id=294, color=[128, 64, 0]),
2627
- 295:
2628
- dict(link=('sd_kpt17', 'sd_kpt18'), id=295, color=[128, 64, 0]),
2629
- 296:
2630
- dict(link=('sd_kpt18', 'sd_kpt6'), id=296, color=[128, 64, 0]),
2631
- 297:
2632
- dict(link=('sd_kpt6', 'sd_kpt5'), id=297, color=[128, 64, 0]),
2633
- 298:
2634
- dict(link=('sd_kpt5', 'sd_kpt4'), id=298, color=[128, 64, 0]),
2635
- 299:
2636
- dict(link=('sd_kpt4', 'sd_kpt3'), id=299, color=[128, 64, 0]),
2637
- 300:
2638
- dict(link=('sd_kpt3', 'sd_kpt2'), id=300, color=[128, 64, 0]),
2639
- 301:
2640
- dict(link=('sd_kpt2', 'sd_kpt7'), id=301, color=[128, 64, 0]),
2641
- 302:
2642
- dict(link=('sd_kpt6', 'sd_kpt19'), id=302, color=[128, 64, 0]),
2643
- 303:
2644
- dict(link=('sd_kpt6', 'sd_kpt1'), id=303, color=[128, 64, 0])
2645
- }),
2646
- joint_weights=[
2647
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2648
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2649
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2650
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2651
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2652
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2653
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2654
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2655
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2656
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2657
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2658
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2659
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2660
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2661
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2662
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2663
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2664
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2665
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2666
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
2667
- 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
2668
- ],
2669
- sigmas=[])
2670
- param_scheduler = [
2671
- dict(
2672
- type='LinearLR', begin=0, end=500, start_factor=0.001, by_epoch=False),
2673
- dict(
2674
- type='MultiStepLR',
2675
- begin=0,
2676
- end=120,
2677
- milestones=[80, 100],
2678
- gamma=0.1,
2679
- by_epoch=True)
2680
- ]
2681
- optim_wrapper = dict(optimizer=dict(type='Adam', lr=0.0005))
2682
- auto_scale_lr = dict(base_batch_size=512)
2683
- dataset_type = 'DeepFashion2Dataset'
2684
- data_mode = 'topdown'
2685
- data_root = 'data/deepfashion2/'
2686
- codec = dict(
2687
- type='MSRAHeatmap', input_size=(192, 256), heatmap_size=(48, 64), sigma=2)
2688
- train_pipeline = [
2689
- dict(type='LoadImage'),
2690
- dict(type='GetBBoxCenterScale'),
2691
- dict(type='RandomFlip', direction='horizontal'),
2692
- dict(
2693
- type='RandomBBoxTransform',
2694
- shift_prob=0,
2695
- rotate_factor=60,
2696
- scale_factor=(0.75, 1.25)),
2697
- dict(type='TopdownAffine', input_size=(192, 256)),
2698
- dict(
2699
- type='GenerateTarget',
2700
- encoder=dict(
2701
- type='MSRAHeatmap',
2702
- input_size=(192, 256),
2703
- heatmap_size=(48, 64),
2704
- sigma=2)),
2705
- dict(type='PackPoseInputs')
2706
- ]
2707
- val_pipeline = [
2708
- dict(type='LoadImage', backend_args=dict(backend='local')),
2709
- dict(type='GetBBoxCenterScale'),
2710
- dict(type='TopdownAffine', input_size=(192, 256)),
2711
- dict(type='PackPoseInputs')
2712
- ]
2713
- train_dataloader = dict(
2714
- batch_size=64,
2715
- num_workers=6,
2716
- persistent_workers=True,
2717
- sampler=dict(type='DefaultSampler', shuffle=True),
2718
- dataset=dict(
2719
- type='DeepFashion2Dataset',
2720
- data_root='data/deepfashion2/',
2721
- data_mode='topdown',
2722
- ann_file='train/deepfashion2_sling.json',
2723
- data_prefix=dict(img='train/image/'),
2724
- pipeline=[
2725
- dict(type='LoadImage'),
2726
- dict(type='GetBBoxCenterScale'),
2727
- dict(type='RandomFlip', direction='horizontal'),
2728
- dict(
2729
- type='RandomBBoxTransform',
2730
- shift_prob=0,
2731
- rotate_factor=60,
2732
- scale_factor=(0.75, 1.25)),
2733
- dict(type='TopdownAffine', input_size=(192, 256)),
2734
- dict(
2735
- type='GenerateTarget',
2736
- encoder=dict(
2737
- type='MSRAHeatmap',
2738
- input_size=(192, 256),
2739
- heatmap_size=(48, 64),
2740
- sigma=2)),
2741
- dict(type='PackPoseInputs')
2742
- ]))
2743
- val_dataloader = dict(
2744
- batch_size=32,
2745
- num_workers=6,
2746
- persistent_workers=True,
2747
- drop_last=False,
2748
- sampler=dict(type='DefaultSampler', shuffle=False),
2749
- dataset=dict(
2750
- type='DeepFashion2Dataset',
2751
- data_root='data/deepfashion2/',
2752
- data_mode='topdown',
2753
- ann_file='validation/deepfashion2_sling.json',
2754
- data_prefix=dict(img='validation/image/'),
2755
- test_mode=True,
2756
- pipeline=[
2757
- dict(type='LoadImage', backend_args=dict(backend='local')),
2758
- dict(type='GetBBoxCenterScale'),
2759
- dict(type='TopdownAffine', input_size=(192, 256)),
2760
- dict(type='PackPoseInputs')
2761
- ]))
2762
- test_dataloader = dict(
2763
- batch_size=32,
2764
- num_workers=6,
2765
- persistent_workers=True,
2766
- drop_last=False,
2767
- sampler=dict(type='DefaultSampler', shuffle=False),
2768
- dataset=dict(
2769
- type='DeepFashion2Dataset',
2770
- data_root='data/deepfashion2/',
2771
- data_mode='topdown',
2772
- ann_file='validation/deepfashion2_sling.json',
2773
- data_prefix=dict(img='validation/image/'),
2774
- test_mode=True,
2775
- pipeline=[
2776
- dict(type='LoadImage', backend_args=dict(backend='local')),
2777
- dict(type='GetBBoxCenterScale'),
2778
- dict(type='TopdownAffine', input_size=(192, 256)),
2779
- dict(type='PackPoseInputs')
2780
- ]))
2781
- channel_cfg = dict(
2782
- num_output_channels=294,
2783
- dataset_joints=294,
2784
- dataset_channel=[[
2785
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
2786
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
2787
- 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
2788
- 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
2789
- 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
2790
- 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
2791
- 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
2792
- 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
2793
- 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
2794
- 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
2795
- 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177,
2796
- 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
2797
- 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205,
2798
- 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,
2799
- 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
2800
- 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
2801
- 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261,
2802
- 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275,
2803
- 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289,
2804
- 290, 291, 292, 293
2805
- ]],
2806
- inference_channel=[
2807
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
2808
- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
2809
- 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
2810
- 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
2811
- 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
2812
- 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
2813
- 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121,
2814
- 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
2815
- 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
2816
- 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
2817
- 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177,
2818
- 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
2819
- 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205,
2820
- 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,
2821
- 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233,
2822
- 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247,
2823
- 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261,
2824
- 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275,
2825
- 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289,
2826
- 290, 291, 292, 293
2827
- ])
2828
- model = dict(
2829
- type='TopdownPoseEstimator',
2830
- data_preprocessor=dict(
2831
- type='PoseDataPreprocessor',
2832
- mean=[123.675, 116.28, 103.53],
2833
- std=[58.395, 57.12, 57.375],
2834
- bgr_to_rgb=True),
2835
- backbone=dict(
2836
- type='ResNet',
2837
- depth=50,
2838
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
2839
- head=dict(
2840
- type='HeatmapHead',
2841
- in_channels=2048,
2842
- out_channels=294,
2843
- loss=dict(type='KeypointMSELoss', use_target_weight=True),
2844
- decoder=dict(
2845
- type='MSRAHeatmap',
2846
- input_size=(192, 256),
2847
- heatmap_size=(48, 64),
2848
- sigma=2)),
2849
- test_cfg=dict(flip_test=True, flip_mode='heatmap', shift_heatmap=True))
2850
- val_evaluator = [
2851
- dict(type='PCKAccuracy', thr=0.2),
2852
- dict(type='AUC'),
2853
- dict(type='EPE')
2854
- ]
2855
- test_evaluator = [
2856
- dict(type='PCKAccuracy', thr=0.2),
2857
- dict(type='AUC'),
2858
- dict(type='EPE')
2859
- ]
2860
- launcher = 'pytorch'
2861
- work_dir = './work_dirs/td_hm_res50_4xb64-120e_deepfashion2_sling_256x192'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AUBADA-ALARABI/poetry2023/app.py DELETED
@@ -1,53 +0,0 @@
1
- import gc
2
- import gradio as gr
3
- from transformers import pipeline, set_seed
4
-
5
- pipe = pipeline('text-generation', framework='pt', model='akhooli/ap2023', tokenizer='akhooli/ap2023')
6
- #gc.collect()
7
- samples = [['أنت'
8
- ,1.0, 50, 1.0, 1.0, 114],['هل غادر'
9
- ,1.0, 50, 1.0, 1.0, 114 ],['ألا ليت'
10
- ,1.0, 50, 1.0, 1.0, 114 ],['يا قدس'
11
- ,1.0, 50, 1.0, 1.0, 114],['عيد بأية حال'
12
- ,1.0, 50, 1.0, 1.0, 114],['لكل شيء إذا ما'
13
- ,1.0, 50, 1.0, 1.0, 114 ],['.'
14
- ,1.0, 50, 1.0, 1.0, 114]]
15
-
16
- notes = """
17
- - Enter a short prompt or select (click) one of the examples and click SEND
18
- - Adjust parameters (temperture, top k, top p and penalty) through the slider (keep close to default values).
19
- - For the same seed (randomness), the same output is regenerated if other parameters are fixed
20
- - Clear and enter new prompt or select another example and SEND to regenerate
21
- - The '.' means start a new line from no prompt (your prompt need not be long)
22
- - Be patient: this runs on CPU (free tier)
23
- - Feedback (Twitter): @akhooli (https://twitter.com/akhooli/status/1611025232201977859)
24
- - Note/Disclaimer: may generate unaccepted or inappropriate content. Use at your own risk.
25
- """
26
- def sayPoetry(prompt, temp=1.0, topk = 50, topp = 1.0, penalty=1.0, seed=114):
27
- if not int(seed) >= 0: seed=114
28
- set_seed(seed)
29
- gen = pipe(prompt, max_length=96, do_sample=True, temperature=temp, top_k=topk, top_p=topp, repetition_penalty=penalty,
30
- min_length = 64, no_repeat_ngram_size = 3, return_full_text=True,
31
- num_beams=5, num_return_sequences=1)[0]["generated_text"]
32
- poetry =""
33
- for line in gen.split('.')[:-1]:
34
- poetry += line #+ "\n"
35
- return poetry
36
- poetry = gr.Interface(fn=sayPoetry,
37
- inputs=[
38
- gr.Textbox(label="Enter short prompt or select from examples:"),
39
- gr.Slider(0.70, 1.2, step=0.01,value=1.0, label='control temperature'),
40
- gr.Slider(25, 100, step=1,value=50, label='control top k'),
41
- gr.Slider(0.80, 1.0, step=0.01,value=1.0, label='control top p'),
42
- gr.Slider(0.90, 1.50, step=0.01,value=1.0, label='control penalty'),
43
- gr.Number(value=139750, precision=0, label='Seed'),
44
- ],
45
- outputs=[gr.Textbox(label="Generated Poetry:")],
46
-
47
- allow_flagging='never',
48
- title='Arabic Poetry Generation Demo (updated Jan. 2023)',
49
- description = "A simple demo of AI generated poetry based on 1M poems fine-tuned using AraGPT2 (be patient, runs on cpu)",
50
- examples=samples,
51
- cache_examples=False,
52
- article = notes)
53
- poetry.launch() # show_error = True, debug=True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AchyuthGamer/OpenGPT/g4f/requests.py DELETED
@@ -1,181 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import warnings
4
- import json
5
- import asyncio
6
- from functools import partialmethod
7
- from asyncio import Future, Queue
8
- from typing import AsyncGenerator, Union, Optional
9
-
10
- from curl_cffi.requests import AsyncSession, Response
11
- import curl_cffi
12
-
13
- is_newer_0_5_8: bool = hasattr(AsyncSession, "_set_cookies") or hasattr(curl_cffi.requests.Cookies, "get_cookies_for_curl")
14
- is_newer_0_5_9: bool = hasattr(curl_cffi.AsyncCurl, "remove_handle")
15
- is_newer_0_5_10: bool = hasattr(AsyncSession, "release_curl")
16
-
17
-
18
- class StreamResponse:
19
- def __init__(self, inner: Response, queue: Queue[bytes]) -> None:
20
- self.inner: Response = inner
21
- self.queue: Queue[bytes] = queue
22
- self.request = inner.request
23
- self.status_code: int = inner.status_code
24
- self.reason: str = inner.reason
25
- self.ok: bool = inner.ok
26
- self.headers = inner.headers
27
- self.cookies = inner.cookies
28
-
29
- async def text(self) -> str:
30
- content: bytes = await self.read()
31
- return content.decode()
32
-
33
- def raise_for_status(self) -> None:
34
- if not self.ok:
35
- raise RuntimeError(f"HTTP Error {self.status_code}: {self.reason}")
36
-
37
- async def json(self, **kwargs) -> dict:
38
- return json.loads(await self.read(), **kwargs)
39
-
40
- async def iter_lines(
41
- self, chunk_size: Optional[int] = None, decode_unicode: bool = False, delimiter: Optional[str] = None
42
- ) -> AsyncGenerator[bytes, None]:
43
- """
44
- Copied from: https://requests.readthedocs.io/en/latest/_modules/requests/models/
45
- which is under the License: Apache 2.0
46
- """
47
-
48
- pending: bytes = None
49
-
50
- async for chunk in self.iter_content(
51
- chunk_size=chunk_size, decode_unicode=decode_unicode
52
- ):
53
- if pending is not None:
54
- chunk = pending + chunk
55
- if delimiter:
56
- lines = chunk.split(delimiter)
57
- else:
58
- lines = chunk.splitlines()
59
- if lines and lines[-1] and chunk and lines[-1][-1] == chunk[-1]:
60
- pending = lines.pop()
61
- else:
62
- pending = None
63
-
64
- for line in lines:
65
- yield line
66
-
67
- if pending is not None:
68
- yield pending
69
-
70
- async def iter_content(
71
- self, chunk_size: Optional[int] = None, decode_unicode: bool = False
72
- ) -> AsyncGenerator[bytes, None]:
73
- if chunk_size:
74
- warnings.warn("chunk_size is ignored, there is no way to tell curl that.")
75
- if decode_unicode:
76
- raise NotImplementedError()
77
- while True:
78
- chunk = await self.queue.get()
79
- if chunk is None:
80
- return
81
- yield chunk
82
-
83
- async def read(self) -> bytes:
84
- return b"".join([chunk async for chunk in self.iter_content()])
85
-
86
-
87
- class StreamRequest:
88
- def __init__(self, session: AsyncSession, method: str, url: str, **kwargs: Union[bool, int, str]) -> None:
89
- self.session: AsyncSession = session
90
- self.loop: asyncio.AbstractEventLoop = session.loop if session.loop else asyncio.get_running_loop()
91
- self.queue: Queue[bytes] = Queue()
92
- self.method: str = method
93
- self.url: str = url
94
- self.options: dict = kwargs
95
- self.handle: Optional[curl_cffi.AsyncCurl] = None
96
-
97
- def _on_content(self, data: bytes) -> None:
98
- if not self.enter.done():
99
- self.enter.set_result(None)
100
- self.queue.put_nowait(data)
101
-
102
- def _on_done(self, task: Future) -> None:
103
- if not self.enter.done():
104
- self.enter.set_result(None)
105
- self.queue.put_nowait(None)
106
-
107
- self.loop.call_soon(self.release_curl)
108
-
109
- async def fetch(self) -> StreamResponse:
110
- if self.handle:
111
- raise RuntimeError("Request already started")
112
- self.curl: curl_cffi.AsyncCurl = await self.session.pop_curl()
113
- self.enter: asyncio.Future = self.loop.create_future()
114
- if is_newer_0_5_10:
115
- request, _, header_buffer, _, _ = self.session._set_curl_options(
116
- self.curl,
117
- self.method,
118
- self.url,
119
- content_callback=self._on_content,
120
- **self.options
121
- )
122
- else:
123
- request, _, header_buffer = self.session._set_curl_options(
124
- self.curl,
125
- self.method,
126
- self.url,
127
- content_callback=self._on_content,
128
- **self.options
129
- )
130
- if is_newer_0_5_9:
131
- self.handle = self.session.acurl.add_handle(self.curl)
132
- else:
133
- await self.session.acurl.add_handle(self.curl, False)
134
- self.handle = self.session.acurl._curl2future[self.curl]
135
- self.handle.add_done_callback(self._on_done)
136
- # Wait for headers
137
- await self.enter
138
- # Raise exceptions
139
- if self.handle.done():
140
- self.handle.result()
141
- if is_newer_0_5_8:
142
- response = self.session._parse_response(self.curl, _, header_buffer)
143
- response.request = request
144
- else:
145
- response = self.session._parse_response(self.curl, request, _, header_buffer)
146
- return StreamResponse(response, self.queue)
147
-
148
- async def __aenter__(self) -> StreamResponse:
149
- return await self.fetch()
150
-
151
- async def __aexit__(self, *args) -> None:
152
- self.release_curl()
153
-
154
- def release_curl(self) -> None:
155
- if is_newer_0_5_10:
156
- self.session.release_curl(self.curl)
157
- return
158
- if not self.curl:
159
- return
160
- self.curl.clean_after_perform()
161
- if is_newer_0_5_9:
162
- self.session.acurl.remove_handle(self.curl)
163
- elif not self.handle.done() and not self.handle.cancelled():
164
- self.session.acurl.set_result(self.curl)
165
- self.curl.reset()
166
- self.session.push_curl(self.curl)
167
- self.curl = None
168
-
169
-
170
- class StreamSession(AsyncSession):
171
- def request(
172
- self, method: str, url: str, **kwargs
173
- ) -> StreamRequest:
174
- return StreamRequest(self, method, url, **kwargs)
175
-
176
- head = partialmethod(request, "HEAD")
177
- get = partialmethod(request, "GET")
178
- post = partialmethod(request, "POST")
179
- put = partialmethod(request, "PUT")
180
- patch = partialmethod(request, "PATCH")
181
- delete = partialmethod(request, "DELETE")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/plugins/arcadetcrp-plugin.js DELETED
@@ -1,39 +0,0 @@
1
- import TCRP from './arcadetcrp.js';
2
-
3
- const Recorder = TCRP.Recorder;
4
- const Player = TCRP.Player;
5
- const StepRunner = TCRP.StepRunner;
6
-
7
- class ArcadeTCRPPlugin extends Phaser.Plugins.BasePlugin {
8
- constructor(pluginManager) {
9
- super(pluginManager);
10
- }
11
-
12
- start() {
13
- var eventEmitter = this.game.events;
14
- eventEmitter.on('destroy', this.destroy, this);
15
- }
16
-
17
- addRecorder(parent, config) {
18
- return new Recorder(parent, config);
19
- }
20
-
21
- addPlayer(parent, config) {
22
- return new Player(parent, config);
23
- }
24
-
25
- addStepRunner(parent) {
26
- return new StepRunner(parent);
27
- }
28
- }
29
-
30
- var methods = {
31
- runCommands: TCRP.RunCommands
32
- }
33
-
34
- Object.assign(
35
- ArcadeTCRPPlugin.prototype,
36
- methods
37
- );
38
-
39
- export default ArcadeTCRPPlugin;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Akmyradov/dost.ai/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Dost.ai
3
- emoji: 🦀
4
- colorFrom: yellow
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 3.6
8
- app_file: app.py
9
- pinned: false
10
- license: unknown
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Alashazam/StoryGenerator/README.md DELETED
@@ -1,34 +0,0 @@
1
- ---
2
- title: GPT 2 Story Gen
3
- emoji: 🧙🏻‍♂️
4
- colorFrom: purple
5
- colorTo: blue
6
- sdk: gradio
7
- app_file: app.py
8
- pinned: false
9
- duplicated_from: merve/GPT-2-story-gen
10
- ---
11
-
12
- # Configuration
13
-
14
- `title`: _string_
15
- Display title for the Space
16
-
17
- `emoji`: _string_
18
- Space emoji (emoji-only character allowed)
19
-
20
- `colorFrom`: _string_
21
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
22
-
23
- `colorTo`: _string_
24
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
25
-
26
- `sdk`: _string_
27
- Can be either `gradio` or `streamlit`
28
-
29
- `app_file`: _string_
30
- Path to your main application file (which contains either `gradio` or `streamlit` Python code).
31
- Path is relative to the root of the repository.
32
-
33
- `pinned`: _boolean_
34
- Whether the Space stays on top of your list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Alpaca233/SadTalker/src/utils/init_path.py DELETED
@@ -1,47 +0,0 @@
1
- import os
2
- import glob
3
-
4
- def init_path(checkpoint_dir, config_dir, size=512, old_version=False, preprocess='crop'):
5
-
6
- if old_version:
7
- #### load all the checkpoint of `pth`
8
- sadtalker_paths = {
9
- 'wav2lip_checkpoint' : os.path.join(checkpoint_dir, 'wav2lip.pth'),
10
- 'audio2pose_checkpoint' : os.path.join(checkpoint_dir, 'auido2pose_00140-model.pth'),
11
- 'audio2exp_checkpoint' : os.path.join(checkpoint_dir, 'auido2exp_00300-model.pth'),
12
- 'free_view_checkpoint' : os.path.join(checkpoint_dir, 'facevid2vid_00189-model.pth.tar'),
13
- 'path_of_net_recon_model' : os.path.join(checkpoint_dir, 'epoch_20.pth')
14
- }
15
-
16
- use_safetensor = False
17
- elif len(glob.glob(os.path.join(checkpoint_dir, '*.safetensors'))):
18
- print('using safetensor as default')
19
- sadtalker_paths = {
20
- "checkpoint":os.path.join(checkpoint_dir, 'SadTalker_V0.0.2_'+str(size)+'.safetensors'),
21
- }
22
- use_safetensor = True
23
- else:
24
- print("WARNING: The new version of the model will be updated by safetensor, you may need to download it mannully. We run the old version of the checkpoint this time!")
25
- use_safetensor = False
26
-
27
- sadtalker_paths = {
28
- 'wav2lip_checkpoint' : os.path.join(checkpoint_dir, 'wav2lip.pth'),
29
- 'audio2pose_checkpoint' : os.path.join(checkpoint_dir, 'auido2pose_00140-model.pth'),
30
- 'audio2exp_checkpoint' : os.path.join(checkpoint_dir, 'auido2exp_00300-model.pth'),
31
- 'free_view_checkpoint' : os.path.join(checkpoint_dir, 'facevid2vid_00189-model.pth.tar'),
32
- 'path_of_net_recon_model' : os.path.join(checkpoint_dir, 'epoch_20.pth')
33
- }
34
-
35
- sadtalker_paths['dir_of_BFM_fitting'] = os.path.join(config_dir) # , 'BFM_Fitting'
36
- sadtalker_paths['audio2pose_yaml_path'] = os.path.join(config_dir, 'auido2pose.yaml')
37
- sadtalker_paths['audio2exp_yaml_path'] = os.path.join(config_dir, 'auido2exp.yaml')
38
- sadtalker_paths['use_safetensor'] = use_safetensor # os.path.join(config_dir, 'auido2exp.yaml')
39
-
40
- if 'full' in preprocess:
41
- sadtalker_paths['mappingnet_checkpoint'] = os.path.join(checkpoint_dir, 'mapping_00109-model.pth.tar')
42
- sadtalker_paths['facerender_yaml'] = os.path.join(config_dir, 'facerender_still.yaml')
43
- else:
44
- sadtalker_paths['mappingnet_checkpoint'] = os.path.join(checkpoint_dir, 'mapping_00229-model.pth.tar')
45
- sadtalker_paths['facerender_yaml'] = os.path.join(config_dir, 'facerender.yaml')
46
-
47
- return sadtalker_paths
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/examples/community/stable_diffusion_reference.py DELETED
@@ -1,796 +0,0 @@
1
- # Inspired by: https://github.com/Mikubill/sd-webui-controlnet/discussions/1236 and https://github.com/Mikubill/sd-webui-controlnet/discussions/1280
2
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
3
-
4
- import numpy as np
5
- import PIL.Image
6
- import torch
7
-
8
- from diffusers import StableDiffusionPipeline
9
- from diffusers.models.attention import BasicTransformerBlock
10
- from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
11
- from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
12
- from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg
13
- from diffusers.utils import PIL_INTERPOLATION, logging, randn_tensor
14
-
15
-
16
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
17
-
18
- EXAMPLE_DOC_STRING = """
19
- Examples:
20
- ```py
21
- >>> import torch
22
- >>> from diffusers import UniPCMultistepScheduler
23
- >>> from diffusers.utils import load_image
24
-
25
- >>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
26
-
27
- >>> pipe = StableDiffusionReferencePipeline.from_pretrained(
28
- "runwayml/stable-diffusion-v1-5",
29
- safety_checker=None,
30
- torch_dtype=torch.float16
31
- ).to('cuda:0')
32
-
33
- >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config)
34
-
35
- >>> result_img = pipe(ref_image=input_image,
36
- prompt="1girl",
37
- num_inference_steps=20,
38
- reference_attn=True,
39
- reference_adain=True).images[0]
40
-
41
- >>> result_img.show()
42
- ```
43
- """
44
-
45
-
46
- def torch_dfs(model: torch.nn.Module):
47
- result = [model]
48
- for child in model.children():
49
- result += torch_dfs(child)
50
- return result
51
-
52
-
53
- class StableDiffusionReferencePipeline(StableDiffusionPipeline):
54
- def _default_height_width(self, height, width, image):
55
- # NOTE: It is possible that a list of images have different
56
- # dimensions for each image, so just checking the first image
57
- # is not _exactly_ correct, but it is simple.
58
- while isinstance(image, list):
59
- image = image[0]
60
-
61
- if height is None:
62
- if isinstance(image, PIL.Image.Image):
63
- height = image.height
64
- elif isinstance(image, torch.Tensor):
65
- height = image.shape[2]
66
-
67
- height = (height // 8) * 8 # round down to nearest multiple of 8
68
-
69
- if width is None:
70
- if isinstance(image, PIL.Image.Image):
71
- width = image.width
72
- elif isinstance(image, torch.Tensor):
73
- width = image.shape[3]
74
-
75
- width = (width // 8) * 8 # round down to nearest multiple of 8
76
-
77
- return height, width
78
-
79
- def prepare_image(
80
- self,
81
- image,
82
- width,
83
- height,
84
- batch_size,
85
- num_images_per_prompt,
86
- device,
87
- dtype,
88
- do_classifier_free_guidance=False,
89
- guess_mode=False,
90
- ):
91
- if not isinstance(image, torch.Tensor):
92
- if isinstance(image, PIL.Image.Image):
93
- image = [image]
94
-
95
- if isinstance(image[0], PIL.Image.Image):
96
- images = []
97
-
98
- for image_ in image:
99
- image_ = image_.convert("RGB")
100
- image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])
101
- image_ = np.array(image_)
102
- image_ = image_[None, :]
103
- images.append(image_)
104
-
105
- image = images
106
-
107
- image = np.concatenate(image, axis=0)
108
- image = np.array(image).astype(np.float32) / 255.0
109
- image = (image - 0.5) / 0.5
110
- image = image.transpose(0, 3, 1, 2)
111
- image = torch.from_numpy(image)
112
- elif isinstance(image[0], torch.Tensor):
113
- image = torch.cat(image, dim=0)
114
-
115
- image_batch_size = image.shape[0]
116
-
117
- if image_batch_size == 1:
118
- repeat_by = batch_size
119
- else:
120
- # image batch size is the same as prompt batch size
121
- repeat_by = num_images_per_prompt
122
-
123
- image = image.repeat_interleave(repeat_by, dim=0)
124
-
125
- image = image.to(device=device, dtype=dtype)
126
-
127
- if do_classifier_free_guidance and not guess_mode:
128
- image = torch.cat([image] * 2)
129
-
130
- return image
131
-
132
- def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
133
- refimage = refimage.to(device=device, dtype=dtype)
134
-
135
- # encode the mask image into latents space so we can concatenate it to the latents
136
- if isinstance(generator, list):
137
- ref_image_latents = [
138
- self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i])
139
- for i in range(batch_size)
140
- ]
141
- ref_image_latents = torch.cat(ref_image_latents, dim=0)
142
- else:
143
- ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator)
144
- ref_image_latents = self.vae.config.scaling_factor * ref_image_latents
145
-
146
- # duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
147
- if ref_image_latents.shape[0] < batch_size:
148
- if not batch_size % ref_image_latents.shape[0] == 0:
149
- raise ValueError(
150
- "The passed images and the required batch size don't match. Images are supposed to be duplicated"
151
- f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
152
- " Make sure the number of images that you pass is divisible by the total requested batch size."
153
- )
154
- ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
155
-
156
- ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents
157
-
158
- # aligning device to prevent device errors when concating it with the latent model input
159
- ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
160
- return ref_image_latents
161
-
162
- @torch.no_grad()
163
- def __call__(
164
- self,
165
- prompt: Union[str, List[str]] = None,
166
- ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
167
- height: Optional[int] = None,
168
- width: Optional[int] = None,
169
- num_inference_steps: int = 50,
170
- guidance_scale: float = 7.5,
171
- negative_prompt: Optional[Union[str, List[str]]] = None,
172
- num_images_per_prompt: Optional[int] = 1,
173
- eta: float = 0.0,
174
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
175
- latents: Optional[torch.FloatTensor] = None,
176
- prompt_embeds: Optional[torch.FloatTensor] = None,
177
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
178
- output_type: Optional[str] = "pil",
179
- return_dict: bool = True,
180
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
181
- callback_steps: int = 1,
182
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
183
- guidance_rescale: float = 0.0,
184
- attention_auto_machine_weight: float = 1.0,
185
- gn_auto_machine_weight: float = 1.0,
186
- style_fidelity: float = 0.5,
187
- reference_attn: bool = True,
188
- reference_adain: bool = True,
189
- ):
190
- r"""
191
- Function invoked when calling the pipeline for generation.
192
-
193
- Args:
194
- prompt (`str` or `List[str]`, *optional*):
195
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
196
- instead.
197
- ref_image (`torch.FloatTensor`, `PIL.Image.Image`):
198
- The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If
199
- the type is specified as `Torch.FloatTensor`, it is passed to Reference Control as is. `PIL.Image.Image` can
200
- also be accepted as an image.
201
- height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
202
- The height in pixels of the generated image.
203
- width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
204
- The width in pixels of the generated image.
205
- num_inference_steps (`int`, *optional*, defaults to 50):
206
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
207
- expense of slower inference.
208
- guidance_scale (`float`, *optional*, defaults to 7.5):
209
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
210
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
211
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
212
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
213
- usually at the expense of lower image quality.
214
- negative_prompt (`str` or `List[str]`, *optional*):
215
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
216
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
217
- less than `1`).
218
- num_images_per_prompt (`int`, *optional*, defaults to 1):
219
- The number of images to generate per prompt.
220
- eta (`float`, *optional*, defaults to 0.0):
221
- Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
222
- [`schedulers.DDIMScheduler`], will be ignored for others.
223
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
224
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
225
- to make generation deterministic.
226
- latents (`torch.FloatTensor`, *optional*):
227
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
228
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
229
- tensor will ge generated by sampling using the supplied random `generator`.
230
- prompt_embeds (`torch.FloatTensor`, *optional*):
231
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
232
- provided, text embeddings will be generated from `prompt` input argument.
233
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
234
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
235
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
236
- argument.
237
- output_type (`str`, *optional*, defaults to `"pil"`):
238
- The output format of the generate image. Choose between
239
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
240
- return_dict (`bool`, *optional*, defaults to `True`):
241
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
242
- plain tuple.
243
- callback (`Callable`, *optional*):
244
- A function that will be called every `callback_steps` steps during inference. The function will be
245
- called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
246
- callback_steps (`int`, *optional*, defaults to 1):
247
- The frequency at which the `callback` function will be called. If not specified, the callback will be
248
- called at every step.
249
- cross_attention_kwargs (`dict`, *optional*):
250
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
251
- `self.processor` in
252
- [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
253
- guidance_rescale (`float`, *optional*, defaults to 0.7):
254
- Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
255
- Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
256
- [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
257
- Guidance rescale factor should fix overexposure when using zero terminal SNR.
258
- attention_auto_machine_weight (`float`):
259
- Weight of using reference query for self attention's context.
260
- If attention_auto_machine_weight=1.0, use reference query for all self attention's context.
261
- gn_auto_machine_weight (`float`):
262
- Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins.
263
- style_fidelity (`float`):
264
- style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important,
265
- elif style_fidelity=0.0, prompt more important, else balanced.
266
- reference_attn (`bool`):
267
- Whether to use reference query for self attention's context.
268
- reference_adain (`bool`):
269
- Whether to use reference adain.
270
-
271
- Examples:
272
-
273
- Returns:
274
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
275
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
276
- When returning a tuple, the first element is a list with the generated images, and the second element is a
277
- list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
278
- (nsfw) content, according to the `safety_checker`.
279
- """
280
- assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True."
281
-
282
- # 0. Default height and width to unet
283
- height, width = self._default_height_width(height, width, ref_image)
284
-
285
- # 1. Check inputs. Raise error if not correct
286
- self.check_inputs(
287
- prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
288
- )
289
-
290
- # 2. Define call parameters
291
- if prompt is not None and isinstance(prompt, str):
292
- batch_size = 1
293
- elif prompt is not None and isinstance(prompt, list):
294
- batch_size = len(prompt)
295
- else:
296
- batch_size = prompt_embeds.shape[0]
297
-
298
- device = self._execution_device
299
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
300
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
301
- # corresponds to doing no classifier free guidance.
302
- do_classifier_free_guidance = guidance_scale > 1.0
303
-
304
- # 3. Encode input prompt
305
- text_encoder_lora_scale = (
306
- cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
307
- )
308
- prompt_embeds = self._encode_prompt(
309
- prompt,
310
- device,
311
- num_images_per_prompt,
312
- do_classifier_free_guidance,
313
- negative_prompt,
314
- prompt_embeds=prompt_embeds,
315
- negative_prompt_embeds=negative_prompt_embeds,
316
- lora_scale=text_encoder_lora_scale,
317
- )
318
-
319
- # 4. Preprocess reference image
320
- ref_image = self.prepare_image(
321
- image=ref_image,
322
- width=width,
323
- height=height,
324
- batch_size=batch_size * num_images_per_prompt,
325
- num_images_per_prompt=num_images_per_prompt,
326
- device=device,
327
- dtype=prompt_embeds.dtype,
328
- )
329
-
330
- # 5. Prepare timesteps
331
- self.scheduler.set_timesteps(num_inference_steps, device=device)
332
- timesteps = self.scheduler.timesteps
333
-
334
- # 6. Prepare latent variables
335
- num_channels_latents = self.unet.config.in_channels
336
- latents = self.prepare_latents(
337
- batch_size * num_images_per_prompt,
338
- num_channels_latents,
339
- height,
340
- width,
341
- prompt_embeds.dtype,
342
- device,
343
- generator,
344
- latents,
345
- )
346
-
347
- # 7. Prepare reference latent variables
348
- ref_image_latents = self.prepare_ref_latents(
349
- ref_image,
350
- batch_size * num_images_per_prompt,
351
- prompt_embeds.dtype,
352
- device,
353
- generator,
354
- do_classifier_free_guidance,
355
- )
356
-
357
- # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
358
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
359
-
360
- # 9. Modify self attention and group norm
361
- MODE = "write"
362
- uc_mask = (
363
- torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt)
364
- .type_as(ref_image_latents)
365
- .bool()
366
- )
367
-
368
- def hacked_basic_transformer_inner_forward(
369
- self,
370
- hidden_states: torch.FloatTensor,
371
- attention_mask: Optional[torch.FloatTensor] = None,
372
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
373
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
374
- timestep: Optional[torch.LongTensor] = None,
375
- cross_attention_kwargs: Dict[str, Any] = None,
376
- class_labels: Optional[torch.LongTensor] = None,
377
- ):
378
- if self.use_ada_layer_norm:
379
- norm_hidden_states = self.norm1(hidden_states, timestep)
380
- elif self.use_ada_layer_norm_zero:
381
- norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
382
- hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
383
- )
384
- else:
385
- norm_hidden_states = self.norm1(hidden_states)
386
-
387
- # 1. Self-Attention
388
- cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
389
- if self.only_cross_attention:
390
- attn_output = self.attn1(
391
- norm_hidden_states,
392
- encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
393
- attention_mask=attention_mask,
394
- **cross_attention_kwargs,
395
- )
396
- else:
397
- if MODE == "write":
398
- self.bank.append(norm_hidden_states.detach().clone())
399
- attn_output = self.attn1(
400
- norm_hidden_states,
401
- encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
402
- attention_mask=attention_mask,
403
- **cross_attention_kwargs,
404
- )
405
- if MODE == "read":
406
- if attention_auto_machine_weight > self.attn_weight:
407
- attn_output_uc = self.attn1(
408
- norm_hidden_states,
409
- encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
410
- # attention_mask=attention_mask,
411
- **cross_attention_kwargs,
412
- )
413
- attn_output_c = attn_output_uc.clone()
414
- if do_classifier_free_guidance and style_fidelity > 0:
415
- attn_output_c[uc_mask] = self.attn1(
416
- norm_hidden_states[uc_mask],
417
- encoder_hidden_states=norm_hidden_states[uc_mask],
418
- **cross_attention_kwargs,
419
- )
420
- attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc
421
- self.bank.clear()
422
- else:
423
- attn_output = self.attn1(
424
- norm_hidden_states,
425
- encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
426
- attention_mask=attention_mask,
427
- **cross_attention_kwargs,
428
- )
429
- if self.use_ada_layer_norm_zero:
430
- attn_output = gate_msa.unsqueeze(1) * attn_output
431
- hidden_states = attn_output + hidden_states
432
-
433
- if self.attn2 is not None:
434
- norm_hidden_states = (
435
- self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
436
- )
437
-
438
- # 2. Cross-Attention
439
- attn_output = self.attn2(
440
- norm_hidden_states,
441
- encoder_hidden_states=encoder_hidden_states,
442
- attention_mask=encoder_attention_mask,
443
- **cross_attention_kwargs,
444
- )
445
- hidden_states = attn_output + hidden_states
446
-
447
- # 3. Feed-forward
448
- norm_hidden_states = self.norm3(hidden_states)
449
-
450
- if self.use_ada_layer_norm_zero:
451
- norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
452
-
453
- ff_output = self.ff(norm_hidden_states)
454
-
455
- if self.use_ada_layer_norm_zero:
456
- ff_output = gate_mlp.unsqueeze(1) * ff_output
457
-
458
- hidden_states = ff_output + hidden_states
459
-
460
- return hidden_states
461
-
462
- def hacked_mid_forward(self, *args, **kwargs):
463
- eps = 1e-6
464
- x = self.original_forward(*args, **kwargs)
465
- if MODE == "write":
466
- if gn_auto_machine_weight >= self.gn_weight:
467
- var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
468
- self.mean_bank.append(mean)
469
- self.var_bank.append(var)
470
- if MODE == "read":
471
- if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
472
- var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
473
- std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
474
- mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
475
- var_acc = sum(self.var_bank) / float(len(self.var_bank))
476
- std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
477
- x_uc = (((x - mean) / std) * std_acc) + mean_acc
478
- x_c = x_uc.clone()
479
- if do_classifier_free_guidance and style_fidelity > 0:
480
- x_c[uc_mask] = x[uc_mask]
481
- x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
482
- self.mean_bank = []
483
- self.var_bank = []
484
- return x
485
-
486
- def hack_CrossAttnDownBlock2D_forward(
487
- self,
488
- hidden_states: torch.FloatTensor,
489
- temb: Optional[torch.FloatTensor] = None,
490
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
491
- attention_mask: Optional[torch.FloatTensor] = None,
492
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
493
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
494
- ):
495
- eps = 1e-6
496
-
497
- # TODO(Patrick, William) - attention mask is not used
498
- output_states = ()
499
-
500
- for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
501
- hidden_states = resnet(hidden_states, temb)
502
- hidden_states = attn(
503
- hidden_states,
504
- encoder_hidden_states=encoder_hidden_states,
505
- cross_attention_kwargs=cross_attention_kwargs,
506
- attention_mask=attention_mask,
507
- encoder_attention_mask=encoder_attention_mask,
508
- return_dict=False,
509
- )[0]
510
- if MODE == "write":
511
- if gn_auto_machine_weight >= self.gn_weight:
512
- var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
513
- self.mean_bank.append([mean])
514
- self.var_bank.append([var])
515
- if MODE == "read":
516
- if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
517
- var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
518
- std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
519
- mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
520
- var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
521
- std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
522
- hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
523
- hidden_states_c = hidden_states_uc.clone()
524
- if do_classifier_free_guidance and style_fidelity > 0:
525
- hidden_states_c[uc_mask] = hidden_states[uc_mask]
526
- hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
527
-
528
- output_states = output_states + (hidden_states,)
529
-
530
- if MODE == "read":
531
- self.mean_bank = []
532
- self.var_bank = []
533
-
534
- if self.downsamplers is not None:
535
- for downsampler in self.downsamplers:
536
- hidden_states = downsampler(hidden_states)
537
-
538
- output_states = output_states + (hidden_states,)
539
-
540
- return hidden_states, output_states
541
-
542
- def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
543
- eps = 1e-6
544
-
545
- output_states = ()
546
-
547
- for i, resnet in enumerate(self.resnets):
548
- hidden_states = resnet(hidden_states, temb)
549
-
550
- if MODE == "write":
551
- if gn_auto_machine_weight >= self.gn_weight:
552
- var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
553
- self.mean_bank.append([mean])
554
- self.var_bank.append([var])
555
- if MODE == "read":
556
- if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
557
- var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
558
- std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
559
- mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
560
- var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
561
- std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
562
- hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
563
- hidden_states_c = hidden_states_uc.clone()
564
- if do_classifier_free_guidance and style_fidelity > 0:
565
- hidden_states_c[uc_mask] = hidden_states[uc_mask]
566
- hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
567
-
568
- output_states = output_states + (hidden_states,)
569
-
570
- if MODE == "read":
571
- self.mean_bank = []
572
- self.var_bank = []
573
-
574
- if self.downsamplers is not None:
575
- for downsampler in self.downsamplers:
576
- hidden_states = downsampler(hidden_states)
577
-
578
- output_states = output_states + (hidden_states,)
579
-
580
- return hidden_states, output_states
581
-
582
- def hacked_CrossAttnUpBlock2D_forward(
583
- self,
584
- hidden_states: torch.FloatTensor,
585
- res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
586
- temb: Optional[torch.FloatTensor] = None,
587
- encoder_hidden_states: Optional[torch.FloatTensor] = None,
588
- cross_attention_kwargs: Optional[Dict[str, Any]] = None,
589
- upsample_size: Optional[int] = None,
590
- attention_mask: Optional[torch.FloatTensor] = None,
591
- encoder_attention_mask: Optional[torch.FloatTensor] = None,
592
- ):
593
- eps = 1e-6
594
- # TODO(Patrick, William) - attention mask is not used
595
- for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
596
- # pop res hidden states
597
- res_hidden_states = res_hidden_states_tuple[-1]
598
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
599
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
600
- hidden_states = resnet(hidden_states, temb)
601
- hidden_states = attn(
602
- hidden_states,
603
- encoder_hidden_states=encoder_hidden_states,
604
- cross_attention_kwargs=cross_attention_kwargs,
605
- attention_mask=attention_mask,
606
- encoder_attention_mask=encoder_attention_mask,
607
- return_dict=False,
608
- )[0]
609
-
610
- if MODE == "write":
611
- if gn_auto_machine_weight >= self.gn_weight:
612
- var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
613
- self.mean_bank.append([mean])
614
- self.var_bank.append([var])
615
- if MODE == "read":
616
- if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
617
- var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
618
- std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
619
- mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
620
- var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
621
- std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
622
- hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
623
- hidden_states_c = hidden_states_uc.clone()
624
- if do_classifier_free_guidance and style_fidelity > 0:
625
- hidden_states_c[uc_mask] = hidden_states[uc_mask]
626
- hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
627
-
628
- if MODE == "read":
629
- self.mean_bank = []
630
- self.var_bank = []
631
-
632
- if self.upsamplers is not None:
633
- for upsampler in self.upsamplers:
634
- hidden_states = upsampler(hidden_states, upsample_size)
635
-
636
- return hidden_states
637
-
638
- def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
639
- eps = 1e-6
640
- for i, resnet in enumerate(self.resnets):
641
- # pop res hidden states
642
- res_hidden_states = res_hidden_states_tuple[-1]
643
- res_hidden_states_tuple = res_hidden_states_tuple[:-1]
644
- hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
645
- hidden_states = resnet(hidden_states, temb)
646
-
647
- if MODE == "write":
648
- if gn_auto_machine_weight >= self.gn_weight:
649
- var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
650
- self.mean_bank.append([mean])
651
- self.var_bank.append([var])
652
- if MODE == "read":
653
- if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
654
- var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
655
- std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
656
- mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
657
- var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
658
- std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
659
- hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
660
- hidden_states_c = hidden_states_uc.clone()
661
- if do_classifier_free_guidance and style_fidelity > 0:
662
- hidden_states_c[uc_mask] = hidden_states[uc_mask]
663
- hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
664
-
665
- if MODE == "read":
666
- self.mean_bank = []
667
- self.var_bank = []
668
-
669
- if self.upsamplers is not None:
670
- for upsampler in self.upsamplers:
671
- hidden_states = upsampler(hidden_states, upsample_size)
672
-
673
- return hidden_states
674
-
675
- if reference_attn:
676
- attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
677
- attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
678
-
679
- for i, module in enumerate(attn_modules):
680
- module._original_inner_forward = module.forward
681
- module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
682
- module.bank = []
683
- module.attn_weight = float(i) / float(len(attn_modules))
684
-
685
- if reference_adain:
686
- gn_modules = [self.unet.mid_block]
687
- self.unet.mid_block.gn_weight = 0
688
-
689
- down_blocks = self.unet.down_blocks
690
- for w, module in enumerate(down_blocks):
691
- module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
692
- gn_modules.append(module)
693
-
694
- up_blocks = self.unet.up_blocks
695
- for w, module in enumerate(up_blocks):
696
- module.gn_weight = float(w) / float(len(up_blocks))
697
- gn_modules.append(module)
698
-
699
- for i, module in enumerate(gn_modules):
700
- if getattr(module, "original_forward", None) is None:
701
- module.original_forward = module.forward
702
- if i == 0:
703
- # mid_block
704
- module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
705
- elif isinstance(module, CrossAttnDownBlock2D):
706
- module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
707
- elif isinstance(module, DownBlock2D):
708
- module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
709
- elif isinstance(module, CrossAttnUpBlock2D):
710
- module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
711
- elif isinstance(module, UpBlock2D):
712
- module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
713
- module.mean_bank = []
714
- module.var_bank = []
715
- module.gn_weight *= 2
716
-
717
- # 10. Denoising loop
718
- num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
719
- with self.progress_bar(total=num_inference_steps) as progress_bar:
720
- for i, t in enumerate(timesteps):
721
- # expand the latents if we are doing classifier free guidance
722
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
723
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
724
-
725
- # ref only part
726
- noise = randn_tensor(
727
- ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype
728
- )
729
- ref_xt = self.scheduler.add_noise(
730
- ref_image_latents,
731
- noise,
732
- t.reshape(
733
- 1,
734
- ),
735
- )
736
- ref_xt = self.scheduler.scale_model_input(ref_xt, t)
737
-
738
- MODE = "write"
739
- self.unet(
740
- ref_xt,
741
- t,
742
- encoder_hidden_states=prompt_embeds,
743
- cross_attention_kwargs=cross_attention_kwargs,
744
- return_dict=False,
745
- )
746
-
747
- # predict the noise residual
748
- MODE = "read"
749
- noise_pred = self.unet(
750
- latent_model_input,
751
- t,
752
- encoder_hidden_states=prompt_embeds,
753
- cross_attention_kwargs=cross_attention_kwargs,
754
- return_dict=False,
755
- )[0]
756
-
757
- # perform guidance
758
- if do_classifier_free_guidance:
759
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
760
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
761
-
762
- if do_classifier_free_guidance and guidance_rescale > 0.0:
763
- # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
764
- noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
765
-
766
- # compute the previous noisy sample x_t -> x_t-1
767
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
768
-
769
- # call the callback, if provided
770
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
771
- progress_bar.update()
772
- if callback is not None and i % callback_steps == 0:
773
- callback(i, t, latents)
774
-
775
- if not output_type == "latent":
776
- image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
777
- image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
778
- else:
779
- image = latents
780
- has_nsfw_concept = None
781
-
782
- if has_nsfw_concept is None:
783
- do_denormalize = [True] * image.shape[0]
784
- else:
785
- do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
786
-
787
- image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
788
-
789
- # Offload last model to CPU
790
- if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
791
- self.final_offload_hook.offload()
792
-
793
- if not return_dict:
794
- return (image, has_nsfw_concept)
795
-
796
- return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/examples/dreambooth/README.md DELETED
@@ -1,743 +0,0 @@
1
- # DreamBooth training example
2
-
3
- [DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few(3~5) images of a subject.
4
- The `train_dreambooth.py` script shows how to implement the training procedure and adapt it for stable diffusion.
5
-
6
-
7
- ## Running locally with PyTorch
8
-
9
- ### Installing the dependencies
10
-
11
- Before running the scripts, make sure to install the library's training dependencies:
12
-
13
- **Important**
14
-
15
- To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:
16
- ```bash
17
- git clone https://github.com/huggingface/diffusers
18
- cd diffusers
19
- pip install -e .
20
- ```
21
-
22
- Then cd in the example folder and run
23
- ```bash
24
- pip install -r requirements.txt
25
- ```
26
-
27
- And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
28
-
29
- ```bash
30
- accelerate config
31
- ```
32
-
33
- Or for a default accelerate configuration without answering questions about your environment
34
-
35
- ```bash
36
- accelerate config default
37
- ```
38
-
39
- Or if your environment doesn't support an interactive shell e.g. a notebook
40
-
41
- ```python
42
- from accelerate.utils import write_basic_config
43
- write_basic_config()
44
- ```
45
-
46
- When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
47
-
48
- ### Dog toy example
49
-
50
- Now let's get our dataset. For this example we will use some dog images: https://huggingface.co/datasets/diffusers/dog-example.
51
-
52
- Let's first download it locally:
53
-
54
- ```python
55
- from huggingface_hub import snapshot_download
56
-
57
- local_dir = "./dog"
58
- snapshot_download(
59
- "diffusers/dog-example",
60
- local_dir=local_dir, repo_type="dataset",
61
- ignore_patterns=".gitattributes",
62
- )
63
- ```
64
-
65
- And launch the training using:
66
-
67
- **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___**
68
-
69
- ```bash
70
- export MODEL_NAME="CompVis/stable-diffusion-v1-4"
71
- export INSTANCE_DIR="dog"
72
- export OUTPUT_DIR="path-to-save-model"
73
-
74
- accelerate launch train_dreambooth.py \
75
- --pretrained_model_name_or_path=$MODEL_NAME \
76
- --instance_data_dir=$INSTANCE_DIR \
77
- --output_dir=$OUTPUT_DIR \
78
- --instance_prompt="a photo of sks dog" \
79
- --resolution=512 \
80
- --train_batch_size=1 \
81
- --gradient_accumulation_steps=1 \
82
- --learning_rate=5e-6 \
83
- --lr_scheduler="constant" \
84
- --lr_warmup_steps=0 \
85
- --max_train_steps=400 \
86
- --push_to_hub
87
- ```
88
-
89
- ### Training with prior-preservation loss
90
-
91
- Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data.
92
- According to the paper, it's recommended to generate `num_epochs * num_samples` images for prior-preservation. 200-300 works well for most cases. The `num_class_images` flag sets the number of images to generate with the class prompt. You can place existing images in `class_data_dir`, and the training script will generate any additional images so that `num_class_images` are present in `class_data_dir` during training time.
93
-
94
- ```bash
95
- export MODEL_NAME="CompVis/stable-diffusion-v1-4"
96
- export INSTANCE_DIR="dog"
97
- export CLASS_DIR="path-to-class-images"
98
- export OUTPUT_DIR="path-to-save-model"
99
-
100
- accelerate launch train_dreambooth.py \
101
- --pretrained_model_name_or_path=$MODEL_NAME \
102
- --instance_data_dir=$INSTANCE_DIR \
103
- --class_data_dir=$CLASS_DIR \
104
- --output_dir=$OUTPUT_DIR \
105
- --with_prior_preservation --prior_loss_weight=1.0 \
106
- --instance_prompt="a photo of sks dog" \
107
- --class_prompt="a photo of dog" \
108
- --resolution=512 \
109
- --train_batch_size=1 \
110
- --gradient_accumulation_steps=1 \
111
- --learning_rate=5e-6 \
112
- --lr_scheduler="constant" \
113
- --lr_warmup_steps=0 \
114
- --num_class_images=200 \
115
- --max_train_steps=800 \
116
- --push_to_hub
117
- ```
118
-
119
-
120
- ### Training on a 16GB GPU:
121
-
122
- With the help of gradient checkpointing and the 8-bit optimizer from bitsandbytes it's possible to run train dreambooth on a 16GB GPU.
123
-
124
- To install `bitsandbytes` please refer to this [readme](https://github.com/TimDettmers/bitsandbytes#requirements--installation).
125
-
126
- ```bash
127
- export MODEL_NAME="CompVis/stable-diffusion-v1-4"
128
- export INSTANCE_DIR="dog"
129
- export CLASS_DIR="path-to-class-images"
130
- export OUTPUT_DIR="path-to-save-model"
131
-
132
- accelerate launch train_dreambooth.py \
133
- --pretrained_model_name_or_path=$MODEL_NAME \
134
- --instance_data_dir=$INSTANCE_DIR \
135
- --class_data_dir=$CLASS_DIR \
136
- --output_dir=$OUTPUT_DIR \
137
- --with_prior_preservation --prior_loss_weight=1.0 \
138
- --instance_prompt="a photo of sks dog" \
139
- --class_prompt="a photo of dog" \
140
- --resolution=512 \
141
- --train_batch_size=1 \
142
- --gradient_accumulation_steps=2 --gradient_checkpointing \
143
- --use_8bit_adam \
144
- --learning_rate=5e-6 \
145
- --lr_scheduler="constant" \
146
- --lr_warmup_steps=0 \
147
- --num_class_images=200 \
148
- --max_train_steps=800 \
149
- --push_to_hub
150
- ```
151
-
152
-
153
- ### Training on a 12GB GPU:
154
-
155
- It is possible to run dreambooth on a 12GB GPU by using the following optimizations:
156
- - [gradient checkpointing and the 8-bit optimizer](#training-on-a-16gb-gpu)
157
- - [xformers](#training-with-xformers)
158
- - [setting grads to none](#set-grads-to-none)
159
-
160
- ```bash
161
- export MODEL_NAME="CompVis/stable-diffusion-v1-4"
162
- export INSTANCE_DIR="dog"
163
- export CLASS_DIR="path-to-class-images"
164
- export OUTPUT_DIR="path-to-save-model"
165
-
166
- accelerate launch train_dreambooth.py \
167
- --pretrained_model_name_or_path=$MODEL_NAME \
168
- --instance_data_dir=$INSTANCE_DIR \
169
- --class_data_dir=$CLASS_DIR \
170
- --output_dir=$OUTPUT_DIR \
171
- --with_prior_preservation --prior_loss_weight=1.0 \
172
- --instance_prompt="a photo of sks dog" \
173
- --class_prompt="a photo of dog" \
174
- --resolution=512 \
175
- --train_batch_size=1 \
176
- --gradient_accumulation_steps=1 --gradient_checkpointing \
177
- --use_8bit_adam \
178
- --enable_xformers_memory_efficient_attention \
179
- --set_grads_to_none \
180
- --learning_rate=2e-6 \
181
- --lr_scheduler="constant" \
182
- --lr_warmup_steps=0 \
183
- --num_class_images=200 \
184
- --max_train_steps=800 \
185
- --push_to_hub
186
- ```
187
-
188
-
189
- ### Training on a 8 GB GPU:
190
-
191
- By using [DeepSpeed](https://www.deepspeed.ai/) it's possible to offload some
192
- tensors from VRAM to either CPU or NVME allowing to train with less VRAM.
193
-
194
- DeepSpeed needs to be enabled with `accelerate config`. During configuration
195
- answer yes to "Do you want to use DeepSpeed?". With DeepSpeed stage 2, fp16
196
- mixed precision and offloading both parameters and optimizer state to cpu it's
197
- possible to train on under 8 GB VRAM with a drawback of requiring significantly
198
- more RAM (about 25 GB). See [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more DeepSpeed configuration options.
199
-
200
- Changing the default Adam optimizer to DeepSpeed's special version of Adam
201
- `deepspeed.ops.adam.DeepSpeedCPUAdam` gives a substantial speedup but enabling
202
- it requires CUDA toolchain with the same version as pytorch. 8-bit optimizer
203
- does not seem to be compatible with DeepSpeed at the moment.
204
-
205
- ```bash
206
- export MODEL_NAME="CompVis/stable-diffusion-v1-4"
207
- export INSTANCE_DIR="dog"
208
- export CLASS_DIR="path-to-class-images"
209
- export OUTPUT_DIR="path-to-save-model"
210
-
211
- accelerate launch --mixed_precision="fp16" train_dreambooth.py \
212
- --pretrained_model_name_or_path=$MODEL_NAME \
213
- --instance_data_dir=$INSTANCE_DIR \
214
- --class_data_dir=$CLASS_DIR \
215
- --output_dir=$OUTPUT_DIR \
216
- --with_prior_preservation --prior_loss_weight=1.0 \
217
- --instance_prompt="a photo of sks dog" \
218
- --class_prompt="a photo of dog" \
219
- --resolution=512 \
220
- --train_batch_size=1 \
221
- --sample_batch_size=1 \
222
- --gradient_accumulation_steps=1 --gradient_checkpointing \
223
- --learning_rate=5e-6 \
224
- --lr_scheduler="constant" \
225
- --lr_warmup_steps=0 \
226
- --num_class_images=200 \
227
- --max_train_steps=800 \
228
- --push_to_hub
229
- ```
230
-
231
- ### Fine-tune text encoder with the UNet.
232
-
233
- The script also allows to fine-tune the `text_encoder` along with the `unet`. It's been observed experimentally that fine-tuning `text_encoder` gives much better results especially on faces.
234
- Pass the `--train_text_encoder` argument to the script to enable training `text_encoder`.
235
-
236
- ___Note: Training text encoder requires more memory, with this option the training won't fit on 16GB GPU. It needs at least 24GB VRAM.___
237
-
238
- ```bash
239
- export MODEL_NAME="CompVis/stable-diffusion-v1-4"
240
- export INSTANCE_DIR="dog"
241
- export CLASS_DIR="path-to-class-images"
242
- export OUTPUT_DIR="path-to-save-model"
243
-
244
- accelerate launch train_dreambooth.py \
245
- --pretrained_model_name_or_path=$MODEL_NAME \
246
- --train_text_encoder \
247
- --instance_data_dir=$INSTANCE_DIR \
248
- --class_data_dir=$CLASS_DIR \
249
- --output_dir=$OUTPUT_DIR \
250
- --with_prior_preservation --prior_loss_weight=1.0 \
251
- --instance_prompt="a photo of sks dog" \
252
- --class_prompt="a photo of dog" \
253
- --resolution=512 \
254
- --train_batch_size=1 \
255
- --use_8bit_adam \
256
- --gradient_checkpointing \
257
- --learning_rate=2e-6 \
258
- --lr_scheduler="constant" \
259
- --lr_warmup_steps=0 \
260
- --num_class_images=200 \
261
- --max_train_steps=800 \
262
- --push_to_hub
263
- ```
264
-
265
- ### Using DreamBooth for pipelines other than Stable Diffusion
266
-
267
- The [AltDiffusion pipeline](https://huggingface.co/docs/diffusers/api/pipelines/alt_diffusion) also supports dreambooth fine-tuning. The process is the same as above, all you need to do is replace the `MODEL_NAME` like this:
268
-
269
- ```
270
- export MODEL_NAME="CompVis/stable-diffusion-v1-4" --> export MODEL_NAME="BAAI/AltDiffusion-m9"
271
- or
272
- export MODEL_NAME="CompVis/stable-diffusion-v1-4" --> export MODEL_NAME="BAAI/AltDiffusion"
273
- ```
274
-
275
- ### Inference
276
-
277
- Once you have trained a model using the above command, you can run inference simply using the `StableDiffusionPipeline`. Make sure to include the `identifier` (e.g. sks in above example) in your prompt.
278
-
279
- ```python
280
- from diffusers import StableDiffusionPipeline
281
- import torch
282
-
283
- model_id = "path-to-your-trained-model"
284
- pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
285
-
286
- prompt = "A photo of sks dog in a bucket"
287
- image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
288
-
289
- image.save("dog-bucket.png")
290
- ```
291
-
292
- ### Inference from a training checkpoint
293
-
294
- You can also perform inference from one of the checkpoints saved during the training process, if you used the `--checkpointing_steps` argument. Please, refer to [the documentation](https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint) to see how to do it.
295
-
296
- ## Training with Low-Rank Adaptation of Large Language Models (LoRA)
297
-
298
- Low-Rank Adaption of Large Language Models was first introduced by Microsoft in [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685) by *Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen*
299
-
300
- In a nutshell, LoRA allows to adapt pretrained models by adding pairs of rank-decomposition matrices to existing weights and **only** training those newly added weights. This has a couple of advantages:
301
- - Previous pretrained weights are kept frozen so that the model is not prone to [catastrophic forgetting](https://www.pnas.org/doi/10.1073/pnas.1611835114)
302
- - Rank-decomposition matrices have significantly fewer parameters than the original model, which means that trained LoRA weights are easily portable.
303
- - LoRA attention layers allow to control to which extent the model is adapted towards new training images via a `scale` parameter.
304
-
305
- [cloneofsimo](https://github.com/cloneofsimo) was the first to try out LoRA training for Stable Diffusion in
306
- the popular [lora](https://github.com/cloneofsimo/lora) GitHub repository.
307
-
308
- ### Training
309
-
310
- Let's get started with a simple example. We will re-use the dog example of the [previous section](#dog-toy-example).
311
-
312
- First, you need to set-up your dreambooth training example as is explained in the [installation section](#Installing-the-dependencies).
313
- Next, let's download the dog dataset. Download images from [here](https://drive.google.com/drive/folders/1BO_dyz-p65qhBRRMRA4TbZ8qW4rB99JZ) and save them in a directory. Make sure to set `INSTANCE_DIR` to the name of your directory further below. This will be our training data.
314
-
315
- Now, you can launch the training. Here we will use [Stable Diffusion 1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5).
316
-
317
- **___Note: Change the `resolution` to 768 if you are using the [stable-diffusion-2](https://huggingface.co/stabilityai/stable-diffusion-2) 768x768 model.___**
318
-
319
- **___Note: It is quite useful to monitor the training progress by regularly generating sample images during training. [wandb](https://docs.wandb.ai/quickstart) is a nice solution to easily see generating images during training. All you need to do is to run `pip install wandb` before training and pass `--report_to="wandb"` to automatically log images.___**
320
-
321
-
322
- ```bash
323
- export MODEL_NAME="runwayml/stable-diffusion-v1-5"
324
- export INSTANCE_DIR="dog"
325
- export OUTPUT_DIR="path-to-save-model"
326
- ```
327
-
328
- For this example we want to directly store the trained LoRA embeddings on the Hub, so
329
- we need to be logged in and add the `--push_to_hub` flag.
330
-
331
- ```bash
332
- huggingface-cli login
333
- ```
334
-
335
- Now we can start training!
336
-
337
- ```bash
338
- accelerate launch train_dreambooth_lora.py \
339
- --pretrained_model_name_or_path=$MODEL_NAME \
340
- --instance_data_dir=$INSTANCE_DIR \
341
- --output_dir=$OUTPUT_DIR \
342
- --instance_prompt="a photo of sks dog" \
343
- --resolution=512 \
344
- --train_batch_size=1 \
345
- --gradient_accumulation_steps=1 \
346
- --checkpointing_steps=100 \
347
- --learning_rate=1e-4 \
348
- --report_to="wandb" \
349
- --lr_scheduler="constant" \
350
- --lr_warmup_steps=0 \
351
- --max_train_steps=500 \
352
- --validation_prompt="A photo of sks dog in a bucket" \
353
- --validation_epochs=50 \
354
- --seed="0" \
355
- --push_to_hub
356
- ```
357
-
358
- **___Note: When using LoRA we can use a much higher learning rate compared to vanilla dreambooth. Here we
359
- use *1e-4* instead of the usual *2e-6*.___**
360
-
361
- The final LoRA embedding weights have been uploaded to [patrickvonplaten/lora_dreambooth_dog_example](https://huggingface.co/patrickvonplaten/lora_dreambooth_dog_example). **___Note: [The final weights](https://huggingface.co/patrickvonplaten/lora/blob/main/pytorch_attn_procs.bin) are only 3 MB in size which is orders of magnitudes smaller than the original model.**
362
-
363
- The training results are summarized [here](https://api.wandb.ai/report/patrickvonplaten/xm6cd5q5).
364
- You can use the `Step` slider to see how the model learned the features of our subject while the model trained.
365
-
366
- Optionally, we can also train additional LoRA layers for the text encoder. Specify the `--train_text_encoder` argument above for that. If you're interested to know more about how we
367
- enable this support, check out this [PR](https://github.com/huggingface/diffusers/pull/2918).
368
-
369
- With the default hyperparameters from the above, the training seems to go in a positive direction. Check out [this panel](https://wandb.ai/sayakpaul/dreambooth-lora/reports/test-23-04-17-17-00-13---Vmlldzo0MDkwNjMy). The trained LoRA layers are available [here](https://huggingface.co/sayakpaul/dreambooth).
370
-
371
-
372
- ### Inference
373
-
374
- After training, LoRA weights can be loaded very easily into the original pipeline. First, you need to
375
- load the original pipeline:
376
-
377
- ```python
378
- from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
379
- import torch
380
-
381
- pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
382
- pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
383
- pipe.to("cuda")
384
- ```
385
-
386
- Next, we can load the adapter layers into the UNet with the [`load_attn_procs` function](https://huggingface.co/docs/diffusers/api/loaders#diffusers.loaders.UNet2DConditionLoadersMixin.load_attn_procs).
387
-
388
- ```python
389
- pipe.unet.load_attn_procs("patrickvonplaten/lora_dreambooth_dog_example")
390
- ```
391
-
392
- Finally, we can run the model in inference.
393
-
394
- ```python
395
- image = pipe("A picture of a sks dog in a bucket", num_inference_steps=25).images[0]
396
- ```
397
-
398
- If you are loading the LoRA parameters from the Hub and if the Hub repository has
399
- a `base_model` tag (such as [this](https://huggingface.co/patrickvonplaten/lora_dreambooth_dog_example/blob/main/README.md?code=true#L4)), then
400
- you can do:
401
-
402
- ```py
403
- from huggingface_hub.repocard import RepoCard
404
-
405
- lora_model_id = "patrickvonplaten/lora_dreambooth_dog_example"
406
- card = RepoCard.load(lora_model_id)
407
- base_model_id = card.data.to_dict()["base_model"]
408
-
409
- pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16)
410
- ...
411
- ```
412
-
413
- If you used `--train_text_encoder` during training, then use `pipe.load_lora_weights()` to load the LoRA
414
- weights. For example:
415
-
416
- ```python
417
- from huggingface_hub.repocard import RepoCard
418
- from diffusers import StableDiffusionPipeline
419
- import torch
420
-
421
- lora_model_id = "sayakpaul/dreambooth-text-encoder-test"
422
- card = RepoCard.load(lora_model_id)
423
- base_model_id = card.data.to_dict()["base_model"]
424
-
425
- pipe = StableDiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16)
426
- pipe = pipe.to("cuda")
427
- pipe.load_lora_weights(lora_model_id)
428
- image = pipe("A picture of a sks dog in a bucket", num_inference_steps=25).images[0]
429
- ```
430
-
431
- Note that the use of [`LoraLoaderMixin.load_lora_weights`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights) is preferred to [`UNet2DConditionLoadersMixin.load_attn_procs`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.UNet2DConditionLoadersMixin.load_attn_procs) for loading LoRA parameters. This is because
432
- `LoraLoaderMixin.load_lora_weights` can handle the following situations:
433
-
434
- * LoRA parameters that don't have separate identifiers for the UNet and the text encoder (such as [`"patrickvonplaten/lora_dreambooth_dog_example"`](https://huggingface.co/patrickvonplaten/lora_dreambooth_dog_example)). So, you can just do:
435
-
436
- ```py
437
- pipe.load_lora_weights(lora_model_path)
438
- ```
439
-
440
- * LoRA parameters that have separate identifiers for the UNet and the text encoder such as: [`"sayakpaul/dreambooth"`](https://huggingface.co/sayakpaul/dreambooth).
441
-
442
- ## Training with Flax/JAX
443
-
444
- For faster training on TPUs and GPUs you can leverage the flax training example. Follow the instructions above to get the model and dataset before running the script.
445
-
446
- ____Note: The flax example don't yet support features like gradient checkpoint, gradient accumulation etc, so to use flax for faster training we will need >30GB cards.___
447
-
448
-
449
- Before running the scripts, make sure to install the library's training dependencies:
450
-
451
- ```bash
452
- pip install -U -r requirements_flax.txt
453
- ```
454
-
455
-
456
- ### Training without prior preservation loss
457
-
458
- ```bash
459
- export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
460
- export INSTANCE_DIR="dog"
461
- export OUTPUT_DIR="path-to-save-model"
462
-
463
- python train_dreambooth_flax.py \
464
- --pretrained_model_name_or_path=$MODEL_NAME \
465
- --instance_data_dir=$INSTANCE_DIR \
466
- --output_dir=$OUTPUT_DIR \
467
- --instance_prompt="a photo of sks dog" \
468
- --resolution=512 \
469
- --train_batch_size=1 \
470
- --learning_rate=5e-6 \
471
- --max_train_steps=400
472
- ```
473
-
474
-
475
- ### Training with prior preservation loss
476
-
477
- ```bash
478
- export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
479
- export INSTANCE_DIR="dog"
480
- export CLASS_DIR="path-to-class-images"
481
- export OUTPUT_DIR="path-to-save-model"
482
-
483
- python train_dreambooth_flax.py \
484
- --pretrained_model_name_or_path=$MODEL_NAME \
485
- --instance_data_dir=$INSTANCE_DIR \
486
- --class_data_dir=$CLASS_DIR \
487
- --output_dir=$OUTPUT_DIR \
488
- --with_prior_preservation --prior_loss_weight=1.0 \
489
- --instance_prompt="a photo of sks dog" \
490
- --class_prompt="a photo of dog" \
491
- --resolution=512 \
492
- --train_batch_size=1 \
493
- --learning_rate=5e-6 \
494
- --num_class_images=200 \
495
- --max_train_steps=800
496
- ```
497
-
498
-
499
- ### Fine-tune text encoder with the UNet.
500
-
501
- ```bash
502
- export MODEL_NAME="duongna/stable-diffusion-v1-4-flax"
503
- export INSTANCE_DIR="dog"
504
- export CLASS_DIR="path-to-class-images"
505
- export OUTPUT_DIR="path-to-save-model"
506
-
507
- python train_dreambooth_flax.py \
508
- --pretrained_model_name_or_path=$MODEL_NAME \
509
- --train_text_encoder \
510
- --instance_data_dir=$INSTANCE_DIR \
511
- --class_data_dir=$CLASS_DIR \
512
- --output_dir=$OUTPUT_DIR \
513
- --with_prior_preservation --prior_loss_weight=1.0 \
514
- --instance_prompt="a photo of sks dog" \
515
- --class_prompt="a photo of dog" \
516
- --resolution=512 \
517
- --train_batch_size=1 \
518
- --learning_rate=2e-6 \
519
- --num_class_images=200 \
520
- --max_train_steps=800
521
- ```
522
-
523
- ### Training with xformers:
524
- You can enable memory efficient attention by [installing xFormers](https://github.com/facebookresearch/xformers#installing-xformers) and padding the `--enable_xformers_memory_efficient_attention` argument to the script. This is not available with the Flax/JAX implementation.
525
-
526
- You can also use Dreambooth to train the specialized in-painting model. See [the script in the research folder for details](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/dreambooth_inpaint).
527
-
528
- ### Set grads to none
529
-
530
- To save even more memory, pass the `--set_grads_to_none` argument to the script. This will set grads to None instead of zero. However, be aware that it changes certain behaviors, so if you start experiencing any problems, remove this argument.
531
-
532
- More info: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html
533
-
534
- ### Experimental results
535
- You can refer to [this blog post](https://huggingface.co/blog/dreambooth) that discusses some of DreamBooth experiments in detail. Specifically, it recommends a set of DreamBooth-specific tips and tricks that we have found to work well for a variety of subjects.
536
-
537
- ## IF
538
-
539
- You can use the lora and full dreambooth scripts to train the text to image [IF model](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0) and the stage II upscaler
540
- [IF model](https://huggingface.co/DeepFloyd/IF-II-L-v1.0).
541
-
542
- Note that IF has a predicted variance, and our finetuning scripts only train the models predicted error, so for finetuned IF models we switch to a fixed
543
- variance schedule. The full finetuning scripts will update the scheduler config for the full saved model. However, when loading saved LoRA weights, you
544
- must also update the pipeline's scheduler config.
545
-
546
- ```py
547
- from diffusers import DiffusionPipeline
548
-
549
- pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0")
550
-
551
- pipe.load_lora_weights("<lora weights path>")
552
-
553
- # Update scheduler config to fixed variance schedule
554
- pipe.scheduler = pipe.scheduler.__class__.from_config(pipe.scheduler.config, variance_type="fixed_small")
555
- ```
556
-
557
- Additionally, a few alternative cli flags are needed for IF.
558
-
559
- `--resolution=64`: IF is a pixel space diffusion model. In order to operate on un-compressed pixels, the input images are of a much smaller resolution.
560
-
561
- `--pre_compute_text_embeddings`: IF uses [T5](https://huggingface.co/docs/transformers/model_doc/t5) for its text encoder. In order to save GPU memory, we pre compute all text embeddings and then de-allocate
562
- T5.
563
-
564
- `--tokenizer_max_length=77`: T5 has a longer default text length, but the default IF encoding procedure uses a smaller number.
565
-
566
- `--text_encoder_use_attention_mask`: T5 passes the attention mask to the text encoder.
567
-
568
- ### Tips and Tricks
569
- We find LoRA to be sufficient for finetuning the stage I model as the low resolution of the model makes representing finegrained detail hard regardless.
570
-
571
- For common and/or not-visually complex object concepts, you can get away with not-finetuning the upscaler. Just be sure to adjust the prompt passed to the
572
- upscaler to remove the new token from the instance prompt. I.e. if your stage I prompt is "a sks dog", use "a dog" for your stage II prompt.
573
-
574
- For finegrained detail like faces that aren't present in the original training set, we find that full finetuning of the stage II upscaler is better than
575
- LoRA finetuning stage II.
576
-
577
- For finegrained detail like faces, we find that lower learning rates along with larger batch sizes work best.
578
-
579
- For stage II, we find that lower learning rates are also needed.
580
-
581
- We found experimentally that the DDPM scheduler with the default larger number of denoising steps to sometimes work better than the DPM Solver scheduler
582
- used in the training scripts.
583
-
584
- ### Stage II additional validation images
585
-
586
- The stage II validation requires images to upscale, we can download a downsized version of the training set:
587
-
588
- ```py
589
- from huggingface_hub import snapshot_download
590
-
591
- local_dir = "./dog_downsized"
592
- snapshot_download(
593
- "diffusers/dog-example-downsized",
594
- local_dir=local_dir,
595
- repo_type="dataset",
596
- ignore_patterns=".gitattributes",
597
- )
598
- ```
599
-
600
- ### IF stage I LoRA Dreambooth
601
- This training configuration requires ~28 GB VRAM.
602
-
603
- ```sh
604
- export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
605
- export INSTANCE_DIR="dog"
606
- export OUTPUT_DIR="dreambooth_dog_lora"
607
-
608
- accelerate launch train_dreambooth_lora.py \
609
- --report_to wandb \
610
- --pretrained_model_name_or_path=$MODEL_NAME \
611
- --instance_data_dir=$INSTANCE_DIR \
612
- --output_dir=$OUTPUT_DIR \
613
- --instance_prompt="a sks dog" \
614
- --resolution=64 \
615
- --train_batch_size=4 \
616
- --gradient_accumulation_steps=1 \
617
- --learning_rate=5e-6 \
618
- --scale_lr \
619
- --max_train_steps=1200 \
620
- --validation_prompt="a sks dog" \
621
- --validation_epochs=25 \
622
- --checkpointing_steps=100 \
623
- --pre_compute_text_embeddings \
624
- --tokenizer_max_length=77 \
625
- --text_encoder_use_attention_mask
626
- ```
627
-
628
- ### IF stage II LoRA Dreambooth
629
-
630
- `--validation_images`: These images are upscaled during validation steps.
631
-
632
- `--class_labels_conditioning=timesteps`: Pass additional conditioning to the UNet needed for stage II.
633
-
634
- `--learning_rate=1e-6`: Lower learning rate than stage I.
635
-
636
- `--resolution=256`: The upscaler expects higher resolution inputs
637
-
638
- ```sh
639
- export MODEL_NAME="DeepFloyd/IF-II-L-v1.0"
640
- export INSTANCE_DIR="dog"
641
- export OUTPUT_DIR="dreambooth_dog_upscale"
642
- export VALIDATION_IMAGES="dog_downsized/image_1.png dog_downsized/image_2.png dog_downsized/image_3.png dog_downsized/image_4.png"
643
-
644
- python train_dreambooth_lora.py \
645
- --report_to wandb \
646
- --pretrained_model_name_or_path=$MODEL_NAME \
647
- --instance_data_dir=$INSTANCE_DIR \
648
- --output_dir=$OUTPUT_DIR \
649
- --instance_prompt="a sks dog" \
650
- --resolution=256 \
651
- --train_batch_size=4 \
652
- --gradient_accumulation_steps=1 \
653
- --learning_rate=1e-6 \
654
- --max_train_steps=2000 \
655
- --validation_prompt="a sks dog" \
656
- --validation_epochs=100 \
657
- --checkpointing_steps=500 \
658
- --pre_compute_text_embeddings \
659
- --tokenizer_max_length=77 \
660
- --text_encoder_use_attention_mask \
661
- --validation_images $VALIDATION_IMAGES \
662
- --class_labels_conditioning=timesteps
663
- ```
664
-
665
- ### IF Stage I Full Dreambooth
666
- `--skip_save_text_encoder`: When training the full model, this will skip saving the entire T5 with the finetuned model. You can still load the pipeline
667
- with a T5 loaded from the original model.
668
-
669
- `use_8bit_adam`: Due to the size of the optimizer states, we recommend training the full XL IF model with 8bit adam.
670
-
671
- `--learning_rate=1e-7`: For full dreambooth, IF requires very low learning rates. With higher learning rates model quality will degrade. Note that it is
672
- likely the learning rate can be increased with larger batch sizes.
673
-
674
- Using 8bit adam and a batch size of 4, the model can be trained in ~48 GB VRAM.
675
-
676
- ```sh
677
- export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
678
-
679
- export INSTANCE_DIR="dog"
680
- export OUTPUT_DIR="dreambooth_if"
681
-
682
- accelerate launch train_dreambooth.py \
683
- --pretrained_model_name_or_path=$MODEL_NAME \
684
- --instance_data_dir=$INSTANCE_DIR \
685
- --output_dir=$OUTPUT_DIR \
686
- --instance_prompt="a photo of sks dog" \
687
- --resolution=64 \
688
- --train_batch_size=4 \
689
- --gradient_accumulation_steps=1 \
690
- --learning_rate=1e-7 \
691
- --max_train_steps=150 \
692
- --validation_prompt "a photo of sks dog" \
693
- --validation_steps 25 \
694
- --text_encoder_use_attention_mask \
695
- --tokenizer_max_length 77 \
696
- --pre_compute_text_embeddings \
697
- --use_8bit_adam \
698
- --set_grads_to_none \
699
- --skip_save_text_encoder \
700
- --push_to_hub
701
- ```
702
-
703
- ### IF Stage II Full Dreambooth
704
-
705
- `--learning_rate=5e-6`: With a smaller effective batch size of 4, we found that we required learning rates as low as
706
- 1e-8.
707
-
708
- `--resolution=256`: The upscaler expects higher resolution inputs
709
-
710
- `--train_batch_size=2` and `--gradient_accumulation_steps=6`: We found that full training of stage II particularly with
711
- faces required large effective batch sizes.
712
-
713
- ```sh
714
- export MODEL_NAME="DeepFloyd/IF-II-L-v1.0"
715
- export INSTANCE_DIR="dog"
716
- export OUTPUT_DIR="dreambooth_dog_upscale"
717
- export VALIDATION_IMAGES="dog_downsized/image_1.png dog_downsized/image_2.png dog_downsized/image_3.png dog_downsized/image_4.png"
718
-
719
- accelerate launch train_dreambooth.py \
720
- --report_to wandb \
721
- --pretrained_model_name_or_path=$MODEL_NAME \
722
- --instance_data_dir=$INSTANCE_DIR \
723
- --output_dir=$OUTPUT_DIR \
724
- --instance_prompt="a sks dog" \
725
- --resolution=256 \
726
- --train_batch_size=2 \
727
- --gradient_accumulation_steps=6 \
728
- --learning_rate=5e-6 \
729
- --max_train_steps=2000 \
730
- --validation_prompt="a sks dog" \
731
- --validation_steps=150 \
732
- --checkpointing_steps=500 \
733
- --pre_compute_text_embeddings \
734
- --tokenizer_max_length=77 \
735
- --text_encoder_use_attention_mask \
736
- --validation_images $VALIDATION_IMAGES \
737
- --class_labels_conditioning timesteps \
738
- --push_to_hub
739
- ```
740
-
741
- ## Stable Diffusion XL
742
-
743
- We support fine-tuning of the UNet shipped in [Stable Diffusion XL](https://huggingface.co/papers/2307.01952) with DreamBooth and LoRA via the `train_dreambooth_lora_sdxl.py` script. Please refer to the docs [here](./README_sdxl.md).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/mmdet/core/bbox/demodata.py DELETED
@@ -1,41 +0,0 @@
1
- import numpy as np
2
- import torch
3
-
4
- from mmdet.utils.util_random import ensure_rng
5
-
6
-
7
- def random_boxes(num=1, scale=1, rng=None):
8
- """Simple version of ``kwimage.Boxes.random``
9
-
10
- Returns:
11
- Tensor: shape (n, 4) in x1, y1, x2, y2 format.
12
-
13
- References:
14
- https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390
15
-
16
- Example:
17
- >>> num = 3
18
- >>> scale = 512
19
- >>> rng = 0
20
- >>> boxes = random_boxes(num, scale, rng)
21
- >>> print(boxes)
22
- tensor([[280.9925, 278.9802, 308.6148, 366.1769],
23
- [216.9113, 330.6978, 224.0446, 456.5878],
24
- [405.3632, 196.3221, 493.3953, 270.7942]])
25
- """
26
- rng = ensure_rng(rng)
27
-
28
- tlbr = rng.rand(num, 4).astype(np.float32)
29
-
30
- tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
31
- tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
32
- br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
33
- br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])
34
-
35
- tlbr[:, 0] = tl_x * scale
36
- tlbr[:, 1] = tl_y * scale
37
- tlbr[:, 2] = br_x * scale
38
- tlbr[:, 3] = br_y * scale
39
-
40
- boxes = torch.from_numpy(tlbr)
41
- return boxes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/mmdet/datasets/coco.py DELETED
@@ -1,546 +0,0 @@
1
- import itertools
2
- import logging
3
- import os.path as osp
4
- import tempfile
5
- from collections import OrderedDict
6
-
7
- import mmcv
8
- import numpy as np
9
- import pycocotools
10
- from mmcv.utils import print_log
11
- from pycocotools.coco import COCO
12
- from pycocotools.cocoeval import COCOeval
13
- from terminaltables import AsciiTable
14
-
15
- from mmdet.core import eval_recalls
16
- from .builder import DATASETS
17
- from .custom import CustomDataset
18
-
19
-
20
- @DATASETS.register_module()
21
- class CocoDataset(CustomDataset):
22
-
23
- CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
24
- 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
25
- 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
26
- 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
27
- 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
28
- 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat',
29
- 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
30
- 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
31
- 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
32
- 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
33
- 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',
34
- 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
35
- 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
36
- 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush')
37
-
38
- def load_annotations(self, ann_file):
39
- """Load annotation from COCO style annotation file.
40
-
41
- Args:
42
- ann_file (str): Path of annotation file.
43
-
44
- Returns:
45
- list[dict]: Annotation info from COCO api.
46
- """
47
- if not getattr(pycocotools, '__version__', '0') >= '12.0.2':
48
- raise AssertionError(
49
- 'Incompatible version of pycocotools is installed. '
50
- 'Run pip uninstall pycocotools first. Then run pip '
51
- 'install mmpycocotools to install open-mmlab forked '
52
- 'pycocotools.')
53
-
54
- self.coco = COCO(ann_file)
55
- self.cat_ids = self.coco.get_cat_ids(cat_names=self.CLASSES)
56
- self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)}
57
- self.img_ids = self.coco.get_img_ids()
58
- data_infos = []
59
- total_ann_ids = []
60
- for i in self.img_ids:
61
- info = self.coco.load_imgs([i])[0]
62
- info['filename'] = info['file_name']
63
- data_infos.append(info)
64
- ann_ids = self.coco.get_ann_ids(img_ids=[i])
65
- total_ann_ids.extend(ann_ids)
66
- assert len(set(total_ann_ids)) == len(
67
- total_ann_ids), f"Annotation ids in '{ann_file}' are not unique!"
68
- return data_infos
69
-
70
- def get_ann_info(self, idx):
71
- """Get COCO annotation by index.
72
-
73
- Args:
74
- idx (int): Index of data.
75
-
76
- Returns:
77
- dict: Annotation info of specified index.
78
- """
79
-
80
- img_id = self.data_infos[idx]['id']
81
- ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
82
- ann_info = self.coco.load_anns(ann_ids)
83
- return self._parse_ann_info(self.data_infos[idx], ann_info)
84
-
85
- def get_cat_ids(self, idx):
86
- """Get COCO category ids by index.
87
-
88
- Args:
89
- idx (int): Index of data.
90
-
91
- Returns:
92
- list[int]: All categories in the image of specified index.
93
- """
94
-
95
- img_id = self.data_infos[idx]['id']
96
- ann_ids = self.coco.get_ann_ids(img_ids=[img_id])
97
- ann_info = self.coco.load_anns(ann_ids)
98
- return [ann['category_id'] for ann in ann_info]
99
-
100
- def _filter_imgs(self, min_size=32):
101
- """Filter images too small or without ground truths."""
102
- valid_inds = []
103
- # obtain images that contain annotation
104
- ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values())
105
- # obtain images that contain annotations of the required categories
106
- ids_in_cat = set()
107
- for i, class_id in enumerate(self.cat_ids):
108
- ids_in_cat |= set(self.coco.cat_img_map[class_id])
109
- # merge the image id sets of the two conditions and use the merged set
110
- # to filter out images if self.filter_empty_gt=True
111
- ids_in_cat &= ids_with_ann
112
-
113
- valid_img_ids = []
114
- for i, img_info in enumerate(self.data_infos):
115
- img_id = self.img_ids[i]
116
- if self.filter_empty_gt and img_id not in ids_in_cat:
117
- continue
118
- if min(img_info['width'], img_info['height']) >= min_size:
119
- valid_inds.append(i)
120
- valid_img_ids.append(img_id)
121
- self.img_ids = valid_img_ids
122
- return valid_inds
123
-
124
- def _parse_ann_info(self, img_info, ann_info):
125
- """Parse bbox and mask annotation.
126
-
127
- Args:
128
- ann_info (list[dict]): Annotation info of an image.
129
- with_mask (bool): Whether to parse mask annotations.
130
-
131
- Returns:
132
- dict: A dict containing the following keys: bboxes, bboxes_ignore,\
133
- labels, masks, seg_map. "masks" are raw annotations and not \
134
- decoded into binary masks.
135
- """
136
- gt_bboxes = []
137
- gt_labels = []
138
- gt_bboxes_ignore = []
139
- gt_masks_ann = []
140
- for i, ann in enumerate(ann_info):
141
- if ann.get('ignore', False):
142
- continue
143
- x1, y1, w, h = ann['bbox']
144
- inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0))
145
- inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0))
146
- if inter_w * inter_h == 0:
147
- continue
148
- if ann['area'] <= 0 or w < 1 or h < 1:
149
- continue
150
- if ann['category_id'] not in self.cat_ids:
151
- continue
152
- bbox = [x1, y1, x1 + w, y1 + h]
153
- if ann.get('iscrowd', False):
154
- gt_bboxes_ignore.append(bbox)
155
- else:
156
- gt_bboxes.append(bbox)
157
- gt_labels.append(self.cat2label[ann['category_id']])
158
- gt_masks_ann.append(ann.get('segmentation', None))
159
-
160
- if gt_bboxes:
161
- gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
162
- gt_labels = np.array(gt_labels, dtype=np.int64)
163
- else:
164
- gt_bboxes = np.zeros((0, 4), dtype=np.float32)
165
- gt_labels = np.array([], dtype=np.int64)
166
-
167
- if gt_bboxes_ignore:
168
- gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
169
- else:
170
- gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)
171
-
172
- seg_map = img_info['filename'].replace('jpg', 'png')
173
-
174
- ann = dict(
175
- bboxes=gt_bboxes,
176
- labels=gt_labels,
177
- bboxes_ignore=gt_bboxes_ignore,
178
- masks=gt_masks_ann,
179
- seg_map=seg_map)
180
-
181
- return ann
182
-
183
- def xyxy2xywh(self, bbox):
184
- """Convert ``xyxy`` style bounding boxes to ``xywh`` style for COCO
185
- evaluation.
186
-
187
- Args:
188
- bbox (numpy.ndarray): The bounding boxes, shape (4, ), in
189
- ``xyxy`` order.
190
-
191
- Returns:
192
- list[float]: The converted bounding boxes, in ``xywh`` order.
193
- """
194
-
195
- _bbox = bbox.tolist()
196
- return [
197
- _bbox[0],
198
- _bbox[1],
199
- _bbox[2] - _bbox[0],
200
- _bbox[3] - _bbox[1],
201
- ]
202
-
203
- def _proposal2json(self, results):
204
- """Convert proposal results to COCO json style."""
205
- json_results = []
206
- for idx in range(len(self)):
207
- img_id = self.img_ids[idx]
208
- bboxes = results[idx]
209
- for i in range(bboxes.shape[0]):
210
- data = dict()
211
- data['image_id'] = img_id
212
- data['bbox'] = self.xyxy2xywh(bboxes[i])
213
- data['score'] = float(bboxes[i][4])
214
- data['category_id'] = 1
215
- json_results.append(data)
216
- return json_results
217
-
218
- def _det2json(self, results):
219
- """Convert detection results to COCO json style."""
220
- json_results = []
221
- for idx in range(len(self)):
222
- img_id = self.img_ids[idx]
223
- result = results[idx]
224
- for label in range(len(result)):
225
- bboxes = result[label]
226
- for i in range(bboxes.shape[0]):
227
- data = dict()
228
- data['image_id'] = img_id
229
- data['bbox'] = self.xyxy2xywh(bboxes[i])
230
- data['score'] = float(bboxes[i][4])
231
- data['category_id'] = self.cat_ids[label]
232
- json_results.append(data)
233
- return json_results
234
-
235
- def _segm2json(self, results):
236
- """Convert instance segmentation results to COCO json style."""
237
- bbox_json_results = []
238
- segm_json_results = []
239
- for idx in range(len(self)):
240
- img_id = self.img_ids[idx]
241
- det, seg = results[idx]
242
- for label in range(len(det)):
243
- # bbox results
244
- bboxes = det[label]
245
- for i in range(bboxes.shape[0]):
246
- data = dict()
247
- data['image_id'] = img_id
248
- data['bbox'] = self.xyxy2xywh(bboxes[i])
249
- data['score'] = float(bboxes[i][4])
250
- data['category_id'] = self.cat_ids[label]
251
- bbox_json_results.append(data)
252
-
253
- # segm results
254
- # some detectors use different scores for bbox and mask
255
- if isinstance(seg, tuple):
256
- segms = seg[0][label]
257
- mask_score = seg[1][label]
258
- else:
259
- segms = seg[label]
260
- mask_score = [bbox[4] for bbox in bboxes]
261
- for i in range(bboxes.shape[0]):
262
- data = dict()
263
- data['image_id'] = img_id
264
- data['bbox'] = self.xyxy2xywh(bboxes[i])
265
- data['score'] = float(mask_score[i])
266
- data['category_id'] = self.cat_ids[label]
267
- if isinstance(segms[i]['counts'], bytes):
268
- segms[i]['counts'] = segms[i]['counts'].decode()
269
- data['segmentation'] = segms[i]
270
- segm_json_results.append(data)
271
- return bbox_json_results, segm_json_results
272
-
273
- def results2json(self, results, outfile_prefix):
274
- """Dump the detection results to a COCO style json file.
275
-
276
- There are 3 types of results: proposals, bbox predictions, mask
277
- predictions, and they have different data types. This method will
278
- automatically recognize the type, and dump them to json files.
279
-
280
- Args:
281
- results (list[list | tuple | ndarray]): Testing results of the
282
- dataset.
283
- outfile_prefix (str): The filename prefix of the json files. If the
284
- prefix is "somepath/xxx", the json files will be named
285
- "somepath/xxx.bbox.json", "somepath/xxx.segm.json",
286
- "somepath/xxx.proposal.json".
287
-
288
- Returns:
289
- dict[str: str]: Possible keys are "bbox", "segm", "proposal", and \
290
- values are corresponding filenames.
291
- """
292
- result_files = dict()
293
- if isinstance(results[0], list):
294
- json_results = self._det2json(results)
295
- result_files['bbox'] = f'{outfile_prefix}.bbox.json'
296
- result_files['proposal'] = f'{outfile_prefix}.bbox.json'
297
- mmcv.dump(json_results, result_files['bbox'])
298
- elif isinstance(results[0], tuple):
299
- json_results = self._segm2json(results)
300
- result_files['bbox'] = f'{outfile_prefix}.bbox.json'
301
- result_files['proposal'] = f'{outfile_prefix}.bbox.json'
302
- result_files['segm'] = f'{outfile_prefix}.segm.json'
303
- mmcv.dump(json_results[0], result_files['bbox'])
304
- mmcv.dump(json_results[1], result_files['segm'])
305
- elif isinstance(results[0], np.ndarray):
306
- json_results = self._proposal2json(results)
307
- result_files['proposal'] = f'{outfile_prefix}.proposal.json'
308
- mmcv.dump(json_results, result_files['proposal'])
309
- else:
310
- raise TypeError('invalid type of results')
311
- return result_files
312
-
313
- def fast_eval_recall(self, results, proposal_nums, iou_thrs, logger=None):
314
- gt_bboxes = []
315
- for i in range(len(self.img_ids)):
316
- ann_ids = self.coco.get_ann_ids(img_ids=self.img_ids[i])
317
- ann_info = self.coco.load_anns(ann_ids)
318
- if len(ann_info) == 0:
319
- gt_bboxes.append(np.zeros((0, 4)))
320
- continue
321
- bboxes = []
322
- for ann in ann_info:
323
- if ann.get('ignore', False) or ann['iscrowd']:
324
- continue
325
- x1, y1, w, h = ann['bbox']
326
- bboxes.append([x1, y1, x1 + w, y1 + h])
327
- bboxes = np.array(bboxes, dtype=np.float32)
328
- if bboxes.shape[0] == 0:
329
- bboxes = np.zeros((0, 4))
330
- gt_bboxes.append(bboxes)
331
-
332
- recalls = eval_recalls(
333
- gt_bboxes, results, proposal_nums, iou_thrs, logger=logger)
334
- ar = recalls.mean(axis=1)
335
- return ar
336
-
337
- def format_results(self, results, jsonfile_prefix=None, **kwargs):
338
- """Format the results to json (standard format for COCO evaluation).
339
-
340
- Args:
341
- results (list[tuple | numpy.ndarray]): Testing results of the
342
- dataset.
343
- jsonfile_prefix (str | None): The prefix of json files. It includes
344
- the file path and the prefix of filename, e.g., "a/b/prefix".
345
- If not specified, a temp file will be created. Default: None.
346
-
347
- Returns:
348
- tuple: (result_files, tmp_dir), result_files is a dict containing \
349
- the json filepaths, tmp_dir is the temporal directory created \
350
- for saving json files when jsonfile_prefix is not specified.
351
- """
352
- assert isinstance(results, list), 'results must be a list'
353
- assert len(results) == len(self), (
354
- 'The length of results is not equal to the dataset len: {} != {}'.
355
- format(len(results), len(self)))
356
-
357
- if jsonfile_prefix is None:
358
- tmp_dir = tempfile.TemporaryDirectory()
359
- jsonfile_prefix = osp.join(tmp_dir.name, 'results')
360
- else:
361
- tmp_dir = None
362
- result_files = self.results2json(results, jsonfile_prefix)
363
- return result_files, tmp_dir
364
-
365
- def evaluate(self,
366
- results,
367
- metric='bbox',
368
- logger=None,
369
- jsonfile_prefix=None,
370
- classwise=False,
371
- proposal_nums=(100, 300, 1000),
372
- iou_thrs=None,
373
- metric_items=None):
374
- """Evaluation in COCO protocol.
375
-
376
- Args:
377
- results (list[list | tuple]): Testing results of the dataset.
378
- metric (str | list[str]): Metrics to be evaluated. Options are
379
- 'bbox', 'segm', 'proposal', 'proposal_fast'.
380
- logger (logging.Logger | str | None): Logger used for printing
381
- related information during evaluation. Default: None.
382
- jsonfile_prefix (str | None): The prefix of json files. It includes
383
- the file path and the prefix of filename, e.g., "a/b/prefix".
384
- If not specified, a temp file will be created. Default: None.
385
- classwise (bool): Whether to evaluating the AP for each class.
386
- proposal_nums (Sequence[int]): Proposal number used for evaluating
387
- recalls, such as recall@100, recall@1000.
388
- Default: (100, 300, 1000).
389
- iou_thrs (Sequence[float], optional): IoU threshold used for
390
- evaluating recalls/mAPs. If set to a list, the average of all
391
- IoUs will also be computed. If not specified, [0.50, 0.55,
392
- 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95] will be used.
393
- Default: None.
394
- metric_items (list[str] | str, optional): Metric items that will
395
- be returned. If not specified, ``['AR@100', 'AR@300',
396
- 'AR@1000', 'AR_s@1000', 'AR_m@1000', 'AR_l@1000' ]`` will be
397
- used when ``metric=='proposal'``, ``['mAP', 'mAP_50', 'mAP_75',
398
- 'mAP_s', 'mAP_m', 'mAP_l']`` will be used when
399
- ``metric=='bbox' or metric=='segm'``.
400
-
401
- Returns:
402
- dict[str, float]: COCO style evaluation metric.
403
- """
404
-
405
- metrics = metric if isinstance(metric, list) else [metric]
406
- allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast']
407
- for metric in metrics:
408
- if metric not in allowed_metrics:
409
- raise KeyError(f'metric {metric} is not supported')
410
- if iou_thrs is None:
411
- iou_thrs = np.linspace(
412
- .5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
413
- if metric_items is not None:
414
- if not isinstance(metric_items, list):
415
- metric_items = [metric_items]
416
-
417
- result_files, tmp_dir = self.format_results(results, jsonfile_prefix)
418
-
419
- eval_results = OrderedDict()
420
- cocoGt = self.coco
421
- for metric in metrics:
422
- msg = f'Evaluating {metric}...'
423
- if logger is None:
424
- msg = '\n' + msg
425
- print_log(msg, logger=logger)
426
-
427
- if metric == 'proposal_fast':
428
- ar = self.fast_eval_recall(
429
- results, proposal_nums, iou_thrs, logger='silent')
430
- log_msg = []
431
- for i, num in enumerate(proposal_nums):
432
- eval_results[f'AR@{num}'] = ar[i]
433
- log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}')
434
- log_msg = ''.join(log_msg)
435
- print_log(log_msg, logger=logger)
436
- continue
437
-
438
- if metric not in result_files:
439
- raise KeyError(f'{metric} is not in results')
440
- try:
441
- cocoDt = cocoGt.loadRes(result_files[metric])
442
- except IndexError:
443
- print_log(
444
- 'The testing results of the whole dataset is empty.',
445
- logger=logger,
446
- level=logging.ERROR)
447
- break
448
-
449
- iou_type = 'bbox' if metric == 'proposal' else metric
450
- cocoEval = COCOeval(cocoGt, cocoDt, iou_type)
451
- cocoEval.params.catIds = self.cat_ids
452
- cocoEval.params.imgIds = self.img_ids
453
- cocoEval.params.maxDets = list(proposal_nums)
454
- cocoEval.params.iouThrs = iou_thrs
455
- # mapping of cocoEval.stats
456
- coco_metric_names = {
457
- 'mAP': 0,
458
- 'mAP_50': 1,
459
- 'mAP_75': 2,
460
- 'mAP_s': 3,
461
- 'mAP_m': 4,
462
- 'mAP_l': 5,
463
- 'AR@100': 6,
464
- 'AR@300': 7,
465
- 'AR@1000': 8,
466
- 'AR_s@1000': 9,
467
- 'AR_m@1000': 10,
468
- 'AR_l@1000': 11
469
- }
470
- if metric_items is not None:
471
- for metric_item in metric_items:
472
- if metric_item not in coco_metric_names:
473
- raise KeyError(
474
- f'metric item {metric_item} is not supported')
475
-
476
- if metric == 'proposal':
477
- cocoEval.params.useCats = 0
478
- cocoEval.evaluate()
479
- cocoEval.accumulate()
480
- cocoEval.summarize()
481
- if metric_items is None:
482
- metric_items = [
483
- 'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000',
484
- 'AR_m@1000', 'AR_l@1000'
485
- ]
486
-
487
- for item in metric_items:
488
- val = float(
489
- f'{cocoEval.stats[coco_metric_names[item]]:.3f}')
490
- eval_results[item] = val
491
- else:
492
- cocoEval.evaluate()
493
- cocoEval.accumulate()
494
- cocoEval.summarize()
495
- if classwise: # Compute per-category AP
496
- # Compute per-category AP
497
- # from https://github.com/facebookresearch/detectron2/
498
- precisions = cocoEval.eval['precision']
499
- # precision: (iou, recall, cls, area range, max dets)
500
- assert len(self.cat_ids) == precisions.shape[2]
501
-
502
- results_per_category = []
503
- for idx, catId in enumerate(self.cat_ids):
504
- # area range index 0: all area ranges
505
- # max dets index -1: typically 100 per image
506
- nm = self.coco.loadCats(catId)[0]
507
- precision = precisions[:, :, idx, 0, -1]
508
- precision = precision[precision > -1]
509
- if precision.size:
510
- ap = np.mean(precision)
511
- else:
512
- ap = float('nan')
513
- results_per_category.append(
514
- (f'{nm["name"]}', f'{float(ap):0.3f}'))
515
-
516
- num_columns = min(6, len(results_per_category) * 2)
517
- results_flatten = list(
518
- itertools.chain(*results_per_category))
519
- headers = ['category', 'AP'] * (num_columns // 2)
520
- results_2d = itertools.zip_longest(*[
521
- results_flatten[i::num_columns]
522
- for i in range(num_columns)
523
- ])
524
- table_data = [headers]
525
- table_data += [result for result in results_2d]
526
- table = AsciiTable(table_data)
527
- print_log('\n' + table.table, logger=logger)
528
-
529
- if metric_items is None:
530
- metric_items = [
531
- 'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l'
532
- ]
533
-
534
- for metric_item in metric_items:
535
- key = f'{metric}_{metric_item}'
536
- val = float(
537
- f'{cocoEval.stats[coco_metric_names[metric_item]]:.3f}'
538
- )
539
- eval_results[key] = val
540
- ap = cocoEval.stats[:6]
541
- eval_results[f'{metric}_mAP_copypaste'] = (
542
- f'{ap[0]:.3f} {ap[1]:.3f} {ap[2]:.3f} {ap[3]:.3f} '
543
- f'{ap[4]:.3f} {ap[5]:.3f}')
544
- if tmp_dir is not None:
545
- tmp_dir.cleanup()
546
- return eval_results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/mmdet/datasets/custom.py DELETED
@@ -1,323 +0,0 @@
1
- import os.path as osp
2
- import warnings
3
- from collections import OrderedDict
4
-
5
- import mmcv
6
- import numpy as np
7
- from mmcv.utils import print_log
8
- from torch.utils.data import Dataset
9
-
10
- from mmdet.core import eval_map, eval_recalls
11
- from .builder import DATASETS
12
- from .pipelines import Compose
13
-
14
-
15
- @DATASETS.register_module()
16
- class CustomDataset(Dataset):
17
- """Custom dataset for detection.
18
-
19
- The annotation format is shown as follows. The `ann` field is optional for
20
- testing.
21
-
22
- .. code-block:: none
23
-
24
- [
25
- {
26
- 'filename': 'a.jpg',
27
- 'width': 1280,
28
- 'height': 720,
29
- 'ann': {
30
- 'bboxes': <np.ndarray> (n, 4) in (x1, y1, x2, y2) order.
31
- 'labels': <np.ndarray> (n, ),
32
- 'bboxes_ignore': <np.ndarray> (k, 4), (optional field)
33
- 'labels_ignore': <np.ndarray> (k, 4) (optional field)
34
- }
35
- },
36
- ...
37
- ]
38
-
39
- Args:
40
- ann_file (str): Annotation file path.
41
- pipeline (list[dict]): Processing pipeline.
42
- classes (str | Sequence[str], optional): Specify classes to load.
43
- If is None, ``cls.CLASSES`` will be used. Default: None.
44
- data_root (str, optional): Data root for ``ann_file``,
45
- ``img_prefix``, ``seg_prefix``, ``proposal_file`` if specified.
46
- test_mode (bool, optional): If set True, annotation will not be loaded.
47
- filter_empty_gt (bool, optional): If set true, images without bounding
48
- boxes of the dataset's classes will be filtered out. This option
49
- only works when `test_mode=False`, i.e., we never filter images
50
- during tests.
51
- """
52
-
53
- CLASSES = None
54
-
55
- def __init__(self,
56
- ann_file,
57
- pipeline,
58
- classes=None,
59
- data_root=None,
60
- img_prefix='',
61
- seg_prefix=None,
62
- proposal_file=None,
63
- test_mode=False,
64
- filter_empty_gt=True):
65
- self.ann_file = ann_file
66
- self.data_root = data_root
67
- self.img_prefix = img_prefix
68
- self.seg_prefix = seg_prefix
69
- self.proposal_file = proposal_file
70
- self.test_mode = test_mode
71
- self.filter_empty_gt = filter_empty_gt
72
- self.CLASSES = self.get_classes(classes)
73
-
74
- # join paths if data_root is specified
75
- if self.data_root is not None:
76
- if not osp.isabs(self.ann_file):
77
- self.ann_file = osp.join(self.data_root, self.ann_file)
78
- if not (self.img_prefix is None or osp.isabs(self.img_prefix)):
79
- self.img_prefix = osp.join(self.data_root, self.img_prefix)
80
- if not (self.seg_prefix is None or osp.isabs(self.seg_prefix)):
81
- self.seg_prefix = osp.join(self.data_root, self.seg_prefix)
82
- if not (self.proposal_file is None
83
- or osp.isabs(self.proposal_file)):
84
- self.proposal_file = osp.join(self.data_root,
85
- self.proposal_file)
86
- # load annotations (and proposals)
87
- self.data_infos = self.load_annotations(self.ann_file)
88
-
89
- if self.proposal_file is not None:
90
- self.proposals = self.load_proposals(self.proposal_file)
91
- else:
92
- self.proposals = None
93
-
94
- # filter images too small and containing no annotations
95
- if not test_mode:
96
- valid_inds = self._filter_imgs()
97
- self.data_infos = [self.data_infos[i] for i in valid_inds]
98
- if self.proposals is not None:
99
- self.proposals = [self.proposals[i] for i in valid_inds]
100
- # set group flag for the sampler
101
- self._set_group_flag()
102
-
103
- # processing pipeline
104
- self.pipeline = Compose(pipeline)
105
-
106
- def __len__(self):
107
- """Total number of samples of data."""
108
- return len(self.data_infos)
109
-
110
- def load_annotations(self, ann_file):
111
- """Load annotation from annotation file."""
112
- return mmcv.load(ann_file)
113
-
114
- def load_proposals(self, proposal_file):
115
- """Load proposal from proposal file."""
116
- return mmcv.load(proposal_file)
117
-
118
- def get_ann_info(self, idx):
119
- """Get annotation by index.
120
-
121
- Args:
122
- idx (int): Index of data.
123
-
124
- Returns:
125
- dict: Annotation info of specified index.
126
- """
127
-
128
- return self.data_infos[idx]['ann']
129
-
130
- def get_cat_ids(self, idx):
131
- """Get category ids by index.
132
-
133
- Args:
134
- idx (int): Index of data.
135
-
136
- Returns:
137
- list[int]: All categories in the image of specified index.
138
- """
139
-
140
- return self.data_infos[idx]['ann']['labels'].astype(np.int).tolist()
141
-
142
- def pre_pipeline(self, results):
143
- """Prepare results dict for pipeline."""
144
- results['img_prefix'] = self.img_prefix
145
- results['seg_prefix'] = self.seg_prefix
146
- results['proposal_file'] = self.proposal_file
147
- results['bbox_fields'] = []
148
- results['mask_fields'] = []
149
- results['seg_fields'] = []
150
-
151
- def _filter_imgs(self, min_size=32):
152
- """Filter images too small."""
153
- if self.filter_empty_gt:
154
- warnings.warn(
155
- 'CustomDataset does not support filtering empty gt images.')
156
- valid_inds = []
157
- for i, img_info in enumerate(self.data_infos):
158
- if min(img_info['width'], img_info['height']) >= min_size:
159
- valid_inds.append(i)
160
- return valid_inds
161
-
162
- def _set_group_flag(self):
163
- """Set flag according to image aspect ratio.
164
-
165
- Images with aspect ratio greater than 1 will be set as group 1,
166
- otherwise group 0.
167
- """
168
- self.flag = np.zeros(len(self), dtype=np.uint8)
169
- for i in range(len(self)):
170
- img_info = self.data_infos[i]
171
- if img_info['width'] / img_info['height'] > 1:
172
- self.flag[i] = 1
173
-
174
- def _rand_another(self, idx):
175
- """Get another random index from the same group as the given index."""
176
- pool = np.where(self.flag == self.flag[idx])[0]
177
- return np.random.choice(pool)
178
-
179
- def __getitem__(self, idx):
180
- """Get training/test data after pipeline.
181
-
182
- Args:
183
- idx (int): Index of data.
184
-
185
- Returns:
186
- dict: Training/test data (with annotation if `test_mode` is set \
187
- True).
188
- """
189
-
190
- if self.test_mode:
191
- return self.prepare_test_img(idx)
192
- while True:
193
- data = self.prepare_train_img(idx)
194
- if data is None:
195
- idx = self._rand_another(idx)
196
- continue
197
- return data
198
-
199
- def prepare_train_img(self, idx):
200
- """Get training data and annotations after pipeline.
201
-
202
- Args:
203
- idx (int): Index of data.
204
-
205
- Returns:
206
- dict: Training data and annotation after pipeline with new keys \
207
- introduced by pipeline.
208
- """
209
-
210
- img_info = self.data_infos[idx]
211
- ann_info = self.get_ann_info(idx)
212
- results = dict(img_info=img_info, ann_info=ann_info)
213
- if self.proposals is not None:
214
- results['proposals'] = self.proposals[idx]
215
- self.pre_pipeline(results)
216
- return self.pipeline(results)
217
-
218
- def prepare_test_img(self, idx):
219
- """Get testing data after pipeline.
220
-
221
- Args:
222
- idx (int): Index of data.
223
-
224
- Returns:
225
- dict: Testing data after pipeline with new keys introduced by \
226
- pipeline.
227
- """
228
-
229
- img_info = self.data_infos[idx]
230
- results = dict(img_info=img_info)
231
- if self.proposals is not None:
232
- results['proposals'] = self.proposals[idx]
233
- self.pre_pipeline(results)
234
- return self.pipeline(results)
235
-
236
- @classmethod
237
- def get_classes(cls, classes=None):
238
- """Get class names of current dataset.
239
-
240
- Args:
241
- classes (Sequence[str] | str | None): If classes is None, use
242
- default CLASSES defined by builtin dataset. If classes is a
243
- string, take it as a file name. The file contains the name of
244
- classes where each line contains one class name. If classes is
245
- a tuple or list, override the CLASSES defined by the dataset.
246
-
247
- Returns:
248
- tuple[str] or list[str]: Names of categories of the dataset.
249
- """
250
- if classes is None:
251
- return cls.CLASSES
252
-
253
- if isinstance(classes, str):
254
- # take it as a file path
255
- class_names = mmcv.list_from_file(classes)
256
- elif isinstance(classes, (tuple, list)):
257
- class_names = classes
258
- else:
259
- raise ValueError(f'Unsupported type {type(classes)} of classes.')
260
-
261
- return class_names
262
-
263
- def format_results(self, results, **kwargs):
264
- """Place holder to format result to dataset specific output."""
265
-
266
- def evaluate(self,
267
- results,
268
- metric='mAP',
269
- logger=None,
270
- proposal_nums=(100, 300, 1000),
271
- iou_thr=0.5,
272
- scale_ranges=None):
273
- """Evaluate the dataset.
274
-
275
- Args:
276
- results (list): Testing results of the dataset.
277
- metric (str | list[str]): Metrics to be evaluated.
278
- logger (logging.Logger | None | str): Logger used for printing
279
- related information during evaluation. Default: None.
280
- proposal_nums (Sequence[int]): Proposal number used for evaluating
281
- recalls, such as recall@100, recall@1000.
282
- Default: (100, 300, 1000).
283
- iou_thr (float | list[float]): IoU threshold. Default: 0.5.
284
- scale_ranges (list[tuple] | None): Scale ranges for evaluating mAP.
285
- Default: None.
286
- """
287
-
288
- if not isinstance(metric, str):
289
- assert len(metric) == 1
290
- metric = metric[0]
291
- allowed_metrics = ['mAP', 'recall']
292
- if metric not in allowed_metrics:
293
- raise KeyError(f'metric {metric} is not supported')
294
- annotations = [self.get_ann_info(i) for i in range(len(self))]
295
- eval_results = OrderedDict()
296
- iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr
297
- if metric == 'mAP':
298
- assert isinstance(iou_thrs, list)
299
- mean_aps = []
300
- for iou_thr in iou_thrs:
301
- print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}')
302
- mean_ap, _ = eval_map(
303
- results,
304
- annotations,
305
- scale_ranges=scale_ranges,
306
- iou_thr=iou_thr,
307
- dataset=self.CLASSES,
308
- logger=logger)
309
- mean_aps.append(mean_ap)
310
- eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3)
311
- eval_results['mAP'] = sum(mean_aps) / len(mean_aps)
312
- elif metric == 'recall':
313
- gt_bboxes = [ann['bboxes'] for ann in annotations]
314
- recalls = eval_recalls(
315
- gt_bboxes, results, proposal_nums, iou_thr, logger=logger)
316
- for i, num in enumerate(proposal_nums):
317
- for j, iou in enumerate(iou_thrs):
318
- eval_results[f'recall@{num}@{iou}'] = recalls[i, j]
319
- if recalls.shape[1] > 1:
320
- ar = recalls.mean(axis=1)
321
- for i, num in enumerate(proposal_nums):
322
- eval_results[f'AR@{num}'] = ar[i]
323
- return eval_results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AnishKumbhar/ChatBot/text-generation-webui-main/modules/github.py DELETED
@@ -1,38 +0,0 @@
1
- import subprocess
2
- from pathlib import Path
3
-
4
- new_extensions = set()
5
-
6
-
7
- def clone_or_pull_repository(github_url):
8
- global new_extensions
9
-
10
- repository_folder = Path("extensions")
11
- repo_name = github_url.rstrip("/").split("/")[-1].split(".")[0]
12
-
13
- # Check if the repository folder exists
14
- if not repository_folder.exists():
15
- repository_folder.mkdir(parents=True)
16
-
17
- repo_path = repository_folder / repo_name
18
-
19
- # Check if the repository is already cloned
20
- if repo_path.exists():
21
- yield f"Updating {github_url}..."
22
- # Perform a 'git pull' to update the repository
23
- try:
24
- pull_output = subprocess.check_output(["git", "-C", repo_path, "pull"], stderr=subprocess.STDOUT)
25
- yield "Done."
26
- return pull_output.decode()
27
- except subprocess.CalledProcessError as e:
28
- return str(e)
29
-
30
- # Clone the repository
31
- try:
32
- yield f"Cloning {github_url}..."
33
- clone_output = subprocess.check_output(["git", "clone", github_url, repo_path], stderr=subprocess.STDOUT)
34
- new_extensions.add(repo_name)
35
- yield f"The extension `{repo_name}` has been downloaded.\n\nPlease close the the web UI completely and launch it again to be able to load it."
36
- return clone_output.decode()
37
- except subprocess.CalledProcessError as e:
38
- return str(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Anonymous-123/ImageNet-Editing/app.py DELETED
@@ -1,102 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import sys
4
- sys.path.append(".")
5
-
6
- #@title Import stuff
7
- import gc
8
-
9
- import subprocess
10
- import shutil
11
- from PIL import Image
12
- import time
13
-
14
- import imageio
15
-
16
-
17
- # def run(initial_image, mask, Backgrounds, Backgrounds_complexity, Size, Angle, Steps, num_of_Images):
18
- def run(source_img, Backgrounds, Backgrounds_complexity, Size, Angle, Steps, num_of_Images):
19
- print('-------------------starting to process-------------------')
20
- if os.path.exists('results'):
21
- shutil.rmtree("results")
22
- if os.path.exists('tmp'):
23
- shutil.rmtree("tmp")
24
- time.sleep(1)
25
- os.makedirs('results', exist_ok=True)
26
- os.makedirs('tmp/img', exist_ok=True)
27
- os.makedirs('tmp/mask', exist_ok=True)
28
- os.makedirs('tmp/bg', exist_ok=True)
29
-
30
- '''
31
- print('-----initial_image: ', initial_image)
32
- init_image = Image.open(initial_image)
33
- mask = Image.open(mask)
34
- init_image = init_image.resize((256,256))
35
- mask = mask.resize((256,256))
36
- init_image.save("tmp/img/input.JPEG")
37
- mask.save("tmp/mask/input.png")
38
- '''
39
- imageio.imwrite("tmp/img/input.JPEG", source_img["image"])
40
- imageio.imwrite("tmp/mask/input.png", source_img["mask"])
41
-
42
- initial_image = Image.open('tmp/img/input.JPEG').resize((256,256))
43
- initial_image.save('tmp/img/input.JPEG')
44
- mask = Image.open('tmp/mask/input.png').resize((256,256))
45
- mask.save('tmp/mask/input.png')
46
-
47
-
48
- if Backgrounds:
49
- background_specific = Backgrounds
50
- if background_specific is not None:
51
- background_specific = Image.open(background_specific).convert('RGB') # Specified background
52
- background_specific = background_specific.resize((256,256))
53
- background_specific.save('tmp/bg/bg.png')
54
- background_specific = '../tmp/bg/bg.png'
55
- else:
56
- background_specific = ""
57
-
58
- Backgrounds_complexity = Backgrounds_complexity
59
- Size = Size
60
- Angle = Angle
61
- Steps = Steps
62
- num_of_Images = num_of_Images
63
- print(Backgrounds_complexity, background_specific, Size, Angle, Steps, num_of_Images)
64
- p = subprocess.Popen(["sh", "run.sh", str(Backgrounds_complexity), background_specific, str(Size), str(Angle), str(Steps), str(num_of_Images)])
65
-
66
- # subprocess.Popen(["cd", "object_removal/TFill/"])
67
- # subprocess.Popen(["python", "test.py"])
68
-
69
- return_code = p.wait()
70
- print('----return_code: ', return_code)
71
-
72
- if os.path.exists('results/edited.png'):
73
- return Image.open('results/edited.png')
74
- else:
75
- return Image.open('tmp/img/input.JPEG')
76
-
77
-
78
- image = gr.outputs.Image(type="pil", label="Your result")
79
- css = ".output-image{height: 528px !important} .output-carousel .output-image{height:272px !important} a{text-decoration: underline}"
80
- iface = gr.Interface(fn=run, inputs=[
81
- # gr.inputs.Image(type="filepath", label='initial_image'),
82
- gr.Image(source="upload", type="numpy", tool="sketch", elem_id="source_container"),
83
- # gr.inputs.Image(type="filepath", label='mask - object mask', optional=True),
84
- gr.inputs.Image(type="filepath", label='Backgrounds - optional, specified backgrounds'),
85
- gr.inputs.Slider(label="Backgrounds_complexity - How complicated you wish to the generated image to be", default=0, step=1, minimum=-30, maximum=30),
86
- gr.inputs.Slider(label="Size - Object pixel rates", default=0.1, step=0.02, minimum=0.01, maximum=0.5),
87
- gr.inputs.Slider(label="Angle - Object angle", default=0, step=10, minimum=-180, maximum=180),
88
- gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=10,maximum=100,minimum=1,step=1),
89
- gr.inputs.Slider(label="num_of_Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4),
90
-
91
- # gr.inputs.Radio(label="Width", choices=[32,64,128,256],default=256),
92
- # gr.inputs.Radio(label="Height", choices=[32,64,128,256],default=256),
93
- # gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="chalk pastel drawing of a dog wearing a funny hat"),
94
- #gr.inputs.Slider(label="ETA - between 0 and 1. Lower values can provide better quality, higher values can be more diverse",default=0.0,minimum=0.0, maximum=1.0,step=0.1),
95
- ],
96
- # outputs=[image,gr.outputs.Carousel(label="Individual images",components=["image"]),gr.outputs.Textbox(label="Error")],
97
- outputs=["image"],
98
- css=css,
99
- title="Image Editing with Controls of Object Attributes including Backgrounds, Sizes, Positions and Directions",
100
- description="Demo for Image Editing with Controls of Object Attributes. *** NOTE!!! Due to the requirements of GPU, this demo cannot work on this website currently(it always returns the input image). Please download the codes and run them at your server. ***",
101
- article="Our code are mostly developed based the codes of `Blended Diffusion for Text-driven Editing of Natural Images' and `TFill'")
102
- iface.launch(enable_queue=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/commands/download.py DELETED
@@ -1,143 +0,0 @@
1
- import logging
2
- import os
3
- from optparse import Values
4
- from typing import List
5
-
6
- from pip._internal.cli import cmdoptions
7
- from pip._internal.cli.cmdoptions import make_target_python
8
- from pip._internal.cli.req_command import RequirementCommand, with_cleanup
9
- from pip._internal.cli.status_codes import SUCCESS
10
- from pip._internal.operations.build.build_tracker import get_build_tracker
11
- from pip._internal.req.req_install import check_legacy_setup_py_options
12
- from pip._internal.utils.misc import ensure_dir, normalize_path, write_output
13
- from pip._internal.utils.temp_dir import TempDirectory
14
-
15
- logger = logging.getLogger(__name__)
16
-
17
-
18
- class DownloadCommand(RequirementCommand):
19
- """
20
- Download packages from:
21
-
22
- - PyPI (and other indexes) using requirement specifiers.
23
- - VCS project urls.
24
- - Local project directories.
25
- - Local or remote source archives.
26
-
27
- pip also supports downloading from "requirements files", which provide
28
- an easy way to specify a whole environment to be downloaded.
29
- """
30
-
31
- usage = """
32
- %prog [options] <requirement specifier> [package-index-options] ...
33
- %prog [options] -r <requirements file> [package-index-options] ...
34
- %prog [options] <vcs project url> ...
35
- %prog [options] <local project path> ...
36
- %prog [options] <archive url/path> ..."""
37
-
38
- def add_options(self) -> None:
39
- self.cmd_opts.add_option(cmdoptions.constraints())
40
- self.cmd_opts.add_option(cmdoptions.requirements())
41
- self.cmd_opts.add_option(cmdoptions.no_deps())
42
- self.cmd_opts.add_option(cmdoptions.global_options())
43
- self.cmd_opts.add_option(cmdoptions.no_binary())
44
- self.cmd_opts.add_option(cmdoptions.only_binary())
45
- self.cmd_opts.add_option(cmdoptions.prefer_binary())
46
- self.cmd_opts.add_option(cmdoptions.src())
47
- self.cmd_opts.add_option(cmdoptions.pre())
48
- self.cmd_opts.add_option(cmdoptions.require_hashes())
49
- self.cmd_opts.add_option(cmdoptions.progress_bar())
50
- self.cmd_opts.add_option(cmdoptions.no_build_isolation())
51
- self.cmd_opts.add_option(cmdoptions.use_pep517())
52
- self.cmd_opts.add_option(cmdoptions.no_use_pep517())
53
- self.cmd_opts.add_option(cmdoptions.check_build_deps())
54
- self.cmd_opts.add_option(cmdoptions.ignore_requires_python())
55
-
56
- self.cmd_opts.add_option(
57
- "-d",
58
- "--dest",
59
- "--destination-dir",
60
- "--destination-directory",
61
- dest="download_dir",
62
- metavar="dir",
63
- default=os.curdir,
64
- help="Download packages into <dir>.",
65
- )
66
-
67
- cmdoptions.add_target_python_options(self.cmd_opts)
68
-
69
- index_opts = cmdoptions.make_option_group(
70
- cmdoptions.index_group,
71
- self.parser,
72
- )
73
-
74
- self.parser.insert_option_group(0, index_opts)
75
- self.parser.insert_option_group(0, self.cmd_opts)
76
-
77
- @with_cleanup
78
- def run(self, options: Values, args: List[str]) -> int:
79
- options.ignore_installed = True
80
- # editable doesn't really make sense for `pip download`, but the bowels
81
- # of the RequirementSet code require that property.
82
- options.editables = []
83
-
84
- cmdoptions.check_dist_restriction(options)
85
-
86
- options.download_dir = normalize_path(options.download_dir)
87
- ensure_dir(options.download_dir)
88
-
89
- session = self.get_default_session(options)
90
-
91
- target_python = make_target_python(options)
92
- finder = self._build_package_finder(
93
- options=options,
94
- session=session,
95
- target_python=target_python,
96
- ignore_requires_python=options.ignore_requires_python,
97
- )
98
-
99
- build_tracker = self.enter_context(get_build_tracker())
100
-
101
- directory = TempDirectory(
102
- delete=not options.no_clean,
103
- kind="download",
104
- globally_managed=True,
105
- )
106
-
107
- reqs = self.get_requirements(args, options, finder, session)
108
- check_legacy_setup_py_options(options, reqs)
109
-
110
- preparer = self.make_requirement_preparer(
111
- temp_build_dir=directory,
112
- options=options,
113
- build_tracker=build_tracker,
114
- session=session,
115
- finder=finder,
116
- download_dir=options.download_dir,
117
- use_user_site=False,
118
- verbosity=self.verbosity,
119
- )
120
-
121
- resolver = self.make_resolver(
122
- preparer=preparer,
123
- finder=finder,
124
- options=options,
125
- ignore_requires_python=options.ignore_requires_python,
126
- use_pep517=options.use_pep517,
127
- py_version_info=options.python_version,
128
- )
129
-
130
- self.trace_basic_info(finder)
131
-
132
- requirement_set = resolver.resolve(reqs, check_supported_wheels=True)
133
-
134
- downloaded: List[str] = []
135
- for req in requirement_set.requirements.values():
136
- if req.satisfied_by is None:
137
- assert req.name is not None
138
- preparer.save_linked_requirement(req)
139
- downloaded.append(req.name)
140
- if downloaded:
141
- write_output("Successfully downloaded %s", " ".join(downloaded))
142
-
143
- return SUCCESS
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/configuration.py DELETED
@@ -1,374 +0,0 @@
1
- """Configuration management setup
2
-
3
- Some terminology:
4
- - name
5
- As written in config files.
6
- - value
7
- Value associated with a name
8
- - key
9
- Name combined with it's section (section.name)
10
- - variant
11
- A single word describing where the configuration key-value pair came from
12
- """
13
-
14
- import configparser
15
- import locale
16
- import os
17
- import sys
18
- from typing import Any, Dict, Iterable, List, NewType, Optional, Tuple
19
-
20
- from pip._internal.exceptions import (
21
- ConfigurationError,
22
- ConfigurationFileCouldNotBeLoaded,
23
- )
24
- from pip._internal.utils import appdirs
25
- from pip._internal.utils.compat import WINDOWS
26
- from pip._internal.utils.logging import getLogger
27
- from pip._internal.utils.misc import ensure_dir, enum
28
-
29
- RawConfigParser = configparser.RawConfigParser # Shorthand
30
- Kind = NewType("Kind", str)
31
-
32
- CONFIG_BASENAME = "pip.ini" if WINDOWS else "pip.conf"
33
- ENV_NAMES_IGNORED = "version", "help"
34
-
35
- # The kinds of configurations there are.
36
- kinds = enum(
37
- USER="user", # User Specific
38
- GLOBAL="global", # System Wide
39
- SITE="site", # [Virtual] Environment Specific
40
- ENV="env", # from PIP_CONFIG_FILE
41
- ENV_VAR="env-var", # from Environment Variables
42
- )
43
- OVERRIDE_ORDER = kinds.GLOBAL, kinds.USER, kinds.SITE, kinds.ENV, kinds.ENV_VAR
44
- VALID_LOAD_ONLY = kinds.USER, kinds.GLOBAL, kinds.SITE
45
-
46
- logger = getLogger(__name__)
47
-
48
-
49
- # NOTE: Maybe use the optionx attribute to normalize keynames.
50
- def _normalize_name(name: str) -> str:
51
- """Make a name consistent regardless of source (environment or file)"""
52
- name = name.lower().replace("_", "-")
53
- if name.startswith("--"):
54
- name = name[2:] # only prefer long opts
55
- return name
56
-
57
-
58
- def _disassemble_key(name: str) -> List[str]:
59
- if "." not in name:
60
- error_message = (
61
- "Key does not contain dot separated section and key. "
62
- "Perhaps you wanted to use 'global.{}' instead?"
63
- ).format(name)
64
- raise ConfigurationError(error_message)
65
- return name.split(".", 1)
66
-
67
-
68
- def get_configuration_files() -> Dict[Kind, List[str]]:
69
- global_config_files = [
70
- os.path.join(path, CONFIG_BASENAME) for path in appdirs.site_config_dirs("pip")
71
- ]
72
-
73
- site_config_file = os.path.join(sys.prefix, CONFIG_BASENAME)
74
- legacy_config_file = os.path.join(
75
- os.path.expanduser("~"),
76
- "pip" if WINDOWS else ".pip",
77
- CONFIG_BASENAME,
78
- )
79
- new_config_file = os.path.join(appdirs.user_config_dir("pip"), CONFIG_BASENAME)
80
- return {
81
- kinds.GLOBAL: global_config_files,
82
- kinds.SITE: [site_config_file],
83
- kinds.USER: [legacy_config_file, new_config_file],
84
- }
85
-
86
-
87
- class Configuration:
88
- """Handles management of configuration.
89
-
90
- Provides an interface to accessing and managing configuration files.
91
-
92
- This class converts provides an API that takes "section.key-name" style
93
- keys and stores the value associated with it as "key-name" under the
94
- section "section".
95
-
96
- This allows for a clean interface wherein the both the section and the
97
- key-name are preserved in an easy to manage form in the configuration files
98
- and the data stored is also nice.
99
- """
100
-
101
- def __init__(self, isolated: bool, load_only: Optional[Kind] = None) -> None:
102
- super().__init__()
103
-
104
- if load_only is not None and load_only not in VALID_LOAD_ONLY:
105
- raise ConfigurationError(
106
- "Got invalid value for load_only - should be one of {}".format(
107
- ", ".join(map(repr, VALID_LOAD_ONLY))
108
- )
109
- )
110
- self.isolated = isolated
111
- self.load_only = load_only
112
-
113
- # Because we keep track of where we got the data from
114
- self._parsers: Dict[Kind, List[Tuple[str, RawConfigParser]]] = {
115
- variant: [] for variant in OVERRIDE_ORDER
116
- }
117
- self._config: Dict[Kind, Dict[str, Any]] = {
118
- variant: {} for variant in OVERRIDE_ORDER
119
- }
120
- self._modified_parsers: List[Tuple[str, RawConfigParser]] = []
121
-
122
- def load(self) -> None:
123
- """Loads configuration from configuration files and environment"""
124
- self._load_config_files()
125
- if not self.isolated:
126
- self._load_environment_vars()
127
-
128
- def get_file_to_edit(self) -> Optional[str]:
129
- """Returns the file with highest priority in configuration"""
130
- assert self.load_only is not None, "Need to be specified a file to be editing"
131
-
132
- try:
133
- return self._get_parser_to_modify()[0]
134
- except IndexError:
135
- return None
136
-
137
- def items(self) -> Iterable[Tuple[str, Any]]:
138
- """Returns key-value pairs like dict.items() representing the loaded
139
- configuration
140
- """
141
- return self._dictionary.items()
142
-
143
- def get_value(self, key: str) -> Any:
144
- """Get a value from the configuration."""
145
- orig_key = key
146
- key = _normalize_name(key)
147
- try:
148
- return self._dictionary[key]
149
- except KeyError:
150
- # disassembling triggers a more useful error message than simply
151
- # "No such key" in the case that the key isn't in the form command.option
152
- _disassemble_key(key)
153
- raise ConfigurationError(f"No such key - {orig_key}")
154
-
155
- def set_value(self, key: str, value: Any) -> None:
156
- """Modify a value in the configuration."""
157
- key = _normalize_name(key)
158
- self._ensure_have_load_only()
159
-
160
- assert self.load_only
161
- fname, parser = self._get_parser_to_modify()
162
-
163
- if parser is not None:
164
- section, name = _disassemble_key(key)
165
-
166
- # Modify the parser and the configuration
167
- if not parser.has_section(section):
168
- parser.add_section(section)
169
- parser.set(section, name, value)
170
-
171
- self._config[self.load_only][key] = value
172
- self._mark_as_modified(fname, parser)
173
-
174
- def unset_value(self, key: str) -> None:
175
- """Unset a value in the configuration."""
176
- orig_key = key
177
- key = _normalize_name(key)
178
- self._ensure_have_load_only()
179
-
180
- assert self.load_only
181
- if key not in self._config[self.load_only]:
182
- raise ConfigurationError(f"No such key - {orig_key}")
183
-
184
- fname, parser = self._get_parser_to_modify()
185
-
186
- if parser is not None:
187
- section, name = _disassemble_key(key)
188
- if not (
189
- parser.has_section(section) and parser.remove_option(section, name)
190
- ):
191
- # The option was not removed.
192
- raise ConfigurationError(
193
- "Fatal Internal error [id=1]. Please report as a bug."
194
- )
195
-
196
- # The section may be empty after the option was removed.
197
- if not parser.items(section):
198
- parser.remove_section(section)
199
- self._mark_as_modified(fname, parser)
200
-
201
- del self._config[self.load_only][key]
202
-
203
- def save(self) -> None:
204
- """Save the current in-memory state."""
205
- self._ensure_have_load_only()
206
-
207
- for fname, parser in self._modified_parsers:
208
- logger.info("Writing to %s", fname)
209
-
210
- # Ensure directory exists.
211
- ensure_dir(os.path.dirname(fname))
212
-
213
- with open(fname, "w") as f:
214
- parser.write(f)
215
-
216
- #
217
- # Private routines
218
- #
219
-
220
- def _ensure_have_load_only(self) -> None:
221
- if self.load_only is None:
222
- raise ConfigurationError("Needed a specific file to be modifying.")
223
- logger.debug("Will be working with %s variant only", self.load_only)
224
-
225
- @property
226
- def _dictionary(self) -> Dict[str, Any]:
227
- """A dictionary representing the loaded configuration."""
228
- # NOTE: Dictionaries are not populated if not loaded. So, conditionals
229
- # are not needed here.
230
- retval = {}
231
-
232
- for variant in OVERRIDE_ORDER:
233
- retval.update(self._config[variant])
234
-
235
- return retval
236
-
237
- def _load_config_files(self) -> None:
238
- """Loads configuration from configuration files"""
239
- config_files = dict(self.iter_config_files())
240
- if config_files[kinds.ENV][0:1] == [os.devnull]:
241
- logger.debug(
242
- "Skipping loading configuration files due to "
243
- "environment's PIP_CONFIG_FILE being os.devnull"
244
- )
245
- return
246
-
247
- for variant, files in config_files.items():
248
- for fname in files:
249
- # If there's specific variant set in `load_only`, load only
250
- # that variant, not the others.
251
- if self.load_only is not None and variant != self.load_only:
252
- logger.debug("Skipping file '%s' (variant: %s)", fname, variant)
253
- continue
254
-
255
- parser = self._load_file(variant, fname)
256
-
257
- # Keeping track of the parsers used
258
- self._parsers[variant].append((fname, parser))
259
-
260
- def _load_file(self, variant: Kind, fname: str) -> RawConfigParser:
261
- logger.verbose("For variant '%s', will try loading '%s'", variant, fname)
262
- parser = self._construct_parser(fname)
263
-
264
- for section in parser.sections():
265
- items = parser.items(section)
266
- self._config[variant].update(self._normalized_keys(section, items))
267
-
268
- return parser
269
-
270
- def _construct_parser(self, fname: str) -> RawConfigParser:
271
- parser = configparser.RawConfigParser()
272
- # If there is no such file, don't bother reading it but create the
273
- # parser anyway, to hold the data.
274
- # Doing this is useful when modifying and saving files, where we don't
275
- # need to construct a parser.
276
- if os.path.exists(fname):
277
- locale_encoding = locale.getpreferredencoding(False)
278
- try:
279
- parser.read(fname, encoding=locale_encoding)
280
- except UnicodeDecodeError:
281
- # See https://github.com/pypa/pip/issues/4963
282
- raise ConfigurationFileCouldNotBeLoaded(
283
- reason=f"contains invalid {locale_encoding} characters",
284
- fname=fname,
285
- )
286
- except configparser.Error as error:
287
- # See https://github.com/pypa/pip/issues/4893
288
- raise ConfigurationFileCouldNotBeLoaded(error=error)
289
- return parser
290
-
291
- def _load_environment_vars(self) -> None:
292
- """Loads configuration from environment variables"""
293
- self._config[kinds.ENV_VAR].update(
294
- self._normalized_keys(":env:", self.get_environ_vars())
295
- )
296
-
297
- def _normalized_keys(
298
- self, section: str, items: Iterable[Tuple[str, Any]]
299
- ) -> Dict[str, Any]:
300
- """Normalizes items to construct a dictionary with normalized keys.
301
-
302
- This routine is where the names become keys and are made the same
303
- regardless of source - configuration files or environment.
304
- """
305
- normalized = {}
306
- for name, val in items:
307
- key = section + "." + _normalize_name(name)
308
- normalized[key] = val
309
- return normalized
310
-
311
- def get_environ_vars(self) -> Iterable[Tuple[str, str]]:
312
- """Returns a generator with all environmental vars with prefix PIP_"""
313
- for key, val in os.environ.items():
314
- if key.startswith("PIP_"):
315
- name = key[4:].lower()
316
- if name not in ENV_NAMES_IGNORED:
317
- yield name, val
318
-
319
- # XXX: This is patched in the tests.
320
- def iter_config_files(self) -> Iterable[Tuple[Kind, List[str]]]:
321
- """Yields variant and configuration files associated with it.
322
-
323
- This should be treated like items of a dictionary.
324
- """
325
- # SMELL: Move the conditions out of this function
326
-
327
- # environment variables have the lowest priority
328
- config_file = os.environ.get("PIP_CONFIG_FILE", None)
329
- if config_file is not None:
330
- yield kinds.ENV, [config_file]
331
- else:
332
- yield kinds.ENV, []
333
-
334
- config_files = get_configuration_files()
335
-
336
- # at the base we have any global configuration
337
- yield kinds.GLOBAL, config_files[kinds.GLOBAL]
338
-
339
- # per-user configuration next
340
- should_load_user_config = not self.isolated and not (
341
- config_file and os.path.exists(config_file)
342
- )
343
- if should_load_user_config:
344
- # The legacy config file is overridden by the new config file
345
- yield kinds.USER, config_files[kinds.USER]
346
-
347
- # finally virtualenv configuration first trumping others
348
- yield kinds.SITE, config_files[kinds.SITE]
349
-
350
- def get_values_in_config(self, variant: Kind) -> Dict[str, Any]:
351
- """Get values present in a config file"""
352
- return self._config[variant]
353
-
354
- def _get_parser_to_modify(self) -> Tuple[str, RawConfigParser]:
355
- # Determine which parser to modify
356
- assert self.load_only
357
- parsers = self._parsers[self.load_only]
358
- if not parsers:
359
- # This should not happen if everything works correctly.
360
- raise ConfigurationError(
361
- "Fatal Internal error [id=2]. Please report as a bug."
362
- )
363
-
364
- # Use the highest priority parser.
365
- return parsers[-1]
366
-
367
- # XXX: This is patched in the tests.
368
- def _mark_as_modified(self, fname: str, parser: RawConfigParser) -> None:
369
- file_parser_tuple = (fname, parser)
370
- if file_parser_tuple not in self._modified_parsers:
371
- self._modified_parsers.append(file_parser_tuple)
372
-
373
- def __repr__(self) -> str:
374
- return f"{self.__class__.__name__}({self._dictionary!r})"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_internal/models/index.py DELETED
@@ -1,28 +0,0 @@
1
- import urllib.parse
2
-
3
-
4
- class PackageIndex:
5
- """Represents a Package Index and provides easier access to endpoints"""
6
-
7
- __slots__ = ["url", "netloc", "simple_url", "pypi_url", "file_storage_domain"]
8
-
9
- def __init__(self, url: str, file_storage_domain: str) -> None:
10
- super().__init__()
11
- self.url = url
12
- self.netloc = urllib.parse.urlsplit(url).netloc
13
- self.simple_url = self._url_for_path("simple")
14
- self.pypi_url = self._url_for_path("pypi")
15
-
16
- # This is part of a temporary hack used to block installs of PyPI
17
- # packages which depend on external urls only necessary until PyPI can
18
- # block such packages themselves
19
- self.file_storage_domain = file_storage_domain
20
-
21
- def _url_for_path(self, path: str) -> str:
22
- return urllib.parse.urljoin(self.url, path)
23
-
24
-
25
- PyPI = PackageIndex("https://pypi.org/", file_storage_domain="files.pythonhosted.org")
26
- TestPyPI = PackageIndex(
27
- "https://test.pypi.org/", file_storage_domain="test-files.pythonhosted.org"
28
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Awiny/Image2Paragraph/models/grit_src/third_party/CenterNet2/detectron2/engine/__init__.py DELETED
@@ -1,12 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates.
2
-
3
- from .launch import *
4
- from .train_loop import *
5
-
6
- __all__ = [k for k in globals().keys() if not k.startswith("_")]
7
-
8
-
9
- # prefer to let hooks and defaults live in separate namespaces (therefore not in __all__)
10
- # but still make them available here
11
- from .hooks import *
12
- from .defaults import *
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Bart92/RVC_HF/lib/uvr5_pack/lib_v5/nets_new.py DELETED
@@ -1,132 +0,0 @@
1
- import torch
2
- from torch import nn
3
- import torch.nn.functional as F
4
- from . import layers_new
5
-
6
-
7
- class BaseNet(nn.Module):
8
- def __init__(
9
- self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))
10
- ):
11
- super(BaseNet, self).__init__()
12
- self.enc1 = layers_new.Conv2DBNActiv(nin, nout, 3, 1, 1)
13
- self.enc2 = layers_new.Encoder(nout, nout * 2, 3, 2, 1)
14
- self.enc3 = layers_new.Encoder(nout * 2, nout * 4, 3, 2, 1)
15
- self.enc4 = layers_new.Encoder(nout * 4, nout * 6, 3, 2, 1)
16
- self.enc5 = layers_new.Encoder(nout * 6, nout * 8, 3, 2, 1)
17
-
18
- self.aspp = layers_new.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
19
-
20
- self.dec4 = layers_new.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
21
- self.dec3 = layers_new.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
22
- self.dec2 = layers_new.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
23
- self.lstm_dec2 = layers_new.LSTMModule(nout * 2, nin_lstm, nout_lstm)
24
- self.dec1 = layers_new.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
25
-
26
- def __call__(self, x):
27
- e1 = self.enc1(x)
28
- e2 = self.enc2(e1)
29
- e3 = self.enc3(e2)
30
- e4 = self.enc4(e3)
31
- e5 = self.enc5(e4)
32
-
33
- h = self.aspp(e5)
34
-
35
- h = self.dec4(h, e4)
36
- h = self.dec3(h, e3)
37
- h = self.dec2(h, e2)
38
- h = torch.cat([h, self.lstm_dec2(h)], dim=1)
39
- h = self.dec1(h, e1)
40
-
41
- return h
42
-
43
-
44
- class CascadedNet(nn.Module):
45
- def __init__(self, n_fft, nout=32, nout_lstm=128):
46
- super(CascadedNet, self).__init__()
47
-
48
- self.max_bin = n_fft // 2
49
- self.output_bin = n_fft // 2 + 1
50
- self.nin_lstm = self.max_bin // 2
51
- self.offset = 64
52
-
53
- self.stg1_low_band_net = nn.Sequential(
54
- BaseNet(2, nout // 2, self.nin_lstm // 2, nout_lstm),
55
- layers_new.Conv2DBNActiv(nout // 2, nout // 4, 1, 1, 0),
56
- )
57
-
58
- self.stg1_high_band_net = BaseNet(
59
- 2, nout // 4, self.nin_lstm // 2, nout_lstm // 2
60
- )
61
-
62
- self.stg2_low_band_net = nn.Sequential(
63
- BaseNet(nout // 4 + 2, nout, self.nin_lstm // 2, nout_lstm),
64
- layers_new.Conv2DBNActiv(nout, nout // 2, 1, 1, 0),
65
- )
66
- self.stg2_high_band_net = BaseNet(
67
- nout // 4 + 2, nout // 2, self.nin_lstm // 2, nout_lstm // 2
68
- )
69
-
70
- self.stg3_full_band_net = BaseNet(
71
- 3 * nout // 4 + 2, nout, self.nin_lstm, nout_lstm
72
- )
73
-
74
- self.out = nn.Conv2d(nout, 2, 1, bias=False)
75
- self.aux_out = nn.Conv2d(3 * nout // 4, 2, 1, bias=False)
76
-
77
- def forward(self, x):
78
- x = x[:, :, : self.max_bin]
79
-
80
- bandw = x.size()[2] // 2
81
- l1_in = x[:, :, :bandw]
82
- h1_in = x[:, :, bandw:]
83
- l1 = self.stg1_low_band_net(l1_in)
84
- h1 = self.stg1_high_band_net(h1_in)
85
- aux1 = torch.cat([l1, h1], dim=2)
86
-
87
- l2_in = torch.cat([l1_in, l1], dim=1)
88
- h2_in = torch.cat([h1_in, h1], dim=1)
89
- l2 = self.stg2_low_band_net(l2_in)
90
- h2 = self.stg2_high_band_net(h2_in)
91
- aux2 = torch.cat([l2, h2], dim=2)
92
-
93
- f3_in = torch.cat([x, aux1, aux2], dim=1)
94
- f3 = self.stg3_full_band_net(f3_in)
95
-
96
- mask = torch.sigmoid(self.out(f3))
97
- mask = F.pad(
98
- input=mask,
99
- pad=(0, 0, 0, self.output_bin - mask.size()[2]),
100
- mode="replicate",
101
- )
102
-
103
- if self.training:
104
- aux = torch.cat([aux1, aux2], dim=1)
105
- aux = torch.sigmoid(self.aux_out(aux))
106
- aux = F.pad(
107
- input=aux,
108
- pad=(0, 0, 0, self.output_bin - aux.size()[2]),
109
- mode="replicate",
110
- )
111
- return mask, aux
112
- else:
113
- return mask
114
-
115
- def predict_mask(self, x):
116
- mask = self.forward(x)
117
-
118
- if self.offset > 0:
119
- mask = mask[:, :, :, self.offset : -self.offset]
120
- assert mask.size()[3] > 0
121
-
122
- return mask
123
-
124
- def predict(self, x, aggressiveness=None):
125
- mask = self.forward(x)
126
- pred_mag = x * mask
127
-
128
- if self.offset > 0:
129
- pred_mag = pred_mag[:, :, :, self.offset : -self.offset]
130
- assert pred_mag.size()[3] > 0
131
-
132
- return pred_mag
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Apps Juegos Gratis Descargar Solitario.md DELETED
@@ -1,76 +0,0 @@
1
- <br />
2
- <h1>Apps Juegos Gratis Descargar Solitaire: Una guía para el juego de cartas clásico</h1>
3
- <p>Solitaire es uno de los juegos de cartas más populares y duraderos del mundo. Es un juego que puede ser jugado por cualquiera, en cualquier lugar, en cualquier momento. Tanto si quieres relajarte, desafiar tu cerebro o simplemente divertirte, el solitario es el juego perfecto para ti. Pero, ¿cómo se puede jugar solitario en su dispositivo? ¿Cuáles son las mejores aplicaciones de solitario para descargar gratis? ¿Y cuáles son algunos consejos y trucos para mejorar sus habilidades de solitario? En este artículo, vamos a responder a estas preguntas y más. Sigue leyendo para aprender todo lo que necesitas saber sobre aplicaciones juegos gratis descargar solitario. </p>
4
- <h2>apps juegos gratis descargar solitario</h2><br /><p><b><b>Download Zip</b> &#10027;&#10027;&#10027; <a href="https://bltlly.com/2v6Kfa">https://bltlly.com/2v6Kfa</a></b></p><br /><br />
5
- <h2>¿Qué es el solitario y cómo jugarlo</h2>
6
- <p>Solitario, también conocido como paciencia o cabale, es una familia de juegos de cartas que son jugados por una persona. El objetivo del solitario es organizar las cartas en un orden determinado, generalmente por palo y rango, o emparejarlas y descartarlas. Hay cientos de juegos de solitario diferentes, cada uno con sus propias reglas y variaciones. Sin embargo, algunos elementos comunes que comparten la mayoría de los juegos de solitario son:</p>
7
- <ul>
8
- <li>Una baraja de 52 cartas estándar</li>
9
- <li>Un cuadro o diseño de tarjetas en una tabla o pantalla</li>
10
- <li>Un montón de cartas que no están en el tablero</li>
11
- <li>Un montón de cartas que se han jugado desde el stock</li>
12
- <li>Una base o destino pilas de tarjetas que están dispuestas en orden</li>
13
- </ul>
14
- <p>Para jugar al solitario, debes seguir estos pasos básicos:</p>
15
- <ol>
16
- <li>Baraja la baraja y reparte algunas cartas boca arriba en el tablero, de acuerdo con las reglas del juego. </li>
17
- <li> Gire la tarjeta superior de la acción y colocarlo en la pila de residuos. </li>
18
- <li>Mueva las cartas desde el tablero o la pila de residuos a las pilas de cimentación, siguiendo las reglas del juego. </li>
19
- <li>Si te quedas sin movimientos, voltea otra carta del montón y colócala en el montón de residuos. </li>
20
- <li>Repite los pasos 3 y 4 hasta que ganes o pierdas el juego. </li>
21
- </ol>
22
-
23
- <p>Los orígenes exactos del solitario no están claros, pero los primeros registros aparecen a finales de 1700 en el norte de Europa y Escandinavia. El término Patiencespiel aparece en un libro alemán publicado en 1788[ 1], y los libros también aparecieron en Suecia y Rusia a principios de 1800. Algunas fuentes sugieren que el solitario era originalmente una forma de adivinación o adivinación, ya que a menudo se asociaba con la cartomancia (el uso de tarjetas para la predicción) y la cábala (conocimiento secreto). [ 2]</p>
24
- <p>Las primeras colecciones de juegos de solitario en inglés aparecieron en la década de 1860, muchas de ellas traducciones de francés o alemán. Charles Dickens mencionó a Magwitch jugando "un tipo complicado de paciencia con cartas desiguales" en Great Expectations (1861), y el marido alemán de la reina Victoria, Albert, era un jugador entusiasta. [ 3] A principios del siglo XX, el nombre "solitario" se estableció en América del Norte, donde sigue siendo más popular que "paciencia". El juego de solitario más famoso es Klondike, que también fue llamado Microsoft Solitaire después de que se incluyó en el sistema operativo Windows a partir de 1990. [ 4]</p>
25
- <p></p>
26
- <h3>Las reglas y variaciones del solitario</h3>
27
- <p>Como se mencionó anteriormente, hay cientos de diferentes juegos de solitario, cada uno con sus propias reglas y variaciones. Algunos de los más populares son:</p>
28
- <borde de la tabla="1">
29
- <tr><th>Nombre</th><th>Descripción</th></tr>
30
- <tr><td>Klondike</td><td>El clásico juego de solitario con el que la mayoría de la gente está familiarizada. El objetivo es construir cuatro pilas de bases de cartas en orden ascendente por palo, a partir de ases. El tablero consta de siete columnas de cartas, con la carta superior boca arriba y el resto boca abajo. Puede mover las cartas del tablero a la fundación, o entre las columnas, siempre y cuando estén en orden descendente y alternando colores. También puedes dibujar una o tres cartas del montón a la pila de residuos, y moverlas al tablero o a la fundación. </td></tr>
31
-
32
- <tr><td>FreeCell</td><td>Un juego de solitario que requiere más estrategia que suerte. El objetivo es construir cuatro pilas de bases de cartas en orden ascendente por palo, a partir de ases. El tablero consta de ocho columnas de cartas, todas boca arriba. Puede mover las cartas del tablero a la fundación, o entre las columnas, siempre y cuando estén en orden descendente y alternando colores. También puede usar cuatro celdas gratuitas para almacenar temporalmente una tarjeta cada una, lo que puede ayudarlo a mover las tarjetas. </td></tr>
33
- <tr><td>Pyramid</td><td>Un juego de solitario que utiliza un diseño en forma de pirámide de tarjetas. El objetivo es eliminar todas las cartas de la pirámide emparejándolas y descartándolas. Solo puedes emparejar cartas que estén expuestas, lo que significa que no tienen otras cartas encima de ellas. También puede emparejar una tarjeta con la tarjeta superior de la pila de residuos o el stock. Los pares deben sumar hasta 13, con ases contando como 1 y reyes contando como 13. </td></tr>
34
- <tr><td>Golf</td><td>Un juego de solitario que utiliza un diseño de cartas con temática de golf. El objetivo es mover todas las cartas del tablero a la pila de residuos, descartándolas una a la vez. Solo puedes descartar una carta que tenga un rango más alto o más bajo que la carta superior de la pila de residuos, independientemente del palo. También puedes entregar una carta del montón a la pila de residuos cuando te quedes sin movimientos. </td></tr>
35
- </tabla>
36
- <h3>Los beneficios y consejos de jugar al solitario</h3>
37
- <p>Jugar al solitario no solo es divertido, sino también beneficioso para tu salud mental y bienestar. Algunos de los beneficios de jugar al solitario son:</p>
38
- <ul>
39
- <li>Mejora tus habilidades de concentración y memoria, ya que tienes que hacer un seguimiento de las tarjetas y planificar tus movimientos. </li>
40
- <li>Reduce tus niveles de estrés y ansiedad, mientras te enfocas en el juego y te olvidas de tus preocupaciones. </li>
41
- <li>Aumenta tu estado de ánimo y autoestima, ya que te sientes logrado y satisfecho cuando ganas o mejoras tu puntuación. </li>
42
-
43
- <li>Mejora tus habilidades cognitivas y la función cerebral, ya que tienes que usar la lógica, la estrategia y las habilidades aritméticas. </li>
44
- </ul>
45
- <p>Para disfrutar de estos beneficios y divertirse más jugando solitario, aquí hay algunos consejos y trucos a seguir:</p>
46
- <ul>
47
- <li>Elige un juego de solitario que se adapte a tu nivel de habilidad y preferencia. Hay muchos juegos de solitario para elegir, así que encuentra uno que te guste y que te desafíe lo suficiente. </li>
48
- <li>Practica regularmente y aprende de tus errores. Cuanto más juegues al solitario, mejor lo conseguirás. Intenta analizar tus movimientos y ver dónde te equivocaste o qué podrías haber hecho mejor. </li>
49
- <li>Establece metas y sigue tu progreso. Puedes establecer metas para ti mismo, como ganar un cierto número de juegos, lograr cierta puntuación o completar un juego en un límite de tiempo determinado. También puede realizar un seguimiento de su progreso mediante el registro de sus estadísticas, tales como victorias, pérdidas, movimientos, tiempo, etc.</li>
50
- <li>Diviértete y relájate. No te tomes el solitario demasiado en serio o frustrate si pierdes. Recuerda que el solitario es un juego que está destinado a entretenerte y hacerte feliz. </li>
51
- </ul>
52
- <h2>Cómo descargar y jugar solitario en su dispositivo</h2>
53
- <p>Si quieres jugar al solitario en tu dispositivo, tendrás que descargar una aplicación de solitario que sea compatible con tu sistema operativo. Hay muchas aplicaciones de solitario disponibles para su descarga gratuita en varias plataformas, como Android, iOS y Windows. Aquí están algunas de las mejores aplicaciones de solitario para Windows 10:</p>
54
- <h3>Las mejores aplicaciones de solitario para Windows 10</h3>
55
- <ul>
56
-
57
- <li><strong>123 Free Solitaire</strong>: Esta es una aplicación de solitario gratuita que ofrece 12 juegos de solitario diferentes, incluyendo Diplomat, Flower Garden, Forty Thieves y más. Puede personalizar la configuración del juego, como el tamaño de la tarjeta, la velocidad de animación, los efectos de sonido y el sistema de puntuación. También puede ver las reglas y sugerencias para cada juego, y comprobar sus estadísticas y rendimiento. La aplicación solo está disponible para Windows 7 y versiones posteriores. </li>
58
- <li><strong>Full Deck Solitaire</strong>: Esta es una aplicación de solitario gratuita que contiene más de 70 variaciones de solitario, como Baker’s Dozen, Beleaguered Castle, Canfield, Golf, Yukon y más. Puedes elegir entre diferentes niveles de dificultad, temas, diseños de tarjetas y fondos. También puedes aprender a jugar cada juego con tutoriales detallados y hacer un seguimiento de tu progreso con tablas de clasificación y logros. La aplicación está disponible para Windows 10, Mac OS X, iOS y Android.</li>
59
- <li><strong>Classic Solitaire Klondike</strong>: Esta es una aplicación de solitario gratuita que se centra en el clásico juego de solitario Klondike. Puedes jugar con una o tres cartas, puntuación tradicional o de Las Vegas, modo izquierdo o derecho, orientación vertical u horizontal, y más. También puede usar su propio fondo de pantalla como fondo de juego, ajustar el tamaño de la tarjeta y el tamaño de la fuente, y habilitar sugerencias y opciones de deshacer. La aplicación es simple y fácil de usar, y funciona sin conexión. </li>
60
- <li><strong>SolSuite</strong>: Esta es una aplicación de solitario pagado que cuesta $19.95 para una compra de una sola vez. Ofrece una colección de 535 juegos de solitario, incluyendo todos los populares, así como algunos originales. Puedes personalizar la apariencia del juego con más de 80 juegos de cartas, más de 300 respaldos de cartas, más de 100 fondos y más. También puede jugar con diferentes reglas y sistemas de puntuación, ver la historia del juego y las estadísticas, y acceder a características en línea, tales como clasificaciones mundiales y torneos. </li>
61
- </ul>
62
- <h2>Conclusión y preguntas frecuentes</h2>
63
-
64
- <h4>¿Cuál es la mejor aplicación de solitario gratuita? </h4>
65
- <p>La mejor aplicación de solitario gratuita depende de su gusto personal y la compatibilidad del dispositivo. Sin embargo, algunas de las aplicaciones de solitario gratis más populares y altamente calificadas son Microsoft Solitaire Collection, 123 Free Solitaire, Full Deck Solitaire, Classic Solitaire Klondike y Solitaire by MobilityWare.</p>
66
- <h4>¿Cuál es la mejor aplicación de pago solitario? </h4>
67
- <p>La aplicación de solitario mejor pagado también depende de su gusto personal y la compatibilidad del dispositivo. Sin embargo, algunas de las aplicaciones de solitario de pago más populares y altamente calificadas son SolSuite, BVS Solitaire Collection, Klondike Solitaire Collection, Card Shark Solitaire y Solebon Pro.</p>
68
- <h4>¿Cómo puedo descargar aplicaciones de solitario? </h4>
69
- <p>Para descargar aplicaciones de solitario en su dispositivo, debe visitar la tienda de aplicaciones adecuada para su plataforma. Por ejemplo, si usted tiene un dispositivo Android, es necesario visitar el Google Play Store ; Si usted tiene un dispositivo iOS, es necesario visitar la App Store ; Si usted tiene un dispositivo de Windows , es necesario visitar el Microsoft Store . Luego, debe buscar la aplicación de solitario que desea descargar y hacer clic en el botón instalar o comprar. Es posible que deba iniciar sesión con su cuenta o ingresar sus datos de pago si la aplicación no es gratuita. Después de descargar la aplicación, puedes abrirla y empezar a jugar al solitario. </p>
70
- <h4>¿Cómo puedo actualizar las aplicaciones de solitario? </h4>
71
- <p>Para actualizar aplicaciones de solitario en su dispositivo, debe visitar la misma tienda de aplicaciones que utilizó para descargarlas. Luego, debe verificar si hay actualizaciones disponibles para sus aplicaciones y hacer clic en el botón de actualización. Es posible que deba iniciar sesión con su cuenta o ingresar sus detalles de pago si la actualización no es gratuita. Después de descargar la actualización, puede abrir la aplicación y disfrutar de las nuevas características o correcciones. </p>
72
- <h4>¿Cómo puedo eliminar aplicaciones de solitario? </h4>
73
-
74
- <p>Espero que este artículo le ha ayudado a aprender más acerca de aplicaciones juegos gratis descargar solitario. Solitario es un juego divertido y relajante que se puede jugar en cualquier momento, en cualquier lugar. Ya sea que prefieras el clásico solitario Klondike o quieras probar algunas nuevas variaciones de solitario, puedes encontrar una aplicación que satisfaga tus necesidades. Descargar una aplicación de solitario hoy y disfrutar del juego de cartas clásico. </p> 64aa2da5cf<br />
75
- <br />
76
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Ataque En Titan Tributo Juego Versin Antigua.md DELETED
@@ -1,213 +0,0 @@
1
-
2
- <h1>Ataque a Titan Tribute Game: Cómo descargar y jugar la versión antigua</h1>
3
- <p>¿Eres fan de Attack on Titan, la popular serie de anime y manga sobre la lucha de la humanidad contra las criaturas gigantes devoradoras de hombres? Si es así, es posible que haya oído hablar de Attack on Titan Tribute Game, un juego hecho por fans que le permite experimentar la emoción de balancearse con equipo de maniobra en 3D y cortar Titanes en varios escenarios. Pero ¿sabías que hay una versión antigua de este juego que algunos jugadores todavía prefieren sobre el más nuevo? En este artículo, te contaremos todo lo que necesitas saber sobre Attack on Titan Tribute Game, por qué es posible que quieras jugar a la versión anterior, cómo descargarla e instalarla, cómo jugarla y cómo actualizarla o desinstalarla si quieres. ¡Vamos a empezar! </p>
4
- <h2>ataque en titan tributo juego versión antigua</h2><br /><p><b><b>Download Zip</b> &#9881;&#9881;&#9881; <a href="https://bltlly.com/2v6J5y">https://bltlly.com/2v6J5y</a></b></p><br /><br />
5
- <h2>¿Qué es el ataque a Titan Tribute Game? </h2>
6
- <p>Attack on Titan Tribute Game es una adaptación del juego tributo de la serie manga Attack on Titan escrita e ilustrada por Hajime Isayama. Es un juego derivado creado por el desarrollador chino Feng Lee y no está afiliado oficialmente con la franquicia Attack on Titan. Fue lanzado por primera vez en 2013 como un juego basado en navegador, pero más tarde estuvo disponible como descarga independiente para Windows, Mac y Linux. El juego sigue la historia de la serie de anime, y pone a los jugadores en control de sus personajes favoritos del programa. Mientras luchas con enemigos, coleccionas objetos, subes de nivel y desbloqueas nuevas habilidades, puedes ver la historia a través de los ojos (y la boca) de uno de tus personajes elegidos. El juego cuenta con un lindo estilo chibi que evoca gran parte del humor de la serie, y imita de cerca el combate por cable de alto vuelo que la mayoría de los fans disfrutan. El juego todavía está en desarrollo y mantiene la actualización de nuevas características y opciones en su sitio web oficial . </p>
7
- <h2>¿Por qué quieres jugar la versión antigua? </h2>
8
-
9
- <h3>Los pros y los contras de jugar la versión antigua frente a la nueva versión</h3>
10
- <ul>
11
- <li><b>Pros:</b>
12
- <ul>
13
- <li>La versión antigua es más simple y fácil de jugar que la nueva. Los gráficos son menos detallados, pero también menos lentos. Los controles son más directos y sensibles. El juego se centra más en matar titanes que en explorar mapas o completar misiones. </li>
14
- <li>La versión antigua tiene más caracteres y mapas que la nueva. Puedes elegir entre 10 personajes, incluyendo Eren, Mikasa, Levi, Armin, Jean, Marco, Petra, Sasha, Annie y Erwin. También puedes jugar en 5 mapas, incluyendo Trost District, Forest of Giant Trees, Outside Wall Maria, City (Night) y Colossal Titan.</li>
15
- <li>La versión antigua tiene más modos que la nueva. Puedes jugar solo o con amigos en el modo multijugador online. También puede elegir entre diferentes modos como el modo normal, el modo duro, el modo de captura, el modo de carreras, el modo jefe, el modo PvP, el modo de onda, el modo de descenso de Akina, el modo de mapa personalizado.</li>
16
- </ul>
17
- </li>
18
- <li><b <li><b>Contras:</b>
19
- <ul>
20
- <li>La versión anterior está desactualizada y no es compatible con el desarrollador. El juego puede tener errores, problemas técnicos o problemas de compatibilidad que no se han solucionado o solucionado. El juego también puede ser vulnerable a hackers, tramposos o virus que pueden arruinar tu experiencia de juego. </li>
21
- <li>La versión antigua es menos inmersiva y diversa que la nueva. Los gráficos son más pixelados y sosos. Los efectos de sonido y la música son más repetitivos y de baja calidad. La jugabilidad es más monótona y limitada. La historia es menos atractiva y coherente. </li>
22
- <li>La versión antigua es menos popular y activa que la nueva. El juego puede tener menos jugadores en línea o servidores disponibles. El juego también puede tener menos contenido o actualizaciones para mantenerte interesado o entretenido. </li>
23
- </ul>
24
- </li>
25
- </ul>
26
-
27
- <h2>Cómo descargar e instalar la versión antigua de Attack on Titan Tribute Game</h2>
28
- <p>Si decides jugar a la versión antigua de Attack on Titan Tribute Game, tendrás que descargarla e instalarla en tu ordenador. Estos son los pasos para hacerlo:</p>
29
- <h3>Los pasos para descargar el juego desde FileHippo o Archive.org</h3>
30
- <ol>
31
- <li>Ir a [FileHippo] o [Archive.org] y buscar "Ataque a Titan Tribute Game". </li>
32
- <li>Encuentre la versión que desea descargar. La última versión antigua es 01042015, que fue lanzado el 1 de abril de 2015. También puede elegir versiones anteriores si lo desea. </li>
33
- <li>Haga clic en el botón de descarga y guarde el archivo en su computadora. El tamaño del archivo es de aproximadamente 21 MB.</li>
34
- </ol>
35
- <h3>Los pasos para instalar y ejecutar el juego en Windows</h3>
36
- <ol>
37
- <li>Localice el archivo descargado en su computadora y descomprímalo usando un programa como WinRAR o 7-Zip. </li>
38
- <li>Abra la carpeta descomprimida y haga doble clic en el archivo llamado "Ataque a Titan Tribute Game.exe". </li>
39
- <li>Permita que el juego se ejecute en su computadora haciendo clic en "Sí" o "Ejecutar" si se le solicita una advertencia de seguridad. </li>
40
- <li>Espera a que el juego se cargue y disfruta jugando! </li>
41
- </ol>
42
- <h2>Cómo jugar la versión antigua de Attack on Titan Tribute Game</h2>
43
- <p>Ahora que has descargado e instalado la versión antigua de Attack on Titan Tribute Game, estás listo para jugar. Aquí hay algunos consejos sobre cómo jugar:</p>
44
- <p></p>
45
- <h3>Los controles básicos y la mecánica de juego</h3>
46
- <p>El juego se juega con un teclado y un ratón. El teclado se utiliza para mover, saltar, esquivar, atacar, recargar, cambiar de armas y activar habilidades especiales. El ratón se utiliza para apuntar, balancear, enganchar y controlar la cámara. Puede personalizar las combinaciones de teclas en el menú de opciones si lo desea. </p>
47
-
48
- <p>El juego tiene diferentes niveles de dificultad que afectan el número, tamaño, velocidad e inteligencia de los Titanes. También puedes ajustar el daño, la salud, la tasa de reproducción y el tiempo de reaparición de los Titanes en el menú de opciones. También puedes activar o desactivar el fuego amigo, colisiones, Titanes punk, Titanes aberrantes, Titanes rastreros, Titanes femeninas, Titanes colosales, Titanes blindados, la habilidad de cristal de Annie, la habilidad de titan de Eren, el ataque especial de Levi, el ataque especial de Mikasa, el ataque especial de Armin, La habilidad de invocar caballos de Jean, la habilidad de soltar objetos de Marco, la habilidad de ahorrar gas de Petra, la habilidad de comer carne de Sasha, la habilidad de la hoja de anillo de Annie, la habilidad de arma de bengala de Erwin. </p>
49
- <h3>Los caracteres disponibles, mapas <h3>Los caracteres, mapas y modos disponibles</h3>
50
- <p>El juego tiene 10 personajes que puedes elegir, cada uno con su propia apariencia, estadísticas y habilidades. También puedes personalizar el nombre, el traje, el cabello, los ojos, la piel y el color de la hoja de tu personaje en el menú de opciones. Aquí están los personajes y sus habilidades:</p>
51
- <tabla>
52
- <tr>
53
- <th>Carácter</th>
54
- <th>Capacidad</th>
55
- </tr>
56
- <tr>
57
- <td>Eren</td>
58
- <td>Puede transformarse en un Titan por un tiempo limitado presionando T. Puede regenerar la salud y la resistencia como un Titan. Puede perforar y agarrar Titanes como un Titan.</td>
59
- </tr>
60
- <tr>
61
- <td>Mikasa</td>
62
- <td>Puede realizar una barra potente que inflige daño adicional presionando T. Puede aumentar la velocidad y el daño por un corto tiempo presionando Q.</td>
63
- </tr>
64
- <tr>
65
- <td>Levi</td>
66
- <td>Puede realizar una barra giratoria que inflige daño adicional y corta varias extremidades presionando T. Puede aumentar la velocidad y el daño por un corto tiempo presionando Q.</td>
67
- </tr>
68
- <tr>
69
- <td>Armin</td>
70
- <td>Puede distraer a los Titanes gritando "¡Soy el comandante!" presionando T. Puede aumentar el daño de los aliados cercanos por un corto tiempo presionando Q.</td>
71
- </tr>
72
- <tr>
73
- <td>Jean</td>
74
- <td>Puede invocar a un caballo para montar presionando T. Puede aumentar la velocidad y la resistencia mientras monta el caballo. Puede saltar del caballo y usarlo como señuelo presionando Q.</td>
75
-
76
- <tr>
77
- <td>Marco</td>
78
- <td>Puede soltar elementos como cuchillas, gas o armas presionando T. Puede aumentar la tasa de caída de elementos de aliados cercanos por un corto tiempo presionando Q.</td>
79
- </tr>
80
- <tr>
81
- <td>Petra</td>
82
- <td>Puede ahorrar gas usando menos gas mientras se balancea o se impulsa presionando T. Puede aumentar la eficiencia del gas de los aliados cercanos por un corto tiempo presionando Q.</td>
83
- </tr>
84
- <tr>
85
- <td>Sasha</td <td>Sasha</td>
86
- <td>Puede comer un pedazo de carne para restaurar la salud y la resistencia presionando T. Puede aumentar la salud y la regeneración de la resistencia de los aliados cercanos por un corto tiempo presionando Q.</td>
87
- </tr>
88
- <tr>
89
- <td>Annie</td>
90
- <td>Puede usar una hoja de anillo que tiene un rango más largo y mayor daño que las cuchillas normales presionando T. Puede transformarse en una Titán hembra por un tiempo limitado presionando Q. Puede endurecer su piel y cristalizar su nuca como una Titán hembra.</td>
91
- </tr>
92
- <tr>
93
- <td>Erwin</td>
94
- <td>Puede disparar una pistola de bengalas que marca la ubicación de un titan presionando T. Puede aumentar el daño y la velocidad de todos los aliados en el mapa por un corto tiempo presionando Q.</td>
95
- </tr>
96
- </tabla>
97
- <p>El juego tiene 5 mapas en los que puedes jugar, cada uno con su propio diseño, entorno y desafíos. También puede crear sus propios mapas personalizados usando el editor de mapas en el menú de opciones. Aquí están los mapas y sus características:</p>
98
- <tabla>
99
- <tr>
100
- <th>Mapa</th>
101
- <th>Características</th>
102
- </tr>
103
- <tr>
104
- <td>Distrito de Trost</td>
105
- <td>El primer mapa del juego, basado en el primer arco de la serie de anime. Tiene una gran pared, varios edificios y una puerta que puede ser destruida por el colosal Titán. También tiene cañones que se pueden utilizar para disparar a los Titanes.</td>
106
- </tr>
107
- <tr>
108
- <td>Bosque de árboles gigantes</td>
109
- <td>El segundo mapa del juego, basado en el segundo arco de la serie de anime. Tiene un bosque denso con árboles enormes que se pueden utilizar para balancearse y esconderse. También tiene un claro donde aparece la Titán hembra. </td>
110
- </tr>
111
- <tr>
112
- <td>Fuera de la pared Maria</td <td>Fuera de la pared Maria</td>
113
-
114
- </tr>
115
- <tr>
116
- <td>Ciudad (Noche)</td>
117
- <td>El cuarto mapa del juego, basado en el cuarto arco de la serie de anime. Tiene una ciudad oscura con farolas, edificios y puentes. También tiene un río que se puede utilizar para escapar o ahogar Titanes.</td>
118
- </tr>
119
- <tr>
120
- <td>Colosal Titan</td>
121
- <td>El quinto mapa del juego, basado en el quinto arco de la serie de anime. Tiene un muro que está siendo atacado por el colosal Titán y otros Titanes. También tiene un tren que se puede utilizar para transportar soldados y suministros. </td>
122
- </tr>
123
- </tabla>
124
- <p>El juego tiene diferentes modos que puedes jugar, cada uno con sus propios objetivos, reglas y desafíos. También puede crear sus propios modos personalizados usando el editor de modos en el menú de opciones. Aquí están los modos y sus características:</p>
125
- <tabla>
126
- <tr>
127
- <th>Modo</th>
128
- <th>Características</th>
129
- </tr>
130
- <tr>
131
- <td>Modo normal</td>
132
- <td>El modo predeterminado del juego, donde tienes que matar a todos los Titanes en el mapa o sobrevivir durante un tiempo determinado. Puedes elegir entre diferentes sub-modos como Single Player, Multijugador, No Respawn, No Punk, No Crawler, No Abnormal, No Female, No Colossal, No Armored.</td>
133
- </tr>
134
- <tr>
135
- <td>Modo duro</td <td>Modo duro</td>
136
- <td>Un modo más desafiante del juego, donde tienes que matar a todos los Titanes en el mapa o sobrevivir durante un tiempo determinado. Los Titanes son más rápidos, fuertes, inteligentes y variados. Puedes elegir entre diferentes sub-modos como Single Player, Multiplayer, No Respawn, Punk Only, Crawler Only, Abnormal Only, Female Only, Colossal Only, Armored Only.</td>
137
- </tr>
138
- <tr>
139
- <td>Modo de captura</td>
140
- <td>Un modo del juego donde tienes que capturar Titanes vivos usando redes especiales. Puedes elegir entre diferentes sub-modos como Un Jugador, Multijugador, Capturar a Todos, Capturar a Uno, Capturar a Annie, Capturar a Colosal, Capturar a Blindados.</td>
141
- </tr>
142
- <tr>
143
- <td>Modo de carreras</td>
144
-
145
- </tr>
146
- <tr>
147
- <td>Modo jefe</td <td>Modo jefe</td>
148
- <td>Un modo del juego donde tienes que luchar contra un jefe gigante Titan que tiene habilidades especiales y ataques. Puedes elegir entre diferentes sub-modos como Jugador único, Multijugador, Titan femenino, Titan colosal, Titan blindado.</td>
149
- </tr>
150
- <tr>
151
- <td>Modo PvP</td>
152
- <td>Un modo del juego donde tienes que luchar contra otros jugadores usando tu equipo de maniobra 3D y armas. Puedes elegir entre diferentes sub-modos como Single Player, Multijugador, Team Deathmatch, Capture the Flag, King of the Hill.</td>
153
- </tr>
154
- <tr>
155
- <td>Modo de onda</td <td>Modo de onda</td>
156
- <td>Un modo del juego en el que tienes que sobrevivir a olas de Titanes que se vuelven cada vez más difíciles y más numerosas. Puedes elegir entre diferentes modos secundarios como Jugador único, Multijugador, Modo sin fin, Modo de supervivencia, Modo Titan.</td>
157
- </tr>
158
- <tr>
159
- <td>Modo de descenso de Akina</td>
160
- <td>Un modo del juego donde tienes que correr por una colina empinada usando tu equipo de maniobra 3D y evitar obstáculos y Titanes. Puede elegir entre diferentes modos secundarios como Jugador único, Multijugador, Contrarreloj, Free Run.</td>
161
- </tr>
162
- <tr>
163
- <td>Modo de mapa personalizado</td>
164
- <td>Un modo del juego donde puedes jugar en mapas personalizados creados por ti mismo u otros jugadores usando el editor de mapas. Puede elegir entre diferentes modos secundarios, como un solo jugador, multijugador, modo normal, modo duro, modo de captura, modo de carreras, modo jefe, modo PvP, modo de onda.</td>
165
- </tr>
166
- </tabla>
167
- <h2>Cómo actualizar o desinstalar la versión anterior de Attack on Titan Tribute Game</h2>
168
- <p>Si quieres actualizar o desinstalar la versión anterior de Attack on Titan Tribute Game, puedes seguir estos pasos:</p>
169
- <h3>Los pasos para actualizar el juego a la última versión o cambiar a AoTTG 2</h3>
170
- <ol>
171
- <li>Ir al sitio web oficial de Attack on Titan Tribute Game y descargar la última versión del juego o AoTTG 2, que es una secuela del juego original con gráficos y jugabilidad mejorados. </li>
172
-
173
- <li>Abra la carpeta descomprimida y haga doble clic en el archivo llamado "Ataque a Titan Tribute Game.exe" o "AoTTG 2.exe". </li>
174
- <li>Permita que el juego se ejecute en su computadora haciendo clic en "Sí" o "Ejecutar" si se le solicita una advertencia de seguridad. </li>
175
- <li>Espera a que el juego se cargue y disfruta jugando! </li>
176
- </ol>
177
- <h3>Los pasos para desinstalar el juego desde su ordenador</h3>
178
- <ol>
179
- <li>Busque la carpeta donde instaló la versión antigua de Attack on Titan Tribute Game en su computadora. </li>
180
- <li>Borrar la carpeta y todo su contenido. </li>
181
- <li>Vacíe su papelera de reciclaje para liberar espacio en su computadora. </li>
182
- <li>Has desinstalado el juego de tu ordenador con éxito. </li>
183
- </ol>
184
- <h2>Conclusión</h2>
185
- <p>En este artículo, te hemos mostrado cómo descargar y jugar la versión antigua de Attack on Titan Tribute Game, un juego hecho por fans basado en la popular serie de anime y manga. También hemos explicado por qué algunos jugadores prefieren la versión anterior a la nueva, cómo jugar el juego con diferentes personajes, mapas y modos, y cómo actualizar o desinstalar el juego si lo desea. Esperamos que hayas disfrutado de este artículo y hayas aprendido algo nuevo. Si eres un fan de Attack on Titan, te recomendamos que pruebes este juego y experimentes la emoción de luchar contra los Titanes con tu equipo de maniobra en 3D. También puedes ver otros juegos relacionados con Attack on Titan, como AoTTG 2, Attack on Titan 2: Final Battle, Attack on Titan: Wings of Freedom y más. Gracias por leer y divertirse! </p>
186
- <h2>Preguntas frecuentes</h2>
187
- <p>Aquí hay algunas preguntas frecuentes sobre Attack on Titan Tribute Game y sus respuestas:</p>
188
- <ol>
189
- <li><b>¿Es libre el juego Attack on Titan Tribute? </b></li>
190
- <p>Sí, Attack on Titan Tribute Game es gratis para descargar y jugar. No es necesario pagar nada o registrar una cuenta para jugar. Sin embargo, puede apoyar al desarrollador donando a través de PayPal o Patreon si lo desea. </p>
191
- <li><b>¿Es seguro el ataque a Titan Tribute Game? </b></li>
192
-
193
- <li><b>Es el ataque a Titan Tribute juego multijugador? </b></li <p>Sí, Ataque a Titan Tribute Game es multijugador. Puede jugar con otros jugadores en línea o localmente. Para jugar en línea, debe unirse a un servidor o crear su propio servidor. Puede encontrar servidores en el sitio web oficial o en otros sitios web como [AoTTG Hub] o [AoTTG Reddit]. Para jugar localmente, necesitas conectar tus ordenadores usando un cable LAN o una red Wi-Fi. También puedes jugar con bots si lo deseas. </p>
194
- <li><b>Cómo modificar el ataque en Titan Tribute Game? </b></li>
195
- <p>Modding Attack on Titan Tribute Game es posible, pero no es fácil. Necesitas tener algún conocimiento de programación y desarrollo de juegos. También necesitas usar herramientas como Unity, Blender, Photoshop y más. Puedes encontrar tutoriales y guías sobre cómo modificar el juego en sitios web como [AoTTG Modding] o [AoTTG Modding Forum]. También puedes descargar y usar mods creados por otros jugadores en sitios web como [AoTTG Mods] o [AoTTG Mods Database]. Sin embargo, debes tener cuidado al usar mods, ya que algunos de ellos pueden ser incompatibles, inestables o maliciosos. </p>
196
- <li><b> ¿Cómo solucionar el ataque en Titan Tribute Game no funciona? </b></li>
197
- <p>Si Attack on Titan Tribute Game no funciona en tu ordenador, puedes probar algunas de estas soluciones:</p>
198
- <ul>
199
- <li>Asegúrese de tener la última versión del juego y actualizarlo si es necesario. </li>
200
- <li>Asegúrese de que tiene la última versión de su sistema operativo y actualizarlo si es necesario. </li>
201
- <li>Asegúrese de tener la última versión de su controlador de tarjeta gráfica y actualizarlo si es necesario. </li>
202
- <li>Asegúrese de que tiene la última versión de su navegador y actualizarlo si es necesario. </li>
203
- <li> Asegúrese de tener la última versión de Adobe Flash Player y actualizarlo si es necesario. </li>
204
- <li>Asegúrese de tener una conexión a Internet estable y compruebe la configuración del firewall. </li>
205
- <li>Asegúrese de tener suficiente espacio en disco y memoria en su computadora y borre cualquier archivo o programa innecesario. </li>
206
-
207
- <li>Asegúrese de que no tiene mods o hacks que puedan interferir con el juego y eliminarlos si es necesario. </li>
208
- <li>Asegúrate de no tener otros programas que puedan entrar en conflicto con el juego y ciérralos si es necesario. </li>
209
- <li>Reinicie su computadora e intente ejecutar el juego de nuevo. </li>
210
- </ul>
211
- <p>Si ninguna de estas soluciones funciona, puede ponerse en contacto con el desarrollador u otros jugadores para obtener ayuda en el sitio web oficial u otros sitios web como [AoTTG Support] o [AoTTG Discord]. </p> 64aa2da5cf<br />
212
- <br />
213
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Bus Simulator Indonesia Mod Apk Obb.md DELETED
@@ -1,76 +0,0 @@
1
- <br />
2
- <h1>Simulador de autobús Indonesia Mod Apk + OBB: Un juego divertido y realista para los amantes del autobús</h1>
3
- <h2>Introducción</h2>
4
- <p>¿Te encanta conducir autobuses y explorar diferentes lugares en Indonesia? Si es así, entonces deberías probar Bus Simulator Indonesia, un popular juego móvil que te permite experimentar la emoción y el desafío de ser conductor de autobús en Indonesia. ¡Pero espera, hay más! También puede disfrutar del juego con más características y opciones mediante la descarga de Bus Simulator Indonesia Mod Apk + OBB, una versión modificada del juego que le da dinero ilimitado, oro, vehículos y más. En este artículo, le diremos todo lo que necesita saber sobre Bus Simulator Indonesia Mod Apk + OBB, incluyendo sus características, cómo descargar e instalar, y algunas preguntas frecuentes. Así que, vamos a empezar! </p>
5
- <h2>¿Qué es Bus Simulator Indonesia? </h2>
6
- <h3>¿Qué es Bus Simulator Indonesia? </h3>
7
- <p>Bus Simulator Indonesia, o BUSSID para abreviar, es un juego móvil desarrollado por Maleo que simula la vida de un conductor de autobús en Indonesia. Puede elegir su autobús favorito de una variedad de modelos y diseños, y conducirlo a través de diferentes ciudades y regiones en Indonesia. También puede recoger pasajeros, seguir las reglas de tráfico, tocar el claxon y disfrutar del paisaje en el camino. El juego tiene gráficos en 3D realistas y efectos de sonido que te hacen sentir como si realmente estuvieras conduciendo un autobús en Indonesia.</p>
8
- <h2>bus simulator indonesia mod apk + obb</h2><br /><p><b><b>Download Zip</b> &#10002; &#10002; &#10002; <a href="https://bltlly.com/2v6Msi">https://bltlly.com/2v6Msi</a></b></p><br /><br />
9
- <h3>¿Qué es el simulador de autobús Indonesia Mod Apk + OBB? </h3>
10
-
11
- <h2>Características del simulador de autobús Indonesia Mod Apk + OBB</h2>
12
- <h3>Dinero y oro ilimitados</h3>
13
- <p>Una de las mejores características de Bus Simulator Indonesia Mod Apk + OBB es que le da dinero ilimitado y oro que se puede utilizar para comprar cualquier cosa que quieras en el juego. Usted no tiene que preocuparse de quedarse sin efectivo o ahorrar para artículos caros. Usted puede simplemente comprar nuevos autobuses, vehículos, pieles, accesorios, etc., sin ninguna limitación. También puede actualizar sus autobuses y vehículos para mejorar su rendimiento y apariencia. </p>
14
- <h3>Autobuses y vehículos personalizables</h3>
15
- <p>Otra gran característica de Bus Simulator Indonesia Mod Apk + OBB es que le permite personalizar sus autobuses y vehículos de acuerdo a su gusto. Puede cambiar sus colores, formas, logotipos, pegatinas, etc., para que se vean únicos y con estilo. También puede elegir entre una variedad de modelos y diseños que se basan en autobuses y vehículos reales en Indonesia. También puedes crear tus propios diseños usando la herramienta de edición integrada en el juego. </p>
16
- <h3>Gráficos realistas y efectos de sonido</h3>
17
- <p>Simulador de autobús Indonesia Mod Apk + OBB también tiene gráficos realistas y efectos de sonido que hacen que el juego más inmersiva y agradable. Puedes ver los detalles de los autobuses, vehículos, edificios, carreteras, paisajes, etc., en el juego. También puedes escuchar los sonidos del motor, bocina, frenos, pasajeros, tráfico, etc., en el juego. El juego también tiene física realista y animaciones que hacen la experiencia de conducción más realista y divertido. </p>
18
- <h3>Varios modos y ubicaciones</h3>
19
-
20
- <h3>Controles fáciles y opciones de cámara</h3>
21
- <p>Simulador de autobús Indonesia Mod Apk + OBB también tiene controles fáciles y opciones de cámara que hacen que el juego más fácil de usar y conveniente. Puede controlar su autobús utilizando el volante, los botones o las opciones de inclinación de la pantalla. También puede ajustar el ángulo y la vista de la cámara según su comodidad y visibilidad. Puede cambiar entre vistas en primera persona y en tercera persona, o usar el espejo retrovisor o la cámara del salpicadero para ver qué hay detrás o delante de usted. </p>
22
- <h2>Cómo descargar e instalar el simulador de bus Indonesia Mod Apk + OBB</h2>
23
- <h3>Descargar los archivos Apk y OBB Mod</h3>
24
- <p>El primer paso para descargar e instalar Bus Simulator Indonesia Mod Apk + OBB es descargar los archivos apk y obb mod de una fuente confiable. Puede utilizar el siguiente enlace para descargar la última versión de los archivos apk y obb mod gratis. </p>
25
- <p><a href="">Descargar Simulador de Bus Indonesia Mod Apk + OBB</a></p>
26
- <h3>Habilitar fuentes desconocidas en su dispositivo</h3>
27
- <p>El siguiente paso es habilitar fuentes desconocidas en su dispositivo. Esto es necesario para permitir que tu dispositivo instale aplicaciones desde fuentes distintas de Google Play Store. Para hacer esto, sigue estos pasos:</p>
28
- <ul>
29
- <li>Vaya a la configuración de su dispositivo y busque opciones de seguridad o privacidad. </li>
30
- <li>Encontrar la opción que dice fuentes desconocidas o permitir la instalación de aplicaciones de fuentes desconocidas. </li>
31
- <li>Activar o activar esta opción. </li>
32
- </ul>
33
- <h3>Instalar el archivo Apk Mod</h3>
34
- <p>El tercer paso es instalar el archivo apk mod en su dispositivo. Para hacer esto, siga estos pasos:</p>
35
- <p></p>
36
- <ul>
37
- <li>Localice el archivo apk mod descargado en su dispositivo de almacenamiento o administrador de archivos. </li>
38
- <li>Toque en el archivo y seleccione instalar. </li>
39
- <li>Espere a que se complete el proceso de instalación. </li>
40
- </ul>
41
- <h3> Extraer y copiar el archivo OBB a la carpeta de Android/ OBB</h3>
42
- <p>El cuarto paso es extraer y copiar el archivo obb a la carpeta Android/ OBB en su dispositivo. Para hacer esto, siga estos pasos:</p>
43
- <ul>
44
-
45
- <li>Toque en el archivo y seleccione extracto. </li>
46
- <li>Seleccione una carpeta de destino donde desea extraer el archivo. </li>
47
- <li>Después de extraer el archivo, verá una carpeta llamada com.maleo.bussimulatorid. </li>
48
- <li>Copie esta carpeta y péguela en la carpeta Android/ OBB en el almacenamiento del dispositivo. </li>
49
- </ul>
50
- <h3>Iniciar el juego y disfrutar</h3>
51
- <p>El paso final es lanzar el juego y disfrutarlo. Para hacer esto, siga estos pasos:</p>
52
- <ul>
53
- <li>Ir a su cajón de aplicaciones o pantalla de inicio y buscar el icono de Indonesia Bus Simulator. </li>
54
- <li>Toque en el icono y lanzar el juego. </li>
55
- <li>Concede cualquier permiso o acceso que el juego pueda pedir. </li>
56
- <li>Seleccione su idioma y configuración preferidos. </li>
57
- <li>¡Empieza a jugar y diviértete! </li>
58
- </ul>
59
- <h2>Conclusión</h2>
60
- <p>Simulador de autobús Indonesia Mod Apk + OBB es un juego divertido y realista que le permite experimentar la vida de un conductor de autobús en Indonesia. Puedes disfrutar de dinero ilimitado, oro, vehículos, opciones de personalización, gráficos realistas, efectos de sonido, física, animaciones, modos, ubicaciones, controles, opciones de cámara y más en esta versión modificada del juego. También puede descargarlo e instalarlo fácilmente siguiendo nuestra sencilla guía anterior. Entonces, ¿qué está esperando? Descargar Bus Simulator Indonesia Mod Apk + OBB ahora y disfrutar de la conducción de autobuses en Indonesia! </p>
61
- <h2>Preguntas frecuentes</h2>
62
- <p>Aquí hay algunas preguntas frecuentes sobre Bus Simulator Indonesia Mod Apk + OBB:</p>
63
- <ol>
64
- <li><b>¿Es seguro descargar e instalar Bus Simulator Indonesia Mod Apk + OBB? </b></li>
65
- <p <p>Sí, Bus Simulator Indonesia Mod Apk + OBB es seguro para descargar e instalar, siempre y cuando se descarga desde una fuente de confianza. Hemos probado los archivos apk y obb mod y los encontramos libres de virus, malware o cualquier contenido dañino. Sin embargo, siempre debes tener cuidado al descargar e instalar aplicaciones o juegos modificados, ya que pueden contener código no deseado o malicioso que puede dañar tu dispositivo o datos. </p>
66
-
67
- <p>No, no es necesario rootear el dispositivo para usar Bus Simulator Indonesia Mod Apk + OBB. Los archivos apk y obb mod funcionan bien tanto en dispositivos arraigados y no arraigados. Sin embargo, algunas características u opciones pueden requerir acceso root para funcionar correctamente, como cambiar el número IMEI o el ID del dispositivo. Si desea utilizar estas características, es posible que tenga que rootear su dispositivo primero. </p>
68
- <li><b>¿Puedo jugar en línea con otros jugadores? </b></li>
69
- <p>Sí, se puede jugar Bus Simulator Indonesia Mod Apk + OBB en línea con otros jugadores, siempre y cuando tenga una conexión a Internet estable y un dispositivo compatible. Puedes unirte o crear salas multijugador e invitar a tus amigos u otros jugadores a unirse a ti. También puede chatear con ellos y compartir sus habilidades y experiencias de conducción. Sin embargo, debes tener en cuenta que es posible que algunos jugadores no estén usando la versión modificada del juego, y pueden denunciarte o excluirte de sus habitaciones si se enteran de que estás usando trucos o hacks. </p>
70
- <li><b>¿Me prohibirán el juego si uso Bus Simulator Indonesia Mod Apk + OBB? </b></li>
71
- <p>Hay una baja probabilidad de que se le prohibió el juego si se utiliza Bus Simulator Indonesia Mod Apk + OBB, siempre y cuando se utiliza con sabiduría y responsabilidad. No debes abusar de las características u opciones del mod, como usar demasiado dinero o oro, conducir imprudentemente o peligrosamente, o causar problemas a otros jugadores. Tampoco debe actualizar el juego desde Google Play Store o cualquier otra fuente, ya que esto puede sobrescribir los archivos apk y obb mod y causar errores o fallos. Si desea actualizar el juego, debe esperar a que la última versión de los archivos apk y obb mod para ser liberados y descargarlos desde la misma fuente. </p>
72
- <li><b>¿Cómo puedo contactar al desarrollador de Bus Simulator Indonesia Mod Apk + OBB? </b></li>
73
-
74
- </ol></p> 64aa2da5cf<br />
75
- <br />
76
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Coche De La Calle Apk Sin Verificacin.md DELETED
@@ -1,77 +0,0 @@
1
- <br />
2
- <h1>CarX Street APK sin verificación: Cómo descargar y jugar el último juego de carreras de la calle</h1>
3
- <p>Si eres un fan de los juegos de carreras, es posible que hayas oído hablar de CarX Street, un juego de carreras callejeras realista y emocionante que se ha lanzado en dispositivos móviles antes de la PC. El juego ofrece un mundo abierto donde se puede explorar, carrera, deriva, y personalizar su coche. Sin embargo, el juego no está disponible en todas las regiones, y necesita verificar su cuenta y correo electrónico para jugarlo. Es por eso que usted podría estar buscando CarX Street APK sin verificación, una versión modificada del juego que le permite jugar sin restricciones. En este artículo, le diremos todo lo que necesita saber sobre CarX Street APK sin verificación, incluyendo lo que es, por qué lo necesita, cómo descargarlo e instalarlo, cómo jugarlo, y algunos consejos y trucos para ayudarlo a convertirse en una leyenda de las carreras callejeras. </p>
4
- <h2>¿Qué es CarX Street APK? </h2>
5
- <p>CarX Street APK es un archivo de aplicación que contiene los datos del juego de CarX Street, un videojuego de carreras de simulación desarrollado por CarX Technologies. El juego se basa en el motor CarX Technology, que simula el comportamiento de los coches en la carretera, dando a los jugadores una experiencia de carreras real. Características del juego:</p>
6
- <h2>coche de la calle apk sin verificación</h2><br /><p><b><b>Download File</b> &hArr; <a href="https://bltlly.com/2v6J4z">https://bltlly.com/2v6J4z</a></b></p><br /><br />
7
- <ul>
8
- <li><h3>Un juego de carreras realista y emocionante con un mundo abierto</h3>
9
- <p>Puedes ponerte al volante y explorar la gran ciudad y sus alrededores, desde las concurridas calles de la ciudad hasta las carreteras de montaña en espiral y las fascinantes carreteras costeras. También puede derivar, velocidad, tráfico y desafiar a otros jugadores en carreras de red reales. </p></li>
10
- <li><h3>Una variedad de coches, pistas, modos y opciones de personalización</h3>
11
-
12
- <li><h3>Un juego gratuito con actualizaciones regulares y nuevo contenido</h3>
13
- <p>Puedes descargar y jugar CarX Street gratis en tu dispositivo Android o iOS. El juego no requiere suscripción ni registro. También puedes disfrutar del juego sin anuncios ni compras en la aplicación. El juego se actualiza constantemente con nuevos coches, pistas, modos, características y eventos. También puede unirse a la comunidad de CarX Street y compartir sus comentarios, sugerencias e ideas con los desarrolladores y otros jugadores. </p></li>
14
- </ul>
15
- <h2> ¿Por qué necesita CarX Street APK sin verificación? </h2>
16
- <p>CarX Street es un juego increíble que no te puedes perder. Sin embargo, hay algunos inconvenientes que podrían impedirte disfrutar del juego completamente. Es por eso que es posible que necesite CarX Street APK sin verificación, una versión modificada del juego que resuelve estos problemas. Aquí hay algunas razones por las que necesita CarX Street APK sin verificación:</p>
17
- <ul>
18
- <li><h3>Para evitar las restricciones de la región y acceder al juego desde cualquier lugar</h3>
19
- <p>CarX Street no está disponible en todos los países y regiones. Dependiendo de dónde vivas, es posible que no puedas descargar o jugar el juego desde las tiendas de aplicaciones oficiales. Esto se debe a problemas de licencia, regulaciones legales u otras razones. Sin embargo, con CarX Street APK sin verificación, se puede acceder al juego desde cualquier parte del mundo. No necesita usar una VPN ni cambiar la configuración de ubicación. Solo necesita descargar e instalar el archivo APK y disfrutar del juego. </p></li>
20
- <li><h3>Para evitar la molestia de verificar su cuenta y correo electrónico</h3>
21
-
22
- <li><h3>Para disfrutar del juego sin anuncios ni compras en la aplicación</h3>
23
- <p>CarX Street es un juego gratuito que no tiene anuncios ni compras en la aplicación. Sin embargo, algunos jugadores todavía pueden encontrar algunos pop-ups o banners que promueven otros juegos o productos. Estos anuncios pueden ser molestos y distraer, especialmente cuando estás corriendo o a la deriva. Con CarX Street APK sin verificación, se puede disfrutar del juego sin ningún tipo de anuncios o interrupciones. También puede obtener dinero y recursos ilimitados para comprar y actualizar cualquier coche que desee. </p></li>
24
- </ul>
25
- <h2>Cómo descargar e instalar CarX Street APK sin verificación? </h2>
26
- <p>Ahora que sabes por qué necesita CarX Street APK sin verificación, es posible que se pregunte cómo descargar e instalar en su dispositivo. En realidad es muy fácil y simple. Solo sigue estos pasos:</p>
27
- <p></p>
28
- <ol>
29
- <li><h3>Encontrar una fuente confiable y segura para el archivo APK</h3>
30
- <p>Lo primero que hay que hacer es encontrar un sitio web de confianza que ofrece CarX Street APK sin verificación para descargar. Hay muchos sitios web que afirman proporcionar este archivo, pero no todos ellos son seguros o legítimos. Algunos de ellos pueden contener virus, malware, spyware u otro software dañino que puede dañar su dispositivo o robar sus datos. Para evitar este riesgo, solo debe descargar CarX Street APK sin verificación de una fuente de buena reputación que tiene comentarios positivos y calificaciones de otros usuarios. </p></li>
31
- <li><h3>Habilita la instalación de fuentes desconocidas en tu dispositivo</h3>
32
- <p>Lo siguiente que debe hacer es habilitar la instalación de fuentes desconocidas en su dispositivo. Esta es una configuración de seguridad que le impide instalar aplicaciones que no son de las tiendas de aplicaciones oficiales. Sin embargo, ya que CarX Street APK sin verificación no es de las tiendas de aplicaciones oficiales, es necesario habilitar esta configuración para instalarlo en su dispositivo. Para hacer esto, vaya a la configuración del dispositivo > seguridad > fuentes desconocidas > alternar. </p></li>
33
-
34
- <p>Lo último que necesitas hacer es descargar e instalar el archivo APK en tu dispositivo. Para hacer esto, vaya a la página web donde se encuentra CarX Street APK sin verificación y haga clic en el botón de descarga. Espere a que el archivo se descargue en su dispositivo. Luego, vaya a su administrador de archivos y busque el archivo APK. Toque en él y siga las instrucciones para instalarlo en su dispositivo. Una vez completada la instalación, puedes iniciar el juego desde el cajón de tu app o la pantalla de inicio. </p>
35
- <h2>Cómo jugar CarX Street APK sin verificación? </h2>
36
- <p>Después de haber descargado e instalado CarX Street APK sin verificación en su dispositivo, usted está listo para jugar el juego. Estos son algunos pasos para ayudarte a empezar:</p>
37
- <ol>
38
- <li><h3>Sigue el tutorial y aprende los fundamentos del juego</h3>
39
- <p>Cuando lances el juego por primera vez, serás recibido por un tutorial que te enseñará lo básico del juego, como cómo controlar tu coche, cómo derrapar, cómo competir y cómo usar el menú. Usted debe seguir el tutorial cuidadosamente y prestar atención a los consejos e instrucciones. El tutorial también te dará algunas recompensas, como dinero y coches, que te ayudarán en el juego. </p></li>
40
- <li><h3>Elige tu coche y personalízalo a tu gusto</h3>
41
- <p>Después de terminar el tutorial, puede elegir su primer coche desde el garaje. Puede seleccionar entre diferentes categorías, como calle, deporte, músculo, clásico o exótico. También puede personalizar su coche con varias piezas, pinturas, calcomanías y pegatinas. Puede cambiar el color, las ruedas, el kit de carrocería, el alerón, la campana, el escape, las luces y más. También puede ajustar el rendimiento de su automóvil, como potencia del motor, par, peso, suspensión, frenos, neumáticos y más. </p></li>
42
- <li><h3>Únete a clubes, compite contra otros jugadores y conquista la ciudad</h3>
43
-
44
- </ol>
45
- <h2> Consejos y trucos para CarX Street APK sin verificación</h2>
46
- <p>CarX Street APK sin verificación es un juego divertido y adictivo que te mantendrá entretenido durante horas. Sin embargo, también puede ser desafiante y competitivo, especialmente cuando te enfrentas a otros jugadores o clubes. Para ayudarte a mejorar tus habilidades y disfrutar más del juego, aquí hay algunos consejos y trucos que debes saber:</p>
47
- <ul>
48
- <li><h3>Deambular por la ciudad y recoger recompensas</h3>
49
- <p>Una de las mejores cosas sobre CarX Street APK sin verificación es que usted puede vagar libremente por la ciudad y explorar sus secretos. Puedes encontrar lugares ocultos, atajos, saltos, rampas y otras sorpresas que harán que tu conducción sea más divertida y emocionante. También puedes recoger recompensas que están dispersas por la ciudad, como dinero, piezas, coches y más. Puede utilizar estas recompensas para actualizar su garaje y comprar coches nuevos. </p></li>
50
- <li><h3>Participar en sprints y derivas de dinero extra</h3>
51
- <p>Otra manera de ganar más dinero en CarX Street APK sin verificación es participar en sprints y derivas. Los sprints son carreras cortas que ponen a prueba tu velocidad y agilidad. Los drifts son carreras largas que ponen a prueba tu control y técnica. Puedes encontrar sprints y drifts en diferentes lugares del mapa. Puedes unirte a ellos conduciendo cerca de ellos o tocando en ellos en el menú. Usted puede ganar dinero extra al ganar sprints y derivas o al lograr altas puntuaciones. </p></li>
52
- <li><h3>Actualizar las piezas de su coche y los motores de intercambio para un mejor rendimiento</h3>
53
-
54
- </ul>
55
- <h2>Conclusión</h2>
56
- <p>CarX Street APK sin verificación es una gran manera de disfrutar del último juego de carreras callejeras sin limitaciones. El juego ofrece física realista, gráficos impresionantes y una jugabilidad emocionante que te hará sentir como un verdadero corredor. Puedes descargar e instalar el archivo APK desde una fuente confiable y comenzar a correr hoy. </p>
57
- <h2>Preguntas frecuentes</h2>
58
- <ul>
59
- <li><h4>Es CarX Street APK sin verificación segura de usar? </h4>
60
- <p>Sí, CarX Street APK sin verificación es seguro de usar, siempre y cuando se descarga de una fuente confiable y seguro. Sin embargo, siempre debe tener cuidado al descargar cualquier archivo APK de fuentes desconocidas, ya que algunos de ellos pueden contener software dañino o malware. También debe escanear el archivo con un programa antivirus antes de instalarlo en su dispositivo. </p></li>
61
- <li><h4>Es CarX Street APK sin verificación compatible con todos los dispositivos? </h4>
62
- <p>No, CarX Street APK sin verificación no es compatible con todos los dispositivos. El juego requiere Android 5.0 o superior o iOS 10.0 o superior para funcionar sin problemas. El juego también requiere al menos 2 GB de RAM y 4 GB de espacio de almacenamiento gratuito en su dispositivo. Si tu dispositivo no cumple con estos requisitos, es posible que tengas retrasos, fallos u otros problemas mientras juegas. </p></li>
63
- <li><h4>Cómo actualizar CarX Street APK sin verificación? </h4>
64
- <p>Para actualizar CarX Street APK sin verificación, es necesario descargar la última versión del archivo APK de la misma fuente donde se descargó la versión anterior. A continuación, es necesario desinstalar la versión anterior del juego desde su dispositivo e instalar la nueva versión del archivo APK. No necesita preocuparse por perder su progreso o datos, ya que se guardarán en su dispositivo. </p></li>
65
- <li><h4>¿Cómo contactar con el servicio de soporte de CarX Street APK sin verificación? </h4>
66
-
67
- <p>Si desea eliminar CarX Street APK sin verificación de su dispositivo, puede hacerlo siguiendo estos pasos:</p>
68
- <ol>
69
- <li>Ir a la configuración del dispositivo > aplicaciones > CarX Street > desinstalar. </li>
70
- <li>Vaya a su administrador de archivos y elimine el archivo APK y cualquier otro archivo o carpetas relacionados. </li>
71
- <li>Reiniciar el dispositivo para borrar la memoria caché y. </li>
72
- </ol>
73
- <p>Al eliminar CarX Street APK sin verificación, también perderá su progreso y los datos en el juego. Si desea mantenerlos, debe hacer una copia de seguridad antes de eliminar el juego. </p></li>
74
- </ul>
75
- <p>Espero que este artículo le ha ayudado a aprender más acerca de CarX Street APK sin verificación y cómo descargar y jugar. Si tienes algún comentario o sugerencia, por favor hágamelo saber en los comentarios a continuación. Gracias por leer y carreras feliz! </p> 64aa2da5cf<br />
76
- <br />
77
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Cuando Se Agot El Tiempo 1980 Descarga Gratuita.md DELETED
@@ -1,49 +0,0 @@
1
-
2
- <h1>Cuando el tiempo se agotó: Una película clásica de desastres de 1980</h1>
3
- <p>Si eres un fan de las películas de desastres, es posible que hayas oído hablar de When Time Ran Out, una película de 1980 dirigida por James Goldstone y protagonizada por Paul Newman, Jacqueline Bisset y William Holden. La película trata sobre un grupo de turistas que están atrapados en una remota isla del Pacífico que está amenazada por un volcán activo. La película fue producida por Irwin Allen, quien era conocido por sus películas de desastres como The Poseidon Adventure y The Towering infernó. Sin embargo, a diferencia de sus éxitos anteriores, When Time Ran Out fue un fracaso comercial y un fracaso crítico. A menudo se considera como la última película de desastres de la década de 1970 y una de las peores películas jamás realizadas. </p>
4
- <h2>cuando se agotó el tiempo 1980 descarga gratuita</h2><br /><p><b><b>DOWNLOAD</b> &#10037;&#10037;&#10037; <a href="https://bltlly.com/2v6JZi">https://bltlly.com/2v6JZi</a></b></p><br /><br />
5
- <p>Sin embargo, a pesar de su reputación negativa, When Time Ran Out tiene algunas cualidades redentoras que podrían atraer a algunos espectadores. Tiene un reparto de estrellas, algunos efectos especiales espectaculares y una premisa emocionante. Si tienes curiosidad sobre esta película y quieres verla por ti mismo, es posible que te estés preguntando cómo descargarla de forma gratuita y legal. En este artículo, le diremos de qué se trata When Time Ran Out, cómo se recibió y cómo puede descargarlo de algunos de los mejores sitios de descarga gratuita de películas. </p>
6
- <h2>¿Qué es cuando el tiempo se agotó? </h2>
7
- <h3>La trama</h3>
8
- <p>La película está ambientada en una isla ficticia llamada Kalaleu, donde Shelby Gilmore (William Holden) posee un hotel de nueva construcción. Quiere casarse con su secretaria, Kay Kirby (Jacqueline Bisset), que está enamorada de Hank Anderson (Paul Newman), un petrolero cuyos científicos le advierten que el volcán de la isla, Mauna Lani, está a punto de entrar en erupción. El compañero de Shelby, Bob Spangler (James Franciscus), asegura a los huéspedes del hotel que la amenaza del volcán es exagerada, explicando que solo hace erupción una vez cada mil años. </p>
9
-
10
- <p>El grupo se enfrenta a diversos obstáculos y peligros a lo largo de su viaje a través de la isla, tales como flujos de lava, deslizamientos de tierra, explosiones y puentes que colapsan. También tienen que lidiar con sus conflictos y dilemas personales. ¿Llegarán a un lugar seguro antes de que se acabe el tiempo? </p>
11
- <h3>El reparto</h3>
12
- <p>When Time Ran Out cuenta con un elenco lleno de estrellas de actores que eran famosos o en aumento en el momento. Paul Newman fue uno de los actores más populares y respetados de Hollywood, habiendo protagonizado clásicos como Butch Cassidy y Sundance Kid, The Sting y Cool Hand Luke. Jacqueline Bisset fue una actriz británica que había aparecido en películas como Bullitt, Murder on the Orient Express y The Deep. William Holden fue un actor ganador de un Oscar que había estado en películas como Sunset Boulevard, Stalag 17, y Network.</p>
13
- <p></p>
14
- <p>El reparto de reparto incluye a James Franciscus, Ernest Borgnine, Red Buttons, Burgess Meredith, Valentina Cortese, Veronica Hamel, Pat Morita, Edward Albert y Barbara Carrera. Algunos de ellos habían trabajado con Irwin Allen antes en sus anteriores películas de desastres, como The Poseidon Adventure y The Towering infernó. Algunos de ellos también fueron conocidos por sus papeles en otros géneros, como Pat Morita en The Karate Kid, Edward Albert en Butterflies Are Free, y Barbara Carrera en Never Say Never Again.</p>
15
- <h3>La recepción</h3>
16
-
17
- <p>Sin embargo, algunos espectadores han encontrado un poco de disfrute en ver When Time Ran Out, ya sea como un placer culpable o como un clásico de culto campy. Algunos han elogiado el reparto de la película, sus secuencias de acción y su valor nostálgico. Algunos también lo han comparado favorablemente con otras películas de desastres de la época, como Meteor y The Swarm. La película tiene una calificación de 4.6/10 en IMDb, basada en 3,508 votos. </p>
18
- <h2>Cómo descargar cuando el tiempo se agotó de forma gratuita y legal</h2>
19
- <p>Si estás interesado en ver When Time Ran Out para ti mismo, es posible que te estés preguntando cómo descargarlo de forma gratuita y legal. Afortunadamente, hay algunos sitios web que ofrecen descargas de películas gratuitas que están en el dominio público o han sido subidos con permiso de los titulares de los derechos. Estas son algunas de las mejores opciones para descargar When Time Ran Out:</p>
20
- <h3>Archivo de Internet</h3>
21
- <p>Internet Archive es una biblioteca digital sin fines de lucro que preserva y proporciona acceso a millones de libros, películas, música, software y otros medios. Tiene una gran colección de películas de dominio público y con licencia Creative Commons que puede descargar de forma gratuita. Puede encontrar Cuando se agotó el tiempo en el archivo de Internet siguiendo este enlace: . Puede elegir entre varios formatos y resoluciones, como MP4, MPEG2, OGG Video y 512Kb MPEG4. También puede transmitir la película en línea o leer comentarios de otros usuarios. </p>
22
- <h3>Películas de dominio público</h3>
23
- <p>Public Domain Movies es otro sitio web que ofrece descargas de películas gratuitas que están en el dominio público. Tiene una interfaz simple y fácil de usar que le permite navegar por género, año o alfabéticamente. Puede encontrar When Time Ran Out en películas de dominio público siguiendo este enlace: . Puede descargar la película en formato MP4 o verla en línea. También puedes ver el póster, la sinopsis y la calificación de IMDb de la película. </p>
24
- <h3>Otras opciones</h3>
25
-
26
- <ul>
27
- <li><a href="">Classic Cinema Online</a>: Este sitio web presenta películas clásicas de varios géneros y épocas que puedes ver en línea o descargar gratis. </li>
28
- <li><a href="">Retrovision</a>: Este sitio web tiene una colección de películas clásicas y programas de televisión que puede transmitir en línea o descargar gratis. </li>
29
- <li><a href=">YouTube</a>: Esta popular plataforma para compartir videos también tiene algunas películas de larga duración que puedes ver en línea o descargar gratis. </li>
30
- </ul>
31
- <p>Sin embargo, antes de descargar cualquier película de estos sitios web, asegúrese de revisar sus términos de servicio y política de privacidad para asegurarse de que no está violando ninguna ley o reglamento. </p>
32
- <h2>Conclusión</h2>
33
- <p>When Time Ran Out es una película de 1980 producida por Irwin Allen y protagonizada por Paul Newman, Jacqueline Bisset y William Holden. La película trata sobre un grupo de turistas que están atrapados en una isla que está a punto de ser destruida por un volcán. La película fue un fracaso comercial y crítico y a menudo se considera una de las peores películas jamás realizadas. Sin embargo, algunos espectadores lo han disfrutado como un placer culpable o un clásico de culto de campamento. </p>
34
- <p>Si quieres ver When Time Ran Out por ti mismo, puedes descargarlo de forma gratuita y legal desde algunos de los sitios web que hemos mencionado anteriormente. Sin embargo, tenga cuidado de revisar sus términos de servicio y política de privacidad antes de descargar cualquier película de ellos. </p>
35
- <h2>Preguntas frecuentes</h2>
36
- <ul>
37
- <li>< li>Q: ¿Quién dirigió When Time Ran Out? </li>
38
- <li>A: La película fue dirigida por James Goldstone, quien también dirigió películas como Rollercoaster, Swashbuckler y Brother John.</li>
39
- <li>Q: ¿Cuánto tiempo es cuando el tiempo se agotó? </li>
40
- <li>A: La película tiene un tiempo de ejecución de 121 minutos, o 144 minutos para la versión extendida. </li>
41
- <li>Q: ¿Cuál es la calificación de Cuando se agotó el tiempo? </li>
42
- <li>A: La película está clasificada PG por la MPAA para cierta violencia y lenguaje. </li>
43
- <li>Q: ¿Dónde estaba cuando se agotó el tiempo filmado? </li>
44
-
45
- <li>Q: ¿Cuándo se agotó el tiempo basado en una historia verdadera? </li>
46
- <li>A: No, la película no se basa en una historia real. Sin embargo, está vagamente inspirada en la novela de 1969 The Day the World Ended de Gordon Thomas y Max Morgan-Witts, que trata sobre la erupción de 1902 del Monte Pelée en Martinica.</li>
47
- </ul></p> 64aa2da5cf<br />
48
- <br />
49
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/BernardoOlisan/vqganclip/README.md DELETED
@@ -1,33 +0,0 @@
1
- ---
2
- title: VQGAN CLIP
3
- emoji: 💩
4
- colorFrom: green
5
- colorTo: pink
6
- sdk: gradio
7
- app_file: app.py
8
- pinned: false
9
- ---
10
-
11
- # Configuration
12
-
13
- `title`: _string_
14
- Display title for the Space
15
-
16
- `emoji`: _string_
17
- Space emoji (emoji-only character allowed)
18
-
19
- `colorFrom`: _string_
20
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
21
-
22
- `colorTo`: _string_
23
- Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
24
-
25
- `sdk`: _string_
26
- Can be either `gradio` or `streamlit`
27
-
28
- `app_file`: _string_
29
- Path to your main application file (which contains either `gradio` or `streamlit` Python code).
30
- Path is relative to the root of the repository.
31
-
32
- `pinned`: _boolean_
33
- Whether the Space stays on top of your list.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/BetterAPI/BetterChat/src/routes/+layout.server.ts DELETED
@@ -1,33 +0,0 @@
1
- import type { LayoutServerLoad } from "./$types";
2
- import { collections } from "$lib/server/database";
3
- import type { Conversation } from "$lib/types/Conversation";
4
- import { UrlDependency } from "$lib/types/UrlDependency";
5
-
6
- export const load: LayoutServerLoad = async ({ locals, depends }) => {
7
- const { conversations } = collections;
8
-
9
- depends(UrlDependency.ConversationList);
10
- depends(UrlDependency.Settings);
11
-
12
- const settings = await collections.settings.findOne({ sessionId: locals.sessionId });
13
-
14
- return {
15
- conversations: await conversations
16
- .find({
17
- sessionId: locals.sessionId,
18
- })
19
- .sort({ updatedAt: -1 })
20
- .project<Pick<Conversation, "title" | "_id" | "updatedAt" | "createdAt">>({
21
- title: 1,
22
- _id: 1,
23
- updatedAt: 1,
24
- createdAt: 1,
25
- })
26
- .map((conv) => ({ id: conv._id.toString(), title: conv.title }))
27
- .toArray(),
28
- settings: {
29
- shareConversationsWithModelAuthors: settings?.shareConversationsWithModelAuthors ?? true,
30
- ethicsModalAcceptedAt: settings?.ethicsModalAcceptedAt ?? null,
31
- },
32
- };
33
- };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/BetterAPI/BetterChat_new/src/lib/shareConversation.ts DELETED
@@ -1,27 +0,0 @@
1
- import { base } from "$app/paths";
2
- import { ERROR_MESSAGES, error } from "$lib/stores/errors";
3
- import { share } from "./utils/share";
4
-
5
- export async function shareConversation(id: string, title: string) {
6
- try {
7
- const res = await fetch(`${base}/conversation/${id}/share`, {
8
- method: "POST",
9
- headers: {
10
- "Content-Type": "application/json",
11
- },
12
- });
13
-
14
- if (!res.ok) {
15
- error.set("Error while sharing conversation, try again.");
16
- console.error("Error while sharing conversation: " + (await res.text()));
17
- return;
18
- }
19
-
20
- const { url } = await res.json();
21
-
22
- share(url, title);
23
- } catch (err) {
24
- error.set(ERROR_MESSAGES.default);
25
- console.error(err);
26
- }
27
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/tbb/detail/unique.h DELETED
@@ -1,59 +0,0 @@
1
- /*
2
- * Copyright 2008-2013 NVIDIA Corporation
3
- *
4
- * Licensed under the Apache License, Version 2.0 (the "License");
5
- * you may not use this file except in compliance with the License.
6
- * You may obtain a copy of the License at
7
- *
8
- * http://www.apache.org/licenses/LICENSE-2.0
9
- *
10
- * Unless required by applicable law or agreed to in writing, software
11
- * distributed under the License is distributed on an "AS IS" BASIS,
12
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- * See the License for the specific language governing permissions and
14
- * limitations under the License.
15
- */
16
-
17
- #pragma once
18
-
19
- #include <thrust/detail/config.h>
20
- #include <thrust/system/tbb/detail/execution_policy.h>
21
- #include <thrust/pair.h>
22
-
23
- namespace thrust
24
- {
25
- namespace system
26
- {
27
- namespace tbb
28
- {
29
- namespace detail
30
- {
31
-
32
-
33
- template<typename ExecutionPolicy,
34
- typename ForwardIterator,
35
- typename BinaryPredicate>
36
- ForwardIterator unique(execution_policy<ExecutionPolicy> &exec,
37
- ForwardIterator first,
38
- ForwardIterator last,
39
- BinaryPredicate binary_pred);
40
-
41
-
42
- template<typename ExecutionPolicy,
43
- typename InputIterator,
44
- typename OutputIterator,
45
- typename BinaryPredicate>
46
- OutputIterator unique_copy(execution_policy<ExecutionPolicy> &exec,
47
- InputIterator first,
48
- InputIterator last,
49
- OutputIterator output,
50
- BinaryPredicate binary_pred);
51
-
52
-
53
- } // end namespace detail
54
- } // end namespace tbb
55
- } // end namespace system
56
- } // end namespace thrust
57
-
58
- #include <thrust/system/tbb/detail/unique.inl>
59
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/regionclip-demo/detectron2/export/torchscript_patch.py DELETED
@@ -1,377 +0,0 @@
1
- # Copyright (c) Facebook, Inc. and its affiliates.
2
-
3
- import os
4
- import sys
5
- import tempfile
6
- from contextlib import ExitStack, contextmanager
7
- from copy import deepcopy
8
- from unittest import mock
9
- import torch
10
- from torch import nn
11
-
12
- # need some explicit imports due to https://github.com/pytorch/pytorch/issues/38964
13
- import detectron2 # noqa F401
14
- from detectron2.structures import Boxes, Instances
15
- from detectron2.utils.env import _import_file
16
-
17
- _counter = 0
18
-
19
-
20
- def _clear_jit_cache():
21
- from torch.jit._recursive import concrete_type_store
22
- from torch.jit._state import _jit_caching_layer
23
-
24
- concrete_type_store.type_store.clear() # for modules
25
- _jit_caching_layer.clear() # for free functions
26
-
27
-
28
- def _add_instances_conversion_methods(newInstances):
29
- """
30
- Add from_instances methods to the scripted Instances class.
31
- """
32
- cls_name = newInstances.__name__
33
-
34
- @torch.jit.unused
35
- def from_instances(instances: Instances):
36
- """
37
- Create scripted Instances from original Instances
38
- """
39
- fields = instances.get_fields()
40
- image_size = instances.image_size
41
- ret = newInstances(image_size)
42
- for name, val in fields.items():
43
- assert hasattr(ret, f"_{name}"), f"No attribute named {name} in {cls_name}"
44
- setattr(ret, name, deepcopy(val))
45
- return ret
46
-
47
- newInstances.from_instances = from_instances
48
-
49
-
50
- @contextmanager
51
- def patch_instances(fields):
52
- """
53
- A contextmanager, under which the Instances class in detectron2 is replaced
54
- by a statically-typed scriptable class, defined by `fields`.
55
- See more in `scripting_with_instances`.
56
- """
57
-
58
- with tempfile.TemporaryDirectory(prefix="detectron2") as dir, tempfile.NamedTemporaryFile(
59
- mode="w", encoding="utf-8", suffix=".py", dir=dir, delete=False
60
- ) as f:
61
- try:
62
- # Objects that use Instances should not reuse previously-compiled
63
- # results in cache, because `Instances` could be a new class each time.
64
- _clear_jit_cache()
65
-
66
- cls_name, s = _gen_instance_module(fields)
67
- f.write(s)
68
- f.flush()
69
- f.close()
70
-
71
- module = _import(f.name)
72
- new_instances = getattr(module, cls_name)
73
- _ = torch.jit.script(new_instances)
74
- # let torchscript think Instances was scripted already
75
- Instances.__torch_script_class__ = True
76
- # let torchscript find new_instances when looking for the jit type of Instances
77
- Instances._jit_override_qualname = torch._jit_internal._qualified_name(new_instances)
78
-
79
- _add_instances_conversion_methods(new_instances)
80
- yield new_instances
81
- finally:
82
- try:
83
- del Instances.__torch_script_class__
84
- del Instances._jit_override_qualname
85
- except AttributeError:
86
- pass
87
- sys.modules.pop(module.__name__)
88
-
89
-
90
- def _gen_instance_class(fields):
91
- """
92
- Args:
93
- fields (dict[name: type])
94
- """
95
-
96
- class _FieldType:
97
- def __init__(self, name, type_):
98
- assert isinstance(name, str), f"Field name must be str, got {name}"
99
- self.name = name
100
- self.type_ = type_
101
- self.annotation = f"{type_.__module__}.{type_.__name__}"
102
-
103
- fields = [_FieldType(k, v) for k, v in fields.items()]
104
-
105
- def indent(level, s):
106
- return " " * 4 * level + s
107
-
108
- lines = []
109
-
110
- global _counter
111
- _counter += 1
112
-
113
- cls_name = "ScriptedInstances{}".format(_counter)
114
-
115
- field_names = tuple(x.name for x in fields)
116
- lines.append(
117
- f"""
118
- class {cls_name}:
119
- def __init__(self, image_size: Tuple[int, int]):
120
- self.image_size = image_size
121
- self._field_names = {field_names}
122
- """
123
- )
124
-
125
- for f in fields:
126
- lines.append(
127
- indent(2, f"self._{f.name} = torch.jit.annotate(Optional[{f.annotation}], None)")
128
- )
129
-
130
- for f in fields:
131
- lines.append(
132
- f"""
133
- @property
134
- def {f.name}(self) -> {f.annotation}:
135
- # has to use a local for type refinement
136
- # https://pytorch.org/docs/stable/jit_language_reference.html#optional-type-refinement
137
- t = self._{f.name}
138
- assert t is not None
139
- return t
140
-
141
- @{f.name}.setter
142
- def {f.name}(self, value: {f.annotation}) -> None:
143
- self._{f.name} = value
144
- """
145
- )
146
-
147
- # support method `__len__`
148
- lines.append(
149
- """
150
- def __len__(self) -> int:
151
- """
152
- )
153
- for f in fields:
154
- lines.append(
155
- f"""
156
- t = self._{f.name}
157
- if t is not None:
158
- return len(t)
159
- """
160
- )
161
- lines.append(
162
- """
163
- raise NotImplementedError("Empty Instances does not support __len__!")
164
- """
165
- )
166
-
167
- # support method `has`
168
- lines.append(
169
- """
170
- def has(self, name: str) -> bool:
171
- """
172
- )
173
- for f in fields:
174
- lines.append(
175
- f"""
176
- if name == "{f.name}":
177
- return self._{f.name} is not None
178
- """
179
- )
180
- lines.append(
181
- """
182
- return False
183
- """
184
- )
185
-
186
- # support method `to`
187
- lines.append(
188
- f"""
189
- def to(self, device: torch.device) -> "{cls_name}":
190
- ret = {cls_name}(self.image_size)
191
- """
192
- )
193
- for f in fields:
194
- if hasattr(f.type_, "to"):
195
- lines.append(
196
- f"""
197
- t = self._{f.name}
198
- if t is not None:
199
- ret._{f.name} = t.to(device)
200
- """
201
- )
202
- else:
203
- # For now, ignore fields that cannot be moved to devices.
204
- # Maybe can support other tensor-like classes (e.g. __torch_function__)
205
- pass
206
- lines.append(
207
- """
208
- return ret
209
- """
210
- )
211
-
212
- # support method `getitem`
213
- lines.append(
214
- f"""
215
- def __getitem__(self, item) -> "{cls_name}":
216
- ret = {cls_name}(self.image_size)
217
- """
218
- )
219
- for f in fields:
220
- lines.append(
221
- f"""
222
- t = self._{f.name}
223
- if t is not None:
224
- ret._{f.name} = t[item]
225
- """
226
- )
227
- lines.append(
228
- """
229
- return ret
230
- """
231
- )
232
-
233
- # support method `get_fields()`
234
- lines.append(
235
- """
236
- def get_fields(self) -> Dict[str, Tensor]:
237
- ret = {}
238
- """
239
- )
240
- for f in fields:
241
- if f.type_ == Boxes:
242
- stmt = "t.tensor"
243
- elif f.type_ == torch.Tensor:
244
- stmt = "t"
245
- else:
246
- stmt = f'assert False, "unsupported type {str(f.type_)}"'
247
- lines.append(
248
- f"""
249
- t = self._{f.name}
250
- if t is not None:
251
- ret["{f.name}"] = {stmt}
252
- """
253
- )
254
- lines.append(
255
- """
256
- return ret"""
257
- )
258
- return cls_name, os.linesep.join(lines)
259
-
260
-
261
- def _gen_instance_module(fields):
262
- # TODO: find a more automatic way to enable import of other classes
263
- s = """
264
- from copy import deepcopy
265
- import torch
266
- from torch import Tensor
267
- import typing
268
- from typing import *
269
-
270
- import detectron2
271
- from detectron2.structures import Boxes, Instances
272
-
273
- """
274
-
275
- cls_name, cls_def = _gen_instance_class(fields)
276
- s += cls_def
277
- return cls_name, s
278
-
279
-
280
- def _import(path):
281
- return _import_file(
282
- "{}{}".format(sys.modules[__name__].__name__, _counter), path, make_importable=True
283
- )
284
-
285
-
286
- @contextmanager
287
- def patch_builtin_len(modules=()):
288
- """
289
- Patch the builtin len() function of a few detectron2 modules
290
- to use __len__ instead, because __len__ does not convert values to
291
- integers and therefore is friendly to tracing.
292
-
293
- Args:
294
- modules (list[stsr]): names of extra modules to patch len(), in
295
- addition to those in detectron2.
296
- """
297
-
298
- def _new_len(obj):
299
- return obj.__len__()
300
-
301
- with ExitStack() as stack:
302
- MODULES = [
303
- "detectron2.modeling.roi_heads.fast_rcnn",
304
- "detectron2.modeling.roi_heads.mask_head",
305
- "detectron2.modeling.roi_heads.keypoint_head",
306
- ] + list(modules)
307
- ctxs = [stack.enter_context(mock.patch(mod + ".len")) for mod in MODULES]
308
- for m in ctxs:
309
- m.side_effect = _new_len
310
- yield
311
-
312
-
313
- def patch_nonscriptable_classes():
314
- """
315
- Apply patches on a few nonscriptable detectron2 classes.
316
- Should not have side-effects on eager usage.
317
- """
318
- # __prepare_scriptable__ can also be added to models for easier maintenance.
319
- # But it complicates the clean model code.
320
-
321
- from detectron2.modeling.backbone import ResNet, FPN
322
-
323
- # Due to https://github.com/pytorch/pytorch/issues/36061,
324
- # we change backbone to use ModuleList for scripting.
325
- # (note: this changes param names in state_dict)
326
-
327
- def prepare_resnet(self):
328
- ret = deepcopy(self)
329
- ret.stages = nn.ModuleList(ret.stages)
330
- for k in self.stage_names:
331
- delattr(ret, k)
332
- return ret
333
-
334
- ResNet.__prepare_scriptable__ = prepare_resnet
335
-
336
- def prepare_fpn(self):
337
- ret = deepcopy(self)
338
- ret.lateral_convs = nn.ModuleList(ret.lateral_convs)
339
- ret.output_convs = nn.ModuleList(ret.output_convs)
340
- for name, _ in self.named_children():
341
- if name.startswith("fpn_"):
342
- delattr(ret, name)
343
- return ret
344
-
345
- FPN.__prepare_scriptable__ = prepare_fpn
346
-
347
- # Annotate some attributes to be constants for the purpose of scripting,
348
- # even though they are not constants in eager mode.
349
- from detectron2.modeling.roi_heads import StandardROIHeads
350
-
351
- if hasattr(StandardROIHeads, "__annotations__"):
352
- # copy first to avoid editing annotations of base class
353
- StandardROIHeads.__annotations__ = deepcopy(StandardROIHeads.__annotations__)
354
- StandardROIHeads.__annotations__["mask_on"] = torch.jit.Final[bool]
355
- StandardROIHeads.__annotations__["keypoint_on"] = torch.jit.Final[bool]
356
-
357
-
358
- # These patches are not supposed to have side-effects.
359
- patch_nonscriptable_classes()
360
-
361
-
362
- @contextmanager
363
- def freeze_training_mode(model):
364
- """
365
- A context manager that annotates the "training" attribute of every submodule
366
- to constant, so that the training codepath in these modules can be
367
- meta-compiled away. Upon exiting, the annotations are reverted.
368
- """
369
- classes = {type(x) for x in model.modules()}
370
- # __constants__ is the old way to annotate constants and not compatible
371
- # with __annotations__ .
372
- classes = {x for x in classes if not hasattr(x, "__constants__")}
373
- for cls in classes:
374
- cls.__annotations__["training"] = torch.jit.Final[bool]
375
- yield
376
- for cls in classes:
377
- cls.__annotations__["training"] = bool
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CikeyQI/meme-api/meme_generator/memes/ask/__init__.py DELETED
@@ -1,83 +0,0 @@
1
- from typing import List
2
-
3
- from PIL import ImageFilter
4
- from pil_utils import BuildImage, Text2Image
5
- from pil_utils.gradient import ColorStop, LinearGradient
6
-
7
- from meme_generator import MemeArgsModel, add_meme
8
- from meme_generator.exception import TextOrNameNotEnough, TextOverLength
9
-
10
-
11
- def ask(images: List[BuildImage], texts: List[str], args: MemeArgsModel):
12
- if not texts and not args.user_infos:
13
- raise TextOrNameNotEnough("ask")
14
-
15
- name = texts[0] if texts else args.user_infos[0].name
16
- ta = "他" if args.user_infos and args.user_infos[0].gender == "male" else "她"
17
-
18
- img = images[0].resize_width(640)
19
- img_w, img_h = img.size
20
- gradient_h = 150
21
- gradient = LinearGradient(
22
- (0, 0, 0, gradient_h),
23
- [ColorStop(0, (0, 0, 0, 220)), ColorStop(1, (0, 0, 0, 30))],
24
- )
25
- gradient_img = gradient.create_image((img_w, gradient_h))
26
- mask = BuildImage.new("RGBA", img.size)
27
- mask.paste(gradient_img, (0, img_h - gradient_h), alpha=True)
28
- mask = mask.filter(ImageFilter.GaussianBlur(radius=3))
29
- img.paste(mask, alpha=True)
30
-
31
- start_w = 20
32
- start_h = img_h - gradient_h + 5
33
- text1 = name
34
- text2 = f"{name}不知道哦。"
35
- text2img1 = Text2Image.from_text(text1, 28, weight="bold")
36
- text2img2 = Text2Image.from_text(text2, 28, weight="bold")
37
- img.draw_text(
38
- (start_w + 40 + (text2img2.width - text2img1.width) // 2, start_h),
39
- text1,
40
- fontsize=28,
41
- fill="orange",
42
- weight="bold",
43
- )
44
- img.draw_text(
45
- (start_w + 40, start_h + text2img1.height + 10),
46
- text2,
47
- fontsize=28,
48
- fill="white",
49
- weight="bold",
50
- )
51
-
52
- line_h = start_h + text2img1.height + 5
53
- img.draw_line(
54
- (start_w, line_h, start_w + text2img2.width + 80, line_h),
55
- fill="orange",
56
- width=2,
57
- )
58
-
59
- sep_w = 30
60
- sep_h = 80
61
- frame = BuildImage.new("RGBA", (img_w + sep_w * 2, img_h + sep_h * 2), "white")
62
- try:
63
- frame.draw_text(
64
- (sep_w, 0, img_w + sep_w, sep_h),
65
- f"让{name}告诉你吧",
66
- max_fontsize=35,
67
- halign="left",
68
- )
69
- frame.draw_text(
70
- (sep_w, img_h + sep_h, img_w + sep_w, img_h + sep_h * 2),
71
- f"啊这,{ta}说不知道",
72
- max_fontsize=35,
73
- halign="left",
74
- )
75
- except ValueError:
76
- raise TextOverLength(name)
77
- frame.paste(img, (sep_w, sep_h), alpha=True)
78
- return frame.save_png()
79
-
80
-
81
- add_meme(
82
- "ask", ask, min_images=1, max_images=1, min_texts=0, max_texts=1, keywords=["问问"]
83
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CofAI/chat.b4/g4f/Provider/Providers/Vercel.py DELETED
@@ -1,162 +0,0 @@
1
- import os
2
- import json
3
- import base64
4
- import execjs
5
- import queue
6
- import threading
7
-
8
- from curl_cffi import requests
9
- from ...typing import sha256, Dict, get_type_hints
10
-
11
- url = 'https://play.vercel.ai'
12
- supports_stream = True
13
- needs_auth = False
14
-
15
- models = {
16
- 'claude-instant-v1': 'anthropic:claude-instant-v1',
17
- 'claude-v1': 'anthropic:claude-v1',
18
- 'alpaca-7b': 'replicate:replicate/alpaca-7b',
19
- 'stablelm-tuned-alpha-7b': 'replicate:stability-ai/stablelm-tuned-alpha-7b',
20
- 'bloom': 'huggingface:bigscience/bloom',
21
- 'bloomz': 'huggingface:bigscience/bloomz',
22
- 'flan-t5-xxl': 'huggingface:google/flan-t5-xxl',
23
- 'flan-ul2': 'huggingface:google/flan-ul2',
24
- 'gpt-neox-20b': 'huggingface:EleutherAI/gpt-neox-20b',
25
- 'oasst-sft-4-pythia-12b-epoch-3.5': 'huggingface:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5',
26
- 'santacoder': 'huggingface:bigcode/santacoder',
27
- 'command-medium-nightly': 'cohere:command-medium-nightly',
28
- 'command-xlarge-nightly': 'cohere:command-xlarge-nightly',
29
- 'code-cushman-001': 'openai:code-cushman-001',
30
- 'code-davinci-002': 'openai:code-davinci-002',
31
- 'gpt-3.5-turbo': 'openai:gpt-3.5-turbo',
32
- 'text-ada-001': 'openai:text-ada-001',
33
- 'text-babbage-001': 'openai:text-babbage-001',
34
- 'text-curie-001': 'openai:text-curie-001',
35
- 'text-davinci-002': 'openai:text-davinci-002',
36
- 'text-davinci-003': 'openai:text-davinci-003'
37
- }
38
- model = models.keys()
39
-
40
- vercel_models = {'anthropic:claude-instant-v1': {'id': 'anthropic:claude-instant-v1', 'provider': 'anthropic', 'providerHumanName': 'Anthropic', 'makerHumanName': 'Anthropic', 'minBillingTier': 'hobby', 'parameters': {'temperature': {'value': 1, 'range': [0, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'topK': {'value': 1, 'range': [1, 500]}, 'presencePenalty': {'value': 1, 'range': [0, 1]}, 'frequencyPenalty': {'value': 1, 'range': [0, 1]}, 'stopSequences': {'value': ['\n\nHuman:'], 'range': []}}, 'name': 'claude-instant-v1'}, 'anthropic:claude-v1': {'id': 'anthropic:claude-v1', 'provider': 'anthropic', 'providerHumanName': 'Anthropic', 'makerHumanName': 'Anthropic', 'minBillingTier': 'hobby', 'parameters': {'temperature': {'value': 1, 'range': [0, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'topK': {'value': 1, 'range': [1, 500]}, 'presencePenalty': {'value': 1, 'range': [0, 1]}, 'frequencyPenalty': {'value': 1, 'range': [0, 1]}, 'stopSequences': {'value': ['\n\nHuman:'], 'range': []}}, 'name': 'claude-v1'}, 'replicate:replicate/alpaca-7b': {'id': 'replicate:replicate/alpaca-7b', 'provider': 'replicate', 'providerHumanName': 'Replicate', 'makerHumanName': 'Stanford', 'parameters': {'temperature': {'value': 0.75, 'range': [0.01, 5]}, 'maximumLength': {'value': 200, 'range': [50, 512]}, 'topP': {'value': 0.95, 'range': [0.01, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'repetitionPenalty': {'value': 1.1765, 'range': [0.01, 5]}, 'stopSequences': {'value': [], 'range': []}}, 'version': '2014ee1247354f2e81c0b3650d71ca715bc1e610189855f134c30ecb841fae21', 'name': 'alpaca-7b'}, 'replicate:stability-ai/stablelm-tuned-alpha-7b': {'id': 'replicate:stability-ai/stablelm-tuned-alpha-7b', 'provider': 'replicate', 'makerHumanName': 'StabilityAI', 'providerHumanName': 'Replicate', 'parameters': {'temperature': {'value': 0.75, 'range': [0.01, 5]}, 'maximumLength': {'value': 200, 'range': [50, 512]}, 'topP': {'value': 0.95, 'range': [0.01, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'repetitionPenalty': {'value': 1.1765, 'range': [0.01, 5]}, 'stopSequences': {'value': [], 'range': []}}, 'version': '4a9a32b4fd86c2d047f1d271fa93972683ec6ef1cf82f402bd021f267330b50b', 'name': 'stablelm-tuned-alpha-7b'}, 'huggingface:bigscience/bloom': {'id': 'huggingface:bigscience/bloom', 'provider': 'huggingface', 'providerHumanName': 'HuggingFace', 'makerHumanName': 'BigScience', 'instructions': "Do NOT talk to Bloom as an entity, it's not a chatbot but a webpage/blog/article completion model. For the best results: mimic a few words of a webpage similar to the content you want to generate. Start a sentence as if YOU were writing a blog, webpage, math post, coding article and Bloom will generate a coherent follow-up.", 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 0.95, 'range': [0.01, 0.99]}, 'topK': {'value': 4, 'range': [1, 500]}, 'repetitionPenalty': {'value': 1.03, 'range': [0.1, 2]}}, 'name': 'bloom'}, 'huggingface:bigscience/bloomz': {'id': 'huggingface:bigscience/bloomz', 'provider': 'huggingface', 'providerHumanName': 'HuggingFace', 'makerHumanName': 'BigScience', 'instructions': 'We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "Translate to English: Je t\'aime.", the model will most likely answer "I love you.".', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 0.95, 'range': [0.01, 0.99]}, 'topK': {'value': 4, 'range': [1, 500]}, 'repetitionPenalty': {'value': 1.03, 'range': [0.1, 2]}}, 'name': 'bloomz'}, 'huggingface:google/flan-t5-xxl': {'id': 'huggingface:google/flan-t5-xxl', 'provider': 'huggingface', 'makerHumanName': 'Google', 'providerHumanName': 'HuggingFace', 'name': 'flan-t5-xxl', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 0.95, 'range': [0.01, 0.99]}, 'topK': {'value': 4, 'range': [1, 500]}, 'repetitionPenalty': {'value': 1.03, 'range': [0.1, 2]}}}, 'huggingface:google/flan-ul2': {'id': 'huggingface:google/flan-ul2', 'provider': 'huggingface', 'providerHumanName': 'HuggingFace', 'makerHumanName': 'Google', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 0.95, 'range': [0.01, 0.99]}, 'topK': {'value': 4, 'range': [1, 500]}, 'repetitionPenalty': {'value': 1.03, 'range': [0.1, 2]}}, 'name': 'flan-ul2'}, 'huggingface:EleutherAI/gpt-neox-20b': {'id': 'huggingface:EleutherAI/gpt-neox-20b', 'provider': 'huggingface', 'providerHumanName': 'HuggingFace', 'makerHumanName': 'EleutherAI', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 0.95, 'range': [0.01, 0.99]}, 'topK': {'value': 4, 'range': [1, 500]}, 'repetitionPenalty': {'value': 1.03, 'range': [0.1, 2]}, 'stopSequences': {'value': [], 'range': []}}, 'name': 'gpt-neox-20b'}, 'huggingface:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5': {'id': 'huggingface:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5', 'provider': 'huggingface', 'providerHumanName': 'HuggingFace', 'makerHumanName': 'OpenAssistant', 'parameters': {'maximumLength': {'value': 200, 'range': [50, 1024]}, 'typicalP': {'value': 0.2, 'range': [0.1, 0.99]}, 'repetitionPenalty': {'value': 1, 'range': [0.1, 2]}}, 'name': 'oasst-sft-4-pythia-12b-epoch-3.5'}, 'huggingface:bigcode/santacoder': {
41
- 'id': 'huggingface:bigcode/santacoder', 'provider': 'huggingface', 'providerHumanName': 'HuggingFace', 'makerHumanName': 'BigCode', 'instructions': 'The model was trained on GitHub code. As such it is not an instruction model and commands like "Write a function that computes the square root." do not work well. You should phrase commands like they occur in source code such as comments (e.g. # the following function computes the sqrt) or write a function signature and docstring and let the model complete the function body.', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 0.95, 'range': [0.01, 0.99]}, 'topK': {'value': 4, 'range': [1, 500]}, 'repetitionPenalty': {'value': 1.03, 'range': [0.1, 2]}}, 'name': 'santacoder'}, 'cohere:command-medium-nightly': {'id': 'cohere:command-medium-nightly', 'provider': 'cohere', 'providerHumanName': 'Cohere', 'makerHumanName': 'Cohere', 'name': 'command-medium-nightly', 'parameters': {'temperature': {'value': 0.9, 'range': [0, 2]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0, 1]}, 'topK': {'value': 0, 'range': [0, 500]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'cohere:command-xlarge-nightly': {'id': 'cohere:command-xlarge-nightly', 'provider': 'cohere', 'providerHumanName': 'Cohere', 'makerHumanName': 'Cohere', 'name': 'command-xlarge-nightly', 'parameters': {'temperature': {'value': 0.9, 'range': [0, 2]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0, 1]}, 'topK': {'value': 0, 'range': [0, 500]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:gpt-4': {'id': 'openai:gpt-4', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'gpt-4', 'minBillingTier': 'pro', 'parameters': {'temperature': {'value': 0.7, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:code-cushman-001': {'id': 'openai:code-cushman-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}, 'name': 'code-cushman-001'}, 'openai:code-davinci-002': {'id': 'openai:code-davinci-002', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}, 'name': 'code-davinci-002'}, 'openai:gpt-3.5-turbo': {'id': 'openai:gpt-3.5-turbo', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'parameters': {'temperature': {'value': 0.7, 'range': [0, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'topK': {'value': 1, 'range': [1, 500]}, 'presencePenalty': {'value': 1, 'range': [0, 1]}, 'frequencyPenalty': {'value': 1, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}, 'name': 'gpt-3.5-turbo'}, 'openai:text-ada-001': {'id': 'openai:text-ada-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-ada-001', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-babbage-001': {'id': 'openai:text-babbage-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-babbage-001', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-curie-001': {'id': 'openai:text-curie-001', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-curie-001', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-davinci-002': {'id': 'openai:text-davinci-002', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-davinci-002', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}, 'openai:text-davinci-003': {'id': 'openai:text-davinci-003', 'provider': 'openai', 'providerHumanName': 'OpenAI', 'makerHumanName': 'OpenAI', 'name': 'text-davinci-003', 'parameters': {'temperature': {'value': 0.5, 'range': [0.1, 1]}, 'maximumLength': {'value': 200, 'range': [50, 1024]}, 'topP': {'value': 1, 'range': [0.1, 1]}, 'presencePenalty': {'value': 0, 'range': [0, 1]}, 'frequencyPenalty': {'value': 0, 'range': [0, 1]}, 'stopSequences': {'value': [], 'range': []}}}}
42
-
43
-
44
- # based on https://github.com/ading2210/vercel-llm-api // modified
45
- class Client:
46
- def __init__(self):
47
- self.session = requests.Session()
48
- self.headers = {
49
- 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/110 Safari/537.36',
50
- 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8',
51
- 'Accept-Encoding': 'gzip, deflate, br',
52
- 'Accept-Language': 'en-US,en;q=0.5',
53
- 'Te': 'trailers',
54
- 'Upgrade-Insecure-Requests': '1'
55
- }
56
- self.session.headers.update(self.headers)
57
-
58
- def get_token(self):
59
- b64 = self.session.get('https://sdk.vercel.ai/openai.jpeg').text
60
- data = json.loads(base64.b64decode(b64))
61
-
62
- code = 'const globalThis = {data: `sentinel`}; function token() {return (%s)(%s)}' % (
63
- data['c'], data['a'])
64
-
65
- token_string = json.dumps(separators=(',', ':'),
66
- obj={'r': execjs.compile(code).call('token'), 't': data['t']})
67
-
68
- return base64.b64encode(token_string.encode()).decode()
69
-
70
- def get_default_params(self, model_id):
71
- return {key: param['value'] for key, param in vercel_models[model_id]['parameters'].items()}
72
-
73
- def generate(self, model_id: str, prompt: str, params: dict = {}):
74
- if not ':' in model_id:
75
- model_id = models[model_id]
76
-
77
- defaults = self.get_default_params(model_id)
78
-
79
- payload = defaults | params | {
80
- 'prompt': prompt,
81
- 'model': model_id,
82
- }
83
-
84
- headers = self.headers | {
85
- 'Accept-Encoding': 'gzip, deflate, br',
86
- 'Custom-Encoding': self.get_token(),
87
- 'Host': 'sdk.vercel.ai',
88
- 'Origin': 'https://sdk.vercel.ai',
89
- 'Referrer': 'https://sdk.vercel.ai',
90
- 'Sec-Fetch-Dest': 'empty',
91
- 'Sec-Fetch-Mode': 'cors',
92
- 'Sec-Fetch-Site': 'same-origin',
93
- }
94
-
95
- chunks_queue = queue.Queue()
96
- error = None
97
- response = None
98
-
99
- def callback(data):
100
- chunks_queue.put(data.decode())
101
-
102
- def request_thread():
103
- nonlocal response, error
104
- for _ in range(3):
105
- try:
106
- response = self.session.post('https://sdk.vercel.ai/api/generate',
107
- json=payload, headers=headers, content_callback=callback)
108
- response.raise_for_status()
109
-
110
- except Exception as e:
111
- if _ == 2:
112
- error = e
113
-
114
- else:
115
- continue
116
-
117
- thread = threading.Thread(target=request_thread, daemon=True)
118
- thread.start()
119
-
120
- text = ''
121
- index = 0
122
- while True:
123
- try:
124
- chunk = chunks_queue.get(block=True, timeout=0.1)
125
-
126
- except queue.Empty:
127
- if error:
128
- raise error
129
-
130
- elif response:
131
- break
132
-
133
- else:
134
- continue
135
-
136
- text += chunk
137
- lines = text.split('\n')
138
-
139
- if len(lines) - 1 > index:
140
- new = lines[index:-1]
141
- for word in new:
142
- yield json.loads(word)
143
- index = len(lines) - 1
144
-
145
- def _create_completion(model: str, messages: list, stream: bool, **kwargs):
146
- yield 'Vercel is currently not working.'
147
- return
148
-
149
- conversation = 'This is a conversation between a human and a language model, respond to the last message accordingly, referring to the past history of messages if needed.\n'
150
-
151
- for message in messages:
152
- conversation += '%s: %s\n' % (message['role'], message['content'])
153
-
154
- conversation += 'assistant: '
155
-
156
- completion = Client().generate(model, conversation)
157
-
158
- for token in completion:
159
- yield token
160
-
161
- params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \
162
- '(%s)' % ', '.join([f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Cong723/gpt-academic-public/crazy_functional.py DELETED
@@ -1,240 +0,0 @@
1
- from toolbox import HotReload # HotReload 的意思是热更新,修改函数插件后,不需要重启程序,代码直接生效
2
-
3
-
4
- def get_crazy_functions():
5
- ###################### 第一组插件 ###########################
6
- from crazy_functions.读文章写摘要 import 读文章写摘要
7
- from crazy_functions.生成函数注释 import 批量生成函数注释
8
- from crazy_functions.解析项目源代码 import 解析项目本身
9
- from crazy_functions.解析项目源代码 import 解析一个Python项目
10
- from crazy_functions.解析项目源代码 import 解析一个C项目的头文件
11
- from crazy_functions.解析项目源代码 import 解析一个C项目
12
- from crazy_functions.解析项目源代码 import 解析一个Golang项目
13
- from crazy_functions.解析项目源代码 import 解析一个Java项目
14
- from crazy_functions.解析项目源代码 import 解析一个前端项目
15
- from crazy_functions.高级功能函数模板 import 高阶功能模板函数
16
- from crazy_functions.代码重写为全英文_多线程 import 全项目切换英文
17
- from crazy_functions.Latex全文润色 import Latex英文润色
18
- from crazy_functions.询问多个大语言模型 import 同时问询
19
- from crazy_functions.解析项目源代码 import 解析一个Lua项目
20
- from crazy_functions.解析项目源代码 import 解析一个CSharp项目
21
- from crazy_functions.总结word文档 import 总结word文档
22
- from crazy_functions.解析JupyterNotebook import 解析ipynb文件
23
- from crazy_functions.对话历史存档 import 对话历史存档
24
- from crazy_functions.对话历史存档 import 载入对话历史存档
25
- from crazy_functions.对话历史存档 import 删除所有本地对话历史记录
26
-
27
- from crazy_functions.批量Markdown翻译 import Markdown英译中
28
- function_plugins = {
29
- "解析整个Python项目": {
30
- "Color": "stop", # 按钮颜色
31
- "Function": HotReload(解析一个Python项目)
32
- },
33
- "载入对话历史存档(先上传存档或输入路径)": {
34
- "Color": "stop",
35
- "AsButton":False,
36
- "Function": HotReload(载入对话历史存档)
37
- },
38
- "删除所有本地对话历史记录(请谨慎操作)": {
39
- "AsButton":False,
40
- "Function": HotReload(删除所有本地对话历史记录)
41
- },
42
- "[测试功能] 解析Jupyter Notebook文件": {
43
- "Color": "stop",
44
- "AsButton":False,
45
- "Function": HotReload(解析ipynb文件),
46
- "AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
47
- "ArgsReminder": "若输入0,则不解析notebook中的Markdown块", # 高级参数输入区的显示提示
48
- },
49
- "批量总结Word文档": {
50
- "Color": "stop",
51
- "Function": HotReload(总结word文档)
52
- },
53
- "解析整个C++项目头文件": {
54
- "Color": "stop", # 按钮颜色
55
- "AsButton": False, # 加入下拉菜单中
56
- "Function": HotReload(解析一个C项目的头文件)
57
- },
58
- "解析整个C++项目(.cpp/.hpp/.c/.h)": {
59
- "Color": "stop", # 按钮颜色
60
- "AsButton": False, # 加入下拉菜单中
61
- "Function": HotReload(解析一个C项目)
62
- },
63
- "解析整个Go项目": {
64
- "Color": "stop", # 按钮颜色
65
- "AsButton": False, # 加入下拉菜单中
66
- "Function": HotReload(解析一个Golang项目)
67
- },
68
- "解析整个Java项目": {
69
- "Color": "stop", # 按钮颜色
70
- "AsButton": False, # 加入下拉菜单中
71
- "Function": HotReload(解析一个Java项目)
72
- },
73
- "解析整个前端项目(js,ts,css等)": {
74
- "Color": "stop", # 按钮颜色
75
- "AsButton": False, # 加入下拉菜单中
76
- "Function": HotReload(解析一个前端项目)
77
- },
78
- "解析整个Lua项目": {
79
- "Color": "stop", # 按钮颜色
80
- "AsButton": False, # 加入下拉菜单中
81
- "Function": HotReload(解析一个Lua项目)
82
- },
83
- "解析整个CSharp项目": {
84
- "Color": "stop", # 按钮颜色
85
- "AsButton": False, # 加入下拉菜单中
86
- "Function": HotReload(解析一个CSharp项目)
87
- },
88
- "读Tex论文写摘要": {
89
- "Color": "stop", # 按钮颜色
90
- "Function": HotReload(读文章写摘要)
91
- },
92
- "Markdown/Readme英译中": {
93
- # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
94
- "Color": "stop",
95
- "Function": HotReload(Markdown英译中)
96
- },
97
- "批量生成函数注释": {
98
- "Color": "stop", # 按钮颜色
99
- "AsButton": False, # 加入下拉菜单中
100
- "Function": HotReload(批量生成函数注释)
101
- },
102
- "保存当前的对话": {
103
- "Function": HotReload(对话历史存档)
104
- },
105
- "[多线程Demo] 解析此项目本身(源码自译解)": {
106
- "AsButton": False, # 加入下拉菜单中
107
- "Function": HotReload(解析项目本身)
108
- },
109
- "[老旧的Demo] 把本项目源代码切换成全英文": {
110
- # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
111
- "AsButton": False, # 加入下拉菜单中
112
- "Function": HotReload(全项目切换英文)
113
- },
114
- "[插件demo] 历史上的今天": {
115
- # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
116
- "Function": HotReload(高阶功能模板函数)
117
- },
118
-
119
- }
120
- ###################### 第二组插件 ###########################
121
- # [第二组插件]: 经过充分测试
122
- from crazy_functions.批量总结PDF文档 import 批量总结PDF文档
123
- from crazy_functions.批量总结PDF文档pdfminer import 批量总结PDF文档pdfminer
124
- from crazy_functions.批量翻译PDF文档_多线程 import 批量翻译PDF文档
125
- from crazy_functions.谷歌检索小助手 import 谷歌检索小助手
126
- from crazy_functions.理解PDF文档内容 import 理解PDF文档内容标准文件输入
127
- from crazy_functions.Latex全文润色 import Latex中文润色
128
- from crazy_functions.Latex全文翻译 import Latex中译英
129
- from crazy_functions.Latex全文翻译 import Latex英译中
130
- from crazy_functions.批量Markdown翻译 import Markdown中译英
131
-
132
- function_plugins.update({
133
- "批量翻译PDF文档(多线程)": {
134
- "Color": "stop",
135
- "AsButton": True, # 加入下拉菜单中
136
- "Function": HotReload(批量翻译PDF文档)
137
- },
138
- "询问多个GPT模型": {
139
- "Color": "stop", # 按钮颜色
140
- "Function": HotReload(同时问询)
141
- },
142
- "[测试功能] 批量总结PDF文档": {
143
- "Color": "stop",
144
- "AsButton": False, # 加入下拉菜单中
145
- # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
146
- "Function": HotReload(批量总结PDF文档)
147
- },
148
- "[测试功能] 批量总结PDF文档pdfminer": {
149
- "Color": "stop",
150
- "AsButton": False, # 加入下拉菜单中
151
- "Function": HotReload(批量总结PDF文档pdfminer)
152
- },
153
- "谷歌学术检索助手(输入谷歌学术搜索页url)": {
154
- "Color": "stop",
155
- "AsButton": False, # 加入下拉菜单中
156
- "Function": HotReload(谷歌检索小助手)
157
- },
158
-
159
- "理解PDF文档内容 (模仿ChatPDF)": {
160
- # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
161
- "Color": "stop",
162
- "AsButton": False, # 加入下拉菜单中
163
- "Function": HotReload(理解PDF文档内容标准文件输入)
164
- },
165
- "[测试功能] 英文Latex项目全文润色(输入路径或上传压缩包)": {
166
- # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
167
- "Color": "stop",
168
- "AsButton": False, # 加入下拉菜单中
169
- "Function": HotReload(Latex英文润色)
170
- },
171
- "[测试功能] 中文Latex项目全文润色(输入路径或上传压缩包)": {
172
- # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
173
- "Color": "stop",
174
- "AsButton": False, # 加入下拉菜单中
175
- "Function": HotReload(Latex中文润色)
176
- },
177
- "Latex项目全文中译英(输入路径或上传压缩包)": {
178
- # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
179
- "Color": "stop",
180
- "AsButton": False, # 加入下拉菜单中
181
- "Function": HotReload(Latex中译英)
182
- },
183
- "Latex项目全文英译中(输入路径或上传压缩包)": {
184
- # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
185
- "Color": "stop",
186
- "AsButton": False, # 加入下拉菜单中
187
- "Function": HotReload(Latex英译中)
188
- },
189
- "批量Markdown中译英(输入路径或上传压缩包)": {
190
- # HotReload 的意思是热更新,修改函数插件代码后,不需要重启程序,代码直接生效
191
- "Color": "stop",
192
- "AsButton": False, # 加入下拉菜单中
193
- "Function": HotReload(Markdown中译英)
194
- },
195
-
196
-
197
- })
198
-
199
- ###################### 第三组插件 ###########################
200
- # [第三组插件]: 尚未充分测试的函数插件,放在这里
201
- from crazy_functions.下载arxiv论文翻译摘要 import 下载arxiv论文并翻译摘要
202
- function_plugins.update({
203
- "一键下载arxiv论文并翻译摘要(先在input输入编号,如1812.10695)": {
204
- "Color": "stop",
205
- "AsButton": False, # 加入下拉菜单中
206
- "Function": HotReload(下载arxiv论文并翻译摘要)
207
- }
208
- })
209
-
210
- from crazy_functions.联网的ChatGPT import 连接网络回答问题
211
- function_plugins.update({
212
- "连接网络回答问题(先输入问题,再点击按钮,需要访问谷歌)": {
213
- "Color": "stop",
214
- "AsButton": False, # 加入下拉菜单中
215
- "Function": HotReload(连接网络回答问题)
216
- }
217
- })
218
-
219
- from crazy_functions.解析项目源代码 import 解析任意code项目
220
- function_plugins.update({
221
- "解析项目源代码(手动指定和筛选源代码文件类型)": {
222
- "Color": "stop",
223
- "AsButton": False,
224
- "AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
225
- "ArgsReminder": "输入时用逗号隔开, *代表通配符, 加了^代表不匹配; 不输入代表全部匹配。例如: \"*.c, ^*.cpp, config.toml, ^*.toml\"", # 高级参数输入区的显示提示
226
- "Function": HotReload(解析任意code项目)
227
- },
228
- })
229
- from crazy_functions.询问多个大语言模型 import 同时问询_指定模型
230
- function_plugins.update({
231
- "询问多个GPT模型(手动指定询问哪些模型)": {
232
- "Color": "stop",
233
- "AsButton": False,
234
- "AdvancedArgs": True, # 调用时,唤起高级参数输入区(默认False)
235
- "ArgsReminder": "支持任意数量的llm接口,用&符号分隔。例如chatglm&gpt-3.5-turbo&api2d-gpt-4", # 高级参数输入区的显示提示
236
- "Function": HotReload(同时问询_指定模型)
237
- },
238
- })
239
- ###################### 第n组插件 ###########################
240
- return function_plugins