diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/From Where to Download Apps in iPhone Tips and Tricks.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/From Where to Download Apps in iPhone Tips and Tricks.md deleted file mode 100644 index 81580a1f04eebfba5e4b47340076a380ecb806ac..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/From Where to Download Apps in iPhone Tips and Tricks.md +++ /dev/null @@ -1,35 +0,0 @@ - -

From Where to Download Apps in iPhone

-

If you have an iPhone or iPad, you might be wondering how to download apps and games on your device. The App Store is the place where you can find thousands of apps and games for your iPhone or iPad, ranging from free to paid. In this article, we will show you how to download apps and games on your iPhone or iPad using the App Store app.

-

How to get apps for iPhone or iPad

-

On your iPhone or iPad, open the App Store app. You can find it on your Home Screen or in your App Library. Browse through the Today, Games, Apps, or Arcade tabs to find apps you like. Or tap the Search tab to look for something specific. If you find a game that says Arcade, subscribe to Apple Arcade to play the game.

-

from where to download apps in iphone


Downloadhttps://byltly.com/2uKvXY



-

Tap or click the price or Get button. If you see the Open button instead of a price or Get button, you already bought or downloaded that app. In the App Store, if an app has a Get button instead of a price, the app is free. You won't be charged for downloading a free app. Some free apps offer in-app purchases and subscriptions that you can buy. Subscriptions and in-app purchases give you access to more features, content, and more.

-

How to find apps that you bought

-

If you want to see the apps that you bought or downloaded on your iPhone or iPad, you can find them in your App Library. To access your App Library, swipe left on your Home Screen until you see the App Library screen. You can browse your apps by category or search for them by name.

-

If you can't find the App Store

-

If the App Store is missing on your device, you might have parental controls turned on. Adjust your iTunes & App Store Purchases settings and make sure that you choose "Allow" for the Installing Apps setting. The App Store should reappear on your device. If you still can't find the App Store, swipe to search for it.

-

If you have an issue when you download apps

-

If you can't download or update apps on your iPhone or iPad, there might be some issues with your network connection, Apple ID, storage space, or other settings. You can try some troubleshooting steps to fix these issues, such as restarting your device, signing out and back in to your Apple ID, checking your network connection, freeing up some storage space, or contacting Apple Support.

-

Sources:

- - -

How to update apps on your iPhone or iPad

-

Keeping your apps up to date is important to get the latest features, bug fixes, and security updates. You can update your apps manually or automatically on your iPhone or iPad. To update your apps manually, open the App Store app and tap your profile picture in the upper-right corner. You will see a list of apps that have updates available. Tap Update next to each app or Update All to update all apps at once.

-

To update your apps automatically, go to Settings > App Store and turn on App Updates under Automatic Downloads. This way, your apps will update automatically whenever there is a new version available. You can also choose to use cellular data or Wi-Fi only for automatic updates.

-

-

How to delete apps on your iPhone or iPad

-

If you want to delete apps that you don't use anymore or free up some storage space on your device, you can easily delete apps on your iPhone or iPad. There are two ways to delete apps: from the Home Screen or from the Settings app. To delete apps from the Home Screen, touch and hold an app icon until it jiggles. Then tap the X icon on the app you want to delete. Tap Delete to confirm. You can also delete multiple apps at once by tapping Edit Home Screen and selecting the apps you want to delete.

-

To delete apps from the Settings app, go to Settings > General > iPhone Storage or iPad Storage. You will see a list of apps and how much space they take up on your device. Tap an app that you want to delete and then tap Delete App. Tap Delete again to confirm.

-

Sources:

-

ddb901b051
-
-
\ No newline at end of file diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/!FREE! Crack In The World Resource Pack.md b/spaces/1gistliPinn/ChatGPT4/Examples/!FREE! Crack In The World Resource Pack.md deleted file mode 100644 index 5ba9e968ac80a3ddef4a9140bacb29d27383afb6..0000000000000000000000000000000000000000 --- a/spaces/1gistliPinn/ChatGPT4/Examples/!FREE! Crack In The World Resource Pack.md +++ /dev/null @@ -1,6 +0,0 @@ -

crack in the world resource pack


Download File 🗸🗸🗸 https://imgfil.com/2uxZld



-
- 1fdad05405
-
-
-

diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/Bosonto Ese Geche Movie __LINK__ Download Nokia6600 Attestato.md b/spaces/1gistliPinn/ChatGPT4/Examples/Bosonto Ese Geche Movie __LINK__ Download Nokia6600 Attestato.md deleted file mode 100644 index 29a7d5d311bd0fdd3b608501d6f3eae2bb4ddfd2..0000000000000000000000000000000000000000 --- a/spaces/1gistliPinn/ChatGPT4/Examples/Bosonto Ese Geche Movie __LINK__ Download Nokia6600 Attestato.md +++ /dev/null @@ -1,6 +0,0 @@ -

Bosonto Ese Geche Movie Download nokia6600 attestato


Download ⚹⚹⚹ https://imgfil.com/2uy1SA



-
- aaccfb2cb3
-
-
-

diff --git a/spaces/1gistliPinn/ChatGPT4/Examples/FreemovieGirgit [NEW].md b/spaces/1gistliPinn/ChatGPT4/Examples/FreemovieGirgit [NEW].md deleted file mode 100644 index ddd798704a4d7b5354078da298699f0cf930fb11..0000000000000000000000000000000000000000 --- a/spaces/1gistliPinn/ChatGPT4/Examples/FreemovieGirgit [NEW].md +++ /dev/null @@ -1,6 +0,0 @@ -

freemovieGirgit


Downloadhttps://imgfil.com/2uy0ql



- -... (1877–1928) known as Utkalamani (Gem of Odisha) was a social worker who excelled in the field of politics as ... 608fcfdb5b. freemovieGirgit 1fdad05405
-
-
-

diff --git a/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Block Puzzle Indir APK Enjoy Classic Style Staple Games on Android.md b/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Block Puzzle Indir APK Enjoy Classic Style Staple Games on Android.md deleted file mode 100644 index 7bcd3871d7882a945b3390ffd64f7f9b88b162c9..0000000000000000000000000000000000000000 --- a/spaces/1pelhydcardo/ChatGPT-prompt-generator/assets/Block Puzzle Indir APK Enjoy Classic Style Staple Games on Android.md +++ /dev/null @@ -1,110 +0,0 @@ - -

Block Puzzle Indir Apk: A Fun and Challenging Game for Android

-

Do you love puzzle games? Do you want to test your logic and spatial skills? Do you want to have a great time with your Android device? If you answered yes to any of these questions, then you should try Block Puzzle Indir Apk, a simple yet addictive game that will keep you entertained for hours.

-

block puzzle indir apk


Download Filehttps://urlin.us/2uSZQd



-

What is Block Puzzle Indir Apk?

-

Block Puzzle Indir Apk is a free puzzle game for Android devices that is inspired by the classic Tetris game. The goal of the game is to fill a 10x10 grid with different shapes of blocks without leaving any gaps. The game ends when there is no more space to place any blocks.

-

The gameplay of Block Puzzle Indir Apk

-

The gameplay of Block Puzzle Indir Apk is very easy to learn but hard to master. You will see three blocks at the bottom of the screen that you can drag and drop onto the grid. You can rotate the blocks by tapping on them. You can also swap the blocks by dragging them onto each other. You have to place the blocks strategically to create horizontal or vertical lines that will disappear and free up some space. The more lines you clear, the more points you score.

-

The features of Block Puzzle Indir Apk

-

Block Puzzle Indir Apk has many features that make it more fun and challenging than other puzzle games. Some of these features are:

-

block puzzle classic style apk indir
-woodoku wood block puzzles apk indir
-block puzzle gem jewel blast apk indir
-blockpuz wood block puzzle apk indir
-block crazy robo apk indir
-block puzzle legend mania apk indir
-block puzzle jewel 2023 apk indir
-wood block puzzle free apk indir
-block puzzle master 2023 apk indir
-block puzzle 3d cube apk indir
-block puzzle star finder apk indir
-wood block sudoku game apk indir
-block puzzle jewel origin apk indir
-block puzzle hexa jigsaw apk indir
-block puzzle candy crush apk indir
-block puzzle jewel legend apk indir
-wood block puzzle west apk indir
-block puzzle jewel 2022 apk indir
-block puzzle brick classic apk indir
-block puzzle jewel star apk indir
-wood block puzzle classic apk indir
-block puzzle jewel blast 2023 apk indir
-block puzzle jewel 2021 apk indir
-wood block puzzle plus apk indir
-block puzzle jewel 2020 apk indir
-wood block hexa puzzle apk indir
-block puzzle jewel saga apk indir
-wood block puzzle legend apk indir
-block puzzle jewel world apk indir
-wood block triangle puzzle apk indir
-block puzzle jewel diamond apk indir
-wood block jigsaw puzzle apk indir
-block puzzle jewel deluxe apk indir
-wood block merge puzzle apk indir
-block puzzle jewel mania 2023 apk indir
-wood block tangram puzzle apk indir
-block puzzle jewel mania 2022 apk indir
-wood block hexagon puzzle apk indir
-block puzzle jewel mania 2021 apk indir
-wood block slide puzzle apk indir
-block puzzle jewel mania 2020 apk indir
-wood block number puzzle apk indir
-block puzzle jewel mania 2019 apk indir
-wood block logic puzzles apk indir
-block puzzle jewel mania 2018 apk indir
-wood blocks cube puzzles apk indir
-block puzzle jewel mania 2017 apk indir
-wood blocks hexa puzzles apk indir
-block puzzle jewel mania 2016 apk indir

- -

How to download and install Block Puzzle Indir Apk on your Android device?

-

If you want to play Block Puzzle Indir Apk on your Android device, you have to download and install it first. Here are the steps that you need to follow:

-

Download Block Puzzle Indir Apk from APKPure.com

-

The easiest way to download Block Puzzle Indir Apk is from APKPure.com, a trusted website that provides safe and fast downloads of various Android apps and games. To download Block Puzzle Indir Apk from APKPure.com, you have to:- Go to www.apkpure.com and search for Block Puzzle Indir Apk in the search bar.

-

- Tap the Download APK button to begin downloading the file to your device.

-

- You may see a warning message that says "This type of file can harm your device. Do you want to keep block-puzzle-indir.apk anyway?". Tap OK to proceed.

-

Install Block Puzzle Indir Apk using APKPure App

-

If you have the APKPure app installed on your device, you can use it to install Block Puzzle Indir Apk easily. To install Block Puzzle Indir Apk using APKPure app, you have to:

-

- Open the APKPure app and tap the Menu icon at the top left corner.

-

- Tap Downloads and locate the block-puzzle-indir.apk file that you downloaded.

-

- Tap Install and follow the instructions on the screen.

-

- You may need to enable "Unknown sources" or "Allow from this source" in your device settings to allow the installation of apps from outside the Google Play Store.

-

- Once the installation is finished, you can launch Block Puzzle Indir Apk and start playing.

How to play Block Puzzle Indir Apk and improve your skills?

-

Now that you have downloaded and installed Block Puzzle Indir Apk on your Android device, you are ready to play and have fun. But how do you play the game and improve your skills? Here are some tips and tricks that will help you:

-

Choose a game mode and a difficulty level

-

The first thing you need to do is to choose a game mode and a difficulty level that suit your preference and skill level. You can do this by tapping the Menu icon at the top right corner of the screen and selecting Game Mode or Difficulty. You can choose from four game modes: Classic, Plus, Bomb, and Hexa. Each game mode has its own rules and objectives, so make sure you read them carefully before playing. You can also choose from five difficulty levels: Easy, Normal, Hard, Expert, and Master. The higher the difficulty level, the more challenging the game will be.

-

Drag and drop the blocks to fill the grid

-

The next thing you need to do is to drag and drop the blocks to fill the grid. You will see three blocks at the bottom of the screen that you can move onto the grid. You can rotate the blocks by tapping on them. You can also swap the blocks by dragging them onto each other. You have to place the blocks strategically to create horizontal or vertical lines that will disappear and free up some space. The more lines you clear, the more points you score.

-

Clear the lines and score points

-

The main objective of the game is to clear as many lines as possible and score as many points as possible. You can clear a line by filling it with blocks of any color or shape. You can also clear multiple lines at once by creating combos. The more lines you clear at once, the higher your score will be. You can also earn bonus points by clearing special blocks, such as bombs, stars, or diamonds. These blocks have different effects, such as exploding, multiplying, or changing colors.

-

Use hints and undo options when needed

-

Sometimes, you may find yourself in a difficult situation where you have no more space to place any blocks or you have made a mistake. Don't worry, you can use hints and undo options to help you out. You can use hints by tapping the Light Bulb icon at the top left corner of the screen. Hints will show you where to place a block on the grid. You can use undo options by tapping the Undo icon at the top left corner of the screen. Undo options will let you undo your last move or reset the grid.

-

Challenge yourself and compete with others

-

If you want to make the game more fun and challenging, you can challenge yourself and compete with others. You can challenge yourself by setting a personal goal or trying to beat your own high score. You can compete with others by joining online leaderboards or unlocking achievements. You can access leaderboards and achievements by tapping the Trophy icon at the top right corner of the screen. Leaderboards will show you how you rank among other players around the world. Achievements will show you various tasks that you can complete to earn rewards.

Why should you play Block Puzzle Indir Apk?

-

Block Puzzle Indir Apk is not just a game, it is also a way to relax, have fun, and improve your brain. Here are some of the benefits of playing Block Puzzle Indir Apk:

-

It is fun and addictive

-

Block Puzzle Indir Apk is a game that will keep you hooked for hours. You will never get bored of the game, as there are always new challenges and goals to achieve. You will also enjoy the satisfaction of clearing lines and scoring points. You will feel like you are playing a real Tetris game, but with more options and features.

-

It is relaxing and stress-relieving

-

Block Puzzle Indir Apk is a game that will help you relax and relieve your stress. You can play the game at your own pace, without any time limit or pressure. You can also choose the difficulty level that suits your mood and preference. You can also listen to the soothing and relaxing sound effects that will calm your nerves and make you feel peaceful.

-

It is brain-teasing and skill-enhancing

-

Block Puzzle Indir Apk is a game that will challenge your brain and enhance your skills. You will have to use your logic and spatial skills to place the blocks on the grid and create lines. You will also have to use your strategy and planning skills to optimize your moves and score points. You will also have to use your memory and concentration skills to remember the shapes and colors of the blocks. Playing Block Puzzle Indir Apk will improve your mental abilities and cognitive functions.

-

Conclusion

-

Block Puzzle Indir Apk is a fun and challenging game for Android devices that you should try. It is a simple yet addictive game that will test your logic and spatial skills. It is also a relaxing and stress-relieving game that will help you unwind and have fun. It is also a brain-teasing and skill-enhancing game that will improve your mental abilities and cognitive functions. Download Block Puzzle Indir Apk from APKPure.com today and enjoy the game.

-

FAQs

-

Here are some of the frequently asked questions about Block Puzzle Indir Apk:

- - - - - - -
Q: Is Block Puzzle Indir Apk safe to download and install?A: Yes, Block Puzzle Indir Apk is safe to download and install from APKPure.com, a trusted website that provides safe and fast downloads of various Android apps and games.
Q: How much space does Block Puzzle Indir Apk take on my device?A: Block Puzzle Indir Apk takes about 20 MB of space on your device.
Q: Can I play Block Puzzle Indir Apk offline?A: Yes, you can play Block Puzzle Indir Apk offline without any internet connection.
Q: How can I share my score with my friends?A: You can share your score with your friends by tapping the Share icon at the top right corner of the screen. You can choose from various social media platforms, such as Facebook, Twitter, Instagram, WhatsApp, etc.
Q: How can I contact the developer of Block Puzzle Indir Apk?A: You can contact the developer of Block Puzzle Indir Apk by tapping the Feedback icon at the top right corner of the screen. You can send an email to blockpuzzleindir@gmail.com with your suggestions, comments, or questions.

197e85843d
-
-
\ No newline at end of file diff --git a/spaces/1phancelerku/anime-remove-background/Barbie Dreamhouse Adventures 3.1 Mod A Fun and Educational Game for Kids.md b/spaces/1phancelerku/anime-remove-background/Barbie Dreamhouse Adventures 3.1 Mod A Fun and Educational Game for Kids.md deleted file mode 100644 index eeddfe7d0d93ce740029afdff3ceea5cb83bce5c..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/Barbie Dreamhouse Adventures 3.1 Mod A Fun and Educational Game for Kids.md +++ /dev/null @@ -1,130 +0,0 @@ - -

Download Barbie Dreamhouse Adventures 3.1 Mod: A Guide for Android Users

-

If you are a fan of Barbie and her friends, you might have heard of Barbie Dreamhouse Adventures, a popular game for Android devices. In this game, you can create your own Barbie DreamHouse experience, join fun activities, explore Malibu, and more. But did you know that you can also download a mod apk for this game and enjoy even more features and benefits? In this article, we will tell you everything you need to know about Barbie Dreamhouse Adventures 3.1 mod apk, how to download and install it, and how to enjoy the game with it.

-

download barbie dreamhouse adventures 3.1 mod


DOWNLOADhttps://jinyurl.com/2uNP3G



-

What is Barbie Dreamhouse Adventures?

-

A fun and creative game for girls of all ages

-

Barbie Dreamhouse Adventures is a game developed by Budge Studios, a leading developer of children's apps. The game is based on the animated series of the same name, which follows the adventures of Barbie and her friends in their dream house. The game allows you to create your own stories and scenarios, as well as customize every room with wallpapers and decorations. You can also dress up Barbie and her friends in fashion-forward outfits, do their hair and nails, cook delicious recipes, dance, swim, and more.

-

Features and activities of the game

-

The game offers a variety of features and activities for you to enjoy, such as:

- -

What is a mod apk and why do people use it?

-

A modified version of the original app that offers additional benefits

-

A mod apk is a modified version of an original app that has been altered by independent developers to unlock premium features or enhance the performance of the app. A mod apk usually has a different file name and extension than the original app. For example, the original app for Barbie Dreamhouse Adventures has the file name com.budgestudios.googleplay.BarbieDreamhouse.apk, while the mod apk has the file name com.budgestudios.googleplay.BarbieDreamhouse.mod.apk.

-

How to download barbie dreamhouse adventures 3.1 mod apk
-Barbie dreamhouse adventures 3.1 mod unlimited money and gems
-Barbie dreamhouse adventures 3.1 mod free shopping and vip
-Download barbie dreamhouse adventures 3.1 mod for android
-Barbie dreamhouse adventures 3.1 mod latest version download
-Barbie dreamhouse adventures 3.1 mod gameplay and review
-Barbie dreamhouse adventures 3.1 mod features and benefits
-Barbie dreamhouse adventures 3.1 mod download link and installation guide
-Barbie dreamhouse adventures 3.1 mod cheats and hacks
-Barbie dreamhouse adventures 3.1 mod online and offline mode
-Barbie dreamhouse adventures 3.1 mod best tips and tricks
-Barbie dreamhouse adventures 3.1 mod no root and no ads
-Barbie dreamhouse adventures 3.1 mod compatible devices and requirements
-Barbie dreamhouse adventures 3.1 mod update and bug fixes
-Barbie dreamhouse adventures 3.1 mod safe and secure download
-Barbie dreamhouse adventures 3.1 mod full unlocked and premium
-Barbie dreamhouse adventures 3.1 mod fun and educational game for kids
-Barbie dreamhouse adventures 3.1 mod new characters and outfits
-Barbie dreamhouse adventures 3.1 mod customise and decorate your dream house
-Barbie dreamhouse adventures 3.1 mod explore and discover new places
-Barbie dreamhouse adventures 3.1 mod create and share your own stories
-Barbie dreamhouse adventures 3.1 mod join and invite your friends to play
-Barbie dreamhouse adventures 3.1 mod enjoy different activities and events
-Barbie dreamhouse adventures 3.1 mod win rewards and achievements
-Barbie dreamhouse adventures 3.1 mod support and feedback
-Download barbie dreamhouse adventures 3.1 mod ios
-Download barbie dreamhouse adventures 3.1 mod pc
-Download barbie dreamhouse adventures 3.1 mod mac
-Download barbie dreamhouse adventures 3.1 mod windows
-Download barbie dreamhouse adventures 3.1 mod laptop
-Download barbie dreamhouse adventures 3.1 mod tablet
-Download barbie dreamhouse adventures 3.1 mod firestick
-Download barbie dreamhouse adventures 3.1 mod smart tv
-Download barbie dreamhouse adventures 3.1 mod chromebook
-Download barbie dreamhouse adventures 3.1 mod bluestacks
-Download barbie dreamhouse adventures 3.1 mod from google play store
-Download barbie dreamhouse adventures 3.1 mod from app store
-Download barbie dreamhouse adventures 3.1 mod from amazon appstore
-Download barbie dreamhouse adventures 3.1 mod from apk pure
-Download barbie dreamhouse adventures 3.1 mod from apk mirror
-Download barbie dreamhouse adventures 3.1 mod from happy mod
-Download barbie dreamhouse adventures 3.1 mod from ac market
-Download barbie dreamhouse adventures 3.1 mod from panda helper
-Download barbie dreamhouse adventures 3.1 mod from tutu app
-Download barbie dreamhouse adventures 3.1 mod from aptoide

-

Benefits of using a mod apk for Barbie Dreamhouse Adventures

-

Some of the benefits of using a mod apk for Barbie Dreamhouse Adventures are:

- -

How to download and install Barbie Dreamhouse Adventures 3.1 mod apk?

-

Requirements and precautions before downloading

-

Before you download and install Barbie Dreamhouse Adventures 3.1 mod apk, you need to make sure that your device meets the following requirements and precautions:

- -

Steps to download and install the mod apk

-

Once you have met the requirements and precautions, you can follow these steps to download and install Barbie Dreamhouse Adventures 3.1 mod apk:

-
    -
  1. Go to the link provided below and click on the download button. This will start downloading the mod apk file on your device.
  2. -
  3. Once the download is complete, locate the file in your device's file manager and tap on it to open it.
  4. -
  5. You will see a prompt asking you to confirm the installation. Click on Install and wait for the process to finish.
  6. -
  7. After the installation is done, you will see a message saying App Installed. Click on Open to launch the game or Done to exit the installer.
  8. -
  9. You can now enjoy Barbie Dreamhouse Adventures 3.1 mod apk on your device.
  10. -
-

How to enjoy the game with the mod apk?

-

Tips and tricks to make the most of the game

-

Now that you have downloaded and installed Barbie Dreamhouse Adventures 3.1 mod apk, you can enjoy the game with all its features and benefits. Here are some tips and tricks to help you make the most of the game:

- -

Pros and cons of using the mod apk

-

While using a mod apk for Barbie Dreamhouse Adventures has many advantages, it also has some drawbacks that you should be aware of. Here are some pros and cons of using the mod apk:

- - - - - - - -
ProsCons
Access to all features of the game without paying for themPotential risk of malware or virus infection from untrusted sources
Removal of ads and pop-ups that may interrupt the game play or consume dataPossible violation of the terms and conditions of the original app developer
Ability to play the game offline without requiring an internet connectionLack of support or assistance from the original app developer in case of issues or errors
Ability to backup and restore the game data in case of device loss or damageIncompatibility with some devices or operating systems
Ability to update the game without losing the mod featuresLimited availability or accessibility of some features or events that require online connection
-

Conclusion

-

In conclusion, Barbie Dreamhouse Adventures is a fun and creative game for girls of all ages who love Barbie and her friends. The game allows you to create your own Barbie DreamHouse experience, join fun activities, explore Malibu, and more. However, if you want to access all the features of the game without paying for them, you can download and install a mod apk for this game and enjoy even more benefits. A mod apk is a modified version of the original app that unlocks premium features or enhances the performance of the app. In this article, we have explained what a mod apk is, why people use it, how to download and install it, and how to enjoy the game with it. We have also provided some tips and tricks to help you make the most of the game, as well as some pros and cons of using the mod apk. We hope that this article has been helpful and informative for you. If you have any questions or feedback, please feel free to leave a comment below.

-

FAQs

-

Here are some frequently asked questions about Barbie Dreamhouse Adventures 3.1 mod apk:

-
    -
  1. Q: Is Barbie Dreamhouse Adventures 3.1 mod apk safe to use?
  2. -A: As long as you download the mod apk from a trusted and reliable source, it should be safe to use. However, you should always be careful when downloading and installing apps from unknown sources, as they may contain malware or viruses that can harm your device or steal your data. You should also scan the mod apk file with an antivirus software before installing it.
  3. Q: Is Barbie Dreamhouse Adventures 3.1 mod apk legal to use?
  4. -A: Using a mod apk for any app may violate the terms and conditions of the original app developer, as it may infringe their intellectual property rights or interfere with their revenue streams. Therefore, using a mod apk for Barbie Dreamhouse Adventures may be considered illegal by Budge Studios, the developer of the game. However, there is no clear law or regulation that prohibits the use of mod apks in general, so it is up to your discretion and responsibility to use them at your own risk.
  5. Q: Will I get banned from the game if I use Barbie Dreamhouse Adventures 3.1 mod apk?
  6. -A: There is a possibility that you may get banned from the game if you use Barbie Dreamhouse Adventures 3.1 mod apk, as it may be detected by the game's security system or reported by other players. However, this is not very likely to happen, as the mod apk does not affect the online features or events of the game. You can also use a VPN service or a fake account to avoid getting banned.
  7. Q: How can I update Barbie Dreamhouse Adventures 3.1 mod apk?
  8. -A: To update Barbie Dreamhouse Adventures 3.1 mod apk, you need to download and install the latest version of the mod apk from the same source that you downloaded it from before. You should also uninstall the previous version of the mod apk before installing the new one. You can also check for updates within the game itself, as some mod apks have an auto-update feature.
  9. Q: Where can I download Barbie Dreamhouse Adventures 3.1 mod apk?
  10. -A: There are many websites and platforms that offer Barbie Dreamhouse Adventures 3.1 mod apk for free download. However, not all of them are trustworthy or reliable, so you should be careful when choosing where to download it from. One of the best sources that we recommend is [text], where you can find many other mod apks for different games and apps as well.

401be4b1e0
-
-
\ No newline at end of file diff --git a/spaces/1phancelerku/anime-remove-background/Bloons TD 6 Sem Mod How to Install and Use the Best Mods for Your Favorite Tower Defense Game.md b/spaces/1phancelerku/anime-remove-background/Bloons TD 6 Sem Mod How to Install and Use the Best Mods for Your Favorite Tower Defense Game.md deleted file mode 100644 index 38b8c540fa5a1f5ad9e230559c82f2f879fdad6f..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/Bloons TD 6 Sem Mod How to Install and Use the Best Mods for Your Favorite Tower Defense Game.md +++ /dev/null @@ -1,107 +0,0 @@ -
-

Download Bloons TD 6 Sem Mod: A Guide for Tower Defense Fans

-

If you are a fan of tower defense games, you have probably heard of Bloons TD 6, one of the most popular and acclaimed titles in the genre. But did you know that you can make the game even more fun and challenging with a simple mod? In this article, we will tell you everything you need to know about Bloons TD 6 sem mod, how to download and install it, how to play it, and some tips and tricks to help you pop those bloons like a pro.

-

download bloons td 6 sem mod


Download Zip ---> https://jinyurl.com/2uNOs8



-

What is Bloons TD 6?

-

Bloons TD 6 is a 3D tower defense game developed and published by Ninja Kiwi, a New Zealand-based company. The game was released in 2018 for Windows, iOS, and Android devices. The game is the sixth installment in the Bloons Tower Defense series, which has been around since 2007.

-

In Bloons TD 6, your goal is to prevent waves of colorful balloons (called bloons) from reaching the end of a path by placing various types of monkey towers and heroes along the way. Each tower and hero has different abilities and upgrades that can help you pop the bloons more effectively. The game features over 20 monkey towers, each with three upgrade paths and unique activated abilities; over 10 heroes, each with 20 signature upgrades and two special abilities; over 60 handcrafted maps, each with different layouts, obstacles, and modes; over 100 meta-upgrades that add power where you need it; and many other features that make the game diverse and engaging.

-

What is sem mod?

-

Sem mod is a modification for Bloons TD 6 that adds some new features and enhancements to the game. Sem mod stands for Storyline Enhancement Mod, as it ports over some of the mission changes and improvements from another mod called Things To Do In San Andreas: Lite Edition. It also fixes some errors that were not addressed in the original game and adds some overworld tweaks to make the game feel more alive.

-

Some of the features that sem mod adds to Bloons TD 6 are:

- -

How to download and install Bloons TD 6 sem mod

-

To download and install Bloons TD 6 sem mod, you will need to have a copy of Bloons TD 6 on your device. You can get the game from Steam for Windows, from Google Play Store for Android, or from App Store for iOS. The game costs $4.99, but it is often on sale for a lower price. Once you have the game, you will need to download the sem mod file from the official website. The file is a zip archive that contains the mod files and instructions. You will need to extract the zip file to a folder on your device. The installation process varies depending on your device and operating system. Here are the general steps for each platform: - Windows: Copy the contents of the sem mod folder to the Bloons TD 6 folder in your Steam directory. The default location is C:\Program Files (x86)\Steam\steamapps\common\BloonsTD6. Replace any existing files if prompted. - Android: Enable unknown sources in your device settings. Copy the contents of the sem mod folder to the Bloons TD 6 folder in your Android data directory. The default location is /sdcard/Android/data/com.ninjakiwi.bloonstd6/files. Replace any existing files if prompted. - iOS: You will need a jailbroken device and a file manager app such as iFile or Filza. Copy the contents of the sem mod folder to the Bloons TD 6 folder in your iOS data directory. The default location is /var/mobile/Containers/Data/Application/Bloons TD 6. Replace any existing files if prompted. After you have installed the sem mod, you can launch the game and enjoy the new features and enhancements.

How to play Bloons TD 6 sem mod

-

Playing Bloons TD 6 sem mod is similar to playing the original game, but with some added twists and challenges. You can access the new features from the main menu or from the map screen. Here are some of the main differences and benefits of playing with the sem mod:

- -

Tips and tricks for Bloons TD 6 sem mod

-

To help you get started with Bloons TD 6 sem mod, here are some tips and tricks that might come in handy:

- -

Conclusion

-

Bloons TD 6 sem mod is a great way to enhance your tower defense experience and enjoy the game in new and exciting ways. Whether you want to face off against powerful boss bloons, embark on epic odysseys, compete for territory with other players, explore the monkeys' stories, customize your game with cosmetic items, or create and share your own content, sem mod has something for everyone. Download and install Bloons TD 6 sem mod today and join the fun!

-

download bloons td 6 nexus mods
-download bloons td 6 doombubbles mods
-download bloons td 6 mod helper
-download bloons td 6 mod browser
-download bloons td 6 mod installer
-download bloons td 6 mod apk
-download bloons td 6 mod menu
-download bloons td 6 mod unlimited money
-download bloons td 6 mod free shopping
-download bloons td 6 mod double cash mode
-download bloons td 6 mod all unlocked
-download bloons td 6 mod all heroes
-download bloons td 6 mod all skins
-download bloons td 6 mod all towers
-download bloons td 6 mod all upgrades
-download bloons td 6 mod custom maps
-download bloons td 6 mod custom challenges
-download bloons td 6 mod custom modes
-download bloons td 6 mod custom monkeys
-download bloons td 6 mod custom abilities
-download bloons td 6 mod sandbox mode
-download bloons td 6 mod co-op mode
-download bloons td 6 mod multiplayer mode
-download bloons td 6 mod online mode
-download bloons td 6 mod offline mode
-download bloons td 6 mod easy mode
-download bloons td 6 mod hard mode
-download bloons td 6 mod impoppable mode
-download bloons td 6 mod chimps mode
-download bloons td 6 mod expert mode
-download bloons td 6 mod steam version
-download bloons td 6 mod android version
-download bloons td 6 mod ios version
-download bloons td 6 mod windows version
-download bloons td 6 mod mac version
-download bloons td 6 mod linux version
-download bloons td 6 mod latest version
-download bloons td 6 mod old version
-download bloons td 6 mod new version
-download bloons td 6 mod updated version
-download bloons td 6 no mods required
-download bloons td 6 with mods enabled
-download bloons td 6 best mods available
-download bloons td 6 popular mods recommended
-download bloons td 6 fun mods suggested
-download bloons td 6 cool mods featured
-download bloons td 6 awesome mods reviewed
-download bloons td 6 amazing mods rated
-download bloons td 6 top mods ranked

-

FAQs

-

Here are some frequently asked questions and answers about Bloons TD 6 sem mod:

-
    -
  1. Is Bloons TD 6 sem mod free?
    -Yes, Bloons TD 6 sem mod is free to download and use. However, you will need to purchase Bloons TD 6 from the official store to play it.
  2. -
  3. Is Bloons TD 6 sem mod safe?
    -Yes, Bloons TD 6 sem mod is safe to use. It does not contain any viruses or malware, and it does not interfere with the game's functionality or performance. However, you should always download the mod from the official website and follow the installation instructions carefully.
  4. -
  5. Is Bloons TD 6 sem mod compatible with other mods?
    -No, Bloons TD 6 sem mod is not compatible with other mods. You should only use one mod at a time, and uninstall any other mods before installing sem mod.
  6. -
  7. Can I play Bloons TD 6 sem mod online?
    -Yes, you can play Bloons TD 6 sem mod online with other players who have the same mod installed. You can also play co-op mode with up to three other players. However, you cannot play online with players who do not have the mod installed.
  8. -
  9. Can I update Bloons TD 6 sem mod?
    -Yes, you can update Bloons TD 6 sem mod whenever a new version is released. You can check the official website or Discord server for the latest updates and download links. You will need to uninstall the previous version of the mod before installing the new one.
  10. -

401be4b1e0
-
-
\ No newline at end of file diff --git a/spaces/1phancelerku/anime-remove-background/Dominos Elaqe The Best Place to Find Delicious Pizza Deals and Offers.md b/spaces/1phancelerku/anime-remove-background/Dominos Elaqe The Best Place to Find Delicious Pizza Deals and Offers.md deleted file mode 100644 index 6defa08d2bef1deac728a5f75c027ba77ffaaeba..0000000000000000000000000000000000000000 --- a/spaces/1phancelerku/anime-remove-background/Dominos Elaqe The Best Place to Find Delicious Pizza Deals and Offers.md +++ /dev/null @@ -1,91 +0,0 @@ -
-

What is Domino's Elaqe and Why You Should Try It

-

If you love pizza, you probably know about Domino's, one of the most popular pizza chains in the world. But do you know about Domino's Elaqe, a new way of ordering and delivering pizza that is fast, convenient, and contactless? In this article, we will explain what Domino's Elaqe is, how it works, and why you should give it a try.

-

dominos elaqe


DOWNLOAD ⚙⚙⚙ https://jinyurl.com/2uNNAh



-

Introduction

-

Domino's Elaqe is a term that means "contact" in Azerbaijani, a language spoken in Azerbaijan, a country in the South Caucasus region of Eurasia. It is also the name of a service that Domino's launched in Azerbaijan in 2020, as a response to the COVID-19 pandemic and the growing demand for online food delivery.

-

Domino's Elaqe is different from other pizza delivery services because it uses advanced technology to make the ordering and delivery process more efficient, transparent, and safe. With Domino's Elaqe, you can order pizza online or by phone, track your order in real time, communicate with your driver, pay online or by cash, and receive your pizza without any physical contact.

-

Domino's Elaqe has many benefits for both customers and drivers. For customers, it means faster delivery, fresher pizza, more convenience, more payment options, and less risk of infection. For drivers, it means more orders, more tips, more safety, and less hassle.

-

How to Use Domino's Elaqe

-

Using Domino's Elaqe is easy and simple. Here are the steps you need to follow:

-

dominos elaqe nomresi
-dominos elaqe telefonu
-dominos elaqe email
-dominos elaqe adresi
-dominos elaqe formu
-dominos elaqe online
-dominos elaqe whatsapp
-dominos elaqe facebook
-dominos elaqe instagram
-dominos elaqe twitter
-dominos elaqe şikayet
-dominos elaqe yorum
-dominos elaqe sipariş
-dominos elaqe indirim
-dominos elaqe kampanya
-dominos elaqe menü
-dominos elaqe pizza
-dominos elaqe sandviç
-dominos elaqe tatlı
-dominos elaqe içecek
-dominos elaqe salata
-dominos elaqe sos
-dominos elaqe ekstra
-dominos elaqe gluten free
-dominos elaqe vegan
-dominos elaqe vejetaryen
-dominos elaqe kredi kartı
-dominos elaqe nakit ödeme
-dominos elaqe teslimat süresi
-dominos elaqe teslimat ücreti
-dominos elaqe teslimat bölgesi
-dominos elaqe teslimat şartları
-dominos elaqe teslimat garantisi
-dominos elaqe teslimat takip
-dominos elaqe teslimat yorumu
-dominos elaqe iade politikası
-dominos elaqe iade şartları
-dominos elaqe iade süreci
-dominos elaqe iade talebi
-dominos elaqe iade yorumu
-dominos elaqe müşteri hizmetleri
-dominos elaqe müşteri memnuniyeti
-dominos elaqe müşteri geri bildirimi
-dominos elaqe müşteri önerisi
-dominos elaqe müşteri sorusu
-dominos elaqe franchise başvurusu
-dominos elaqe franchise şartları
-dominos elaqe franchise ücreti
-dominos elaqe franchise avantajları

-
    -
  1. Order pizza online or by phone. You can visit Domino's website or download Domino's app on your smartphone. You can also call 131 888 or 1800 805 888 to place your order. You can choose from a variety of pizzas, pasta, chicken, sandwiches, salads, desserts, drinks, and extras on Domino's menu.
  2. -
  3. Track your order and communicate with your driver. After you place your order, you will receive a confirmation message with a link to Domino's Tracker. This is a feature that allows you to see the status of your order, from preparation to delivery. You can also see the name and photo of your driver, as well as their location on a map. You can send messages or call your driver if you have any questions or special requests.
  4. -
  5. Pay for your order and tip your driver. You can pay for your order online using a credit card, debit card, PayPal, or gift card. You can also pay by cash when your driver arrives. You can also tip your driver online or by cash. Tipping is optional but appreciated.
  6. -
-

What to Expect from Domino's Elaqe

What to Expect from Domino's Elaqe

-

When you use Domino's Elaqe, you can expect to enjoy a delicious and satisfying pizza experience. Here are some of the things you can expect from Domino's Elaqe:

- -

Conclusion

-

Domino's Elaqe is a new way of ordering and delivering pizza that is fast, convenient, and contactless. It uses advanced technology to make the process more efficient, transparent, and safe. It also offers a variety of pizzas and other menu items that are delicious and satisfying. Whether you are craving pizza for lunch, dinner, or a snack, you can use Domino's Elaqe to get your order in minutes.

-

If you want to try Domino's Elaqe, you can visit Domino's website or download Domino's app on your smartphone. You can also call 131 888 or 1800 805 888 to place your order. Don't forget to check out Domino's deals and Domino's menu for more options and savings.

-

We hope you enjoyed this article and learned something new about Domino's Elaqe. If you did, please share it with your friends and family who might be interested in trying it too. And don't forget to leave us your feedback and let us know how we did.

-

Thank you for choosing Domino's Elaqe!

-

FAQs

-

What is the difference between Domino's Elaqe and regular delivery?

-

The main difference between Domino's Elaqe and regular delivery is that Domino's Elaqe uses GPS technology to track your order and communicate with your driver in real time. It also offers a contactless delivery option where your driver will leave your order at your door or a designated location without any physical contact.

-

How long does it take for Domino's Elaqe to deliver my order?

-

The delivery time for Domino's Elaqe depends on several factors, such as the distance between your location and the nearest store, the traffic conditions, the weather conditions, and the availability of drivers. However, Domino's aims to deliver your order within 30 minutes or less. You can also see the estimated delivery time on the Domino's Tracker when you place your order.

-

How much does it cost to use Domino's Elaqe?

-

The cost of using Domino's Elaqe depends on the items you order, the delivery fee, and the tip ( you give to your driver). The delivery fee varies depending on your location and the store you order from, but it is usually around $5. The tip is optional but appreciated, and you can choose how much you want to tip your driver online or by cash. You can also save money by using Domino's deals and coupons when you order online or by phone.

-

Can I cancel or change my order after I place it using Domino's Elaqe?

-

You can cancel or change your order after you place it using Domino's Elaqe, but you need to do it as soon as possible, before your order is prepared or dispatched. You can cancel or change your order online or by phone, by contacting the store you ordered from or the customer service. You may be charged a cancellation fee if your order is already in progress.

-

What if I have a problem with my order or delivery using Domino's Elaqe?

-

If you have a problem with your order or delivery using Domino's Elaqe, you can contact the store you ordered from or the customer service by phone, email, or chat. You can also leave a feedback or complaint on Domino's website or app, or on social media using #DominosElaqe. Domino's will try to resolve your issue and make it right for you.

-

Is Domino's Elaqe available in other countries?

-

Domino's Elaqe is currently available only in Azerbaijan, but Domino's plans to expand it to other countries in the future. Domino's has more than 17,000 stores in over 90 countries, and it is always looking for new ways to improve its service and satisfy its customers. You can check Domino's locations to see if Domino's Elaqe is available in your area.

401be4b1e0
-
-
\ No newline at end of file diff --git a/spaces/4Taps/SadTalker/src/face3d/models/arcface_torch/backbones/iresnet2060.py b/spaces/4Taps/SadTalker/src/face3d/models/arcface_torch/backbones/iresnet2060.py deleted file mode 100644 index 21d1122144d207637d2444cba1f68fe630c89f31..0000000000000000000000000000000000000000 --- a/spaces/4Taps/SadTalker/src/face3d/models/arcface_torch/backbones/iresnet2060.py +++ /dev/null @@ -1,176 +0,0 @@ -import torch -from torch import nn - -assert torch.__version__ >= "1.8.1" -from torch.utils.checkpoint import checkpoint_sequential - -__all__ = ['iresnet2060'] - - -def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): - """3x3 convolution with padding""" - return nn.Conv2d(in_planes, - out_planes, - kernel_size=3, - stride=stride, - padding=dilation, - groups=groups, - bias=False, - dilation=dilation) - - -def conv1x1(in_planes, out_planes, stride=1): - """1x1 convolution""" - return nn.Conv2d(in_planes, - out_planes, - kernel_size=1, - stride=stride, - bias=False) - - -class IBasicBlock(nn.Module): - expansion = 1 - - def __init__(self, inplanes, planes, stride=1, downsample=None, - groups=1, base_width=64, dilation=1): - super(IBasicBlock, self).__init__() - if groups != 1 or base_width != 64: - raise ValueError('BasicBlock only supports groups=1 and base_width=64') - if dilation > 1: - raise NotImplementedError("Dilation > 1 not supported in BasicBlock") - self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05, ) - self.conv1 = conv3x3(inplanes, planes) - self.bn2 = nn.BatchNorm2d(planes, eps=1e-05, ) - self.prelu = nn.PReLU(planes) - self.conv2 = conv3x3(planes, planes, stride) - self.bn3 = nn.BatchNorm2d(planes, eps=1e-05, ) - self.downsample = downsample - self.stride = stride - - def forward(self, x): - identity = x - out = self.bn1(x) - out = self.conv1(out) - out = self.bn2(out) - out = self.prelu(out) - out = self.conv2(out) - out = self.bn3(out) - if self.downsample is not None: - identity = self.downsample(x) - out += identity - return out - - -class IResNet(nn.Module): - fc_scale = 7 * 7 - - def __init__(self, - block, layers, dropout=0, num_features=512, zero_init_residual=False, - groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False): - super(IResNet, self).__init__() - self.fp16 = fp16 - self.inplanes = 64 - self.dilation = 1 - if replace_stride_with_dilation is None: - replace_stride_with_dilation = [False, False, False] - if len(replace_stride_with_dilation) != 3: - raise ValueError("replace_stride_with_dilation should be None " - "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) - self.groups = groups - self.base_width = width_per_group - self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) - self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05) - self.prelu = nn.PReLU(self.inplanes) - self.layer1 = self._make_layer(block, 64, layers[0], stride=2) - self.layer2 = self._make_layer(block, - 128, - layers[1], - stride=2, - dilate=replace_stride_with_dilation[0]) - self.layer3 = self._make_layer(block, - 256, - layers[2], - stride=2, - dilate=replace_stride_with_dilation[1]) - self.layer4 = self._make_layer(block, - 512, - layers[3], - stride=2, - dilate=replace_stride_with_dilation[2]) - self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05, ) - self.dropout = nn.Dropout(p=dropout, inplace=True) - self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features) - self.features = nn.BatchNorm1d(num_features, eps=1e-05) - nn.init.constant_(self.features.weight, 1.0) - self.features.weight.requires_grad = False - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - nn.init.normal_(m.weight, 0, 0.1) - elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): - nn.init.constant_(m.weight, 1) - nn.init.constant_(m.bias, 0) - - if zero_init_residual: - for m in self.modules(): - if isinstance(m, IBasicBlock): - nn.init.constant_(m.bn2.weight, 0) - - def _make_layer(self, block, planes, blocks, stride=1, dilate=False): - downsample = None - previous_dilation = self.dilation - if dilate: - self.dilation *= stride - stride = 1 - if stride != 1 or self.inplanes != planes * block.expansion: - downsample = nn.Sequential( - conv1x1(self.inplanes, planes * block.expansion, stride), - nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ), - ) - layers = [] - layers.append( - block(self.inplanes, planes, stride, downsample, self.groups, - self.base_width, previous_dilation)) - self.inplanes = planes * block.expansion - for _ in range(1, blocks): - layers.append( - block(self.inplanes, - planes, - groups=self.groups, - base_width=self.base_width, - dilation=self.dilation)) - - return nn.Sequential(*layers) - - def checkpoint(self, func, num_seg, x): - if self.training: - return checkpoint_sequential(func, num_seg, x) - else: - return func(x) - - def forward(self, x): - with torch.cuda.amp.autocast(self.fp16): - x = self.conv1(x) - x = self.bn1(x) - x = self.prelu(x) - x = self.layer1(x) - x = self.checkpoint(self.layer2, 20, x) - x = self.checkpoint(self.layer3, 100, x) - x = self.layer4(x) - x = self.bn2(x) - x = torch.flatten(x, 1) - x = self.dropout(x) - x = self.fc(x.float() if self.fp16 else x) - x = self.features(x) - return x - - -def _iresnet(arch, block, layers, pretrained, progress, **kwargs): - model = IResNet(block, layers, **kwargs) - if pretrained: - raise ValueError() - return model - - -def iresnet2060(pretrained=False, progress=True, **kwargs): - return _iresnet('iresnet2060', IBasicBlock, [3, 128, 1024 - 128, 3], pretrained, progress, **kwargs) diff --git a/spaces/AFischer1985/wizardlm-13b-v1-2-q4-0-gguf/main.py b/spaces/AFischer1985/wizardlm-13b-v1-2-q4-0-gguf/main.py deleted file mode 100644 index 44222d61a78bfb8d4d81ab1cdeb6379189fc12a9..0000000000000000000000000000000000000000 --- a/spaces/AFischer1985/wizardlm-13b-v1-2-q4-0-gguf/main.py +++ /dev/null @@ -1,27 +0,0 @@ -from llama_cpp.server.app import create_app, Settings -from fastapi.responses import HTMLResponse -import os - -app = create_app( - Settings( - n_threads=2, # set to number of cpu cores - model="model/gguf-model.bin", - embedding=False - ) -) - -# Read the content of index.html once and store it in memory -with open("index.html", "r") as f: - content = f.read() - - -@app.get("/", response_class=HTMLResponse) -async def read_items(): - return content - -if __name__ == "__main__": - import uvicorn - uvicorn.run(app, - host=os.environ["HOST"], - port=int(os.environ["PORT"]) - ) diff --git a/spaces/AI-Dashboards/Topic-Modeling-Clusters-Free-Text/app.py b/spaces/AI-Dashboards/Topic-Modeling-Clusters-Free-Text/app.py deleted file mode 100644 index def1eb540c490077a039b471fb06a6af853155d5..0000000000000000000000000000000000000000 --- a/spaces/AI-Dashboards/Topic-Modeling-Clusters-Free-Text/app.py +++ /dev/null @@ -1,145 +0,0 @@ -import streamlit as st -import spacy -import numpy as np -from gensim import corpora, models -from itertools import chain -from sklearn.preprocessing import MultiLabelBinarizer -from sklearn.metrics.pairwise import cosine_similarity -from itertools import islice -from scipy.signal import argrelmax - -nlp = spacy.load('en_core_web_sm') - - -def window(seq, n=3): - it = iter(seq) - result = tuple(islice(it, n)) - if len(result) == n: - yield result - for elem in it: - result = result[1:] + (elem,) - yield result - -def get_depths(scores): - - def climb(seq, i, mode='left'): - - if mode == 'left': - while True: - curr = seq[i] - if i == 0: - return curr - i = i-1 - if not seq[i] > curr: - return curr - - if mode == 'right': - while True: - curr = seq[i] - if i == (len(seq)-1): - return curr - i = i+1 - if not seq[i] > curr: - return curr - - depths = [] - for i in range(len(scores)): - score = scores[i] - l_peak = climb(scores, i, mode='left') - r_peak = climb(scores, i, mode='right') - depth = 0.5 * (l_peak + r_peak - (2*score)) - depths.append(depth) - - return np.array(depths) - - -def get_local_maxima(depth_scores, order=1): - maxima_ids = argrelmax(depth_scores, order=order)[0] - filtered_scores = np.zeros(len(depth_scores)) - filtered_scores[maxima_ids] = depth_scores[maxima_ids] - return filtered_scores - -def compute_threshold(scores): - s = scores[np.nonzero(scores)] - threshold = np.mean(s) - (np.std(s) / 2) - return threshold - -def get_threshold_segments(scores, threshold=0.1): - segment_ids = np.where(scores >= threshold)[0] - return segment_ids - - -def print_list(lst): - for e in lst: - st.markdown("- " + e) - - -st.subheader("Topic Modeling with Segmentation") -uploaded_file = st.file_uploader("choose a text file", type=["txt"]) -if uploaded_file is not None: - st.session_state["text"] = uploaded_file.getvalue().decode('utf-8') - -st.write("OR") - -input_text = st.text_area( - label="Enter text separated by newlines", - value="", - key="text", - height=150 -) - -button=st.button('Get Segments') -if (button==True) and input_text != "": - texts = input_text.split('\n') - sents = [] - for text in texts: - doc = nlp(text) - for sent in doc.sents: - sents.append(sent) - MIN_LENGTH = 3 - tokenized_sents = [[token.lemma_.lower() for token in sent if - not token.is_stop and not token.is_punct and token.text.strip() and len(token) >= MIN_LENGTH] - for sent in sents] - st.write("Modeling topics:") - - - np.random.seed(123) - - N_TOPICS = 5 - N_PASSES = 5 - - dictionary = corpora.Dictionary(tokenized_sents) - bow = [dictionary.doc2bow(sent) for sent in tokenized_sents] - topic_model = models.LdaModel(corpus=bow, id2word=dictionary, num_topics=N_TOPICS, passes=N_PASSES) - st.write("inferring topics ...") - THRESHOLD = 0.05 - doc_topics = list(topic_model.get_document_topics(bow, minimum_probability=THRESHOLD)) - k = 3 - top_k_topics = [[t[0] for t in sorted(sent_topics, key=lambda x: x[1], reverse=True)][:k] - for sent_topics in doc_topics] - WINDOW_SIZE = 3 - window_topics = window(top_k_topics, n=WINDOW_SIZE) - window_topics = [list(set(chain.from_iterable(window))) for window in window_topics] - - binarizer = MultiLabelBinarizer(classes=range(N_TOPICS)) - - encoded_topic = binarizer.fit_transform(window_topics) - st.write("generating segments ...") - sims_topic = [cosine_similarity([pair[0]], [pair[1]])[0][0] for pair in zip(encoded_topic, encoded_topic[1:])] - depths_topic = get_depths(sims_topic) - filtered_topic = get_local_maxima(depths_topic, order=1) - threshold_topic = compute_threshold(filtered_topic) - threshold_segments_topic = get_threshold_segments(filtered_topic, threshold_topic) - - segment_ids = threshold_segments_topic + WINDOW_SIZE - - segment_ids = [0] + segment_ids.tolist() + [len(sents)] - slices = list(zip(segment_ids[:-1], segment_ids[1:])) - - segmented = [sents[s[0]: s[1]] for s in slices] - - for segment in segmented[:-1]: - print_list([s.text for s in segment]) - st.markdown("""---""") - - print_list([s.text for s in segmented[-1]]) \ No newline at end of file diff --git a/spaces/AIFILMS/audioldm-text-to-audio-generation/audioldm/audio/tools.py b/spaces/AIFILMS/audioldm-text-to-audio-generation/audioldm/audio/tools.py deleted file mode 100644 index 7aca95cc1f5c120568a210907e9506589899a1c6..0000000000000000000000000000000000000000 --- a/spaces/AIFILMS/audioldm-text-to-audio-generation/audioldm/audio/tools.py +++ /dev/null @@ -1,33 +0,0 @@ -import torch -import numpy as np - - -def get_mel_from_wav(audio, _stft): - audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1) - audio = torch.autograd.Variable(audio, requires_grad=False) - melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio) - melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32) - log_magnitudes_stft = ( - torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32) - ) - energy = torch.squeeze(energy, 0).numpy().astype(np.float32) - return melspec, log_magnitudes_stft, energy - - -# def inv_mel_spec(mel, out_filename, _stft, griffin_iters=60): -# mel = torch.stack([mel]) -# mel_decompress = _stft.spectral_de_normalize(mel) -# mel_decompress = mel_decompress.transpose(1, 2).data.cpu() -# spec_from_mel_scaling = 1000 -# spec_from_mel = torch.mm(mel_decompress[0], _stft.mel_basis) -# spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0) -# spec_from_mel = spec_from_mel * spec_from_mel_scaling - -# audio = griffin_lim( -# torch.autograd.Variable(spec_from_mel[:, :, :-1]), _stft._stft_fn, griffin_iters -# ) - -# audio = audio.squeeze() -# audio = audio.cpu().numpy() -# audio_path = out_filename -# write(audio_path, _stft.sampling_rate, audio) diff --git a/spaces/AIGC-Audio/Make_An_Audio/ldm/modules/distributions/__init__.py b/spaces/AIGC-Audio/Make_An_Audio/ldm/modules/distributions/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/AIGText/GlyphControl/cldm/cldm.py b/spaces/AIGText/GlyphControl/cldm/cldm.py deleted file mode 100644 index c1602e64b86801ccd26b5da64329a63a1b13893c..0000000000000000000000000000000000000000 --- a/spaces/AIGText/GlyphControl/cldm/cldm.py +++ /dev/null @@ -1,620 +0,0 @@ -import einops -import torch -import torch as th -import torch.nn as nn - -from ldm.modules.diffusionmodules.util import ( - conv_nd, - linear, - zero_module, - timestep_embedding, -) - -from einops import rearrange, repeat -from torchvision.utils import make_grid -from ldm.modules.attention import SpatialTransformer -from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock -from ldm.models.diffusion.ddpm import LatentDiffusion -from ldm.util import log_txt_as_img, exists, instantiate_from_config -from ldm.models.diffusion.ddim import DDIMSampler -from ldm.modules.ema import LitEma -from contextlib import contextmanager, nullcontext -from cldm.model import load_state_dict -import numpy as np -from torch.optim.lr_scheduler import LambdaLR, CosineAnnealingLR, OneCycleLR -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - -class ControlledUnetModel(UNetModel): - def forward(self, x, timesteps=None, context=None, control=None, only_mid_control=False, **kwargs): - hs = [] - with torch.no_grad(): - t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) - emb = self.time_embed(t_emb) - h = x.type(self.dtype) - for module in self.input_blocks: - h = module(h, emb, context) - hs.append(h) - h = self.middle_block(h, emb, context) - - if control is not None: - h += control.pop() - - for i, module in enumerate(self.output_blocks): - if only_mid_control or control is None: - h = torch.cat([h, hs.pop()], dim=1) - else: - h = torch.cat([h, hs.pop() + control.pop()], dim=1) - h = module(h, emb, context) - - h = h.type(x.dtype) - return self.out(h) - - -class ControlNet(nn.Module): - def __init__( - self, - image_size, - in_channels, - model_channels, - hint_channels, - num_res_blocks, - attention_resolutions, - dropout=0, - channel_mult=(1, 2, 4, 8), - conv_resample=True, - dims=2, - use_checkpoint=False, - use_fp16=False, - num_heads=-1, - num_head_channels=-1, - num_heads_upsample=-1, - use_scale_shift_norm=False, - resblock_updown=False, - use_new_attention_order=False, - use_spatial_transformer=False, # custom transformer support - transformer_depth=1, # custom transformer support - context_dim=None, # custom transformer support - n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model - legacy=True, - disable_self_attentions=None, - num_attention_blocks=None, - disable_middle_self_attn=False, - use_linear_in_transformer=False, - ): - super().__init__() - if use_spatial_transformer: - assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' - - if context_dim is not None: - assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' - from omegaconf.listconfig import ListConfig - if type(context_dim) == ListConfig: - context_dim = list(context_dim) - - if num_heads_upsample == -1: - num_heads_upsample = num_heads - - if num_heads == -1: - assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' - - if num_head_channels == -1: - assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' - - self.dims = dims - self.image_size = image_size - self.in_channels = in_channels - self.model_channels = model_channels - if isinstance(num_res_blocks, int): - self.num_res_blocks = len(channel_mult) * [num_res_blocks] - else: - if len(num_res_blocks) != len(channel_mult): - raise ValueError("provide num_res_blocks either as an int (globally constant) or " - "as a list/tuple (per-level) with the same length as channel_mult") - self.num_res_blocks = num_res_blocks - if disable_self_attentions is not None: - # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not - assert len(disable_self_attentions) == len(channel_mult) - if num_attention_blocks is not None: - assert len(num_attention_blocks) == len(self.num_res_blocks) - assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) - print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " - f"This option has LESS priority than attention_resolutions {attention_resolutions}, " - f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " - f"attention will still not be set.") - - self.attention_resolutions = attention_resolutions - self.dropout = dropout - self.channel_mult = channel_mult - self.conv_resample = conv_resample - self.use_checkpoint = use_checkpoint - self.dtype = th.float16 if use_fp16 else th.float32 - self.num_heads = num_heads - self.num_head_channels = num_head_channels - self.num_heads_upsample = num_heads_upsample - self.predict_codebook_ids = n_embed is not None - - time_embed_dim = model_channels * 4 - self.time_embed = nn.Sequential( - linear(model_channels, time_embed_dim), - nn.SiLU(), - linear(time_embed_dim, time_embed_dim), - ) - - self.input_blocks = nn.ModuleList( - [ - TimestepEmbedSequential( - conv_nd(dims, in_channels, model_channels, 3, padding=1) - ) - ] - ) - self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) - - self.input_hint_block = TimestepEmbedSequential( - conv_nd(dims, hint_channels, 16, 3, padding=1), - nn.SiLU(), - conv_nd(dims, 16, 16, 3, padding=1), - nn.SiLU(), - conv_nd(dims, 16, 32, 3, padding=1, stride=2), - nn.SiLU(), - conv_nd(dims, 32, 32, 3, padding=1), - nn.SiLU(), - conv_nd(dims, 32, 96, 3, padding=1, stride=2), - nn.SiLU(), - conv_nd(dims, 96, 96, 3, padding=1), - nn.SiLU(), - conv_nd(dims, 96, 256, 3, padding=1, stride=2), - nn.SiLU(), - zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) - ) - - self._feature_size = model_channels - input_block_chans = [model_channels] - ch = model_channels - ds = 1 - for level, mult in enumerate(channel_mult): - for nr in range(self.num_res_blocks[level]): - layers = [ - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=mult * model_channels, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ) - ] - ch = mult * model_channels - if ds in attention_resolutions: - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - # num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - if exists(disable_self_attentions): - disabled_sa = disable_self_attentions[level] - else: - disabled_sa = False - - if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: - layers.append( - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, - disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, - use_checkpoint=use_checkpoint - ) - ) - self.input_blocks.append(TimestepEmbedSequential(*layers)) - self.zero_convs.append(self.make_zero_conv(ch)) - self._feature_size += ch - input_block_chans.append(ch) - if level != len(channel_mult) - 1: - out_ch = ch - self.input_blocks.append( - TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - out_channels=out_ch, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - down=True, - ) - if resblock_updown - else Downsample( - ch, conv_resample, dims=dims, out_channels=out_ch - ) - ) - ) - ch = out_ch - input_block_chans.append(ch) - self.zero_convs.append(self.make_zero_conv(ch)) - ds *= 2 - self._feature_size += ch - - if num_head_channels == -1: - dim_head = ch // num_heads - else: - num_heads = ch // num_head_channels - dim_head = num_head_channels - if legacy: - # num_heads = 1 - dim_head = ch // num_heads if use_spatial_transformer else num_head_channels - self.middle_block = TimestepEmbedSequential( - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - AttentionBlock( - ch, - use_checkpoint=use_checkpoint, - num_heads=num_heads, - num_head_channels=dim_head, - use_new_attention_order=use_new_attention_order, - ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn - ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, - disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, - use_checkpoint=use_checkpoint - ), - ResBlock( - ch, - time_embed_dim, - dropout, - dims=dims, - use_checkpoint=use_checkpoint, - use_scale_shift_norm=use_scale_shift_norm, - ), - ) - self.middle_block_out = self.make_zero_conv(ch) - self._feature_size += ch - - def make_zero_conv(self, channels): - return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) - - def forward(self, x, hint, timesteps, context, **kwargs): - t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) - emb = self.time_embed(t_emb) - - guided_hint = self.input_hint_block(hint, emb, context) - - outs = [] - - h = x.type(self.dtype) - for module, zero_conv in zip(self.input_blocks, self.zero_convs): - if guided_hint is not None: - h = module(h, emb, context) - h += guided_hint - guided_hint = None - else: - h = module(h, emb, context) - outs.append(zero_conv(h, emb, context)) - - h = self.middle_block(h, emb, context) - outs.append(self.middle_block_out(h, emb, context)) - - return outs - - -class ControlLDM(LatentDiffusion): - - def __init__(self, - control_stage_config, - control_key, only_mid_control, - learnable_conscale = False, guess_mode=False, - sd_locked = True, sep_lr = False, decoder_lr = 1.0**-4, - sep_cond_txt = True, exchange_cond_txt = False, concat_all_textemb = False, - *args, **kwargs - ): - use_ema = kwargs.pop("use_ema", False) - ckpt_path = kwargs.pop("ckpt_path", None) - reset_ema = kwargs.pop("reset_ema", False) - only_model= kwargs.pop("only_model", False) - reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False) - keep_num_ema_updates = kwargs.pop("keep_num_ema_updates", False) - ignore_keys = kwargs.pop("ignore_keys", []) - - super().__init__(*args, use_ema=False, **kwargs) - - # Glyph ControlNet - self.control_model = instantiate_from_config(control_stage_config) - self.control_key = control_key - self.only_mid_control = only_mid_control - - self.learnable_conscale = learnable_conscale - conscale_init = [1.0] * 13 if not guess_mode else [(0.825 ** float(12 - i)) for i in range(13)] - if learnable_conscale: - # self.control_scales = nn.Parameter(torch.ones(13), requires_grad=True) - self.control_scales = nn.Parameter(torch.Tensor(conscale_init), requires_grad=True) - else: - self.control_scales = conscale_init #[1.0] * 13 - - self.optimizer = torch.optim.AdamW - # whether to unlock (fine-tune) the decoder parts of SD U-Net - self.sd_locked = sd_locked - self.sep_lr = sep_lr - self.decoder_lr = decoder_lr - - # specify the input text embedding of two branches (SD branch and Glyph ControlNet branch) - self.sep_cond_txt = sep_cond_txt - self.concat_all_textemb = concat_all_textemb - self.exchange_cond_txt = exchange_cond_txt - - # ema - self.use_ema = use_ema - if self.use_ema: - self.model_ema = LitEma(self.control_model, init_num_updates= 0) - print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") - if not self.sd_locked: - self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= 0) - print(f"Keeping diffoutblock EMAs of {len(list(self.model_diffoutblock_ema.buffers()))}.") - self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= 0) - print(f"Keeping diffout EMAs of {len(list(self.model_diffout_ema.buffers()))}.") - - # initialize the model from the checkpoint - if ckpt_path is not None: - ema_num_updates = self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model) - self.restarted_from_ckpt = True - if self.use_ema and reset_ema: - print( - f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.") - self.model_ema = LitEma(self.control_model, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) - if not self.sd_locked: - self.model_diffoutblock_ema = LitEma(self.model.diffusion_model.output_blocks, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) - self.model_diffout_ema = LitEma(self.model.diffusion_model.out, init_num_updates= ema_num_updates if keep_num_ema_updates else 0) - - if reset_num_ema_updates: - print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ") - assert self.use_ema - self.model_ema.reset_num_updates() - if not self.sd_locked: # Update - self.model_diffoutblock_ema.reset_num_updates() - self.model_diffout_ema.reset_num_updates() - - @contextmanager - def ema_scope(self, context=None): - if self.use_ema: # TODO: fix the bug while adding transemb_model or trainable control scales - self.model_ema.store(self.control_model.parameters()) - self.model_ema.copy_to(self.control_model) - if not self.sd_locked: # Update - self.model_diffoutblock_ema.store(self.model.diffusion_model.output_blocks.parameters()) - self.model_diffoutblock_ema.copy_to(self.model.diffusion_model.output_blocks) - self.model_diffout_ema.store(self.model.diffusion_model.out.parameters()) - self.model_diffout_ema.copy_to(self.model.diffusion_model.out) - - if context is not None: - print(f"{context}: Switched ControlNet to EMA weights") - try: - yield None - finally: - if self.use_ema: - self.model_ema.restore(self.control_model.parameters()) - if not self.sd_locked: # Update - self.model_diffoutblock_ema.restore(self.model.diffusion_model.output_blocks.parameters()) - self.model_diffout_ema.restore(self.model.diffusion_model.out.parameters()) - if context is not None: - print(f"{context}: Restored training weights of ControlNet") - - @torch.no_grad() - def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): - - if path.endswith("model_states.pt"): - sd = torch.load(path, map_location='cpu')["module"] - else: - # sd = load_state_dict(path, location='cpu') # abandoned - sd = torch.load(path, map_location="cpu") - if "state_dict" in list(sd.keys()): - sd = sd["state_dict"] - - keys_ = list(sd.keys())[:] - for k in keys_: - if k.startswith("module."): - nk = k[7:] - sd[nk] = sd[k] - del sd[k] - keys = list(sd.keys()) - for k in keys: - for ik in ignore_keys: - if k.startswith(ik): - print("Deleting key {} from state_dict.".format(k)) - del sd[k] - missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( - sd, strict=False) - - print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") - if len(missing) > 0: - print(f"Missing Keys:\n {missing}") - if len(unexpected) > 0: - print(f"\nUnexpected Keys:\n {unexpected}") - - if "model_ema.num_updates" in sd and "model_ema.num_updates" not in unexpected: - return sd["model_ema.num_updates"].item() - else: - return 0 - - @torch.no_grad() - def get_input(self, batch, k, bs=None, *args, **kwargs): - x, c = super().get_input(batch, self.first_stage_key, *args, **kwargs) - control = batch[self.control_key] - if bs is not None: - control = control[:bs] - control = control.to(self.device) - control = einops.rearrange(control, 'b h w c -> b c h w') - control = control.to(memory_format=torch.contiguous_format).float() - return x, dict(c_crossattn=[c] if not isinstance(c, list) else c, c_concat=[control]) - - def apply_model(self, x_noisy, t, cond, *args, **kwargs): - assert isinstance(cond, dict) - diffusion_model = self.model.diffusion_model - cond_txt_list = cond["c_crossattn"] - - assert len(cond_txt_list) > 0 - # cond_txt: input text embedding of the pretrained SD branch - # cond_txt_2: input text embedding of the Glyph ControlNet branch - cond_txt = cond_txt_list[0] - if len(cond_txt_list) == 1: - cond_txt_2 = None - else: - if self.sep_cond_txt: - # use each embedding for each branch separately - cond_txt_2 = cond_txt_list[1] - else: - # concat the embedding for Glyph ControlNet branch - if not self.concat_all_textemb: - cond_txt_2 = torch.cat(cond_txt_list[1:], 1) - else: - cond_txt_2 = torch.cat(cond_txt_list, 1) - - if self.exchange_cond_txt: - # exchange the input text embedding of two branches - txt_buffer = cond_txt - cond_txt = cond_txt_2 - cond_txt_2 = txt_buffer - - if cond['c_concat'] is None: - eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=None, only_mid_control=self.only_mid_control) - else: - control = self.control_model(x=x_noisy, hint=torch.cat(cond['c_concat'], 1), timesteps=t, context=cond_txt if cond_txt_2 is None else cond_txt_2) - control = [c * scale for c, scale in zip(control, self.control_scales)] - eps = diffusion_model(x=x_noisy, timesteps=t, context=cond_txt, control=control, only_mid_control=self.only_mid_control) - - return eps - - @torch.no_grad() - def get_unconditional_conditioning(self, N): - return self.get_learned_conditioning([""] * N) - - def training_step(self, batch, batch_idx, optimizer_idx=0): - loss = super().training_step(batch, batch_idx, optimizer_idx) - if self.use_scheduler and not self.sd_locked and self.sep_lr: - decoder_lr = self.optimizers().param_groups[1]["lr"] - self.log('decoder_lr_abs', decoder_lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) - return loss - - def configure_optimizers(self): - lr = self.learning_rate - params = list(self.control_model.parameters()) - if self.learnable_conscale: - params += [self.control_scales] - - params_wlr = [] - decoder_params = None - if not self.sd_locked: - decoder_params = list(self.model.diffusion_model.output_blocks.parameters()) - decoder_params += list(self.model.diffusion_model.out.parameters()) - if not self.sep_lr: - params.extend(decoder_params) - decoder_params = None - - params_wlr.append({"params": params, "lr": lr}) - if decoder_params is not None: - params_wlr.append({"params": decoder_params, "lr": self.decoder_lr}) - - # opt = torch.optim.AdamW(params_wlr) - opt = self.optimizer(params_wlr) - opts = [opt] - - # updated - schedulers = [] - if self.use_scheduler: - assert 'target' in self.scheduler_config - scheduler_func = instantiate_from_config(self.scheduler_config) - print("Setting up LambdaLR scheduler...") - schedulers = [ - { - 'scheduler': LambdaLR( - opt, - lr_lambda= [scheduler_func.schedule] * len(params_wlr) #if not self.sep_lr else [scheduler_func.schedule, scheduler_func.schedule] - ), - 'interval': 'step', - 'frequency': 1 - }] - - return opts, schedulers - - def low_vram_shift(self, is_diffusing): - if is_diffusing: - self.model = self.model.cuda() - self.control_model = self.control_model.cuda() - self.first_stage_model = self.first_stage_model.cpu() - self.cond_stage_model = self.cond_stage_model.cpu() - else: - self.model = self.model.cpu() - self.control_model = self.control_model.cpu() - self.first_stage_model = self.first_stage_model.cuda() - self.cond_stage_model = self.cond_stage_model.cuda() - - # ema - def on_train_batch_end(self, *args, **kwargs): - if self.use_ema: - self.model_ema(self.control_model) - if not self.sd_locked: # Update - self.model_diffoutblock_ema(self.model.diffusion_model.output_blocks) - self.model_diffout_ema(self.model.diffusion_model.out) - if self.log_all_grad_norm: - zeroconvs = list(self.control_model.input_hint_block.named_parameters())[-2:] - zeroconvs.extend( - list(self.control_model.zero_convs.named_parameters()) - ) - for item in zeroconvs: - self.log( - "zero_convs/{}_norm".format(item[0]), - item[1].cpu().detach().norm().item(), - prog_bar=False, logger=True, on_step=True, on_epoch=False - ) - self.log( - "zero_convs/{}_max".format(item[0]), - torch.max(item[1].cpu().detach()).item(), #TODO: lack torch.abs - prog_bar=False, logger=True, on_step=True, on_epoch=False - ) - gradnorm_list = [] - for param_group in self.trainer.optimizers[0].param_groups: - for p in param_group['params']: - # assert p.requires_grad and p.grad is not None - if p.requires_grad and p.grad is not None: - grad_norm_v = p.grad.cpu().detach().norm().item() - gradnorm_list.append(grad_norm_v) - if len(gradnorm_list): - self.log("all_gradients/grad_norm_mean", - np.mean(gradnorm_list), - prog_bar=False, logger=True, on_step=True, on_epoch=False - ) - self.log("all_gradients/grad_norm_max", - np.max(gradnorm_list), - prog_bar=False, logger=True, on_step=True, on_epoch=False - ) - self.log("all_gradients/grad_norm_min", - np.min(gradnorm_list), - prog_bar=False, logger=True, on_step=True, on_epoch=False - ) - self.log("all_gradients/param_num", - len(gradnorm_list), - prog_bar=False, logger=True, on_step=True, on_epoch=False - ) - - if self.learnable_conscale: - for i in range(len(self.control_scales)): - self.log( - "control_scale/control_{}".format(i), - self.control_scales[i], - prog_bar=False, logger=True, on_step=True, on_epoch=False - ) - del gradnorm_list - del zeroconvs diff --git a/spaces/AbelKidane/headdetector/predict_image.py b/spaces/AbelKidane/headdetector/predict_image.py deleted file mode 100644 index 5325d45c749cd45370d50497830ecefecd826983..0000000000000000000000000000000000000000 --- a/spaces/AbelKidane/headdetector/predict_image.py +++ /dev/null @@ -1,16 +0,0 @@ -from prediction import prediction -import matplotlib.pyplot as plt -import fire - -def predictFromTerminal(image_path): - annotatedImage = prediction(image_path) - plt.imshow(annotatedImage) - plt.grid(False) - plt.axis('off') - plt.show() - - - -if __name__=='__main__': - print("Starting execution:") - fire.Fire(predictFromTerminal) diff --git a/spaces/AchyuthGamer/OpenGPT-Chat-UI/.svelte-kit/generated/client/nodes/0.js b/spaces/AchyuthGamer/OpenGPT-Chat-UI/.svelte-kit/generated/client/nodes/0.js deleted file mode 100644 index fed1375f7587e2ea43f38eb768db2653f4eb45ee..0000000000000000000000000000000000000000 --- a/spaces/AchyuthGamer/OpenGPT-Chat-UI/.svelte-kit/generated/client/nodes/0.js +++ /dev/null @@ -1 +0,0 @@ -export { default as component } from "../../../../src/routes/+layout.svelte"; \ No newline at end of file diff --git a/spaces/AchyuthGamer/OpenGPT/g4f/Provider/Forefront.py b/spaces/AchyuthGamer/OpenGPT/g4f/Provider/Forefront.py deleted file mode 100644 index 8f51fb579ae40c5a8c7609dc481a13bcefa7a366..0000000000000000000000000000000000000000 --- a/spaces/AchyuthGamer/OpenGPT/g4f/Provider/Forefront.py +++ /dev/null @@ -1,40 +0,0 @@ -from __future__ import annotations - -import json - -import requests - -from ..typing import Any, CreateResult -from .base_provider import BaseProvider - - -class Forefront(BaseProvider): - url = "https://forefront.com" - supports_stream = True - supports_gpt_35_turbo = True - - @staticmethod - def create_completion( - model: str, - messages: list[dict[str, str]], - stream: bool, **kwargs: Any) -> CreateResult: - - json_data = { - "text" : messages[-1]["content"], - "action" : "noauth", - "id" : "", - "parentId" : "", - "workspaceId" : "", - "messagePersona": "607e41fe-95be-497e-8e97-010a59b2e2c0", - "model" : "gpt-4", - "messages" : messages[:-1] if len(messages) > 1 else [], - "internetMode" : "auto", - } - - response = requests.post("https://streaming.tenant-forefront-default.knative.chi.coreweave.com/free-chat", - json=json_data, stream=True) - - response.raise_for_status() - for token in response.iter_lines(): - if b"delta" in token: - yield json.loads(token.decode().split("data: ")[1])["delta"] diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/plugins/charactercache-plugin.d.ts b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/plugins/charactercache-plugin.d.ts deleted file mode 100644 index 74673f76f53cff62cc8fe2c8ed34024988602537..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/plugins/charactercache-plugin.d.ts +++ /dev/null @@ -1,9 +0,0 @@ -import CharacterCache from './charactercache'; - -export default class CharacterCachePlugin extends Phaser.Plugins.BasePlugin { - add( - scene: Phaser.Scene, - config: CharacterCache.IConfig - ): CharacterCache; - -} \ No newline at end of file diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/customshapes/Factory.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/customshapes/Factory.js deleted file mode 100644 index e638bf05ff097a671831430ee190c9666b77207f..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/customshapes/Factory.js +++ /dev/null @@ -1,13 +0,0 @@ -import CustomShapes from './CustomShapes.js'; -import ObjectFactory from '../ObjectFactory.js'; -import SetValue from '../../../plugins/utils/object/SetValue.js'; - -ObjectFactory.register('customShapes', function (x, y, width, height, config) { - var gameObject = new CustomShapes(this.scene, x, y, width, height, config); - this.scene.add.existing(gameObject); - return gameObject; -}); - -SetValue(window, 'RexPlugins.UI.CustomShapes', CustomShapes); - -export default CustomShapes; \ No newline at end of file diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/gridsizer/GetChildrenHeight.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/gridsizer/GetChildrenHeight.js deleted file mode 100644 index e4280856fee1a06e5bc5ef332c55d742710ac8db..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/gridsizer/GetChildrenHeight.js +++ /dev/null @@ -1,49 +0,0 @@ -import { GetDisplayHeight } from '../../../plugins/utils/size/GetDisplaySize.js'; -import Sum from '../../../plugins/utils/math/Sum.js'; - -var GetChildrenHeight = function (minimumMode) { - if (this.rexSizer.hidden) { - return 0; - } - - if (minimumMode === undefined) { - minimumMode = true; - } - - var result = 0, - rowHeight; - var children = this.sizerChildren; - var child, padding, childHeight, proportion; - - for (var i = 0; i < this.rowCount; i++) { - proportion = this.rowProportions[i]; - rowHeight = 0; - if ((proportion === 0) || minimumMode) { - for (var j = 0; j < this.columnCount; j++) { - child = children[(i * this.columnCount) + j]; - if (!child) { - continue; - } - if (child.rexSizer.hidden) { - continue; - } - - childHeight = (child.isRexSizer) ? - Math.max(child.minHeight, child.childrenHeight) : - (child.hasOwnProperty('minHeight')) ? child.minHeight : GetDisplayHeight(child); - padding = child.rexSizer.padding; - childHeight += (padding.top + padding.bottom); - rowHeight = Math.max(rowHeight, childHeight); - } - result += rowHeight; - } - // else,(proportion > 0) : rowHeight is 0 - this.rowHeight[i] = rowHeight; - } - - var space = this.space; - var indentTop = Math.max(space.indentTopOdd, space.indentTopEven); - return result + Sum(space.top, indentTop, ...space.row, space.bottom); -} - -export default GetChildrenHeight; \ No newline at end of file diff --git a/spaces/Aki004/herta-so-vits/MANUAL.md b/spaces/Aki004/herta-so-vits/MANUAL.md deleted file mode 100644 index 60837ee18f5964cee5a9b2de7960a41af13c1e96..0000000000000000000000000000000000000000 --- a/spaces/Aki004/herta-so-vits/MANUAL.md +++ /dev/null @@ -1,158 +0,0 @@ -# Herta Voice Changer - -## Introduction - -This AI model is based on **SoftVC VITS Singing Voice Conversion**. Refer to this [Github Repository](https://github.com/svc-develop-team/so-vits-svc/tree/4.0) from the 4.0 branch. This model was inspired by [Herta](https://honkai-star-rail.fandom.com/wiki/Herta) from [Honkai Star Rail](https://hsr.hoyoverse.com/en-us/). This model can be used to convert the original voice from an audio file into this character's voice. - -## How to Prepare Audio Files - -Your audio files should be `shorter than 10 seconds`, have no `BGM`, and have a sampling rate of `44100 Hz`. - -1. Create a new folder inside the `dataset_raw` folder (This folder name will be your `SpeakerID`). -2. Put your audio files into the folder you created above. - -### Note: - -1. Your audio files should be in `.wav` format. -2. If your audio files are longer than 10 seconds, I suggest you trim them down using your desired software or [audio slicer GUI](https://github.com/flutydeer/audio-slicer). -3. If your audio files have **BGM**, please remove it using a program such as [Ultimate Vocal Remover](https://ultimatevocalremover.com/). The `3_HP-Vocal-UVR.pth` or `UVR-MDX-NET Main` is recommended. -4. If your audio files have a sampling rate different from 44100 Hz, I suggest you resample them using [Audacity](https://www.audacityteam.org/) or by running `python resample.py` in your `CMD`. - -## How to Build Locally - -1. Clone the repository from the 4.0 branch: `git clone https://github.com/svc-develop-team/so-vits-svc.git` -2. Put your `prepared audio` into the `dataset_raw` folder. -3. Open your **Command Line** and install the `so-vits-svc` library: `%pip install -U so-vits-svc-fork` -4. Navigate to your project directory using the **Command Line**. -5. Run `svc pre-resample` in your prompt. -6. After completing the step above, run `svc pre-config`. -7. After completing the step above, run `svc pre-hubert`. **(This step may take a while.)**. -8. After completing the step above, run `svc train -t`. **(This step will take a while based on your `GPU` and the number of `epochs` you want.)**. - -### How to Change Epoch Value Locally -The meaning of `epoch` is the number of training iterations for your model. **Example: if you set the epoch value to 10000, your model will take 10000 steps to finish** `(default epoch value is 10000)`. To change your `epoch value`: - -1. Go to your project folder. -2. Find the folder named `config`. -3. Inside that folder, you should see `config.json`. -4. In `config.json`, there should be a section that looks like this: - -```json - "train": { - "log_interval": 200, - "eval_interval": 800, - "seed": 1234, - "epochs": , - "learning_rate": 0.0001, - "betas": [0.8, 0.99] - } -``` - -This can be done after `svc pre-config` has already finished. - - -### How to inferance in local. -To perform inference locally, navigate to the project directory, create a Python file, and copy the following lines of code: - -```python -your_audio_file = 'your_audio.wav' - -audio, sr = librosa.load(your_audio_file, sr = 16000, mono = True) -raw_path = io.BytesIO() -soundfile.write(raw_path, audio, 16000, format = 'wav') -raw_path.seek(0) - -model = Svc('logs/44k/your_model.pth', 'logs/44k/config.json') - -out_audio, out_sr = model.infer('', 0, raw_path, auto_predict_f0 = True) -soundfile.write('out_audio.wav', out_audio.cpu().numpy(), 44100) -``` - -The output file will be in the same directory as your input audio file with the name `your_audio_out.wav` - -## How to Build in Google Colab - -Refer to [My Google Colab](https://colab.research.google.com/drive/1V91RM-2xzSqbmTIlaEzWZovca8stErk0?authuser=3#scrollTo=hhJ2MG1i1vfl) or the [Official Google Colab](https://colab.research.google.com/github/34j/so-vits-svc-fork/blob/main/notebooks/so-vits-svc-fork-4.0.ipynb) for the steps. - -### Google Drive Setup - -1. Create an empty folder (this will be your project folder). -2. Inside the project folder, create a folder named `dataset_raw`. -3. Create another folder inside `dataset_raw` (this folder name will be your `SpeakerID`). -4. Upload your prepared audio files into the folder created in the previous step. - -### Google Colab Setup - -1. Mount your Google Drive: - ```python - from google.colab import drive - drive.mount('/content/drive') - ``` - -2. Install dependencies: - ```python - !python -m pip install -U pip setuptools wheel - %pip install -U ipython - %pip install -U torch torchaudio --index-url https://download.pytorch.org/whl/cu118 - ``` - -3. Install `so-vits-svc` library: - `%pip install -U so-vits-svc-fork ` - -4. Resample your audio files: - `!svc pre-resample` - -5. Pre-config: - `!svc pre-config` - -6. Pre-hubert (this step may take a while): - `!svc pre-hubert` - -7. Train your model (this step will take a while based on your Google Colab GPU and the number of epochs you want): - `!svc train -t` - -### How to Change Epoch Value in Google Colab - -The term "epoch" refers to the number of times you want to train your model. For example, if you set the epoch value to 10,000, your model will take 10,000 steps to complete (the default epoch value is 10,000). - -To change the epoch value: - -1. Go to your project folder. -2. Find the folder named `config`. -3. Inside that folder, you should see `config.json`. -4. In `config.json`, there should be a section that looks like this: - -```json - "train": { - "log_interval": 200, - "eval_interval": 800, - "seed": 1234, - "epochs": , - "learning_rate": 0.0001, - "betas": [0.8, 0.99] - } -``` - -This can be done after `svc pre-config` has already finished. - - -### How to Perform Inference in Google Colab - -After training your model, you can use it to convert any original voice to your model voice by running the following command: - -```shell -!svc infer drive/MyDrive/your_model_name/your_audio_file.wav --model-path drive/MyDrive/your_model_name/logs/44k/your_model.pth --config-path drive/MyDrive/your_model_name/logs/44k/your_config.json -``` -The output file will be named `your_audio_file.out.wav` - -### Note: - -1. Your Google Drive must have at least 5 GB of free space. If you don't have enough space, consider registering a new Google account. -2. Google Colab's Free Subscription is sufficient, but using the Pro version is recommended. -3. Set your Google Colab Hardware Accelerator to `GPU`. - -## Credits - -1. [zomehwh/sovits-models](https://huggingface.co/spaces/zomehwh/sovits-models) from Hugging Face Space -2. [svc-develop-team/so-vits-svc](https://github.com/svc-develop-team/so-vits-svc) from GitHub repository -3. [voicepaw/so-vits-svc-fork](https://github.com/voicepaw/so-vits-svc-fork) from GitHub repository diff --git a/spaces/AlexMaoMao/ostris-ikea-instructions-lora-sdxl/app.py b/spaces/AlexMaoMao/ostris-ikea-instructions-lora-sdxl/app.py deleted file mode 100644 index 1d6c504f95564cc6ee4e570f16198f96378d0a09..0000000000000000000000000000000000000000 --- a/spaces/AlexMaoMao/ostris-ikea-instructions-lora-sdxl/app.py +++ /dev/null @@ -1,3 +0,0 @@ -import gradio as gr - -gr.Interface.load("models/ostris/ikea-instructions-lora-sdxl").launch() \ No newline at end of file diff --git a/spaces/Alpaca233/SadTalker/src/face3d/models/arcface_torch/backbones/mobilefacenet.py b/spaces/Alpaca233/SadTalker/src/face3d/models/arcface_torch/backbones/mobilefacenet.py deleted file mode 100644 index 87731491d76f9ff61cc70e57bb3f18c54fae308c..0000000000000000000000000000000000000000 --- a/spaces/Alpaca233/SadTalker/src/face3d/models/arcface_torch/backbones/mobilefacenet.py +++ /dev/null @@ -1,130 +0,0 @@ -''' -Adapted from https://github.com/cavalleria/cavaface.pytorch/blob/master/backbone/mobilefacenet.py -Original author cavalleria -''' - -import torch.nn as nn -from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Sequential, Module -import torch - - -class Flatten(Module): - def forward(self, x): - return x.view(x.size(0), -1) - - -class ConvBlock(Module): - def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1): - super(ConvBlock, self).__init__() - self.layers = nn.Sequential( - Conv2d(in_c, out_c, kernel, groups=groups, stride=stride, padding=padding, bias=False), - BatchNorm2d(num_features=out_c), - PReLU(num_parameters=out_c) - ) - - def forward(self, x): - return self.layers(x) - - -class LinearBlock(Module): - def __init__(self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1): - super(LinearBlock, self).__init__() - self.layers = nn.Sequential( - Conv2d(in_c, out_c, kernel, stride, padding, groups=groups, bias=False), - BatchNorm2d(num_features=out_c) - ) - - def forward(self, x): - return self.layers(x) - - -class DepthWise(Module): - def __init__(self, in_c, out_c, residual=False, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=1): - super(DepthWise, self).__init__() - self.residual = residual - self.layers = nn.Sequential( - ConvBlock(in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1)), - ConvBlock(groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride), - LinearBlock(groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1)) - ) - - def forward(self, x): - short_cut = None - if self.residual: - short_cut = x - x = self.layers(x) - if self.residual: - output = short_cut + x - else: - output = x - return output - - -class Residual(Module): - def __init__(self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1)): - super(Residual, self).__init__() - modules = [] - for _ in range(num_block): - modules.append(DepthWise(c, c, True, kernel, stride, padding, groups)) - self.layers = Sequential(*modules) - - def forward(self, x): - return self.layers(x) - - -class GDC(Module): - def __init__(self, embedding_size): - super(GDC, self).__init__() - self.layers = nn.Sequential( - LinearBlock(512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0)), - Flatten(), - Linear(512, embedding_size, bias=False), - BatchNorm1d(embedding_size)) - - def forward(self, x): - return self.layers(x) - - -class MobileFaceNet(Module): - def __init__(self, fp16=False, num_features=512): - super(MobileFaceNet, self).__init__() - scale = 2 - self.fp16 = fp16 - self.layers = nn.Sequential( - ConvBlock(3, 64 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1)), - ConvBlock(64 * scale, 64 * scale, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64), - DepthWise(64 * scale, 64 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128), - Residual(64 * scale, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1)), - DepthWise(64 * scale, 128 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256), - Residual(128 * scale, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)), - DepthWise(128 * scale, 128 * scale, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512), - Residual(128 * scale, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1)), - ) - self.conv_sep = ConvBlock(128 * scale, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0)) - self.features = GDC(num_features) - self._initialize_weights() - - def _initialize_weights(self): - for m in self.modules(): - if isinstance(m, nn.Conv2d): - nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') - if m.bias is not None: - m.bias.data.zero_() - elif isinstance(m, nn.BatchNorm2d): - m.weight.data.fill_(1) - m.bias.data.zero_() - elif isinstance(m, nn.Linear): - nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') - if m.bias is not None: - m.bias.data.zero_() - - def forward(self, x): - with torch.cuda.amp.autocast(self.fp16): - x = self.layers(x) - x = self.conv_sep(x.float() if self.fp16 else x) - x = self.features(x) - return x - - -def get_mbf(fp16, num_features): - return MobileFaceNet(fp16, num_features) \ No newline at end of file diff --git a/spaces/Amon1/ChatGPTForAcadamic/crazy_functions/test_project/latex/attention/parameter_attention.tex b/spaces/Amon1/ChatGPTForAcadamic/crazy_functions/test_project/latex/attention/parameter_attention.tex deleted file mode 100644 index 7bc4fe452dbdbfe44ff72f0cdbd37acd5c786ce6..0000000000000000000000000000000000000000 --- a/spaces/Amon1/ChatGPTForAcadamic/crazy_functions/test_project/latex/attention/parameter_attention.tex +++ /dev/null @@ -1,45 +0,0 @@ -\pagebreak -\section*{Two Feed-Forward Layers = Attention over Parameters}\label{sec:parameter_attention} - -In addition to attention layers, our model contains position-wise feed-forward networks (Section \ref{sec:ffn}), which consist of two linear transformations with a ReLU activation in between. In fact, these networks too can be seen as a form of attention. Compare the formula for such a network with the formula for a simple dot-product attention layer (biases and scaling factors omitted): - -\begin{align*} - FFN(x, W_1, W_2) = ReLU(xW_1)W_2 \\ - A(q, K, V) = Softmax(qK^T)V -\end{align*} - -Based on the similarity of these formulae, the two-layer feed-forward network can be seen as a kind of attention, where the keys and values are the rows of the trainable parameter matrices $W_1$ and $W_2$, and where we use ReLU instead of Softmax in the compatibility function. - -%the compatablity function is $compat(q, k_i) = ReLU(q \cdot k_i)$ instead of $Softmax(qK_T)_i$. - -Given this similarity, we experimented with replacing the position-wise feed-forward networks with attention layers similar to the ones we use everywhere else our model. The multi-head-attention-over-parameters sublayer is identical to the multi-head attention described in \ref{sec:multihead}, except that the "keys" and "values" inputs to each attention head are trainable model parameters, as opposed to being linear projections of a previous layer. These parameters are scaled up by a factor of $\sqrt{d_{model}}$ in order to be more similar to activations. - -In our first experiment, we replaced each position-wise feed-forward network with a multi-head-attention-over-parameters sublayer with $h_p=8$ heads, key-dimensionality $d_{pk}=64$, and value-dimensionality $d_{pv}=64$, using $n_p=1536$ key-value pairs for each attention head. The sublayer has a total of $2097152$ parameters, including the parameters in the query projection and the output projection. This matches the number of parameters in the position-wise feed-forward network that we replaced. While the theoretical amount of computation is also the same, in practice, the attention version caused the step times to be about 30\% longer. - -In our second experiment, we used $h_p=8$ heads, and $n_p=512$ key-value pairs for each attention head, again matching the total number of parameters in the base model. - -Results for the first experiment were slightly worse than for the base model, and results for the second experiment were slightly better, see Table~\ref{tab:parameter_attention}. - -\begin{table}[h] -\caption{Replacing the position-wise feed-forward networks with multihead-attention-over-parameters produces similar results to the base model. All metrics are on the English-to-German translation development set, newstest2013.} -\label{tab:parameter_attention} -\begin{center} -\vspace{-2mm} -%\scalebox{1.0}{ -\begin{tabular}{c|cccccc|cccc} -\hline\rule{0pt}{2.0ex} - & \multirow{2}{*}{$\dmodel$} & \multirow{2}{*}{$\dff$} & -\multirow{2}{*}{$h_p$} & \multirow{2}{*}{$d_{pk}$} & \multirow{2}{*}{$d_{pv}$} & - \multirow{2}{*}{$n_p$} & - PPL & BLEU & params & training\\ - & & & & & & & (dev) & (dev) & $\times10^6$ & time \\ -\hline\rule{0pt}{2.0ex} -base & 512 & 2048 & & & & & 4.92 & 25.8 & 65 & 12 hours\\ -\hline\rule{0pt}{2.0ex} -AOP$_1$ & 512 & & 8 & 64 & 64 & 1536 & 4.92& 25.5 & 65 & 16 hours\\ -AOP$_2$ & 512 & & 16 & 64 & 64 & 512 & \textbf{4.86} & \textbf{25.9} & 65 & 16 hours \\ -\hline -\end{tabular} -%} -\end{center} -\end{table} diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/en/api/pipelines/deepfloyd_if.md b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/en/api/pipelines/deepfloyd_if.md deleted file mode 100644 index 7769b71d38dc3b323003681ffbc6c3d92ba6ca78..0000000000000000000000000000000000000000 --- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/en/api/pipelines/deepfloyd_if.md +++ /dev/null @@ -1,523 +0,0 @@ - - -# DeepFloyd IF - -## Overview - -DeepFloyd IF is a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding. -The model is a modular composed of a frozen text encoder and three cascaded pixel diffusion modules: -- Stage 1: a base model that generates 64x64 px image based on text prompt, -- Stage 2: a 64x64 px => 256x256 px super-resolution model, and a -- Stage 3: a 256x256 px => 1024x1024 px super-resolution model -Stage 1 and Stage 2 utilize a frozen text encoder based on the T5 transformer to extract text embeddings, -which are then fed into a UNet architecture enhanced with cross-attention and attention pooling. -Stage 3 is [Stability's x4 Upscaling model](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler). -The result is a highly efficient model that outperforms current state-of-the-art models, achieving a zero-shot FID score of 6.66 on the COCO dataset. -Our work underscores the potential of larger UNet architectures in the first stage of cascaded diffusion models and depicts a promising future for text-to-image synthesis. - -## Usage - -Before you can use IF, you need to accept its usage conditions. To do so: -1. Make sure to have a [Hugging Face account](https://huggingface.co/join) and be logged in -2. Accept the license on the model card of [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0). Accepting the license on the stage I model card will auto accept for the other IF models. -3. Make sure to login locally. Install `huggingface_hub` -```sh -pip install huggingface_hub --upgrade -``` - -run the login function in a Python shell - -```py -from huggingface_hub import login - -login() -``` - -and enter your [Hugging Face Hub access token](https://huggingface.co/docs/hub/security-tokens#what-are-user-access-tokens). - -Next we install `diffusers` and dependencies: - -```sh -pip install diffusers accelerate transformers safetensors -``` - -The following sections give more in-detail examples of how to use IF. Specifically: - -- [Text-to-Image Generation](#text-to-image-generation) -- [Image-to-Image Generation](#text-guided-image-to-image-generation) -- [Inpainting](#text-guided-inpainting-generation) -- [Reusing model weights](#converting-between-different-pipelines) -- [Speed optimization](#optimizing-for-speed) -- [Memory optimization](#optimizing-for-memory) - -**Available checkpoints** -- *Stage-1* - - [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0) - - [DeepFloyd/IF-I-L-v1.0](https://huggingface.co/DeepFloyd/IF-I-L-v1.0) - - [DeepFloyd/IF-I-M-v1.0](https://huggingface.co/DeepFloyd/IF-I-M-v1.0) - -- *Stage-2* - - [DeepFloyd/IF-II-L-v1.0](https://huggingface.co/DeepFloyd/IF-II-L-v1.0) - - [DeepFloyd/IF-II-M-v1.0](https://huggingface.co/DeepFloyd/IF-II-M-v1.0) - -- *Stage-3* - - [stabilityai/stable-diffusion-x4-upscaler](https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler) - -**Demo** -[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/DeepFloyd/IF) - -**Google Colab** -[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb) - -### Text-to-Image Generation - -By default diffusers makes use of [model cpu offloading](https://huggingface.co/docs/diffusers/optimization/fp16#model-offloading-for-fast-inference-and-memory-savings) -to run the whole IF pipeline with as little as 14 GB of VRAM. - -```python -from diffusers import DiffusionPipeline -from diffusers.utils import pt_to_pil -import torch - -# stage 1 -stage_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) -stage_1.enable_model_cpu_offload() - -# stage 2 -stage_2 = DiffusionPipeline.from_pretrained( - "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16 -) -stage_2.enable_model_cpu_offload() - -# stage 3 -safety_modules = { - "feature_extractor": stage_1.feature_extractor, - "safety_checker": stage_1.safety_checker, - "watermarker": stage_1.watermarker, -} -stage_3 = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16 -) -stage_3.enable_model_cpu_offload() - -prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"' -generator = torch.manual_seed(1) - -# text embeds -prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt) - -# stage 1 -image = stage_1( - prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt" -).images -pt_to_pil(image)[0].save("./if_stage_I.png") - -# stage 2 -image = stage_2( - image=image, - prompt_embeds=prompt_embeds, - negative_prompt_embeds=negative_embeds, - generator=generator, - output_type="pt", -).images -pt_to_pil(image)[0].save("./if_stage_II.png") - -# stage 3 -image = stage_3(prompt=prompt, image=image, noise_level=100, generator=generator).images -image[0].save("./if_stage_III.png") -``` - -### Text Guided Image-to-Image Generation - -The same IF model weights can be used for text-guided image-to-image translation or image variation. -In this case just make sure to load the weights using the [`IFInpaintingPipeline`] and [`IFInpaintingSuperResolutionPipeline`] pipelines. - -**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines -without loading them twice by making use of the [`~DiffusionPipeline.components()`] function as explained [here](#converting-between-different-pipelines). - -```python -from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline, DiffusionPipeline -from diffusers.utils import pt_to_pil - -import torch - -from PIL import Image -import requests -from io import BytesIO - -# download image -url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" -response = requests.get(url) -original_image = Image.open(BytesIO(response.content)).convert("RGB") -original_image = original_image.resize((768, 512)) - -# stage 1 -stage_1 = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) -stage_1.enable_model_cpu_offload() - -# stage 2 -stage_2 = IFImg2ImgSuperResolutionPipeline.from_pretrained( - "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16 -) -stage_2.enable_model_cpu_offload() - -# stage 3 -safety_modules = { - "feature_extractor": stage_1.feature_extractor, - "safety_checker": stage_1.safety_checker, - "watermarker": stage_1.watermarker, -} -stage_3 = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16 -) -stage_3.enable_model_cpu_offload() - -prompt = "A fantasy landscape in style minecraft" -generator = torch.manual_seed(1) - -# text embeds -prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt) - -# stage 1 -image = stage_1( - image=original_image, - prompt_embeds=prompt_embeds, - negative_prompt_embeds=negative_embeds, - generator=generator, - output_type="pt", -).images -pt_to_pil(image)[0].save("./if_stage_I.png") - -# stage 2 -image = stage_2( - image=image, - original_image=original_image, - prompt_embeds=prompt_embeds, - negative_prompt_embeds=negative_embeds, - generator=generator, - output_type="pt", -).images -pt_to_pil(image)[0].save("./if_stage_II.png") - -# stage 3 -image = stage_3(prompt=prompt, image=image, generator=generator, noise_level=100).images -image[0].save("./if_stage_III.png") -``` - -### Text Guided Inpainting Generation - -The same IF model weights can be used for text-guided image-to-image translation or image variation. -In this case just make sure to load the weights using the [`IFInpaintingPipeline`] and [`IFInpaintingSuperResolutionPipeline`] pipelines. - -**Note**: You can also directly move the weights of the text-to-image pipelines to the image-to-image pipelines -without loading them twice by making use of the [`~DiffusionPipeline.components()`] function as explained [here](#converting-between-different-pipelines). - -```python -from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, DiffusionPipeline -from diffusers.utils import pt_to_pil -import torch - -from PIL import Image -import requests -from io import BytesIO - -# download image -url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/person.png" -response = requests.get(url) -original_image = Image.open(BytesIO(response.content)).convert("RGB") -original_image = original_image - -# download mask -url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/if/glasses_mask.png" -response = requests.get(url) -mask_image = Image.open(BytesIO(response.content)) -mask_image = mask_image - -# stage 1 -stage_1 = IFInpaintingPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) -stage_1.enable_model_cpu_offload() - -# stage 2 -stage_2 = IFInpaintingSuperResolutionPipeline.from_pretrained( - "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16 -) -stage_2.enable_model_cpu_offload() - -# stage 3 -safety_modules = { - "feature_extractor": stage_1.feature_extractor, - "safety_checker": stage_1.safety_checker, - "watermarker": stage_1.watermarker, -} -stage_3 = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16 -) -stage_3.enable_model_cpu_offload() - -prompt = "blue sunglasses" -generator = torch.manual_seed(1) - -# text embeds -prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt) - -# stage 1 -image = stage_1( - image=original_image, - mask_image=mask_image, - prompt_embeds=prompt_embeds, - negative_prompt_embeds=negative_embeds, - generator=generator, - output_type="pt", -).images -pt_to_pil(image)[0].save("./if_stage_I.png") - -# stage 2 -image = stage_2( - image=image, - original_image=original_image, - mask_image=mask_image, - prompt_embeds=prompt_embeds, - negative_prompt_embeds=negative_embeds, - generator=generator, - output_type="pt", -).images -pt_to_pil(image)[0].save("./if_stage_II.png") - -# stage 3 -image = stage_3(prompt=prompt, image=image, generator=generator, noise_level=100).images -image[0].save("./if_stage_III.png") -``` - -### Converting between different pipelines - -In addition to being loaded with `from_pretrained`, Pipelines can also be loaded directly from each other. - -```python -from diffusers import IFPipeline, IFSuperResolutionPipeline - -pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0") -pipe_2 = IFSuperResolutionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0") - - -from diffusers import IFImg2ImgPipeline, IFImg2ImgSuperResolutionPipeline - -pipe_1 = IFImg2ImgPipeline(**pipe_1.components) -pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components) - - -from diffusers import IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline - -pipe_1 = IFInpaintingPipeline(**pipe_1.components) -pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components) -``` - -### Optimizing for speed - -The simplest optimization to run IF faster is to move all model components to the GPU. - -```py -pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) -pipe.to("cuda") -``` - -You can also run the diffusion process for a shorter number of timesteps. - -This can either be done with the `num_inference_steps` argument - -```py -pipe("", num_inference_steps=30) -``` - -Or with the `timesteps` argument - -```py -from diffusers.pipelines.deepfloyd_if import fast27_timesteps - -pipe("", timesteps=fast27_timesteps) -``` - -When doing image variation or inpainting, you can also decrease the number of timesteps -with the strength argument. The strength argument is the amount of noise to add to -the input image which also determines how many steps to run in the denoising process. -A smaller number will vary the image less but run faster. - -```py -pipe = IFImg2ImgPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) -pipe.to("cuda") - -image = pipe(image=image, prompt="", strength=0.3).images -``` - -You can also use [`torch.compile`](../../optimization/torch2.0). Note that we have not exhaustively tested `torch.compile` -with IF and it might not give expected results. - -```py -import torch - -pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) -pipe.to("cuda") - -pipe.text_encoder = torch.compile(pipe.text_encoder) -pipe.unet = torch.compile(pipe.unet) -``` - -### Optimizing for memory - -When optimizing for GPU memory, we can use the standard diffusers cpu offloading APIs. - -Either the model based CPU offloading, - -```py -pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) -pipe.enable_model_cpu_offload() -``` - -or the more aggressive layer based CPU offloading. - -```py -pipe = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) -pipe.enable_sequential_cpu_offload() -``` - -Additionally, T5 can be loaded in 8bit precision - -```py -from transformers import T5EncoderModel - -text_encoder = T5EncoderModel.from_pretrained( - "DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit" -) - -from diffusers import DiffusionPipeline - -pipe = DiffusionPipeline.from_pretrained( - "DeepFloyd/IF-I-XL-v1.0", - text_encoder=text_encoder, # pass the previously instantiated 8bit text encoder - unet=None, - device_map="auto", -) - -prompt_embeds, negative_embeds = pipe.encode_prompt("") -``` - -For CPU RAM constrained machines like google colab free tier where we can't load all -model components to the CPU at once, we can manually only load the pipeline with -the text encoder or unet when the respective model components are needed. - -```py -from diffusers import IFPipeline, IFSuperResolutionPipeline -import torch -import gc -from transformers import T5EncoderModel -from diffusers.utils import pt_to_pil - -text_encoder = T5EncoderModel.from_pretrained( - "DeepFloyd/IF-I-XL-v1.0", subfolder="text_encoder", device_map="auto", load_in_8bit=True, variant="8bit" -) - -# text to image - -pipe = DiffusionPipeline.from_pretrained( - "DeepFloyd/IF-I-XL-v1.0", - text_encoder=text_encoder, # pass the previously instantiated 8bit text encoder - unet=None, - device_map="auto", -) - -prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"' -prompt_embeds, negative_embeds = pipe.encode_prompt(prompt) - -# Remove the pipeline so we can re-load the pipeline with the unet -del text_encoder -del pipe -gc.collect() -torch.cuda.empty_cache() - -pipe = IFPipeline.from_pretrained( - "DeepFloyd/IF-I-XL-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto" -) - -generator = torch.Generator().manual_seed(0) -image = pipe( - prompt_embeds=prompt_embeds, - negative_prompt_embeds=negative_embeds, - output_type="pt", - generator=generator, -).images - -pt_to_pil(image)[0].save("./if_stage_I.png") - -# Remove the pipeline so we can load the super-resolution pipeline -del pipe -gc.collect() -torch.cuda.empty_cache() - -# First super resolution - -pipe = IFSuperResolutionPipeline.from_pretrained( - "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16, device_map="auto" -) - -generator = torch.Generator().manual_seed(0) -image = pipe( - image=image, - prompt_embeds=prompt_embeds, - negative_prompt_embeds=negative_embeds, - output_type="pt", - generator=generator, -).images - -pt_to_pil(image)[0].save("./if_stage_II.png") -``` - - -## Available Pipelines: - -| Pipeline | Tasks | Colab -|---|---|:---:| -| [pipeline_if.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if.py) | *Text-to-Image Generation* | - | -| [pipeline_if_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if.py) | *Text-to-Image Generation* | - | -| [pipeline_if_img2img.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img.py) | *Image-to-Image Generation* | - | -| [pipeline_if_img2img_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_img2img_superresolution.py) | *Image-to-Image Generation* | - | -| [pipeline_if_inpainting.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting.py) | *Image-to-Image Generation* | - | -| [pipeline_if_inpainting_superresolution.py](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_if/pipeline_if_inpainting_superresolution.py) | *Image-to-Image Generation* | - | - -## IFPipeline -[[autodoc]] IFPipeline - - all - - __call__ - -## IFSuperResolutionPipeline -[[autodoc]] IFSuperResolutionPipeline - - all - - __call__ - -## IFImg2ImgPipeline -[[autodoc]] IFImg2ImgPipeline - - all - - __call__ - -## IFImg2ImgSuperResolutionPipeline -[[autodoc]] IFImg2ImgSuperResolutionPipeline - - all - - __call__ - -## IFInpaintingPipeline -[[autodoc]] IFInpaintingPipeline - - all - - __call__ - -## IFInpaintingSuperResolutionPipeline -[[autodoc]] IFInpaintingSuperResolutionPipeline - - all - - __call__ diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/ko/training/unconditional_training.md b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/ko/training/unconditional_training.md deleted file mode 100644 index 62c846311114a08d15b05994a6694ad44d16542e..0000000000000000000000000000000000000000 --- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/ko/training/unconditional_training.md +++ /dev/null @@ -1,144 +0,0 @@ - - -# Unconditional 이미지 생성 - -unconditional 이미지 생성은 text-to-image 또는 image-to-image 모델과 달리 텍스트나 이미지에 대한 조건이 없이 학습 데이터 분포와 유사한 이미지만을 생성합니다. - - - - -이 가이드에서는 기존에 존재하던 데이터셋과 자신만의 커스텀 데이터셋에 대해 unconditional image generation 모델을 훈련하는 방법을 설명합니다. 훈련 세부 사항에 대해 더 자세히 알고 싶다면 unconditional image generation을 위한 모든 학습 스크립트를 [여기](https://github.com/huggingface/diffusers/tree/main/examples/unconditional_image_generation)에서 확인할 수 있습니다. - -스크립트를 실행하기 전, 먼저 의존성 라이브러리들을 설치해야 합니다. - -```bash -pip install diffusers[training] accelerate datasets -``` - -그 다음 🤗 [Accelerate](https://github.com/huggingface/accelerate/) 환경을 초기화합니다. - -```bash -accelerate config -``` - -별도의 설정 없이 기본 설정으로 🤗 [Accelerate](https://github.com/huggingface/accelerate/) 환경을 초기화해봅시다. - -```bash -accelerate config default -``` - -노트북과 같은 대화형 쉘을 지원하지 않는 환경의 경우, 다음과 같이 사용해볼 수도 있습니다. - -```py -from accelerate.utils import write_basic_config - -write_basic_config() -``` - -## 모델을 허브에 업로드하기 - -학습 스크립트에 다음 인자를 추가하여 허브에 모델을 업로드할 수 있습니다. - -```bash ---push_to_hub -``` - -## 체크포인트 저장하고 불러오기 - -훈련 중 문제가 발생할 경우를 대비하여 체크포인트를 정기적으로 저장하는 것이 좋습니다. 체크포인트를 저장하려면 학습 스크립트에 다음 인자를 전달합니다: - -```bash ---checkpointing_steps=500 -``` - -전체 훈련 상태는 500스텝마다 `output_dir`의 하위 폴더에 저장되며, 학습 스크립트에 `--resume_from_checkpoint` 인자를 전달함으로써 체크포인트를 불러오고 훈련을 재개할 수 있습니다. - -```bash ---resume_from_checkpoint="checkpoint-1500" -``` - -## 파인튜닝 - -이제 학습 스크립트를 시작할 준비가 되었습니다! `--dataset_name` 인자에 파인튜닝할 데이터셋 이름을 지정한 다음, `--output_dir` 인자에 지정된 경로로 저장합니다. 본인만의 데이터셋를 사용하려면, [학습용 데이터셋 만들기](create_dataset) 가이드를 참조하세요. - -학습 스크립트는 `diffusion_pytorch_model.bin` 파일을 생성하고, 그것을 당신의 리포지토리에 저장합니다. - - - -💡 전체 학습은 V100 GPU 4개를 사용할 경우, 2시간이 소요됩니다. - - - -예를 들어, [Oxford Flowers](https://huggingface.co/datasets/huggan/flowers-102-categories) 데이터셋을 사용해 파인튜닝할 경우: - -```bash -accelerate launch train_unconditional.py \ - --dataset_name="huggan/flowers-102-categories" \ - --resolution=64 \ - --output_dir="ddpm-ema-flowers-64" \ - --train_batch_size=16 \ - --num_epochs=100 \ - --gradient_accumulation_steps=1 \ - --learning_rate=1e-4 \ - --lr_warmup_steps=500 \ - --mixed_precision=no \ - --push_to_hub -``` - -
- -
-[Pokemon](https://huggingface.co/datasets/huggan/pokemon) 데이터셋을 사용할 경우: - -```bash -accelerate launch train_unconditional.py \ - --dataset_name="huggan/pokemon" \ - --resolution=64 \ - --output_dir="ddpm-ema-pokemon-64" \ - --train_batch_size=16 \ - --num_epochs=100 \ - --gradient_accumulation_steps=1 \ - --learning_rate=1e-4 \ - --lr_warmup_steps=500 \ - --mixed_precision=no \ - --push_to_hub -``` - -
- -
- -### 여러개의 GPU로 훈련하기 - -`accelerate`을 사용하면 원활한 다중 GPU 훈련이 가능합니다. `accelerate`을 사용하여 분산 훈련을 실행하려면 [여기](https://huggingface.co/docs/accelerate/basic_tutorials/launch) 지침을 따르세요. 다음은 명령어 예제입니다. - -```bash -accelerate launch --mixed_precision="fp16" --multi_gpu train_unconditional.py \ - --dataset_name="huggan/pokemon" \ - --resolution=64 --center_crop --random_flip \ - --output_dir="ddpm-ema-pokemon-64" \ - --train_batch_size=16 \ - --num_epochs=100 \ - --gradient_accumulation_steps=1 \ - --use_ema \ - --learning_rate=1e-4 \ - --lr_warmup_steps=500 \ - --mixed_precision="fp16" \ - --logger="wandb" \ - --push_to_hub -``` diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/pipelines/repaint/pipeline_repaint.py b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/pipelines/repaint/pipeline_repaint.py deleted file mode 100644 index 8200b9db630dc862fc9e3e2e1e5aa2fd3281cec7..0000000000000000000000000000000000000000 --- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/pipelines/repaint/pipeline_repaint.py +++ /dev/null @@ -1,232 +0,0 @@ -# Copyright 2023 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - - -import warnings -from typing import List, Optional, Tuple, Union - -import numpy as np -import PIL -import torch - -from ...models import UNet2DModel -from ...schedulers import RePaintScheduler -from ...utils import PIL_INTERPOLATION, logging, randn_tensor -from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput - - -logger = logging.get_logger(__name__) # pylint: disable=invalid-name - - -# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess -def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]): - warnings.warn( - "The preprocess method is deprecated and will be removed in a future version. Please" - " use VaeImageProcessor.preprocess instead", - FutureWarning, - ) - if isinstance(image, torch.Tensor): - return image - elif isinstance(image, PIL.Image.Image): - image = [image] - - if isinstance(image[0], PIL.Image.Image): - w, h = image[0].size - w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 - - image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] - image = np.concatenate(image, axis=0) - image = np.array(image).astype(np.float32) / 255.0 - image = image.transpose(0, 3, 1, 2) - image = 2.0 * image - 1.0 - image = torch.from_numpy(image) - elif isinstance(image[0], torch.Tensor): - image = torch.cat(image, dim=0) - return image - - -def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]): - if isinstance(mask, torch.Tensor): - return mask - elif isinstance(mask, PIL.Image.Image): - mask = [mask] - - if isinstance(mask[0], PIL.Image.Image): - w, h = mask[0].size - w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 - mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask] - mask = np.concatenate(mask, axis=0) - mask = mask.astype(np.float32) / 255.0 - mask[mask < 0.5] = 0 - mask[mask >= 0.5] = 1 - mask = torch.from_numpy(mask) - elif isinstance(mask[0], torch.Tensor): - mask = torch.cat(mask, dim=0) - return mask - - -class RePaintPipeline(DiffusionPipeline): - r""" - Pipeline for image inpainting using RePaint. - - This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods - implemented for all pipelines (downloading, saving, running on a particular device, etc.). - - Parameters: - unet ([`UNet2DModel`]): - A `UNet2DModel` to denoise the encoded image latents. - scheduler ([`RePaintScheduler`]): - A `RePaintScheduler` to be used in combination with `unet` to denoise the encoded image. - """ - - unet: UNet2DModel - scheduler: RePaintScheduler - - def __init__(self, unet, scheduler): - super().__init__() - self.register_modules(unet=unet, scheduler=scheduler) - - @torch.no_grad() - def __call__( - self, - image: Union[torch.Tensor, PIL.Image.Image], - mask_image: Union[torch.Tensor, PIL.Image.Image], - num_inference_steps: int = 250, - eta: float = 0.0, - jump_length: int = 10, - jump_n_sample: int = 10, - generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, - output_type: Optional[str] = "pil", - return_dict: bool = True, - ) -> Union[ImagePipelineOutput, Tuple]: - r""" - The call function to the pipeline for generation. - - Args: - image (`torch.FloatTensor` or `PIL.Image.Image`): - The original image to inpaint on. - mask_image (`torch.FloatTensor` or `PIL.Image.Image`): - The mask_image where 0.0 define which part of the original image to inpaint. - num_inference_steps (`int`, *optional*, defaults to 1000): - The number of denoising steps. More denoising steps usually lead to a higher quality image at the - expense of slower inference. - eta (`float`): - The weight of the added noise in a diffusion step. Its value is between 0.0 and 1.0; 0.0 corresponds to - DDIM and 1.0 is the DDPM scheduler. - jump_length (`int`, *optional*, defaults to 10): - The number of steps taken forward in time before going backward in time for a single jump ("j" in - RePaint paper). Take a look at Figure 9 and 10 in the [paper](https://arxiv.org/pdf/2201.09865.pdf). - jump_n_sample (`int`, *optional*, defaults to 10): - The number of times to make a forward time jump for a given chosen time sample. Take a look at Figure 9 - and 10 in the [paper](https://arxiv.org/pdf/2201.09865.pdf). - generator (`torch.Generator`, *optional*): - A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make - generation deterministic. - output_type (`str`, `optional`, defaults to `"pil"`): - The output format of the generated image. Choose between `PIL.Image` or `np.array`. - return_dict (`bool`, *optional*, defaults to `True`): - Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. - - Example: - - ```py - >>> from io import BytesIO - >>> import torch - >>> import PIL - >>> import requests - >>> from diffusers import RePaintPipeline, RePaintScheduler - - - >>> def download_image(url): - ... response = requests.get(url) - ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") - - - >>> img_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/celeba_hq_256.png" - >>> mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png" - - >>> # Load the original image and the mask as PIL images - >>> original_image = download_image(img_url).resize((256, 256)) - >>> mask_image = download_image(mask_url).resize((256, 256)) - - >>> # Load the RePaint scheduler and pipeline based on a pretrained DDPM model - >>> scheduler = RePaintScheduler.from_pretrained("google/ddpm-ema-celebahq-256") - >>> pipe = RePaintPipeline.from_pretrained("google/ddpm-ema-celebahq-256", scheduler=scheduler) - >>> pipe = pipe.to("cuda") - - >>> generator = torch.Generator(device="cuda").manual_seed(0) - >>> output = pipe( - ... image=original_image, - ... mask_image=mask_image, - ... num_inference_steps=250, - ... eta=0.0, - ... jump_length=10, - ... jump_n_sample=10, - ... generator=generator, - ... ) - >>> inpainted_image = output.images[0] - ``` - - Returns: - [`~pipelines.ImagePipelineOutput`] or `tuple`: - If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is - returned where the first element is a list with the generated images. - """ - - original_image = image - - original_image = _preprocess_image(original_image) - original_image = original_image.to(device=self._execution_device, dtype=self.unet.dtype) - mask_image = _preprocess_mask(mask_image) - mask_image = mask_image.to(device=self._execution_device, dtype=self.unet.dtype) - - batch_size = original_image.shape[0] - - # sample gaussian noise to begin the loop - if isinstance(generator, list) and len(generator) != batch_size: - raise ValueError( - f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" - f" size of {batch_size}. Make sure the batch size matches the length of the generators." - ) - - image_shape = original_image.shape - image = randn_tensor(image_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype) - - # set step values - self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self._execution_device) - self.scheduler.eta = eta - - t_last = self.scheduler.timesteps[0] + 1 - generator = generator[0] if isinstance(generator, list) else generator - for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): - if t < t_last: - # predict the noise residual - model_output = self.unet(image, t).sample - # compute previous image: x_t -> x_t-1 - image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample - - else: - # compute the reverse: x_t-1 -> x_t - image = self.scheduler.undo_step(image, t_last, generator) - t_last = t - - image = (image / 2 + 0.5).clamp(0, 1) - image = image.cpu().permute(0, 2, 3, 1).numpy() - if output_type == "pil": - image = self.numpy_to_pil(image) - - if not return_dict: - return (image,) - - return ImagePipelineOutput(images=image) diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/utils/doc_utils.py b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/utils/doc_utils.py deleted file mode 100644 index f1f87743f99802931334bd51bf99985775116d59..0000000000000000000000000000000000000000 --- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/utils/doc_utils.py +++ /dev/null @@ -1,38 +0,0 @@ -# Copyright 2023 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Doc utilities: Utilities related to documentation -""" -import re - - -def replace_example_docstring(example_docstring): - def docstring_decorator(fn): - func_doc = fn.__doc__ - lines = func_doc.split("\n") - i = 0 - while i < len(lines) and re.search(r"^\s*Examples?:\s*$", lines[i]) is None: - i += 1 - if i < len(lines): - lines[i] = example_docstring - func_doc = "\n".join(lines) - else: - raise ValueError( - f"The function {fn} should have an empty 'Examples:' in its docstring as placeholder, " - f"current docstring is:\n{func_doc}" - ) - fn.__doc__ = func_doc - return fn - - return docstring_decorator diff --git a/spaces/Andy1621/uniformer_image_detection/configs/scnet/scnet_r50_fpn_1x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/scnet/scnet_r50_fpn_1x_coco.py deleted file mode 100644 index e4215a6d2d0b90f8ccd9c1291f6ca222c0ff554f..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/scnet/scnet_r50_fpn_1x_coco.py +++ /dev/null @@ -1,136 +0,0 @@ -_base_ = '../htc/htc_r50_fpn_1x_coco.py' -# model settings -model = dict( - type='SCNet', - roi_head=dict( - _delete_=True, - type='SCNetRoIHead', - num_stages=3, - stage_loss_weights=[1, 0.5, 0.25], - bbox_roi_extractor=dict( - type='SingleRoIExtractor', - roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), - out_channels=256, - featmap_strides=[4, 8, 16, 32]), - bbox_head=[ - dict( - type='SCNetBBoxHead', - num_shared_fcs=2, - in_channels=256, - fc_out_channels=1024, - roi_feat_size=7, - num_classes=80, - bbox_coder=dict( - type='DeltaXYWHBBoxCoder', - target_means=[0., 0., 0., 0.], - target_stds=[0.1, 0.1, 0.2, 0.2]), - reg_class_agnostic=True, - loss_cls=dict( - type='CrossEntropyLoss', - use_sigmoid=False, - loss_weight=1.0), - loss_bbox=dict(type='SmoothL1Loss', beta=1.0, - loss_weight=1.0)), - dict( - type='SCNetBBoxHead', - num_shared_fcs=2, - in_channels=256, - fc_out_channels=1024, - roi_feat_size=7, - num_classes=80, - bbox_coder=dict( - type='DeltaXYWHBBoxCoder', - target_means=[0., 0., 0., 0.], - target_stds=[0.05, 0.05, 0.1, 0.1]), - reg_class_agnostic=True, - loss_cls=dict( - type='CrossEntropyLoss', - use_sigmoid=False, - loss_weight=1.0), - loss_bbox=dict(type='SmoothL1Loss', beta=1.0, - loss_weight=1.0)), - dict( - type='SCNetBBoxHead', - num_shared_fcs=2, - in_channels=256, - fc_out_channels=1024, - roi_feat_size=7, - num_classes=80, - bbox_coder=dict( - type='DeltaXYWHBBoxCoder', - target_means=[0., 0., 0., 0.], - target_stds=[0.033, 0.033, 0.067, 0.067]), - reg_class_agnostic=True, - loss_cls=dict( - type='CrossEntropyLoss', - use_sigmoid=False, - loss_weight=1.0), - loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)) - ], - mask_roi_extractor=dict( - type='SingleRoIExtractor', - roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), - out_channels=256, - featmap_strides=[4, 8, 16, 32]), - mask_head=dict( - type='SCNetMaskHead', - num_convs=12, - in_channels=256, - conv_out_channels=256, - num_classes=80, - conv_to_res=True, - loss_mask=dict( - type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)), - semantic_roi_extractor=dict( - type='SingleRoIExtractor', - roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), - out_channels=256, - featmap_strides=[8]), - semantic_head=dict( - type='SCNetSemanticHead', - num_ins=5, - fusion_level=1, - num_convs=4, - in_channels=256, - conv_out_channels=256, - num_classes=183, - ignore_label=255, - loss_weight=0.2, - conv_to_res=True), - glbctx_head=dict( - type='GlobalContextHead', - num_convs=4, - in_channels=256, - conv_out_channels=256, - num_classes=80, - loss_weight=3.0, - conv_to_res=True), - feat_relay_head=dict( - type='FeatureRelayHead', - in_channels=1024, - out_conv_channels=256, - roi_feat_size=7, - scale_factor=2))) - -# uncomment below code to enable test time augmentations -# img_norm_cfg = dict( -# mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) -# test_pipeline = [ -# dict(type='LoadImageFromFile'), -# dict( -# type='MultiScaleFlipAug', -# img_scale=[(600, 900), (800, 1200), (1000, 1500), (1200, 1800), -# (1400, 2100)], -# flip=True, -# transforms=[ -# dict(type='Resize', keep_ratio=True), -# dict(type='RandomFlip', flip_ratio=0.5), -# dict(type='Normalize', **img_norm_cfg), -# dict(type='Pad', size_divisor=32), -# dict(type='ImageToTensor', keys=['img']), -# dict(type='Collect', keys=['img']), -# ]) -# ] -# data = dict( -# val=dict(pipeline=test_pipeline), -# test=dict(pipeline=test_pipeline)) diff --git a/spaces/Andy1621/uniformer_image_detection/mmdet/core/utils/dist_utils.py b/spaces/Andy1621/uniformer_image_detection/mmdet/core/utils/dist_utils.py deleted file mode 100644 index 5fe77753313783f95bd7111038ef8b58ee4e4bc5..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/mmdet/core/utils/dist_utils.py +++ /dev/null @@ -1,69 +0,0 @@ -import warnings -from collections import OrderedDict - -import torch.distributed as dist -from mmcv.runner import OptimizerHook -from torch._utils import (_flatten_dense_tensors, _take_tensors, - _unflatten_dense_tensors) - - -def _allreduce_coalesced(tensors, world_size, bucket_size_mb=-1): - if bucket_size_mb > 0: - bucket_size_bytes = bucket_size_mb * 1024 * 1024 - buckets = _take_tensors(tensors, bucket_size_bytes) - else: - buckets = OrderedDict() - for tensor in tensors: - tp = tensor.type() - if tp not in buckets: - buckets[tp] = [] - buckets[tp].append(tensor) - buckets = buckets.values() - - for bucket in buckets: - flat_tensors = _flatten_dense_tensors(bucket) - dist.all_reduce(flat_tensors) - flat_tensors.div_(world_size) - for tensor, synced in zip( - bucket, _unflatten_dense_tensors(flat_tensors, bucket)): - tensor.copy_(synced) - - -def allreduce_grads(params, coalesce=True, bucket_size_mb=-1): - """Allreduce gradients. - - Args: - params (list[torch.Parameters]): List of parameters of a model - coalesce (bool, optional): Whether allreduce parameters as a whole. - Defaults to True. - bucket_size_mb (int, optional): Size of bucket, the unit is MB. - Defaults to -1. - """ - grads = [ - param.grad.data for param in params - if param.requires_grad and param.grad is not None - ] - world_size = dist.get_world_size() - if coalesce: - _allreduce_coalesced(grads, world_size, bucket_size_mb) - else: - for tensor in grads: - dist.all_reduce(tensor.div_(world_size)) - - -class DistOptimizerHook(OptimizerHook): - """Deprecated optimizer hook for distributed training.""" - - def __init__(self, *args, **kwargs): - warnings.warn('"DistOptimizerHook" is deprecated, please switch to' - '"mmcv.runner.OptimizerHook".') - super().__init__(*args, **kwargs) - - -def reduce_mean(tensor): - """"Obtain the mean of tensor on different GPUs.""" - if not (dist.is_available() and dist.is_initialized()): - return tensor - tensor = tensor.clone() - dist.all_reduce(tensor.div_(dist.get_world_size()), op=dist.ReduceOp.SUM) - return tensor diff --git a/spaces/Aniemore/Russian-Emotion-Recognition/app.py b/spaces/Aniemore/Russian-Emotion-Recognition/app.py deleted file mode 100644 index 38e440b960524c11227aede0578afc573eb5e1f9..0000000000000000000000000000000000000000 --- a/spaces/Aniemore/Russian-Emotion-Recognition/app.py +++ /dev/null @@ -1,74 +0,0 @@ -from transformers import pipeline -import gradio as gr -from pyctcdecode import BeamSearchDecoderCTC -import os -import torch -import torch.nn as nn -import torch.nn.functional as F -import torchaudio -from transformers import AutoConfig, AutoModel, Wav2Vec2FeatureExtractor -import librosa -import numpy as np -import subprocess -import time - -TRUST = True -SR = 16000 - - -def resample(speech_array, sampling_rate): - speech = torch.from_numpy(speech_array) - print(speech, speech.shape, sampling_rate) - resampler = torchaudio.transforms.Resample(sampling_rate) - speech = resampler(speech).squeeze().numpy() - return speech - - -def predict(speech_array, sampling_rate): - speech = resample(speech_array, sampling_rate) - print(speech, speech.shape) - inputs = feature_extractor(speech, sampling_rate=SR, return_tensors="pt", padding=True) - inputs = {key: inputs[key].to(device) for key in inputs} - - with torch.no_grad(): - logits = model.to(device)(**inputs).logits - - scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] - outputs = {config.id2label[i]: round(float(score), 3) for i, score in enumerate(scores)} - return outputs - - -config = AutoConfig.from_pretrained('Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition', trust_remote_code=TRUST) -model = AutoModel.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition", trust_remote_code=TRUST) -feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition") - -device = torch.device("cuda" if torch.cuda.is_available() else "cpu") -print(device) - - -def recognize(audio): - sr, audio_array = audio - audio_array = audio_array.astype(np.float32) - state = predict(audio_array, sr) - return state - - -def test_some(audio): - sr, audio_array = audio - audio_array = audio_array.astype(np.float32) - - return (sr, audio_array) - - -interface = gr.Interface( - fn=recognize, - inputs=[ - gr.Audio(source="microphone", label="Скажите что-нибудь...") - ], - outputs=[ - gr.Label(num_top_classes=7) - ], - live=False - ) - -gr.TabbedInterface([interface], ["Russian Emotion Recognition"]).launch(debug=True) \ No newline at end of file diff --git a/spaces/AnishKumbhar/ChatBot/text-generation-webui-main/modules/ui_default.py b/spaces/AnishKumbhar/ChatBot/text-generation-webui-main/modules/ui_default.py deleted file mode 100644 index 7db6f0d93abcc36354b0d687d83c865b8f5dd406..0000000000000000000000000000000000000000 --- a/spaces/AnishKumbhar/ChatBot/text-generation-webui-main/modules/ui_default.py +++ /dev/null @@ -1,104 +0,0 @@ -import gradio as gr - -from modules import logits, shared, ui, utils -from modules.prompts import count_tokens, load_prompt -from modules.text_generation import ( - generate_reply_wrapper, - get_token_ids, - stop_everything_event -) -from modules.utils import gradio - -inputs = ('textbox-default', 'interface_state') -outputs = ('output_textbox', 'html-default') - - -def create_ui(): - mu = shared.args.multi_user - with gr.Tab('Default', elem_id='default-tab'): - shared.gradio['last_input-default'] = gr.State('') - with gr.Row(): - with gr.Column(): - with gr.Row(): - shared.gradio['textbox-default'] = gr.Textbox(value='', lines=27, label='Input', elem_classes=['textbox_default', 'add_scrollbar']) - shared.gradio['token-counter-default'] = gr.HTML(value="0", elem_classes=["token-counter", "default-token-counter"]) - - with gr.Row(): - shared.gradio['Generate-default'] = gr.Button('Generate', variant='primary') - shared.gradio['Stop-default'] = gr.Button('Stop', elem_id='stop') - shared.gradio['Continue-default'] = gr.Button('Continue') - - with gr.Row(): - shared.gradio['prompt_menu-default'] = gr.Dropdown(choices=utils.get_available_prompts(), value='None', label='Prompt', elem_classes='slim-dropdown') - ui.create_refresh_button(shared.gradio['prompt_menu-default'], lambda: None, lambda: {'choices': utils.get_available_prompts()}, 'refresh-button', interactive=not mu) - shared.gradio['save_prompt-default'] = gr.Button('💾', elem_classes='refresh-button', interactive=not mu) - shared.gradio['delete_prompt-default'] = gr.Button('🗑️', elem_classes='refresh-button', interactive=not mu) - - with gr.Column(): - with gr.Tab('Raw'): - shared.gradio['output_textbox'] = gr.Textbox(lines=27, label='Output', elem_id='textbox-default', elem_classes=['textbox_default_output', 'add_scrollbar']) - - with gr.Tab('Markdown'): - shared.gradio['markdown_render-default'] = gr.Button('Render') - shared.gradio['markdown-default'] = gr.Markdown() - - with gr.Tab('HTML'): - shared.gradio['html-default'] = gr.HTML() - - with gr.Tab('Logits'): - with gr.Row(): - with gr.Column(scale=10): - shared.gradio['get_logits-default'] = gr.Button('Get next token probabilities') - with gr.Column(scale=1): - shared.gradio['use_samplers-default'] = gr.Checkbox(label='Use samplers', value=True, elem_classes=['no-background']) - - with gr.Row(): - shared.gradio['logits-default'] = gr.Textbox(lines=23, label='Output', elem_classes=['textbox_logits', 'add_scrollbar']) - shared.gradio['logits-default-previous'] = gr.Textbox(lines=23, label='Previous output', elem_classes=['textbox_logits', 'add_scrollbar']) - - with gr.Tab('Tokens'): - shared.gradio['get_tokens-default'] = gr.Button('Get token IDs for the input') - shared.gradio['tokens-default'] = gr.Textbox(lines=23, label='Tokens', elem_classes=['textbox_logits', 'add_scrollbar', 'monospace']) - - -def create_event_handlers(): - shared.gradio['Generate-default'].click( - lambda x: x, gradio('textbox-default'), gradio('last_input-default')).then( - ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( - generate_reply_wrapper, gradio(inputs), gradio(outputs), show_progress=False).then( - ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( - lambda: None, None, None, _js=f'() => {{{ui.audio_notification_js}}}') - - shared.gradio['textbox-default'].submit( - lambda x: x, gradio('textbox-default'), gradio('last_input-default')).then( - ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( - generate_reply_wrapper, gradio(inputs), gradio(outputs), show_progress=False).then( - ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( - lambda: None, None, None, _js=f'() => {{{ui.audio_notification_js}}}') - - shared.gradio['markdown_render-default'].click(lambda x: x, gradio('output_textbox'), gradio('markdown-default'), queue=False) - shared.gradio['Continue-default'].click( - ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( - generate_reply_wrapper, [shared.gradio['output_textbox']] + gradio(inputs)[1:], gradio(outputs), show_progress=False).then( - ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( - lambda: None, None, None, _js=f'() => {{{ui.audio_notification_js}}}') - - shared.gradio['Stop-default'].click(stop_everything_event, None, None, queue=False) - shared.gradio['prompt_menu-default'].change(load_prompt, gradio('prompt_menu-default'), gradio('textbox-default'), show_progress=False) - shared.gradio['save_prompt-default'].click( - lambda x: x, gradio('textbox-default'), gradio('save_contents')).then( - lambda: 'prompts/', None, gradio('save_root')).then( - lambda: utils.current_time() + '.txt', None, gradio('save_filename')).then( - lambda: gr.update(visible=True), None, gradio('file_saver')) - - shared.gradio['delete_prompt-default'].click( - lambda: 'prompts/', None, gradio('delete_root')).then( - lambda x: x + '.txt', gradio('prompt_menu-default'), gradio('delete_filename')).then( - lambda: gr.update(visible=True), None, gradio('file_deleter')) - - shared.gradio['textbox-default'].change(lambda x: f"{count_tokens(x)}", gradio('textbox-default'), gradio('token-counter-default'), show_progress=False) - shared.gradio['get_logits-default'].click( - ui.gather_interface_values, gradio(shared.input_elements), gradio('interface_state')).then( - logits.get_next_logits, gradio('textbox-default', 'interface_state', 'use_samplers-default', 'logits-default'), gradio('logits-default', 'logits-default-previous'), show_progress=False) - - shared.gradio['get_tokens-default'].click(get_token_ids, gradio('textbox-default'), gradio('tokens-default'), show_progress=False) diff --git a/spaces/Anonymous-sub/Rerender/ControlNet/ldm/modules/midas/api.py b/spaces/Anonymous-sub/Rerender/ControlNet/ldm/modules/midas/api.py deleted file mode 100644 index b58ebbffd942a2fc22264f0ab47e400c26b9f41c..0000000000000000000000000000000000000000 --- a/spaces/Anonymous-sub/Rerender/ControlNet/ldm/modules/midas/api.py +++ /dev/null @@ -1,170 +0,0 @@ -# based on https://github.com/isl-org/MiDaS - -import cv2 -import torch -import torch.nn as nn -from torchvision.transforms import Compose - -from ldm.modules.midas.midas.dpt_depth import DPTDepthModel -from ldm.modules.midas.midas.midas_net import MidasNet -from ldm.modules.midas.midas.midas_net_custom import MidasNet_small -from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet - - -ISL_PATHS = { - "dpt_large": "midas_models/dpt_large-midas-2f21e586.pt", - "dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt", - "midas_v21": "", - "midas_v21_small": "", -} - - -def disabled_train(self, mode=True): - """Overwrite model.train with this function to make sure train/eval mode - does not change anymore.""" - return self - - -def load_midas_transform(model_type): - # https://github.com/isl-org/MiDaS/blob/master/run.py - # load transform only - if model_type == "dpt_large": # DPT-Large - net_w, net_h = 384, 384 - resize_mode = "minimal" - normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) - - elif model_type == "dpt_hybrid": # DPT-Hybrid - net_w, net_h = 384, 384 - resize_mode = "minimal" - normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) - - elif model_type == "midas_v21": - net_w, net_h = 384, 384 - resize_mode = "upper_bound" - normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) - - elif model_type == "midas_v21_small": - net_w, net_h = 256, 256 - resize_mode = "upper_bound" - normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) - - else: - assert False, f"model_type '{model_type}' not implemented, use: --model_type large" - - transform = Compose( - [ - Resize( - net_w, - net_h, - resize_target=None, - keep_aspect_ratio=True, - ensure_multiple_of=32, - resize_method=resize_mode, - image_interpolation_method=cv2.INTER_CUBIC, - ), - normalization, - PrepareForNet(), - ] - ) - - return transform - - -def load_model(model_type): - # https://github.com/isl-org/MiDaS/blob/master/run.py - # load network - model_path = ISL_PATHS[model_type] - if model_type == "dpt_large": # DPT-Large - model = DPTDepthModel( - path=model_path, - backbone="vitl16_384", - non_negative=True, - ) - net_w, net_h = 384, 384 - resize_mode = "minimal" - normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) - - elif model_type == "dpt_hybrid": # DPT-Hybrid - model = DPTDepthModel( - path=model_path, - backbone="vitb_rn50_384", - non_negative=True, - ) - net_w, net_h = 384, 384 - resize_mode = "minimal" - normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) - - elif model_type == "midas_v21": - model = MidasNet(model_path, non_negative=True) - net_w, net_h = 384, 384 - resize_mode = "upper_bound" - normalization = NormalizeImage( - mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] - ) - - elif model_type == "midas_v21_small": - model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True, - non_negative=True, blocks={'expand': True}) - net_w, net_h = 256, 256 - resize_mode = "upper_bound" - normalization = NormalizeImage( - mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] - ) - - else: - print(f"model_type '{model_type}' not implemented, use: --model_type large") - assert False - - transform = Compose( - [ - Resize( - net_w, - net_h, - resize_target=None, - keep_aspect_ratio=True, - ensure_multiple_of=32, - resize_method=resize_mode, - image_interpolation_method=cv2.INTER_CUBIC, - ), - normalization, - PrepareForNet(), - ] - ) - - return model.eval(), transform - - -class MiDaSInference(nn.Module): - MODEL_TYPES_TORCH_HUB = [ - "DPT_Large", - "DPT_Hybrid", - "MiDaS_small" - ] - MODEL_TYPES_ISL = [ - "dpt_large", - "dpt_hybrid", - "midas_v21", - "midas_v21_small", - ] - - def __init__(self, model_type): - super().__init__() - assert (model_type in self.MODEL_TYPES_ISL) - model, _ = load_model(model_type) - self.model = model - self.model.train = disabled_train - - def forward(self, x): - # x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array - # NOTE: we expect that the correct transform has been called during dataloading. - with torch.no_grad(): - prediction = self.model(x) - prediction = torch.nn.functional.interpolate( - prediction.unsqueeze(1), - size=x.shape[2:], - mode="bicubic", - align_corners=False, - ) - assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3]) - return prediction - diff --git a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/platformdirs/macos.py b/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/platformdirs/macos.py deleted file mode 100644 index ec9751129c16018d3ef6e8bd2b5812f049348b77..0000000000000000000000000000000000000000 --- a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/platformdirs/macos.py +++ /dev/null @@ -1,70 +0,0 @@ -from __future__ import annotations - -import os - -from .api import PlatformDirsABC - - -class MacOS(PlatformDirsABC): - """ - Platform directories for the macOS operating system. Follows the guidance from `Apple documentation - `_. - Makes use of the `appname `, - `version `, - `ensure_exists `. - """ - - @property - def user_data_dir(self) -> str: - """:return: data directory tied to the user, e.g. ``~/Library/Application Support/$appname/$version``""" - return self._append_app_name_and_version(os.path.expanduser("~/Library/Application Support")) - - @property - def site_data_dir(self) -> str: - """:return: data directory shared by users, e.g. ``/Library/Application Support/$appname/$version``""" - return self._append_app_name_and_version("/Library/Application Support") - - @property - def user_config_dir(self) -> str: - """:return: config directory tied to the user, same as `user_data_dir`""" - return self.user_data_dir - - @property - def site_config_dir(self) -> str: - """:return: config directory shared by the users, same as `site_data_dir`""" - return self.site_data_dir - - @property - def user_cache_dir(self) -> str: - """:return: cache directory tied to the user, e.g. ``~/Library/Caches/$appname/$version``""" - return self._append_app_name_and_version(os.path.expanduser("~/Library/Caches")) - - @property - def site_cache_dir(self) -> str: - """:return: cache directory shared by users, e.g. ``/Library/Caches/$appname/$version``""" - return self._append_app_name_and_version("/Library/Caches") - - @property - def user_state_dir(self) -> str: - """:return: state directory tied to the user, same as `user_data_dir`""" - return self.user_data_dir - - @property - def user_log_dir(self) -> str: - """:return: log directory tied to the user, e.g. ``~/Library/Logs/$appname/$version``""" - return self._append_app_name_and_version(os.path.expanduser("~/Library/Logs")) - - @property - def user_documents_dir(self) -> str: - """:return: documents directory tied to the user, e.g. ``~/Documents``""" - return os.path.expanduser("~/Documents") - - @property - def user_runtime_dir(self) -> str: - """:return: runtime directory tied to the user, e.g. ``~/Library/Caches/TemporaryItems/$appname/$version``""" - return self._append_app_name_and_version(os.path.expanduser("~/Library/Caches/TemporaryItems")) - - -__all__ = [ - "MacOS", -] diff --git a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/rich/_inspect.py b/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/rich/_inspect.py deleted file mode 100644 index 30446ceb3f0235721e435f5fbd53f2e306f078cd..0000000000000000000000000000000000000000 --- a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/rich/_inspect.py +++ /dev/null @@ -1,270 +0,0 @@ -from __future__ import absolute_import - -import inspect -from inspect import cleandoc, getdoc, getfile, isclass, ismodule, signature -from typing import Any, Collection, Iterable, Optional, Tuple, Type, Union - -from .console import Group, RenderableType -from .control import escape_control_codes -from .highlighter import ReprHighlighter -from .jupyter import JupyterMixin -from .panel import Panel -from .pretty import Pretty -from .table import Table -from .text import Text, TextType - - -def _first_paragraph(doc: str) -> str: - """Get the first paragraph from a docstring.""" - paragraph, _, _ = doc.partition("\n\n") - return paragraph - - -class Inspect(JupyterMixin): - """A renderable to inspect any Python Object. - - Args: - obj (Any): An object to inspect. - title (str, optional): Title to display over inspect result, or None use type. Defaults to None. - help (bool, optional): Show full help text rather than just first paragraph. Defaults to False. - methods (bool, optional): Enable inspection of callables. Defaults to False. - docs (bool, optional): Also render doc strings. Defaults to True. - private (bool, optional): Show private attributes (beginning with underscore). Defaults to False. - dunder (bool, optional): Show attributes starting with double underscore. Defaults to False. - sort (bool, optional): Sort attributes alphabetically. Defaults to True. - all (bool, optional): Show all attributes. Defaults to False. - value (bool, optional): Pretty print value of object. Defaults to True. - """ - - def __init__( - self, - obj: Any, - *, - title: Optional[TextType] = None, - help: bool = False, - methods: bool = False, - docs: bool = True, - private: bool = False, - dunder: bool = False, - sort: bool = True, - all: bool = True, - value: bool = True, - ) -> None: - self.highlighter = ReprHighlighter() - self.obj = obj - self.title = title or self._make_title(obj) - if all: - methods = private = dunder = True - self.help = help - self.methods = methods - self.docs = docs or help - self.private = private or dunder - self.dunder = dunder - self.sort = sort - self.value = value - - def _make_title(self, obj: Any) -> Text: - """Make a default title.""" - title_str = ( - str(obj) - if (isclass(obj) or callable(obj) or ismodule(obj)) - else str(type(obj)) - ) - title_text = self.highlighter(title_str) - return title_text - - def __rich__(self) -> Panel: - return Panel.fit( - Group(*self._render()), - title=self.title, - border_style="scope.border", - padding=(0, 1), - ) - - def _get_signature(self, name: str, obj: Any) -> Optional[Text]: - """Get a signature for a callable.""" - try: - _signature = str(signature(obj)) + ":" - except ValueError: - _signature = "(...)" - except TypeError: - return None - - source_filename: Optional[str] = None - try: - source_filename = getfile(obj) - except (OSError, TypeError): - # OSError is raised if obj has no source file, e.g. when defined in REPL. - pass - - callable_name = Text(name, style="inspect.callable") - if source_filename: - callable_name.stylize(f"link file://{source_filename}") - signature_text = self.highlighter(_signature) - - qualname = name or getattr(obj, "__qualname__", name) - - # If obj is a module, there may be classes (which are callable) to display - if inspect.isclass(obj): - prefix = "class" - elif inspect.iscoroutinefunction(obj): - prefix = "async def" - else: - prefix = "def" - - qual_signature = Text.assemble( - (f"{prefix} ", f"inspect.{prefix.replace(' ', '_')}"), - (qualname, "inspect.callable"), - signature_text, - ) - - return qual_signature - - def _render(self) -> Iterable[RenderableType]: - """Render object.""" - - def sort_items(item: Tuple[str, Any]) -> Tuple[bool, str]: - key, (_error, value) = item - return (callable(value), key.strip("_").lower()) - - def safe_getattr(attr_name: str) -> Tuple[Any, Any]: - """Get attribute or any exception.""" - try: - return (None, getattr(obj, attr_name)) - except Exception as error: - return (error, None) - - obj = self.obj - keys = dir(obj) - total_items = len(keys) - if not self.dunder: - keys = [key for key in keys if not key.startswith("__")] - if not self.private: - keys = [key for key in keys if not key.startswith("_")] - not_shown_count = total_items - len(keys) - items = [(key, safe_getattr(key)) for key in keys] - if self.sort: - items.sort(key=sort_items) - - items_table = Table.grid(padding=(0, 1), expand=False) - items_table.add_column(justify="right") - add_row = items_table.add_row - highlighter = self.highlighter - - if callable(obj): - signature = self._get_signature("", obj) - if signature is not None: - yield signature - yield "" - - if self.docs: - _doc = self._get_formatted_doc(obj) - if _doc is not None: - doc_text = Text(_doc, style="inspect.help") - doc_text = highlighter(doc_text) - yield doc_text - yield "" - - if self.value and not (isclass(obj) or callable(obj) or ismodule(obj)): - yield Panel( - Pretty(obj, indent_guides=True, max_length=10, max_string=60), - border_style="inspect.value.border", - ) - yield "" - - for key, (error, value) in items: - key_text = Text.assemble( - ( - key, - "inspect.attr.dunder" if key.startswith("__") else "inspect.attr", - ), - (" =", "inspect.equals"), - ) - if error is not None: - warning = key_text.copy() - warning.stylize("inspect.error") - add_row(warning, highlighter(repr(error))) - continue - - if callable(value): - if not self.methods: - continue - - _signature_text = self._get_signature(key, value) - if _signature_text is None: - add_row(key_text, Pretty(value, highlighter=highlighter)) - else: - if self.docs: - docs = self._get_formatted_doc(value) - if docs is not None: - _signature_text.append("\n" if "\n" in docs else " ") - doc = highlighter(docs) - doc.stylize("inspect.doc") - _signature_text.append(doc) - - add_row(key_text, _signature_text) - else: - add_row(key_text, Pretty(value, highlighter=highlighter)) - if items_table.row_count: - yield items_table - elif not_shown_count: - yield Text.from_markup( - f"[b cyan]{not_shown_count}[/][i] attribute(s) not shown.[/i] " - f"Run [b][magenta]inspect[/]([not b]inspect[/])[/b] for options." - ) - - def _get_formatted_doc(self, object_: Any) -> Optional[str]: - """ - Extract the docstring of an object, process it and returns it. - The processing consists in cleaning up the doctring's indentation, - taking only its 1st paragraph if `self.help` is not True, - and escape its control codes. - - Args: - object_ (Any): the object to get the docstring from. - - Returns: - Optional[str]: the processed docstring, or None if no docstring was found. - """ - docs = getdoc(object_) - if docs is None: - return None - docs = cleandoc(docs).strip() - if not self.help: - docs = _first_paragraph(docs) - return escape_control_codes(docs) - - -def get_object_types_mro(obj: Union[object, Type[Any]]) -> Tuple[type, ...]: - """Returns the MRO of an object's class, or of the object itself if it's a class.""" - if not hasattr(obj, "__mro__"): - # N.B. we cannot use `if type(obj) is type` here because it doesn't work with - # some types of classes, such as the ones that use abc.ABCMeta. - obj = type(obj) - return getattr(obj, "__mro__", ()) - - -def get_object_types_mro_as_strings(obj: object) -> Collection[str]: - """ - Returns the MRO of an object's class as full qualified names, or of the object itself if it's a class. - - Examples: - `object_types_mro_as_strings(JSONDecoder)` will return `['json.decoder.JSONDecoder', 'builtins.object']` - """ - return [ - f'{getattr(type_, "__module__", "")}.{getattr(type_, "__qualname__", "")}' - for type_ in get_object_types_mro(obj) - ] - - -def is_object_one_of_types( - obj: object, fully_qualified_types_names: Collection[str] -) -> bool: - """ - Returns `True` if the given object's class (or the object itself, if it's a class) has one of the - fully qualified names in its MRO. - """ - for type_name in get_object_types_mro_as_strings(obj): - if type_name in fully_qualified_types_names: - return True - return False diff --git a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/setuptools/_entry_points.py b/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/setuptools/_entry_points.py deleted file mode 100644 index f087681b5980b586c79fb4d87f99e33597eb1575..0000000000000000000000000000000000000000 --- a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/setuptools/_entry_points.py +++ /dev/null @@ -1,86 +0,0 @@ -import functools -import operator -import itertools - -from .extern.jaraco.text import yield_lines -from .extern.jaraco.functools import pass_none -from ._importlib import metadata -from ._itertools import ensure_unique -from .extern.more_itertools import consume - - -def ensure_valid(ep): - """ - Exercise one of the dynamic properties to trigger - the pattern match. - """ - ep.extras - - -def load_group(value, group): - """ - Given a value of an entry point or series of entry points, - return each as an EntryPoint. - """ - # normalize to a single sequence of lines - lines = yield_lines(value) - text = f'[{group}]\n' + '\n'.join(lines) - return metadata.EntryPoints._from_text(text) - - -def by_group_and_name(ep): - return ep.group, ep.name - - -def validate(eps: metadata.EntryPoints): - """ - Ensure entry points are unique by group and name and validate each. - """ - consume(map(ensure_valid, ensure_unique(eps, key=by_group_and_name))) - return eps - - -@functools.singledispatch -def load(eps): - """ - Given a Distribution.entry_points, produce EntryPoints. - """ - groups = itertools.chain.from_iterable( - load_group(value, group) - for group, value in eps.items()) - return validate(metadata.EntryPoints(groups)) - - -@load.register(str) -def _(eps): - r""" - >>> ep, = load('[console_scripts]\nfoo=bar') - >>> ep.group - 'console_scripts' - >>> ep.name - 'foo' - >>> ep.value - 'bar' - """ - return validate(metadata.EntryPoints(metadata.EntryPoints._from_text(eps))) - - -load.register(type(None), lambda x: x) - - -@pass_none -def render(eps: metadata.EntryPoints): - by_group = operator.attrgetter('group') - groups = itertools.groupby(sorted(eps, key=by_group), by_group) - - return '\n'.join( - f'[{group}]\n{render_items(items)}\n' - for group, items in groups - ) - - -def render_items(eps): - return '\n'.join( - f'{ep.name} = {ep.value}' - for ep in sorted(eps) - ) diff --git a/spaces/AutoLLM/AutoAgents/autoagents/utils/constants.py b/spaces/AutoLLM/AutoAgents/autoagents/utils/constants.py deleted file mode 100644 index 7f7fa5e8ed61f7e4d1b57e3c40d4847e2c5578d7..0000000000000000000000000000000000000000 --- a/spaces/AutoLLM/AutoAgents/autoagents/utils/constants.py +++ /dev/null @@ -1,21 +0,0 @@ -MAIN_HEADER = "Web Search Agent" - -MAIN_CAPTION = """This is a proof-of-concept search agent that reasons, plans, -and executes web searches to collect information on your behalf. It aims to -resolve your question by breaking it down into step-by-step subtasks. All the -intermediate results will be presented. - -*DISCLAIMER*: We are collecting search queries, so please refrain from -providing any personal information. If you wish to avoid this, you can run the -app locally by following the instructions on our -[Github](https://github.com/AutoLLM/AutoAgents).""" - -SAMPLE_QUESTIONS = [ - "Recommend me a movie in theater now to watch with kids.", - "Who is the most recent NBA MVP? Which team does he play for? What are his career stats?", - "Who is the head coach of AC Milan now? How long has he been coaching the team?", - "What is the mortgage rate right now and how does that compare to the past two years?", - "What is the weather like in San Francisco today? What about tomorrow?", - "When and where is the upcoming concert for Taylor Swift? Share a link to purchase tickets.", - "Find me recent studies focusing on hallucination in large language models. Provide the link to each study found.", -] diff --git a/spaces/BWQ/Chatgpt/app.py b/spaces/BWQ/Chatgpt/app.py deleted file mode 100644 index 8262c8c8d8103505946436cea34232e790375f09..0000000000000000000000000000000000000000 --- a/spaces/BWQ/Chatgpt/app.py +++ /dev/null @@ -1,83 +0,0 @@ -import gradio as gr -import openai -import time - -with gr.Blocks() as demo: - with gr.Row(): - key = gr.Textbox(placeholder="API_KEY") - with gr.Row(): - with gr.Column(): - msg = gr.Textbox(placeholder="Question") - submit = gr.Button("Submit") - clear = gr.Button("Clear") - with gr.Column(): - chatbot = gr.Chatbot() - - - # state = gr.State([]) - - def user(user_message, history): - return "", history + [[user_message, None]] - - - def bot(history, key): - openai.api_key = key - bot_message = ask_gpt(history) - print(history) - history[-1][1] = bot_message - time.sleep(1) - return history - - - def ask_gpt(history): - messages = [] - for i in range(len(history) - 1): - messages.append({"role": "user", "content": history[i][0]}) - messages.append({"role": "assistant", "content": history[i][1]}) - messages.append({"role": "user", "content": history[-1][0]}) - try: - response = openai.ChatCompletion.create( - model="gpt-3.5-turbo", - messages=messages - ) - return response['choices'][0]['message']['content'].replace("```", "") - except Exception as e: - print(e) - return e - - - # def bot(history, messages_history, key): - # openai.api_key = key - # user_message = history[-1][0] - # bot_message, messages_history = ask_gpt(user_message, messages_history) - # messages_history += [{"role": "assistant", "content": bot_message}] - # history[-1][1] = bot_message - # time.sleep(1) - # return history, messages_history - # - # - # def ask_gpt(message, messages_history): - # try: - # messages_history += [{"role": "user", "content": message}] - # response = openai.ChatCompletion.create( - # model="gpt-3.5-turbo", - # messages=messages_history - # ) - # return response['choices'][0]['message']['content'], messages_history - # except Exception as e: - # print(e) - # return e, messages_history - - # def init_history(messages_history): - # messages_history = [] - # return messages_history - - submit.click(user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True, api_name="submit").then( - bot, [chatbot, key], chatbot, api_name="bot_response" - ) - clear.click(lambda: None, None, chatbot, queue=True, api_name="clear") - - # clear.click(lambda: None, None, chatbot, queue=False, api_name="clear").then(init_history, [state], [state],api_name="init_history") - -demo.queue() -demo.launch() diff --git a/spaces/Bakar31/PotterQuest/app.py b/spaces/Bakar31/PotterQuest/app.py deleted file mode 100644 index 76738124f214bbce579e1c7e6d69111615df7586..0000000000000000000000000000000000000000 --- a/spaces/Bakar31/PotterQuest/app.py +++ /dev/null @@ -1,78 +0,0 @@ -import os -import gradio as gr -from pathlib import Path -from typing import Union -from langchain import VectorDBQA -from langchain.llms import HuggingFaceHub -from langchain.embeddings import HuggingFaceEmbeddings -from langchain.vectorstores.faiss import FAISS -from langchain import PromptTemplate - -os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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" -index_path = 'index/' - -def load_document_store(path: Union[str, Path]) -> FAISS: - embeddings = HuggingFaceEmbeddings() - document_store = FAISS.load_local(path, embeddings) - return document_store - - -examples = [ - "Why harry potter is famous?", - "When is Harry Potter's birthday?", - "How would you sneak into Hogwarts without being detected?", - "Who is the most badass wizard in the world?", - "Why are the Dursleys so mean to Harry?", - "What is the name of the spell used to disarm an opponent?", - 'What position does Harry play in Quidditch?', - "What is the name of the wizarding bank in Diagon Alley?", - "Why is Voldemort afraid of Harry Potter?", - 'Whom do Harry and Ron accidentally lock in the bathroom with the troll?', - "Where do Harry and the Dursleys go for Dudley's birthday?", - 'What did Dobby catch that set him free from Mr. Malfoy?', - "The Hogwarts motto is “Draco dormiens nunquan titillandus.” What does it mean?", - "How many presents did Dudley Dursley receive on his birthday in total?", - "What was the Fat Lady’s password to get into the Gryffindor common room?", - "When Harry, Ron and Hermione make Polyjuice Potion, who steals the ingredients from Professor Snape’s office?", - "What two creatures are Hippogriffs a mix of?", - "What is Draco Malfoy’s mother’s name?", - "Which of Voldemort’s Horcruxes do Harry and Dumbledore track down—but it turns out to be a fake?", - "What is Professor Snape’s Patronus?", - "who killed dumboldore?", - 'What was the last horcrux?' -] - -def ask(question, repo_id = "google/flan-ul2"): - - if len(question) == 0: - return "" - - document_store = load_document_store(index_path) - chain = VectorDBQA.from_chain_type( - llm=HuggingFaceHub(repo_id = repo_id), - chain_type="stuff", - vectorstore=document_store, - return_source_documents=True - ) - - response = chain(question) - return response["result"].strip() - - -demo = gr.Blocks() - -with demo: - gr.Markdown("# PotterQuest: Your One-Line Wizardry Encyclopedia") - with gr.Row(): - with gr.Column(): - question = gr.Textbox(lines=2, label="Question") - with gr.Row(): - clear = gr.Button("Clear") - btn = gr.Button("Submit", variant="primary") - with gr.Column(): - answer = gr.Textbox(lines=2, label="Answer") - btn.click(ask, [question], answer) - clear.click(lambda _: "", question, question) - gr.Examples(examples, question) - gr.Markdown("💻 Checkout the source code on [GitHub](https://github.com/Bakar31/PotterQuest).") -demo.launch() diff --git a/spaces/Bart92/RVC_HF/infer/modules/ipex/gradscaler.py b/spaces/Bart92/RVC_HF/infer/modules/ipex/gradscaler.py deleted file mode 100644 index 3c265ddb37453f02870afb481360c9cc30b05d81..0000000000000000000000000000000000000000 --- a/spaces/Bart92/RVC_HF/infer/modules/ipex/gradscaler.py +++ /dev/null @@ -1,179 +0,0 @@ -from collections import defaultdict -import torch -import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import -import intel_extension_for_pytorch._C as core # pylint: disable=import-error, unused-import - -# pylint: disable=protected-access, missing-function-docstring, line-too-long - -OptState = ipex.cpu.autocast._grad_scaler.OptState -_MultiDeviceReplicator = ipex.cpu.autocast._grad_scaler._MultiDeviceReplicator -_refresh_per_optimizer_state = ipex.cpu.autocast._grad_scaler._refresh_per_optimizer_state - -def _unscale_grads_(self, optimizer, inv_scale, found_inf, allow_fp16): # pylint: disable=unused-argument - per_device_inv_scale = _MultiDeviceReplicator(inv_scale) - per_device_found_inf = _MultiDeviceReplicator(found_inf) - - # To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype. - # There could be hundreds of grads, so we'd like to iterate through them just once. - # However, we don't know their devices or dtypes in advance. - - # https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict - # Google says mypy struggles with defaultdicts type annotations. - per_device_and_dtype_grads = defaultdict(lambda: defaultdict(list)) # type: ignore[var-annotated] - # sync grad to master weight - if hasattr(optimizer, "sync_grad"): - optimizer.sync_grad() - with torch.no_grad(): - for group in optimizer.param_groups: - for param in group["params"]: - if param.grad is None: - continue - if (not allow_fp16) and param.grad.dtype == torch.float16: - raise ValueError("Attempting to unscale FP16 gradients.") - if param.grad.is_sparse: - # is_coalesced() == False means the sparse grad has values with duplicate indices. - # coalesce() deduplicates indices and adds all values that have the same index. - # For scaled fp16 values, there's a good chance coalescing will cause overflow, - # so we should check the coalesced _values(). - if param.grad.dtype is torch.float16: - param.grad = param.grad.coalesce() - to_unscale = param.grad._values() - else: - to_unscale = param.grad - - # -: is there a way to split by device and dtype without appending in the inner loop? - to_unscale = to_unscale.to("cpu") - per_device_and_dtype_grads[to_unscale.device][ - to_unscale.dtype - ].append(to_unscale) - - for _, per_dtype_grads in per_device_and_dtype_grads.items(): - for grads in per_dtype_grads.values(): - core._amp_foreach_non_finite_check_and_unscale_( - grads, - per_device_found_inf.get("cpu"), - per_device_inv_scale.get("cpu"), - ) - - return per_device_found_inf._per_device_tensors - -def unscale_(self, optimizer): - """ - Divides ("unscales") the optimizer's gradient tensors by the scale factor. - :meth:`unscale_` is optional, serving cases where you need to - :ref:`modify or inspect gradients` - between the backward pass(es) and :meth:`step`. - If :meth:`unscale_` is not called explicitly, gradients will be unscaled automatically during :meth:`step`. - Simple example, using :meth:`unscale_` to enable clipping of unscaled gradients:: - ... - scaler.scale(loss).backward() - scaler.unscale_(optimizer) - torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) - scaler.step(optimizer) - scaler.update() - Args: - optimizer (torch.optim.Optimizer): Optimizer that owns the gradients to be unscaled. - .. warning:: - :meth:`unscale_` should only be called once per optimizer per :meth:`step` call, - and only after all gradients for that optimizer's assigned parameters have been accumulated. - Calling :meth:`unscale_` twice for a given optimizer between each :meth:`step` triggers a RuntimeError. - .. warning:: - :meth:`unscale_` may unscale sparse gradients out of place, replacing the ``.grad`` attribute. - """ - if not self._enabled: - return - - self._check_scale_growth_tracker("unscale_") - - optimizer_state = self._per_optimizer_states[id(optimizer)] - - if optimizer_state["stage"] is OptState.UNSCALED: # pylint: disable=no-else-raise - raise RuntimeError( - "unscale_() has already been called on this optimizer since the last update()." - ) - elif optimizer_state["stage"] is OptState.STEPPED: - raise RuntimeError("unscale_() is being called after step().") - - # FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64. - assert self._scale is not None - inv_scale = self._scale.to("cpu").double().reciprocal().float().to(self._scale.device) - found_inf = torch.full( - (1,), 0.0, dtype=torch.float32, device=self._scale.device - ) - - optimizer_state["found_inf_per_device"] = self._unscale_grads_( - optimizer, inv_scale, found_inf, False - ) - optimizer_state["stage"] = OptState.UNSCALED - -def update(self, new_scale=None): - """ - Updates the scale factor. - If any optimizer steps were skipped the scale is multiplied by ``backoff_factor`` - to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively, - the scale is multiplied by ``growth_factor`` to increase it. - Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not - used directly, it's used to fill GradScaler's internal scale tensor. So if - ``new_scale`` was a tensor, later in-place changes to that tensor will not further - affect the scale GradScaler uses internally.) - Args: - new_scale (float or :class:`torch.FloatTensor`, optional, default=None): New scale factor. - .. warning:: - :meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has - been invoked for all optimizers used this iteration. - """ - if not self._enabled: - return - - _scale, _growth_tracker = self._check_scale_growth_tracker("update") - - if new_scale is not None: - # Accept a new user-defined scale. - if isinstance(new_scale, float): - self._scale.fill_(new_scale) # type: ignore[union-attr] - else: - reason = "new_scale should be a float or a 1-element torch.FloatTensor with requires_grad=False." - assert isinstance(new_scale, torch.FloatTensor), reason # type: ignore[attr-defined] - assert new_scale.numel() == 1, reason - assert new_scale.requires_grad is False, reason - self._scale.copy_(new_scale) # type: ignore[union-attr] - else: - # Consume shared inf/nan data collected from optimizers to update the scale. - # If all found_inf tensors are on the same device as self._scale, this operation is asynchronous. - found_infs = [ - found_inf.to(device="cpu", non_blocking=True) - for state in self._per_optimizer_states.values() - for found_inf in state["found_inf_per_device"].values() - ] - - assert len(found_infs) > 0, "No inf checks were recorded prior to update." - - found_inf_combined = found_infs[0] - if len(found_infs) > 1: - for i in range(1, len(found_infs)): - found_inf_combined += found_infs[i] - - to_device = _scale.device - _scale = _scale.to("cpu") - _growth_tracker = _growth_tracker.to("cpu") - - core._amp_update_scale_( - _scale, - _growth_tracker, - found_inf_combined, - self._growth_factor, - self._backoff_factor, - self._growth_interval, - ) - - _scale = _scale.to(to_device) - _growth_tracker = _growth_tracker.to(to_device) - # To prepare for next iteration, clear the data collected from optimizers this iteration. - self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state) - -def gradscaler_init(): - torch.xpu.amp.GradScaler = ipex.cpu.autocast._grad_scaler.GradScaler - torch.xpu.amp.GradScaler._unscale_grads_ = _unscale_grads_ - torch.xpu.amp.GradScaler.unscale_ = unscale_ - torch.xpu.amp.GradScaler.update = update - return torch.xpu.amp.GradScaler \ No newline at end of file diff --git a/spaces/Bart92/RVC_HF/infer/modules/uvr5/modules.py b/spaces/Bart92/RVC_HF/infer/modules/uvr5/modules.py deleted file mode 100644 index f63ac6a794100cc95da21dcba78b23377a1f133d..0000000000000000000000000000000000000000 --- a/spaces/Bart92/RVC_HF/infer/modules/uvr5/modules.py +++ /dev/null @@ -1,107 +0,0 @@ -import os -import traceback -import logging - -logger = logging.getLogger(__name__) - -import ffmpeg -import torch - -from configs.config import Config -from infer.modules.uvr5.mdxnet import MDXNetDereverb -from infer.modules.uvr5.preprocess import AudioPre, AudioPreDeEcho - -config = Config() - - -def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0): - infos = [] - try: - inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ") - save_root_vocal = ( - save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ") - ) - save_root_ins = ( - save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ") - ) - if model_name == "onnx_dereverb_By_FoxJoy": - pre_fun = MDXNetDereverb(15, config.device) - else: - func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho - pre_fun = func( - agg=int(agg), - model_path=os.path.join( - os.getenv("weight_uvr5_root"), model_name + ".pth" - ), - device=config.device, - is_half=config.is_half, - ) - if inp_root != "": - paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)] - else: - paths = [path.name for path in paths] - for path in paths: - inp_path = os.path.join(inp_root, path) - need_reformat = 1 - done = 0 - try: - info = ffmpeg.probe(inp_path, cmd="ffprobe") - if ( - info["streams"][0]["channels"] == 2 - and info["streams"][0]["sample_rate"] == "44100" - ): - need_reformat = 0 - pre_fun._path_audio_( - inp_path, save_root_ins, save_root_vocal, format0 - ) - done = 1 - except: - need_reformat = 1 - traceback.print_exc() - if need_reformat == 1: - tmp_path = "%s/%s.reformatted.wav" % ( - os.path.join(os.environ["TEMP"]), - os.path.basename(inp_path), - ) - os.system( - "ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y" - % (inp_path, tmp_path) - ) - inp_path = tmp_path - try: - if done == 0: - pre_fun.path_audio( - inp_path, save_root_ins, save_root_vocal, format0 - ) - infos.append("%s->Success" % (os.path.basename(inp_path))) - yield "\n".join(infos) - except: - try: - if done == 0: - pre_fun._path_audio_( - inp_path, save_root_ins, save_root_vocal, format0 - ) - infos.append("%s->Success" % (os.path.basename(inp_path))) - yield "\n".join(infos) - except: - infos.append( - "%s->%s" % (os.path.basename(inp_path), traceback.format_exc()) - ) - yield "\n".join(infos) - except: - infos.append(traceback.format_exc()) - yield "\n".join(infos) - finally: - try: - if model_name == "onnx_dereverb_By_FoxJoy": - del pre_fun.pred.model - del pre_fun.pred.model_ - else: - del pre_fun.model - del pre_fun - except: - traceback.print_exc() - if torch.cuda.is_available(): - torch.cuda.empty_cache() - logger.info("Executed torch.cuda.empty_cache()") - yield "\n".join(infos) diff --git a/spaces/Benson/text-generation/Examples/Blockman Go Apk Mediafre.md b/spaces/Benson/text-generation/Examples/Blockman Go Apk Mediafre.md deleted file mode 100644 index 252a861b214ac2292b5972b914966827590f9d2b..0000000000000000000000000000000000000000 --- a/spaces/Benson/text-generation/Examples/Blockman Go Apk Mediafre.md +++ /dev/null @@ -1,130 +0,0 @@ -
-

Blockman Go APK Mediafıre: Cómo descargar y jugar el juego Ultimate Sandbox

-

¿Te encantan los juegos de sandbox donde puedes dar rienda suelta a tu creatividad y divertirte con tus amigos? Si es así, entonces deberías probar Blockman Go, un juego gratuito que te permite jugar, crear y compartir tus experiencias con millones de jugadores de todo el mundo. Pero lo que si quieres jugar Blockman Ir en su dispositivo Android sin usar Google Play Store? No te preocupes, hay una manera de hacer eso. En este artículo, le mostraremos cómo descargar y jugar Blockman Go APK de Mediafıre, una popular plataforma para compartir archivos. También le diremos por qué usted debe jugar Blockman Go APK Mediafıre, cómo jugar, y algunos consejos y trucos para hacer su experiencia de juego más agradable.

-

¿Qué es Blockman Go?

-

Blockman Go es un juego sandbox desarrollado por Garena, un desarrollador y editor de juegos en línea líder. Fue lanzado en 2018 y desde entonces ha ganado una gran base de fans de más de 100 millones de descargas en Google Play Store. Blockman Go es un juego que te permite crear tu propio mundo, explorar diferentes modos de juego e interactuar con otros jugadores en tiempo real. Puedes elegir entre varios minijuegos como Bed Wars, Sky Wars, Murder Mystery, Parkour, Survival Games y más. También puedes personalizar tu avatar con cientos de atuendos, accesorios, peinados y pieles. Puedes chatear con otros jugadores usando mensajes de voz o de texto, unirte a clanes, hacer amigos e incluso casarte. Blockman Go es un juego que ofrece infinitas posibilidades de diversión y creatividad.

-

blockman go apk mediafıre


Download Zip ✓✓✓ https://bltlly.com/2v6IS7



-

Características de Blockman Go

-

Algunas de las características que hacen que Blockman Go se destaque de otros juegos de sandbox son:

-
    -
  • Tiene gráficos impresionantes y una jugabilidad suave que funcionan bien en la mayoría de los dispositivos Android.
  • -
  • Tiene una interfaz fácil de usar y controles fáciles que lo hacen adecuado para jugadores de todas las edades.
  • -
  • Tiene una variedad de modos de juego que se adaptan a diferentes gustos y preferencias.
  • - -
  • Tiene un sistema de recompensa que le da oro y gemas para jugar, iniciar sesión diariamente, completar tareas y más.
  • -
  • Tiene una tienda en línea que le permite comprar artículos con oro o gemas o dinero real.
  • -
  • Tiene actualizaciones regulares que agregan nuevas características, correcciones de errores y mejoras.
  • -
-

Cómo descargar Blockman Go APK de Mediafıre

-

Si desea jugar Blockman Ir en su dispositivo Android sin usar Google Play Store, puede descargar el archivo APK de Mediafıre. Mediafıre es una plataforma de intercambio de archivos que le permite cargar y descargar archivos de forma gratuita. Aquí están los pasos para descargar Blockman Go APK de Mediafıre:

-
    -
  1. Ir a este enlace en su navegador. Esto le llevará a la página Mediafıre donde se encuentra el archivo APK de Blockman Go.
  2. -
  3. Haga clic en el botón verde "Descargar". Esto comenzará a descargar el archivo APK a su dispositivo.
  4. -
  5. Una vez que la descarga se ha completado, localizar el archivo APK en el gestor de archivos del dispositivo o carpeta de descarga.
  6. -
  7. Toque en el archivo APK para instalarlo. Es posible que deba habilitar "Fuentes desconocidas" o "Permitir desde esta fuente" en la configuración de su dispositivo para permitir la instalación de aplicaciones desde fuera de Google Play Store.
  8. -
  9. Espere a que termine la instalación. Puede ver un mensaje de confirmación que dice "App instalado".
  10. -
  11. Toque en "Abrir" para iniciar la aplicación Blockman Go. También puede encontrar el icono de la aplicación en la pantalla de inicio del dispositivo o cajón de aplicaciones.
  12. -
-

Felicidades, que ha descargado e instalado con éxito Blockman Go APK de Mediafıre. Ahora puedes disfrutar jugando el último juego de sandbox en tu dispositivo Android.

-

¿Por qué jugar Blockman Go APK Mediafıre?

- -

Ventajas de jugar Blockman Go APK Mediafıre

-
    -
  • Puedes jugar Blockman Go sin usar Google Play Store, que puede estar bloqueado o restringido en algunas regiones o dispositivos.
  • -
  • Puede jugar Blockman Go sin iniciar sesión con su cuenta de Google, que puede proteger su privacidad y seguridad.
  • -
  • Puede jugar Blockman Go sin actualizar la aplicación cada vez que hay una nueva versión, que puede ahorrar sus datos y espacio de almacenamiento.
  • -
  • Puede jugar Blockman Go con versiones anteriores de la aplicación, que puede ser compatible con su dispositivo o características preferidas.
  • -
-

Desventajas de jugar Blockman Go APK Mediafıre

-
    -
  • Es posible que no pueda acceder a algunas funciones o servicios que requieren una cuenta de Google, como almacenamiento en la nube, logros, tablas de clasificación y más.
  • -
  • Es posible que no pueda recibir las últimas actualizaciones, correcciones de errores y mejoras que están disponibles en la versión oficial.
  • -
  • Puede encontrar algunos errores o fallos que se fijan en la versión oficial.
  • -
  • Puede arriesgarse a descargar un archivo APK falso o modificado que contiene malware o virus que pueden dañar su dispositivo o robar su información.
  • -
-

Como se puede ver, jugando Blockman Go APK Mediafıre tiene sus pros y contras. Usted debe sopesar cuidadosamente y decidir lo que es mejor para usted. Si decide jugar Blockman Go APK Mediafıre, asegúrese de descargarlo desde una fuente de confianza como Mediafıre y escanear con una aplicación antivirus antes de instalarlo.

-

Cómo jugar Blockman Go APK Mediafıre

-

Ahora que ha descargado e instalado Blockman Go APK Mediafıre, usted está listo para jugar. Pero ¿cómo se juega? No te preocupes, le guiará a través de los fundamentos de la reproducción de Blockman Go APK Mediafıre. Estos son algunos pasos a seguir:

-

Cómo crear una cuenta e iniciar sesión

- -
    -
  1. Abra la aplicación Blockman Go en su dispositivo. Verá una pantalla de bienvenida con dos opciones: "Invitado" y "Iniciar sesión".
  2. -
  3. Si quieres jugar como invitado, toca "Invitado". Esto te permitirá jugar sin crear una cuenta, pero no podrás guardar tu progreso o acceder a algunas funciones.
  4. -
  5. Si desea crear una cuenta, toque en "Iniciar sesión". Esto te llevará a una pantalla de inicio de sesión con cuatro opciones: "Facebook", "Google", "Twitter" y "Blockman".
  6. -
  7. Si desea utilizar su cuenta de Facebook, Google o Twitter para iniciar sesión, toque en el icono correspondiente y siga las instrucciones. Esto vinculará su cuenta de redes sociales a su cuenta de Blockman Go.
  8. -
  9. Si desea utilizar una cuenta de Blockman para iniciar sesión, toque en "Blockman". Esto lo llevará a una pantalla de registro donde necesita ingresar su nombre de usuario, contraseña, dirección de correo electrónico y código de verificación. A continuación, toque en "Registrarse". Esto creará su cuenta de Blockman e iniciar sesión.
  10. -
-

Felicidades, has creado una cuenta y has iniciado sesión en Blockman Go. Ahora puedes empezar a jugar el juego.

-

Cómo elegir un modo de juego y unirse a un servidor

-

Lo siguiente que tienes que hacer es elegir un modo de juego y unirte a un servidor. Esto te permitirá jugar con otros jugadores en diferentes minijuegos. Hay muchos modos de juego para elegir, como Bed Wars, Sky Wars, Murder Mystery, Parkour, Survival Games y más. Cada modo de juego tiene sus propias reglas, objetivos y desafíos. Estos son los pasos para elegir un modo de juego y unirse a un servidor:

-

-
    -
  1. En la pantalla principal de Blockman Go, toque en el "Juego" icono en la parte inferior. Esto te llevará a una pantalla de selección de juegos donde puedes ver los diferentes modos de juego disponibles.
  2. -
  3. Deslice hacia la izquierda o hacia la derecha para navegar por los modos de juego. También puede usar la barra de búsqueda en la parte superior para encontrar un modo de juego específico por nombre o palabra clave.
  4. - -
  5. Desliza hacia arriba o hacia abajo para navegar a través de los servidores. También puede usar el botón de filtro en la parte superior para ordenar los servidores por región, idioma, reproductores y más.
  6. -
  7. Toque en el servidor al que desea unirse. Esto lo llevará a una pantalla del lobby donde puede ver los detalles del servidor, como el nombre, la descripción, las reglas, el mapa y los jugadores.
  8. -
  9. Toque en el botón "Unirse" en la parte inferior. Esto comenzará a cargar el juego y lo conectará al servidor.
  10. -
-

Felicidades, has elegido un modo de juego y te has unido a un servidor. Ahora puedes jugar con otros jugadores en ese modo de juego.

-

Cómo crear, construir y compartir tus creaciones

-

Lo último que necesitas hacer es crear, construir y compartir tus creaciones. Esta es la característica principal de Blockman Go que le permite expresar su creatividad e imaginación. Puedes usar varios bloques, elementos, herramientas y accesorios para crear lo que quieras. También puedes compartir tus creaciones con otros jugadores y obtener comentarios y valoraciones. Estos son los pasos para crear, construir y compartir tus creaciones:

-
    -
  1. En la pantalla principal de Blockman Go, toque en el "Crear" icono en la parte inferior. Esto lo llevará a una pantalla de creación donde puede ver su inventario y opciones.
  2. -
  3. Toque en el botón "Nuevo" en la parte superior. Esto le permitirá crear un nuevo mundo donde puede construir su creación.
  4. -
  5. Introduzca un nombre para su mundo y elija una plantilla de la lista. También puede personalizar la configuración de su mundo, como dificultad, clima, tiempo y más.
  6. -
  7. Toque en el botón "Crear" en la parte inferior. Esto comenzará a crear su mundo y cargarlo por usted.
  8. -
  9. Una vez que tu mundo está cargado, puedes empezar a crear y construir tu creación. Puede usar los botones en la parte inferior para cambiar entre diferentes modos, como mover, rotar, escalar, borrar, copiar, pegar, deshacer, rehacer y más.
  10. -
  11. También puede usar los botones de la parte superior para acceder a su inventario, caja de herramientas, biblioteca de objetos, cuadro de chat, menú y más.
  12. - -
  13. Para colocar un artículo o bloque en su mundo, toque en él en su inventario y luego toque en un espacio vacío en su mundo. También puede arrastrarlo o usar los botones de la parte inferior para ajustar su posición, rotación y escala.
  14. -
  15. Para construir una estructura o una escena, repita los pasos anteriores hasta que esté satisfecho con su creación. También puede usar el botón de la caja de herramientas en la parte superior para acceder a algunas herramientas útiles como relleno, reemplazo, hueco y más.
  16. -
  17. Para compartir tu creación con otros jugadores, toca el botón de menú en la parte superior y selecciona "Compartir". Esto te permitirá subir tu mundo al servidor Blockman Go y obtener un enlace que puedes compartir con otros.
  18. -
  19. Para ver las creaciones de otros jugadores, toque en el icono "Explorar" en la parte inferior. Esto te llevará a una pantalla de exploración donde puedes ver las creaciones destacadas, populares y recientes de otros jugadores.
  20. -
  21. Para unirse a una creación de otro reproductor, toque en él y seleccione "Unirse". Esto comenzará a cargar el mundo y lo conectará a él.
  22. -
-

Felicidades, has creado, construido y compartido tu creación. Ahora puedes disfrutar viendo tu obra maestra y las creaciones de otros jugadores en Blockman Go.

-

Consejos y trucos para jugar Blockman Go APK Mediafıre

-

Jugar Blockman Go APK Mediafıre puede ser divertido y gratificante, pero también puede ser desafiante y frustrante a veces. Para ayudarte a tener una mejor experiencia de juego, aquí hay algunos consejos y trucos que puedes usar:

-

Cómo ganar oro y gemas

-

El oro y las gemas son las principales monedas en Blockman Go que puedes usar para comprar artículos, trajes, pieles y más. Puedes ganar oro y gemas jugando, iniciando sesión diariamente, completando tareas, viendo anuncios, invitando a amigos y más. Aquí hay algunas maneras de ganar más oro y gemas:

-
    -
  • Jugar juegos que tienen altas recompensas o bonos. Algunos juegos ofrecen más oro o gemas que otros dependiendo de la dificultad, duración o popularidad del juego.
  • - -
  • Completar tareas y logros. Puede obtener oro, gemas, artículos, o incluso cupones completando varias tareas y logros en el juego.
  • -
  • Ver anuncios y vídeos. Puede obtener oro o gemas viendo anuncios o videos en el juego. También puedes obtener artículos o cupones gratis viendo videos patrocinados.
  • -
  • Invita a amigos y únete a clanes. Puedes conseguir oro o gemas invitando a tus amigos a jugar a Blockman Go usando tu código de referencia. También puedes conseguir oro o gemas uniéndote a clanes y participando en actividades del clan.
  • -
-

Cómo personalizar tu avatar y chatear con otros jugadores

-

Personalizar tu avatar y chatear con otros jugadores son algunos de los aspectos divertidos de jugar Blockman Go. Puedes hacer que tu avatar se vea único y expresar tu personalidad cambiando su apariencia y atuendo. También puede comunicarse y socializar con otros jugadores mediante el uso de mensajes de voz o de texto. Aquí hay algunas maneras de personalizar tu avatar y chatear con otros jugadores:

-
    -
  • Cambia la apariencia de tu avatar. Puedes cambiar el género de tu avatar, la forma de la cara, el color de los ojos, el estilo de cabello, el color del cabello, el tono de la piel y más tocando el icono "Avatar" en la parte inferior de la pantalla principal.
  • -Cambia el atuendo de tu avatar. Puedes cambiar la ropa de tu avatar, zapatos, sombreros, gafas, máscaras, mochilas, alas, colas, mascotas y más tocando el ícono "Closet" en la parte inferior de la pantalla principal. Puedes comprar nuevos atuendos usando oro o gemas o dinero real en la tienda online. - -
-

Cómo usar trucos y hacks

-

Trucos y hacks son métodos que algunos jugadores utilizan para obtener una ventaja injusta o eludir algunas restricciones en Blockman Go. Pueden incluir la modificación de los archivos del juego, el uso de aplicaciones o herramientas de terceros, la explotación de fallos o errores, o el uso de códigos o comandos. Algunos ejemplos de trucos y hacks son oro o gemas ilimitadas, modo dios, speed hack, fly hack, invisibilidad, teletransportación y más. Aquí hay algunas maneras de usar trucos y hacks en Blockman Go:

-
    -
  • Modifica los archivos del juego. Puedes modificar los archivos del juego usando una aplicación de administrador de archivos o una aplicación de explorador raíz en tu dispositivo. Puede cambiar algunos valores o parámetros en los archivos del juego para alterar el comportamiento o la apariencia del juego. Por ejemplo, puede cambiar la cantidad de oro o gemas que tiene editando el archivo de datos. Sin embargo, este método es arriesgado y puede causar que tu juego falle o falle.
  • -
  • Usa aplicaciones o herramientas de terceros. Puedes usar aplicaciones o herramientas de terceros diseñadas para hackear o engañar a Blockman Go. Estas aplicaciones o herramientas pueden requerir que las instales en tu dispositivo o que conectes tu dispositivo a un ordenador. También pueden requerir que les concedas algunos permisos o acceso al sistema de tu dispositivo. Por ejemplo, puede utilizar una aplicación de hacker juego o un archivo APK modificado para hackear Blockman Go. Sin embargo, este método es peligroso y puede exponer su dispositivo a malware o virus.
  • -
  • Explotar fallos o errores. Puede explotar fallos o errores que están presentes en Blockman Go. Estos fallos o errores son errores o fallas en el juego que hacen que se comporte de una manera no deseada. Por ejemplo, puedes aprovechar un fallo que te permite volar o caminar a través de las paredes en algunos modos de juego. Sin embargo, este método no es confiable y puede ser corregido o parcheado por los desarrolladores.
  • - -
-

Como puedes ver, usar trucos y hacks en Blockman Go puede ser tentador pero también arriesgado y poco ético. Debes ser cuidadoso y responsable al usarlos y respetar las reglas y los derechos de otros jugadores. También debe tener en cuenta que el uso de trucos y hacks puede resultar en que su cuenta sea prohibida, suspendida o eliminada por los desarrolladores.

-

Conclusión

-

Blockman Go es un juego sandbox que te permite jugar, crear y compartir tus experiencias con millones de jugadores de todo el mundo. Puede descargar y jugar Blockman Go APK de Mediafıre, una plataforma de intercambio de archivos que le permite jugar Blockman Go sin usar Google Play Store. Sin embargo, también debe considerar las ventajas y desventajas de jugar Blockman Go APK Mediafıre y decidir lo que es mejor para usted. También debe aprender a jugar Blockman Go APK Mediafıre y utilizar algunos consejos y trucos para hacer su experiencia de juego más agradable. Esperamos que este artículo le ha ayudado a entender más acerca de Blockman Go APK Mediafıre y cómo descargar y jugar.

-

Preguntas frecuentes

-

Aquí hay algunas preguntas frecuentes sobre Blockman Go APK Mediafıre:

-
    -
  1. ¿Es seguro Blockman Go APK Mediafıre?
  2. -

    Blockman Go APK Mediafıre es seguro, siempre y cuando se descarga desde una fuente de confianza como Mediafıre y escanear con una aplicación antivirus antes de instalarlo. Sin embargo, también debe tener cuidado con los archivos APK falsos o modificados que pueden contener malware o virus que pueden dañar su dispositivo o robar su información.

    -
  3. ¿Es Blockman Go APK Mediafıre libre?
  4. -

    Blockman Go APK Mediafıre es gratis para descargar y jugar. Sin embargo, algunas características o artículos pueden requerir oro, gemas o dinero real para desbloquear o comprar.

    -
  5. ¿Puedo jugar Blockman Go APK Mediafıre con mis amigos?
  6. - -
  7. ¿Puedo jugar Blockman Go APK Mediafıre fuera de línea?
  8. -

    No, no se puede jugar Blockman Go APK Mediafıre fuera de línea. Necesita una conexión a Internet para jugar Blockman Go APK Mediafıre ya que es un juego en línea que requiere transmisión de datos y sincronización.

    -
  9. ¿Puedo transferir mi progreso de Blockman Go APK Mediafıre a la versión oficial?
  10. -

    No, no puede transferir su progreso de Blockman Go APK Mediafıre a la versión oficial. Necesitas crear una nueva cuenta y empezar desde cero si quieres jugar la versión oficial de Google Play Store.

    64aa2da5cf
    -
    -
    \ No newline at end of file diff --git a/spaces/Benson/text-generation/Examples/Cuerda Hroe Ilimitado Diamantes Mod Apk.md b/spaces/Benson/text-generation/Examples/Cuerda Hroe Ilimitado Diamantes Mod Apk.md deleted file mode 100644 index 5bcda5c43fc5752a4cf0e6ec2c04a8952666c618..0000000000000000000000000000000000000000 --- a/spaces/Benson/text-generation/Examples/Cuerda Hroe Ilimitado Diamantes Mod Apk.md +++ /dev/null @@ -1,65 +0,0 @@ - -

    Cuerda héroe ilimitado diamantes Mod APK: Una guía para los fans de superhéroes

    -

    Si eres un fan de los juegos de superhéroes, es posible que hayas oído hablar de Rope Hero, un popular juego de acción en tercera persona con un toque de ciencia ficción. En este juego, se puede jugar como un héroe con estilo en un traje de protección, que puede utilizar superpoderes y armas para luchar contra el crimen y los gángsters en una gran ciudad. Pero lo que si quieres disfrutar del juego sin limitaciones? Ahí es donde Rope Hero Unlimited Diamonds Mod APK entra en juego. En este artículo, te contaremos todo lo que necesitas saber sobre esta versión modificada del juego, incluyendo sus características, beneficios y cómo descargarlo e instalarlo. Sigue leyendo para saber más.

    -

    cuerda héroe ilimitado diamantes mod apk


    Download Filehttps://bltlly.com/2v6Mky



    -

    ¿Qué es el héroe de cuerda?

    -

    Rope Hero es un juego desarrollado por Naxeex Action & RPG Games, que tiene más de 10 millones de descargas en Google Play Store. Es un juego de acción en tercera persona que te permite jugar como un superhéroe en un traje de ciencia ficción, que puede usar superpoderes y armas para luchar contra el crimen y los gángsters en una gran ciudad. El juego tiene gráficos increíbles, física realista y muchas características divertidas.

    -

    Un juego de acción en tercera persona con un superhéroe de ciencia ficción

    -

    En Rope Hero, puedes controlar a tu héroe con simples controles táctiles. Puedes moverte por la ciudad, saltar, correr, subir, balancearte y volar con tu súper cuerda. También puedes usar tus brazos y piernas para golpear, patear y lanzar enemigos. También puede utilizar varias armas, armas cuerpo a cuerpo y súper armas para hacer frente a diferentes situaciones. Incluso puede conducir cualquier coche que desee en la ciudad.

    -

    Características del juego

    -

    Rope Hero tiene muchas características que lo convierten en un juego emocionante y adictivo. Algunas de ellas son:

    -

    -

    Superpoderes y armas

    - -

    Mundo abierto y misiones

    -

    El juego tiene un mundo abierto que se puede explorar libremente. La ciudad está llena de aventuras peligrosas y emocionantes. Usted puede encontrar varios secretos y mini-juegos en diferentes lugares. También puedes completar misiones que te darán recompensas y progresarán en la historia de tu héroe. Puedes luchar contra pandillas callejeras, ladrones de autos, policías corruptos, fuerzas militares, alienígenas, zombis, robots, monstruos y más.

    -

    Personalización y skins

    -

    Puedes personalizar a tu héroe con diferentes atuendos y accesorios. Puedes encontrar varias pieles para tu héroe en la tienda de juegos o completando misiones. Cada piel tiene su propio conjunto de potenciadores que mejorarán las habilidades de tu héroe. También puede crear su propia piel única mediante la combinación de piezas de otros trajes.

    -

    ¿Qué es la cuerda héroe ilimitado diamantes Mod APK?

    -

    Héroe de cuerda ilimitada diamantes Mod APK

    Héroe de cuerda ilimitada diamantes Mod APK es una versión modificada del juego que le da recursos ilimitados y acceso a todo en el juego. Es un archivo que puedes descargar e instalar en tu dispositivo Android, y disfrutar del juego con más diversión y libertad.

    -

    Una versión modificada del juego con recursos ilimitados

    -

    El apk mod es un archivo que ha sido alterado por algunos desarrolladores para cambiar algunos aspectos del juego. En este caso, el apk mod le da diamantes ilimitados y dinero, que son las principales monedas en el juego. Puedes usarlos para comprar lo que quieras en la tienda de juegos, como armas, pieles, coches y más. También puedes mejorar las habilidades y habilidades de tu héroe con ellos. También puedes usarlas para saltar anuncios y acelerar el juego.

    -

    Beneficios de usar el mod apk

    -

    Hay muchos beneficios de usar el apk mod para Rope Hero. Algunos de ellos son:

    -

    Desbloquear todo en el juego

    - -

    Disfruta de diamantes y dinero ilimitados

    -

    Con el apk mod, se puede disfrutar de diamantes ilimitados y dinero, que son las principales monedas en el juego. Puedes usarlos para comprar lo que quieras en la tienda de juegos, como armas, pieles, coches y más. También puedes mejorar las habilidades y habilidades de tu héroe con ellos. También puedes usarlas para saltar anuncios y acelerar el juego.

    -

    No se requieren anuncios ni root

    -

    Con el apk mod, puede jugar el juego sin ningún anuncio molesto que interrumpen su juego. También puede jugar el juego sin rootear su dispositivo, lo que significa que no tiene que arriesgarse a dañar su dispositivo o perder su garantía. El mod apk es seguro y fácil de usar.

    -

    ¿Cómo descargar e instalar Rope Hero ilimitado diamantes Mod APK?

    -

    Si desea descargar e instalar Rope Hero ilimitado diamantes Mod APK en su dispositivo Android, es necesario seguir estos sencillos pasos:

    -

    Pasos para descargar e instalar el mod apk

    -
      -
    1. Primero, necesitas desinstalar la versión original de Rope Hero de tu dispositivo si lo tienes instalado.
    2. -
    3. En segundo lugar, debe habilitar fuentes desconocidas en su dispositivo. Para hacer esto, vaya a Configuración > Seguridad > Fuentes desconocidas y active.
    4. -
    5. En tercer lugar, es necesario descargar el archivo apk mod de una fuente confiable. Puede encontrar muchos sitios web que ofrecen el archivo apk mod de forma gratuita. Asegúrate de descargarlo desde un sitio de confianza que no contenga virus o malware.
    6. -
    7. Cuarto, es necesario localizar el archivo descargado en el dispositivo y toque en él para iniciar el proceso de instalación. Siga las instrucciones en la pantalla y espere a que termine.
    8. -
    9. Quinto, necesitas lanzar el juego y disfrutar jugando con diamantes y dinero ilimitados.
    10. -
    -

    Consejos y trucos para jugar el juego con el apk mod

    - -

    Usa tus superpoderes sabiamente

    -

    Tu héroe tiene superpoderes que le permiten hacer cosas increíbles. Puedes usar tu súper cuerda para balancearte de edificio en edificio, o para agarrar enemigos y objetos. También puede utilizar su salto de rana para saltar alto en el aire. También puede utilizar su súper visión para ver a través de paredes y objetos. Sin embargo, estas superpotencias tienen un tiempo de reutilización, lo que significa que no puedes usarlas continuamente. Debe esperar a que se recarguen antes de volver a usarlas. Por lo tanto, debe usarlas sabiamente y estratégicamente, dependiendo de la situación.

    -

    Explora la ciudad y encuentra secretos

    -

    El juego tiene un mundo abierto que se puede explorar libremente. La ciudad está llena de aventuras peligrosas y emocionantes. Puedes encontrar varios secretos y minijuegos en diferentes lugares. Por ejemplo, puedes encontrar cofres ocultos que contienen diamantes o dinero. También puedes encontrar botones ocultos que activan trampas o eventos. También puedes encontrar portales ocultos que te transportan a otros mundos o dimensiones. También puedes encontrar huevos de Pascua ocultos que hacen referencia a otros juegos o películas. Explorar la ciudad no solo te dará recompensas, sino que también hará que tu juego sea más divertido e interesante.

    -

    Completar misiones y desafíos

    -

    El juego tiene muchas misiones y

    El juego tiene muchas misiones y desafíos que le dará recompensas y el progreso de la historia de su héroe. Puedes encontrarlos en el mapa o hablando con los PNJ. Algunas de las misiones son misiones principales relacionadas con la trama del juego. Algunos de ellos son misiones secundarias que son opcionales, pero todavía divertido y gratificante. Algunas de ellas son misiones diarias que se reinician todos los días y te dan diamantes o dinero. Algunas de ellas son misiones especiales que solo están disponibles por un tiempo limitado o durante eventos. Completar misiones y desafíos no solo te dará recursos sino que también mejorará la reputación y las habilidades de tu héroe.

    -

    Conclusión

    - -

    Preguntas frecuentes

    -

    Aquí hay algunas preguntas frecuentes sobre Rope Hero Unlimited Diamonds Mod APK:

    -
      -
    1. ¿Es Rope Hero ilimitado diamantes Mod APK gratis?
    2. -

      Sí, Rope Hero Unlimited Diamonds Mod APK es gratis para descargar y jugar. No tienes que pagar nada para disfrutar del juego con recursos ilimitados.

      -
    3. ¿Es seguro Rope Hero Unlimited Diamonds Mod APK?
    4. -

      Sí, Rope Hero Unlimited Diamonds Mod APK es seguro de usar. No contiene ningún virus o malware que pueda dañar su dispositivo o datos. Sin embargo, siempre debe descargarlo de una fuente confiable y escanearlo con un antivirus antes de instalarlo.

      -
    5. ¿Es Rope Hero ilimitado diamantes Mod APK compatible con mi dispositivo?
    6. -

      Cuerda héroe ilimitado diamantes Mod APK es compatible con la mayoría de los dispositivos Android que tienen Android 4.4 o superior. Sin embargo, algunos dispositivos pueden no soportar el juego o el apk mod debido a diferentes especificaciones o ajustes. Usted debe comprobar la compatibilidad de su dispositivo antes de descargar e instalar el apk mod.

      -
    7. ¿Puedo jugar Rope Hero ilimitado diamantes Mod APK en línea?
    8. -

      No, Cuerda héroe ilimitado diamantes Mod APK es un juego fuera de línea que no requiere una conexión a Internet para jugar. Puede reproducirlo en cualquier lugar y en cualquier momento sin preocuparse por el uso de datos o problemas de conexión.

      -
    9. ¿Puedo actualizar Rope Hero ilimitado diamantes Mod APK?
    10. -

      No, Rope Hero Unlimited Diamonds Mod APK no es una versión oficial del juego, por lo que no recibe actualizaciones regulares de los desarrolladores. Si desea actualizar el juego, usted tiene que desinstalar el apk mod e instalar la versión original de Google Play Store. Sin embargo, puede perder su progreso y recursos si lo hace.

      -

    64aa2da5cf
    -
    -
    \ No newline at end of file diff --git a/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/urllib3/packages/__init__.py b/spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/urllib3/packages/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/BigSalmon/GPT2Mask/README.md b/spaces/BigSalmon/GPT2Mask/README.md deleted file mode 100644 index 87b7720e8e4c32ae8c140efabcf6da52587e2a2f..0000000000000000000000000000000000000000 --- a/spaces/BigSalmon/GPT2Mask/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: GPT2Mask -emoji: 🐢 -colorFrom: red -colorTo: yellow -sdk: streamlit -sdk_version: 1.2.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference diff --git a/spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/tools/visualize_data.py b/spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/tools/visualize_data.py deleted file mode 100644 index 8e7e4ad4031985259e5adde48cda928a3f26a64d..0000000000000000000000000000000000000000 --- a/spaces/CVPR/Dual-Key_Backdoor_Attacks/datagen/detectron2/tools/visualize_data.py +++ /dev/null @@ -1,98 +0,0 @@ -#!/usr/bin/env python -# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved -import argparse -import numpy as np -import os -from itertools import chain -import cv2 -import tqdm -from PIL import Image - -from detectron2.config import get_cfg -from detectron2.data import DatasetCatalog, MetadataCatalog, build_detection_train_loader -from detectron2.data import detection_utils as utils -from detectron2.data.build import filter_images_with_few_keypoints -from detectron2.utils.logger import setup_logger -from detectron2.utils.visualizer import Visualizer - - -def setup(args): - cfg = get_cfg() - if args.config_file: - cfg.merge_from_file(args.config_file) - cfg.merge_from_list(args.opts) - cfg.freeze() - return cfg - - -def parse_args(in_args=None): - parser = argparse.ArgumentParser(description="Visualize ground-truth data") - parser.add_argument( - "--source", - choices=["annotation", "dataloader"], - required=True, - help="visualize the annotations or the data loader (with pre-processing)", - ) - parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file") - parser.add_argument("--output-dir", default="./", help="path to output directory") - parser.add_argument("--show", action="store_true", help="show output in a window") - parser.add_argument( - "opts", - help="Modify config options using the command-line", - default=None, - nargs=argparse.REMAINDER, - ) - return parser.parse_args(in_args) - - -if __name__ == "__main__": - args = parse_args() - logger = setup_logger() - logger.info("Arguments: " + str(args)) - cfg = setup(args) - - dirname = args.output_dir - os.makedirs(dirname, exist_ok=True) - metadata = MetadataCatalog.get(cfg.DATASETS.TRAIN[0]) - - def output(vis, fname): - if args.show: - print(fname) - cv2.imshow("window", vis.get_image()[:, :, ::-1]) - cv2.waitKey() - else: - filepath = os.path.join(dirname, fname) - print("Saving to {} ...".format(filepath)) - vis.save(filepath) - - scale = 2.0 if args.show else 1.0 - if args.source == "dataloader": - train_data_loader = build_detection_train_loader(cfg) - for batch in train_data_loader: - for per_image in batch: - # Pytorch tensor is in (C, H, W) format - img = per_image["image"].permute(1, 2, 0) - if cfg.INPUT.FORMAT == "BGR": - img = img[:, :, [2, 1, 0]] - else: - img = np.asarray(Image.fromarray(img, mode=cfg.INPUT.FORMAT).convert("RGB")) - - visualizer = Visualizer(img, metadata=metadata, scale=scale) - target_fields = per_image["instances"].get_fields() - labels = [metadata.thing_classes[i] for i in target_fields["gt_classes"]] - vis = visualizer.overlay_instances( - labels=labels, - boxes=target_fields.get("gt_boxes", None), - masks=target_fields.get("gt_masks", None), - keypoints=target_fields.get("gt_keypoints", None), - ) - output(vis, str(per_image["image_id"]) + ".jpg") - else: - dicts = list(chain.from_iterable([DatasetCatalog.get(k) for k in cfg.DATASETS.TRAIN])) - if cfg.MODEL.KEYPOINT_ON: - dicts = filter_images_with_few_keypoints(dicts, 1) - for dic in tqdm.tqdm(dicts): - img = utils.read_image(dic["file_name"], "RGB") - visualizer = Visualizer(img, metadata=metadata, scale=scale) - vis = visualizer.draw_dataset_dict(dic) - output(vis, os.path.basename(dic["file_name"])) diff --git a/spaces/CVPR/LIVE/pybind11/tests/env.py b/spaces/CVPR/LIVE/pybind11/tests/env.py deleted file mode 100644 index 5cded441271c61af72fc0be0de79332dc6279d72..0000000000000000000000000000000000000000 --- a/spaces/CVPR/LIVE/pybind11/tests/env.py +++ /dev/null @@ -1,14 +0,0 @@ -# -*- coding: utf-8 -*- -import platform -import sys - -LINUX = sys.platform.startswith("linux") -MACOS = sys.platform.startswith("darwin") -WIN = sys.platform.startswith("win32") or sys.platform.startswith("cygwin") - -CPYTHON = platform.python_implementation() == "CPython" -PYPY = platform.python_implementation() == "PyPy" - -PY2 = sys.version_info.major == 2 - -PY = sys.version_info diff --git a/spaces/CVPR/LIVE/thrust/dependencies/cub/cmake/AppendOptionIfAvailable.cmake b/spaces/CVPR/LIVE/thrust/dependencies/cub/cmake/AppendOptionIfAvailable.cmake deleted file mode 100644 index 478321ec8787ec34b2d4fc5dd6067e9239103a07..0000000000000000000000000000000000000000 --- a/spaces/CVPR/LIVE/thrust/dependencies/cub/cmake/AppendOptionIfAvailable.cmake +++ /dev/null @@ -1,13 +0,0 @@ -include_guard(GLOBAL) -include(CheckCXXCompilerFlag) - -macro (APPEND_OPTION_IF_AVAILABLE _FLAG _LIST) - -string(MAKE_C_IDENTIFIER "CXX_FLAG_${_FLAG}" _VAR) -check_cxx_compiler_flag(${_FLAG} ${_VAR}) - -if (${${_VAR}}) - list(APPEND ${_LIST} ${_FLAG}) -endif () - -endmacro () diff --git a/spaces/CVPR/LIVE/thrust/thrust/system/cpp/detail/merge.h b/spaces/CVPR/LIVE/thrust/thrust/system/cpp/detail/merge.h deleted file mode 100644 index 20e17f2d40dd218d2e7b22a7744321f75ea6ab0c..0000000000000000000000000000000000000000 --- a/spaces/CVPR/LIVE/thrust/thrust/system/cpp/detail/merge.h +++ /dev/null @@ -1,23 +0,0 @@ -/* - * Copyright 2008-2013 NVIDIA Corporation - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include - -// this system inherits merge -#include - diff --git a/spaces/CVPR/WALT/mmdet/core/bbox/coder/tblr_bbox_coder.py b/spaces/CVPR/WALT/mmdet/core/bbox/coder/tblr_bbox_coder.py deleted file mode 100644 index edaffaf1fa252857e1a660ea14a613e2466fb52c..0000000000000000000000000000000000000000 --- a/spaces/CVPR/WALT/mmdet/core/bbox/coder/tblr_bbox_coder.py +++ /dev/null @@ -1,198 +0,0 @@ -import mmcv -import torch - -from ..builder import BBOX_CODERS -from .base_bbox_coder import BaseBBoxCoder - - -@BBOX_CODERS.register_module() -class TBLRBBoxCoder(BaseBBoxCoder): - """TBLR BBox coder. - - Following the practice in `FSAF `_, - this coder encodes gt bboxes (x1, y1, x2, y2) into (top, bottom, left, - right) and decode it back to the original. - - Args: - normalizer (list | float): Normalization factor to be - divided with when coding the coordinates. If it is a list, it should - have length of 4 indicating normalization factor in tblr dims. - Otherwise it is a unified float factor for all dims. Default: 4.0 - clip_border (bool, optional): Whether clip the objects outside the - border of the image. Defaults to True. - """ - - def __init__(self, normalizer=4.0, clip_border=True): - super(BaseBBoxCoder, self).__init__() - self.normalizer = normalizer - self.clip_border = clip_border - - def encode(self, bboxes, gt_bboxes): - """Get box regression transformation deltas that can be used to - transform the ``bboxes`` into the ``gt_bboxes`` in the (top, left, - bottom, right) order. - - Args: - bboxes (torch.Tensor): source boxes, e.g., object proposals. - gt_bboxes (torch.Tensor): target of the transformation, e.g., - ground truth boxes. - - Returns: - torch.Tensor: Box transformation deltas - """ - assert bboxes.size(0) == gt_bboxes.size(0) - assert bboxes.size(-1) == gt_bboxes.size(-1) == 4 - encoded_bboxes = bboxes2tblr( - bboxes, gt_bboxes, normalizer=self.normalizer) - return encoded_bboxes - - def decode(self, bboxes, pred_bboxes, max_shape=None): - """Apply transformation `pred_bboxes` to `boxes`. - - Args: - bboxes (torch.Tensor): Basic boxes.Shape (B, N, 4) or (N, 4) - pred_bboxes (torch.Tensor): Encoded boxes with shape - (B, N, 4) or (N, 4) - max_shape (Sequence[int] or torch.Tensor or Sequence[ - Sequence[int]],optional): Maximum bounds for boxes, specifies - (H, W, C) or (H, W). If bboxes shape is (B, N, 4), then - the max_shape should be a Sequence[Sequence[int]] - and the length of max_shape should also be B. - - Returns: - torch.Tensor: Decoded boxes. - """ - decoded_bboxes = tblr2bboxes( - bboxes, - pred_bboxes, - normalizer=self.normalizer, - max_shape=max_shape, - clip_border=self.clip_border) - - return decoded_bboxes - - -@mmcv.jit(coderize=True) -def bboxes2tblr(priors, gts, normalizer=4.0, normalize_by_wh=True): - """Encode ground truth boxes to tblr coordinate. - - It first convert the gt coordinate to tblr format, - (top, bottom, left, right), relative to prior box centers. - The tblr coordinate may be normalized by the side length of prior bboxes - if `normalize_by_wh` is specified as True, and it is then normalized by - the `normalizer` factor. - - Args: - priors (Tensor): Prior boxes in point form - Shape: (num_proposals,4). - gts (Tensor): Coords of ground truth for each prior in point-form - Shape: (num_proposals, 4). - normalizer (Sequence[float] | float): normalization parameter of - encoded boxes. If it is a list, it has to have length = 4. - Default: 4.0 - normalize_by_wh (bool): Whether to normalize tblr coordinate by the - side length (wh) of prior bboxes. - - Return: - encoded boxes (Tensor), Shape: (num_proposals, 4) - """ - - # dist b/t match center and prior's center - if not isinstance(normalizer, float): - normalizer = torch.tensor(normalizer, device=priors.device) - assert len(normalizer) == 4, 'Normalizer must have length = 4' - assert priors.size(0) == gts.size(0) - prior_centers = (priors[:, 0:2] + priors[:, 2:4]) / 2 - xmin, ymin, xmax, ymax = gts.split(1, dim=1) - top = prior_centers[:, 1].unsqueeze(1) - ymin - bottom = ymax - prior_centers[:, 1].unsqueeze(1) - left = prior_centers[:, 0].unsqueeze(1) - xmin - right = xmax - prior_centers[:, 0].unsqueeze(1) - loc = torch.cat((top, bottom, left, right), dim=1) - if normalize_by_wh: - # Normalize tblr by anchor width and height - wh = priors[:, 2:4] - priors[:, 0:2] - w, h = torch.split(wh, 1, dim=1) - loc[:, :2] /= h # tb is normalized by h - loc[:, 2:] /= w # lr is normalized by w - # Normalize tblr by the given normalization factor - return loc / normalizer - - -@mmcv.jit(coderize=True) -def tblr2bboxes(priors, - tblr, - normalizer=4.0, - normalize_by_wh=True, - max_shape=None, - clip_border=True): - """Decode tblr outputs to prediction boxes. - - The process includes 3 steps: 1) De-normalize tblr coordinates by - multiplying it with `normalizer`; 2) De-normalize tblr coordinates by the - prior bbox width and height if `normalize_by_wh` is `True`; 3) Convert - tblr (top, bottom, left, right) pair relative to the center of priors back - to (xmin, ymin, xmax, ymax) coordinate. - - Args: - priors (Tensor): Prior boxes in point form (x0, y0, x1, y1) - Shape: (N,4) or (B, N, 4). - tblr (Tensor): Coords of network output in tblr form - Shape: (N, 4) or (B, N, 4). - normalizer (Sequence[float] | float): Normalization parameter of - encoded boxes. By list, it represents the normalization factors at - tblr dims. By float, it is the unified normalization factor at all - dims. Default: 4.0 - normalize_by_wh (bool): Whether the tblr coordinates have been - normalized by the side length (wh) of prior bboxes. - max_shape (Sequence[int] or torch.Tensor or Sequence[ - Sequence[int]],optional): Maximum bounds for boxes, specifies - (H, W, C) or (H, W). If priors shape is (B, N, 4), then - the max_shape should be a Sequence[Sequence[int]] - and the length of max_shape should also be B. - clip_border (bool, optional): Whether clip the objects outside the - border of the image. Defaults to True. - - Return: - encoded boxes (Tensor): Boxes with shape (N, 4) or (B, N, 4) - """ - if not isinstance(normalizer, float): - normalizer = torch.tensor(normalizer, device=priors.device) - assert len(normalizer) == 4, 'Normalizer must have length = 4' - assert priors.size(0) == tblr.size(0) - if priors.ndim == 3: - assert priors.size(1) == tblr.size(1) - - loc_decode = tblr * normalizer - prior_centers = (priors[..., 0:2] + priors[..., 2:4]) / 2 - if normalize_by_wh: - wh = priors[..., 2:4] - priors[..., 0:2] - w, h = torch.split(wh, 1, dim=-1) - # Inplace operation with slice would failed for exporting to ONNX - th = h * loc_decode[..., :2] # tb - tw = w * loc_decode[..., 2:] # lr - loc_decode = torch.cat([th, tw], dim=-1) - # Cannot be exported using onnx when loc_decode.split(1, dim=-1) - top, bottom, left, right = loc_decode.split((1, 1, 1, 1), dim=-1) - xmin = prior_centers[..., 0].unsqueeze(-1) - left - xmax = prior_centers[..., 0].unsqueeze(-1) + right - ymin = prior_centers[..., 1].unsqueeze(-1) - top - ymax = prior_centers[..., 1].unsqueeze(-1) + bottom - - bboxes = torch.cat((xmin, ymin, xmax, ymax), dim=-1) - - if clip_border and max_shape is not None: - if not isinstance(max_shape, torch.Tensor): - max_shape = priors.new_tensor(max_shape) - max_shape = max_shape[..., :2].type_as(priors) - if max_shape.ndim == 2: - assert bboxes.ndim == 3 - assert max_shape.size(0) == bboxes.size(0) - - min_xy = priors.new_tensor(0) - max_xy = torch.cat([max_shape, max_shape], - dim=-1).flip(-1).unsqueeze(-2) - bboxes = torch.where(bboxes < min_xy, min_xy, bboxes) - bboxes = torch.where(bboxes > max_xy, max_xy, bboxes) - - return bboxes diff --git a/spaces/CVPR/lama-example/bin/paper_runfiles/predict_inner_features.sh b/spaces/CVPR/lama-example/bin/paper_runfiles/predict_inner_features.sh deleted file mode 100644 index 864c1a0fca8b93b2a193656e45ff55f6a051eb8c..0000000000000000000000000000000000000000 --- a/spaces/CVPR/lama-example/bin/paper_runfiles/predict_inner_features.sh +++ /dev/null @@ -1,20 +0,0 @@ -#!/usr/bin/env bash - -# paths to data are valid for mml7 - -source "$(dirname $0)/env.sh" - -"$BINDIR/predict_inner_features.py" \ - -cn default_inner_features_ffc \ - model.path="/data/inpainting/paper_data/final_models/ours/r.suvorov_2021-03-05_17-34-05_train_ablv2_work_ffc075_resume_epoch39" \ - indir="/data/inpainting/paper_data/inner_features_vis/input/" \ - outdir="/data/inpainting/paper_data/inner_features_vis/output/ffc" \ - dataset.img_suffix=.png - - -"$BINDIR/predict_inner_features.py" \ - -cn default_inner_features_work \ - model.path="/data/inpainting/paper_data/final_models/ours/r.suvorov_2021-03-05_17-08-35_train_ablv2_work_resume_epoch37" \ - indir="/data/inpainting/paper_data/inner_features_vis/input/" \ - outdir="/data/inpainting/paper_data/inner_features_vis/output/work" \ - dataset.img_suffix=.png diff --git a/spaces/CVPR/regionclip-demo/detectron2/data/datasets/lvis_v1_categories.py b/spaces/CVPR/regionclip-demo/detectron2/data/datasets/lvis_v1_categories.py deleted file mode 100644 index 7374e6968bb006f5d8c49e75d9d3b31ea3d77d05..0000000000000000000000000000000000000000 --- a/spaces/CVPR/regionclip-demo/detectron2/data/datasets/lvis_v1_categories.py +++ /dev/null @@ -1,16 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# Autogen with -# with open("lvis_v1_val.json", "r") as f: -# a = json.load(f) -# c = a["categories"] -# for x in c: -# del x["image_count"] -# del x["instance_count"] -# LVIS_CATEGORIES = repr(c) + " # noqa" -# with open("/tmp/lvis_categories.py", "wt") as f: -# f.write(f"LVIS_CATEGORIES = {LVIS_CATEGORIES}") -# Then paste the contents of that file below - -# fmt: off -LVIS_CATEGORIES = [{'frequency': 'c', 'synset': 'aerosol.n.02', 'synonyms': ['aerosol_can', 'spray_can'], 'id': 1, 'def': 'a dispenser that holds a substance under pressure', 'name': 'aerosol_can'}, {'frequency': 'f', 'synset': 'air_conditioner.n.01', 'synonyms': ['air_conditioner'], 'id': 2, 'def': 'a machine that keeps air cool and dry', 'name': 'air_conditioner'}, {'frequency': 'f', 'synset': 'airplane.n.01', 'synonyms': ['airplane', 'aeroplane'], 'id': 3, 'def': 'an aircraft that has a fixed wing and is powered by propellers or jets', 'name': 'airplane'}, {'frequency': 'f', 'synset': 'alarm_clock.n.01', 'synonyms': ['alarm_clock'], 'id': 4, 'def': 'a clock that wakes a sleeper at some preset time', 'name': 'alarm_clock'}, {'frequency': 'c', 'synset': 'alcohol.n.01', 'synonyms': ['alcohol', 'alcoholic_beverage'], 'id': 5, 'def': 'a liquor or brew containing alcohol as the active agent', 'name': 'alcohol'}, {'frequency': 'c', 'synset': 'alligator.n.02', 'synonyms': ['alligator', 'gator'], 'id': 6, 'def': 'amphibious reptiles related to crocodiles but with shorter broader snouts', 'name': 'alligator'}, {'frequency': 'c', 'synset': 'almond.n.02', 'synonyms': ['almond'], 'id': 7, 'def': 'oval-shaped edible seed of the almond tree', 'name': 'almond'}, {'frequency': 'c', 'synset': 'ambulance.n.01', 'synonyms': ['ambulance'], 'id': 8, 'def': 'a vehicle that takes people to and from hospitals', 'name': 'ambulance'}, {'frequency': 'c', 'synset': 'amplifier.n.01', 'synonyms': ['amplifier'], 'id': 9, 'def': 'electronic equipment that increases strength of signals', 'name': 'amplifier'}, {'frequency': 'c', 'synset': 'anklet.n.03', 'synonyms': ['anklet', 'ankle_bracelet'], 'id': 10, 'def': 'an ornament worn around the ankle', 'name': 'anklet'}, {'frequency': 'f', 'synset': 'antenna.n.01', 'synonyms': ['antenna', 'aerial', 'transmitting_aerial'], 'id': 11, 'def': 'an electrical device that sends or receives radio or television signals', 'name': 'antenna'}, {'frequency': 'f', 'synset': 'apple.n.01', 'synonyms': ['apple'], 'id': 12, 'def': 'fruit with red or yellow or green skin and sweet to tart crisp whitish flesh', 'name': 'apple'}, {'frequency': 'r', 'synset': 'applesauce.n.01', 'synonyms': ['applesauce'], 'id': 13, 'def': 'puree of stewed apples usually sweetened and spiced', 'name': 'applesauce'}, {'frequency': 'r', 'synset': 'apricot.n.02', 'synonyms': ['apricot'], 'id': 14, 'def': 'downy yellow to rosy-colored fruit resembling a small peach', 'name': 'apricot'}, {'frequency': 'f', 'synset': 'apron.n.01', 'synonyms': ['apron'], 'id': 15, 'def': 'a garment of cloth that is tied about the waist and worn to protect clothing', 'name': 'apron'}, {'frequency': 'c', 'synset': 'aquarium.n.01', 'synonyms': ['aquarium', 'fish_tank'], 'id': 16, 'def': 'a tank/pool/bowl filled with water for keeping live fish and underwater animals', 'name': 'aquarium'}, {'frequency': 'r', 'synset': 'arctic.n.02', 'synonyms': ['arctic_(type_of_shoe)', 'galosh', 'golosh', 'rubber_(type_of_shoe)', 'gumshoe'], 'id': 17, 'def': 'a waterproof overshoe that protects shoes from water or snow', 'name': 'arctic_(type_of_shoe)'}, {'frequency': 'c', 'synset': 'armband.n.02', 'synonyms': ['armband'], 'id': 18, 'def': 'a band worn around the upper arm', 'name': 'armband'}, {'frequency': 'f', 'synset': 'armchair.n.01', 'synonyms': ['armchair'], 'id': 19, 'def': 'chair with a support on each side for arms', 'name': 'armchair'}, {'frequency': 'r', 'synset': 'armoire.n.01', 'synonyms': ['armoire'], 'id': 20, 'def': 'a large wardrobe or cabinet', 'name': 'armoire'}, {'frequency': 'r', 'synset': 'armor.n.01', 'synonyms': ['armor', 'armour'], 'id': 21, 'def': 'protective covering made of metal and used in combat', 'name': 'armor'}, {'frequency': 'c', 'synset': 'artichoke.n.02', 'synonyms': ['artichoke'], 'id': 22, 'def': 'a thistlelike flower head with edible fleshy leaves and heart', 'name': 'artichoke'}, {'frequency': 'f', 'synset': 'ashcan.n.01', 'synonyms': ['trash_can', 'garbage_can', 'wastebin', 'dustbin', 'trash_barrel', 'trash_bin'], 'id': 23, 'def': 'a bin that holds rubbish until it is collected', 'name': 'trash_can'}, {'frequency': 'c', 'synset': 'ashtray.n.01', 'synonyms': ['ashtray'], 'id': 24, 'def': "a receptacle for the ash from smokers' cigars or cigarettes", 'name': 'ashtray'}, {'frequency': 'c', 'synset': 'asparagus.n.02', 'synonyms': ['asparagus'], 'id': 25, 'def': 'edible young shoots of the asparagus plant', 'name': 'asparagus'}, {'frequency': 'c', 'synset': 'atomizer.n.01', 'synonyms': ['atomizer', 'atomiser', 'spray', 'sprayer', 'nebulizer', 'nebuliser'], 'id': 26, 'def': 'a dispenser that turns a liquid (such as perfume) into a fine mist', 'name': 'atomizer'}, {'frequency': 'f', 'synset': 'avocado.n.01', 'synonyms': ['avocado'], 'id': 27, 'def': 'a pear-shaped fruit with green or blackish skin and rich yellowish pulp enclosing a single large seed', 'name': 'avocado'}, {'frequency': 'c', 'synset': 'award.n.02', 'synonyms': ['award', 'accolade'], 'id': 28, 'def': 'a tangible symbol signifying approval or distinction', 'name': 'award'}, {'frequency': 'f', 'synset': 'awning.n.01', 'synonyms': ['awning'], 'id': 29, 'def': 'a canopy made of canvas to shelter people or things from rain or sun', 'name': 'awning'}, {'frequency': 'r', 'synset': 'ax.n.01', 'synonyms': ['ax', 'axe'], 'id': 30, 'def': 'an edge tool with a heavy bladed head mounted across a handle', 'name': 'ax'}, {'frequency': 'r', 'synset': 'baboon.n.01', 'synonyms': ['baboon'], 'id': 31, 'def': 'large terrestrial monkeys having doglike muzzles', 'name': 'baboon'}, {'frequency': 'f', 'synset': 'baby_buggy.n.01', 'synonyms': ['baby_buggy', 'baby_carriage', 'perambulator', 'pram', 'stroller'], 'id': 32, 'def': 'a small vehicle with four wheels in which a baby or child is pushed around', 'name': 'baby_buggy'}, {'frequency': 'c', 'synset': 'backboard.n.01', 'synonyms': ['basketball_backboard'], 'id': 33, 'def': 'a raised vertical board with basket attached; used to play basketball', 'name': 'basketball_backboard'}, {'frequency': 'f', 'synset': 'backpack.n.01', 'synonyms': ['backpack', 'knapsack', 'packsack', 'rucksack', 'haversack'], 'id': 34, 'def': 'a bag carried by a strap on your back or shoulder', 'name': 'backpack'}, {'frequency': 'f', 'synset': 'bag.n.04', 'synonyms': ['handbag', 'purse', 'pocketbook'], 'id': 35, 'def': 'a container used for carrying money and small personal items or accessories', 'name': 'handbag'}, {'frequency': 'f', 'synset': 'bag.n.06', 'synonyms': ['suitcase', 'baggage', 'luggage'], 'id': 36, 'def': 'cases used to carry belongings when traveling', 'name': 'suitcase'}, {'frequency': 'c', 'synset': 'bagel.n.01', 'synonyms': ['bagel', 'beigel'], 'id': 37, 'def': 'glazed yeast-raised doughnut-shaped roll with hard crust', 'name': 'bagel'}, {'frequency': 'r', 'synset': 'bagpipe.n.01', 'synonyms': ['bagpipe'], 'id': 38, 'def': 'a tubular wind instrument; the player blows air into a bag and squeezes it out', 'name': 'bagpipe'}, {'frequency': 'r', 'synset': 'baguet.n.01', 'synonyms': ['baguet', 'baguette'], 'id': 39, 'def': 'narrow French stick loaf', 'name': 'baguet'}, {'frequency': 'r', 'synset': 'bait.n.02', 'synonyms': ['bait', 'lure'], 'id': 40, 'def': 'something used to lure fish or other animals into danger so they can be trapped or killed', 'name': 'bait'}, {'frequency': 'f', 'synset': 'ball.n.06', 'synonyms': ['ball'], 'id': 41, 'def': 'a spherical object used as a plaything', 'name': 'ball'}, {'frequency': 'r', 'synset': 'ballet_skirt.n.01', 'synonyms': ['ballet_skirt', 'tutu'], 'id': 42, 'def': 'very short skirt worn by ballerinas', 'name': 'ballet_skirt'}, {'frequency': 'f', 'synset': 'balloon.n.01', 'synonyms': ['balloon'], 'id': 43, 'def': 'large tough nonrigid bag filled with gas or heated air', 'name': 'balloon'}, {'frequency': 'c', 'synset': 'bamboo.n.02', 'synonyms': ['bamboo'], 'id': 44, 'def': 'woody tropical grass having hollow woody stems', 'name': 'bamboo'}, {'frequency': 'f', 'synset': 'banana.n.02', 'synonyms': ['banana'], 'id': 45, 'def': 'elongated crescent-shaped yellow fruit with soft sweet flesh', 'name': 'banana'}, {'frequency': 'c', 'synset': 'band_aid.n.01', 'synonyms': ['Band_Aid'], 'id': 46, 'def': 'trade name for an adhesive bandage to cover small cuts or blisters', 'name': 'Band_Aid'}, {'frequency': 'c', 'synset': 'bandage.n.01', 'synonyms': ['bandage'], 'id': 47, 'def': 'a piece of soft material that covers and protects an injured part of the body', 'name': 'bandage'}, {'frequency': 'f', 'synset': 'bandanna.n.01', 'synonyms': ['bandanna', 'bandana'], 'id': 48, 'def': 'large and brightly colored handkerchief; often used as a neckerchief', 'name': 'bandanna'}, {'frequency': 'r', 'synset': 'banjo.n.01', 'synonyms': ['banjo'], 'id': 49, 'def': 'a stringed instrument of the guitar family with a long neck and circular body', 'name': 'banjo'}, {'frequency': 'f', 'synset': 'banner.n.01', 'synonyms': ['banner', 'streamer'], 'id': 50, 'def': 'long strip of cloth or paper used for decoration or advertising', 'name': 'banner'}, {'frequency': 'r', 'synset': 'barbell.n.01', 'synonyms': ['barbell'], 'id': 51, 'def': 'a bar to which heavy discs are attached at each end; used in weightlifting', 'name': 'barbell'}, {'frequency': 'r', 'synset': 'barge.n.01', 'synonyms': ['barge'], 'id': 52, 'def': 'a flatbottom boat for carrying heavy loads (especially on canals)', 'name': 'barge'}, {'frequency': 'f', 'synset': 'barrel.n.02', 'synonyms': ['barrel', 'cask'], 'id': 53, 'def': 'a cylindrical container that holds liquids', 'name': 'barrel'}, {'frequency': 'c', 'synset': 'barrette.n.01', 'synonyms': ['barrette'], 'id': 54, 'def': "a pin for holding women's hair in place", 'name': 'barrette'}, {'frequency': 'c', 'synset': 'barrow.n.03', 'synonyms': ['barrow', 'garden_cart', 'lawn_cart', 'wheelbarrow'], 'id': 55, 'def': 'a cart for carrying small loads; has handles and one or more wheels', 'name': 'barrow'}, {'frequency': 'f', 'synset': 'base.n.03', 'synonyms': ['baseball_base'], 'id': 56, 'def': 'a place that the runner must touch before scoring', 'name': 'baseball_base'}, {'frequency': 'f', 'synset': 'baseball.n.02', 'synonyms': ['baseball'], 'id': 57, 'def': 'a ball used in playing baseball', 'name': 'baseball'}, {'frequency': 'f', 'synset': 'baseball_bat.n.01', 'synonyms': ['baseball_bat'], 'id': 58, 'def': 'an implement used in baseball by the batter', 'name': 'baseball_bat'}, {'frequency': 'f', 'synset': 'baseball_cap.n.01', 'synonyms': ['baseball_cap', 'jockey_cap', 'golf_cap'], 'id': 59, 'def': 'a cap with a bill', 'name': 'baseball_cap'}, {'frequency': 'f', 'synset': 'baseball_glove.n.01', 'synonyms': ['baseball_glove', 'baseball_mitt'], 'id': 60, 'def': 'the handwear used by fielders in playing baseball', 'name': 'baseball_glove'}, {'frequency': 'f', 'synset': 'basket.n.01', 'synonyms': ['basket', 'handbasket'], 'id': 61, 'def': 'a container that is usually woven and has handles', 'name': 'basket'}, {'frequency': 'c', 'synset': 'basketball.n.02', 'synonyms': ['basketball'], 'id': 62, 'def': 'an inflated ball used in playing basketball', 'name': 'basketball'}, {'frequency': 'r', 'synset': 'bass_horn.n.01', 'synonyms': ['bass_horn', 'sousaphone', 'tuba'], 'id': 63, 'def': 'the lowest brass wind instrument', 'name': 'bass_horn'}, {'frequency': 'c', 'synset': 'bat.n.01', 'synonyms': ['bat_(animal)'], 'id': 64, 'def': 'nocturnal mouselike mammal with forelimbs modified to form membranous wings', 'name': 'bat_(animal)'}, {'frequency': 'f', 'synset': 'bath_mat.n.01', 'synonyms': ['bath_mat'], 'id': 65, 'def': 'a heavy towel or mat to stand on while drying yourself after a bath', 'name': 'bath_mat'}, {'frequency': 'f', 'synset': 'bath_towel.n.01', 'synonyms': ['bath_towel'], 'id': 66, 'def': 'a large towel; to dry yourself after a bath', 'name': 'bath_towel'}, {'frequency': 'c', 'synset': 'bathrobe.n.01', 'synonyms': ['bathrobe'], 'id': 67, 'def': 'a loose-fitting robe of towelling; worn after a bath or swim', 'name': 'bathrobe'}, {'frequency': 'f', 'synset': 'bathtub.n.01', 'synonyms': ['bathtub', 'bathing_tub'], 'id': 68, 'def': 'a large open container that you fill with water and use to wash the body', 'name': 'bathtub'}, {'frequency': 'r', 'synset': 'batter.n.02', 'synonyms': ['batter_(food)'], 'id': 69, 'def': 'a liquid or semiliquid mixture, as of flour, eggs, and milk, used in cooking', 'name': 'batter_(food)'}, {'frequency': 'c', 'synset': 'battery.n.02', 'synonyms': ['battery'], 'id': 70, 'def': 'a portable device that produces electricity', 'name': 'battery'}, {'frequency': 'r', 'synset': 'beach_ball.n.01', 'synonyms': ['beachball'], 'id': 71, 'def': 'large and light ball; for play at the seaside', 'name': 'beachball'}, {'frequency': 'c', 'synset': 'bead.n.01', 'synonyms': ['bead'], 'id': 72, 'def': 'a small ball with a hole through the middle used for ornamentation, jewellery, etc.', 'name': 'bead'}, {'frequency': 'c', 'synset': 'bean_curd.n.01', 'synonyms': ['bean_curd', 'tofu'], 'id': 73, 'def': 'cheeselike food made of curdled soybean milk', 'name': 'bean_curd'}, {'frequency': 'c', 'synset': 'beanbag.n.01', 'synonyms': ['beanbag'], 'id': 74, 'def': 'a bag filled with dried beans or similar items; used in games or to sit on', 'name': 'beanbag'}, {'frequency': 'f', 'synset': 'beanie.n.01', 'synonyms': ['beanie', 'beany'], 'id': 75, 'def': 'a small skullcap; formerly worn by schoolboys and college freshmen', 'name': 'beanie'}, {'frequency': 'f', 'synset': 'bear.n.01', 'synonyms': ['bear'], 'id': 76, 'def': 'large carnivorous or omnivorous mammals with shaggy coats and claws', 'name': 'bear'}, {'frequency': 'f', 'synset': 'bed.n.01', 'synonyms': ['bed'], 'id': 77, 'def': 'a piece of furniture that provides a place to sleep', 'name': 'bed'}, {'frequency': 'r', 'synset': 'bedpan.n.01', 'synonyms': ['bedpan'], 'id': 78, 'def': 'a shallow vessel used by a bedridden patient for defecation and urination', 'name': 'bedpan'}, {'frequency': 'f', 'synset': 'bedspread.n.01', 'synonyms': ['bedspread', 'bedcover', 'bed_covering', 'counterpane', 'spread'], 'id': 79, 'def': 'decorative cover for a bed', 'name': 'bedspread'}, {'frequency': 'f', 'synset': 'beef.n.01', 'synonyms': ['cow'], 'id': 80, 'def': 'cattle/cow', 'name': 'cow'}, {'frequency': 'f', 'synset': 'beef.n.02', 'synonyms': ['beef_(food)', 'boeuf_(food)'], 'id': 81, 'def': 'meat from an adult domestic bovine', 'name': 'beef_(food)'}, {'frequency': 'r', 'synset': 'beeper.n.01', 'synonyms': ['beeper', 'pager'], 'id': 82, 'def': 'an device that beeps when the person carrying it is being paged', 'name': 'beeper'}, {'frequency': 'f', 'synset': 'beer_bottle.n.01', 'synonyms': ['beer_bottle'], 'id': 83, 'def': 'a bottle that holds beer', 'name': 'beer_bottle'}, {'frequency': 'c', 'synset': 'beer_can.n.01', 'synonyms': ['beer_can'], 'id': 84, 'def': 'a can that holds beer', 'name': 'beer_can'}, {'frequency': 'r', 'synset': 'beetle.n.01', 'synonyms': ['beetle'], 'id': 85, 'def': 'insect with hard wing covers', 'name': 'beetle'}, {'frequency': 'f', 'synset': 'bell.n.01', 'synonyms': ['bell'], 'id': 86, 'def': 'a hollow device made of metal that makes a ringing sound when struck', 'name': 'bell'}, {'frequency': 'f', 'synset': 'bell_pepper.n.02', 'synonyms': ['bell_pepper', 'capsicum'], 'id': 87, 'def': 'large bell-shaped sweet pepper in green or red or yellow or orange or black varieties', 'name': 'bell_pepper'}, {'frequency': 'f', 'synset': 'belt.n.02', 'synonyms': ['belt'], 'id': 88, 'def': 'a band to tie or buckle around the body (usually at the waist)', 'name': 'belt'}, {'frequency': 'f', 'synset': 'belt_buckle.n.01', 'synonyms': ['belt_buckle'], 'id': 89, 'def': 'the buckle used to fasten a belt', 'name': 'belt_buckle'}, {'frequency': 'f', 'synset': 'bench.n.01', 'synonyms': ['bench'], 'id': 90, 'def': 'a long seat for more than one person', 'name': 'bench'}, {'frequency': 'c', 'synset': 'beret.n.01', 'synonyms': ['beret'], 'id': 91, 'def': 'a cap with no brim or bill; made of soft cloth', 'name': 'beret'}, {'frequency': 'c', 'synset': 'bib.n.02', 'synonyms': ['bib'], 'id': 92, 'def': 'a napkin tied under the chin of a child while eating', 'name': 'bib'}, {'frequency': 'r', 'synset': 'bible.n.01', 'synonyms': ['Bible'], 'id': 93, 'def': 'the sacred writings of the Christian religions', 'name': 'Bible'}, {'frequency': 'f', 'synset': 'bicycle.n.01', 'synonyms': ['bicycle', 'bike_(bicycle)'], 'id': 94, 'def': 'a wheeled vehicle that has two wheels and is moved by foot pedals', 'name': 'bicycle'}, {'frequency': 'f', 'synset': 'bill.n.09', 'synonyms': ['visor', 'vizor'], 'id': 95, 'def': 'a brim that projects to the front to shade the eyes', 'name': 'visor'}, {'frequency': 'f', 'synset': 'billboard.n.01', 'synonyms': ['billboard'], 'id': 96, 'def': 'large outdoor signboard', 'name': 'billboard'}, {'frequency': 'c', 'synset': 'binder.n.03', 'synonyms': ['binder', 'ring-binder'], 'id': 97, 'def': 'holds loose papers or magazines', 'name': 'binder'}, {'frequency': 'c', 'synset': 'binoculars.n.01', 'synonyms': ['binoculars', 'field_glasses', 'opera_glasses'], 'id': 98, 'def': 'an optical instrument designed for simultaneous use by both eyes', 'name': 'binoculars'}, {'frequency': 'f', 'synset': 'bird.n.01', 'synonyms': ['bird'], 'id': 99, 'def': 'animal characterized by feathers and wings', 'name': 'bird'}, {'frequency': 'c', 'synset': 'bird_feeder.n.01', 'synonyms': ['birdfeeder'], 'id': 100, 'def': 'an outdoor device that supplies food for wild birds', 'name': 'birdfeeder'}, {'frequency': 'c', 'synset': 'birdbath.n.01', 'synonyms': ['birdbath'], 'id': 101, 'def': 'an ornamental basin (usually in a garden) for birds to bathe in', 'name': 'birdbath'}, {'frequency': 'c', 'synset': 'birdcage.n.01', 'synonyms': ['birdcage'], 'id': 102, 'def': 'a cage in which a bird can be kept', 'name': 'birdcage'}, {'frequency': 'c', 'synset': 'birdhouse.n.01', 'synonyms': ['birdhouse'], 'id': 103, 'def': 'a shelter for birds', 'name': 'birdhouse'}, {'frequency': 'f', 'synset': 'birthday_cake.n.01', 'synonyms': ['birthday_cake'], 'id': 104, 'def': 'decorated cake served at a birthday party', 'name': 'birthday_cake'}, {'frequency': 'r', 'synset': 'birthday_card.n.01', 'synonyms': ['birthday_card'], 'id': 105, 'def': 'a card expressing a birthday greeting', 'name': 'birthday_card'}, {'frequency': 'r', 'synset': 'black_flag.n.01', 'synonyms': ['pirate_flag'], 'id': 106, 'def': 'a flag usually bearing a white skull and crossbones on a black background', 'name': 'pirate_flag'}, {'frequency': 'c', 'synset': 'black_sheep.n.02', 'synonyms': ['black_sheep'], 'id': 107, 'def': 'sheep with a black coat', 'name': 'black_sheep'}, {'frequency': 'c', 'synset': 'blackberry.n.01', 'synonyms': ['blackberry'], 'id': 108, 'def': 'large sweet black or very dark purple edible aggregate fruit', 'name': 'blackberry'}, {'frequency': 'f', 'synset': 'blackboard.n.01', 'synonyms': ['blackboard', 'chalkboard'], 'id': 109, 'def': 'sheet of slate; for writing with chalk', 'name': 'blackboard'}, {'frequency': 'f', 'synset': 'blanket.n.01', 'synonyms': ['blanket'], 'id': 110, 'def': 'bedding that keeps a person warm in bed', 'name': 'blanket'}, {'frequency': 'c', 'synset': 'blazer.n.01', 'synonyms': ['blazer', 'sport_jacket', 'sport_coat', 'sports_jacket', 'sports_coat'], 'id': 111, 'def': 'lightweight jacket; often striped in the colors of a club or school', 'name': 'blazer'}, {'frequency': 'f', 'synset': 'blender.n.01', 'synonyms': ['blender', 'liquidizer', 'liquidiser'], 'id': 112, 'def': 'an electrically powered mixer that mix or chop or liquefy foods', 'name': 'blender'}, {'frequency': 'r', 'synset': 'blimp.n.02', 'synonyms': ['blimp'], 'id': 113, 'def': 'a small nonrigid airship used for observation or as a barrage balloon', 'name': 'blimp'}, {'frequency': 'f', 'synset': 'blinker.n.01', 'synonyms': ['blinker', 'flasher'], 'id': 114, 'def': 'a light that flashes on and off; used as a signal or to send messages', 'name': 'blinker'}, {'frequency': 'f', 'synset': 'blouse.n.01', 'synonyms': ['blouse'], 'id': 115, 'def': 'a top worn by women', 'name': 'blouse'}, {'frequency': 'f', 'synset': 'blueberry.n.02', 'synonyms': ['blueberry'], 'id': 116, 'def': 'sweet edible dark-blue berries of blueberry plants', 'name': 'blueberry'}, {'frequency': 'r', 'synset': 'board.n.09', 'synonyms': ['gameboard'], 'id': 117, 'def': 'a flat portable surface (usually rectangular) designed for board games', 'name': 'gameboard'}, {'frequency': 'f', 'synset': 'boat.n.01', 'synonyms': ['boat', 'ship_(boat)'], 'id': 118, 'def': 'a vessel for travel on water', 'name': 'boat'}, {'frequency': 'r', 'synset': 'bob.n.05', 'synonyms': ['bob', 'bobber', 'bobfloat'], 'id': 119, 'def': 'a small float usually made of cork; attached to a fishing line', 'name': 'bob'}, {'frequency': 'c', 'synset': 'bobbin.n.01', 'synonyms': ['bobbin', 'spool', 'reel'], 'id': 120, 'def': 'a thing around which thread/tape/film or other flexible materials can be wound', 'name': 'bobbin'}, {'frequency': 'c', 'synset': 'bobby_pin.n.01', 'synonyms': ['bobby_pin', 'hairgrip'], 'id': 121, 'def': 'a flat wire hairpin used to hold bobbed hair in place', 'name': 'bobby_pin'}, {'frequency': 'c', 'synset': 'boiled_egg.n.01', 'synonyms': ['boiled_egg', 'coddled_egg'], 'id': 122, 'def': 'egg cooked briefly in the shell in gently boiling water', 'name': 'boiled_egg'}, {'frequency': 'r', 'synset': 'bolo_tie.n.01', 'synonyms': ['bolo_tie', 'bolo', 'bola_tie', 'bola'], 'id': 123, 'def': 'a cord fastened around the neck with an ornamental clasp and worn as a necktie', 'name': 'bolo_tie'}, {'frequency': 'c', 'synset': 'bolt.n.03', 'synonyms': ['deadbolt'], 'id': 124, 'def': 'the part of a lock that is engaged or withdrawn with a key', 'name': 'deadbolt'}, {'frequency': 'f', 'synset': 'bolt.n.06', 'synonyms': ['bolt'], 'id': 125, 'def': 'a screw that screws into a nut to form a fastener', 'name': 'bolt'}, {'frequency': 'r', 'synset': 'bonnet.n.01', 'synonyms': ['bonnet'], 'id': 126, 'def': 'a hat tied under the chin', 'name': 'bonnet'}, {'frequency': 'f', 'synset': 'book.n.01', 'synonyms': ['book'], 'id': 127, 'def': 'a written work or composition that has been published', 'name': 'book'}, {'frequency': 'c', 'synset': 'bookcase.n.01', 'synonyms': ['bookcase'], 'id': 128, 'def': 'a piece of furniture with shelves for storing books', 'name': 'bookcase'}, {'frequency': 'c', 'synset': 'booklet.n.01', 'synonyms': ['booklet', 'brochure', 'leaflet', 'pamphlet'], 'id': 129, 'def': 'a small book usually having a paper cover', 'name': 'booklet'}, {'frequency': 'r', 'synset': 'bookmark.n.01', 'synonyms': ['bookmark', 'bookmarker'], 'id': 130, 'def': 'a marker (a piece of paper or ribbon) placed between the pages of a book', 'name': 'bookmark'}, {'frequency': 'r', 'synset': 'boom.n.04', 'synonyms': ['boom_microphone', 'microphone_boom'], 'id': 131, 'def': 'a pole carrying an overhead microphone projected over a film or tv set', 'name': 'boom_microphone'}, {'frequency': 'f', 'synset': 'boot.n.01', 'synonyms': ['boot'], 'id': 132, 'def': 'footwear that covers the whole foot and lower leg', 'name': 'boot'}, {'frequency': 'f', 'synset': 'bottle.n.01', 'synonyms': ['bottle'], 'id': 133, 'def': 'a glass or plastic vessel used for storing drinks or other liquids', 'name': 'bottle'}, {'frequency': 'c', 'synset': 'bottle_opener.n.01', 'synonyms': ['bottle_opener'], 'id': 134, 'def': 'an opener for removing caps or corks from bottles', 'name': 'bottle_opener'}, {'frequency': 'c', 'synset': 'bouquet.n.01', 'synonyms': ['bouquet'], 'id': 135, 'def': 'an arrangement of flowers that is usually given as a present', 'name': 'bouquet'}, {'frequency': 'r', 'synset': 'bow.n.04', 'synonyms': ['bow_(weapon)'], 'id': 136, 'def': 'a weapon for shooting arrows', 'name': 'bow_(weapon)'}, {'frequency': 'f', 'synset': 'bow.n.08', 'synonyms': ['bow_(decorative_ribbons)'], 'id': 137, 'def': 'a decorative interlacing of ribbons', 'name': 'bow_(decorative_ribbons)'}, {'frequency': 'f', 'synset': 'bow_tie.n.01', 'synonyms': ['bow-tie', 'bowtie'], 'id': 138, 'def': "a man's tie that ties in a bow", 'name': 'bow-tie'}, {'frequency': 'f', 'synset': 'bowl.n.03', 'synonyms': ['bowl'], 'id': 139, 'def': 'a dish that is round and open at the top for serving foods', 'name': 'bowl'}, {'frequency': 'r', 'synset': 'bowl.n.08', 'synonyms': ['pipe_bowl'], 'id': 140, 'def': 'a small round container that is open at the top for holding tobacco', 'name': 'pipe_bowl'}, {'frequency': 'c', 'synset': 'bowler_hat.n.01', 'synonyms': ['bowler_hat', 'bowler', 'derby_hat', 'derby', 'plug_hat'], 'id': 141, 'def': 'a felt hat that is round and hard with a narrow brim', 'name': 'bowler_hat'}, {'frequency': 'r', 'synset': 'bowling_ball.n.01', 'synonyms': ['bowling_ball'], 'id': 142, 'def': 'a large ball with finger holes used in the sport of bowling', 'name': 'bowling_ball'}, {'frequency': 'f', 'synset': 'box.n.01', 'synonyms': ['box'], 'id': 143, 'def': 'a (usually rectangular) container; may have a lid', 'name': 'box'}, {'frequency': 'r', 'synset': 'boxing_glove.n.01', 'synonyms': ['boxing_glove'], 'id': 144, 'def': 'large glove coverings the fists of a fighter worn for the sport of boxing', 'name': 'boxing_glove'}, {'frequency': 'c', 'synset': 'brace.n.06', 'synonyms': ['suspenders'], 'id': 145, 'def': 'elastic straps that hold trousers up (usually used in the plural)', 'name': 'suspenders'}, {'frequency': 'f', 'synset': 'bracelet.n.02', 'synonyms': ['bracelet', 'bangle'], 'id': 146, 'def': 'jewelry worn around the wrist for decoration', 'name': 'bracelet'}, {'frequency': 'r', 'synset': 'brass.n.07', 'synonyms': ['brass_plaque'], 'id': 147, 'def': 'a memorial made of brass', 'name': 'brass_plaque'}, {'frequency': 'c', 'synset': 'brassiere.n.01', 'synonyms': ['brassiere', 'bra', 'bandeau'], 'id': 148, 'def': 'an undergarment worn by women to support their breasts', 'name': 'brassiere'}, {'frequency': 'c', 'synset': 'bread-bin.n.01', 'synonyms': ['bread-bin', 'breadbox'], 'id': 149, 'def': 'a container used to keep bread or cake in', 'name': 'bread-bin'}, {'frequency': 'f', 'synset': 'bread.n.01', 'synonyms': ['bread'], 'id': 150, 'def': 'food made from dough of flour or meal and usually raised with yeast or baking powder and then baked', 'name': 'bread'}, {'frequency': 'r', 'synset': 'breechcloth.n.01', 'synonyms': ['breechcloth', 'breechclout', 'loincloth'], 'id': 151, 'def': 'a garment that provides covering for the loins', 'name': 'breechcloth'}, {'frequency': 'f', 'synset': 'bridal_gown.n.01', 'synonyms': ['bridal_gown', 'wedding_gown', 'wedding_dress'], 'id': 152, 'def': 'a gown worn by the bride at a wedding', 'name': 'bridal_gown'}, {'frequency': 'c', 'synset': 'briefcase.n.01', 'synonyms': ['briefcase'], 'id': 153, 'def': 'a case with a handle; for carrying papers or files or books', 'name': 'briefcase'}, {'frequency': 'f', 'synset': 'broccoli.n.01', 'synonyms': ['broccoli'], 'id': 154, 'def': 'plant with dense clusters of tight green flower buds', 'name': 'broccoli'}, {'frequency': 'r', 'synset': 'brooch.n.01', 'synonyms': ['broach'], 'id': 155, 'def': 'a decorative pin worn by women', 'name': 'broach'}, {'frequency': 'c', 'synset': 'broom.n.01', 'synonyms': ['broom'], 'id': 156, 'def': 'bundle of straws or twigs attached to a long handle; used for cleaning', 'name': 'broom'}, {'frequency': 'c', 'synset': 'brownie.n.03', 'synonyms': ['brownie'], 'id': 157, 'def': 'square or bar of very rich chocolate cake usually with nuts', 'name': 'brownie'}, {'frequency': 'c', 'synset': 'brussels_sprouts.n.01', 'synonyms': ['brussels_sprouts'], 'id': 158, 'def': 'the small edible cabbage-like buds growing along a stalk', 'name': 'brussels_sprouts'}, {'frequency': 'r', 'synset': 'bubble_gum.n.01', 'synonyms': ['bubble_gum'], 'id': 159, 'def': 'a kind of chewing gum that can be blown into bubbles', 'name': 'bubble_gum'}, {'frequency': 'f', 'synset': 'bucket.n.01', 'synonyms': ['bucket', 'pail'], 'id': 160, 'def': 'a roughly cylindrical vessel that is open at the top', 'name': 'bucket'}, {'frequency': 'r', 'synset': 'buggy.n.01', 'synonyms': ['horse_buggy'], 'id': 161, 'def': 'a small lightweight carriage; drawn by a single horse', 'name': 'horse_buggy'}, {'frequency': 'c', 'synset': 'bull.n.11', 'synonyms': ['horned_cow'], 'id': 162, 'def': 'a cow with horns', 'name': 'bull'}, {'frequency': 'c', 'synset': 'bulldog.n.01', 'synonyms': ['bulldog'], 'id': 163, 'def': 'a thickset short-haired dog with a large head and strong undershot lower jaw', 'name': 'bulldog'}, {'frequency': 'r', 'synset': 'bulldozer.n.01', 'synonyms': ['bulldozer', 'dozer'], 'id': 164, 'def': 'large powerful tractor; a large blade in front flattens areas of ground', 'name': 'bulldozer'}, {'frequency': 'c', 'synset': 'bullet_train.n.01', 'synonyms': ['bullet_train'], 'id': 165, 'def': 'a high-speed passenger train', 'name': 'bullet_train'}, {'frequency': 'c', 'synset': 'bulletin_board.n.02', 'synonyms': ['bulletin_board', 'notice_board'], 'id': 166, 'def': 'a board that hangs on a wall; displays announcements', 'name': 'bulletin_board'}, {'frequency': 'r', 'synset': 'bulletproof_vest.n.01', 'synonyms': ['bulletproof_vest'], 'id': 167, 'def': 'a vest capable of resisting the impact of a bullet', 'name': 'bulletproof_vest'}, {'frequency': 'c', 'synset': 'bullhorn.n.01', 'synonyms': ['bullhorn', 'megaphone'], 'id': 168, 'def': 'a portable loudspeaker with built-in microphone and amplifier', 'name': 'bullhorn'}, {'frequency': 'f', 'synset': 'bun.n.01', 'synonyms': ['bun', 'roll'], 'id': 169, 'def': 'small rounded bread either plain or sweet', 'name': 'bun'}, {'frequency': 'c', 'synset': 'bunk_bed.n.01', 'synonyms': ['bunk_bed'], 'id': 170, 'def': 'beds built one above the other', 'name': 'bunk_bed'}, {'frequency': 'f', 'synset': 'buoy.n.01', 'synonyms': ['buoy'], 'id': 171, 'def': 'a float attached by rope to the seabed to mark channels in a harbor or underwater hazards', 'name': 'buoy'}, {'frequency': 'r', 'synset': 'burrito.n.01', 'synonyms': ['burrito'], 'id': 172, 'def': 'a flour tortilla folded around a filling', 'name': 'burrito'}, {'frequency': 'f', 'synset': 'bus.n.01', 'synonyms': ['bus_(vehicle)', 'autobus', 'charabanc', 'double-decker', 'motorbus', 'motorcoach'], 'id': 173, 'def': 'a vehicle carrying many passengers; used for public transport', 'name': 'bus_(vehicle)'}, {'frequency': 'c', 'synset': 'business_card.n.01', 'synonyms': ['business_card'], 'id': 174, 'def': "a card on which are printed the person's name and business affiliation", 'name': 'business_card'}, {'frequency': 'f', 'synset': 'butter.n.01', 'synonyms': ['butter'], 'id': 175, 'def': 'an edible emulsion of fat globules made by churning milk or cream; for cooking and table use', 'name': 'butter'}, {'frequency': 'c', 'synset': 'butterfly.n.01', 'synonyms': ['butterfly'], 'id': 176, 'def': 'insect typically having a slender body with knobbed antennae and broad colorful wings', 'name': 'butterfly'}, {'frequency': 'f', 'synset': 'button.n.01', 'synonyms': ['button'], 'id': 177, 'def': 'a round fastener sewn to shirts and coats etc to fit through buttonholes', 'name': 'button'}, {'frequency': 'f', 'synset': 'cab.n.03', 'synonyms': ['cab_(taxi)', 'taxi', 'taxicab'], 'id': 178, 'def': 'a car that takes passengers where they want to go in exchange for money', 'name': 'cab_(taxi)'}, {'frequency': 'r', 'synset': 'cabana.n.01', 'synonyms': ['cabana'], 'id': 179, 'def': 'a small tent used as a dressing room beside the sea or a swimming pool', 'name': 'cabana'}, {'frequency': 'c', 'synset': 'cabin_car.n.01', 'synonyms': ['cabin_car', 'caboose'], 'id': 180, 'def': 'a car on a freight train for use of the train crew; usually the last car on the train', 'name': 'cabin_car'}, {'frequency': 'f', 'synset': 'cabinet.n.01', 'synonyms': ['cabinet'], 'id': 181, 'def': 'a piece of furniture resembling a cupboard with doors and shelves and drawers', 'name': 'cabinet'}, {'frequency': 'r', 'synset': 'cabinet.n.03', 'synonyms': ['locker', 'storage_locker'], 'id': 182, 'def': 'a storage compartment for clothes and valuables; usually it has a lock', 'name': 'locker'}, {'frequency': 'f', 'synset': 'cake.n.03', 'synonyms': ['cake'], 'id': 183, 'def': 'baked goods made from or based on a mixture of flour, sugar, eggs, and fat', 'name': 'cake'}, {'frequency': 'c', 'synset': 'calculator.n.02', 'synonyms': ['calculator'], 'id': 184, 'def': 'a small machine that is used for mathematical calculations', 'name': 'calculator'}, {'frequency': 'f', 'synset': 'calendar.n.02', 'synonyms': ['calendar'], 'id': 185, 'def': 'a list or register of events (appointments/social events/court cases, etc)', 'name': 'calendar'}, {'frequency': 'c', 'synset': 'calf.n.01', 'synonyms': ['calf'], 'id': 186, 'def': 'young of domestic cattle', 'name': 'calf'}, {'frequency': 'c', 'synset': 'camcorder.n.01', 'synonyms': ['camcorder'], 'id': 187, 'def': 'a portable television camera and videocassette recorder', 'name': 'camcorder'}, {'frequency': 'c', 'synset': 'camel.n.01', 'synonyms': ['camel'], 'id': 188, 'def': 'cud-chewing mammal used as a draft or saddle animal in desert regions', 'name': 'camel'}, {'frequency': 'f', 'synset': 'camera.n.01', 'synonyms': ['camera'], 'id': 189, 'def': 'equipment for taking photographs', 'name': 'camera'}, {'frequency': 'c', 'synset': 'camera_lens.n.01', 'synonyms': ['camera_lens'], 'id': 190, 'def': 'a lens that focuses the image in a camera', 'name': 'camera_lens'}, {'frequency': 'c', 'synset': 'camper.n.02', 'synonyms': ['camper_(vehicle)', 'camping_bus', 'motor_home'], 'id': 191, 'def': 'a recreational vehicle equipped for camping out while traveling', 'name': 'camper_(vehicle)'}, {'frequency': 'f', 'synset': 'can.n.01', 'synonyms': ['can', 'tin_can'], 'id': 192, 'def': 'airtight sealed metal container for food or drink or paint etc.', 'name': 'can'}, {'frequency': 'c', 'synset': 'can_opener.n.01', 'synonyms': ['can_opener', 'tin_opener'], 'id': 193, 'def': 'a device for cutting cans open', 'name': 'can_opener'}, {'frequency': 'f', 'synset': 'candle.n.01', 'synonyms': ['candle', 'candlestick'], 'id': 194, 'def': 'stick of wax with a wick in the middle', 'name': 'candle'}, {'frequency': 'f', 'synset': 'candlestick.n.01', 'synonyms': ['candle_holder'], 'id': 195, 'def': 'a holder with sockets for candles', 'name': 'candle_holder'}, {'frequency': 'r', 'synset': 'candy_bar.n.01', 'synonyms': ['candy_bar'], 'id': 196, 'def': 'a candy shaped as a bar', 'name': 'candy_bar'}, {'frequency': 'c', 'synset': 'candy_cane.n.01', 'synonyms': ['candy_cane'], 'id': 197, 'def': 'a hard candy in the shape of a rod (usually with stripes)', 'name': 'candy_cane'}, {'frequency': 'c', 'synset': 'cane.n.01', 'synonyms': ['walking_cane'], 'id': 198, 'def': 'a stick that people can lean on to help them walk', 'name': 'walking_cane'}, {'frequency': 'c', 'synset': 'canister.n.02', 'synonyms': ['canister', 'cannister'], 'id': 199, 'def': 'metal container for storing dry foods such as tea or flour', 'name': 'canister'}, {'frequency': 'c', 'synset': 'canoe.n.01', 'synonyms': ['canoe'], 'id': 200, 'def': 'small and light boat; pointed at both ends; propelled with a paddle', 'name': 'canoe'}, {'frequency': 'c', 'synset': 'cantaloup.n.02', 'synonyms': ['cantaloup', 'cantaloupe'], 'id': 201, 'def': 'the fruit of a cantaloup vine; small to medium-sized melon with yellowish flesh', 'name': 'cantaloup'}, {'frequency': 'r', 'synset': 'canteen.n.01', 'synonyms': ['canteen'], 'id': 202, 'def': 'a flask for carrying water; used by soldiers or travelers', 'name': 'canteen'}, {'frequency': 'f', 'synset': 'cap.n.01', 'synonyms': ['cap_(headwear)'], 'id': 203, 'def': 'a tight-fitting headwear', 'name': 'cap_(headwear)'}, {'frequency': 'f', 'synset': 'cap.n.02', 'synonyms': ['bottle_cap', 'cap_(container_lid)'], 'id': 204, 'def': 'a top (as for a bottle)', 'name': 'bottle_cap'}, {'frequency': 'c', 'synset': 'cape.n.02', 'synonyms': ['cape'], 'id': 205, 'def': 'a sleeveless garment like a cloak but shorter', 'name': 'cape'}, {'frequency': 'c', 'synset': 'cappuccino.n.01', 'synonyms': ['cappuccino', 'coffee_cappuccino'], 'id': 206, 'def': 'equal parts of espresso and steamed milk', 'name': 'cappuccino'}, {'frequency': 'f', 'synset': 'car.n.01', 'synonyms': ['car_(automobile)', 'auto_(automobile)', 'automobile'], 'id': 207, 'def': 'a motor vehicle with four wheels', 'name': 'car_(automobile)'}, {'frequency': 'f', 'synset': 'car.n.02', 'synonyms': ['railcar_(part_of_a_train)', 'railway_car_(part_of_a_train)', 'railroad_car_(part_of_a_train)'], 'id': 208, 'def': 'a wheeled vehicle adapted to the rails of railroad (mark each individual railcar separately)', 'name': 'railcar_(part_of_a_train)'}, {'frequency': 'r', 'synset': 'car.n.04', 'synonyms': ['elevator_car'], 'id': 209, 'def': 'where passengers ride up and down', 'name': 'elevator_car'}, {'frequency': 'r', 'synset': 'car_battery.n.01', 'synonyms': ['car_battery', 'automobile_battery'], 'id': 210, 'def': 'a battery in a motor vehicle', 'name': 'car_battery'}, {'frequency': 'c', 'synset': 'card.n.02', 'synonyms': ['identity_card'], 'id': 211, 'def': 'a card certifying the identity of the bearer', 'name': 'identity_card'}, {'frequency': 'c', 'synset': 'card.n.03', 'synonyms': ['card'], 'id': 212, 'def': 'a rectangular piece of paper used to send messages (e.g. greetings or pictures)', 'name': 'card'}, {'frequency': 'c', 'synset': 'cardigan.n.01', 'synonyms': ['cardigan'], 'id': 213, 'def': 'knitted jacket that is fastened up the front with buttons or a zipper', 'name': 'cardigan'}, {'frequency': 'r', 'synset': 'cargo_ship.n.01', 'synonyms': ['cargo_ship', 'cargo_vessel'], 'id': 214, 'def': 'a ship designed to carry cargo', 'name': 'cargo_ship'}, {'frequency': 'r', 'synset': 'carnation.n.01', 'synonyms': ['carnation'], 'id': 215, 'def': 'plant with pink to purple-red spice-scented usually double flowers', 'name': 'carnation'}, {'frequency': 'c', 'synset': 'carriage.n.02', 'synonyms': ['horse_carriage'], 'id': 216, 'def': 'a vehicle with wheels drawn by one or more horses', 'name': 'horse_carriage'}, {'frequency': 'f', 'synset': 'carrot.n.01', 'synonyms': ['carrot'], 'id': 217, 'def': 'deep orange edible root of the cultivated carrot plant', 'name': 'carrot'}, {'frequency': 'f', 'synset': 'carryall.n.01', 'synonyms': ['tote_bag'], 'id': 218, 'def': 'a capacious bag or basket', 'name': 'tote_bag'}, {'frequency': 'c', 'synset': 'cart.n.01', 'synonyms': ['cart'], 'id': 219, 'def': 'a heavy open wagon usually having two wheels and drawn by an animal', 'name': 'cart'}, {'frequency': 'c', 'synset': 'carton.n.02', 'synonyms': ['carton'], 'id': 220, 'def': 'a container made of cardboard for holding food or drink', 'name': 'carton'}, {'frequency': 'c', 'synset': 'cash_register.n.01', 'synonyms': ['cash_register', 'register_(for_cash_transactions)'], 'id': 221, 'def': 'a cashbox with an adding machine to register transactions', 'name': 'cash_register'}, {'frequency': 'r', 'synset': 'casserole.n.01', 'synonyms': ['casserole'], 'id': 222, 'def': 'food cooked and served in a casserole', 'name': 'casserole'}, {'frequency': 'r', 'synset': 'cassette.n.01', 'synonyms': ['cassette'], 'id': 223, 'def': 'a container that holds a magnetic tape used for recording or playing sound or video', 'name': 'cassette'}, {'frequency': 'c', 'synset': 'cast.n.05', 'synonyms': ['cast', 'plaster_cast', 'plaster_bandage'], 'id': 224, 'def': 'bandage consisting of a firm covering that immobilizes broken bones while they heal', 'name': 'cast'}, {'frequency': 'f', 'synset': 'cat.n.01', 'synonyms': ['cat'], 'id': 225, 'def': 'a domestic house cat', 'name': 'cat'}, {'frequency': 'f', 'synset': 'cauliflower.n.02', 'synonyms': ['cauliflower'], 'id': 226, 'def': 'edible compact head of white undeveloped flowers', 'name': 'cauliflower'}, {'frequency': 'c', 'synset': 'cayenne.n.02', 'synonyms': ['cayenne_(spice)', 'cayenne_pepper_(spice)', 'red_pepper_(spice)'], 'id': 227, 'def': 'ground pods and seeds of pungent red peppers of the genus Capsicum', 'name': 'cayenne_(spice)'}, {'frequency': 'c', 'synset': 'cd_player.n.01', 'synonyms': ['CD_player'], 'id': 228, 'def': 'electronic equipment for playing compact discs (CDs)', 'name': 'CD_player'}, {'frequency': 'f', 'synset': 'celery.n.01', 'synonyms': ['celery'], 'id': 229, 'def': 'widely cultivated herb with aromatic leaf stalks that are eaten raw or cooked', 'name': 'celery'}, {'frequency': 'f', 'synset': 'cellular_telephone.n.01', 'synonyms': ['cellular_telephone', 'cellular_phone', 'cellphone', 'mobile_phone', 'smart_phone'], 'id': 230, 'def': 'a hand-held mobile telephone', 'name': 'cellular_telephone'}, {'frequency': 'r', 'synset': 'chain_mail.n.01', 'synonyms': ['chain_mail', 'ring_mail', 'chain_armor', 'chain_armour', 'ring_armor', 'ring_armour'], 'id': 231, 'def': '(Middle Ages) flexible armor made of interlinked metal rings', 'name': 'chain_mail'}, {'frequency': 'f', 'synset': 'chair.n.01', 'synonyms': ['chair'], 'id': 232, 'def': 'a seat for one person, with a support for the back', 'name': 'chair'}, {'frequency': 'r', 'synset': 'chaise_longue.n.01', 'synonyms': ['chaise_longue', 'chaise', 'daybed'], 'id': 233, 'def': 'a long chair; for reclining', 'name': 'chaise_longue'}, {'frequency': 'r', 'synset': 'chalice.n.01', 'synonyms': ['chalice'], 'id': 234, 'def': 'a bowl-shaped drinking vessel; especially the Eucharistic cup', 'name': 'chalice'}, {'frequency': 'f', 'synset': 'chandelier.n.01', 'synonyms': ['chandelier'], 'id': 235, 'def': 'branched lighting fixture; often ornate; hangs from the ceiling', 'name': 'chandelier'}, {'frequency': 'r', 'synset': 'chap.n.04', 'synonyms': ['chap'], 'id': 236, 'def': 'leather leggings without a seat; worn over trousers by cowboys to protect their legs', 'name': 'chap'}, {'frequency': 'r', 'synset': 'checkbook.n.01', 'synonyms': ['checkbook', 'chequebook'], 'id': 237, 'def': 'a book issued to holders of checking accounts', 'name': 'checkbook'}, {'frequency': 'r', 'synset': 'checkerboard.n.01', 'synonyms': ['checkerboard'], 'id': 238, 'def': 'a board having 64 squares of two alternating colors', 'name': 'checkerboard'}, {'frequency': 'c', 'synset': 'cherry.n.03', 'synonyms': ['cherry'], 'id': 239, 'def': 'a red fruit with a single hard stone', 'name': 'cherry'}, {'frequency': 'r', 'synset': 'chessboard.n.01', 'synonyms': ['chessboard'], 'id': 240, 'def': 'a checkerboard used to play chess', 'name': 'chessboard'}, {'frequency': 'c', 'synset': 'chicken.n.02', 'synonyms': ['chicken_(animal)'], 'id': 241, 'def': 'a domestic fowl bred for flesh or eggs', 'name': 'chicken_(animal)'}, {'frequency': 'c', 'synset': 'chickpea.n.01', 'synonyms': ['chickpea', 'garbanzo'], 'id': 242, 'def': 'the seed of the chickpea plant; usually dried', 'name': 'chickpea'}, {'frequency': 'c', 'synset': 'chili.n.02', 'synonyms': ['chili_(vegetable)', 'chili_pepper_(vegetable)', 'chilli_(vegetable)', 'chilly_(vegetable)', 'chile_(vegetable)'], 'id': 243, 'def': 'very hot and finely tapering pepper of special pungency', 'name': 'chili_(vegetable)'}, {'frequency': 'r', 'synset': 'chime.n.01', 'synonyms': ['chime', 'gong'], 'id': 244, 'def': 'an instrument consisting of a set of bells that are struck with a hammer', 'name': 'chime'}, {'frequency': 'r', 'synset': 'chinaware.n.01', 'synonyms': ['chinaware'], 'id': 245, 'def': 'dishware made of high quality porcelain', 'name': 'chinaware'}, {'frequency': 'c', 'synset': 'chip.n.04', 'synonyms': ['crisp_(potato_chip)', 'potato_chip'], 'id': 246, 'def': 'a thin crisp slice of potato fried in deep fat', 'name': 'crisp_(potato_chip)'}, {'frequency': 'r', 'synset': 'chip.n.06', 'synonyms': ['poker_chip'], 'id': 247, 'def': 'a small disk-shaped counter used to represent money when gambling', 'name': 'poker_chip'}, {'frequency': 'c', 'synset': 'chocolate_bar.n.01', 'synonyms': ['chocolate_bar'], 'id': 248, 'def': 'a bar of chocolate candy', 'name': 'chocolate_bar'}, {'frequency': 'c', 'synset': 'chocolate_cake.n.01', 'synonyms': ['chocolate_cake'], 'id': 249, 'def': 'cake containing chocolate', 'name': 'chocolate_cake'}, {'frequency': 'r', 'synset': 'chocolate_milk.n.01', 'synonyms': ['chocolate_milk'], 'id': 250, 'def': 'milk flavored with chocolate syrup', 'name': 'chocolate_milk'}, {'frequency': 'r', 'synset': 'chocolate_mousse.n.01', 'synonyms': ['chocolate_mousse'], 'id': 251, 'def': 'dessert mousse made with chocolate', 'name': 'chocolate_mousse'}, {'frequency': 'f', 'synset': 'choker.n.03', 'synonyms': ['choker', 'collar', 'neckband'], 'id': 252, 'def': 'shirt collar, animal collar, or tight-fitting necklace', 'name': 'choker'}, {'frequency': 'f', 'synset': 'chopping_board.n.01', 'synonyms': ['chopping_board', 'cutting_board', 'chopping_block'], 'id': 253, 'def': 'a wooden board where meats or vegetables can be cut', 'name': 'chopping_board'}, {'frequency': 'f', 'synset': 'chopstick.n.01', 'synonyms': ['chopstick'], 'id': 254, 'def': 'one of a pair of slender sticks used as oriental tableware to eat food with', 'name': 'chopstick'}, {'frequency': 'f', 'synset': 'christmas_tree.n.05', 'synonyms': ['Christmas_tree'], 'id': 255, 'def': 'an ornamented evergreen used as a Christmas decoration', 'name': 'Christmas_tree'}, {'frequency': 'c', 'synset': 'chute.n.02', 'synonyms': ['slide'], 'id': 256, 'def': 'sloping channel through which things can descend', 'name': 'slide'}, {'frequency': 'r', 'synset': 'cider.n.01', 'synonyms': ['cider', 'cyder'], 'id': 257, 'def': 'a beverage made from juice pressed from apples', 'name': 'cider'}, {'frequency': 'r', 'synset': 'cigar_box.n.01', 'synonyms': ['cigar_box'], 'id': 258, 'def': 'a box for holding cigars', 'name': 'cigar_box'}, {'frequency': 'f', 'synset': 'cigarette.n.01', 'synonyms': ['cigarette'], 'id': 259, 'def': 'finely ground tobacco wrapped in paper; for smoking', 'name': 'cigarette'}, {'frequency': 'c', 'synset': 'cigarette_case.n.01', 'synonyms': ['cigarette_case', 'cigarette_pack'], 'id': 260, 'def': 'a small flat case for holding cigarettes', 'name': 'cigarette_case'}, {'frequency': 'f', 'synset': 'cistern.n.02', 'synonyms': ['cistern', 'water_tank'], 'id': 261, 'def': 'a tank that holds the water used to flush a toilet', 'name': 'cistern'}, {'frequency': 'r', 'synset': 'clarinet.n.01', 'synonyms': ['clarinet'], 'id': 262, 'def': 'a single-reed instrument with a straight tube', 'name': 'clarinet'}, {'frequency': 'c', 'synset': 'clasp.n.01', 'synonyms': ['clasp'], 'id': 263, 'def': 'a fastener (as a buckle or hook) that is used to hold two things together', 'name': 'clasp'}, {'frequency': 'c', 'synset': 'cleansing_agent.n.01', 'synonyms': ['cleansing_agent', 'cleanser', 'cleaner'], 'id': 264, 'def': 'a preparation used in cleaning something', 'name': 'cleansing_agent'}, {'frequency': 'r', 'synset': 'cleat.n.02', 'synonyms': ['cleat_(for_securing_rope)'], 'id': 265, 'def': 'a fastener (usually with two projecting horns) around which a rope can be secured', 'name': 'cleat_(for_securing_rope)'}, {'frequency': 'r', 'synset': 'clementine.n.01', 'synonyms': ['clementine'], 'id': 266, 'def': 'a variety of mandarin orange', 'name': 'clementine'}, {'frequency': 'c', 'synset': 'clip.n.03', 'synonyms': ['clip'], 'id': 267, 'def': 'any of various small fasteners used to hold loose articles together', 'name': 'clip'}, {'frequency': 'c', 'synset': 'clipboard.n.01', 'synonyms': ['clipboard'], 'id': 268, 'def': 'a small writing board with a clip at the top for holding papers', 'name': 'clipboard'}, {'frequency': 'r', 'synset': 'clipper.n.03', 'synonyms': ['clippers_(for_plants)'], 'id': 269, 'def': 'shears for cutting grass or shrubbery (often used in the plural)', 'name': 'clippers_(for_plants)'}, {'frequency': 'r', 'synset': 'cloak.n.02', 'synonyms': ['cloak'], 'id': 270, 'def': 'a loose outer garment', 'name': 'cloak'}, {'frequency': 'f', 'synset': 'clock.n.01', 'synonyms': ['clock', 'timepiece', 'timekeeper'], 'id': 271, 'def': 'a timepiece that shows the time of day', 'name': 'clock'}, {'frequency': 'f', 'synset': 'clock_tower.n.01', 'synonyms': ['clock_tower'], 'id': 272, 'def': 'a tower with a large clock visible high up on an outside face', 'name': 'clock_tower'}, {'frequency': 'c', 'synset': 'clothes_hamper.n.01', 'synonyms': ['clothes_hamper', 'laundry_basket', 'clothes_basket'], 'id': 273, 'def': 'a hamper that holds dirty clothes to be washed or wet clothes to be dried', 'name': 'clothes_hamper'}, {'frequency': 'c', 'synset': 'clothespin.n.01', 'synonyms': ['clothespin', 'clothes_peg'], 'id': 274, 'def': 'wood or plastic fastener; for holding clothes on a clothesline', 'name': 'clothespin'}, {'frequency': 'r', 'synset': 'clutch_bag.n.01', 'synonyms': ['clutch_bag'], 'id': 275, 'def': "a woman's strapless purse that is carried in the hand", 'name': 'clutch_bag'}, {'frequency': 'f', 'synset': 'coaster.n.03', 'synonyms': ['coaster'], 'id': 276, 'def': 'a covering (plate or mat) that protects the surface of a table', 'name': 'coaster'}, {'frequency': 'f', 'synset': 'coat.n.01', 'synonyms': ['coat'], 'id': 277, 'def': 'an outer garment that has sleeves and covers the body from shoulder down', 'name': 'coat'}, {'frequency': 'c', 'synset': 'coat_hanger.n.01', 'synonyms': ['coat_hanger', 'clothes_hanger', 'dress_hanger'], 'id': 278, 'def': "a hanger that is shaped like a person's shoulders", 'name': 'coat_hanger'}, {'frequency': 'c', 'synset': 'coatrack.n.01', 'synonyms': ['coatrack', 'hatrack'], 'id': 279, 'def': 'a rack with hooks for temporarily holding coats and hats', 'name': 'coatrack'}, {'frequency': 'c', 'synset': 'cock.n.04', 'synonyms': ['cock', 'rooster'], 'id': 280, 'def': 'adult male chicken', 'name': 'cock'}, {'frequency': 'r', 'synset': 'cockroach.n.01', 'synonyms': ['cockroach'], 'id': 281, 'def': 'any of numerous chiefly nocturnal insects; some are domestic pests', 'name': 'cockroach'}, {'frequency': 'r', 'synset': 'cocoa.n.01', 'synonyms': ['cocoa_(beverage)', 'hot_chocolate_(beverage)', 'drinking_chocolate'], 'id': 282, 'def': 'a beverage made from cocoa powder and milk and sugar; usually drunk hot', 'name': 'cocoa_(beverage)'}, {'frequency': 'c', 'synset': 'coconut.n.02', 'synonyms': ['coconut', 'cocoanut'], 'id': 283, 'def': 'large hard-shelled brown oval nut with a fibrous husk', 'name': 'coconut'}, {'frequency': 'f', 'synset': 'coffee_maker.n.01', 'synonyms': ['coffee_maker', 'coffee_machine'], 'id': 284, 'def': 'a kitchen appliance for brewing coffee automatically', 'name': 'coffee_maker'}, {'frequency': 'f', 'synset': 'coffee_table.n.01', 'synonyms': ['coffee_table', 'cocktail_table'], 'id': 285, 'def': 'low table where magazines can be placed and coffee or cocktails are served', 'name': 'coffee_table'}, {'frequency': 'c', 'synset': 'coffeepot.n.01', 'synonyms': ['coffeepot'], 'id': 286, 'def': 'tall pot in which coffee is brewed', 'name': 'coffeepot'}, {'frequency': 'r', 'synset': 'coil.n.05', 'synonyms': ['coil'], 'id': 287, 'def': 'tubing that is wound in a spiral', 'name': 'coil'}, {'frequency': 'c', 'synset': 'coin.n.01', 'synonyms': ['coin'], 'id': 288, 'def': 'a flat metal piece (usually a disc) used as money', 'name': 'coin'}, {'frequency': 'c', 'synset': 'colander.n.01', 'synonyms': ['colander', 'cullender'], 'id': 289, 'def': 'bowl-shaped strainer; used to wash or drain foods', 'name': 'colander'}, {'frequency': 'c', 'synset': 'coleslaw.n.01', 'synonyms': ['coleslaw', 'slaw'], 'id': 290, 'def': 'basically shredded cabbage', 'name': 'coleslaw'}, {'frequency': 'r', 'synset': 'coloring_material.n.01', 'synonyms': ['coloring_material', 'colouring_material'], 'id': 291, 'def': 'any material used for its color', 'name': 'coloring_material'}, {'frequency': 'r', 'synset': 'combination_lock.n.01', 'synonyms': ['combination_lock'], 'id': 292, 'def': 'lock that can be opened only by turning dials in a special sequence', 'name': 'combination_lock'}, {'frequency': 'c', 'synset': 'comforter.n.04', 'synonyms': ['pacifier', 'teething_ring'], 'id': 293, 'def': 'device used for an infant to suck or bite on', 'name': 'pacifier'}, {'frequency': 'r', 'synset': 'comic_book.n.01', 'synonyms': ['comic_book'], 'id': 294, 'def': 'a magazine devoted to comic strips', 'name': 'comic_book'}, {'frequency': 'r', 'synset': 'compass.n.01', 'synonyms': ['compass'], 'id': 295, 'def': 'navigational instrument for finding directions', 'name': 'compass'}, {'frequency': 'f', 'synset': 'computer_keyboard.n.01', 'synonyms': ['computer_keyboard', 'keyboard_(computer)'], 'id': 296, 'def': 'a keyboard that is a data input device for computers', 'name': 'computer_keyboard'}, {'frequency': 'f', 'synset': 'condiment.n.01', 'synonyms': ['condiment'], 'id': 297, 'def': 'a preparation (a sauce or relish or spice) to enhance flavor or enjoyment', 'name': 'condiment'}, {'frequency': 'f', 'synset': 'cone.n.01', 'synonyms': ['cone', 'traffic_cone'], 'id': 298, 'def': 'a cone-shaped object used to direct traffic', 'name': 'cone'}, {'frequency': 'f', 'synset': 'control.n.09', 'synonyms': ['control', 'controller'], 'id': 299, 'def': 'a mechanism that controls the operation of a machine', 'name': 'control'}, {'frequency': 'r', 'synset': 'convertible.n.01', 'synonyms': ['convertible_(automobile)'], 'id': 300, 'def': 'a car that has top that can be folded or removed', 'name': 'convertible_(automobile)'}, {'frequency': 'r', 'synset': 'convertible.n.03', 'synonyms': ['sofa_bed'], 'id': 301, 'def': 'a sofa that can be converted into a bed', 'name': 'sofa_bed'}, {'frequency': 'r', 'synset': 'cooker.n.01', 'synonyms': ['cooker'], 'id': 302, 'def': 'a utensil for cooking', 'name': 'cooker'}, {'frequency': 'f', 'synset': 'cookie.n.01', 'synonyms': ['cookie', 'cooky', 'biscuit_(cookie)'], 'id': 303, 'def': "any of various small flat sweet cakes (`biscuit' is the British term)", 'name': 'cookie'}, {'frequency': 'r', 'synset': 'cooking_utensil.n.01', 'synonyms': ['cooking_utensil'], 'id': 304, 'def': 'a kitchen utensil made of material that does not melt easily; used for cooking', 'name': 'cooking_utensil'}, {'frequency': 'f', 'synset': 'cooler.n.01', 'synonyms': ['cooler_(for_food)', 'ice_chest'], 'id': 305, 'def': 'an insulated box for storing food often with ice', 'name': 'cooler_(for_food)'}, {'frequency': 'f', 'synset': 'cork.n.04', 'synonyms': ['cork_(bottle_plug)', 'bottle_cork'], 'id': 306, 'def': 'the plug in the mouth of a bottle (especially a wine bottle)', 'name': 'cork_(bottle_plug)'}, {'frequency': 'r', 'synset': 'corkboard.n.01', 'synonyms': ['corkboard'], 'id': 307, 'def': 'a sheet consisting of cork granules', 'name': 'corkboard'}, {'frequency': 'c', 'synset': 'corkscrew.n.01', 'synonyms': ['corkscrew', 'bottle_screw'], 'id': 308, 'def': 'a bottle opener that pulls corks', 'name': 'corkscrew'}, {'frequency': 'f', 'synset': 'corn.n.03', 'synonyms': ['edible_corn', 'corn', 'maize'], 'id': 309, 'def': 'ears or kernels of corn that can be prepared and served for human food (only mark individual ears or kernels)', 'name': 'edible_corn'}, {'frequency': 'r', 'synset': 'cornbread.n.01', 'synonyms': ['cornbread'], 'id': 310, 'def': 'bread made primarily of cornmeal', 'name': 'cornbread'}, {'frequency': 'c', 'synset': 'cornet.n.01', 'synonyms': ['cornet', 'horn', 'trumpet'], 'id': 311, 'def': 'a brass musical instrument with a narrow tube and a flared bell and many valves', 'name': 'cornet'}, {'frequency': 'c', 'synset': 'cornice.n.01', 'synonyms': ['cornice', 'valance', 'valance_board', 'pelmet'], 'id': 312, 'def': 'a decorative framework to conceal curtain fixtures at the top of a window casing', 'name': 'cornice'}, {'frequency': 'r', 'synset': 'cornmeal.n.01', 'synonyms': ['cornmeal'], 'id': 313, 'def': 'coarsely ground corn', 'name': 'cornmeal'}, {'frequency': 'c', 'synset': 'corset.n.01', 'synonyms': ['corset', 'girdle'], 'id': 314, 'def': "a woman's close-fitting foundation garment", 'name': 'corset'}, {'frequency': 'c', 'synset': 'costume.n.04', 'synonyms': ['costume'], 'id': 315, 'def': 'the attire characteristic of a country or a time or a social class', 'name': 'costume'}, {'frequency': 'r', 'synset': 'cougar.n.01', 'synonyms': ['cougar', 'puma', 'catamount', 'mountain_lion', 'panther'], 'id': 316, 'def': 'large American feline resembling a lion', 'name': 'cougar'}, {'frequency': 'r', 'synset': 'coverall.n.01', 'synonyms': ['coverall'], 'id': 317, 'def': 'a loose-fitting protective garment that is worn over other clothing', 'name': 'coverall'}, {'frequency': 'c', 'synset': 'cowbell.n.01', 'synonyms': ['cowbell'], 'id': 318, 'def': 'a bell hung around the neck of cow so that the cow can be easily located', 'name': 'cowbell'}, {'frequency': 'f', 'synset': 'cowboy_hat.n.01', 'synonyms': ['cowboy_hat', 'ten-gallon_hat'], 'id': 319, 'def': 'a hat with a wide brim and a soft crown; worn by American ranch hands', 'name': 'cowboy_hat'}, {'frequency': 'c', 'synset': 'crab.n.01', 'synonyms': ['crab_(animal)'], 'id': 320, 'def': 'decapod having eyes on short stalks and a broad flattened shell and pincers', 'name': 'crab_(animal)'}, {'frequency': 'r', 'synset': 'crab.n.05', 'synonyms': ['crabmeat'], 'id': 321, 'def': 'the edible flesh of any of various crabs', 'name': 'crabmeat'}, {'frequency': 'c', 'synset': 'cracker.n.01', 'synonyms': ['cracker'], 'id': 322, 'def': 'a thin crisp wafer', 'name': 'cracker'}, {'frequency': 'r', 'synset': 'crape.n.01', 'synonyms': ['crape', 'crepe', 'French_pancake'], 'id': 323, 'def': 'small very thin pancake', 'name': 'crape'}, {'frequency': 'f', 'synset': 'crate.n.01', 'synonyms': ['crate'], 'id': 324, 'def': 'a rugged box (usually made of wood); used for shipping', 'name': 'crate'}, {'frequency': 'c', 'synset': 'crayon.n.01', 'synonyms': ['crayon', 'wax_crayon'], 'id': 325, 'def': 'writing or drawing implement made of a colored stick of composition wax', 'name': 'crayon'}, {'frequency': 'r', 'synset': 'cream_pitcher.n.01', 'synonyms': ['cream_pitcher'], 'id': 326, 'def': 'a small pitcher for serving cream', 'name': 'cream_pitcher'}, {'frequency': 'c', 'synset': 'crescent_roll.n.01', 'synonyms': ['crescent_roll', 'croissant'], 'id': 327, 'def': 'very rich flaky crescent-shaped roll', 'name': 'crescent_roll'}, {'frequency': 'c', 'synset': 'crib.n.01', 'synonyms': ['crib', 'cot'], 'id': 328, 'def': 'baby bed with high sides made of slats', 'name': 'crib'}, {'frequency': 'c', 'synset': 'crock.n.03', 'synonyms': ['crock_pot', 'earthenware_jar'], 'id': 329, 'def': 'an earthen jar (made of baked clay) or a modern electric crockpot', 'name': 'crock_pot'}, {'frequency': 'f', 'synset': 'crossbar.n.01', 'synonyms': ['crossbar'], 'id': 330, 'def': 'a horizontal bar that goes across something', 'name': 'crossbar'}, {'frequency': 'r', 'synset': 'crouton.n.01', 'synonyms': ['crouton'], 'id': 331, 'def': 'a small piece of toasted or fried bread; served in soup or salads', 'name': 'crouton'}, {'frequency': 'c', 'synset': 'crow.n.01', 'synonyms': ['crow'], 'id': 332, 'def': 'black birds having a raucous call', 'name': 'crow'}, {'frequency': 'r', 'synset': 'crowbar.n.01', 'synonyms': ['crowbar', 'wrecking_bar', 'pry_bar'], 'id': 333, 'def': 'a heavy iron lever with one end forged into a wedge', 'name': 'crowbar'}, {'frequency': 'c', 'synset': 'crown.n.04', 'synonyms': ['crown'], 'id': 334, 'def': 'an ornamental jeweled headdress signifying sovereignty', 'name': 'crown'}, {'frequency': 'c', 'synset': 'crucifix.n.01', 'synonyms': ['crucifix'], 'id': 335, 'def': 'representation of the cross on which Jesus died', 'name': 'crucifix'}, {'frequency': 'c', 'synset': 'cruise_ship.n.01', 'synonyms': ['cruise_ship', 'cruise_liner'], 'id': 336, 'def': 'a passenger ship used commercially for pleasure cruises', 'name': 'cruise_ship'}, {'frequency': 'c', 'synset': 'cruiser.n.01', 'synonyms': ['police_cruiser', 'patrol_car', 'police_car', 'squad_car'], 'id': 337, 'def': 'a car in which policemen cruise the streets', 'name': 'police_cruiser'}, {'frequency': 'f', 'synset': 'crumb.n.03', 'synonyms': ['crumb'], 'id': 338, 'def': 'small piece of e.g. bread or cake', 'name': 'crumb'}, {'frequency': 'c', 'synset': 'crutch.n.01', 'synonyms': ['crutch'], 'id': 339, 'def': 'a wooden or metal staff that fits under the armpit and reaches to the ground', 'name': 'crutch'}, {'frequency': 'c', 'synset': 'cub.n.03', 'synonyms': ['cub_(animal)'], 'id': 340, 'def': 'the young of certain carnivorous mammals such as the bear or wolf or lion', 'name': 'cub_(animal)'}, {'frequency': 'c', 'synset': 'cube.n.05', 'synonyms': ['cube', 'square_block'], 'id': 341, 'def': 'a block in the (approximate) shape of a cube', 'name': 'cube'}, {'frequency': 'f', 'synset': 'cucumber.n.02', 'synonyms': ['cucumber', 'cuke'], 'id': 342, 'def': 'cylindrical green fruit with thin green rind and white flesh eaten as a vegetable', 'name': 'cucumber'}, {'frequency': 'c', 'synset': 'cufflink.n.01', 'synonyms': ['cufflink'], 'id': 343, 'def': 'jewelry consisting of linked buttons used to fasten the cuffs of a shirt', 'name': 'cufflink'}, {'frequency': 'f', 'synset': 'cup.n.01', 'synonyms': ['cup'], 'id': 344, 'def': 'a small open container usually used for drinking; usually has a handle', 'name': 'cup'}, {'frequency': 'c', 'synset': 'cup.n.08', 'synonyms': ['trophy_cup'], 'id': 345, 'def': 'a metal award or cup-shaped vessel with handles that is awarded as a trophy to a competition winner', 'name': 'trophy_cup'}, {'frequency': 'f', 'synset': 'cupboard.n.01', 'synonyms': ['cupboard', 'closet'], 'id': 346, 'def': 'a small room (or recess) or cabinet used for storage space', 'name': 'cupboard'}, {'frequency': 'f', 'synset': 'cupcake.n.01', 'synonyms': ['cupcake'], 'id': 347, 'def': 'small cake baked in a muffin tin', 'name': 'cupcake'}, {'frequency': 'r', 'synset': 'curler.n.01', 'synonyms': ['hair_curler', 'hair_roller', 'hair_crimper'], 'id': 348, 'def': 'a cylindrical tube around which the hair is wound to curl it', 'name': 'hair_curler'}, {'frequency': 'r', 'synset': 'curling_iron.n.01', 'synonyms': ['curling_iron'], 'id': 349, 'def': 'a cylindrical home appliance that heats hair that has been curled around it', 'name': 'curling_iron'}, {'frequency': 'f', 'synset': 'curtain.n.01', 'synonyms': ['curtain', 'drapery'], 'id': 350, 'def': 'hanging cloth used as a blind (especially for a window)', 'name': 'curtain'}, {'frequency': 'f', 'synset': 'cushion.n.03', 'synonyms': ['cushion'], 'id': 351, 'def': 'a soft bag filled with air or padding such as feathers or foam rubber', 'name': 'cushion'}, {'frequency': 'r', 'synset': 'cylinder.n.04', 'synonyms': ['cylinder'], 'id': 352, 'def': 'a cylindrical container', 'name': 'cylinder'}, {'frequency': 'r', 'synset': 'cymbal.n.01', 'synonyms': ['cymbal'], 'id': 353, 'def': 'a percussion instrument consisting of a concave brass disk', 'name': 'cymbal'}, {'frequency': 'r', 'synset': 'dagger.n.01', 'synonyms': ['dagger'], 'id': 354, 'def': 'a short knife with a pointed blade used for piercing or stabbing', 'name': 'dagger'}, {'frequency': 'r', 'synset': 'dalmatian.n.02', 'synonyms': ['dalmatian'], 'id': 355, 'def': 'a large breed having a smooth white coat with black or brown spots', 'name': 'dalmatian'}, {'frequency': 'c', 'synset': 'dartboard.n.01', 'synonyms': ['dartboard'], 'id': 356, 'def': 'a circular board of wood or cork used as the target in the game of darts', 'name': 'dartboard'}, {'frequency': 'r', 'synset': 'date.n.08', 'synonyms': ['date_(fruit)'], 'id': 357, 'def': 'sweet edible fruit of the date palm with a single long woody seed', 'name': 'date_(fruit)'}, {'frequency': 'f', 'synset': 'deck_chair.n.01', 'synonyms': ['deck_chair', 'beach_chair'], 'id': 358, 'def': 'a folding chair for use outdoors; a wooden frame supports a length of canvas', 'name': 'deck_chair'}, {'frequency': 'c', 'synset': 'deer.n.01', 'synonyms': ['deer', 'cervid'], 'id': 359, 'def': "distinguished from Bovidae by the male's having solid deciduous antlers", 'name': 'deer'}, {'frequency': 'c', 'synset': 'dental_floss.n.01', 'synonyms': ['dental_floss', 'floss'], 'id': 360, 'def': 'a soft thread for cleaning the spaces between the teeth', 'name': 'dental_floss'}, {'frequency': 'f', 'synset': 'desk.n.01', 'synonyms': ['desk'], 'id': 361, 'def': 'a piece of furniture with a writing surface and usually drawers or other compartments', 'name': 'desk'}, {'frequency': 'r', 'synset': 'detergent.n.01', 'synonyms': ['detergent'], 'id': 362, 'def': 'a surface-active chemical widely used in industry and laundering', 'name': 'detergent'}, {'frequency': 'c', 'synset': 'diaper.n.01', 'synonyms': ['diaper'], 'id': 363, 'def': 'garment consisting of a folded cloth drawn up between the legs and fastened at the waist', 'name': 'diaper'}, {'frequency': 'r', 'synset': 'diary.n.01', 'synonyms': ['diary', 'journal'], 'id': 364, 'def': 'yearly planner book', 'name': 'diary'}, {'frequency': 'r', 'synset': 'die.n.01', 'synonyms': ['die', 'dice'], 'id': 365, 'def': 'a small cube with 1 to 6 spots on the six faces; used in gambling', 'name': 'die'}, {'frequency': 'r', 'synset': 'dinghy.n.01', 'synonyms': ['dinghy', 'dory', 'rowboat'], 'id': 366, 'def': 'a small boat of shallow draft with seats and oars with which it is propelled', 'name': 'dinghy'}, {'frequency': 'f', 'synset': 'dining_table.n.01', 'synonyms': ['dining_table'], 'id': 367, 'def': 'a table at which meals are served', 'name': 'dining_table'}, {'frequency': 'r', 'synset': 'dinner_jacket.n.01', 'synonyms': ['tux', 'tuxedo'], 'id': 368, 'def': 'semiformal evening dress for men', 'name': 'tux'}, {'frequency': 'f', 'synset': 'dish.n.01', 'synonyms': ['dish'], 'id': 369, 'def': 'a piece of dishware normally used as a container for holding or serving food', 'name': 'dish'}, {'frequency': 'c', 'synset': 'dish.n.05', 'synonyms': ['dish_antenna'], 'id': 370, 'def': 'directional antenna consisting of a parabolic reflector', 'name': 'dish_antenna'}, {'frequency': 'c', 'synset': 'dishrag.n.01', 'synonyms': ['dishrag', 'dishcloth'], 'id': 371, 'def': 'a cloth for washing dishes or cleaning in general', 'name': 'dishrag'}, {'frequency': 'f', 'synset': 'dishtowel.n.01', 'synonyms': ['dishtowel', 'tea_towel'], 'id': 372, 'def': 'a towel for drying dishes', 'name': 'dishtowel'}, {'frequency': 'f', 'synset': 'dishwasher.n.01', 'synonyms': ['dishwasher', 'dishwashing_machine'], 'id': 373, 'def': 'a machine for washing dishes', 'name': 'dishwasher'}, {'frequency': 'r', 'synset': 'dishwasher_detergent.n.01', 'synonyms': ['dishwasher_detergent', 'dishwashing_detergent', 'dishwashing_liquid', 'dishsoap'], 'id': 374, 'def': 'dishsoap or dish detergent designed for use in dishwashers', 'name': 'dishwasher_detergent'}, {'frequency': 'f', 'synset': 'dispenser.n.01', 'synonyms': ['dispenser'], 'id': 375, 'def': 'a container so designed that the contents can be used in prescribed amounts', 'name': 'dispenser'}, {'frequency': 'r', 'synset': 'diving_board.n.01', 'synonyms': ['diving_board'], 'id': 376, 'def': 'a springboard from which swimmers can dive', 'name': 'diving_board'}, {'frequency': 'f', 'synset': 'dixie_cup.n.01', 'synonyms': ['Dixie_cup', 'paper_cup'], 'id': 377, 'def': 'a disposable cup made of paper; for holding drinks', 'name': 'Dixie_cup'}, {'frequency': 'f', 'synset': 'dog.n.01', 'synonyms': ['dog'], 'id': 378, 'def': 'a common domesticated dog', 'name': 'dog'}, {'frequency': 'f', 'synset': 'dog_collar.n.01', 'synonyms': ['dog_collar'], 'id': 379, 'def': 'a collar for a dog', 'name': 'dog_collar'}, {'frequency': 'f', 'synset': 'doll.n.01', 'synonyms': ['doll'], 'id': 380, 'def': 'a toy replica of a HUMAN (NOT AN ANIMAL)', 'name': 'doll'}, {'frequency': 'r', 'synset': 'dollar.n.02', 'synonyms': ['dollar', 'dollar_bill', 'one_dollar_bill'], 'id': 381, 'def': 'a piece of paper money worth one dollar', 'name': 'dollar'}, {'frequency': 'r', 'synset': 'dollhouse.n.01', 'synonyms': ['dollhouse', "doll's_house"], 'id': 382, 'def': "a house so small that it is likened to a child's plaything", 'name': 'dollhouse'}, {'frequency': 'c', 'synset': 'dolphin.n.02', 'synonyms': ['dolphin'], 'id': 383, 'def': 'any of various small toothed whales with a beaklike snout; larger than porpoises', 'name': 'dolphin'}, {'frequency': 'c', 'synset': 'domestic_ass.n.01', 'synonyms': ['domestic_ass', 'donkey'], 'id': 384, 'def': 'domestic beast of burden descended from the African wild ass; patient but stubborn', 'name': 'domestic_ass'}, {'frequency': 'f', 'synset': 'doorknob.n.01', 'synonyms': ['doorknob', 'doorhandle'], 'id': 385, 'def': "a knob used to open a door (often called `doorhandle' in Great Britain)", 'name': 'doorknob'}, {'frequency': 'c', 'synset': 'doormat.n.02', 'synonyms': ['doormat', 'welcome_mat'], 'id': 386, 'def': 'a mat placed outside an exterior door for wiping the shoes before entering', 'name': 'doormat'}, {'frequency': 'f', 'synset': 'doughnut.n.02', 'synonyms': ['doughnut', 'donut'], 'id': 387, 'def': 'a small ring-shaped friedcake', 'name': 'doughnut'}, {'frequency': 'r', 'synset': 'dove.n.01', 'synonyms': ['dove'], 'id': 388, 'def': 'any of numerous small pigeons', 'name': 'dove'}, {'frequency': 'r', 'synset': 'dragonfly.n.01', 'synonyms': ['dragonfly'], 'id': 389, 'def': 'slender-bodied non-stinging insect having iridescent wings that are outspread at rest', 'name': 'dragonfly'}, {'frequency': 'f', 'synset': 'drawer.n.01', 'synonyms': ['drawer'], 'id': 390, 'def': 'a boxlike container in a piece of furniture; made so as to slide in and out', 'name': 'drawer'}, {'frequency': 'c', 'synset': 'drawers.n.01', 'synonyms': ['underdrawers', 'boxers', 'boxershorts'], 'id': 391, 'def': 'underpants worn by men', 'name': 'underdrawers'}, {'frequency': 'f', 'synset': 'dress.n.01', 'synonyms': ['dress', 'frock'], 'id': 392, 'def': 'a one-piece garment for a woman; has skirt and bodice', 'name': 'dress'}, {'frequency': 'c', 'synset': 'dress_hat.n.01', 'synonyms': ['dress_hat', 'high_hat', 'opera_hat', 'silk_hat', 'top_hat'], 'id': 393, 'def': "a man's hat with a tall crown; usually covered with silk or with beaver fur", 'name': 'dress_hat'}, {'frequency': 'f', 'synset': 'dress_suit.n.01', 'synonyms': ['dress_suit'], 'id': 394, 'def': 'formalwear consisting of full evening dress for men', 'name': 'dress_suit'}, {'frequency': 'f', 'synset': 'dresser.n.05', 'synonyms': ['dresser'], 'id': 395, 'def': 'a cabinet with shelves', 'name': 'dresser'}, {'frequency': 'c', 'synset': 'drill.n.01', 'synonyms': ['drill'], 'id': 396, 'def': 'a tool with a sharp rotating point for making holes in hard materials', 'name': 'drill'}, {'frequency': 'r', 'synset': 'drone.n.04', 'synonyms': ['drone'], 'id': 397, 'def': 'an aircraft without a pilot that is operated by remote control', 'name': 'drone'}, {'frequency': 'r', 'synset': 'dropper.n.01', 'synonyms': ['dropper', 'eye_dropper'], 'id': 398, 'def': 'pipet consisting of a small tube with a vacuum bulb at one end for drawing liquid in and releasing it a drop at a time', 'name': 'dropper'}, {'frequency': 'c', 'synset': 'drum.n.01', 'synonyms': ['drum_(musical_instrument)'], 'id': 399, 'def': 'a musical percussion instrument; usually consists of a hollow cylinder with a membrane stretched across each end', 'name': 'drum_(musical_instrument)'}, {'frequency': 'r', 'synset': 'drumstick.n.02', 'synonyms': ['drumstick'], 'id': 400, 'def': 'a stick used for playing a drum', 'name': 'drumstick'}, {'frequency': 'f', 'synset': 'duck.n.01', 'synonyms': ['duck'], 'id': 401, 'def': 'small web-footed broad-billed swimming bird', 'name': 'duck'}, {'frequency': 'c', 'synset': 'duckling.n.02', 'synonyms': ['duckling'], 'id': 402, 'def': 'young duck', 'name': 'duckling'}, {'frequency': 'c', 'synset': 'duct_tape.n.01', 'synonyms': ['duct_tape'], 'id': 403, 'def': 'a wide silvery adhesive tape', 'name': 'duct_tape'}, {'frequency': 'f', 'synset': 'duffel_bag.n.01', 'synonyms': ['duffel_bag', 'duffle_bag', 'duffel', 'duffle'], 'id': 404, 'def': 'a large cylindrical bag of heavy cloth (does not include suitcases)', 'name': 'duffel_bag'}, {'frequency': 'r', 'synset': 'dumbbell.n.01', 'synonyms': ['dumbbell'], 'id': 405, 'def': 'an exercising weight with two ball-like ends connected by a short handle', 'name': 'dumbbell'}, {'frequency': 'c', 'synset': 'dumpster.n.01', 'synonyms': ['dumpster'], 'id': 406, 'def': 'a container designed to receive and transport and dump waste', 'name': 'dumpster'}, {'frequency': 'r', 'synset': 'dustpan.n.02', 'synonyms': ['dustpan'], 'id': 407, 'def': 'a short-handled receptacle into which dust can be swept', 'name': 'dustpan'}, {'frequency': 'c', 'synset': 'eagle.n.01', 'synonyms': ['eagle'], 'id': 408, 'def': 'large birds of prey noted for their broad wings and strong soaring flight', 'name': 'eagle'}, {'frequency': 'f', 'synset': 'earphone.n.01', 'synonyms': ['earphone', 'earpiece', 'headphone'], 'id': 409, 'def': 'device for listening to audio that is held over or inserted into the ear', 'name': 'earphone'}, {'frequency': 'r', 'synset': 'earplug.n.01', 'synonyms': ['earplug'], 'id': 410, 'def': 'a soft plug that is inserted into the ear canal to block sound', 'name': 'earplug'}, {'frequency': 'f', 'synset': 'earring.n.01', 'synonyms': ['earring'], 'id': 411, 'def': 'jewelry to ornament the ear', 'name': 'earring'}, {'frequency': 'c', 'synset': 'easel.n.01', 'synonyms': ['easel'], 'id': 412, 'def': "an upright tripod for displaying something (usually an artist's canvas)", 'name': 'easel'}, {'frequency': 'r', 'synset': 'eclair.n.01', 'synonyms': ['eclair'], 'id': 413, 'def': 'oblong cream puff', 'name': 'eclair'}, {'frequency': 'r', 'synset': 'eel.n.01', 'synonyms': ['eel'], 'id': 414, 'def': 'an elongate fish with fatty flesh', 'name': 'eel'}, {'frequency': 'f', 'synset': 'egg.n.02', 'synonyms': ['egg', 'eggs'], 'id': 415, 'def': 'oval reproductive body of a fowl (especially a hen) used as food', 'name': 'egg'}, {'frequency': 'r', 'synset': 'egg_roll.n.01', 'synonyms': ['egg_roll', 'spring_roll'], 'id': 416, 'def': 'minced vegetables and meat wrapped in a pancake and fried', 'name': 'egg_roll'}, {'frequency': 'c', 'synset': 'egg_yolk.n.01', 'synonyms': ['egg_yolk', 'yolk_(egg)'], 'id': 417, 'def': 'the yellow spherical part of an egg', 'name': 'egg_yolk'}, {'frequency': 'c', 'synset': 'eggbeater.n.02', 'synonyms': ['eggbeater', 'eggwhisk'], 'id': 418, 'def': 'a mixer for beating eggs or whipping cream', 'name': 'eggbeater'}, {'frequency': 'c', 'synset': 'eggplant.n.01', 'synonyms': ['eggplant', 'aubergine'], 'id': 419, 'def': 'egg-shaped vegetable having a shiny skin typically dark purple', 'name': 'eggplant'}, {'frequency': 'r', 'synset': 'electric_chair.n.01', 'synonyms': ['electric_chair'], 'id': 420, 'def': 'a chair-shaped instrument of execution by electrocution', 'name': 'electric_chair'}, {'frequency': 'f', 'synset': 'electric_refrigerator.n.01', 'synonyms': ['refrigerator'], 'id': 421, 'def': 'a refrigerator in which the coolant is pumped around by an electric motor', 'name': 'refrigerator'}, {'frequency': 'f', 'synset': 'elephant.n.01', 'synonyms': ['elephant'], 'id': 422, 'def': 'a common elephant', 'name': 'elephant'}, {'frequency': 'c', 'synset': 'elk.n.01', 'synonyms': ['elk', 'moose'], 'id': 423, 'def': 'large northern deer with enormous flattened antlers in the male', 'name': 'elk'}, {'frequency': 'c', 'synset': 'envelope.n.01', 'synonyms': ['envelope'], 'id': 424, 'def': 'a flat (usually rectangular) container for a letter, thin package, etc.', 'name': 'envelope'}, {'frequency': 'c', 'synset': 'eraser.n.01', 'synonyms': ['eraser'], 'id': 425, 'def': 'an implement used to erase something', 'name': 'eraser'}, {'frequency': 'r', 'synset': 'escargot.n.01', 'synonyms': ['escargot'], 'id': 426, 'def': 'edible snail usually served in the shell with a sauce of melted butter and garlic', 'name': 'escargot'}, {'frequency': 'r', 'synset': 'eyepatch.n.01', 'synonyms': ['eyepatch'], 'id': 427, 'def': 'a protective cloth covering for an injured eye', 'name': 'eyepatch'}, {'frequency': 'r', 'synset': 'falcon.n.01', 'synonyms': ['falcon'], 'id': 428, 'def': 'birds of prey having long pointed powerful wings adapted for swift flight', 'name': 'falcon'}, {'frequency': 'f', 'synset': 'fan.n.01', 'synonyms': ['fan'], 'id': 429, 'def': 'a device for creating a current of air by movement of a surface or surfaces', 'name': 'fan'}, {'frequency': 'f', 'synset': 'faucet.n.01', 'synonyms': ['faucet', 'spigot', 'tap'], 'id': 430, 'def': 'a regulator for controlling the flow of a liquid from a reservoir', 'name': 'faucet'}, {'frequency': 'r', 'synset': 'fedora.n.01', 'synonyms': ['fedora'], 'id': 431, 'def': 'a hat made of felt with a creased crown', 'name': 'fedora'}, {'frequency': 'r', 'synset': 'ferret.n.02', 'synonyms': ['ferret'], 'id': 432, 'def': 'domesticated albino variety of the European polecat bred for hunting rats and rabbits', 'name': 'ferret'}, {'frequency': 'c', 'synset': 'ferris_wheel.n.01', 'synonyms': ['Ferris_wheel'], 'id': 433, 'def': 'a large wheel with suspended seats that remain upright as the wheel rotates', 'name': 'Ferris_wheel'}, {'frequency': 'c', 'synset': 'ferry.n.01', 'synonyms': ['ferry', 'ferryboat'], 'id': 434, 'def': 'a boat that transports people or vehicles across a body of water and operates on a regular schedule', 'name': 'ferry'}, {'frequency': 'r', 'synset': 'fig.n.04', 'synonyms': ['fig_(fruit)'], 'id': 435, 'def': 'fleshy sweet pear-shaped yellowish or purple fruit eaten fresh or preserved or dried', 'name': 'fig_(fruit)'}, {'frequency': 'c', 'synset': 'fighter.n.02', 'synonyms': ['fighter_jet', 'fighter_aircraft', 'attack_aircraft'], 'id': 436, 'def': 'a high-speed military or naval airplane designed to destroy enemy targets', 'name': 'fighter_jet'}, {'frequency': 'f', 'synset': 'figurine.n.01', 'synonyms': ['figurine'], 'id': 437, 'def': 'a small carved or molded figure', 'name': 'figurine'}, {'frequency': 'c', 'synset': 'file.n.03', 'synonyms': ['file_cabinet', 'filing_cabinet'], 'id': 438, 'def': 'office furniture consisting of a container for keeping papers in order', 'name': 'file_cabinet'}, {'frequency': 'r', 'synset': 'file.n.04', 'synonyms': ['file_(tool)'], 'id': 439, 'def': 'a steel hand tool with small sharp teeth on some or all of its surfaces; used for smoothing wood or metal', 'name': 'file_(tool)'}, {'frequency': 'f', 'synset': 'fire_alarm.n.02', 'synonyms': ['fire_alarm', 'smoke_alarm'], 'id': 440, 'def': 'an alarm that is tripped off by fire or smoke', 'name': 'fire_alarm'}, {'frequency': 'f', 'synset': 'fire_engine.n.01', 'synonyms': ['fire_engine', 'fire_truck'], 'id': 441, 'def': 'large trucks that carry firefighters and equipment to the site of a fire', 'name': 'fire_engine'}, {'frequency': 'f', 'synset': 'fire_extinguisher.n.01', 'synonyms': ['fire_extinguisher', 'extinguisher'], 'id': 442, 'def': 'a manually operated device for extinguishing small fires', 'name': 'fire_extinguisher'}, {'frequency': 'c', 'synset': 'fire_hose.n.01', 'synonyms': ['fire_hose'], 'id': 443, 'def': 'a large hose that carries water from a fire hydrant to the site of the fire', 'name': 'fire_hose'}, {'frequency': 'f', 'synset': 'fireplace.n.01', 'synonyms': ['fireplace'], 'id': 444, 'def': 'an open recess in a wall at the base of a chimney where a fire can be built', 'name': 'fireplace'}, {'frequency': 'f', 'synset': 'fireplug.n.01', 'synonyms': ['fireplug', 'fire_hydrant', 'hydrant'], 'id': 445, 'def': 'an upright hydrant for drawing water to use in fighting a fire', 'name': 'fireplug'}, {'frequency': 'r', 'synset': 'first-aid_kit.n.01', 'synonyms': ['first-aid_kit'], 'id': 446, 'def': 'kit consisting of a set of bandages and medicines for giving first aid', 'name': 'first-aid_kit'}, {'frequency': 'f', 'synset': 'fish.n.01', 'synonyms': ['fish'], 'id': 447, 'def': 'any of various mostly cold-blooded aquatic vertebrates usually having scales and breathing through gills', 'name': 'fish'}, {'frequency': 'c', 'synset': 'fish.n.02', 'synonyms': ['fish_(food)'], 'id': 448, 'def': 'the flesh of fish used as food', 'name': 'fish_(food)'}, {'frequency': 'r', 'synset': 'fishbowl.n.02', 'synonyms': ['fishbowl', 'goldfish_bowl'], 'id': 449, 'def': 'a transparent bowl in which small fish are kept', 'name': 'fishbowl'}, {'frequency': 'c', 'synset': 'fishing_rod.n.01', 'synonyms': ['fishing_rod', 'fishing_pole'], 'id': 450, 'def': 'a rod that is used in fishing to extend the fishing line', 'name': 'fishing_rod'}, {'frequency': 'f', 'synset': 'flag.n.01', 'synonyms': ['flag'], 'id': 451, 'def': 'emblem usually consisting of a rectangular piece of cloth of distinctive design (do not include pole)', 'name': 'flag'}, {'frequency': 'f', 'synset': 'flagpole.n.02', 'synonyms': ['flagpole', 'flagstaff'], 'id': 452, 'def': 'a tall staff or pole on which a flag is raised', 'name': 'flagpole'}, {'frequency': 'c', 'synset': 'flamingo.n.01', 'synonyms': ['flamingo'], 'id': 453, 'def': 'large pink web-footed bird with down-bent bill', 'name': 'flamingo'}, {'frequency': 'c', 'synset': 'flannel.n.01', 'synonyms': ['flannel'], 'id': 454, 'def': 'a soft light woolen fabric; used for clothing', 'name': 'flannel'}, {'frequency': 'c', 'synset': 'flap.n.01', 'synonyms': ['flap'], 'id': 455, 'def': 'any broad thin covering attached at one edge, such as a mud flap next to a wheel or a flap on an airplane wing', 'name': 'flap'}, {'frequency': 'r', 'synset': 'flash.n.10', 'synonyms': ['flash', 'flashbulb'], 'id': 456, 'def': 'a lamp for providing momentary light to take a photograph', 'name': 'flash'}, {'frequency': 'c', 'synset': 'flashlight.n.01', 'synonyms': ['flashlight', 'torch'], 'id': 457, 'def': 'a small portable battery-powered electric lamp', 'name': 'flashlight'}, {'frequency': 'r', 'synset': 'fleece.n.03', 'synonyms': ['fleece'], 'id': 458, 'def': 'a soft bulky fabric with deep pile; used chiefly for clothing', 'name': 'fleece'}, {'frequency': 'f', 'synset': 'flip-flop.n.02', 'synonyms': ['flip-flop_(sandal)'], 'id': 459, 'def': 'a backless sandal held to the foot by a thong between two toes', 'name': 'flip-flop_(sandal)'}, {'frequency': 'c', 'synset': 'flipper.n.01', 'synonyms': ['flipper_(footwear)', 'fin_(footwear)'], 'id': 460, 'def': 'a shoe to aid a person in swimming', 'name': 'flipper_(footwear)'}, {'frequency': 'f', 'synset': 'flower_arrangement.n.01', 'synonyms': ['flower_arrangement', 'floral_arrangement'], 'id': 461, 'def': 'a decorative arrangement of flowers', 'name': 'flower_arrangement'}, {'frequency': 'c', 'synset': 'flute.n.02', 'synonyms': ['flute_glass', 'champagne_flute'], 'id': 462, 'def': 'a tall narrow wineglass', 'name': 'flute_glass'}, {'frequency': 'c', 'synset': 'foal.n.01', 'synonyms': ['foal'], 'id': 463, 'def': 'a young horse', 'name': 'foal'}, {'frequency': 'c', 'synset': 'folding_chair.n.01', 'synonyms': ['folding_chair'], 'id': 464, 'def': 'a chair that can be folded flat for storage', 'name': 'folding_chair'}, {'frequency': 'c', 'synset': 'food_processor.n.01', 'synonyms': ['food_processor'], 'id': 465, 'def': 'a kitchen appliance for shredding, blending, chopping, or slicing food', 'name': 'food_processor'}, {'frequency': 'c', 'synset': 'football.n.02', 'synonyms': ['football_(American)'], 'id': 466, 'def': 'the inflated oblong ball used in playing American football', 'name': 'football_(American)'}, {'frequency': 'r', 'synset': 'football_helmet.n.01', 'synonyms': ['football_helmet'], 'id': 467, 'def': 'a padded helmet with a face mask to protect the head of football players', 'name': 'football_helmet'}, {'frequency': 'c', 'synset': 'footstool.n.01', 'synonyms': ['footstool', 'footrest'], 'id': 468, 'def': 'a low seat or a stool to rest the feet of a seated person', 'name': 'footstool'}, {'frequency': 'f', 'synset': 'fork.n.01', 'synonyms': ['fork'], 'id': 469, 'def': 'cutlery used for serving and eating food', 'name': 'fork'}, {'frequency': 'c', 'synset': 'forklift.n.01', 'synonyms': ['forklift'], 'id': 470, 'def': 'an industrial vehicle with a power operated fork in front that can be inserted under loads to lift and move them', 'name': 'forklift'}, {'frequency': 'c', 'synset': 'freight_car.n.01', 'synonyms': ['freight_car'], 'id': 471, 'def': 'a railway car that carries freight', 'name': 'freight_car'}, {'frequency': 'c', 'synset': 'french_toast.n.01', 'synonyms': ['French_toast'], 'id': 472, 'def': 'bread slice dipped in egg and milk and fried', 'name': 'French_toast'}, {'frequency': 'c', 'synset': 'freshener.n.01', 'synonyms': ['freshener', 'air_freshener'], 'id': 473, 'def': 'anything that freshens air by removing or covering odor', 'name': 'freshener'}, {'frequency': 'f', 'synset': 'frisbee.n.01', 'synonyms': ['frisbee'], 'id': 474, 'def': 'a light, plastic disk propelled with a flip of the wrist for recreation or competition', 'name': 'frisbee'}, {'frequency': 'c', 'synset': 'frog.n.01', 'synonyms': ['frog', 'toad', 'toad_frog'], 'id': 475, 'def': 'a tailless stout-bodied amphibians with long hind limbs for leaping', 'name': 'frog'}, {'frequency': 'c', 'synset': 'fruit_juice.n.01', 'synonyms': ['fruit_juice'], 'id': 476, 'def': 'drink produced by squeezing or crushing fruit', 'name': 'fruit_juice'}, {'frequency': 'f', 'synset': 'frying_pan.n.01', 'synonyms': ['frying_pan', 'frypan', 'skillet'], 'id': 477, 'def': 'a pan used for frying foods', 'name': 'frying_pan'}, {'frequency': 'r', 'synset': 'fudge.n.01', 'synonyms': ['fudge'], 'id': 478, 'def': 'soft creamy candy', 'name': 'fudge'}, {'frequency': 'r', 'synset': 'funnel.n.02', 'synonyms': ['funnel'], 'id': 479, 'def': 'a cone-shaped utensil used to channel a substance into a container with a small mouth', 'name': 'funnel'}, {'frequency': 'r', 'synset': 'futon.n.01', 'synonyms': ['futon'], 'id': 480, 'def': 'a pad that is used for sleeping on the floor or on a raised frame', 'name': 'futon'}, {'frequency': 'r', 'synset': 'gag.n.02', 'synonyms': ['gag', 'muzzle'], 'id': 481, 'def': "restraint put into a person's mouth to prevent speaking or shouting", 'name': 'gag'}, {'frequency': 'r', 'synset': 'garbage.n.03', 'synonyms': ['garbage'], 'id': 482, 'def': 'a receptacle where waste can be discarded', 'name': 'garbage'}, {'frequency': 'c', 'synset': 'garbage_truck.n.01', 'synonyms': ['garbage_truck'], 'id': 483, 'def': 'a truck for collecting domestic refuse', 'name': 'garbage_truck'}, {'frequency': 'c', 'synset': 'garden_hose.n.01', 'synonyms': ['garden_hose'], 'id': 484, 'def': 'a hose used for watering a lawn or garden', 'name': 'garden_hose'}, {'frequency': 'c', 'synset': 'gargle.n.01', 'synonyms': ['gargle', 'mouthwash'], 'id': 485, 'def': 'a medicated solution used for gargling and rinsing the mouth', 'name': 'gargle'}, {'frequency': 'r', 'synset': 'gargoyle.n.02', 'synonyms': ['gargoyle'], 'id': 486, 'def': 'an ornament consisting of a grotesquely carved figure of a person or animal', 'name': 'gargoyle'}, {'frequency': 'c', 'synset': 'garlic.n.02', 'synonyms': ['garlic', 'ail'], 'id': 487, 'def': 'aromatic bulb used as seasoning', 'name': 'garlic'}, {'frequency': 'r', 'synset': 'gasmask.n.01', 'synonyms': ['gasmask', 'respirator', 'gas_helmet'], 'id': 488, 'def': 'a protective face mask with a filter', 'name': 'gasmask'}, {'frequency': 'c', 'synset': 'gazelle.n.01', 'synonyms': ['gazelle'], 'id': 489, 'def': 'small swift graceful antelope of Africa and Asia having lustrous eyes', 'name': 'gazelle'}, {'frequency': 'c', 'synset': 'gelatin.n.02', 'synonyms': ['gelatin', 'jelly'], 'id': 490, 'def': 'an edible jelly made with gelatin and used as a dessert or salad base or a coating for foods', 'name': 'gelatin'}, {'frequency': 'r', 'synset': 'gem.n.02', 'synonyms': ['gemstone'], 'id': 491, 'def': 'a crystalline rock that can be cut and polished for jewelry', 'name': 'gemstone'}, {'frequency': 'r', 'synset': 'generator.n.02', 'synonyms': ['generator'], 'id': 492, 'def': 'engine that converts mechanical energy into electrical energy by electromagnetic induction', 'name': 'generator'}, {'frequency': 'c', 'synset': 'giant_panda.n.01', 'synonyms': ['giant_panda', 'panda', 'panda_bear'], 'id': 493, 'def': 'large black-and-white herbivorous mammal of bamboo forests of China and Tibet', 'name': 'giant_panda'}, {'frequency': 'c', 'synset': 'gift_wrap.n.01', 'synonyms': ['gift_wrap'], 'id': 494, 'def': 'attractive wrapping paper suitable for wrapping gifts', 'name': 'gift_wrap'}, {'frequency': 'c', 'synset': 'ginger.n.03', 'synonyms': ['ginger', 'gingerroot'], 'id': 495, 'def': 'the root of the common ginger plant; used fresh as a seasoning', 'name': 'ginger'}, {'frequency': 'f', 'synset': 'giraffe.n.01', 'synonyms': ['giraffe'], 'id': 496, 'def': 'tall animal having a spotted coat and small horns and very long neck and legs', 'name': 'giraffe'}, {'frequency': 'c', 'synset': 'girdle.n.02', 'synonyms': ['cincture', 'sash', 'waistband', 'waistcloth'], 'id': 497, 'def': 'a band of material around the waist that strengthens a skirt or trousers', 'name': 'cincture'}, {'frequency': 'f', 'synset': 'glass.n.02', 'synonyms': ['glass_(drink_container)', 'drinking_glass'], 'id': 498, 'def': 'a container for holding liquids while drinking', 'name': 'glass_(drink_container)'}, {'frequency': 'c', 'synset': 'globe.n.03', 'synonyms': ['globe'], 'id': 499, 'def': 'a sphere on which a map (especially of the earth) is represented', 'name': 'globe'}, {'frequency': 'f', 'synset': 'glove.n.02', 'synonyms': ['glove'], 'id': 500, 'def': 'handwear covering the hand', 'name': 'glove'}, {'frequency': 'c', 'synset': 'goat.n.01', 'synonyms': ['goat'], 'id': 501, 'def': 'a common goat', 'name': 'goat'}, {'frequency': 'f', 'synset': 'goggles.n.01', 'synonyms': ['goggles'], 'id': 502, 'def': 'tight-fitting spectacles worn to protect the eyes', 'name': 'goggles'}, {'frequency': 'r', 'synset': 'goldfish.n.01', 'synonyms': ['goldfish'], 'id': 503, 'def': 'small golden or orange-red freshwater fishes used as pond or aquarium pets', 'name': 'goldfish'}, {'frequency': 'c', 'synset': 'golf_club.n.02', 'synonyms': ['golf_club', 'golf-club'], 'id': 504, 'def': 'golf equipment used by a golfer to hit a golf ball', 'name': 'golf_club'}, {'frequency': 'c', 'synset': 'golfcart.n.01', 'synonyms': ['golfcart'], 'id': 505, 'def': 'a small motor vehicle in which golfers can ride between shots', 'name': 'golfcart'}, {'frequency': 'r', 'synset': 'gondola.n.02', 'synonyms': ['gondola_(boat)'], 'id': 506, 'def': 'long narrow flat-bottomed boat propelled by sculling; traditionally used on canals of Venice', 'name': 'gondola_(boat)'}, {'frequency': 'c', 'synset': 'goose.n.01', 'synonyms': ['goose'], 'id': 507, 'def': 'loud, web-footed long-necked aquatic birds usually larger than ducks', 'name': 'goose'}, {'frequency': 'r', 'synset': 'gorilla.n.01', 'synonyms': ['gorilla'], 'id': 508, 'def': 'largest ape', 'name': 'gorilla'}, {'frequency': 'r', 'synset': 'gourd.n.02', 'synonyms': ['gourd'], 'id': 509, 'def': 'any of numerous inedible fruits with hard rinds', 'name': 'gourd'}, {'frequency': 'f', 'synset': 'grape.n.01', 'synonyms': ['grape'], 'id': 510, 'def': 'any of various juicy fruit with green or purple skins; grow in clusters', 'name': 'grape'}, {'frequency': 'c', 'synset': 'grater.n.01', 'synonyms': ['grater'], 'id': 511, 'def': 'utensil with sharp perforations for shredding foods (as vegetables or cheese)', 'name': 'grater'}, {'frequency': 'c', 'synset': 'gravestone.n.01', 'synonyms': ['gravestone', 'headstone', 'tombstone'], 'id': 512, 'def': 'a stone that is used to mark a grave', 'name': 'gravestone'}, {'frequency': 'r', 'synset': 'gravy_boat.n.01', 'synonyms': ['gravy_boat', 'gravy_holder'], 'id': 513, 'def': 'a dish (often boat-shaped) for serving gravy or sauce', 'name': 'gravy_boat'}, {'frequency': 'f', 'synset': 'green_bean.n.02', 'synonyms': ['green_bean'], 'id': 514, 'def': 'a common bean plant cultivated for its slender green edible pods', 'name': 'green_bean'}, {'frequency': 'f', 'synset': 'green_onion.n.01', 'synonyms': ['green_onion', 'spring_onion', 'scallion'], 'id': 515, 'def': 'a young onion before the bulb has enlarged', 'name': 'green_onion'}, {'frequency': 'r', 'synset': 'griddle.n.01', 'synonyms': ['griddle'], 'id': 516, 'def': 'cooking utensil consisting of a flat heated surface on which food is cooked', 'name': 'griddle'}, {'frequency': 'f', 'synset': 'grill.n.02', 'synonyms': ['grill', 'grille', 'grillwork', 'radiator_grille'], 'id': 517, 'def': 'a framework of metal bars used as a partition or a grate', 'name': 'grill'}, {'frequency': 'r', 'synset': 'grits.n.01', 'synonyms': ['grits', 'hominy_grits'], 'id': 518, 'def': 'coarsely ground corn boiled as a breakfast dish', 'name': 'grits'}, {'frequency': 'c', 'synset': 'grizzly.n.01', 'synonyms': ['grizzly', 'grizzly_bear'], 'id': 519, 'def': 'powerful brownish-yellow bear of the uplands of western North America', 'name': 'grizzly'}, {'frequency': 'c', 'synset': 'grocery_bag.n.01', 'synonyms': ['grocery_bag'], 'id': 520, 'def': "a sack for holding customer's groceries", 'name': 'grocery_bag'}, {'frequency': 'f', 'synset': 'guitar.n.01', 'synonyms': ['guitar'], 'id': 521, 'def': 'a stringed instrument usually having six strings; played by strumming or plucking', 'name': 'guitar'}, {'frequency': 'c', 'synset': 'gull.n.02', 'synonyms': ['gull', 'seagull'], 'id': 522, 'def': 'mostly white aquatic bird having long pointed wings and short legs', 'name': 'gull'}, {'frequency': 'c', 'synset': 'gun.n.01', 'synonyms': ['gun'], 'id': 523, 'def': 'a weapon that discharges a bullet at high velocity from a metal tube', 'name': 'gun'}, {'frequency': 'f', 'synset': 'hairbrush.n.01', 'synonyms': ['hairbrush'], 'id': 524, 'def': "a brush used to groom a person's hair", 'name': 'hairbrush'}, {'frequency': 'c', 'synset': 'hairnet.n.01', 'synonyms': ['hairnet'], 'id': 525, 'def': 'a small net that someone wears over their hair to keep it in place', 'name': 'hairnet'}, {'frequency': 'c', 'synset': 'hairpin.n.01', 'synonyms': ['hairpin'], 'id': 526, 'def': "a double pronged pin used to hold women's hair in place", 'name': 'hairpin'}, {'frequency': 'r', 'synset': 'halter.n.03', 'synonyms': ['halter_top'], 'id': 527, 'def': "a woman's top that fastens behind the back and neck leaving the back and arms uncovered", 'name': 'halter_top'}, {'frequency': 'f', 'synset': 'ham.n.01', 'synonyms': ['ham', 'jambon', 'gammon'], 'id': 528, 'def': 'meat cut from the thigh of a hog (usually smoked)', 'name': 'ham'}, {'frequency': 'c', 'synset': 'hamburger.n.01', 'synonyms': ['hamburger', 'beefburger', 'burger'], 'id': 529, 'def': 'a sandwich consisting of a patty of minced beef served on a bun', 'name': 'hamburger'}, {'frequency': 'c', 'synset': 'hammer.n.02', 'synonyms': ['hammer'], 'id': 530, 'def': 'a hand tool with a heavy head and a handle; used to deliver an impulsive force by striking', 'name': 'hammer'}, {'frequency': 'c', 'synset': 'hammock.n.02', 'synonyms': ['hammock'], 'id': 531, 'def': 'a hanging bed of canvas or rope netting (usually suspended between two trees)', 'name': 'hammock'}, {'frequency': 'r', 'synset': 'hamper.n.02', 'synonyms': ['hamper'], 'id': 532, 'def': 'a basket usually with a cover', 'name': 'hamper'}, {'frequency': 'c', 'synset': 'hamster.n.01', 'synonyms': ['hamster'], 'id': 533, 'def': 'short-tailed burrowing rodent with large cheek pouches', 'name': 'hamster'}, {'frequency': 'f', 'synset': 'hand_blower.n.01', 'synonyms': ['hair_dryer'], 'id': 534, 'def': 'a hand-held electric blower that can blow warm air onto the hair', 'name': 'hair_dryer'}, {'frequency': 'r', 'synset': 'hand_glass.n.01', 'synonyms': ['hand_glass', 'hand_mirror'], 'id': 535, 'def': 'a mirror intended to be held in the hand', 'name': 'hand_glass'}, {'frequency': 'f', 'synset': 'hand_towel.n.01', 'synonyms': ['hand_towel', 'face_towel'], 'id': 536, 'def': 'a small towel used to dry the hands or face', 'name': 'hand_towel'}, {'frequency': 'c', 'synset': 'handcart.n.01', 'synonyms': ['handcart', 'pushcart', 'hand_truck'], 'id': 537, 'def': 'wheeled vehicle that can be pushed by a person', 'name': 'handcart'}, {'frequency': 'r', 'synset': 'handcuff.n.01', 'synonyms': ['handcuff'], 'id': 538, 'def': 'shackle that consists of a metal loop that can be locked around the wrist', 'name': 'handcuff'}, {'frequency': 'c', 'synset': 'handkerchief.n.01', 'synonyms': ['handkerchief'], 'id': 539, 'def': 'a square piece of cloth used for wiping the eyes or nose or as a costume accessory', 'name': 'handkerchief'}, {'frequency': 'f', 'synset': 'handle.n.01', 'synonyms': ['handle', 'grip', 'handgrip'], 'id': 540, 'def': 'the appendage to an object that is designed to be held in order to use or move it', 'name': 'handle'}, {'frequency': 'r', 'synset': 'handsaw.n.01', 'synonyms': ['handsaw', "carpenter's_saw"], 'id': 541, 'def': 'a saw used with one hand for cutting wood', 'name': 'handsaw'}, {'frequency': 'r', 'synset': 'hardback.n.01', 'synonyms': ['hardback_book', 'hardcover_book'], 'id': 542, 'def': 'a book with cardboard or cloth or leather covers', 'name': 'hardback_book'}, {'frequency': 'r', 'synset': 'harmonium.n.01', 'synonyms': ['harmonium', 'organ_(musical_instrument)', 'reed_organ_(musical_instrument)'], 'id': 543, 'def': 'a free-reed instrument in which air is forced through the reeds by bellows', 'name': 'harmonium'}, {'frequency': 'f', 'synset': 'hat.n.01', 'synonyms': ['hat'], 'id': 544, 'def': 'headwear that protects the head from bad weather, sun, or worn for fashion', 'name': 'hat'}, {'frequency': 'r', 'synset': 'hatbox.n.01', 'synonyms': ['hatbox'], 'id': 545, 'def': 'a round piece of luggage for carrying hats', 'name': 'hatbox'}, {'frequency': 'c', 'synset': 'head_covering.n.01', 'synonyms': ['veil'], 'id': 546, 'def': 'a garment that covers the head OR face', 'name': 'veil'}, {'frequency': 'f', 'synset': 'headband.n.01', 'synonyms': ['headband'], 'id': 547, 'def': 'a band worn around or over the head', 'name': 'headband'}, {'frequency': 'f', 'synset': 'headboard.n.01', 'synonyms': ['headboard'], 'id': 548, 'def': 'a vertical board or panel forming the head of a bedstead', 'name': 'headboard'}, {'frequency': 'f', 'synset': 'headlight.n.01', 'synonyms': ['headlight', 'headlamp'], 'id': 549, 'def': 'a powerful light with reflector; attached to the front of an automobile or locomotive', 'name': 'headlight'}, {'frequency': 'c', 'synset': 'headscarf.n.01', 'synonyms': ['headscarf'], 'id': 550, 'def': 'a kerchief worn over the head and tied under the chin', 'name': 'headscarf'}, {'frequency': 'r', 'synset': 'headset.n.01', 'synonyms': ['headset'], 'id': 551, 'def': 'receiver consisting of a pair of headphones', 'name': 'headset'}, {'frequency': 'c', 'synset': 'headstall.n.01', 'synonyms': ['headstall_(for_horses)', 'headpiece_(for_horses)'], 'id': 552, 'def': "the band that is the part of a bridle that fits around a horse's head", 'name': 'headstall_(for_horses)'}, {'frequency': 'c', 'synset': 'heart.n.02', 'synonyms': ['heart'], 'id': 553, 'def': 'a muscular organ; its contractions move the blood through the body', 'name': 'heart'}, {'frequency': 'c', 'synset': 'heater.n.01', 'synonyms': ['heater', 'warmer'], 'id': 554, 'def': 'device that heats water or supplies warmth to a room', 'name': 'heater'}, {'frequency': 'c', 'synset': 'helicopter.n.01', 'synonyms': ['helicopter'], 'id': 555, 'def': 'an aircraft without wings that obtains its lift from the rotation of overhead blades', 'name': 'helicopter'}, {'frequency': 'f', 'synset': 'helmet.n.02', 'synonyms': ['helmet'], 'id': 556, 'def': 'a protective headgear made of hard material to resist blows', 'name': 'helmet'}, {'frequency': 'r', 'synset': 'heron.n.02', 'synonyms': ['heron'], 'id': 557, 'def': 'grey or white wading bird with long neck and long legs and (usually) long bill', 'name': 'heron'}, {'frequency': 'c', 'synset': 'highchair.n.01', 'synonyms': ['highchair', 'feeding_chair'], 'id': 558, 'def': 'a chair for feeding a very young child', 'name': 'highchair'}, {'frequency': 'f', 'synset': 'hinge.n.01', 'synonyms': ['hinge'], 'id': 559, 'def': 'a joint that holds two parts together so that one can swing relative to the other', 'name': 'hinge'}, {'frequency': 'r', 'synset': 'hippopotamus.n.01', 'synonyms': ['hippopotamus'], 'id': 560, 'def': 'massive thick-skinned animal living in or around rivers of tropical Africa', 'name': 'hippopotamus'}, {'frequency': 'r', 'synset': 'hockey_stick.n.01', 'synonyms': ['hockey_stick'], 'id': 561, 'def': 'sports implement consisting of a stick used by hockey players to move the puck', 'name': 'hockey_stick'}, {'frequency': 'c', 'synset': 'hog.n.03', 'synonyms': ['hog', 'pig'], 'id': 562, 'def': 'domestic swine', 'name': 'hog'}, {'frequency': 'f', 'synset': 'home_plate.n.01', 'synonyms': ['home_plate_(baseball)', 'home_base_(baseball)'], 'id': 563, 'def': '(baseball) a rubber slab where the batter stands; it must be touched by a base runner in order to score', 'name': 'home_plate_(baseball)'}, {'frequency': 'c', 'synset': 'honey.n.01', 'synonyms': ['honey'], 'id': 564, 'def': 'a sweet yellow liquid produced by bees', 'name': 'honey'}, {'frequency': 'f', 'synset': 'hood.n.06', 'synonyms': ['fume_hood', 'exhaust_hood'], 'id': 565, 'def': 'metal covering leading to a vent that exhausts smoke or fumes', 'name': 'fume_hood'}, {'frequency': 'f', 'synset': 'hook.n.05', 'synonyms': ['hook'], 'id': 566, 'def': 'a curved or bent implement for suspending or pulling something', 'name': 'hook'}, {'frequency': 'r', 'synset': 'hookah.n.01', 'synonyms': ['hookah', 'narghile', 'nargileh', 'sheesha', 'shisha', 'water_pipe'], 'id': 567, 'def': 'a tobacco pipe with a long flexible tube connected to a container where the smoke is cooled by passing through water', 'name': 'hookah'}, {'frequency': 'r', 'synset': 'hornet.n.01', 'synonyms': ['hornet'], 'id': 568, 'def': 'large stinging wasp', 'name': 'hornet'}, {'frequency': 'f', 'synset': 'horse.n.01', 'synonyms': ['horse'], 'id': 569, 'def': 'a common horse', 'name': 'horse'}, {'frequency': 'f', 'synset': 'hose.n.03', 'synonyms': ['hose', 'hosepipe'], 'id': 570, 'def': 'a flexible pipe for conveying a liquid or gas', 'name': 'hose'}, {'frequency': 'r', 'synset': 'hot-air_balloon.n.01', 'synonyms': ['hot-air_balloon'], 'id': 571, 'def': 'balloon for travel through the air in a basket suspended below a large bag of heated air', 'name': 'hot-air_balloon'}, {'frequency': 'r', 'synset': 'hot_plate.n.01', 'synonyms': ['hotplate'], 'id': 572, 'def': 'a portable electric appliance for heating or cooking or keeping food warm', 'name': 'hotplate'}, {'frequency': 'c', 'synset': 'hot_sauce.n.01', 'synonyms': ['hot_sauce'], 'id': 573, 'def': 'a pungent peppery sauce', 'name': 'hot_sauce'}, {'frequency': 'r', 'synset': 'hourglass.n.01', 'synonyms': ['hourglass'], 'id': 574, 'def': 'a sandglass timer that runs for sixty minutes', 'name': 'hourglass'}, {'frequency': 'r', 'synset': 'houseboat.n.01', 'synonyms': ['houseboat'], 'id': 575, 'def': 'a barge that is designed and equipped for use as a dwelling', 'name': 'houseboat'}, {'frequency': 'c', 'synset': 'hummingbird.n.01', 'synonyms': ['hummingbird'], 'id': 576, 'def': 'tiny American bird having brilliant iridescent plumage and long slender bills', 'name': 'hummingbird'}, {'frequency': 'r', 'synset': 'hummus.n.01', 'synonyms': ['hummus', 'humus', 'hommos', 'hoummos', 'humous'], 'id': 577, 'def': 'a thick spread made from mashed chickpeas', 'name': 'hummus'}, {'frequency': 'f', 'synset': 'ice_bear.n.01', 'synonyms': ['polar_bear'], 'id': 578, 'def': 'white bear of Arctic regions', 'name': 'polar_bear'}, {'frequency': 'c', 'synset': 'ice_cream.n.01', 'synonyms': ['icecream'], 'id': 579, 'def': 'frozen dessert containing cream and sugar and flavoring', 'name': 'icecream'}, {'frequency': 'r', 'synset': 'ice_lolly.n.01', 'synonyms': ['popsicle'], 'id': 580, 'def': 'ice cream or water ice on a small wooden stick', 'name': 'popsicle'}, {'frequency': 'c', 'synset': 'ice_maker.n.01', 'synonyms': ['ice_maker'], 'id': 581, 'def': 'an appliance included in some electric refrigerators for making ice cubes', 'name': 'ice_maker'}, {'frequency': 'r', 'synset': 'ice_pack.n.01', 'synonyms': ['ice_pack', 'ice_bag'], 'id': 582, 'def': 'a waterproof bag filled with ice: applied to the body (especially the head) to cool or reduce swelling', 'name': 'ice_pack'}, {'frequency': 'r', 'synset': 'ice_skate.n.01', 'synonyms': ['ice_skate'], 'id': 583, 'def': 'skate consisting of a boot with a steel blade fitted to the sole', 'name': 'ice_skate'}, {'frequency': 'c', 'synset': 'igniter.n.01', 'synonyms': ['igniter', 'ignitor', 'lighter'], 'id': 584, 'def': 'a substance or device used to start a fire', 'name': 'igniter'}, {'frequency': 'r', 'synset': 'inhaler.n.01', 'synonyms': ['inhaler', 'inhalator'], 'id': 585, 'def': 'a dispenser that produces a chemical vapor to be inhaled through mouth or nose', 'name': 'inhaler'}, {'frequency': 'f', 'synset': 'ipod.n.01', 'synonyms': ['iPod'], 'id': 586, 'def': 'a pocket-sized device used to play music files', 'name': 'iPod'}, {'frequency': 'c', 'synset': 'iron.n.04', 'synonyms': ['iron_(for_clothing)', 'smoothing_iron_(for_clothing)'], 'id': 587, 'def': 'home appliance consisting of a flat metal base that is heated and used to smooth cloth', 'name': 'iron_(for_clothing)'}, {'frequency': 'c', 'synset': 'ironing_board.n.01', 'synonyms': ['ironing_board'], 'id': 588, 'def': 'narrow padded board on collapsible supports; used for ironing clothes', 'name': 'ironing_board'}, {'frequency': 'f', 'synset': 'jacket.n.01', 'synonyms': ['jacket'], 'id': 589, 'def': 'a waist-length coat', 'name': 'jacket'}, {'frequency': 'c', 'synset': 'jam.n.01', 'synonyms': ['jam'], 'id': 590, 'def': 'preserve of crushed fruit', 'name': 'jam'}, {'frequency': 'f', 'synset': 'jar.n.01', 'synonyms': ['jar'], 'id': 591, 'def': 'a vessel (usually cylindrical) with a wide mouth and without handles', 'name': 'jar'}, {'frequency': 'f', 'synset': 'jean.n.01', 'synonyms': ['jean', 'blue_jean', 'denim'], 'id': 592, 'def': '(usually plural) close-fitting trousers of heavy denim for manual work or casual wear', 'name': 'jean'}, {'frequency': 'c', 'synset': 'jeep.n.01', 'synonyms': ['jeep', 'landrover'], 'id': 593, 'def': 'a car suitable for traveling over rough terrain', 'name': 'jeep'}, {'frequency': 'r', 'synset': 'jelly_bean.n.01', 'synonyms': ['jelly_bean', 'jelly_egg'], 'id': 594, 'def': 'sugar-glazed jellied candy', 'name': 'jelly_bean'}, {'frequency': 'f', 'synset': 'jersey.n.03', 'synonyms': ['jersey', 'T-shirt', 'tee_shirt'], 'id': 595, 'def': 'a close-fitting pullover shirt', 'name': 'jersey'}, {'frequency': 'c', 'synset': 'jet.n.01', 'synonyms': ['jet_plane', 'jet-propelled_plane'], 'id': 596, 'def': 'an airplane powered by one or more jet engines', 'name': 'jet_plane'}, {'frequency': 'r', 'synset': 'jewel.n.01', 'synonyms': ['jewel', 'gem', 'precious_stone'], 'id': 597, 'def': 'a precious or semiprecious stone incorporated into a piece of jewelry', 'name': 'jewel'}, {'frequency': 'c', 'synset': 'jewelry.n.01', 'synonyms': ['jewelry', 'jewellery'], 'id': 598, 'def': 'an adornment (as a bracelet or ring or necklace) made of precious metals and set with gems (or imitation gems)', 'name': 'jewelry'}, {'frequency': 'r', 'synset': 'joystick.n.02', 'synonyms': ['joystick'], 'id': 599, 'def': 'a control device for computers consisting of a vertical handle that can move freely in two directions', 'name': 'joystick'}, {'frequency': 'c', 'synset': 'jump_suit.n.01', 'synonyms': ['jumpsuit'], 'id': 600, 'def': "one-piece garment fashioned after a parachutist's uniform", 'name': 'jumpsuit'}, {'frequency': 'c', 'synset': 'kayak.n.01', 'synonyms': ['kayak'], 'id': 601, 'def': 'a small canoe consisting of a light frame made watertight with animal skins', 'name': 'kayak'}, {'frequency': 'r', 'synset': 'keg.n.02', 'synonyms': ['keg'], 'id': 602, 'def': 'small cask or barrel', 'name': 'keg'}, {'frequency': 'r', 'synset': 'kennel.n.01', 'synonyms': ['kennel', 'doghouse'], 'id': 603, 'def': 'outbuilding that serves as a shelter for a dog', 'name': 'kennel'}, {'frequency': 'c', 'synset': 'kettle.n.01', 'synonyms': ['kettle', 'boiler'], 'id': 604, 'def': 'a metal pot for stewing or boiling; usually has a lid', 'name': 'kettle'}, {'frequency': 'f', 'synset': 'key.n.01', 'synonyms': ['key'], 'id': 605, 'def': 'metal instrument used to unlock a lock', 'name': 'key'}, {'frequency': 'r', 'synset': 'keycard.n.01', 'synonyms': ['keycard'], 'id': 606, 'def': 'a plastic card used to gain access typically to a door', 'name': 'keycard'}, {'frequency': 'c', 'synset': 'kilt.n.01', 'synonyms': ['kilt'], 'id': 607, 'def': 'a knee-length pleated tartan skirt worn by men as part of the traditional dress in the Highlands of northern Scotland', 'name': 'kilt'}, {'frequency': 'c', 'synset': 'kimono.n.01', 'synonyms': ['kimono'], 'id': 608, 'def': 'a loose robe; imitated from robes originally worn by Japanese', 'name': 'kimono'}, {'frequency': 'f', 'synset': 'kitchen_sink.n.01', 'synonyms': ['kitchen_sink'], 'id': 609, 'def': 'a sink in a kitchen', 'name': 'kitchen_sink'}, {'frequency': 'r', 'synset': 'kitchen_table.n.01', 'synonyms': ['kitchen_table'], 'id': 610, 'def': 'a table in the kitchen', 'name': 'kitchen_table'}, {'frequency': 'f', 'synset': 'kite.n.03', 'synonyms': ['kite'], 'id': 611, 'def': 'plaything consisting of a light frame covered with tissue paper; flown in wind at end of a string', 'name': 'kite'}, {'frequency': 'c', 'synset': 'kitten.n.01', 'synonyms': ['kitten', 'kitty'], 'id': 612, 'def': 'young domestic cat', 'name': 'kitten'}, {'frequency': 'c', 'synset': 'kiwi.n.03', 'synonyms': ['kiwi_fruit'], 'id': 613, 'def': 'fuzzy brown egg-shaped fruit with slightly tart green flesh', 'name': 'kiwi_fruit'}, {'frequency': 'f', 'synset': 'knee_pad.n.01', 'synonyms': ['knee_pad'], 'id': 614, 'def': 'protective garment consisting of a pad worn by football or baseball or hockey players', 'name': 'knee_pad'}, {'frequency': 'f', 'synset': 'knife.n.01', 'synonyms': ['knife'], 'id': 615, 'def': 'tool with a blade and point used as a cutting instrument', 'name': 'knife'}, {'frequency': 'r', 'synset': 'knitting_needle.n.01', 'synonyms': ['knitting_needle'], 'id': 616, 'def': 'needle consisting of a slender rod with pointed ends; usually used in pairs', 'name': 'knitting_needle'}, {'frequency': 'f', 'synset': 'knob.n.02', 'synonyms': ['knob'], 'id': 617, 'def': 'a round handle often found on a door', 'name': 'knob'}, {'frequency': 'r', 'synset': 'knocker.n.05', 'synonyms': ['knocker_(on_a_door)', 'doorknocker'], 'id': 618, 'def': 'a device (usually metal and ornamental) attached by a hinge to a door', 'name': 'knocker_(on_a_door)'}, {'frequency': 'r', 'synset': 'koala.n.01', 'synonyms': ['koala', 'koala_bear'], 'id': 619, 'def': 'sluggish tailless Australian marsupial with grey furry ears and coat', 'name': 'koala'}, {'frequency': 'r', 'synset': 'lab_coat.n.01', 'synonyms': ['lab_coat', 'laboratory_coat'], 'id': 620, 'def': 'a light coat worn to protect clothing from substances used while working in a laboratory', 'name': 'lab_coat'}, {'frequency': 'f', 'synset': 'ladder.n.01', 'synonyms': ['ladder'], 'id': 621, 'def': 'steps consisting of two parallel members connected by rungs', 'name': 'ladder'}, {'frequency': 'c', 'synset': 'ladle.n.01', 'synonyms': ['ladle'], 'id': 622, 'def': 'a spoon-shaped vessel with a long handle frequently used to transfer liquids', 'name': 'ladle'}, {'frequency': 'c', 'synset': 'ladybug.n.01', 'synonyms': ['ladybug', 'ladybeetle', 'ladybird_beetle'], 'id': 623, 'def': 'small round bright-colored and spotted beetle, typically red and black', 'name': 'ladybug'}, {'frequency': 'f', 'synset': 'lamb.n.01', 'synonyms': ['lamb_(animal)'], 'id': 624, 'def': 'young sheep', 'name': 'lamb_(animal)'}, {'frequency': 'r', 'synset': 'lamb_chop.n.01', 'synonyms': ['lamb-chop', 'lambchop'], 'id': 625, 'def': 'chop cut from a lamb', 'name': 'lamb-chop'}, {'frequency': 'f', 'synset': 'lamp.n.02', 'synonyms': ['lamp'], 'id': 626, 'def': 'a piece of furniture holding one or more electric light bulbs', 'name': 'lamp'}, {'frequency': 'f', 'synset': 'lamppost.n.01', 'synonyms': ['lamppost'], 'id': 627, 'def': 'a metal post supporting an outdoor lamp (such as a streetlight)', 'name': 'lamppost'}, {'frequency': 'f', 'synset': 'lampshade.n.01', 'synonyms': ['lampshade'], 'id': 628, 'def': 'a protective ornamental shade used to screen a light bulb from direct view', 'name': 'lampshade'}, {'frequency': 'c', 'synset': 'lantern.n.01', 'synonyms': ['lantern'], 'id': 629, 'def': 'light in a transparent protective case', 'name': 'lantern'}, {'frequency': 'f', 'synset': 'lanyard.n.02', 'synonyms': ['lanyard', 'laniard'], 'id': 630, 'def': 'a cord worn around the neck to hold a knife or whistle, etc.', 'name': 'lanyard'}, {'frequency': 'f', 'synset': 'laptop.n.01', 'synonyms': ['laptop_computer', 'notebook_computer'], 'id': 631, 'def': 'a portable computer small enough to use in your lap', 'name': 'laptop_computer'}, {'frequency': 'r', 'synset': 'lasagna.n.01', 'synonyms': ['lasagna', 'lasagne'], 'id': 632, 'def': 'baked dish of layers of lasagna pasta with sauce and cheese and meat or vegetables', 'name': 'lasagna'}, {'frequency': 'f', 'synset': 'latch.n.02', 'synonyms': ['latch'], 'id': 633, 'def': 'a bar that can be lowered or slid into a groove to fasten a door or gate', 'name': 'latch'}, {'frequency': 'r', 'synset': 'lawn_mower.n.01', 'synonyms': ['lawn_mower'], 'id': 634, 'def': 'garden tool for mowing grass on lawns', 'name': 'lawn_mower'}, {'frequency': 'r', 'synset': 'leather.n.01', 'synonyms': ['leather'], 'id': 635, 'def': 'an animal skin made smooth and flexible by removing the hair and then tanning', 'name': 'leather'}, {'frequency': 'c', 'synset': 'legging.n.01', 'synonyms': ['legging_(clothing)', 'leging_(clothing)', 'leg_covering'], 'id': 636, 'def': 'a garment covering the leg (usually extending from the knee to the ankle)', 'name': 'legging_(clothing)'}, {'frequency': 'c', 'synset': 'lego.n.01', 'synonyms': ['Lego', 'Lego_set'], 'id': 637, 'def': "a child's plastic construction set for making models from blocks", 'name': 'Lego'}, {'frequency': 'r', 'synset': 'legume.n.02', 'synonyms': ['legume'], 'id': 638, 'def': 'the fruit or seed of bean or pea plants', 'name': 'legume'}, {'frequency': 'f', 'synset': 'lemon.n.01', 'synonyms': ['lemon'], 'id': 639, 'def': 'yellow oval fruit with juicy acidic flesh', 'name': 'lemon'}, {'frequency': 'r', 'synset': 'lemonade.n.01', 'synonyms': ['lemonade'], 'id': 640, 'def': 'sweetened beverage of diluted lemon juice', 'name': 'lemonade'}, {'frequency': 'f', 'synset': 'lettuce.n.02', 'synonyms': ['lettuce'], 'id': 641, 'def': 'leafy plant commonly eaten in salad or on sandwiches', 'name': 'lettuce'}, {'frequency': 'f', 'synset': 'license_plate.n.01', 'synonyms': ['license_plate', 'numberplate'], 'id': 642, 'def': "a plate mounted on the front and back of car and bearing the car's registration number", 'name': 'license_plate'}, {'frequency': 'f', 'synset': 'life_buoy.n.01', 'synonyms': ['life_buoy', 'lifesaver', 'life_belt', 'life_ring'], 'id': 643, 'def': 'a ring-shaped life preserver used to prevent drowning (NOT a life-jacket or vest)', 'name': 'life_buoy'}, {'frequency': 'f', 'synset': 'life_jacket.n.01', 'synonyms': ['life_jacket', 'life_vest'], 'id': 644, 'def': 'life preserver consisting of a sleeveless jacket of buoyant or inflatable design', 'name': 'life_jacket'}, {'frequency': 'f', 'synset': 'light_bulb.n.01', 'synonyms': ['lightbulb'], 'id': 645, 'def': 'lightblub/source of light', 'name': 'lightbulb'}, {'frequency': 'r', 'synset': 'lightning_rod.n.02', 'synonyms': ['lightning_rod', 'lightning_conductor'], 'id': 646, 'def': 'a metallic conductor that is attached to a high point and leads to the ground', 'name': 'lightning_rod'}, {'frequency': 'f', 'synset': 'lime.n.06', 'synonyms': ['lime'], 'id': 647, 'def': 'the green acidic fruit of any of various lime trees', 'name': 'lime'}, {'frequency': 'r', 'synset': 'limousine.n.01', 'synonyms': ['limousine'], 'id': 648, 'def': 'long luxurious car; usually driven by a chauffeur', 'name': 'limousine'}, {'frequency': 'c', 'synset': 'lion.n.01', 'synonyms': ['lion'], 'id': 649, 'def': 'large gregarious predatory cat of Africa and India', 'name': 'lion'}, {'frequency': 'c', 'synset': 'lip_balm.n.01', 'synonyms': ['lip_balm'], 'id': 650, 'def': 'a balm applied to the lips', 'name': 'lip_balm'}, {'frequency': 'r', 'synset': 'liquor.n.01', 'synonyms': ['liquor', 'spirits', 'hard_liquor', 'liqueur', 'cordial'], 'id': 651, 'def': 'liquor or beer', 'name': 'liquor'}, {'frequency': 'c', 'synset': 'lizard.n.01', 'synonyms': ['lizard'], 'id': 652, 'def': 'a reptile with usually two pairs of legs and a tapering tail', 'name': 'lizard'}, {'frequency': 'f', 'synset': 'log.n.01', 'synonyms': ['log'], 'id': 653, 'def': 'a segment of the trunk of a tree when stripped of branches', 'name': 'log'}, {'frequency': 'c', 'synset': 'lollipop.n.02', 'synonyms': ['lollipop'], 'id': 654, 'def': 'hard candy on a stick', 'name': 'lollipop'}, {'frequency': 'f', 'synset': 'loudspeaker.n.01', 'synonyms': ['speaker_(stero_equipment)'], 'id': 655, 'def': 'electronic device that produces sound often as part of a stereo system', 'name': 'speaker_(stero_equipment)'}, {'frequency': 'c', 'synset': 'love_seat.n.01', 'synonyms': ['loveseat'], 'id': 656, 'def': 'small sofa that seats two people', 'name': 'loveseat'}, {'frequency': 'r', 'synset': 'machine_gun.n.01', 'synonyms': ['machine_gun'], 'id': 657, 'def': 'a rapidly firing automatic gun', 'name': 'machine_gun'}, {'frequency': 'f', 'synset': 'magazine.n.02', 'synonyms': ['magazine'], 'id': 658, 'def': 'a paperback periodic publication', 'name': 'magazine'}, {'frequency': 'f', 'synset': 'magnet.n.01', 'synonyms': ['magnet'], 'id': 659, 'def': 'a device that attracts iron and produces a magnetic field', 'name': 'magnet'}, {'frequency': 'c', 'synset': 'mail_slot.n.01', 'synonyms': ['mail_slot'], 'id': 660, 'def': 'a slot (usually in a door) through which mail can be delivered', 'name': 'mail_slot'}, {'frequency': 'f', 'synset': 'mailbox.n.01', 'synonyms': ['mailbox_(at_home)', 'letter_box_(at_home)'], 'id': 661, 'def': 'a private box for delivery of mail', 'name': 'mailbox_(at_home)'}, {'frequency': 'r', 'synset': 'mallard.n.01', 'synonyms': ['mallard'], 'id': 662, 'def': 'wild dabbling duck from which domestic ducks are descended', 'name': 'mallard'}, {'frequency': 'r', 'synset': 'mallet.n.01', 'synonyms': ['mallet'], 'id': 663, 'def': 'a sports implement with a long handle and a hammer-like head used to hit a ball', 'name': 'mallet'}, {'frequency': 'r', 'synset': 'mammoth.n.01', 'synonyms': ['mammoth'], 'id': 664, 'def': 'any of numerous extinct elephants widely distributed in the Pleistocene', 'name': 'mammoth'}, {'frequency': 'r', 'synset': 'manatee.n.01', 'synonyms': ['manatee'], 'id': 665, 'def': 'sirenian mammal of tropical coastal waters of America', 'name': 'manatee'}, {'frequency': 'c', 'synset': 'mandarin.n.05', 'synonyms': ['mandarin_orange'], 'id': 666, 'def': 'a somewhat flat reddish-orange loose skinned citrus of China', 'name': 'mandarin_orange'}, {'frequency': 'c', 'synset': 'manger.n.01', 'synonyms': ['manger', 'trough'], 'id': 667, 'def': 'a container (usually in a barn or stable) from which cattle or horses feed', 'name': 'manger'}, {'frequency': 'f', 'synset': 'manhole.n.01', 'synonyms': ['manhole'], 'id': 668, 'def': 'a hole (usually with a flush cover) through which a person can gain access to an underground structure', 'name': 'manhole'}, {'frequency': 'f', 'synset': 'map.n.01', 'synonyms': ['map'], 'id': 669, 'def': "a diagrammatic representation of the earth's surface (or part of it)", 'name': 'map'}, {'frequency': 'f', 'synset': 'marker.n.03', 'synonyms': ['marker'], 'id': 670, 'def': 'a writing implement for making a mark', 'name': 'marker'}, {'frequency': 'r', 'synset': 'martini.n.01', 'synonyms': ['martini'], 'id': 671, 'def': 'a cocktail made of gin (or vodka) with dry vermouth', 'name': 'martini'}, {'frequency': 'r', 'synset': 'mascot.n.01', 'synonyms': ['mascot'], 'id': 672, 'def': 'a person or animal that is adopted by a team or other group as a symbolic figure', 'name': 'mascot'}, {'frequency': 'c', 'synset': 'mashed_potato.n.01', 'synonyms': ['mashed_potato'], 'id': 673, 'def': 'potato that has been peeled and boiled and then mashed', 'name': 'mashed_potato'}, {'frequency': 'r', 'synset': 'masher.n.02', 'synonyms': ['masher'], 'id': 674, 'def': 'a kitchen utensil used for mashing (e.g. potatoes)', 'name': 'masher'}, {'frequency': 'f', 'synset': 'mask.n.04', 'synonyms': ['mask', 'facemask'], 'id': 675, 'def': 'a protective covering worn over the face', 'name': 'mask'}, {'frequency': 'f', 'synset': 'mast.n.01', 'synonyms': ['mast'], 'id': 676, 'def': 'a vertical spar for supporting sails', 'name': 'mast'}, {'frequency': 'c', 'synset': 'mat.n.03', 'synonyms': ['mat_(gym_equipment)', 'gym_mat'], 'id': 677, 'def': 'sports equipment consisting of a piece of thick padding on the floor for gymnastics', 'name': 'mat_(gym_equipment)'}, {'frequency': 'r', 'synset': 'matchbox.n.01', 'synonyms': ['matchbox'], 'id': 678, 'def': 'a box for holding matches', 'name': 'matchbox'}, {'frequency': 'f', 'synset': 'mattress.n.01', 'synonyms': ['mattress'], 'id': 679, 'def': 'a thick pad filled with resilient material used as a bed or part of a bed', 'name': 'mattress'}, {'frequency': 'c', 'synset': 'measuring_cup.n.01', 'synonyms': ['measuring_cup'], 'id': 680, 'def': 'graduated cup used to measure liquid or granular ingredients', 'name': 'measuring_cup'}, {'frequency': 'c', 'synset': 'measuring_stick.n.01', 'synonyms': ['measuring_stick', 'ruler_(measuring_stick)', 'measuring_rod'], 'id': 681, 'def': 'measuring instrument having a sequence of marks at regular intervals', 'name': 'measuring_stick'}, {'frequency': 'c', 'synset': 'meatball.n.01', 'synonyms': ['meatball'], 'id': 682, 'def': 'ground meat formed into a ball and fried or simmered in broth', 'name': 'meatball'}, {'frequency': 'c', 'synset': 'medicine.n.02', 'synonyms': ['medicine'], 'id': 683, 'def': 'something that treats or prevents or alleviates the symptoms of disease', 'name': 'medicine'}, {'frequency': 'c', 'synset': 'melon.n.01', 'synonyms': ['melon'], 'id': 684, 'def': 'fruit of the gourd family having a hard rind and sweet juicy flesh', 'name': 'melon'}, {'frequency': 'f', 'synset': 'microphone.n.01', 'synonyms': ['microphone'], 'id': 685, 'def': 'device for converting sound waves into electrical energy', 'name': 'microphone'}, {'frequency': 'r', 'synset': 'microscope.n.01', 'synonyms': ['microscope'], 'id': 686, 'def': 'magnifier of the image of small objects', 'name': 'microscope'}, {'frequency': 'f', 'synset': 'microwave.n.02', 'synonyms': ['microwave_oven'], 'id': 687, 'def': 'kitchen appliance that cooks food by passing an electromagnetic wave through it', 'name': 'microwave_oven'}, {'frequency': 'r', 'synset': 'milestone.n.01', 'synonyms': ['milestone', 'milepost'], 'id': 688, 'def': 'stone post at side of a road to show distances', 'name': 'milestone'}, {'frequency': 'f', 'synset': 'milk.n.01', 'synonyms': ['milk'], 'id': 689, 'def': 'a white nutritious liquid secreted by mammals and used as food by human beings', 'name': 'milk'}, {'frequency': 'r', 'synset': 'milk_can.n.01', 'synonyms': ['milk_can'], 'id': 690, 'def': 'can for transporting milk', 'name': 'milk_can'}, {'frequency': 'r', 'synset': 'milkshake.n.01', 'synonyms': ['milkshake'], 'id': 691, 'def': 'frothy drink of milk and flavoring and sometimes fruit or ice cream', 'name': 'milkshake'}, {'frequency': 'f', 'synset': 'minivan.n.01', 'synonyms': ['minivan'], 'id': 692, 'def': 'a small box-shaped passenger van', 'name': 'minivan'}, {'frequency': 'r', 'synset': 'mint.n.05', 'synonyms': ['mint_candy'], 'id': 693, 'def': 'a candy that is flavored with a mint oil', 'name': 'mint_candy'}, {'frequency': 'f', 'synset': 'mirror.n.01', 'synonyms': ['mirror'], 'id': 694, 'def': 'polished surface that forms images by reflecting light', 'name': 'mirror'}, {'frequency': 'c', 'synset': 'mitten.n.01', 'synonyms': ['mitten'], 'id': 695, 'def': 'glove that encases the thumb separately and the other four fingers together', 'name': 'mitten'}, {'frequency': 'c', 'synset': 'mixer.n.04', 'synonyms': ['mixer_(kitchen_tool)', 'stand_mixer'], 'id': 696, 'def': 'a kitchen utensil that is used for mixing foods', 'name': 'mixer_(kitchen_tool)'}, {'frequency': 'c', 'synset': 'money.n.03', 'synonyms': ['money'], 'id': 697, 'def': 'the official currency issued by a government or national bank', 'name': 'money'}, {'frequency': 'f', 'synset': 'monitor.n.04', 'synonyms': ['monitor_(computer_equipment) computer_monitor'], 'id': 698, 'def': 'a computer monitor', 'name': 'monitor_(computer_equipment) computer_monitor'}, {'frequency': 'c', 'synset': 'monkey.n.01', 'synonyms': ['monkey'], 'id': 699, 'def': 'any of various long-tailed primates', 'name': 'monkey'}, {'frequency': 'f', 'synset': 'motor.n.01', 'synonyms': ['motor'], 'id': 700, 'def': 'machine that converts other forms of energy into mechanical energy and so imparts motion', 'name': 'motor'}, {'frequency': 'f', 'synset': 'motor_scooter.n.01', 'synonyms': ['motor_scooter', 'scooter'], 'id': 701, 'def': 'a wheeled vehicle with small wheels and a low-powered engine', 'name': 'motor_scooter'}, {'frequency': 'r', 'synset': 'motor_vehicle.n.01', 'synonyms': ['motor_vehicle', 'automotive_vehicle'], 'id': 702, 'def': 'a self-propelled wheeled vehicle that does not run on rails', 'name': 'motor_vehicle'}, {'frequency': 'f', 'synset': 'motorcycle.n.01', 'synonyms': ['motorcycle'], 'id': 703, 'def': 'a motor vehicle with two wheels and a strong frame', 'name': 'motorcycle'}, {'frequency': 'f', 'synset': 'mound.n.01', 'synonyms': ['mound_(baseball)', "pitcher's_mound"], 'id': 704, 'def': '(baseball) the slight elevation on which the pitcher stands', 'name': 'mound_(baseball)'}, {'frequency': 'f', 'synset': 'mouse.n.04', 'synonyms': ['mouse_(computer_equipment)', 'computer_mouse'], 'id': 705, 'def': 'a computer input device that controls an on-screen pointer (does not include trackpads / touchpads)', 'name': 'mouse_(computer_equipment)'}, {'frequency': 'f', 'synset': 'mousepad.n.01', 'synonyms': ['mousepad'], 'id': 706, 'def': 'a small portable pad that provides an operating surface for a computer mouse', 'name': 'mousepad'}, {'frequency': 'c', 'synset': 'muffin.n.01', 'synonyms': ['muffin'], 'id': 707, 'def': 'a sweet quick bread baked in a cup-shaped pan', 'name': 'muffin'}, {'frequency': 'f', 'synset': 'mug.n.04', 'synonyms': ['mug'], 'id': 708, 'def': 'with handle and usually cylindrical', 'name': 'mug'}, {'frequency': 'f', 'synset': 'mushroom.n.02', 'synonyms': ['mushroom'], 'id': 709, 'def': 'a common mushroom', 'name': 'mushroom'}, {'frequency': 'r', 'synset': 'music_stool.n.01', 'synonyms': ['music_stool', 'piano_stool'], 'id': 710, 'def': 'a stool for piano players; usually adjustable in height', 'name': 'music_stool'}, {'frequency': 'c', 'synset': 'musical_instrument.n.01', 'synonyms': ['musical_instrument', 'instrument_(musical)'], 'id': 711, 'def': 'any of various devices or contrivances that can be used to produce musical tones or sounds', 'name': 'musical_instrument'}, {'frequency': 'r', 'synset': 'nailfile.n.01', 'synonyms': ['nailfile'], 'id': 712, 'def': 'a small flat file for shaping the nails', 'name': 'nailfile'}, {'frequency': 'f', 'synset': 'napkin.n.01', 'synonyms': ['napkin', 'table_napkin', 'serviette'], 'id': 713, 'def': 'a small piece of table linen or paper that is used to wipe the mouth and to cover the lap in order to protect clothing', 'name': 'napkin'}, {'frequency': 'r', 'synset': 'neckerchief.n.01', 'synonyms': ['neckerchief'], 'id': 714, 'def': 'a kerchief worn around the neck', 'name': 'neckerchief'}, {'frequency': 'f', 'synset': 'necklace.n.01', 'synonyms': ['necklace'], 'id': 715, 'def': 'jewelry consisting of a cord or chain (often bearing gems) worn about the neck as an ornament', 'name': 'necklace'}, {'frequency': 'f', 'synset': 'necktie.n.01', 'synonyms': ['necktie', 'tie_(necktie)'], 'id': 716, 'def': 'neckwear consisting of a long narrow piece of material worn under a collar and tied in knot at the front', 'name': 'necktie'}, {'frequency': 'c', 'synset': 'needle.n.03', 'synonyms': ['needle'], 'id': 717, 'def': 'a sharp pointed implement (usually metal)', 'name': 'needle'}, {'frequency': 'c', 'synset': 'nest.n.01', 'synonyms': ['nest'], 'id': 718, 'def': 'a structure in which animals lay eggs or give birth to their young', 'name': 'nest'}, {'frequency': 'f', 'synset': 'newspaper.n.01', 'synonyms': ['newspaper', 'paper_(newspaper)'], 'id': 719, 'def': 'a daily or weekly publication on folded sheets containing news, articles, and advertisements', 'name': 'newspaper'}, {'frequency': 'c', 'synset': 'newsstand.n.01', 'synonyms': ['newsstand'], 'id': 720, 'def': 'a stall where newspapers and other periodicals are sold', 'name': 'newsstand'}, {'frequency': 'c', 'synset': 'nightwear.n.01', 'synonyms': ['nightshirt', 'nightwear', 'sleepwear', 'nightclothes'], 'id': 721, 'def': 'garments designed to be worn in bed', 'name': 'nightshirt'}, {'frequency': 'r', 'synset': 'nosebag.n.01', 'synonyms': ['nosebag_(for_animals)', 'feedbag'], 'id': 722, 'def': 'a canvas bag that is used to feed an animal (such as a horse); covers the muzzle and fastens at the top of the head', 'name': 'nosebag_(for_animals)'}, {'frequency': 'c', 'synset': 'noseband.n.01', 'synonyms': ['noseband_(for_animals)', 'nosepiece_(for_animals)'], 'id': 723, 'def': "a strap that is the part of a bridle that goes over the animal's nose", 'name': 'noseband_(for_animals)'}, {'frequency': 'f', 'synset': 'notebook.n.01', 'synonyms': ['notebook'], 'id': 724, 'def': 'a book with blank pages for recording notes or memoranda', 'name': 'notebook'}, {'frequency': 'c', 'synset': 'notepad.n.01', 'synonyms': ['notepad'], 'id': 725, 'def': 'a pad of paper for keeping notes', 'name': 'notepad'}, {'frequency': 'f', 'synset': 'nut.n.03', 'synonyms': ['nut'], 'id': 726, 'def': 'a small metal block (usually square or hexagonal) with internal screw thread to be fitted onto a bolt', 'name': 'nut'}, {'frequency': 'r', 'synset': 'nutcracker.n.01', 'synonyms': ['nutcracker'], 'id': 727, 'def': 'a hand tool used to crack nuts open', 'name': 'nutcracker'}, {'frequency': 'f', 'synset': 'oar.n.01', 'synonyms': ['oar'], 'id': 728, 'def': 'an implement used to propel or steer a boat', 'name': 'oar'}, {'frequency': 'r', 'synset': 'octopus.n.01', 'synonyms': ['octopus_(food)'], 'id': 729, 'def': 'tentacles of octopus prepared as food', 'name': 'octopus_(food)'}, {'frequency': 'r', 'synset': 'octopus.n.02', 'synonyms': ['octopus_(animal)'], 'id': 730, 'def': 'bottom-living cephalopod having a soft oval body with eight long tentacles', 'name': 'octopus_(animal)'}, {'frequency': 'c', 'synset': 'oil_lamp.n.01', 'synonyms': ['oil_lamp', 'kerosene_lamp', 'kerosine_lamp'], 'id': 731, 'def': 'a lamp that burns oil (as kerosine) for light', 'name': 'oil_lamp'}, {'frequency': 'c', 'synset': 'olive_oil.n.01', 'synonyms': ['olive_oil'], 'id': 732, 'def': 'oil from olives', 'name': 'olive_oil'}, {'frequency': 'r', 'synset': 'omelet.n.01', 'synonyms': ['omelet', 'omelette'], 'id': 733, 'def': 'beaten eggs cooked until just set; may be folded around e.g. ham or cheese or jelly', 'name': 'omelet'}, {'frequency': 'f', 'synset': 'onion.n.01', 'synonyms': ['onion'], 'id': 734, 'def': 'the bulb of an onion plant', 'name': 'onion'}, {'frequency': 'f', 'synset': 'orange.n.01', 'synonyms': ['orange_(fruit)'], 'id': 735, 'def': 'orange (FRUIT of an orange tree)', 'name': 'orange_(fruit)'}, {'frequency': 'c', 'synset': 'orange_juice.n.01', 'synonyms': ['orange_juice'], 'id': 736, 'def': 'bottled or freshly squeezed juice of oranges', 'name': 'orange_juice'}, {'frequency': 'c', 'synset': 'ostrich.n.02', 'synonyms': ['ostrich'], 'id': 737, 'def': 'fast-running African flightless bird with two-toed feet; largest living bird', 'name': 'ostrich'}, {'frequency': 'f', 'synset': 'ottoman.n.03', 'synonyms': ['ottoman', 'pouf', 'pouffe', 'hassock'], 'id': 738, 'def': 'a thick standalone cushion used as a seat or footrest, often next to a chair', 'name': 'ottoman'}, {'frequency': 'f', 'synset': 'oven.n.01', 'synonyms': ['oven'], 'id': 739, 'def': 'kitchen appliance used for baking or roasting', 'name': 'oven'}, {'frequency': 'c', 'synset': 'overall.n.01', 'synonyms': ['overalls_(clothing)'], 'id': 740, 'def': 'work clothing consisting of denim trousers usually with a bib and shoulder straps', 'name': 'overalls_(clothing)'}, {'frequency': 'c', 'synset': 'owl.n.01', 'synonyms': ['owl'], 'id': 741, 'def': 'nocturnal bird of prey with hawk-like beak and claws and large head with front-facing eyes', 'name': 'owl'}, {'frequency': 'c', 'synset': 'packet.n.03', 'synonyms': ['packet'], 'id': 742, 'def': 'a small package or bundle', 'name': 'packet'}, {'frequency': 'r', 'synset': 'pad.n.03', 'synonyms': ['inkpad', 'inking_pad', 'stamp_pad'], 'id': 743, 'def': 'absorbent material saturated with ink used to transfer ink evenly to a rubber stamp', 'name': 'inkpad'}, {'frequency': 'c', 'synset': 'pad.n.04', 'synonyms': ['pad'], 'id': 744, 'def': 'mostly arm/knee pads labeled', 'name': 'pad'}, {'frequency': 'f', 'synset': 'paddle.n.04', 'synonyms': ['paddle', 'boat_paddle'], 'id': 745, 'def': 'a short light oar used without an oarlock to propel a canoe or small boat', 'name': 'paddle'}, {'frequency': 'c', 'synset': 'padlock.n.01', 'synonyms': ['padlock'], 'id': 746, 'def': 'a detachable, portable lock', 'name': 'padlock'}, {'frequency': 'c', 'synset': 'paintbrush.n.01', 'synonyms': ['paintbrush'], 'id': 747, 'def': 'a brush used as an applicator to apply paint', 'name': 'paintbrush'}, {'frequency': 'f', 'synset': 'painting.n.01', 'synonyms': ['painting'], 'id': 748, 'def': 'graphic art consisting of an artistic composition made by applying paints to a surface', 'name': 'painting'}, {'frequency': 'f', 'synset': 'pajama.n.02', 'synonyms': ['pajamas', 'pyjamas'], 'id': 749, 'def': 'loose-fitting nightclothes worn for sleeping or lounging', 'name': 'pajamas'}, {'frequency': 'c', 'synset': 'palette.n.02', 'synonyms': ['palette', 'pallet'], 'id': 750, 'def': 'board that provides a flat surface on which artists mix paints and the range of colors used', 'name': 'palette'}, {'frequency': 'f', 'synset': 'pan.n.01', 'synonyms': ['pan_(for_cooking)', 'cooking_pan'], 'id': 751, 'def': 'cooking utensil consisting of a wide metal vessel', 'name': 'pan_(for_cooking)'}, {'frequency': 'r', 'synset': 'pan.n.03', 'synonyms': ['pan_(metal_container)'], 'id': 752, 'def': 'shallow container made of metal', 'name': 'pan_(metal_container)'}, {'frequency': 'c', 'synset': 'pancake.n.01', 'synonyms': ['pancake'], 'id': 753, 'def': 'a flat cake of thin batter fried on both sides on a griddle', 'name': 'pancake'}, {'frequency': 'r', 'synset': 'pantyhose.n.01', 'synonyms': ['pantyhose'], 'id': 754, 'def': "a woman's tights consisting of underpants and stockings", 'name': 'pantyhose'}, {'frequency': 'r', 'synset': 'papaya.n.02', 'synonyms': ['papaya'], 'id': 755, 'def': 'large oval melon-like tropical fruit with yellowish flesh', 'name': 'papaya'}, {'frequency': 'f', 'synset': 'paper_plate.n.01', 'synonyms': ['paper_plate'], 'id': 756, 'def': 'a disposable plate made of cardboard', 'name': 'paper_plate'}, {'frequency': 'f', 'synset': 'paper_towel.n.01', 'synonyms': ['paper_towel'], 'id': 757, 'def': 'a disposable towel made of absorbent paper', 'name': 'paper_towel'}, {'frequency': 'r', 'synset': 'paperback_book.n.01', 'synonyms': ['paperback_book', 'paper-back_book', 'softback_book', 'soft-cover_book'], 'id': 758, 'def': 'a book with paper covers', 'name': 'paperback_book'}, {'frequency': 'r', 'synset': 'paperweight.n.01', 'synonyms': ['paperweight'], 'id': 759, 'def': 'a weight used to hold down a stack of papers', 'name': 'paperweight'}, {'frequency': 'c', 'synset': 'parachute.n.01', 'synonyms': ['parachute'], 'id': 760, 'def': 'rescue equipment consisting of a device that fills with air and retards your fall', 'name': 'parachute'}, {'frequency': 'c', 'synset': 'parakeet.n.01', 'synonyms': ['parakeet', 'parrakeet', 'parroket', 'paraquet', 'paroquet', 'parroquet'], 'id': 761, 'def': 'any of numerous small slender long-tailed parrots', 'name': 'parakeet'}, {'frequency': 'c', 'synset': 'parasail.n.01', 'synonyms': ['parasail_(sports)'], 'id': 762, 'def': 'parachute that will lift a person up into the air when it is towed by a motorboat or a car', 'name': 'parasail_(sports)'}, {'frequency': 'c', 'synset': 'parasol.n.01', 'synonyms': ['parasol', 'sunshade'], 'id': 763, 'def': 'a handheld collapsible source of shade', 'name': 'parasol'}, {'frequency': 'r', 'synset': 'parchment.n.01', 'synonyms': ['parchment'], 'id': 764, 'def': 'a superior paper resembling sheepskin', 'name': 'parchment'}, {'frequency': 'c', 'synset': 'parka.n.01', 'synonyms': ['parka', 'anorak'], 'id': 765, 'def': "a kind of heavy jacket (`windcheater' is a British term)", 'name': 'parka'}, {'frequency': 'f', 'synset': 'parking_meter.n.01', 'synonyms': ['parking_meter'], 'id': 766, 'def': 'a coin-operated timer located next to a parking space', 'name': 'parking_meter'}, {'frequency': 'c', 'synset': 'parrot.n.01', 'synonyms': ['parrot'], 'id': 767, 'def': 'usually brightly colored tropical birds with short hooked beaks and the ability to mimic sounds', 'name': 'parrot'}, {'frequency': 'c', 'synset': 'passenger_car.n.01', 'synonyms': ['passenger_car_(part_of_a_train)', 'coach_(part_of_a_train)'], 'id': 768, 'def': 'a railcar where passengers ride', 'name': 'passenger_car_(part_of_a_train)'}, {'frequency': 'r', 'synset': 'passenger_ship.n.01', 'synonyms': ['passenger_ship'], 'id': 769, 'def': 'a ship built to carry passengers', 'name': 'passenger_ship'}, {'frequency': 'c', 'synset': 'passport.n.02', 'synonyms': ['passport'], 'id': 770, 'def': 'a document issued by a country to a citizen allowing that person to travel abroad and re-enter the home country', 'name': 'passport'}, {'frequency': 'f', 'synset': 'pastry.n.02', 'synonyms': ['pastry'], 'id': 771, 'def': 'any of various baked foods made of dough or batter', 'name': 'pastry'}, {'frequency': 'r', 'synset': 'patty.n.01', 'synonyms': ['patty_(food)'], 'id': 772, 'def': 'small flat mass of chopped food', 'name': 'patty_(food)'}, {'frequency': 'c', 'synset': 'pea.n.01', 'synonyms': ['pea_(food)'], 'id': 773, 'def': 'seed of a pea plant used for food', 'name': 'pea_(food)'}, {'frequency': 'c', 'synset': 'peach.n.03', 'synonyms': ['peach'], 'id': 774, 'def': 'downy juicy fruit with sweet yellowish or whitish flesh', 'name': 'peach'}, {'frequency': 'c', 'synset': 'peanut_butter.n.01', 'synonyms': ['peanut_butter'], 'id': 775, 'def': 'a spread made from ground peanuts', 'name': 'peanut_butter'}, {'frequency': 'f', 'synset': 'pear.n.01', 'synonyms': ['pear'], 'id': 776, 'def': 'sweet juicy gritty-textured fruit available in many varieties', 'name': 'pear'}, {'frequency': 'c', 'synset': 'peeler.n.03', 'synonyms': ['peeler_(tool_for_fruit_and_vegetables)'], 'id': 777, 'def': 'a device for peeling vegetables or fruits', 'name': 'peeler_(tool_for_fruit_and_vegetables)'}, {'frequency': 'r', 'synset': 'peg.n.04', 'synonyms': ['wooden_leg', 'pegleg'], 'id': 778, 'def': 'a prosthesis that replaces a missing leg', 'name': 'wooden_leg'}, {'frequency': 'r', 'synset': 'pegboard.n.01', 'synonyms': ['pegboard'], 'id': 779, 'def': 'a board perforated with regularly spaced holes into which pegs can be fitted', 'name': 'pegboard'}, {'frequency': 'c', 'synset': 'pelican.n.01', 'synonyms': ['pelican'], 'id': 780, 'def': 'large long-winged warm-water seabird having a large bill with a distensible pouch for fish', 'name': 'pelican'}, {'frequency': 'f', 'synset': 'pen.n.01', 'synonyms': ['pen'], 'id': 781, 'def': 'a writing implement with a point from which ink flows', 'name': 'pen'}, {'frequency': 'f', 'synset': 'pencil.n.01', 'synonyms': ['pencil'], 'id': 782, 'def': 'a thin cylindrical pointed writing implement made of wood and graphite', 'name': 'pencil'}, {'frequency': 'r', 'synset': 'pencil_box.n.01', 'synonyms': ['pencil_box', 'pencil_case'], 'id': 783, 'def': 'a box for holding pencils', 'name': 'pencil_box'}, {'frequency': 'r', 'synset': 'pencil_sharpener.n.01', 'synonyms': ['pencil_sharpener'], 'id': 784, 'def': 'a rotary implement for sharpening the point on pencils', 'name': 'pencil_sharpener'}, {'frequency': 'r', 'synset': 'pendulum.n.01', 'synonyms': ['pendulum'], 'id': 785, 'def': 'an apparatus consisting of an object mounted so that it swings freely under the influence of gravity', 'name': 'pendulum'}, {'frequency': 'c', 'synset': 'penguin.n.01', 'synonyms': ['penguin'], 'id': 786, 'def': 'short-legged flightless birds of cold southern regions having webbed feet and wings modified as flippers', 'name': 'penguin'}, {'frequency': 'r', 'synset': 'pennant.n.02', 'synonyms': ['pennant'], 'id': 787, 'def': 'a flag longer than it is wide (and often tapering)', 'name': 'pennant'}, {'frequency': 'r', 'synset': 'penny.n.02', 'synonyms': ['penny_(coin)'], 'id': 788, 'def': 'a coin worth one-hundredth of the value of the basic unit', 'name': 'penny_(coin)'}, {'frequency': 'f', 'synset': 'pepper.n.03', 'synonyms': ['pepper', 'peppercorn'], 'id': 789, 'def': 'pungent seasoning from the berry of the common pepper plant; whole or ground', 'name': 'pepper'}, {'frequency': 'c', 'synset': 'pepper_mill.n.01', 'synonyms': ['pepper_mill', 'pepper_grinder'], 'id': 790, 'def': 'a mill for grinding pepper', 'name': 'pepper_mill'}, {'frequency': 'c', 'synset': 'perfume.n.02', 'synonyms': ['perfume'], 'id': 791, 'def': 'a toiletry that emits and diffuses a fragrant odor', 'name': 'perfume'}, {'frequency': 'r', 'synset': 'persimmon.n.02', 'synonyms': ['persimmon'], 'id': 792, 'def': 'orange fruit resembling a plum; edible when fully ripe', 'name': 'persimmon'}, {'frequency': 'f', 'synset': 'person.n.01', 'synonyms': ['person', 'baby', 'child', 'boy', 'girl', 'man', 'woman', 'human'], 'id': 793, 'def': 'a human being', 'name': 'person'}, {'frequency': 'c', 'synset': 'pet.n.01', 'synonyms': ['pet'], 'id': 794, 'def': 'a domesticated animal kept for companionship or amusement', 'name': 'pet'}, {'frequency': 'c', 'synset': 'pew.n.01', 'synonyms': ['pew_(church_bench)', 'church_bench'], 'id': 795, 'def': 'long bench with backs; used in church by the congregation', 'name': 'pew_(church_bench)'}, {'frequency': 'r', 'synset': 'phonebook.n.01', 'synonyms': ['phonebook', 'telephone_book', 'telephone_directory'], 'id': 796, 'def': 'a directory containing an alphabetical list of telephone subscribers and their telephone numbers', 'name': 'phonebook'}, {'frequency': 'c', 'synset': 'phonograph_record.n.01', 'synonyms': ['phonograph_record', 'phonograph_recording', 'record_(phonograph_recording)'], 'id': 797, 'def': 'sound recording consisting of a typically black disk with a continuous groove', 'name': 'phonograph_record'}, {'frequency': 'f', 'synset': 'piano.n.01', 'synonyms': ['piano'], 'id': 798, 'def': 'a keyboard instrument that is played by depressing keys that cause hammers to strike tuned strings and produce sounds', 'name': 'piano'}, {'frequency': 'f', 'synset': 'pickle.n.01', 'synonyms': ['pickle'], 'id': 799, 'def': 'vegetables (especially cucumbers) preserved in brine or vinegar', 'name': 'pickle'}, {'frequency': 'f', 'synset': 'pickup.n.01', 'synonyms': ['pickup_truck'], 'id': 800, 'def': 'a light truck with an open body and low sides and a tailboard', 'name': 'pickup_truck'}, {'frequency': 'c', 'synset': 'pie.n.01', 'synonyms': ['pie'], 'id': 801, 'def': 'dish baked in pastry-lined pan often with a pastry top', 'name': 'pie'}, {'frequency': 'c', 'synset': 'pigeon.n.01', 'synonyms': ['pigeon'], 'id': 802, 'def': 'wild and domesticated birds having a heavy body and short legs', 'name': 'pigeon'}, {'frequency': 'r', 'synset': 'piggy_bank.n.01', 'synonyms': ['piggy_bank', 'penny_bank'], 'id': 803, 'def': "a child's coin bank (often shaped like a pig)", 'name': 'piggy_bank'}, {'frequency': 'f', 'synset': 'pillow.n.01', 'synonyms': ['pillow'], 'id': 804, 'def': 'a cushion to support the head of a sleeping person', 'name': 'pillow'}, {'frequency': 'r', 'synset': 'pin.n.09', 'synonyms': ['pin_(non_jewelry)'], 'id': 805, 'def': 'a small slender (often pointed) piece of wood or metal used to support or fasten or attach things', 'name': 'pin_(non_jewelry)'}, {'frequency': 'f', 'synset': 'pineapple.n.02', 'synonyms': ['pineapple'], 'id': 806, 'def': 'large sweet fleshy tropical fruit with a tuft of stiff leaves', 'name': 'pineapple'}, {'frequency': 'c', 'synset': 'pinecone.n.01', 'synonyms': ['pinecone'], 'id': 807, 'def': 'the seed-producing cone of a pine tree', 'name': 'pinecone'}, {'frequency': 'r', 'synset': 'ping-pong_ball.n.01', 'synonyms': ['ping-pong_ball'], 'id': 808, 'def': 'light hollow ball used in playing table tennis', 'name': 'ping-pong_ball'}, {'frequency': 'r', 'synset': 'pinwheel.n.03', 'synonyms': ['pinwheel'], 'id': 809, 'def': 'a toy consisting of vanes of colored paper or plastic that is pinned to a stick and spins when it is pointed into the wind', 'name': 'pinwheel'}, {'frequency': 'r', 'synset': 'pipe.n.01', 'synonyms': ['tobacco_pipe'], 'id': 810, 'def': 'a tube with a small bowl at one end; used for smoking tobacco', 'name': 'tobacco_pipe'}, {'frequency': 'f', 'synset': 'pipe.n.02', 'synonyms': ['pipe', 'piping'], 'id': 811, 'def': 'a long tube made of metal or plastic that is used to carry water or oil or gas etc.', 'name': 'pipe'}, {'frequency': 'r', 'synset': 'pistol.n.01', 'synonyms': ['pistol', 'handgun'], 'id': 812, 'def': 'a firearm that is held and fired with one hand', 'name': 'pistol'}, {'frequency': 'c', 'synset': 'pita.n.01', 'synonyms': ['pita_(bread)', 'pocket_bread'], 'id': 813, 'def': 'usually small round bread that can open into a pocket for filling', 'name': 'pita_(bread)'}, {'frequency': 'f', 'synset': 'pitcher.n.02', 'synonyms': ['pitcher_(vessel_for_liquid)', 'ewer'], 'id': 814, 'def': 'an open vessel with a handle and a spout for pouring', 'name': 'pitcher_(vessel_for_liquid)'}, {'frequency': 'r', 'synset': 'pitchfork.n.01', 'synonyms': ['pitchfork'], 'id': 815, 'def': 'a long-handled hand tool with sharp widely spaced prongs for lifting and pitching hay', 'name': 'pitchfork'}, {'frequency': 'f', 'synset': 'pizza.n.01', 'synonyms': ['pizza'], 'id': 816, 'def': 'Italian open pie made of thin bread dough spread with a spiced mixture of e.g. tomato sauce and cheese', 'name': 'pizza'}, {'frequency': 'f', 'synset': 'place_mat.n.01', 'synonyms': ['place_mat'], 'id': 817, 'def': 'a mat placed on a table for an individual place setting', 'name': 'place_mat'}, {'frequency': 'f', 'synset': 'plate.n.04', 'synonyms': ['plate'], 'id': 818, 'def': 'dish on which food is served or from which food is eaten', 'name': 'plate'}, {'frequency': 'c', 'synset': 'platter.n.01', 'synonyms': ['platter'], 'id': 819, 'def': 'a large shallow dish used for serving food', 'name': 'platter'}, {'frequency': 'r', 'synset': 'playpen.n.01', 'synonyms': ['playpen'], 'id': 820, 'def': 'a portable enclosure in which babies may be left to play', 'name': 'playpen'}, {'frequency': 'c', 'synset': 'pliers.n.01', 'synonyms': ['pliers', 'plyers'], 'id': 821, 'def': 'a gripping hand tool with two hinged arms and (usually) serrated jaws', 'name': 'pliers'}, {'frequency': 'r', 'synset': 'plow.n.01', 'synonyms': ['plow_(farm_equipment)', 'plough_(farm_equipment)'], 'id': 822, 'def': 'a farm tool having one or more heavy blades to break the soil and cut a furrow prior to sowing', 'name': 'plow_(farm_equipment)'}, {'frequency': 'r', 'synset': 'plume.n.02', 'synonyms': ['plume'], 'id': 823, 'def': 'a feather or cluster of feathers worn as an ornament', 'name': 'plume'}, {'frequency': 'r', 'synset': 'pocket_watch.n.01', 'synonyms': ['pocket_watch'], 'id': 824, 'def': 'a watch that is carried in a small watch pocket', 'name': 'pocket_watch'}, {'frequency': 'c', 'synset': 'pocketknife.n.01', 'synonyms': ['pocketknife'], 'id': 825, 'def': 'a knife with a blade that folds into the handle; suitable for carrying in the pocket', 'name': 'pocketknife'}, {'frequency': 'c', 'synset': 'poker.n.01', 'synonyms': ['poker_(fire_stirring_tool)', 'stove_poker', 'fire_hook'], 'id': 826, 'def': 'fire iron consisting of a metal rod with a handle; used to stir a fire', 'name': 'poker_(fire_stirring_tool)'}, {'frequency': 'f', 'synset': 'pole.n.01', 'synonyms': ['pole', 'post'], 'id': 827, 'def': 'a long (usually round) rod of wood or metal or plastic', 'name': 'pole'}, {'frequency': 'f', 'synset': 'polo_shirt.n.01', 'synonyms': ['polo_shirt', 'sport_shirt'], 'id': 828, 'def': 'a shirt with short sleeves designed for comfort and casual wear', 'name': 'polo_shirt'}, {'frequency': 'r', 'synset': 'poncho.n.01', 'synonyms': ['poncho'], 'id': 829, 'def': 'a blanket-like cloak with a hole in the center for the head', 'name': 'poncho'}, {'frequency': 'c', 'synset': 'pony.n.05', 'synonyms': ['pony'], 'id': 830, 'def': 'any of various breeds of small gentle horses usually less than five feet high at the shoulder', 'name': 'pony'}, {'frequency': 'r', 'synset': 'pool_table.n.01', 'synonyms': ['pool_table', 'billiard_table', 'snooker_table'], 'id': 831, 'def': 'game equipment consisting of a heavy table on which pool is played', 'name': 'pool_table'}, {'frequency': 'f', 'synset': 'pop.n.02', 'synonyms': ['pop_(soda)', 'soda_(pop)', 'tonic', 'soft_drink'], 'id': 832, 'def': 'a sweet drink containing carbonated water and flavoring', 'name': 'pop_(soda)'}, {'frequency': 'c', 'synset': 'postbox.n.01', 'synonyms': ['postbox_(public)', 'mailbox_(public)'], 'id': 833, 'def': 'public box for deposit of mail', 'name': 'postbox_(public)'}, {'frequency': 'c', 'synset': 'postcard.n.01', 'synonyms': ['postcard', 'postal_card', 'mailing-card'], 'id': 834, 'def': 'a card for sending messages by post without an envelope', 'name': 'postcard'}, {'frequency': 'f', 'synset': 'poster.n.01', 'synonyms': ['poster', 'placard'], 'id': 835, 'def': 'a sign posted in a public place as an advertisement', 'name': 'poster'}, {'frequency': 'f', 'synset': 'pot.n.01', 'synonyms': ['pot'], 'id': 836, 'def': 'metal or earthenware cooking vessel that is usually round and deep; often has a handle and lid', 'name': 'pot'}, {'frequency': 'f', 'synset': 'pot.n.04', 'synonyms': ['flowerpot'], 'id': 837, 'def': 'a container in which plants are cultivated', 'name': 'flowerpot'}, {'frequency': 'f', 'synset': 'potato.n.01', 'synonyms': ['potato'], 'id': 838, 'def': 'an edible tuber native to South America', 'name': 'potato'}, {'frequency': 'c', 'synset': 'potholder.n.01', 'synonyms': ['potholder'], 'id': 839, 'def': 'an insulated pad for holding hot pots', 'name': 'potholder'}, {'frequency': 'c', 'synset': 'pottery.n.01', 'synonyms': ['pottery', 'clayware'], 'id': 840, 'def': 'ceramic ware made from clay and baked in a kiln', 'name': 'pottery'}, {'frequency': 'c', 'synset': 'pouch.n.01', 'synonyms': ['pouch'], 'id': 841, 'def': 'a small or medium size container for holding or carrying things', 'name': 'pouch'}, {'frequency': 'c', 'synset': 'power_shovel.n.01', 'synonyms': ['power_shovel', 'excavator', 'digger'], 'id': 842, 'def': 'a machine for excavating', 'name': 'power_shovel'}, {'frequency': 'c', 'synset': 'prawn.n.01', 'synonyms': ['prawn', 'shrimp'], 'id': 843, 'def': 'any of various edible decapod crustaceans', 'name': 'prawn'}, {'frequency': 'c', 'synset': 'pretzel.n.01', 'synonyms': ['pretzel'], 'id': 844, 'def': 'glazed and salted cracker typically in the shape of a loose knot', 'name': 'pretzel'}, {'frequency': 'f', 'synset': 'printer.n.03', 'synonyms': ['printer', 'printing_machine'], 'id': 845, 'def': 'a machine that prints', 'name': 'printer'}, {'frequency': 'c', 'synset': 'projectile.n.01', 'synonyms': ['projectile_(weapon)', 'missile'], 'id': 846, 'def': 'a weapon that is forcibly thrown or projected at a targets', 'name': 'projectile_(weapon)'}, {'frequency': 'c', 'synset': 'projector.n.02', 'synonyms': ['projector'], 'id': 847, 'def': 'an optical instrument that projects an enlarged image onto a screen', 'name': 'projector'}, {'frequency': 'f', 'synset': 'propeller.n.01', 'synonyms': ['propeller', 'propellor'], 'id': 848, 'def': 'a mechanical device that rotates to push against air or water', 'name': 'propeller'}, {'frequency': 'r', 'synset': 'prune.n.01', 'synonyms': ['prune'], 'id': 849, 'def': 'dried plum', 'name': 'prune'}, {'frequency': 'r', 'synset': 'pudding.n.01', 'synonyms': ['pudding'], 'id': 850, 'def': 'any of various soft thick unsweetened baked dishes', 'name': 'pudding'}, {'frequency': 'r', 'synset': 'puffer.n.02', 'synonyms': ['puffer_(fish)', 'pufferfish', 'blowfish', 'globefish'], 'id': 851, 'def': 'fishes whose elongated spiny body can inflate itself with water or air to form a globe', 'name': 'puffer_(fish)'}, {'frequency': 'r', 'synset': 'puffin.n.01', 'synonyms': ['puffin'], 'id': 852, 'def': 'seabirds having short necks and brightly colored compressed bills', 'name': 'puffin'}, {'frequency': 'r', 'synset': 'pug.n.01', 'synonyms': ['pug-dog'], 'id': 853, 'def': 'small compact smooth-coated breed of Asiatic origin having a tightly curled tail and broad flat wrinkled muzzle', 'name': 'pug-dog'}, {'frequency': 'c', 'synset': 'pumpkin.n.02', 'synonyms': ['pumpkin'], 'id': 854, 'def': 'usually large pulpy deep-yellow round fruit of the squash family maturing in late summer or early autumn', 'name': 'pumpkin'}, {'frequency': 'r', 'synset': 'punch.n.03', 'synonyms': ['puncher'], 'id': 855, 'def': 'a tool for making holes or indentations', 'name': 'puncher'}, {'frequency': 'r', 'synset': 'puppet.n.01', 'synonyms': ['puppet', 'marionette'], 'id': 856, 'def': 'a small figure of a person operated from above with strings by a puppeteer', 'name': 'puppet'}, {'frequency': 'c', 'synset': 'puppy.n.01', 'synonyms': ['puppy'], 'id': 857, 'def': 'a young dog', 'name': 'puppy'}, {'frequency': 'r', 'synset': 'quesadilla.n.01', 'synonyms': ['quesadilla'], 'id': 858, 'def': 'a tortilla that is filled with cheese and heated', 'name': 'quesadilla'}, {'frequency': 'r', 'synset': 'quiche.n.02', 'synonyms': ['quiche'], 'id': 859, 'def': 'a tart filled with rich unsweetened custard; often contains other ingredients (as cheese or ham or seafood or vegetables)', 'name': 'quiche'}, {'frequency': 'f', 'synset': 'quilt.n.01', 'synonyms': ['quilt', 'comforter'], 'id': 860, 'def': 'bedding made of two layers of cloth filled with stuffing and stitched together', 'name': 'quilt'}, {'frequency': 'c', 'synset': 'rabbit.n.01', 'synonyms': ['rabbit'], 'id': 861, 'def': 'any of various burrowing animals of the family Leporidae having long ears and short tails', 'name': 'rabbit'}, {'frequency': 'r', 'synset': 'racer.n.02', 'synonyms': ['race_car', 'racing_car'], 'id': 862, 'def': 'a fast car that competes in races', 'name': 'race_car'}, {'frequency': 'c', 'synset': 'racket.n.04', 'synonyms': ['racket', 'racquet'], 'id': 863, 'def': 'a sports implement used to strike a ball in various games', 'name': 'racket'}, {'frequency': 'r', 'synset': 'radar.n.01', 'synonyms': ['radar'], 'id': 864, 'def': 'measuring instrument in which the echo of a pulse of microwave radiation is used to detect and locate distant objects', 'name': 'radar'}, {'frequency': 'f', 'synset': 'radiator.n.03', 'synonyms': ['radiator'], 'id': 865, 'def': 'a mechanism consisting of a metal honeycomb through which hot fluids circulate', 'name': 'radiator'}, {'frequency': 'c', 'synset': 'radio_receiver.n.01', 'synonyms': ['radio_receiver', 'radio_set', 'radio', 'tuner_(radio)'], 'id': 866, 'def': 'an electronic receiver that detects and demodulates and amplifies transmitted radio signals', 'name': 'radio_receiver'}, {'frequency': 'c', 'synset': 'radish.n.03', 'synonyms': ['radish', 'daikon'], 'id': 867, 'def': 'pungent edible root of any of various cultivated radish plants', 'name': 'radish'}, {'frequency': 'c', 'synset': 'raft.n.01', 'synonyms': ['raft'], 'id': 868, 'def': 'a flat float (usually made of logs or planks) that can be used for transport or as a platform for swimmers', 'name': 'raft'}, {'frequency': 'r', 'synset': 'rag_doll.n.01', 'synonyms': ['rag_doll'], 'id': 869, 'def': 'a cloth doll that is stuffed and (usually) painted', 'name': 'rag_doll'}, {'frequency': 'c', 'synset': 'raincoat.n.01', 'synonyms': ['raincoat', 'waterproof_jacket'], 'id': 870, 'def': 'a water-resistant coat', 'name': 'raincoat'}, {'frequency': 'c', 'synset': 'ram.n.05', 'synonyms': ['ram_(animal)'], 'id': 871, 'def': 'uncastrated adult male sheep', 'name': 'ram_(animal)'}, {'frequency': 'c', 'synset': 'raspberry.n.02', 'synonyms': ['raspberry'], 'id': 872, 'def': 'red or black edible aggregate berries usually smaller than the related blackberries', 'name': 'raspberry'}, {'frequency': 'r', 'synset': 'rat.n.01', 'synonyms': ['rat'], 'id': 873, 'def': 'any of various long-tailed rodents similar to but larger than a mouse', 'name': 'rat'}, {'frequency': 'c', 'synset': 'razorblade.n.01', 'synonyms': ['razorblade'], 'id': 874, 'def': 'a blade that has very sharp edge', 'name': 'razorblade'}, {'frequency': 'c', 'synset': 'reamer.n.01', 'synonyms': ['reamer_(juicer)', 'juicer', 'juice_reamer'], 'id': 875, 'def': 'a squeezer with a conical ridged center that is used for squeezing juice from citrus fruit', 'name': 'reamer_(juicer)'}, {'frequency': 'f', 'synset': 'rearview_mirror.n.01', 'synonyms': ['rearview_mirror'], 'id': 876, 'def': 'vehicle mirror (side or rearview)', 'name': 'rearview_mirror'}, {'frequency': 'c', 'synset': 'receipt.n.02', 'synonyms': ['receipt'], 'id': 877, 'def': 'an acknowledgment (usually tangible) that payment has been made', 'name': 'receipt'}, {'frequency': 'c', 'synset': 'recliner.n.01', 'synonyms': ['recliner', 'reclining_chair', 'lounger_(chair)'], 'id': 878, 'def': 'an armchair whose back can be lowered and foot can be raised to allow the sitter to recline in it', 'name': 'recliner'}, {'frequency': 'c', 'synset': 'record_player.n.01', 'synonyms': ['record_player', 'phonograph_(record_player)', 'turntable'], 'id': 879, 'def': 'machine in which rotating records cause a stylus to vibrate and the vibrations are amplified acoustically or electronically', 'name': 'record_player'}, {'frequency': 'f', 'synset': 'reflector.n.01', 'synonyms': ['reflector'], 'id': 880, 'def': 'device that reflects light, radiation, etc.', 'name': 'reflector'}, {'frequency': 'f', 'synset': 'remote_control.n.01', 'synonyms': ['remote_control'], 'id': 881, 'def': 'a device that can be used to control a machine or apparatus from a distance', 'name': 'remote_control'}, {'frequency': 'c', 'synset': 'rhinoceros.n.01', 'synonyms': ['rhinoceros'], 'id': 882, 'def': 'massive powerful herbivorous odd-toed ungulate of southeast Asia and Africa having very thick skin and one or two horns on the snout', 'name': 'rhinoceros'}, {'frequency': 'r', 'synset': 'rib.n.03', 'synonyms': ['rib_(food)'], 'id': 883, 'def': 'cut of meat including one or more ribs', 'name': 'rib_(food)'}, {'frequency': 'c', 'synset': 'rifle.n.01', 'synonyms': ['rifle'], 'id': 884, 'def': 'a shoulder firearm with a long barrel', 'name': 'rifle'}, {'frequency': 'f', 'synset': 'ring.n.08', 'synonyms': ['ring'], 'id': 885, 'def': 'jewelry consisting of a circlet of precious metal (often set with jewels) worn on the finger', 'name': 'ring'}, {'frequency': 'r', 'synset': 'river_boat.n.01', 'synonyms': ['river_boat'], 'id': 886, 'def': 'a boat used on rivers or to ply a river', 'name': 'river_boat'}, {'frequency': 'r', 'synset': 'road_map.n.02', 'synonyms': ['road_map'], 'id': 887, 'def': '(NOT A ROAD) a MAP showing roads (for automobile travel)', 'name': 'road_map'}, {'frequency': 'c', 'synset': 'robe.n.01', 'synonyms': ['robe'], 'id': 888, 'def': 'any loose flowing garment', 'name': 'robe'}, {'frequency': 'c', 'synset': 'rocking_chair.n.01', 'synonyms': ['rocking_chair'], 'id': 889, 'def': 'a chair mounted on rockers', 'name': 'rocking_chair'}, {'frequency': 'r', 'synset': 'rodent.n.01', 'synonyms': ['rodent'], 'id': 890, 'def': 'relatively small placental mammals having a single pair of constantly growing incisor teeth specialized for gnawing', 'name': 'rodent'}, {'frequency': 'r', 'synset': 'roller_skate.n.01', 'synonyms': ['roller_skate'], 'id': 891, 'def': 'a shoe with pairs of rollers (small hard wheels) fixed to the sole', 'name': 'roller_skate'}, {'frequency': 'r', 'synset': 'rollerblade.n.01', 'synonyms': ['Rollerblade'], 'id': 892, 'def': 'an in-line variant of a roller skate', 'name': 'Rollerblade'}, {'frequency': 'c', 'synset': 'rolling_pin.n.01', 'synonyms': ['rolling_pin'], 'id': 893, 'def': 'utensil consisting of a cylinder (usually of wood) with a handle at each end; used to roll out dough', 'name': 'rolling_pin'}, {'frequency': 'r', 'synset': 'root_beer.n.01', 'synonyms': ['root_beer'], 'id': 894, 'def': 'carbonated drink containing extracts of roots and herbs', 'name': 'root_beer'}, {'frequency': 'c', 'synset': 'router.n.02', 'synonyms': ['router_(computer_equipment)'], 'id': 895, 'def': 'a device that forwards data packets between computer networks', 'name': 'router_(computer_equipment)'}, {'frequency': 'f', 'synset': 'rubber_band.n.01', 'synonyms': ['rubber_band', 'elastic_band'], 'id': 896, 'def': 'a narrow band of elastic rubber used to hold things (such as papers) together', 'name': 'rubber_band'}, {'frequency': 'c', 'synset': 'runner.n.08', 'synonyms': ['runner_(carpet)'], 'id': 897, 'def': 'a long narrow carpet', 'name': 'runner_(carpet)'}, {'frequency': 'f', 'synset': 'sack.n.01', 'synonyms': ['plastic_bag', 'paper_bag'], 'id': 898, 'def': "a bag made of paper or plastic for holding customer's purchases", 'name': 'plastic_bag'}, {'frequency': 'f', 'synset': 'saddle.n.01', 'synonyms': ['saddle_(on_an_animal)'], 'id': 899, 'def': 'a seat for the rider of a horse or camel', 'name': 'saddle_(on_an_animal)'}, {'frequency': 'f', 'synset': 'saddle_blanket.n.01', 'synonyms': ['saddle_blanket', 'saddlecloth', 'horse_blanket'], 'id': 900, 'def': 'stable gear consisting of a blanket placed under the saddle', 'name': 'saddle_blanket'}, {'frequency': 'c', 'synset': 'saddlebag.n.01', 'synonyms': ['saddlebag'], 'id': 901, 'def': 'a large bag (or pair of bags) hung over a saddle', 'name': 'saddlebag'}, {'frequency': 'r', 'synset': 'safety_pin.n.01', 'synonyms': ['safety_pin'], 'id': 902, 'def': 'a pin in the form of a clasp; has a guard so the point of the pin will not stick the user', 'name': 'safety_pin'}, {'frequency': 'f', 'synset': 'sail.n.01', 'synonyms': ['sail'], 'id': 903, 'def': 'a large piece of fabric by means of which wind is used to propel a sailing vessel', 'name': 'sail'}, {'frequency': 'f', 'synset': 'salad.n.01', 'synonyms': ['salad'], 'id': 904, 'def': 'food mixtures either arranged on a plate or tossed and served with a moist dressing; usually consisting of or including greens', 'name': 'salad'}, {'frequency': 'r', 'synset': 'salad_plate.n.01', 'synonyms': ['salad_plate', 'salad_bowl'], 'id': 905, 'def': 'a plate or bowl for individual servings of salad', 'name': 'salad_plate'}, {'frequency': 'c', 'synset': 'salami.n.01', 'synonyms': ['salami'], 'id': 906, 'def': 'highly seasoned fatty sausage of pork and beef usually dried', 'name': 'salami'}, {'frequency': 'c', 'synset': 'salmon.n.01', 'synonyms': ['salmon_(fish)'], 'id': 907, 'def': 'any of various large food and game fishes of northern waters', 'name': 'salmon_(fish)'}, {'frequency': 'r', 'synset': 'salmon.n.03', 'synonyms': ['salmon_(food)'], 'id': 908, 'def': 'flesh of any of various marine or freshwater fish of the family Salmonidae', 'name': 'salmon_(food)'}, {'frequency': 'c', 'synset': 'salsa.n.01', 'synonyms': ['salsa'], 'id': 909, 'def': 'spicy sauce of tomatoes and onions and chili peppers to accompany Mexican foods', 'name': 'salsa'}, {'frequency': 'f', 'synset': 'saltshaker.n.01', 'synonyms': ['saltshaker'], 'id': 910, 'def': 'a shaker with a perforated top for sprinkling salt', 'name': 'saltshaker'}, {'frequency': 'f', 'synset': 'sandal.n.01', 'synonyms': ['sandal_(type_of_shoe)'], 'id': 911, 'def': 'a shoe consisting of a sole fastened by straps to the foot', 'name': 'sandal_(type_of_shoe)'}, {'frequency': 'f', 'synset': 'sandwich.n.01', 'synonyms': ['sandwich'], 'id': 912, 'def': 'two (or more) slices of bread with a filling between them', 'name': 'sandwich'}, {'frequency': 'r', 'synset': 'satchel.n.01', 'synonyms': ['satchel'], 'id': 913, 'def': 'luggage consisting of a small case with a flat bottom and (usually) a shoulder strap', 'name': 'satchel'}, {'frequency': 'r', 'synset': 'saucepan.n.01', 'synonyms': ['saucepan'], 'id': 914, 'def': 'a deep pan with a handle; used for stewing or boiling', 'name': 'saucepan'}, {'frequency': 'f', 'synset': 'saucer.n.02', 'synonyms': ['saucer'], 'id': 915, 'def': 'a small shallow dish for holding a cup at the table', 'name': 'saucer'}, {'frequency': 'f', 'synset': 'sausage.n.01', 'synonyms': ['sausage'], 'id': 916, 'def': 'highly seasoned minced meat stuffed in casings', 'name': 'sausage'}, {'frequency': 'r', 'synset': 'sawhorse.n.01', 'synonyms': ['sawhorse', 'sawbuck'], 'id': 917, 'def': 'a framework for holding wood that is being sawed', 'name': 'sawhorse'}, {'frequency': 'r', 'synset': 'sax.n.02', 'synonyms': ['saxophone'], 'id': 918, 'def': "a wind instrument with a `J'-shaped form typically made of brass", 'name': 'saxophone'}, {'frequency': 'f', 'synset': 'scale.n.07', 'synonyms': ['scale_(measuring_instrument)'], 'id': 919, 'def': 'a measuring instrument for weighing; shows amount of mass', 'name': 'scale_(measuring_instrument)'}, {'frequency': 'r', 'synset': 'scarecrow.n.01', 'synonyms': ['scarecrow', 'strawman'], 'id': 920, 'def': 'an effigy in the shape of a man to frighten birds away from seeds', 'name': 'scarecrow'}, {'frequency': 'f', 'synset': 'scarf.n.01', 'synonyms': ['scarf'], 'id': 921, 'def': 'a garment worn around the head or neck or shoulders for warmth or decoration', 'name': 'scarf'}, {'frequency': 'c', 'synset': 'school_bus.n.01', 'synonyms': ['school_bus'], 'id': 922, 'def': 'a bus used to transport children to or from school', 'name': 'school_bus'}, {'frequency': 'f', 'synset': 'scissors.n.01', 'synonyms': ['scissors'], 'id': 923, 'def': 'a tool having two crossed pivoting blades with looped handles', 'name': 'scissors'}, {'frequency': 'f', 'synset': 'scoreboard.n.01', 'synonyms': ['scoreboard'], 'id': 924, 'def': 'a large board for displaying the score of a contest (and some other information)', 'name': 'scoreboard'}, {'frequency': 'r', 'synset': 'scraper.n.01', 'synonyms': ['scraper'], 'id': 925, 'def': 'any of various hand tools for scraping', 'name': 'scraper'}, {'frequency': 'c', 'synset': 'screwdriver.n.01', 'synonyms': ['screwdriver'], 'id': 926, 'def': 'a hand tool for driving screws; has a tip that fits into the head of a screw', 'name': 'screwdriver'}, {'frequency': 'f', 'synset': 'scrub_brush.n.01', 'synonyms': ['scrubbing_brush'], 'id': 927, 'def': 'a brush with short stiff bristles for heavy cleaning', 'name': 'scrubbing_brush'}, {'frequency': 'c', 'synset': 'sculpture.n.01', 'synonyms': ['sculpture'], 'id': 928, 'def': 'a three-dimensional work of art', 'name': 'sculpture'}, {'frequency': 'c', 'synset': 'seabird.n.01', 'synonyms': ['seabird', 'seafowl'], 'id': 929, 'def': 'a bird that frequents coastal waters and the open ocean: gulls; pelicans; gannets; cormorants; albatrosses; petrels; etc.', 'name': 'seabird'}, {'frequency': 'c', 'synset': 'seahorse.n.02', 'synonyms': ['seahorse'], 'id': 930, 'def': 'small fish with horse-like heads bent sharply downward and curled tails', 'name': 'seahorse'}, {'frequency': 'r', 'synset': 'seaplane.n.01', 'synonyms': ['seaplane', 'hydroplane'], 'id': 931, 'def': 'an airplane that can land on or take off from water', 'name': 'seaplane'}, {'frequency': 'c', 'synset': 'seashell.n.01', 'synonyms': ['seashell'], 'id': 932, 'def': 'the shell of a marine organism', 'name': 'seashell'}, {'frequency': 'c', 'synset': 'sewing_machine.n.01', 'synonyms': ['sewing_machine'], 'id': 933, 'def': 'a textile machine used as a home appliance for sewing', 'name': 'sewing_machine'}, {'frequency': 'c', 'synset': 'shaker.n.03', 'synonyms': ['shaker'], 'id': 934, 'def': 'a container in which something can be shaken', 'name': 'shaker'}, {'frequency': 'c', 'synset': 'shampoo.n.01', 'synonyms': ['shampoo'], 'id': 935, 'def': 'cleansing agent consisting of soaps or detergents used for washing the hair', 'name': 'shampoo'}, {'frequency': 'c', 'synset': 'shark.n.01', 'synonyms': ['shark'], 'id': 936, 'def': 'typically large carnivorous fishes with sharpe teeth', 'name': 'shark'}, {'frequency': 'r', 'synset': 'sharpener.n.01', 'synonyms': ['sharpener'], 'id': 937, 'def': 'any implement that is used to make something (an edge or a point) sharper', 'name': 'sharpener'}, {'frequency': 'r', 'synset': 'sharpie.n.03', 'synonyms': ['Sharpie'], 'id': 938, 'def': 'a pen with indelible ink that will write on any surface', 'name': 'Sharpie'}, {'frequency': 'r', 'synset': 'shaver.n.03', 'synonyms': ['shaver_(electric)', 'electric_shaver', 'electric_razor'], 'id': 939, 'def': 'a razor powered by an electric motor', 'name': 'shaver_(electric)'}, {'frequency': 'c', 'synset': 'shaving_cream.n.01', 'synonyms': ['shaving_cream', 'shaving_soap'], 'id': 940, 'def': 'toiletry consisting that forms a rich lather for softening the beard before shaving', 'name': 'shaving_cream'}, {'frequency': 'r', 'synset': 'shawl.n.01', 'synonyms': ['shawl'], 'id': 941, 'def': 'cloak consisting of an oblong piece of cloth used to cover the head and shoulders', 'name': 'shawl'}, {'frequency': 'r', 'synset': 'shears.n.01', 'synonyms': ['shears'], 'id': 942, 'def': 'large scissors with strong blades', 'name': 'shears'}, {'frequency': 'f', 'synset': 'sheep.n.01', 'synonyms': ['sheep'], 'id': 943, 'def': 'woolly usually horned ruminant mammal related to the goat', 'name': 'sheep'}, {'frequency': 'r', 'synset': 'shepherd_dog.n.01', 'synonyms': ['shepherd_dog', 'sheepdog'], 'id': 944, 'def': 'any of various usually long-haired breeds of dog reared to herd and guard sheep', 'name': 'shepherd_dog'}, {'frequency': 'r', 'synset': 'sherbert.n.01', 'synonyms': ['sherbert', 'sherbet'], 'id': 945, 'def': 'a frozen dessert made primarily of fruit juice and sugar', 'name': 'sherbert'}, {'frequency': 'c', 'synset': 'shield.n.02', 'synonyms': ['shield'], 'id': 946, 'def': 'armor carried on the arm to intercept blows', 'name': 'shield'}, {'frequency': 'f', 'synset': 'shirt.n.01', 'synonyms': ['shirt'], 'id': 947, 'def': 'a garment worn on the upper half of the body', 'name': 'shirt'}, {'frequency': 'f', 'synset': 'shoe.n.01', 'synonyms': ['shoe', 'sneaker_(type_of_shoe)', 'tennis_shoe'], 'id': 948, 'def': 'common footwear covering the foot', 'name': 'shoe'}, {'frequency': 'f', 'synset': 'shopping_bag.n.01', 'synonyms': ['shopping_bag'], 'id': 949, 'def': 'a bag made of plastic or strong paper (often with handles); used to transport goods after shopping', 'name': 'shopping_bag'}, {'frequency': 'c', 'synset': 'shopping_cart.n.01', 'synonyms': ['shopping_cart'], 'id': 950, 'def': 'a handcart that holds groceries or other goods while shopping', 'name': 'shopping_cart'}, {'frequency': 'f', 'synset': 'short_pants.n.01', 'synonyms': ['short_pants', 'shorts_(clothing)', 'trunks_(clothing)'], 'id': 951, 'def': 'trousers that end at or above the knee', 'name': 'short_pants'}, {'frequency': 'r', 'synset': 'shot_glass.n.01', 'synonyms': ['shot_glass'], 'id': 952, 'def': 'a small glass adequate to hold a single swallow of whiskey', 'name': 'shot_glass'}, {'frequency': 'f', 'synset': 'shoulder_bag.n.01', 'synonyms': ['shoulder_bag'], 'id': 953, 'def': 'a large handbag that can be carried by a strap looped over the shoulder', 'name': 'shoulder_bag'}, {'frequency': 'c', 'synset': 'shovel.n.01', 'synonyms': ['shovel'], 'id': 954, 'def': 'a hand tool for lifting loose material such as snow, dirt, etc.', 'name': 'shovel'}, {'frequency': 'f', 'synset': 'shower.n.01', 'synonyms': ['shower_head'], 'id': 955, 'def': 'a plumbing fixture that sprays water over you', 'name': 'shower_head'}, {'frequency': 'r', 'synset': 'shower_cap.n.01', 'synonyms': ['shower_cap'], 'id': 956, 'def': 'a tight cap worn to keep hair dry while showering', 'name': 'shower_cap'}, {'frequency': 'f', 'synset': 'shower_curtain.n.01', 'synonyms': ['shower_curtain'], 'id': 957, 'def': 'a curtain that keeps water from splashing out of the shower area', 'name': 'shower_curtain'}, {'frequency': 'r', 'synset': 'shredder.n.01', 'synonyms': ['shredder_(for_paper)'], 'id': 958, 'def': 'a device that shreds documents', 'name': 'shredder_(for_paper)'}, {'frequency': 'f', 'synset': 'signboard.n.01', 'synonyms': ['signboard'], 'id': 959, 'def': 'structure displaying a board on which advertisements can be posted', 'name': 'signboard'}, {'frequency': 'c', 'synset': 'silo.n.01', 'synonyms': ['silo'], 'id': 960, 'def': 'a cylindrical tower used for storing goods', 'name': 'silo'}, {'frequency': 'f', 'synset': 'sink.n.01', 'synonyms': ['sink'], 'id': 961, 'def': 'plumbing fixture consisting of a water basin fixed to a wall or floor and having a drainpipe', 'name': 'sink'}, {'frequency': 'f', 'synset': 'skateboard.n.01', 'synonyms': ['skateboard'], 'id': 962, 'def': 'a board with wheels that is ridden in a standing or crouching position and propelled by foot', 'name': 'skateboard'}, {'frequency': 'c', 'synset': 'skewer.n.01', 'synonyms': ['skewer'], 'id': 963, 'def': 'a long pin for holding meat in position while it is being roasted', 'name': 'skewer'}, {'frequency': 'f', 'synset': 'ski.n.01', 'synonyms': ['ski'], 'id': 964, 'def': 'sports equipment for skiing on snow', 'name': 'ski'}, {'frequency': 'f', 'synset': 'ski_boot.n.01', 'synonyms': ['ski_boot'], 'id': 965, 'def': 'a stiff boot that is fastened to a ski with a ski binding', 'name': 'ski_boot'}, {'frequency': 'f', 'synset': 'ski_parka.n.01', 'synonyms': ['ski_parka', 'ski_jacket'], 'id': 966, 'def': 'a parka to be worn while skiing', 'name': 'ski_parka'}, {'frequency': 'f', 'synset': 'ski_pole.n.01', 'synonyms': ['ski_pole'], 'id': 967, 'def': 'a pole with metal points used as an aid in skiing', 'name': 'ski_pole'}, {'frequency': 'f', 'synset': 'skirt.n.02', 'synonyms': ['skirt'], 'id': 968, 'def': 'a garment hanging from the waist; worn mainly by girls and women', 'name': 'skirt'}, {'frequency': 'r', 'synset': 'skullcap.n.01', 'synonyms': ['skullcap'], 'id': 969, 'def': 'rounded brimless cap fitting the crown of the head', 'name': 'skullcap'}, {'frequency': 'c', 'synset': 'sled.n.01', 'synonyms': ['sled', 'sledge', 'sleigh'], 'id': 970, 'def': 'a vehicle or flat object for transportation over snow by sliding or pulled by dogs, etc.', 'name': 'sled'}, {'frequency': 'c', 'synset': 'sleeping_bag.n.01', 'synonyms': ['sleeping_bag'], 'id': 971, 'def': 'large padded bag designed to be slept in outdoors', 'name': 'sleeping_bag'}, {'frequency': 'r', 'synset': 'sling.n.05', 'synonyms': ['sling_(bandage)', 'triangular_bandage'], 'id': 972, 'def': 'bandage to support an injured forearm; slung over the shoulder or neck', 'name': 'sling_(bandage)'}, {'frequency': 'c', 'synset': 'slipper.n.01', 'synonyms': ['slipper_(footwear)', 'carpet_slipper_(footwear)'], 'id': 973, 'def': 'low footwear that can be slipped on and off easily; usually worn indoors', 'name': 'slipper_(footwear)'}, {'frequency': 'r', 'synset': 'smoothie.n.02', 'synonyms': ['smoothie'], 'id': 974, 'def': 'a thick smooth drink consisting of fresh fruit pureed with ice cream or yoghurt or milk', 'name': 'smoothie'}, {'frequency': 'r', 'synset': 'snake.n.01', 'synonyms': ['snake', 'serpent'], 'id': 975, 'def': 'limbless scaly elongate reptile; some are venomous', 'name': 'snake'}, {'frequency': 'f', 'synset': 'snowboard.n.01', 'synonyms': ['snowboard'], 'id': 976, 'def': 'a board that resembles a broad ski or a small surfboard; used in a standing position to slide down snow-covered slopes', 'name': 'snowboard'}, {'frequency': 'c', 'synset': 'snowman.n.01', 'synonyms': ['snowman'], 'id': 977, 'def': 'a figure of a person made of packed snow', 'name': 'snowman'}, {'frequency': 'c', 'synset': 'snowmobile.n.01', 'synonyms': ['snowmobile'], 'id': 978, 'def': 'tracked vehicle for travel on snow having skis in front', 'name': 'snowmobile'}, {'frequency': 'f', 'synset': 'soap.n.01', 'synonyms': ['soap'], 'id': 979, 'def': 'a cleansing agent made from the salts of vegetable or animal fats', 'name': 'soap'}, {'frequency': 'f', 'synset': 'soccer_ball.n.01', 'synonyms': ['soccer_ball'], 'id': 980, 'def': "an inflated ball used in playing soccer (called `football' outside of the United States)", 'name': 'soccer_ball'}, {'frequency': 'f', 'synset': 'sock.n.01', 'synonyms': ['sock'], 'id': 981, 'def': 'cloth covering for the foot; worn inside the shoe; reaches to between the ankle and the knee', 'name': 'sock'}, {'frequency': 'f', 'synset': 'sofa.n.01', 'synonyms': ['sofa', 'couch', 'lounge'], 'id': 982, 'def': 'an upholstered seat for more than one person', 'name': 'sofa'}, {'frequency': 'r', 'synset': 'softball.n.01', 'synonyms': ['softball'], 'id': 983, 'def': 'ball used in playing softball', 'name': 'softball'}, {'frequency': 'c', 'synset': 'solar_array.n.01', 'synonyms': ['solar_array', 'solar_battery', 'solar_panel'], 'id': 984, 'def': 'electrical device consisting of a large array of connected solar cells', 'name': 'solar_array'}, {'frequency': 'r', 'synset': 'sombrero.n.02', 'synonyms': ['sombrero'], 'id': 985, 'def': 'a straw hat with a tall crown and broad brim; worn in American southwest and in Mexico', 'name': 'sombrero'}, {'frequency': 'f', 'synset': 'soup.n.01', 'synonyms': ['soup'], 'id': 986, 'def': 'liquid food especially of meat or fish or vegetable stock often containing pieces of solid food', 'name': 'soup'}, {'frequency': 'r', 'synset': 'soup_bowl.n.01', 'synonyms': ['soup_bowl'], 'id': 987, 'def': 'a bowl for serving soup', 'name': 'soup_bowl'}, {'frequency': 'c', 'synset': 'soupspoon.n.01', 'synonyms': ['soupspoon'], 'id': 988, 'def': 'a spoon with a rounded bowl for eating soup', 'name': 'soupspoon'}, {'frequency': 'c', 'synset': 'sour_cream.n.01', 'synonyms': ['sour_cream', 'soured_cream'], 'id': 989, 'def': 'soured light cream', 'name': 'sour_cream'}, {'frequency': 'r', 'synset': 'soya_milk.n.01', 'synonyms': ['soya_milk', 'soybean_milk', 'soymilk'], 'id': 990, 'def': 'a milk substitute containing soybean flour and water; used in some infant formulas and in making tofu', 'name': 'soya_milk'}, {'frequency': 'r', 'synset': 'space_shuttle.n.01', 'synonyms': ['space_shuttle'], 'id': 991, 'def': "a reusable spacecraft with wings for a controlled descent through the Earth's atmosphere", 'name': 'space_shuttle'}, {'frequency': 'r', 'synset': 'sparkler.n.02', 'synonyms': ['sparkler_(fireworks)'], 'id': 992, 'def': 'a firework that burns slowly and throws out a shower of sparks', 'name': 'sparkler_(fireworks)'}, {'frequency': 'f', 'synset': 'spatula.n.02', 'synonyms': ['spatula'], 'id': 993, 'def': 'a hand tool with a thin flexible blade used to mix or spread soft substances', 'name': 'spatula'}, {'frequency': 'r', 'synset': 'spear.n.01', 'synonyms': ['spear', 'lance'], 'id': 994, 'def': 'a long pointed rod used as a tool or weapon', 'name': 'spear'}, {'frequency': 'f', 'synset': 'spectacles.n.01', 'synonyms': ['spectacles', 'specs', 'eyeglasses', 'glasses'], 'id': 995, 'def': 'optical instrument consisting of a frame that holds a pair of lenses for correcting defective vision', 'name': 'spectacles'}, {'frequency': 'c', 'synset': 'spice_rack.n.01', 'synonyms': ['spice_rack'], 'id': 996, 'def': 'a rack for displaying containers filled with spices', 'name': 'spice_rack'}, {'frequency': 'c', 'synset': 'spider.n.01', 'synonyms': ['spider'], 'id': 997, 'def': 'predatory arachnid with eight legs, two poison fangs, two feelers, and usually two silk-spinning organs at the back end of the body', 'name': 'spider'}, {'frequency': 'r', 'synset': 'spiny_lobster.n.02', 'synonyms': ['crawfish', 'crayfish'], 'id': 998, 'def': 'large edible marine crustacean having a spiny carapace but lacking the large pincers of true lobsters', 'name': 'crawfish'}, {'frequency': 'c', 'synset': 'sponge.n.01', 'synonyms': ['sponge'], 'id': 999, 'def': 'a porous mass usable to absorb water typically used for cleaning', 'name': 'sponge'}, {'frequency': 'f', 'synset': 'spoon.n.01', 'synonyms': ['spoon'], 'id': 1000, 'def': 'a piece of cutlery with a shallow bowl-shaped container and a handle', 'name': 'spoon'}, {'frequency': 'c', 'synset': 'sportswear.n.01', 'synonyms': ['sportswear', 'athletic_wear', 'activewear'], 'id': 1001, 'def': 'attire worn for sport or for casual wear', 'name': 'sportswear'}, {'frequency': 'c', 'synset': 'spotlight.n.02', 'synonyms': ['spotlight'], 'id': 1002, 'def': 'a lamp that produces a strong beam of light to illuminate a restricted area; used to focus attention of a stage performer', 'name': 'spotlight'}, {'frequency': 'r', 'synset': 'squid.n.01', 'synonyms': ['squid_(food)', 'calamari', 'calamary'], 'id': 1003, 'def': '(Italian cuisine) squid prepared as food', 'name': 'squid_(food)'}, {'frequency': 'c', 'synset': 'squirrel.n.01', 'synonyms': ['squirrel'], 'id': 1004, 'def': 'a kind of arboreal rodent having a long bushy tail', 'name': 'squirrel'}, {'frequency': 'r', 'synset': 'stagecoach.n.01', 'synonyms': ['stagecoach'], 'id': 1005, 'def': 'a large coach-and-four formerly used to carry passengers and mail on regular routes between towns', 'name': 'stagecoach'}, {'frequency': 'c', 'synset': 'stapler.n.01', 'synonyms': ['stapler_(stapling_machine)'], 'id': 1006, 'def': 'a machine that inserts staples into sheets of paper in order to fasten them together', 'name': 'stapler_(stapling_machine)'}, {'frequency': 'c', 'synset': 'starfish.n.01', 'synonyms': ['starfish', 'sea_star'], 'id': 1007, 'def': 'echinoderms characterized by five arms extending from a central disk', 'name': 'starfish'}, {'frequency': 'f', 'synset': 'statue.n.01', 'synonyms': ['statue_(sculpture)'], 'id': 1008, 'def': 'a sculpture representing a human or animal', 'name': 'statue_(sculpture)'}, {'frequency': 'c', 'synset': 'steak.n.01', 'synonyms': ['steak_(food)'], 'id': 1009, 'def': 'a slice of meat cut from the fleshy part of an animal or large fish', 'name': 'steak_(food)'}, {'frequency': 'r', 'synset': 'steak_knife.n.01', 'synonyms': ['steak_knife'], 'id': 1010, 'def': 'a sharp table knife used in eating steak', 'name': 'steak_knife'}, {'frequency': 'f', 'synset': 'steering_wheel.n.01', 'synonyms': ['steering_wheel'], 'id': 1011, 'def': 'a handwheel that is used for steering', 'name': 'steering_wheel'}, {'frequency': 'r', 'synset': 'step_ladder.n.01', 'synonyms': ['stepladder'], 'id': 1012, 'def': 'a folding portable ladder hinged at the top', 'name': 'stepladder'}, {'frequency': 'c', 'synset': 'step_stool.n.01', 'synonyms': ['step_stool'], 'id': 1013, 'def': 'a stool that has one or two steps that fold under the seat', 'name': 'step_stool'}, {'frequency': 'c', 'synset': 'stereo.n.01', 'synonyms': ['stereo_(sound_system)'], 'id': 1014, 'def': 'electronic device for playing audio', 'name': 'stereo_(sound_system)'}, {'frequency': 'r', 'synset': 'stew.n.02', 'synonyms': ['stew'], 'id': 1015, 'def': 'food prepared by stewing especially meat or fish with vegetables', 'name': 'stew'}, {'frequency': 'r', 'synset': 'stirrer.n.02', 'synonyms': ['stirrer'], 'id': 1016, 'def': 'an implement used for stirring', 'name': 'stirrer'}, {'frequency': 'f', 'synset': 'stirrup.n.01', 'synonyms': ['stirrup'], 'id': 1017, 'def': "support consisting of metal loops into which rider's feet go", 'name': 'stirrup'}, {'frequency': 'f', 'synset': 'stool.n.01', 'synonyms': ['stool'], 'id': 1018, 'def': 'a simple seat without a back or arms', 'name': 'stool'}, {'frequency': 'f', 'synset': 'stop_sign.n.01', 'synonyms': ['stop_sign'], 'id': 1019, 'def': 'a traffic sign to notify drivers that they must come to a complete stop', 'name': 'stop_sign'}, {'frequency': 'f', 'synset': 'stoplight.n.01', 'synonyms': ['brake_light'], 'id': 1020, 'def': 'a red light on the rear of a motor vehicle that signals when the brakes are applied', 'name': 'brake_light'}, {'frequency': 'f', 'synset': 'stove.n.01', 'synonyms': ['stove', 'kitchen_stove', 'range_(kitchen_appliance)', 'kitchen_range', 'cooking_stove'], 'id': 1021, 'def': 'a kitchen appliance used for cooking food', 'name': 'stove'}, {'frequency': 'c', 'synset': 'strainer.n.01', 'synonyms': ['strainer'], 'id': 1022, 'def': 'a filter to retain larger pieces while smaller pieces and liquids pass through', 'name': 'strainer'}, {'frequency': 'f', 'synset': 'strap.n.01', 'synonyms': ['strap'], 'id': 1023, 'def': 'an elongated strip of material for binding things together or holding', 'name': 'strap'}, {'frequency': 'f', 'synset': 'straw.n.04', 'synonyms': ['straw_(for_drinking)', 'drinking_straw'], 'id': 1024, 'def': 'a thin paper or plastic tube used to suck liquids into the mouth', 'name': 'straw_(for_drinking)'}, {'frequency': 'f', 'synset': 'strawberry.n.01', 'synonyms': ['strawberry'], 'id': 1025, 'def': 'sweet fleshy red fruit', 'name': 'strawberry'}, {'frequency': 'f', 'synset': 'street_sign.n.01', 'synonyms': ['street_sign'], 'id': 1026, 'def': 'a sign visible from the street', 'name': 'street_sign'}, {'frequency': 'f', 'synset': 'streetlight.n.01', 'synonyms': ['streetlight', 'street_lamp'], 'id': 1027, 'def': 'a lamp supported on a lamppost; for illuminating a street', 'name': 'streetlight'}, {'frequency': 'r', 'synset': 'string_cheese.n.01', 'synonyms': ['string_cheese'], 'id': 1028, 'def': 'cheese formed in long strings twisted together', 'name': 'string_cheese'}, {'frequency': 'r', 'synset': 'stylus.n.02', 'synonyms': ['stylus'], 'id': 1029, 'def': 'a pointed tool for writing or drawing or engraving, including pens', 'name': 'stylus'}, {'frequency': 'r', 'synset': 'subwoofer.n.01', 'synonyms': ['subwoofer'], 'id': 1030, 'def': 'a loudspeaker that is designed to reproduce very low bass frequencies', 'name': 'subwoofer'}, {'frequency': 'r', 'synset': 'sugar_bowl.n.01', 'synonyms': ['sugar_bowl'], 'id': 1031, 'def': 'a dish in which sugar is served', 'name': 'sugar_bowl'}, {'frequency': 'r', 'synset': 'sugarcane.n.01', 'synonyms': ['sugarcane_(plant)'], 'id': 1032, 'def': 'juicy canes whose sap is a source of molasses and commercial sugar; fresh canes are sometimes chewed for the juice', 'name': 'sugarcane_(plant)'}, {'frequency': 'f', 'synset': 'suit.n.01', 'synonyms': ['suit_(clothing)'], 'id': 1033, 'def': 'a set of garments (usually including a jacket and trousers or skirt) for outerwear all of the same fabric and color', 'name': 'suit_(clothing)'}, {'frequency': 'c', 'synset': 'sunflower.n.01', 'synonyms': ['sunflower'], 'id': 1034, 'def': 'any plant of the genus Helianthus having large flower heads with dark disk florets and showy yellow rays', 'name': 'sunflower'}, {'frequency': 'f', 'synset': 'sunglasses.n.01', 'synonyms': ['sunglasses'], 'id': 1035, 'def': 'spectacles that are darkened or polarized to protect the eyes from the glare of the sun', 'name': 'sunglasses'}, {'frequency': 'c', 'synset': 'sunhat.n.01', 'synonyms': ['sunhat'], 'id': 1036, 'def': 'a hat with a broad brim that protects the face from direct exposure to the sun', 'name': 'sunhat'}, {'frequency': 'f', 'synset': 'surfboard.n.01', 'synonyms': ['surfboard'], 'id': 1037, 'def': 'a narrow buoyant board for riding surf', 'name': 'surfboard'}, {'frequency': 'c', 'synset': 'sushi.n.01', 'synonyms': ['sushi'], 'id': 1038, 'def': 'rice (with raw fish) wrapped in seaweed', 'name': 'sushi'}, {'frequency': 'c', 'synset': 'swab.n.02', 'synonyms': ['mop'], 'id': 1039, 'def': 'cleaning implement consisting of absorbent material fastened to a handle; for cleaning floors', 'name': 'mop'}, {'frequency': 'c', 'synset': 'sweat_pants.n.01', 'synonyms': ['sweat_pants'], 'id': 1040, 'def': 'loose-fitting trousers with elastic cuffs; worn by athletes', 'name': 'sweat_pants'}, {'frequency': 'c', 'synset': 'sweatband.n.02', 'synonyms': ['sweatband'], 'id': 1041, 'def': 'a band of material tied around the forehead or wrist to absorb sweat', 'name': 'sweatband'}, {'frequency': 'f', 'synset': 'sweater.n.01', 'synonyms': ['sweater'], 'id': 1042, 'def': 'a crocheted or knitted garment covering the upper part of the body', 'name': 'sweater'}, {'frequency': 'f', 'synset': 'sweatshirt.n.01', 'synonyms': ['sweatshirt'], 'id': 1043, 'def': 'cotton knit pullover with long sleeves worn during athletic activity', 'name': 'sweatshirt'}, {'frequency': 'c', 'synset': 'sweet_potato.n.02', 'synonyms': ['sweet_potato'], 'id': 1044, 'def': 'the edible tuberous root of the sweet potato vine', 'name': 'sweet_potato'}, {'frequency': 'f', 'synset': 'swimsuit.n.01', 'synonyms': ['swimsuit', 'swimwear', 'bathing_suit', 'swimming_costume', 'bathing_costume', 'swimming_trunks', 'bathing_trunks'], 'id': 1045, 'def': 'garment worn for swimming', 'name': 'swimsuit'}, {'frequency': 'c', 'synset': 'sword.n.01', 'synonyms': ['sword'], 'id': 1046, 'def': 'a cutting or thrusting weapon that has a long metal blade', 'name': 'sword'}, {'frequency': 'r', 'synset': 'syringe.n.01', 'synonyms': ['syringe'], 'id': 1047, 'def': 'a medical instrument used to inject or withdraw fluids', 'name': 'syringe'}, {'frequency': 'r', 'synset': 'tabasco.n.02', 'synonyms': ['Tabasco_sauce'], 'id': 1048, 'def': 'very spicy sauce (trade name Tabasco) made from fully-aged red peppers', 'name': 'Tabasco_sauce'}, {'frequency': 'r', 'synset': 'table-tennis_table.n.01', 'synonyms': ['table-tennis_table', 'ping-pong_table'], 'id': 1049, 'def': 'a table used for playing table tennis', 'name': 'table-tennis_table'}, {'frequency': 'f', 'synset': 'table.n.02', 'synonyms': ['table'], 'id': 1050, 'def': 'a piece of furniture having a smooth flat top that is usually supported by one or more vertical legs', 'name': 'table'}, {'frequency': 'c', 'synset': 'table_lamp.n.01', 'synonyms': ['table_lamp'], 'id': 1051, 'def': 'a lamp that sits on a table', 'name': 'table_lamp'}, {'frequency': 'f', 'synset': 'tablecloth.n.01', 'synonyms': ['tablecloth'], 'id': 1052, 'def': 'a covering spread over a dining table', 'name': 'tablecloth'}, {'frequency': 'r', 'synset': 'tachometer.n.01', 'synonyms': ['tachometer'], 'id': 1053, 'def': 'measuring instrument for indicating speed of rotation', 'name': 'tachometer'}, {'frequency': 'r', 'synset': 'taco.n.02', 'synonyms': ['taco'], 'id': 1054, 'def': 'a small tortilla cupped around a filling', 'name': 'taco'}, {'frequency': 'f', 'synset': 'tag.n.02', 'synonyms': ['tag'], 'id': 1055, 'def': 'a label associated with something for the purpose of identification or information', 'name': 'tag'}, {'frequency': 'f', 'synset': 'taillight.n.01', 'synonyms': ['taillight', 'rear_light'], 'id': 1056, 'def': 'lamp (usually red) mounted at the rear of a motor vehicle', 'name': 'taillight'}, {'frequency': 'r', 'synset': 'tambourine.n.01', 'synonyms': ['tambourine'], 'id': 1057, 'def': 'a shallow drum with a single drumhead and with metallic disks in the sides', 'name': 'tambourine'}, {'frequency': 'r', 'synset': 'tank.n.01', 'synonyms': ['army_tank', 'armored_combat_vehicle', 'armoured_combat_vehicle'], 'id': 1058, 'def': 'an enclosed armored military vehicle; has a cannon and moves on caterpillar treads', 'name': 'army_tank'}, {'frequency': 'f', 'synset': 'tank.n.02', 'synonyms': ['tank_(storage_vessel)', 'storage_tank'], 'id': 1059, 'def': 'a large (usually metallic) vessel for holding gases or liquids', 'name': 'tank_(storage_vessel)'}, {'frequency': 'f', 'synset': 'tank_top.n.01', 'synonyms': ['tank_top_(clothing)'], 'id': 1060, 'def': 'a tight-fitting sleeveless shirt with wide shoulder straps and low neck and no front opening', 'name': 'tank_top_(clothing)'}, {'frequency': 'f', 'synset': 'tape.n.01', 'synonyms': ['tape_(sticky_cloth_or_paper)'], 'id': 1061, 'def': 'a long thin piece of cloth or paper as used for binding or fastening', 'name': 'tape_(sticky_cloth_or_paper)'}, {'frequency': 'c', 'synset': 'tape.n.04', 'synonyms': ['tape_measure', 'measuring_tape'], 'id': 1062, 'def': 'measuring instrument consisting of a narrow strip (cloth or metal) marked in inches or centimeters and used for measuring lengths', 'name': 'tape_measure'}, {'frequency': 'c', 'synset': 'tapestry.n.02', 'synonyms': ['tapestry'], 'id': 1063, 'def': 'a heavy textile with a woven design; used for curtains and upholstery', 'name': 'tapestry'}, {'frequency': 'f', 'synset': 'tarpaulin.n.01', 'synonyms': ['tarp'], 'id': 1064, 'def': 'waterproofed canvas', 'name': 'tarp'}, {'frequency': 'c', 'synset': 'tartan.n.01', 'synonyms': ['tartan', 'plaid'], 'id': 1065, 'def': 'a cloth having a crisscross design', 'name': 'tartan'}, {'frequency': 'c', 'synset': 'tassel.n.01', 'synonyms': ['tassel'], 'id': 1066, 'def': 'adornment consisting of a bunch of cords fastened at one end', 'name': 'tassel'}, {'frequency': 'c', 'synset': 'tea_bag.n.01', 'synonyms': ['tea_bag'], 'id': 1067, 'def': 'a measured amount of tea in a bag for an individual serving of tea', 'name': 'tea_bag'}, {'frequency': 'c', 'synset': 'teacup.n.02', 'synonyms': ['teacup'], 'id': 1068, 'def': 'a cup from which tea is drunk', 'name': 'teacup'}, {'frequency': 'c', 'synset': 'teakettle.n.01', 'synonyms': ['teakettle'], 'id': 1069, 'def': 'kettle for boiling water to make tea', 'name': 'teakettle'}, {'frequency': 'f', 'synset': 'teapot.n.01', 'synonyms': ['teapot'], 'id': 1070, 'def': 'pot for brewing tea; usually has a spout and handle', 'name': 'teapot'}, {'frequency': 'f', 'synset': 'teddy.n.01', 'synonyms': ['teddy_bear'], 'id': 1071, 'def': "plaything consisting of a child's toy bear (usually plush and stuffed with soft materials)", 'name': 'teddy_bear'}, {'frequency': 'f', 'synset': 'telephone.n.01', 'synonyms': ['telephone', 'phone', 'telephone_set'], 'id': 1072, 'def': 'electronic device for communicating by voice over long distances (includes wired and wireless/cell phones)', 'name': 'telephone'}, {'frequency': 'c', 'synset': 'telephone_booth.n.01', 'synonyms': ['telephone_booth', 'phone_booth', 'call_box', 'telephone_box', 'telephone_kiosk'], 'id': 1073, 'def': 'booth for using a telephone', 'name': 'telephone_booth'}, {'frequency': 'f', 'synset': 'telephone_pole.n.01', 'synonyms': ['telephone_pole', 'telegraph_pole', 'telegraph_post'], 'id': 1074, 'def': 'tall pole supporting telephone wires', 'name': 'telephone_pole'}, {'frequency': 'r', 'synset': 'telephoto_lens.n.01', 'synonyms': ['telephoto_lens', 'zoom_lens'], 'id': 1075, 'def': 'a camera lens that magnifies the image', 'name': 'telephoto_lens'}, {'frequency': 'c', 'synset': 'television_camera.n.01', 'synonyms': ['television_camera', 'tv_camera'], 'id': 1076, 'def': 'television equipment for capturing and recording video', 'name': 'television_camera'}, {'frequency': 'f', 'synset': 'television_receiver.n.01', 'synonyms': ['television_set', 'tv', 'tv_set'], 'id': 1077, 'def': 'an electronic device that receives television signals and displays them on a screen', 'name': 'television_set'}, {'frequency': 'f', 'synset': 'tennis_ball.n.01', 'synonyms': ['tennis_ball'], 'id': 1078, 'def': 'ball about the size of a fist used in playing tennis', 'name': 'tennis_ball'}, {'frequency': 'f', 'synset': 'tennis_racket.n.01', 'synonyms': ['tennis_racket'], 'id': 1079, 'def': 'a racket used to play tennis', 'name': 'tennis_racket'}, {'frequency': 'r', 'synset': 'tequila.n.01', 'synonyms': ['tequila'], 'id': 1080, 'def': 'Mexican liquor made from fermented juices of an agave plant', 'name': 'tequila'}, {'frequency': 'c', 'synset': 'thermometer.n.01', 'synonyms': ['thermometer'], 'id': 1081, 'def': 'measuring instrument for measuring temperature', 'name': 'thermometer'}, {'frequency': 'c', 'synset': 'thermos.n.01', 'synonyms': ['thermos_bottle'], 'id': 1082, 'def': 'vacuum flask that preserves temperature of hot or cold drinks', 'name': 'thermos_bottle'}, {'frequency': 'f', 'synset': 'thermostat.n.01', 'synonyms': ['thermostat'], 'id': 1083, 'def': 'a regulator for automatically regulating temperature by starting or stopping the supply of heat', 'name': 'thermostat'}, {'frequency': 'r', 'synset': 'thimble.n.02', 'synonyms': ['thimble'], 'id': 1084, 'def': 'a small metal cap to protect the finger while sewing; can be used as a small container', 'name': 'thimble'}, {'frequency': 'c', 'synset': 'thread.n.01', 'synonyms': ['thread', 'yarn'], 'id': 1085, 'def': 'a fine cord of twisted fibers (of cotton or silk or wool or nylon etc.) used in sewing and weaving', 'name': 'thread'}, {'frequency': 'c', 'synset': 'thumbtack.n.01', 'synonyms': ['thumbtack', 'drawing_pin', 'pushpin'], 'id': 1086, 'def': 'a tack for attaching papers to a bulletin board or drawing board', 'name': 'thumbtack'}, {'frequency': 'c', 'synset': 'tiara.n.01', 'synonyms': ['tiara'], 'id': 1087, 'def': 'a jeweled headdress worn by women on formal occasions', 'name': 'tiara'}, {'frequency': 'c', 'synset': 'tiger.n.02', 'synonyms': ['tiger'], 'id': 1088, 'def': 'large feline of forests in most of Asia having a tawny coat with black stripes', 'name': 'tiger'}, {'frequency': 'c', 'synset': 'tights.n.01', 'synonyms': ['tights_(clothing)', 'leotards'], 'id': 1089, 'def': 'skintight knit hose covering the body from the waist to the feet worn by acrobats and dancers and as stockings by women and girls', 'name': 'tights_(clothing)'}, {'frequency': 'c', 'synset': 'timer.n.01', 'synonyms': ['timer', 'stopwatch'], 'id': 1090, 'def': 'a timepiece that measures a time interval and signals its end', 'name': 'timer'}, {'frequency': 'f', 'synset': 'tinfoil.n.01', 'synonyms': ['tinfoil'], 'id': 1091, 'def': 'foil made of tin or an alloy of tin and lead', 'name': 'tinfoil'}, {'frequency': 'c', 'synset': 'tinsel.n.01', 'synonyms': ['tinsel'], 'id': 1092, 'def': 'a showy decoration that is basically valueless', 'name': 'tinsel'}, {'frequency': 'f', 'synset': 'tissue.n.02', 'synonyms': ['tissue_paper'], 'id': 1093, 'def': 'a soft thin (usually translucent) paper', 'name': 'tissue_paper'}, {'frequency': 'c', 'synset': 'toast.n.01', 'synonyms': ['toast_(food)'], 'id': 1094, 'def': 'slice of bread that has been toasted', 'name': 'toast_(food)'}, {'frequency': 'f', 'synset': 'toaster.n.02', 'synonyms': ['toaster'], 'id': 1095, 'def': 'a kitchen appliance (usually electric) for toasting bread', 'name': 'toaster'}, {'frequency': 'f', 'synset': 'toaster_oven.n.01', 'synonyms': ['toaster_oven'], 'id': 1096, 'def': 'kitchen appliance consisting of a small electric oven for toasting or warming food', 'name': 'toaster_oven'}, {'frequency': 'f', 'synset': 'toilet.n.02', 'synonyms': ['toilet'], 'id': 1097, 'def': 'a plumbing fixture for defecation and urination', 'name': 'toilet'}, {'frequency': 'f', 'synset': 'toilet_tissue.n.01', 'synonyms': ['toilet_tissue', 'toilet_paper', 'bathroom_tissue'], 'id': 1098, 'def': 'a soft thin absorbent paper for use in toilets', 'name': 'toilet_tissue'}, {'frequency': 'f', 'synset': 'tomato.n.01', 'synonyms': ['tomato'], 'id': 1099, 'def': 'mildly acid red or yellow pulpy fruit eaten as a vegetable', 'name': 'tomato'}, {'frequency': 'f', 'synset': 'tongs.n.01', 'synonyms': ['tongs'], 'id': 1100, 'def': 'any of various devices for taking hold of objects; usually have two hinged legs with handles above and pointed hooks below', 'name': 'tongs'}, {'frequency': 'c', 'synset': 'toolbox.n.01', 'synonyms': ['toolbox'], 'id': 1101, 'def': 'a box or chest or cabinet for holding hand tools', 'name': 'toolbox'}, {'frequency': 'f', 'synset': 'toothbrush.n.01', 'synonyms': ['toothbrush'], 'id': 1102, 'def': 'small brush; has long handle; used to clean teeth', 'name': 'toothbrush'}, {'frequency': 'f', 'synset': 'toothpaste.n.01', 'synonyms': ['toothpaste'], 'id': 1103, 'def': 'a dentifrice in the form of a paste', 'name': 'toothpaste'}, {'frequency': 'f', 'synset': 'toothpick.n.01', 'synonyms': ['toothpick'], 'id': 1104, 'def': 'pick consisting of a small strip of wood or plastic; used to pick food from between the teeth', 'name': 'toothpick'}, {'frequency': 'f', 'synset': 'top.n.09', 'synonyms': ['cover'], 'id': 1105, 'def': 'covering for a hole (especially a hole in the top of a container)', 'name': 'cover'}, {'frequency': 'c', 'synset': 'tortilla.n.01', 'synonyms': ['tortilla'], 'id': 1106, 'def': 'thin unleavened pancake made from cornmeal or wheat flour', 'name': 'tortilla'}, {'frequency': 'c', 'synset': 'tow_truck.n.01', 'synonyms': ['tow_truck'], 'id': 1107, 'def': 'a truck equipped to hoist and pull wrecked cars (or to remove cars from no-parking zones)', 'name': 'tow_truck'}, {'frequency': 'f', 'synset': 'towel.n.01', 'synonyms': ['towel'], 'id': 1108, 'def': 'a rectangular piece of absorbent cloth (or paper) for drying or wiping', 'name': 'towel'}, {'frequency': 'f', 'synset': 'towel_rack.n.01', 'synonyms': ['towel_rack', 'towel_rail', 'towel_bar'], 'id': 1109, 'def': 'a rack consisting of one or more bars on which towels can be hung', 'name': 'towel_rack'}, {'frequency': 'f', 'synset': 'toy.n.03', 'synonyms': ['toy'], 'id': 1110, 'def': 'a device regarded as providing amusement', 'name': 'toy'}, {'frequency': 'c', 'synset': 'tractor.n.01', 'synonyms': ['tractor_(farm_equipment)'], 'id': 1111, 'def': 'a wheeled vehicle with large wheels; used in farming and other applications', 'name': 'tractor_(farm_equipment)'}, {'frequency': 'f', 'synset': 'traffic_light.n.01', 'synonyms': ['traffic_light'], 'id': 1112, 'def': 'a device to control vehicle traffic often consisting of three or more lights', 'name': 'traffic_light'}, {'frequency': 'c', 'synset': 'trail_bike.n.01', 'synonyms': ['dirt_bike'], 'id': 1113, 'def': 'a lightweight motorcycle equipped with rugged tires and suspension for off-road use', 'name': 'dirt_bike'}, {'frequency': 'f', 'synset': 'trailer_truck.n.01', 'synonyms': ['trailer_truck', 'tractor_trailer', 'trucking_rig', 'articulated_lorry', 'semi_truck'], 'id': 1114, 'def': 'a truck consisting of a tractor and trailer together', 'name': 'trailer_truck'}, {'frequency': 'f', 'synset': 'train.n.01', 'synonyms': ['train_(railroad_vehicle)', 'railroad_train'], 'id': 1115, 'def': 'public or private transport provided by a line of railway cars coupled together and drawn by a locomotive', 'name': 'train_(railroad_vehicle)'}, {'frequency': 'r', 'synset': 'trampoline.n.01', 'synonyms': ['trampoline'], 'id': 1116, 'def': 'gymnastic apparatus consisting of a strong canvas sheet attached with springs to a metal frame', 'name': 'trampoline'}, {'frequency': 'f', 'synset': 'tray.n.01', 'synonyms': ['tray'], 'id': 1117, 'def': 'an open receptacle for holding or displaying or serving articles or food', 'name': 'tray'}, {'frequency': 'r', 'synset': 'trench_coat.n.01', 'synonyms': ['trench_coat'], 'id': 1118, 'def': 'a military style raincoat; belted with deep pockets', 'name': 'trench_coat'}, {'frequency': 'r', 'synset': 'triangle.n.05', 'synonyms': ['triangle_(musical_instrument)'], 'id': 1119, 'def': 'a percussion instrument consisting of a metal bar bent in the shape of an open triangle', 'name': 'triangle_(musical_instrument)'}, {'frequency': 'c', 'synset': 'tricycle.n.01', 'synonyms': ['tricycle'], 'id': 1120, 'def': 'a vehicle with three wheels that is moved by foot pedals', 'name': 'tricycle'}, {'frequency': 'f', 'synset': 'tripod.n.01', 'synonyms': ['tripod'], 'id': 1121, 'def': 'a three-legged rack used for support', 'name': 'tripod'}, {'frequency': 'f', 'synset': 'trouser.n.01', 'synonyms': ['trousers', 'pants_(clothing)'], 'id': 1122, 'def': 'a garment extending from the waist to the knee or ankle, covering each leg separately', 'name': 'trousers'}, {'frequency': 'f', 'synset': 'truck.n.01', 'synonyms': ['truck'], 'id': 1123, 'def': 'an automotive vehicle suitable for hauling', 'name': 'truck'}, {'frequency': 'r', 'synset': 'truffle.n.03', 'synonyms': ['truffle_(chocolate)', 'chocolate_truffle'], 'id': 1124, 'def': 'creamy chocolate candy', 'name': 'truffle_(chocolate)'}, {'frequency': 'c', 'synset': 'trunk.n.02', 'synonyms': ['trunk'], 'id': 1125, 'def': 'luggage consisting of a large strong case used when traveling or for storage', 'name': 'trunk'}, {'frequency': 'r', 'synset': 'tub.n.02', 'synonyms': ['vat'], 'id': 1126, 'def': 'a large vessel for holding or storing liquids', 'name': 'vat'}, {'frequency': 'c', 'synset': 'turban.n.01', 'synonyms': ['turban'], 'id': 1127, 'def': 'a traditional headdress consisting of a long scarf wrapped around the head', 'name': 'turban'}, {'frequency': 'c', 'synset': 'turkey.n.04', 'synonyms': ['turkey_(food)'], 'id': 1128, 'def': 'flesh of large domesticated fowl usually roasted', 'name': 'turkey_(food)'}, {'frequency': 'r', 'synset': 'turnip.n.01', 'synonyms': ['turnip'], 'id': 1129, 'def': 'widely cultivated plant having a large fleshy edible white or yellow root', 'name': 'turnip'}, {'frequency': 'c', 'synset': 'turtle.n.02', 'synonyms': ['turtle'], 'id': 1130, 'def': 'any of various aquatic and land reptiles having a bony shell and flipper-like limbs for swimming', 'name': 'turtle'}, {'frequency': 'c', 'synset': 'turtleneck.n.01', 'synonyms': ['turtleneck_(clothing)', 'polo-neck'], 'id': 1131, 'def': 'a sweater or jersey with a high close-fitting collar', 'name': 'turtleneck_(clothing)'}, {'frequency': 'c', 'synset': 'typewriter.n.01', 'synonyms': ['typewriter'], 'id': 1132, 'def': 'hand-operated character printer for printing written messages one character at a time', 'name': 'typewriter'}, {'frequency': 'f', 'synset': 'umbrella.n.01', 'synonyms': ['umbrella'], 'id': 1133, 'def': 'a lightweight handheld collapsible canopy', 'name': 'umbrella'}, {'frequency': 'f', 'synset': 'underwear.n.01', 'synonyms': ['underwear', 'underclothes', 'underclothing', 'underpants'], 'id': 1134, 'def': 'undergarment worn next to the skin and under the outer garments', 'name': 'underwear'}, {'frequency': 'r', 'synset': 'unicycle.n.01', 'synonyms': ['unicycle'], 'id': 1135, 'def': 'a vehicle with a single wheel that is driven by pedals', 'name': 'unicycle'}, {'frequency': 'f', 'synset': 'urinal.n.01', 'synonyms': ['urinal'], 'id': 1136, 'def': 'a plumbing fixture (usually attached to the wall) used by men to urinate', 'name': 'urinal'}, {'frequency': 'c', 'synset': 'urn.n.01', 'synonyms': ['urn'], 'id': 1137, 'def': 'a large vase that usually has a pedestal or feet', 'name': 'urn'}, {'frequency': 'c', 'synset': 'vacuum.n.04', 'synonyms': ['vacuum_cleaner'], 'id': 1138, 'def': 'an electrical home appliance that cleans by suction', 'name': 'vacuum_cleaner'}, {'frequency': 'f', 'synset': 'vase.n.01', 'synonyms': ['vase'], 'id': 1139, 'def': 'an open jar of glass or porcelain used as an ornament or to hold flowers', 'name': 'vase'}, {'frequency': 'c', 'synset': 'vending_machine.n.01', 'synonyms': ['vending_machine'], 'id': 1140, 'def': 'a slot machine for selling goods', 'name': 'vending_machine'}, {'frequency': 'f', 'synset': 'vent.n.01', 'synonyms': ['vent', 'blowhole', 'air_vent'], 'id': 1141, 'def': 'a hole for the escape of gas or air', 'name': 'vent'}, {'frequency': 'f', 'synset': 'vest.n.01', 'synonyms': ['vest', 'waistcoat'], 'id': 1142, 'def': "a man's sleeveless garment worn underneath a coat", 'name': 'vest'}, {'frequency': 'c', 'synset': 'videotape.n.01', 'synonyms': ['videotape'], 'id': 1143, 'def': 'a video recording made on magnetic tape', 'name': 'videotape'}, {'frequency': 'r', 'synset': 'vinegar.n.01', 'synonyms': ['vinegar'], 'id': 1144, 'def': 'sour-tasting liquid produced usually by oxidation of the alcohol in wine or cider and used as a condiment or food preservative', 'name': 'vinegar'}, {'frequency': 'r', 'synset': 'violin.n.01', 'synonyms': ['violin', 'fiddle'], 'id': 1145, 'def': 'bowed stringed instrument that is the highest member of the violin family', 'name': 'violin'}, {'frequency': 'r', 'synset': 'vodka.n.01', 'synonyms': ['vodka'], 'id': 1146, 'def': 'unaged colorless liquor originating in Russia', 'name': 'vodka'}, {'frequency': 'c', 'synset': 'volleyball.n.02', 'synonyms': ['volleyball'], 'id': 1147, 'def': 'an inflated ball used in playing volleyball', 'name': 'volleyball'}, {'frequency': 'r', 'synset': 'vulture.n.01', 'synonyms': ['vulture'], 'id': 1148, 'def': 'any of various large birds of prey having naked heads and weak claws and feeding chiefly on carrion', 'name': 'vulture'}, {'frequency': 'c', 'synset': 'waffle.n.01', 'synonyms': ['waffle'], 'id': 1149, 'def': 'pancake batter baked in a waffle iron', 'name': 'waffle'}, {'frequency': 'r', 'synset': 'waffle_iron.n.01', 'synonyms': ['waffle_iron'], 'id': 1150, 'def': 'a kitchen appliance for baking waffles', 'name': 'waffle_iron'}, {'frequency': 'c', 'synset': 'wagon.n.01', 'synonyms': ['wagon'], 'id': 1151, 'def': 'any of various kinds of wheeled vehicles drawn by an animal or a tractor', 'name': 'wagon'}, {'frequency': 'c', 'synset': 'wagon_wheel.n.01', 'synonyms': ['wagon_wheel'], 'id': 1152, 'def': 'a wheel of a wagon', 'name': 'wagon_wheel'}, {'frequency': 'c', 'synset': 'walking_stick.n.01', 'synonyms': ['walking_stick'], 'id': 1153, 'def': 'a stick carried in the hand for support in walking', 'name': 'walking_stick'}, {'frequency': 'c', 'synset': 'wall_clock.n.01', 'synonyms': ['wall_clock'], 'id': 1154, 'def': 'a clock mounted on a wall', 'name': 'wall_clock'}, {'frequency': 'f', 'synset': 'wall_socket.n.01', 'synonyms': ['wall_socket', 'wall_plug', 'electric_outlet', 'electrical_outlet', 'outlet', 'electric_receptacle'], 'id': 1155, 'def': 'receptacle providing a place in a wiring system where current can be taken to run electrical devices', 'name': 'wall_socket'}, {'frequency': 'f', 'synset': 'wallet.n.01', 'synonyms': ['wallet', 'billfold'], 'id': 1156, 'def': 'a pocket-size case for holding papers and paper money', 'name': 'wallet'}, {'frequency': 'r', 'synset': 'walrus.n.01', 'synonyms': ['walrus'], 'id': 1157, 'def': 'either of two large northern marine mammals having ivory tusks and tough hide over thick blubber', 'name': 'walrus'}, {'frequency': 'r', 'synset': 'wardrobe.n.01', 'synonyms': ['wardrobe'], 'id': 1158, 'def': 'a tall piece of furniture that provides storage space for clothes; has a door and rails or hooks for hanging clothes', 'name': 'wardrobe'}, {'frequency': 'r', 'synset': 'washbasin.n.01', 'synonyms': ['washbasin', 'basin_(for_washing)', 'washbowl', 'washstand', 'handbasin'], 'id': 1159, 'def': 'a bathroom sink that is permanently installed and connected to a water supply and drainpipe; where you can wash your hands and face', 'name': 'washbasin'}, {'frequency': 'c', 'synset': 'washer.n.03', 'synonyms': ['automatic_washer', 'washing_machine'], 'id': 1160, 'def': 'a home appliance for washing clothes and linens automatically', 'name': 'automatic_washer'}, {'frequency': 'f', 'synset': 'watch.n.01', 'synonyms': ['watch', 'wristwatch'], 'id': 1161, 'def': 'a small, portable timepiece', 'name': 'watch'}, {'frequency': 'f', 'synset': 'water_bottle.n.01', 'synonyms': ['water_bottle'], 'id': 1162, 'def': 'a bottle for holding water', 'name': 'water_bottle'}, {'frequency': 'c', 'synset': 'water_cooler.n.01', 'synonyms': ['water_cooler'], 'id': 1163, 'def': 'a device for cooling and dispensing drinking water', 'name': 'water_cooler'}, {'frequency': 'c', 'synset': 'water_faucet.n.01', 'synonyms': ['water_faucet', 'water_tap', 'tap_(water_faucet)'], 'id': 1164, 'def': 'a faucet for drawing water from a pipe or cask', 'name': 'water_faucet'}, {'frequency': 'r', 'synset': 'water_heater.n.01', 'synonyms': ['water_heater', 'hot-water_heater'], 'id': 1165, 'def': 'a heater and storage tank to supply heated water', 'name': 'water_heater'}, {'frequency': 'c', 'synset': 'water_jug.n.01', 'synonyms': ['water_jug'], 'id': 1166, 'def': 'a jug that holds water', 'name': 'water_jug'}, {'frequency': 'r', 'synset': 'water_pistol.n.01', 'synonyms': ['water_gun', 'squirt_gun'], 'id': 1167, 'def': 'plaything consisting of a toy pistol that squirts water', 'name': 'water_gun'}, {'frequency': 'c', 'synset': 'water_scooter.n.01', 'synonyms': ['water_scooter', 'sea_scooter', 'jet_ski'], 'id': 1168, 'def': 'a motorboat resembling a motor scooter (NOT A SURFBOARD OR WATER SKI)', 'name': 'water_scooter'}, {'frequency': 'c', 'synset': 'water_ski.n.01', 'synonyms': ['water_ski'], 'id': 1169, 'def': 'broad ski for skimming over water towed by a speedboat (DO NOT MARK WATER)', 'name': 'water_ski'}, {'frequency': 'c', 'synset': 'water_tower.n.01', 'synonyms': ['water_tower'], 'id': 1170, 'def': 'a large reservoir for water', 'name': 'water_tower'}, {'frequency': 'c', 'synset': 'watering_can.n.01', 'synonyms': ['watering_can'], 'id': 1171, 'def': 'a container with a handle and a spout with a perforated nozzle; used to sprinkle water over plants', 'name': 'watering_can'}, {'frequency': 'f', 'synset': 'watermelon.n.02', 'synonyms': ['watermelon'], 'id': 1172, 'def': 'large oblong or roundish melon with a hard green rind and sweet watery red or occasionally yellowish pulp', 'name': 'watermelon'}, {'frequency': 'f', 'synset': 'weathervane.n.01', 'synonyms': ['weathervane', 'vane_(weathervane)', 'wind_vane'], 'id': 1173, 'def': 'mechanical device attached to an elevated structure; rotates freely to show the direction of the wind', 'name': 'weathervane'}, {'frequency': 'c', 'synset': 'webcam.n.01', 'synonyms': ['webcam'], 'id': 1174, 'def': 'a digital camera designed to take digital photographs and transmit them over the internet', 'name': 'webcam'}, {'frequency': 'c', 'synset': 'wedding_cake.n.01', 'synonyms': ['wedding_cake', 'bridecake'], 'id': 1175, 'def': 'a rich cake with two or more tiers and covered with frosting and decorations; served at a wedding reception', 'name': 'wedding_cake'}, {'frequency': 'c', 'synset': 'wedding_ring.n.01', 'synonyms': ['wedding_ring', 'wedding_band'], 'id': 1176, 'def': 'a ring given to the bride and/or groom at the wedding', 'name': 'wedding_ring'}, {'frequency': 'f', 'synset': 'wet_suit.n.01', 'synonyms': ['wet_suit'], 'id': 1177, 'def': 'a close-fitting garment made of a permeable material; worn in cold water to retain body heat', 'name': 'wet_suit'}, {'frequency': 'f', 'synset': 'wheel.n.01', 'synonyms': ['wheel'], 'id': 1178, 'def': 'a circular frame with spokes (or a solid disc) that can rotate on a shaft or axle', 'name': 'wheel'}, {'frequency': 'c', 'synset': 'wheelchair.n.01', 'synonyms': ['wheelchair'], 'id': 1179, 'def': 'a movable chair mounted on large wheels', 'name': 'wheelchair'}, {'frequency': 'c', 'synset': 'whipped_cream.n.01', 'synonyms': ['whipped_cream'], 'id': 1180, 'def': 'cream that has been beaten until light and fluffy', 'name': 'whipped_cream'}, {'frequency': 'c', 'synset': 'whistle.n.03', 'synonyms': ['whistle'], 'id': 1181, 'def': 'a small wind instrument that produces a whistling sound by blowing into it', 'name': 'whistle'}, {'frequency': 'c', 'synset': 'wig.n.01', 'synonyms': ['wig'], 'id': 1182, 'def': 'hairpiece covering the head and made of real or synthetic hair', 'name': 'wig'}, {'frequency': 'c', 'synset': 'wind_chime.n.01', 'synonyms': ['wind_chime'], 'id': 1183, 'def': 'a decorative arrangement of pieces of metal or glass or pottery that hang together loosely so the wind can cause them to tinkle', 'name': 'wind_chime'}, {'frequency': 'c', 'synset': 'windmill.n.01', 'synonyms': ['windmill'], 'id': 1184, 'def': 'A mill or turbine that is powered by wind', 'name': 'windmill'}, {'frequency': 'c', 'synset': 'window_box.n.01', 'synonyms': ['window_box_(for_plants)'], 'id': 1185, 'def': 'a container for growing plants on a windowsill', 'name': 'window_box_(for_plants)'}, {'frequency': 'f', 'synset': 'windshield_wiper.n.01', 'synonyms': ['windshield_wiper', 'windscreen_wiper', 'wiper_(for_windshield/screen)'], 'id': 1186, 'def': 'a mechanical device that cleans the windshield', 'name': 'windshield_wiper'}, {'frequency': 'c', 'synset': 'windsock.n.01', 'synonyms': ['windsock', 'air_sock', 'air-sleeve', 'wind_sleeve', 'wind_cone'], 'id': 1187, 'def': 'a truncated cloth cone mounted on a mast/pole; shows wind direction', 'name': 'windsock'}, {'frequency': 'f', 'synset': 'wine_bottle.n.01', 'synonyms': ['wine_bottle'], 'id': 1188, 'def': 'a bottle for holding wine', 'name': 'wine_bottle'}, {'frequency': 'c', 'synset': 'wine_bucket.n.01', 'synonyms': ['wine_bucket', 'wine_cooler'], 'id': 1189, 'def': 'a bucket of ice used to chill a bottle of wine', 'name': 'wine_bucket'}, {'frequency': 'f', 'synset': 'wineglass.n.01', 'synonyms': ['wineglass'], 'id': 1190, 'def': 'a glass that has a stem and in which wine is served', 'name': 'wineglass'}, {'frequency': 'f', 'synset': 'winker.n.02', 'synonyms': ['blinder_(for_horses)'], 'id': 1191, 'def': 'blinds that prevent a horse from seeing something on either side', 'name': 'blinder_(for_horses)'}, {'frequency': 'c', 'synset': 'wok.n.01', 'synonyms': ['wok'], 'id': 1192, 'def': 'pan with a convex bottom; used for frying in Chinese cooking', 'name': 'wok'}, {'frequency': 'r', 'synset': 'wolf.n.01', 'synonyms': ['wolf'], 'id': 1193, 'def': 'a wild carnivorous mammal of the dog family, living and hunting in packs', 'name': 'wolf'}, {'frequency': 'c', 'synset': 'wooden_spoon.n.02', 'synonyms': ['wooden_spoon'], 'id': 1194, 'def': 'a spoon made of wood', 'name': 'wooden_spoon'}, {'frequency': 'c', 'synset': 'wreath.n.01', 'synonyms': ['wreath'], 'id': 1195, 'def': 'an arrangement of flowers, leaves, or stems fastened in a ring', 'name': 'wreath'}, {'frequency': 'c', 'synset': 'wrench.n.03', 'synonyms': ['wrench', 'spanner'], 'id': 1196, 'def': 'a hand tool that is used to hold or twist a nut or bolt', 'name': 'wrench'}, {'frequency': 'f', 'synset': 'wristband.n.01', 'synonyms': ['wristband'], 'id': 1197, 'def': 'band consisting of a part of a sleeve that covers the wrist', 'name': 'wristband'}, {'frequency': 'f', 'synset': 'wristlet.n.01', 'synonyms': ['wristlet', 'wrist_band'], 'id': 1198, 'def': 'a band or bracelet worn around the wrist', 'name': 'wristlet'}, {'frequency': 'c', 'synset': 'yacht.n.01', 'synonyms': ['yacht'], 'id': 1199, 'def': 'an expensive vessel propelled by sail or power and used for cruising or racing', 'name': 'yacht'}, {'frequency': 'c', 'synset': 'yogurt.n.01', 'synonyms': ['yogurt', 'yoghurt', 'yoghourt'], 'id': 1200, 'def': 'a custard-like food made from curdled milk', 'name': 'yogurt'}, {'frequency': 'c', 'synset': 'yoke.n.07', 'synonyms': ['yoke_(animal_equipment)'], 'id': 1201, 'def': 'gear joining two animals at the neck; NOT egg yolk', 'name': 'yoke_(animal_equipment)'}, {'frequency': 'f', 'synset': 'zebra.n.01', 'synonyms': ['zebra'], 'id': 1202, 'def': 'any of several fleet black-and-white striped African equines', 'name': 'zebra'}, {'frequency': 'c', 'synset': 'zucchini.n.02', 'synonyms': ['zucchini', 'courgette'], 'id': 1203, 'def': 'small cucumber-shaped vegetable marrow; typically dark green', 'name': 'zucchini'}] # noqa -# fmt: on diff --git a/spaces/Carlosito16/aitGPT/app_without_convo.py b/spaces/Carlosito16/aitGPT/app_without_convo.py deleted file mode 100644 index eab76777f958915904e9ea83c892f14fa8b9eb6c..0000000000000000000000000000000000000000 --- a/spaces/Carlosito16/aitGPT/app_without_convo.py +++ /dev/null @@ -1,221 +0,0 @@ -# First demo using one-query based UI style - - - -import streamlit as st -import pandas as pd -import numpy as np -import datetime -import gspread -import pickle -import os -import csv -import json -import torch -from tqdm.auto import tqdm -from langchain.text_splitter import RecursiveCharacterTextSplitter - - -# from langchain.vectorstores import Chroma -from langchain.vectorstores import FAISS -from langchain.embeddings import HuggingFaceInstructEmbeddings - - -from langchain import HuggingFacePipeline -from langchain.chains import RetrievalQA - - - -st.set_page_config( - page_title = 'aitGPT', - page_icon = '✅') - - - -@st.cache_data -def load_scraped_web_info(): - with open("ait-web-document", "rb") as fp: - ait_web_documents = pickle.load(fp) - - - text_splitter = RecursiveCharacterTextSplitter( - # Set a really small chunk size, just to show. - chunk_size = 500, - chunk_overlap = 100, - length_function = len, - ) - - chunked_text = text_splitter.create_documents([doc for doc in tqdm(ait_web_documents)]) - - -@st.cache_resource -def load_embedding_model(): - embedding_model = HuggingFaceInstructEmbeddings(model_name='hkunlp/instructor-base', - model_kwargs = {'device': torch.device('cuda' if torch.cuda.is_available() else 'cpu')}) - return embedding_model - -@st.cache_data -def load_faiss_index(): - vector_database = FAISS.load_local("faiss_index_web_and_curri_new", embedding_model) #CHANGE THIS FAISS EMBEDDED KNOWLEDGE - return vector_database - -@st.cache_resource -def load_llm_model(): - # llm = HuggingFacePipeline.from_model_id(model_id= 'lmsys/fastchat-t5-3b-v1.0', - # task= 'text2text-generation', - # model_kwargs={ "device_map": "auto", - # "load_in_8bit": True,"max_length": 256, "temperature": 0, - # "repetition_penalty": 1.5}) - - - llm = HuggingFacePipeline.from_model_id(model_id= 'lmsys/fastchat-t5-3b-v1.0', - task= 'text2text-generation', - - model_kwargs={ "max_length": 256, "temperature": 0, - "torch_dtype":torch.float32, - "repetition_penalty": 1.3}) - return llm - - -def load_retriever(llm, db): - qa_retriever = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", - retriever=db.as_retriever()) - - return qa_retriever - -def retrieve_document(query_input): - related_doc = vector_database.similarity_search(query_input) - return related_doc - -def retrieve_answer(query_input): - prompt_answer= query_input + " " + "Try to elaborate as much as you can." - answer = qa_retriever.run(prompt_answer) - output = st.text_area(label="Retrieved documents", value=answer[6:]) #this positional slicing helps remove " " at the beginning - - st.markdown('---') - score = st.radio(label = 'please select the rating score for overall satifaction and helpfullness of the bot answer', options=[0, 1,2,3,4,5], horizontal=True, - on_change=update_worksheet_qa, key='rating') - - return answer[6:] #this positional slicing helps remove " " at the beginning - -# def update_score(): -# st.session_state.session_rating = st.session_state.rating - - -def update_worksheet_qa(): - st.session_state.session_rating = st.session_state.rating - #This if helps validate the initiated rating, if 0, then the google sheet would not be updated - #(edited) now even with the score of 0, we still want to store the log because some users do not give the score to complete the logging - if st.session_state.session_rating == 0: - worksheet_qa.append_row([st.session_state.history[-1]['timestamp'].strftime(datetime_format), - st.session_state.history[-1]['question'], - st.session_state.history[-1]['generated_answer'], - st.session_state.session_rating - ]) - else: - worksheet_qa.append_row([st.session_state.history[-1]['timestamp'].strftime(datetime_format), - st.session_state.history[-1]['question'], - st.session_state.history[-1]['generated_answer'], - st.session_state.session_rating - ]) - -def update_worksheet_comment(): - worksheet_comment.append_row([datetime.datetime.now().strftime(datetime_format), - feedback_input]) - success_message = st.success('Feedback successfully submitted, thank you', icon="✅", - ) - time.sleep(3) - success_message.empty() - -#-------------- - - -if "history" not in st.session_state: - st.session_state.history = [] -if "session_rating" not in st.session_state: - st.session_state.session_rating = 0 - - -credentials= json.loads(st.secrets['google_sheet_credential']) - -service_account = gspread.service_account_from_dict(credentials) -workbook= service_account.open("aitGPT-qa-log") -worksheet_qa = workbook.worksheet("Sheet1") -worksheet_comment = workbook.worksheet("Sheet2") -datetime_format= "%Y-%m-%d %H:%M:%S" - - - -load_scraped_web_info() -embedding_model = load_embedding_model() -vector_database = load_faiss_index() -llm_model = load_llm_model() -qa_retriever = load_retriever(llm= llm_model, db= vector_database) - - -print("all load done") - - - - - - - - -st.write("# aitGPT 🤖 ") -st.markdown(""" - #### The aitGPT project is a virtual assistant developed by the :green[Asian Institute of Technology] that contains a vast amount of information gathered from 205 AIT-related websites. - The goal of this chatbot is to provide an alternative way for applicants and current students to access information about the institute, including admission procedures, campus facilities, and more. - """) -st.write(' ⚠️ Please expect to wait **~ 10 - 20 seconds per question** as thi app is running on CPU against 3-billion-parameter LLM') - -st.markdown("---") -st.write(" ") -st.write(""" - ### ❔ Ask a question - """) - -query_input = st.text_area(label= 'What would you like to know about AIT?' , key = 'my_text_input') -generate_button = st.button(label = 'Ask question!') - -if generate_button: - answer = retrieve_answer(query_input) - log = {"timestamp": datetime.datetime.now(), - "question":query_input, - "generated_answer": answer, - "rating":st.session_state.session_rating } - - st.session_state.history.append(log) - update_worksheet_qa() - - -st.write(" ") -st.write(" ") - -st.markdown("---") -st.write(""" - ### 💌 Your voice matters - """) - -feedback_input = st.text_area(label= 'please leave your feedback or any ideas to make this bot more knowledgeable and fun') -feedback_button = st.button(label = 'Submit feedback!') - -if feedback_button: - update_worksheet_comment() - - -# if st.session_state.session_rating == 0: -# pass -# else: -# with open('test_db', 'a') as csvfile: -# writer = csv.writer(csvfile) -# writer.writerow([st.session_state.history[-1]['timestamp'], st.session_state.history[-1]['question'], -# st.session_state.history[-1]['generated_answer'], st.session_state.session_rating ]) -# st.session_state.session_rating = 0 - -# test_df = pd.read_csv("test_db", index_col=0) -# test_df.sort_values(by = ['timestamp'], -# axis=0, -# ascending=False, -# inplace=True) -# st.dataframe(test_df) \ No newline at end of file diff --git a/spaces/CikeyQI/meme-api/meme_generator/exception.py b/spaces/CikeyQI/meme-api/meme_generator/exception.py deleted file mode 100644 index eb2a5bc462ee6cd35780e2da9ad8344a1a57cb31..0000000000000000000000000000000000000000 --- a/spaces/CikeyQI/meme-api/meme_generator/exception.py +++ /dev/null @@ -1,119 +0,0 @@ -from typing import Optional - - -class MemeGeneratorException(Exception): - status_code: int = 520 - - def __init__(self, message: str): - self.message = message - - def __str__(self) -> str: - return self.__repr__() - - def __repr__(self) -> str: - return f"Error in meme_generator: {self.message}" - - -class NoSuchMeme(MemeGeneratorException): - status_code: int = 531 - - def __init__(self, meme_key: str): - self.meme_key = meme_key - message = f'No such meme with key="{self.meme_key}"' - super().__init__(message) - - -class TextOverLength(MemeGeneratorException): - status_code: int = 532 - - def __init__(self, text: str): - self.text = text - message = f'Text "{self.text}" is too long!' - super().__init__(message) - - -class OpenImageFailed(MemeGeneratorException): - status_code: int = 533 - - def __init__(self, error_message: str): - self.error_message = error_message - message = f'Error opening images: "{self.error_message}"' - super().__init__(message) - - -class ParserExit(MemeGeneratorException): - status_code: int = 534 - - def __init__(self, status: int = 0, error_message: Optional[str] = None): - self.status = status - self.error_message = error_message or "" - message = ( - f"Argument parser failed to parse. (status={self.status}" - + (f", message={self.error_message!r}" if self.error_message else "") - + ")" - ) - super().__init__(message) - - -class ParamsMismatch(MemeGeneratorException): - status_code: int = 540 - - def __init__(self, meme_key: str, message: str): - self.meme_key = meme_key - self.message = message - - def __repr__(self) -> str: - return f'ParamsMismatch(key="{self.meme_key}", message="{self.message}")' - - -class ImageNumberMismatch(ParamsMismatch): - status_code: int = 541 - - def __init__(self, meme_key: str, min_images: int = 0, max_images: int = 0): - message = ( - "The number of images is incorrect, " - f"it should be no less than {min_images} and no more than {max_images}" - ) - super().__init__(meme_key, message) - - -class TextNumberMismatch(ParamsMismatch): - status_code: int = 542 - - def __init__(self, meme_key: str, min_texts: int = 0, max_texts: int = 0): - message = ( - "The number of texts is incorrect, " - f"it should be no less than {min_texts} and no more than {max_texts}" - ) - super().__init__(meme_key, message) - - -class TextOrNameNotEnough(ParamsMismatch): - status_code: int = 543 - - def __init__(self, meme_key: str, message: Optional[str] = None): - message = message or "The number of texts or user names is not enough" - super().__init__(meme_key, message) - - -class ArgMismatch(ParamsMismatch): - status_code: int = 550 - pass - - -class ArgParserExit(ArgMismatch): - status_code: int = 551 - - def __init__(self, meme_key: str, error_message: str): - self.error_message = error_message - message = f"Argument parser failed to parse: {self.error_message}" - super().__init__(meme_key, message) - - -class ArgModelMismatch(ArgMismatch): - status_code: int = 552 - - def __init__(self, meme_key: str, error_message: str): - self.error_message = error_message - message = f"Argument model validation failed: {self.error_message}" - super().__init__(meme_key, message) diff --git a/spaces/CofAI/chat.b4/client/css/theme-toggler.css b/spaces/CofAI/chat.b4/client/css/theme-toggler.css deleted file mode 100644 index b673b5920a24693e7ea15b873e46731b388ec527..0000000000000000000000000000000000000000 --- a/spaces/CofAI/chat.b4/client/css/theme-toggler.css +++ /dev/null @@ -1,33 +0,0 @@ -.theme-toggler-container { - margin: 24px 0px 8px 0px; - justify-content: center; -} - -.theme-toggler-container.checkbox input + label, -.theme-toggler-container.checkbox input:checked + label:after { - background: var(--colour-1); -} - -.theme-toggler-container.checkbox input + label:after, -.theme-toggler-container.checkbox input:checked + label { - background: var(--colour-3); -} - -.theme-toggler-container.checkbox span { - font-size: 0.75rem; -} - -.theme-toggler-container.checkbox label { - width: 24px; - height: 16px; -} - -.theme-toggler-container.checkbox label:after { - left: 2px; - width: 10px; - height: 10px; -} - -.theme-toggler-container.checkbox input:checked + label:after { - left: calc(100% - 2px - 10px); -} \ No newline at end of file diff --git a/spaces/Cong723/gpt-academic-public/crazy_functions/test_project/cpp/libJPG/jpgd.cpp b/spaces/Cong723/gpt-academic-public/crazy_functions/test_project/cpp/libJPG/jpgd.cpp deleted file mode 100644 index 36d06c8e9068570c3e7624895d474f33dbfe3d29..0000000000000000000000000000000000000000 --- a/spaces/Cong723/gpt-academic-public/crazy_functions/test_project/cpp/libJPG/jpgd.cpp +++ /dev/null @@ -1,3276 +0,0 @@ -// jpgd.cpp - C++ class for JPEG decompression. -// Public domain, Rich Geldreich -// Last updated Apr. 16, 2011 -// Alex Evans: Linear memory allocator (taken from jpge.h). -// -// Supports progressive and baseline sequential JPEG image files, and the most common chroma subsampling factors: Y, H1V1, H2V1, H1V2, and H2V2. -// -// Chroma upsampling quality: H2V2 is upsampled in the frequency domain, H2V1 and H1V2 are upsampled using point sampling. -// Chroma upsampling reference: "Fast Scheme for Image Size Change in the Compressed Domain" -// http://vision.ai.uiuc.edu/~dugad/research/dct/index.html - -#include "jpgd.h" -#include - -#include -// BEGIN EPIC MOD -#define JPGD_ASSERT(x) { assert(x); CA_ASSUME(x); } (void)0 -// END EPIC MOD - -#ifdef _MSC_VER -#pragma warning (disable : 4611) // warning C4611: interaction between '_setjmp' and C++ object destruction is non-portable -#endif - -// Set to 1 to enable freq. domain chroma upsampling on images using H2V2 subsampling (0=faster nearest neighbor sampling). -// This is slower, but results in higher quality on images with highly saturated colors. -#define JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING 1 - -#define JPGD_TRUE (1) -#define JPGD_FALSE (0) - -#define JPGD_MAX(a,b) (((a)>(b)) ? (a) : (b)) -#define JPGD_MIN(a,b) (((a)<(b)) ? (a) : (b)) - -namespace jpgd { - - static inline void *jpgd_malloc(size_t nSize) { return FMemory::Malloc(nSize); } - static inline void jpgd_free(void *p) { FMemory::Free(p); } - -// BEGIN EPIC MOD -//@UE3 - use UE3 BGRA encoding instead of assuming RGBA - // stolen from IImageWrapper.h - enum ERGBFormatJPG - { - Invalid = -1, - RGBA = 0, - BGRA = 1, - Gray = 2, - }; - static ERGBFormatJPG jpg_format; -// END EPIC MOD - - // DCT coefficients are stored in this sequence. - static int g_ZAG[64] = { 0,1,8,16,9,2,3,10,17,24,32,25,18,11,4,5,12,19,26,33,40,48,41,34,27,20,13,6,7,14,21,28,35,42,49,56,57,50,43,36,29,22,15,23,30,37,44,51,58,59,52,45,38,31,39,46,53,60,61,54,47,55,62,63 }; - - enum JPEG_MARKER - { - M_SOF0 = 0xC0, M_SOF1 = 0xC1, M_SOF2 = 0xC2, M_SOF3 = 0xC3, M_SOF5 = 0xC5, M_SOF6 = 0xC6, M_SOF7 = 0xC7, M_JPG = 0xC8, - M_SOF9 = 0xC9, M_SOF10 = 0xCA, M_SOF11 = 0xCB, M_SOF13 = 0xCD, M_SOF14 = 0xCE, M_SOF15 = 0xCF, M_DHT = 0xC4, M_DAC = 0xCC, - M_RST0 = 0xD0, M_RST1 = 0xD1, M_RST2 = 0xD2, M_RST3 = 0xD3, M_RST4 = 0xD4, M_RST5 = 0xD5, M_RST6 = 0xD6, M_RST7 = 0xD7, - M_SOI = 0xD8, M_EOI = 0xD9, M_SOS = 0xDA, M_DQT = 0xDB, M_DNL = 0xDC, M_DRI = 0xDD, M_DHP = 0xDE, M_EXP = 0xDF, - M_APP0 = 0xE0, M_APP15 = 0xEF, M_JPG0 = 0xF0, M_JPG13 = 0xFD, M_COM = 0xFE, M_TEM = 0x01, M_ERROR = 0x100, RST0 = 0xD0 - }; - - enum JPEG_SUBSAMPLING { JPGD_GRAYSCALE = 0, JPGD_YH1V1, JPGD_YH2V1, JPGD_YH1V2, JPGD_YH2V2 }; - -#define CONST_BITS 13 -#define PASS1_BITS 2 -#define SCALEDONE ((int32)1) - -#define FIX_0_298631336 ((int32)2446) /* FIX(0.298631336) */ -#define FIX_0_390180644 ((int32)3196) /* FIX(0.390180644) */ -#define FIX_0_541196100 ((int32)4433) /* FIX(0.541196100) */ -#define FIX_0_765366865 ((int32)6270) /* FIX(0.765366865) */ -#define FIX_0_899976223 ((int32)7373) /* FIX(0.899976223) */ -#define FIX_1_175875602 ((int32)9633) /* FIX(1.175875602) */ -#define FIX_1_501321110 ((int32)12299) /* FIX(1.501321110) */ -#define FIX_1_847759065 ((int32)15137) /* FIX(1.847759065) */ -#define FIX_1_961570560 ((int32)16069) /* FIX(1.961570560) */ -#define FIX_2_053119869 ((int32)16819) /* FIX(2.053119869) */ -#define FIX_2_562915447 ((int32)20995) /* FIX(2.562915447) */ -#define FIX_3_072711026 ((int32)25172) /* FIX(3.072711026) */ - -#define DESCALE(x,n) (((x) + (SCALEDONE << ((n)-1))) >> (n)) -#define DESCALE_ZEROSHIFT(x,n) (((x) + (128 << (n)) + (SCALEDONE << ((n)-1))) >> (n)) - -#define MULTIPLY(var, cnst) ((var) * (cnst)) - -#define CLAMP(i) ((static_cast(i) > 255) ? (((~i) >> 31) & 0xFF) : (i)) - - // Compiler creates a fast path 1D IDCT for X non-zero columns - template - struct Row - { - static void idct(int* pTemp, const jpgd_block_t* pSrc) - { - // ACCESS_COL() will be optimized at compile time to either an array access, or 0. -#define ACCESS_COL(x) (((x) < NONZERO_COLS) ? (int)pSrc[x] : 0) - - const int z2 = ACCESS_COL(2), z3 = ACCESS_COL(6); - - const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); - const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); - - const int tmp0 = (ACCESS_COL(0) + ACCESS_COL(4)) << CONST_BITS; - const int tmp1 = (ACCESS_COL(0) - ACCESS_COL(4)) << CONST_BITS; - - const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2; - - const int atmp0 = ACCESS_COL(7), atmp1 = ACCESS_COL(5), atmp2 = ACCESS_COL(3), atmp3 = ACCESS_COL(1); - - const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3; - const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602); - - const int az1 = MULTIPLY(bz1, - FIX_0_899976223); - const int az2 = MULTIPLY(bz2, - FIX_2_562915447); - const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5; - const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5; - - const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3; - const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4; - const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3; - const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4; - - pTemp[0] = DESCALE(tmp10 + btmp3, CONST_BITS-PASS1_BITS); - pTemp[7] = DESCALE(tmp10 - btmp3, CONST_BITS-PASS1_BITS); - pTemp[1] = DESCALE(tmp11 + btmp2, CONST_BITS-PASS1_BITS); - pTemp[6] = DESCALE(tmp11 - btmp2, CONST_BITS-PASS1_BITS); - pTemp[2] = DESCALE(tmp12 + btmp1, CONST_BITS-PASS1_BITS); - pTemp[5] = DESCALE(tmp12 - btmp1, CONST_BITS-PASS1_BITS); - pTemp[3] = DESCALE(tmp13 + btmp0, CONST_BITS-PASS1_BITS); - pTemp[4] = DESCALE(tmp13 - btmp0, CONST_BITS-PASS1_BITS); - } - }; - - template <> - struct Row<0> - { - static void idct(int* pTemp, const jpgd_block_t* pSrc) - { -#ifdef _MSC_VER - pTemp; pSrc; -#endif - } - }; - - template <> - struct Row<1> - { - static void idct(int* pTemp, const jpgd_block_t* pSrc) - { - const int dcval = (pSrc[0] << PASS1_BITS); - - pTemp[0] = dcval; - pTemp[1] = dcval; - pTemp[2] = dcval; - pTemp[3] = dcval; - pTemp[4] = dcval; - pTemp[5] = dcval; - pTemp[6] = dcval; - pTemp[7] = dcval; - } - }; - - // Compiler creates a fast path 1D IDCT for X non-zero rows - template - struct Col - { - static void idct(uint8* pDst_ptr, const int* pTemp) - { - // ACCESS_ROW() will be optimized at compile time to either an array access, or 0. -#define ACCESS_ROW(x) (((x) < NONZERO_ROWS) ? pTemp[x * 8] : 0) - - const int z2 = ACCESS_ROW(2); - const int z3 = ACCESS_ROW(6); - - const int z1 = MULTIPLY(z2 + z3, FIX_0_541196100); - const int tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); - const int tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); - - const int tmp0 = (ACCESS_ROW(0) + ACCESS_ROW(4)) << CONST_BITS; - const int tmp1 = (ACCESS_ROW(0) - ACCESS_ROW(4)) << CONST_BITS; - - const int tmp10 = tmp0 + tmp3, tmp13 = tmp0 - tmp3, tmp11 = tmp1 + tmp2, tmp12 = tmp1 - tmp2; - - const int atmp0 = ACCESS_ROW(7), atmp1 = ACCESS_ROW(5), atmp2 = ACCESS_ROW(3), atmp3 = ACCESS_ROW(1); - - const int bz1 = atmp0 + atmp3, bz2 = atmp1 + atmp2, bz3 = atmp0 + atmp2, bz4 = atmp1 + atmp3; - const int bz5 = MULTIPLY(bz3 + bz4, FIX_1_175875602); - - const int az1 = MULTIPLY(bz1, - FIX_0_899976223); - const int az2 = MULTIPLY(bz2, - FIX_2_562915447); - const int az3 = MULTIPLY(bz3, - FIX_1_961570560) + bz5; - const int az4 = MULTIPLY(bz4, - FIX_0_390180644) + bz5; - - const int btmp0 = MULTIPLY(atmp0, FIX_0_298631336) + az1 + az3; - const int btmp1 = MULTIPLY(atmp1, FIX_2_053119869) + az2 + az4; - const int btmp2 = MULTIPLY(atmp2, FIX_3_072711026) + az2 + az3; - const int btmp3 = MULTIPLY(atmp3, FIX_1_501321110) + az1 + az4; - - int i = DESCALE_ZEROSHIFT(tmp10 + btmp3, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*0] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp10 - btmp3, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*7] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp11 + btmp2, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*1] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp11 - btmp2, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*6] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp12 + btmp1, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*2] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp12 - btmp1, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*5] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp13 + btmp0, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*3] = (uint8)CLAMP(i); - - i = DESCALE_ZEROSHIFT(tmp13 - btmp0, CONST_BITS+PASS1_BITS+3); - pDst_ptr[8*4] = (uint8)CLAMP(i); - } - }; - - template <> - struct Col<1> - { - static void idct(uint8* pDst_ptr, const int* pTemp) - { - int dcval = DESCALE_ZEROSHIFT(pTemp[0], PASS1_BITS+3); - const uint8 dcval_clamped = (uint8)CLAMP(dcval); - pDst_ptr[0*8] = dcval_clamped; - pDst_ptr[1*8] = dcval_clamped; - pDst_ptr[2*8] = dcval_clamped; - pDst_ptr[3*8] = dcval_clamped; - pDst_ptr[4*8] = dcval_clamped; - pDst_ptr[5*8] = dcval_clamped; - pDst_ptr[6*8] = dcval_clamped; - pDst_ptr[7*8] = dcval_clamped; - } - }; - - static const uint8 s_idct_row_table[] = - { - 1,0,0,0,0,0,0,0, 2,0,0,0,0,0,0,0, 2,1,0,0,0,0,0,0, 2,1,1,0,0,0,0,0, 2,2,1,0,0,0,0,0, 3,2,1,0,0,0,0,0, 4,2,1,0,0,0,0,0, 4,3,1,0,0,0,0,0, - 4,3,2,0,0,0,0,0, 4,3,2,1,0,0,0,0, 4,3,2,1,1,0,0,0, 4,3,2,2,1,0,0,0, 4,3,3,2,1,0,0,0, 4,4,3,2,1,0,0,0, 5,4,3,2,1,0,0,0, 6,4,3,2,1,0,0,0, - 6,5,3,2,1,0,0,0, 6,5,4,2,1,0,0,0, 6,5,4,3,1,0,0,0, 6,5,4,3,2,0,0,0, 6,5,4,3,2,1,0,0, 6,5,4,3,2,1,1,0, 6,5,4,3,2,2,1,0, 6,5,4,3,3,2,1,0, - 6,5,4,4,3,2,1,0, 6,5,5,4,3,2,1,0, 6,6,5,4,3,2,1,0, 7,6,5,4,3,2,1,0, 8,6,5,4,3,2,1,0, 8,7,5,4,3,2,1,0, 8,7,6,4,3,2,1,0, 8,7,6,5,3,2,1,0, - 8,7,6,5,4,2,1,0, 8,7,6,5,4,3,1,0, 8,7,6,5,4,3,2,0, 8,7,6,5,4,3,2,1, 8,7,6,5,4,3,2,2, 8,7,6,5,4,3,3,2, 8,7,6,5,4,4,3,2, 8,7,6,5,5,4,3,2, - 8,7,6,6,5,4,3,2, 8,7,7,6,5,4,3,2, 8,8,7,6,5,4,3,2, 8,8,8,6,5,4,3,2, 8,8,8,7,5,4,3,2, 8,8,8,7,6,4,3,2, 8,8,8,7,6,5,3,2, 8,8,8,7,6,5,4,2, - 8,8,8,7,6,5,4,3, 8,8,8,7,6,5,4,4, 8,8,8,7,6,5,5,4, 8,8,8,7,6,6,5,4, 8,8,8,7,7,6,5,4, 8,8,8,8,7,6,5,4, 8,8,8,8,8,6,5,4, 8,8,8,8,8,7,5,4, - 8,8,8,8,8,7,6,4, 8,8,8,8,8,7,6,5, 8,8,8,8,8,7,6,6, 8,8,8,8,8,7,7,6, 8,8,8,8,8,8,7,6, 8,8,8,8,8,8,8,6, 8,8,8,8,8,8,8,7, 8,8,8,8,8,8,8,8, - }; - - static const uint8 s_idct_col_table[] = { 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 }; - - void idct(const jpgd_block_t* pSrc_ptr, uint8* pDst_ptr, int block_max_zag) - { - JPGD_ASSERT(block_max_zag >= 1); - JPGD_ASSERT(block_max_zag <= 64); - - if (block_max_zag == 1) - { - int k = ((pSrc_ptr[0] + 4) >> 3) + 128; - k = CLAMP(k); - k = k | (k<<8); - k = k | (k<<16); - - for (int i = 8; i > 0; i--) - { - *(int*)&pDst_ptr[0] = k; - *(int*)&pDst_ptr[4] = k; - pDst_ptr += 8; - } - return; - } - - int temp[64]; - - const jpgd_block_t* pSrc = pSrc_ptr; - int* pTemp = temp; - - const uint8* pRow_tab = &s_idct_row_table[(block_max_zag - 1) * 8]; - int i; - for (i = 8; i > 0; i--, pRow_tab++) - { - switch (*pRow_tab) - { - case 0: Row<0>::idct(pTemp, pSrc); break; - case 1: Row<1>::idct(pTemp, pSrc); break; - case 2: Row<2>::idct(pTemp, pSrc); break; - case 3: Row<3>::idct(pTemp, pSrc); break; - case 4: Row<4>::idct(pTemp, pSrc); break; - case 5: Row<5>::idct(pTemp, pSrc); break; - case 6: Row<6>::idct(pTemp, pSrc); break; - case 7: Row<7>::idct(pTemp, pSrc); break; - case 8: Row<8>::idct(pTemp, pSrc); break; - } - - pSrc += 8; - pTemp += 8; - } - - pTemp = temp; - - const int nonzero_rows = s_idct_col_table[block_max_zag - 1]; - for (i = 8; i > 0; i--) - { - switch (nonzero_rows) - { - case 1: Col<1>::idct(pDst_ptr, pTemp); break; - case 2: Col<2>::idct(pDst_ptr, pTemp); break; - case 3: Col<3>::idct(pDst_ptr, pTemp); break; - case 4: Col<4>::idct(pDst_ptr, pTemp); break; - case 5: Col<5>::idct(pDst_ptr, pTemp); break; - case 6: Col<6>::idct(pDst_ptr, pTemp); break; - case 7: Col<7>::idct(pDst_ptr, pTemp); break; - case 8: Col<8>::idct(pDst_ptr, pTemp); break; - } - - pTemp++; - pDst_ptr++; - } - } - - void idct_4x4(const jpgd_block_t* pSrc_ptr, uint8* pDst_ptr) - { - int temp[64]; - int* pTemp = temp; - const jpgd_block_t* pSrc = pSrc_ptr; - - for (int i = 4; i > 0; i--) - { - Row<4>::idct(pTemp, pSrc); - pSrc += 8; - pTemp += 8; - } - - pTemp = temp; - for (int i = 8; i > 0; i--) - { - Col<4>::idct(pDst_ptr, pTemp); - pTemp++; - pDst_ptr++; - } - } - - // Retrieve one character from the input stream. - inline uint jpeg_decoder::get_char() - { - // Any bytes remaining in buffer? - if (!m_in_buf_left) - { - // Try to get more bytes. - prep_in_buffer(); - // Still nothing to get? - if (!m_in_buf_left) - { - // Pad the end of the stream with 0xFF 0xD9 (EOI marker) - int t = m_tem_flag; - m_tem_flag ^= 1; - if (t) - return 0xD9; - else - return 0xFF; - } - } - - uint c = *m_pIn_buf_ofs++; - m_in_buf_left--; - - return c; - } - - // Same as previous method, except can indicate if the character is a pad character or not. - inline uint jpeg_decoder::get_char(bool *pPadding_flag) - { - if (!m_in_buf_left) - { - prep_in_buffer(); - if (!m_in_buf_left) - { - *pPadding_flag = true; - int t = m_tem_flag; - m_tem_flag ^= 1; - if (t) - return 0xD9; - else - return 0xFF; - } - } - - *pPadding_flag = false; - - uint c = *m_pIn_buf_ofs++; - m_in_buf_left--; - - return c; - } - - // Inserts a previously retrieved character back into the input buffer. - inline void jpeg_decoder::stuff_char(uint8 q) - { - *(--m_pIn_buf_ofs) = q; - m_in_buf_left++; - } - - // Retrieves one character from the input stream, but does not read past markers. Will continue to return 0xFF when a marker is encountered. - inline uint8 jpeg_decoder::get_octet() - { - bool padding_flag; - int c = get_char(&padding_flag); - - if (c == 0xFF) - { - if (padding_flag) - return 0xFF; - - c = get_char(&padding_flag); - if (padding_flag) - { - stuff_char(0xFF); - return 0xFF; - } - - if (c == 0x00) - return 0xFF; - else - { - stuff_char(static_cast(c)); - stuff_char(0xFF); - return 0xFF; - } - } - - return static_cast(c); - } - - // Retrieves a variable number of bits from the input stream. Does not recognize markers. - inline uint jpeg_decoder::get_bits(int num_bits) - { - if (!num_bits) - return 0; - - uint i = m_bit_buf >> (32 - num_bits); - - if ((m_bits_left -= num_bits) <= 0) - { - m_bit_buf <<= (num_bits += m_bits_left); - - uint c1 = get_char(); - uint c2 = get_char(); - m_bit_buf = (m_bit_buf & 0xFFFF0000) | (c1 << 8) | c2; - - m_bit_buf <<= -m_bits_left; - - m_bits_left += 16; - - JPGD_ASSERT(m_bits_left >= 0); - } - else - m_bit_buf <<= num_bits; - - return i; - } - - // Retrieves a variable number of bits from the input stream. Markers will not be read into the input bit buffer. Instead, an infinite number of all 1's will be returned when a marker is encountered. - inline uint jpeg_decoder::get_bits_no_markers(int num_bits) - { - if (!num_bits) - return 0; - - uint i = m_bit_buf >> (32 - num_bits); - - if ((m_bits_left -= num_bits) <= 0) - { - m_bit_buf <<= (num_bits += m_bits_left); - - if ((m_in_buf_left < 2) || (m_pIn_buf_ofs[0] == 0xFF) || (m_pIn_buf_ofs[1] == 0xFF)) - { - uint c1 = get_octet(); - uint c2 = get_octet(); - m_bit_buf |= (c1 << 8) | c2; - } - else - { - m_bit_buf |= ((uint)m_pIn_buf_ofs[0] << 8) | m_pIn_buf_ofs[1]; - m_in_buf_left -= 2; - m_pIn_buf_ofs += 2; - } - - m_bit_buf <<= -m_bits_left; - - m_bits_left += 16; - - JPGD_ASSERT(m_bits_left >= 0); - } - else - m_bit_buf <<= num_bits; - - return i; - } - - // Decodes a Huffman encoded symbol. - inline int jpeg_decoder::huff_decode(huff_tables *pH) - { - int symbol; - - // Check first 8-bits: do we have a complete symbol? - if ((symbol = pH->look_up[m_bit_buf >> 24]) < 0) - { - // Decode more bits, use a tree traversal to find symbol. - int ofs = 23; - do - { - symbol = pH->tree[-(int)(symbol + ((m_bit_buf >> ofs) & 1))]; - ofs--; - } while (symbol < 0); - - get_bits_no_markers(8 + (23 - ofs)); - } - else - get_bits_no_markers(pH->code_size[symbol]); - - return symbol; - } - - // Decodes a Huffman encoded symbol. - inline int jpeg_decoder::huff_decode(huff_tables *pH, int& extra_bits) - { - int symbol; - - // Check first 8-bits: do we have a complete symbol? - if ((symbol = pH->look_up2[m_bit_buf >> 24]) < 0) - { - // Use a tree traversal to find symbol. - int ofs = 23; - do - { - symbol = pH->tree[-(int)(symbol + ((m_bit_buf >> ofs) & 1))]; - ofs--; - } while (symbol < 0); - - get_bits_no_markers(8 + (23 - ofs)); - - extra_bits = get_bits_no_markers(symbol & 0xF); - } - else - { - JPGD_ASSERT(((symbol >> 8) & 31) == pH->code_size[symbol & 255] + ((symbol & 0x8000) ? (symbol & 15) : 0)); - - if (symbol & 0x8000) - { - get_bits_no_markers((symbol >> 8) & 31); - extra_bits = symbol >> 16; - } - else - { - int code_size = (symbol >> 8) & 31; - int num_extra_bits = symbol & 0xF; - int bits = code_size + num_extra_bits; - if (bits <= (m_bits_left + 16)) - extra_bits = get_bits_no_markers(bits) & ((1 << num_extra_bits) - 1); - else - { - get_bits_no_markers(code_size); - extra_bits = get_bits_no_markers(num_extra_bits); - } - } - - symbol &= 0xFF; - } - - return symbol; - } - - // Tables and macro used to fully decode the DPCM differences. - static const int s_extend_test[16] = { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; - static const int s_extend_offset[16] = { 0, -1, -3, -7, -15, -31, -63, -127, -255, -511, -1023, -2047, -4095, -8191, -16383, -32767 }; - static const int s_extend_mask[] = { 0, (1<<0), (1<<1), (1<<2), (1<<3), (1<<4), (1<<5), (1<<6), (1<<7), (1<<8), (1<<9), (1<<10), (1<<11), (1<<12), (1<<13), (1<<14), (1<<15), (1<<16) }; -#define HUFF_EXTEND(x,s) ((x) < s_extend_test[s] ? (x) + s_extend_offset[s] : (x)) - - // Clamps a value between 0-255. - inline uint8 jpeg_decoder::clamp(int i) - { - if (static_cast(i) > 255) - i = (((~i) >> 31) & 0xFF); - - return static_cast(i); - } - - namespace DCT_Upsample - { - struct Matrix44 - { - typedef int Element_Type; - enum { NUM_ROWS = 4, NUM_COLS = 4 }; - - Element_Type v[NUM_ROWS][NUM_COLS]; - - inline int rows() const { return NUM_ROWS; } - inline int cols() const { return NUM_COLS; } - - inline const Element_Type & at(int r, int c) const { return v[r][c]; } - inline Element_Type & at(int r, int c) { return v[r][c]; } - - inline Matrix44() { } - - inline Matrix44& operator += (const Matrix44& a) - { - for (int r = 0; r < NUM_ROWS; r++) - { - at(r, 0) += a.at(r, 0); - at(r, 1) += a.at(r, 1); - at(r, 2) += a.at(r, 2); - at(r, 3) += a.at(r, 3); - } - return *this; - } - - inline Matrix44& operator -= (const Matrix44& a) - { - for (int r = 0; r < NUM_ROWS; r++) - { - at(r, 0) -= a.at(r, 0); - at(r, 1) -= a.at(r, 1); - at(r, 2) -= a.at(r, 2); - at(r, 3) -= a.at(r, 3); - } - return *this; - } - - friend inline Matrix44 operator + (const Matrix44& a, const Matrix44& b) - { - Matrix44 ret; - for (int r = 0; r < NUM_ROWS; r++) - { - ret.at(r, 0) = a.at(r, 0) + b.at(r, 0); - ret.at(r, 1) = a.at(r, 1) + b.at(r, 1); - ret.at(r, 2) = a.at(r, 2) + b.at(r, 2); - ret.at(r, 3) = a.at(r, 3) + b.at(r, 3); - } - return ret; - } - - friend inline Matrix44 operator - (const Matrix44& a, const Matrix44& b) - { - Matrix44 ret; - for (int r = 0; r < NUM_ROWS; r++) - { - ret.at(r, 0) = a.at(r, 0) - b.at(r, 0); - ret.at(r, 1) = a.at(r, 1) - b.at(r, 1); - ret.at(r, 2) = a.at(r, 2) - b.at(r, 2); - ret.at(r, 3) = a.at(r, 3) - b.at(r, 3); - } - return ret; - } - - static inline void add_and_store(jpgd_block_t* pDst, const Matrix44& a, const Matrix44& b) - { - for (int r = 0; r < 4; r++) - { - pDst[0*8 + r] = static_cast(a.at(r, 0) + b.at(r, 0)); - pDst[1*8 + r] = static_cast(a.at(r, 1) + b.at(r, 1)); - pDst[2*8 + r] = static_cast(a.at(r, 2) + b.at(r, 2)); - pDst[3*8 + r] = static_cast(a.at(r, 3) + b.at(r, 3)); - } - } - - static inline void sub_and_store(jpgd_block_t* pDst, const Matrix44& a, const Matrix44& b) - { - for (int r = 0; r < 4; r++) - { - pDst[0*8 + r] = static_cast(a.at(r, 0) - b.at(r, 0)); - pDst[1*8 + r] = static_cast(a.at(r, 1) - b.at(r, 1)); - pDst[2*8 + r] = static_cast(a.at(r, 2) - b.at(r, 2)); - pDst[3*8 + r] = static_cast(a.at(r, 3) - b.at(r, 3)); - } - } - }; - - const int FRACT_BITS = 10; - const int SCALE = 1 << FRACT_BITS; - - typedef int Temp_Type; -#define D(i) (((i) + (SCALE >> 1)) >> FRACT_BITS) -#define F(i) ((int)((i) * SCALE + .5f)) - - // Any decent C++ compiler will optimize this at compile time to a 0, or an array access. -#define AT(c, r) ((((c)>=NUM_COLS)||((r)>=NUM_ROWS)) ? 0 : pSrc[(c)+(r)*8]) - - // NUM_ROWS/NUM_COLS = # of non-zero rows/cols in input matrix - template - struct P_Q - { - static void calc(Matrix44& P, Matrix44& Q, const jpgd_block_t* pSrc) - { - // 4x8 = 4x8 times 8x8, matrix 0 is constant - const Temp_Type X000 = AT(0, 0); - const Temp_Type X001 = AT(0, 1); - const Temp_Type X002 = AT(0, 2); - const Temp_Type X003 = AT(0, 3); - const Temp_Type X004 = AT(0, 4); - const Temp_Type X005 = AT(0, 5); - const Temp_Type X006 = AT(0, 6); - const Temp_Type X007 = AT(0, 7); - const Temp_Type X010 = D(F(0.415735f) * AT(1, 0) + F(0.791065f) * AT(3, 0) + F(-0.352443f) * AT(5, 0) + F(0.277785f) * AT(7, 0)); - const Temp_Type X011 = D(F(0.415735f) * AT(1, 1) + F(0.791065f) * AT(3, 1) + F(-0.352443f) * AT(5, 1) + F(0.277785f) * AT(7, 1)); - const Temp_Type X012 = D(F(0.415735f) * AT(1, 2) + F(0.791065f) * AT(3, 2) + F(-0.352443f) * AT(5, 2) + F(0.277785f) * AT(7, 2)); - const Temp_Type X013 = D(F(0.415735f) * AT(1, 3) + F(0.791065f) * AT(3, 3) + F(-0.352443f) * AT(5, 3) + F(0.277785f) * AT(7, 3)); - const Temp_Type X014 = D(F(0.415735f) * AT(1, 4) + F(0.791065f) * AT(3, 4) + F(-0.352443f) * AT(5, 4) + F(0.277785f) * AT(7, 4)); - const Temp_Type X015 = D(F(0.415735f) * AT(1, 5) + F(0.791065f) * AT(3, 5) + F(-0.352443f) * AT(5, 5) + F(0.277785f) * AT(7, 5)); - const Temp_Type X016 = D(F(0.415735f) * AT(1, 6) + F(0.791065f) * AT(3, 6) + F(-0.352443f) * AT(5, 6) + F(0.277785f) * AT(7, 6)); - const Temp_Type X017 = D(F(0.415735f) * AT(1, 7) + F(0.791065f) * AT(3, 7) + F(-0.352443f) * AT(5, 7) + F(0.277785f) * AT(7, 7)); - const Temp_Type X020 = AT(4, 0); - const Temp_Type X021 = AT(4, 1); - const Temp_Type X022 = AT(4, 2); - const Temp_Type X023 = AT(4, 3); - const Temp_Type X024 = AT(4, 4); - const Temp_Type X025 = AT(4, 5); - const Temp_Type X026 = AT(4, 6); - const Temp_Type X027 = AT(4, 7); - const Temp_Type X030 = D(F(0.022887f) * AT(1, 0) + F(-0.097545f) * AT(3, 0) + F(0.490393f) * AT(5, 0) + F(0.865723f) * AT(7, 0)); - const Temp_Type X031 = D(F(0.022887f) * AT(1, 1) + F(-0.097545f) * AT(3, 1) + F(0.490393f) * AT(5, 1) + F(0.865723f) * AT(7, 1)); - const Temp_Type X032 = D(F(0.022887f) * AT(1, 2) + F(-0.097545f) * AT(3, 2) + F(0.490393f) * AT(5, 2) + F(0.865723f) * AT(7, 2)); - const Temp_Type X033 = D(F(0.022887f) * AT(1, 3) + F(-0.097545f) * AT(3, 3) + F(0.490393f) * AT(5, 3) + F(0.865723f) * AT(7, 3)); - const Temp_Type X034 = D(F(0.022887f) * AT(1, 4) + F(-0.097545f) * AT(3, 4) + F(0.490393f) * AT(5, 4) + F(0.865723f) * AT(7, 4)); - const Temp_Type X035 = D(F(0.022887f) * AT(1, 5) + F(-0.097545f) * AT(3, 5) + F(0.490393f) * AT(5, 5) + F(0.865723f) * AT(7, 5)); - const Temp_Type X036 = D(F(0.022887f) * AT(1, 6) + F(-0.097545f) * AT(3, 6) + F(0.490393f) * AT(5, 6) + F(0.865723f) * AT(7, 6)); - const Temp_Type X037 = D(F(0.022887f) * AT(1, 7) + F(-0.097545f) * AT(3, 7) + F(0.490393f) * AT(5, 7) + F(0.865723f) * AT(7, 7)); - - // 4x4 = 4x8 times 8x4, matrix 1 is constant - P.at(0, 0) = X000; - P.at(0, 1) = D(X001 * F(0.415735f) + X003 * F(0.791065f) + X005 * F(-0.352443f) + X007 * F(0.277785f)); - P.at(0, 2) = X004; - P.at(0, 3) = D(X001 * F(0.022887f) + X003 * F(-0.097545f) + X005 * F(0.490393f) + X007 * F(0.865723f)); - P.at(1, 0) = X010; - P.at(1, 1) = D(X011 * F(0.415735f) + X013 * F(0.791065f) + X015 * F(-0.352443f) + X017 * F(0.277785f)); - P.at(1, 2) = X014; - P.at(1, 3) = D(X011 * F(0.022887f) + X013 * F(-0.097545f) + X015 * F(0.490393f) + X017 * F(0.865723f)); - P.at(2, 0) = X020; - P.at(2, 1) = D(X021 * F(0.415735f) + X023 * F(0.791065f) + X025 * F(-0.352443f) + X027 * F(0.277785f)); - P.at(2, 2) = X024; - P.at(2, 3) = D(X021 * F(0.022887f) + X023 * F(-0.097545f) + X025 * F(0.490393f) + X027 * F(0.865723f)); - P.at(3, 0) = X030; - P.at(3, 1) = D(X031 * F(0.415735f) + X033 * F(0.791065f) + X035 * F(-0.352443f) + X037 * F(0.277785f)); - P.at(3, 2) = X034; - P.at(3, 3) = D(X031 * F(0.022887f) + X033 * F(-0.097545f) + X035 * F(0.490393f) + X037 * F(0.865723f)); - // 40 muls 24 adds - - // 4x4 = 4x8 times 8x4, matrix 1 is constant - Q.at(0, 0) = D(X001 * F(0.906127f) + X003 * F(-0.318190f) + X005 * F(0.212608f) + X007 * F(-0.180240f)); - Q.at(0, 1) = X002; - Q.at(0, 2) = D(X001 * F(-0.074658f) + X003 * F(0.513280f) + X005 * F(0.768178f) + X007 * F(-0.375330f)); - Q.at(0, 3) = X006; - Q.at(1, 0) = D(X011 * F(0.906127f) + X013 * F(-0.318190f) + X015 * F(0.212608f) + X017 * F(-0.180240f)); - Q.at(1, 1) = X012; - Q.at(1, 2) = D(X011 * F(-0.074658f) + X013 * F(0.513280f) + X015 * F(0.768178f) + X017 * F(-0.375330f)); - Q.at(1, 3) = X016; - Q.at(2, 0) = D(X021 * F(0.906127f) + X023 * F(-0.318190f) + X025 * F(0.212608f) + X027 * F(-0.180240f)); - Q.at(2, 1) = X022; - Q.at(2, 2) = D(X021 * F(-0.074658f) + X023 * F(0.513280f) + X025 * F(0.768178f) + X027 * F(-0.375330f)); - Q.at(2, 3) = X026; - Q.at(3, 0) = D(X031 * F(0.906127f) + X033 * F(-0.318190f) + X035 * F(0.212608f) + X037 * F(-0.180240f)); - Q.at(3, 1) = X032; - Q.at(3, 2) = D(X031 * F(-0.074658f) + X033 * F(0.513280f) + X035 * F(0.768178f) + X037 * F(-0.375330f)); - Q.at(3, 3) = X036; - // 40 muls 24 adds - } - }; - - template - struct R_S - { - static void calc(Matrix44& R, Matrix44& S, const jpgd_block_t* pSrc) - { - // 4x8 = 4x8 times 8x8, matrix 0 is constant - const Temp_Type X100 = D(F(0.906127f) * AT(1, 0) + F(-0.318190f) * AT(3, 0) + F(0.212608f) * AT(5, 0) + F(-0.180240f) * AT(7, 0)); - const Temp_Type X101 = D(F(0.906127f) * AT(1, 1) + F(-0.318190f) * AT(3, 1) + F(0.212608f) * AT(5, 1) + F(-0.180240f) * AT(7, 1)); - const Temp_Type X102 = D(F(0.906127f) * AT(1, 2) + F(-0.318190f) * AT(3, 2) + F(0.212608f) * AT(5, 2) + F(-0.180240f) * AT(7, 2)); - const Temp_Type X103 = D(F(0.906127f) * AT(1, 3) + F(-0.318190f) * AT(3, 3) + F(0.212608f) * AT(5, 3) + F(-0.180240f) * AT(7, 3)); - const Temp_Type X104 = D(F(0.906127f) * AT(1, 4) + F(-0.318190f) * AT(3, 4) + F(0.212608f) * AT(5, 4) + F(-0.180240f) * AT(7, 4)); - const Temp_Type X105 = D(F(0.906127f) * AT(1, 5) + F(-0.318190f) * AT(3, 5) + F(0.212608f) * AT(5, 5) + F(-0.180240f) * AT(7, 5)); - const Temp_Type X106 = D(F(0.906127f) * AT(1, 6) + F(-0.318190f) * AT(3, 6) + F(0.212608f) * AT(5, 6) + F(-0.180240f) * AT(7, 6)); - const Temp_Type X107 = D(F(0.906127f) * AT(1, 7) + F(-0.318190f) * AT(3, 7) + F(0.212608f) * AT(5, 7) + F(-0.180240f) * AT(7, 7)); - const Temp_Type X110 = AT(2, 0); - const Temp_Type X111 = AT(2, 1); - const Temp_Type X112 = AT(2, 2); - const Temp_Type X113 = AT(2, 3); - const Temp_Type X114 = AT(2, 4); - const Temp_Type X115 = AT(2, 5); - const Temp_Type X116 = AT(2, 6); - const Temp_Type X117 = AT(2, 7); - const Temp_Type X120 = D(F(-0.074658f) * AT(1, 0) + F(0.513280f) * AT(3, 0) + F(0.768178f) * AT(5, 0) + F(-0.375330f) * AT(7, 0)); - const Temp_Type X121 = D(F(-0.074658f) * AT(1, 1) + F(0.513280f) * AT(3, 1) + F(0.768178f) * AT(5, 1) + F(-0.375330f) * AT(7, 1)); - const Temp_Type X122 = D(F(-0.074658f) * AT(1, 2) + F(0.513280f) * AT(3, 2) + F(0.768178f) * AT(5, 2) + F(-0.375330f) * AT(7, 2)); - const Temp_Type X123 = D(F(-0.074658f) * AT(1, 3) + F(0.513280f) * AT(3, 3) + F(0.768178f) * AT(5, 3) + F(-0.375330f) * AT(7, 3)); - const Temp_Type X124 = D(F(-0.074658f) * AT(1, 4) + F(0.513280f) * AT(3, 4) + F(0.768178f) * AT(5, 4) + F(-0.375330f) * AT(7, 4)); - const Temp_Type X125 = D(F(-0.074658f) * AT(1, 5) + F(0.513280f) * AT(3, 5) + F(0.768178f) * AT(5, 5) + F(-0.375330f) * AT(7, 5)); - const Temp_Type X126 = D(F(-0.074658f) * AT(1, 6) + F(0.513280f) * AT(3, 6) + F(0.768178f) * AT(5, 6) + F(-0.375330f) * AT(7, 6)); - const Temp_Type X127 = D(F(-0.074658f) * AT(1, 7) + F(0.513280f) * AT(3, 7) + F(0.768178f) * AT(5, 7) + F(-0.375330f) * AT(7, 7)); - const Temp_Type X130 = AT(6, 0); - const Temp_Type X131 = AT(6, 1); - const Temp_Type X132 = AT(6, 2); - const Temp_Type X133 = AT(6, 3); - const Temp_Type X134 = AT(6, 4); - const Temp_Type X135 = AT(6, 5); - const Temp_Type X136 = AT(6, 6); - const Temp_Type X137 = AT(6, 7); - // 80 muls 48 adds - - // 4x4 = 4x8 times 8x4, matrix 1 is constant - R.at(0, 0) = X100; - R.at(0, 1) = D(X101 * F(0.415735f) + X103 * F(0.791065f) + X105 * F(-0.352443f) + X107 * F(0.277785f)); - R.at(0, 2) = X104; - R.at(0, 3) = D(X101 * F(0.022887f) + X103 * F(-0.097545f) + X105 * F(0.490393f) + X107 * F(0.865723f)); - R.at(1, 0) = X110; - R.at(1, 1) = D(X111 * F(0.415735f) + X113 * F(0.791065f) + X115 * F(-0.352443f) + X117 * F(0.277785f)); - R.at(1, 2) = X114; - R.at(1, 3) = D(X111 * F(0.022887f) + X113 * F(-0.097545f) + X115 * F(0.490393f) + X117 * F(0.865723f)); - R.at(2, 0) = X120; - R.at(2, 1) = D(X121 * F(0.415735f) + X123 * F(0.791065f) + X125 * F(-0.352443f) + X127 * F(0.277785f)); - R.at(2, 2) = X124; - R.at(2, 3) = D(X121 * F(0.022887f) + X123 * F(-0.097545f) + X125 * F(0.490393f) + X127 * F(0.865723f)); - R.at(3, 0) = X130; - R.at(3, 1) = D(X131 * F(0.415735f) + X133 * F(0.791065f) + X135 * F(-0.352443f) + X137 * F(0.277785f)); - R.at(3, 2) = X134; - R.at(3, 3) = D(X131 * F(0.022887f) + X133 * F(-0.097545f) + X135 * F(0.490393f) + X137 * F(0.865723f)); - // 40 muls 24 adds - // 4x4 = 4x8 times 8x4, matrix 1 is constant - S.at(0, 0) = D(X101 * F(0.906127f) + X103 * F(-0.318190f) + X105 * F(0.212608f) + X107 * F(-0.180240f)); - S.at(0, 1) = X102; - S.at(0, 2) = D(X101 * F(-0.074658f) + X103 * F(0.513280f) + X105 * F(0.768178f) + X107 * F(-0.375330f)); - S.at(0, 3) = X106; - S.at(1, 0) = D(X111 * F(0.906127f) + X113 * F(-0.318190f) + X115 * F(0.212608f) + X117 * F(-0.180240f)); - S.at(1, 1) = X112; - S.at(1, 2) = D(X111 * F(-0.074658f) + X113 * F(0.513280f) + X115 * F(0.768178f) + X117 * F(-0.375330f)); - S.at(1, 3) = X116; - S.at(2, 0) = D(X121 * F(0.906127f) + X123 * F(-0.318190f) + X125 * F(0.212608f) + X127 * F(-0.180240f)); - S.at(2, 1) = X122; - S.at(2, 2) = D(X121 * F(-0.074658f) + X123 * F(0.513280f) + X125 * F(0.768178f) + X127 * F(-0.375330f)); - S.at(2, 3) = X126; - S.at(3, 0) = D(X131 * F(0.906127f) + X133 * F(-0.318190f) + X135 * F(0.212608f) + X137 * F(-0.180240f)); - S.at(3, 1) = X132; - S.at(3, 2) = D(X131 * F(-0.074658f) + X133 * F(0.513280f) + X135 * F(0.768178f) + X137 * F(-0.375330f)); - S.at(3, 3) = X136; - // 40 muls 24 adds - } - }; - } // end namespace DCT_Upsample - - // Unconditionally frees all allocated m_blocks. - void jpeg_decoder::free_all_blocks() - { - m_pStream = NULL; - for (mem_block *b = m_pMem_blocks; b; ) - { - mem_block *n = b->m_pNext; - jpgd_free(b); - b = n; - } - m_pMem_blocks = NULL; - } - - // This method handles all errors. - // It could easily be changed to use C++ exceptions. - void jpeg_decoder::stop_decoding(jpgd_status status) - { - m_error_code = status; - free_all_blocks(); - longjmp(m_jmp_state, status); - - // we shouldn't get here as longjmp shouldn't return, but we put it here to make it explicit - // that this function doesn't return, otherwise we get this error: - // - // error : function declared 'noreturn' should not return - exit(1); - } - - void *jpeg_decoder::alloc(size_t nSize, bool zero) - { - nSize = (JPGD_MAX(nSize, 1) + 3) & ~3; - char *rv = NULL; - for (mem_block *b = m_pMem_blocks; b; b = b->m_pNext) - { - if ((b->m_used_count + nSize) <= b->m_size) - { - rv = b->m_data + b->m_used_count; - b->m_used_count += nSize; - break; - } - } - if (!rv) - { - int capacity = JPGD_MAX(32768 - 256, (nSize + 2047) & ~2047); - mem_block *b = (mem_block*)jpgd_malloc(sizeof(mem_block) + capacity); - if (!b) stop_decoding(JPGD_NOTENOUGHMEM); - b->m_pNext = m_pMem_blocks; m_pMem_blocks = b; - b->m_used_count = nSize; - b->m_size = capacity; - rv = b->m_data; - } - if (zero) memset(rv, 0, nSize); - return rv; - } - - void jpeg_decoder::word_clear(void *p, uint16 c, uint n) - { - uint8 *pD = (uint8*)p; - const uint8 l = c & 0xFF, h = (c >> 8) & 0xFF; - while (n) - { - pD[0] = l; pD[1] = h; pD += 2; - n--; - } - } - - // Refill the input buffer. - // This method will sit in a loop until (A) the buffer is full or (B) - // the stream's read() method reports and end of file condition. - void jpeg_decoder::prep_in_buffer() - { - m_in_buf_left = 0; - m_pIn_buf_ofs = m_in_buf; - - if (m_eof_flag) - return; - - do - { - int bytes_read = m_pStream->read(m_in_buf + m_in_buf_left, JPGD_IN_BUF_SIZE - m_in_buf_left, &m_eof_flag); - if (bytes_read == -1) - stop_decoding(JPGD_STREAM_READ); - - m_in_buf_left += bytes_read; - } while ((m_in_buf_left < JPGD_IN_BUF_SIZE) && (!m_eof_flag)); - - m_total_bytes_read += m_in_buf_left; - - // Pad the end of the block with M_EOI (prevents the decompressor from going off the rails if the stream is invalid). - // (This dates way back to when this decompressor was written in C/asm, and the all-asm Huffman decoder did some fancy things to increase perf.) - word_clear(m_pIn_buf_ofs + m_in_buf_left, 0xD9FF, 64); - } - - // Read a Huffman code table. - void jpeg_decoder::read_dht_marker() - { - int i, index, count; - uint8 huff_num[17]; - uint8 huff_val[256]; - - uint num_left = get_bits(16); - - if (num_left < 2) - stop_decoding(JPGD_BAD_DHT_MARKER); - - num_left -= 2; - - while (num_left) - { - index = get_bits(8); - - huff_num[0] = 0; - - count = 0; - - for (i = 1; i <= 16; i++) - { - huff_num[i] = static_cast(get_bits(8)); - count += huff_num[i]; - } - - if (count > 255) - stop_decoding(JPGD_BAD_DHT_COUNTS); - - for (i = 0; i < count; i++) - huff_val[i] = static_cast(get_bits(8)); - - i = 1 + 16 + count; - - if (num_left < (uint)i) - stop_decoding(JPGD_BAD_DHT_MARKER); - - num_left -= i; - - if ((index & 0x10) > 0x10) - stop_decoding(JPGD_BAD_DHT_INDEX); - - index = (index & 0x0F) + ((index & 0x10) >> 4) * (JPGD_MAX_HUFF_TABLES >> 1); - - if (index >= JPGD_MAX_HUFF_TABLES) - stop_decoding(JPGD_BAD_DHT_INDEX); - - if (!m_huff_num[index]) - m_huff_num[index] = (uint8 *)alloc(17); - - if (!m_huff_val[index]) - m_huff_val[index] = (uint8 *)alloc(256); - - m_huff_ac[index] = (index & 0x10) != 0; - memcpy(m_huff_num[index], huff_num, 17); - memcpy(m_huff_val[index], huff_val, 256); - } - } - - // Read a quantization table. - void jpeg_decoder::read_dqt_marker() - { - int n, i, prec; - uint num_left; - uint temp; - - num_left = get_bits(16); - - if (num_left < 2) - stop_decoding(JPGD_BAD_DQT_MARKER); - - num_left -= 2; - - while (num_left) - { - n = get_bits(8); - prec = n >> 4; - n &= 0x0F; - - if (n >= JPGD_MAX_QUANT_TABLES) - stop_decoding(JPGD_BAD_DQT_TABLE); - - if (!m_quant[n]) - m_quant[n] = (jpgd_quant_t *)alloc(64 * sizeof(jpgd_quant_t)); - - // read quantization entries, in zag order - for (i = 0; i < 64; i++) - { - temp = get_bits(8); - - if (prec) - temp = (temp << 8) + get_bits(8); - - m_quant[n][i] = static_cast(temp); - } - - i = 64 + 1; - - if (prec) - i += 64; - - if (num_left < (uint)i) - stop_decoding(JPGD_BAD_DQT_LENGTH); - - num_left -= i; - } - } - - // Read the start of frame (SOF) marker. - void jpeg_decoder::read_sof_marker() - { - int i; - uint num_left; - - num_left = get_bits(16); - - if (get_bits(8) != 8) /* precision: sorry, only 8-bit precision is supported right now */ - stop_decoding(JPGD_BAD_PRECISION); - - m_image_y_size = get_bits(16); - - if ((m_image_y_size < 1) || (m_image_y_size > JPGD_MAX_HEIGHT)) - stop_decoding(JPGD_BAD_HEIGHT); - - m_image_x_size = get_bits(16); - - if ((m_image_x_size < 1) || (m_image_x_size > JPGD_MAX_WIDTH)) - stop_decoding(JPGD_BAD_WIDTH); - - m_comps_in_frame = get_bits(8); - - if (m_comps_in_frame > JPGD_MAX_COMPONENTS) - stop_decoding(JPGD_TOO_MANY_COMPONENTS); - - if (num_left != (uint)(m_comps_in_frame * 3 + 8)) - stop_decoding(JPGD_BAD_SOF_LENGTH); - - for (i = 0; i < m_comps_in_frame; i++) - { - m_comp_ident[i] = get_bits(8); - m_comp_h_samp[i] = get_bits(4); - m_comp_v_samp[i] = get_bits(4); - m_comp_quant[i] = get_bits(8); - } - } - - // Used to skip unrecognized markers. - void jpeg_decoder::skip_variable_marker() - { - uint num_left; - - num_left = get_bits(16); - - if (num_left < 2) - stop_decoding(JPGD_BAD_VARIABLE_MARKER); - - num_left -= 2; - - while (num_left) - { - get_bits(8); - num_left--; - } - } - - // Read a define restart interval (DRI) marker. - void jpeg_decoder::read_dri_marker() - { - if (get_bits(16) != 4) - stop_decoding(JPGD_BAD_DRI_LENGTH); - - m_restart_interval = get_bits(16); - } - - // Read a start of scan (SOS) marker. - void jpeg_decoder::read_sos_marker() - { - uint num_left; - int i, ci, n, c, cc; - - num_left = get_bits(16); - - n = get_bits(8); - - m_comps_in_scan = n; - - num_left -= 3; - - if ( (num_left != (uint)(n * 2 + 3)) || (n < 1) || (n > JPGD_MAX_COMPS_IN_SCAN) ) - stop_decoding(JPGD_BAD_SOS_LENGTH); - - for (i = 0; i < n; i++) - { - cc = get_bits(8); - c = get_bits(8); - num_left -= 2; - - for (ci = 0; ci < m_comps_in_frame; ci++) - if (cc == m_comp_ident[ci]) - break; - - if (ci >= m_comps_in_frame) - stop_decoding(JPGD_BAD_SOS_COMP_ID); - - m_comp_list[i] = ci; - m_comp_dc_tab[ci] = (c >> 4) & 15; - m_comp_ac_tab[ci] = (c & 15) + (JPGD_MAX_HUFF_TABLES >> 1); - } - - m_spectral_start = get_bits(8); - m_spectral_end = get_bits(8); - m_successive_high = get_bits(4); - m_successive_low = get_bits(4); - - if (!m_progressive_flag) - { - m_spectral_start = 0; - m_spectral_end = 63; - } - - num_left -= 3; - - while (num_left) /* read past whatever is num_left */ - { - get_bits(8); - num_left--; - } - } - - // Finds the next marker. - int jpeg_decoder::next_marker() - { - uint c, bytes; - - bytes = 0; - - do - { - do - { - bytes++; - c = get_bits(8); - } while (c != 0xFF); - - do - { - c = get_bits(8); - } while (c == 0xFF); - - } while (c == 0); - - // If bytes > 0 here, there where extra bytes before the marker (not good). - - return c; - } - - // Process markers. Returns when an SOFx, SOI, EOI, or SOS marker is - // encountered. - int jpeg_decoder::process_markers() - { - int c; - - for ( ; ; ) - { - c = next_marker(); - - switch (c) - { - case M_SOF0: - case M_SOF1: - case M_SOF2: - case M_SOF3: - case M_SOF5: - case M_SOF6: - case M_SOF7: - // case M_JPG: - case M_SOF9: - case M_SOF10: - case M_SOF11: - case M_SOF13: - case M_SOF14: - case M_SOF15: - case M_SOI: - case M_EOI: - case M_SOS: - { - return c; - } - case M_DHT: - { - read_dht_marker(); - break; - } - // No arithmitic support - dumb patents! - case M_DAC: - { - stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT); - break; - } - case M_DQT: - { - read_dqt_marker(); - break; - } - case M_DRI: - { - read_dri_marker(); - break; - } - //case M_APP0: /* no need to read the JFIF marker */ - - case M_JPG: - case M_RST0: /* no parameters */ - case M_RST1: - case M_RST2: - case M_RST3: - case M_RST4: - case M_RST5: - case M_RST6: - case M_RST7: - case M_TEM: - { - stop_decoding(JPGD_UNEXPECTED_MARKER); - break; - } - default: /* must be DNL, DHP, EXP, APPn, JPGn, COM, or RESn or APP0 */ - { - skip_variable_marker(); - break; - } - } - } - } - - // Finds the start of image (SOI) marker. - // This code is rather defensive: it only checks the first 512 bytes to avoid - // false positives. - void jpeg_decoder::locate_soi_marker() - { - uint lastchar, thischar; - uint bytesleft; - - lastchar = get_bits(8); - - thischar = get_bits(8); - - /* ok if it's a normal JPEG file without a special header */ - - if ((lastchar == 0xFF) && (thischar == M_SOI)) - return; - - bytesleft = 4096; //512; - - for ( ; ; ) - { - if (--bytesleft == 0) - stop_decoding(JPGD_NOT_JPEG); - - lastchar = thischar; - - thischar = get_bits(8); - - if (lastchar == 0xFF) - { - if (thischar == M_SOI) - break; - else if (thischar == M_EOI) // get_bits will keep returning M_EOI if we read past the end - stop_decoding(JPGD_NOT_JPEG); - } - } - - // Check the next character after marker: if it's not 0xFF, it can't be the start of the next marker, so the file is bad. - thischar = (m_bit_buf >> 24) & 0xFF; - - if (thischar != 0xFF) - stop_decoding(JPGD_NOT_JPEG); - } - - // Find a start of frame (SOF) marker. - void jpeg_decoder::locate_sof_marker() - { - locate_soi_marker(); - - int c = process_markers(); - - switch (c) - { - case M_SOF2: - m_progressive_flag = JPGD_TRUE; - case M_SOF0: /* baseline DCT */ - case M_SOF1: /* extended sequential DCT */ - { - read_sof_marker(); - break; - } - case M_SOF9: /* Arithmitic coding */ - { - stop_decoding(JPGD_NO_ARITHMITIC_SUPPORT); - break; - } - default: - { - stop_decoding(JPGD_UNSUPPORTED_MARKER); - break; - } - } - } - - // Find a start of scan (SOS) marker. - int jpeg_decoder::locate_sos_marker() - { - int c; - - c = process_markers(); - - if (c == M_EOI) - return JPGD_FALSE; - else if (c != M_SOS) - stop_decoding(JPGD_UNEXPECTED_MARKER); - - read_sos_marker(); - - return JPGD_TRUE; - } - - // Reset everything to default/uninitialized state. - void jpeg_decoder::init(jpeg_decoder_stream *pStream) - { - m_pMem_blocks = NULL; - m_error_code = JPGD_SUCCESS; - m_ready_flag = false; - m_image_x_size = m_image_y_size = 0; - m_pStream = pStream; - m_progressive_flag = JPGD_FALSE; - - memset(m_huff_ac, 0, sizeof(m_huff_ac)); - memset(m_huff_num, 0, sizeof(m_huff_num)); - memset(m_huff_val, 0, sizeof(m_huff_val)); - memset(m_quant, 0, sizeof(m_quant)); - - m_scan_type = 0; - m_comps_in_frame = 0; - - memset(m_comp_h_samp, 0, sizeof(m_comp_h_samp)); - memset(m_comp_v_samp, 0, sizeof(m_comp_v_samp)); - memset(m_comp_quant, 0, sizeof(m_comp_quant)); - memset(m_comp_ident, 0, sizeof(m_comp_ident)); - memset(m_comp_h_blocks, 0, sizeof(m_comp_h_blocks)); - memset(m_comp_v_blocks, 0, sizeof(m_comp_v_blocks)); - - m_comps_in_scan = 0; - memset(m_comp_list, 0, sizeof(m_comp_list)); - memset(m_comp_dc_tab, 0, sizeof(m_comp_dc_tab)); - memset(m_comp_ac_tab, 0, sizeof(m_comp_ac_tab)); - - m_spectral_start = 0; - m_spectral_end = 0; - m_successive_low = 0; - m_successive_high = 0; - m_max_mcu_x_size = 0; - m_max_mcu_y_size = 0; - m_blocks_per_mcu = 0; - m_max_blocks_per_row = 0; - m_mcus_per_row = 0; - m_mcus_per_col = 0; - m_expanded_blocks_per_component = 0; - m_expanded_blocks_per_mcu = 0; - m_expanded_blocks_per_row = 0; - m_freq_domain_chroma_upsample = false; - - memset(m_mcu_org, 0, sizeof(m_mcu_org)); - - m_total_lines_left = 0; - m_mcu_lines_left = 0; - m_real_dest_bytes_per_scan_line = 0; - m_dest_bytes_per_scan_line = 0; - m_dest_bytes_per_pixel = 0; - - memset(m_pHuff_tabs, 0, sizeof(m_pHuff_tabs)); - - memset(m_dc_coeffs, 0, sizeof(m_dc_coeffs)); - memset(m_ac_coeffs, 0, sizeof(m_ac_coeffs)); - memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu)); - - m_eob_run = 0; - - memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu)); - - m_pIn_buf_ofs = m_in_buf; - m_in_buf_left = 0; - m_eof_flag = false; - m_tem_flag = 0; - - memset(m_in_buf_pad_start, 0, sizeof(m_in_buf_pad_start)); - memset(m_in_buf, 0, sizeof(m_in_buf)); - memset(m_in_buf_pad_end, 0, sizeof(m_in_buf_pad_end)); - - m_restart_interval = 0; - m_restarts_left = 0; - m_next_restart_num = 0; - - m_max_mcus_per_row = 0; - m_max_blocks_per_mcu = 0; - m_max_mcus_per_col = 0; - - memset(m_last_dc_val, 0, sizeof(m_last_dc_val)); - m_pMCU_coefficients = NULL; - m_pSample_buf = NULL; - - m_total_bytes_read = 0; - - m_pScan_line_0 = NULL; - m_pScan_line_1 = NULL; - - // Ready the input buffer. - prep_in_buffer(); - - // Prime the bit buffer. - m_bits_left = 16; - m_bit_buf = 0; - - get_bits(16); - get_bits(16); - - for (int i = 0; i < JPGD_MAX_BLOCKS_PER_MCU; i++) - m_mcu_block_max_zag[i] = 64; - } - -#define SCALEBITS 16 -#define ONE_HALF ((int) 1 << (SCALEBITS-1)) -#define FIX(x) ((int) ((x) * (1L<> SCALEBITS; - m_cbb[i] = ( FIX(1.77200f) * k + ONE_HALF) >> SCALEBITS; - m_crg[i] = (-FIX(0.71414f)) * k; - m_cbg[i] = (-FIX(0.34414f)) * k + ONE_HALF; - } - } - - // This method throws back into the stream any bytes that where read - // into the bit buffer during initial marker scanning. - void jpeg_decoder::fix_in_buffer() - { - // In case any 0xFF's where pulled into the buffer during marker scanning. - JPGD_ASSERT((m_bits_left & 7) == 0); - - if (m_bits_left == 16) - stuff_char( (uint8)(m_bit_buf & 0xFF)); - - if (m_bits_left >= 8) - stuff_char( (uint8)((m_bit_buf >> 8) & 0xFF)); - - stuff_char((uint8)((m_bit_buf >> 16) & 0xFF)); - stuff_char((uint8)((m_bit_buf >> 24) & 0xFF)); - - m_bits_left = 16; - get_bits_no_markers(16); - get_bits_no_markers(16); - } - - void jpeg_decoder::transform_mcu(int mcu_row) - { - jpgd_block_t* pSrc_ptr = m_pMCU_coefficients; - uint8* pDst_ptr = m_pSample_buf + mcu_row * m_blocks_per_mcu * 64; - - for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) - { - idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]); - pSrc_ptr += 64; - pDst_ptr += 64; - } - } - - static const uint8 s_max_rc[64] = - { - 17, 18, 34, 50, 50, 51, 52, 52, 52, 68, 84, 84, 84, 84, 85, 86, 86, 86, 86, 86, - 102, 118, 118, 118, 118, 118, 118, 119, 120, 120, 120, 120, 120, 120, 120, 136, - 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, - 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136, 136 - }; - - void jpeg_decoder::transform_mcu_expand(int mcu_row) - { - jpgd_block_t* pSrc_ptr = m_pMCU_coefficients; - uint8* pDst_ptr = m_pSample_buf + mcu_row * m_expanded_blocks_per_mcu * 64; - - // Y IDCT - int mcu_block; - for (mcu_block = 0; mcu_block < m_expanded_blocks_per_component; mcu_block++) - { - idct(pSrc_ptr, pDst_ptr, m_mcu_block_max_zag[mcu_block]); - pSrc_ptr += 64; - pDst_ptr += 64; - } - - // Chroma IDCT, with upsampling - jpgd_block_t temp_block[64]; - - for (int i = 0; i < 2; i++) - { - DCT_Upsample::Matrix44 P, Q, R, S; - - JPGD_ASSERT(m_mcu_block_max_zag[mcu_block] >= 1); - JPGD_ASSERT(m_mcu_block_max_zag[mcu_block] <= 64); - - switch (s_max_rc[m_mcu_block_max_zag[mcu_block++] - 1]) - { - case 1*16+1: - DCT_Upsample::P_Q<1, 1>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<1, 1>::calc(R, S, pSrc_ptr); - break; - case 1*16+2: - DCT_Upsample::P_Q<1, 2>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<1, 2>::calc(R, S, pSrc_ptr); - break; - case 2*16+2: - DCT_Upsample::P_Q<2, 2>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<2, 2>::calc(R, S, pSrc_ptr); - break; - case 3*16+2: - DCT_Upsample::P_Q<3, 2>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<3, 2>::calc(R, S, pSrc_ptr); - break; - case 3*16+3: - DCT_Upsample::P_Q<3, 3>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<3, 3>::calc(R, S, pSrc_ptr); - break; - case 3*16+4: - DCT_Upsample::P_Q<3, 4>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<3, 4>::calc(R, S, pSrc_ptr); - break; - case 4*16+4: - DCT_Upsample::P_Q<4, 4>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<4, 4>::calc(R, S, pSrc_ptr); - break; - case 5*16+4: - DCT_Upsample::P_Q<5, 4>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<5, 4>::calc(R, S, pSrc_ptr); - break; - case 5*16+5: - DCT_Upsample::P_Q<5, 5>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<5, 5>::calc(R, S, pSrc_ptr); - break; - case 5*16+6: - DCT_Upsample::P_Q<5, 6>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<5, 6>::calc(R, S, pSrc_ptr); - break; - case 6*16+6: - DCT_Upsample::P_Q<6, 6>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<6, 6>::calc(R, S, pSrc_ptr); - break; - case 7*16+6: - DCT_Upsample::P_Q<7, 6>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<7, 6>::calc(R, S, pSrc_ptr); - break; - case 7*16+7: - DCT_Upsample::P_Q<7, 7>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<7, 7>::calc(R, S, pSrc_ptr); - break; - case 7*16+8: - DCT_Upsample::P_Q<7, 8>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<7, 8>::calc(R, S, pSrc_ptr); - break; - case 8*16+8: - DCT_Upsample::P_Q<8, 8>::calc(P, Q, pSrc_ptr); - DCT_Upsample::R_S<8, 8>::calc(R, S, pSrc_ptr); - break; - default: - JPGD_ASSERT(false); - } - - DCT_Upsample::Matrix44 a(P + Q); P -= Q; - DCT_Upsample::Matrix44& b = P; - DCT_Upsample::Matrix44 c(R + S); R -= S; - DCT_Upsample::Matrix44& d = R; - - DCT_Upsample::Matrix44::add_and_store(temp_block, a, c); - idct_4x4(temp_block, pDst_ptr); - pDst_ptr += 64; - - DCT_Upsample::Matrix44::sub_and_store(temp_block, a, c); - idct_4x4(temp_block, pDst_ptr); - pDst_ptr += 64; - - DCT_Upsample::Matrix44::add_and_store(temp_block, b, d); - idct_4x4(temp_block, pDst_ptr); - pDst_ptr += 64; - - DCT_Upsample::Matrix44::sub_and_store(temp_block, b, d); - idct_4x4(temp_block, pDst_ptr); - pDst_ptr += 64; - - pSrc_ptr += 64; - } - } - - // Loads and dequantizes the next row of (already decoded) coefficients. - // Progressive images only. - void jpeg_decoder::load_next_row() - { - int i; - jpgd_block_t *p; - jpgd_quant_t *q; - int mcu_row, mcu_block, row_block = 0; - int component_num, component_id; - int block_x_mcu[JPGD_MAX_COMPONENTS]; - - memset(block_x_mcu, 0, JPGD_MAX_COMPONENTS * sizeof(int)); - - for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) - { - int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0; - - for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) - { - component_id = m_mcu_org[mcu_block]; - q = m_quant[m_comp_quant[component_id]]; - - p = m_pMCU_coefficients + 64 * mcu_block; - - jpgd_block_t* pAC = coeff_buf_getp(m_ac_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); - jpgd_block_t* pDC = coeff_buf_getp(m_dc_coeffs[component_id], block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); - p[0] = pDC[0]; - memcpy(&p[1], &pAC[1], 63 * sizeof(jpgd_block_t)); - - for (i = 63; i > 0; i--) - if (p[g_ZAG[i]]) - break; - - m_mcu_block_max_zag[mcu_block] = i + 1; - - for ( ; i >= 0; i--) - if (p[g_ZAG[i]]) - p[g_ZAG[i]] = static_cast(p[g_ZAG[i]] * q[i]); - - row_block++; - - if (m_comps_in_scan == 1) - block_x_mcu[component_id]++; - else - { - if (++block_x_mcu_ofs == m_comp_h_samp[component_id]) - { - block_x_mcu_ofs = 0; - - if (++block_y_mcu_ofs == m_comp_v_samp[component_id]) - { - block_y_mcu_ofs = 0; - - block_x_mcu[component_id] += m_comp_h_samp[component_id]; - } - } - } - } - - if (m_freq_domain_chroma_upsample) - transform_mcu_expand(mcu_row); - else - transform_mcu(mcu_row); - } - - if (m_comps_in_scan == 1) - m_block_y_mcu[m_comp_list[0]]++; - else - { - for (component_num = 0; component_num < m_comps_in_scan; component_num++) - { - component_id = m_comp_list[component_num]; - - m_block_y_mcu[component_id] += m_comp_v_samp[component_id]; - } - } - } - - // Restart interval processing. - void jpeg_decoder::process_restart() - { - int i; - int c = 0; - - // Align to a byte boundry - // FIXME: Is this really necessary? get_bits_no_markers() never reads in markers! - //get_bits_no_markers(m_bits_left & 7); - - // Let's scan a little bit to find the marker, but not _too_ far. - // 1536 is a "fudge factor" that determines how much to scan. - for (i = 1536; i > 0; i--) - if (get_char() == 0xFF) - break; - - if (i == 0) - stop_decoding(JPGD_BAD_RESTART_MARKER); - - for ( ; i > 0; i--) - if ((c = get_char()) != 0xFF) - break; - - if (i == 0) - stop_decoding(JPGD_BAD_RESTART_MARKER); - - // Is it the expected marker? If not, something bad happened. - if (c != (m_next_restart_num + M_RST0)) - stop_decoding(JPGD_BAD_RESTART_MARKER); - - // Reset each component's DC prediction values. - memset(&m_last_dc_val, 0, m_comps_in_frame * sizeof(uint)); - - m_eob_run = 0; - - m_restarts_left = m_restart_interval; - - m_next_restart_num = (m_next_restart_num + 1) & 7; - - // Get the bit buffer going again... - - m_bits_left = 16; - get_bits_no_markers(16); - get_bits_no_markers(16); - } - - static inline int dequantize_ac(int c, int q) { c *= q; return c; } - - // Decodes and dequantizes the next row of coefficients. - void jpeg_decoder::decode_next_row() - { - int row_block = 0; - - for (int mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) - { - if ((m_restart_interval) && (m_restarts_left == 0)) - process_restart(); - - jpgd_block_t* p = m_pMCU_coefficients; - for (int mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++, p += 64) - { - int component_id = m_mcu_org[mcu_block]; - jpgd_quant_t* q = m_quant[m_comp_quant[component_id]]; - - int r, s; - s = huff_decode(m_pHuff_tabs[m_comp_dc_tab[component_id]], r); - s = HUFF_EXTEND(r, s); - - m_last_dc_val[component_id] = (s += m_last_dc_val[component_id]); - - p[0] = static_cast(s * q[0]); - - int prev_num_set = m_mcu_block_max_zag[mcu_block]; - - huff_tables *pH = m_pHuff_tabs[m_comp_ac_tab[component_id]]; - - int k; - for (k = 1; k < 64; k++) - { - int extra_bits; - s = huff_decode(pH, extra_bits); - - r = s >> 4; - s &= 15; - - if (s) - { - if (r) - { - if ((k + r) > 63) - stop_decoding(JPGD_DECODE_ERROR); - - if (k < prev_num_set) - { - int n = JPGD_MIN(r, prev_num_set - k); - int kt = k; - while (n--) - p[g_ZAG[kt++]] = 0; - } - - k += r; - } - - s = HUFF_EXTEND(extra_bits, s); - - JPGD_ASSERT(k < 64); - - p[g_ZAG[k]] = static_cast(dequantize_ac(s, q[k])); //s * q[k]; - } - else - { - if (r == 15) - { - if ((k + 16) > 64) - stop_decoding(JPGD_DECODE_ERROR); - - if (k < prev_num_set) - { - int n = JPGD_MIN(16, prev_num_set - k); - int kt = k; - while (n--) - { - JPGD_ASSERT(kt <= 63); - p[g_ZAG[kt++]] = 0; - } - } - - k += 16 - 1; // - 1 because the loop counter is k - // BEGIN EPIC MOD - JPGD_ASSERT(k < 64 && p[g_ZAG[k]] == 0); - // END EPIC MOD - } - else - break; - } - } - - if (k < prev_num_set) - { - int kt = k; - while (kt < prev_num_set) - p[g_ZAG[kt++]] = 0; - } - - m_mcu_block_max_zag[mcu_block] = k; - - row_block++; - } - - if (m_freq_domain_chroma_upsample) - transform_mcu_expand(mcu_row); - else - transform_mcu(mcu_row); - - m_restarts_left--; - } - } - - // YCbCr H1V1 (1x1:1:1, 3 m_blocks per MCU) to RGB - void jpeg_decoder::H1V1Convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - uint8 *d = m_pScan_line_0; - uint8 *s = m_pSample_buf + row * 8; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - for (int j = 0; j < 8; j++) - { - int y = s[j]; - int cb = s[64+j]; - int cr = s[128+j]; - - if (jpg_format == ERGBFormatJPG::BGRA) - { - d[0] = clamp(y + m_cbb[cb]); - d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); - d[2] = clamp(y + m_crr[cr]); - d[3] = 255; - } - else - { - d[0] = clamp(y + m_crr[cr]); - d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); - d[2] = clamp(y + m_cbb[cb]); - d[3] = 255; - } - d += 4; - } - - s += 64*3; - } - } - - // YCbCr H2V1 (2x1:1:1, 4 m_blocks per MCU) to RGB - void jpeg_decoder::H2V1Convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - uint8 *d0 = m_pScan_line_0; - uint8 *y = m_pSample_buf + row * 8; - uint8 *c = m_pSample_buf + 2*64 + row * 8; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - for (int l = 0; l < 2; l++) - { - for (int j = 0; j < 4; j++) - { - int cb = c[0]; - int cr = c[64]; - - int rc = m_crr[cr]; - int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); - int bc = m_cbb[cb]; - - int yy = y[j<<1]; - if (jpg_format == ERGBFormatJPG::BGRA) - { - d0[0] = clamp(yy+bc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+rc); - d0[3] = 255; - yy = y[(j<<1)+1]; - d0[4] = clamp(yy+bc); - d0[5] = clamp(yy+gc); - d0[6] = clamp(yy+rc); - d0[7] = 255; - } - else - { - d0[0] = clamp(yy+rc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+bc); - d0[3] = 255; - yy = y[(j<<1)+1]; - d0[4] = clamp(yy+rc); - d0[5] = clamp(yy+gc); - d0[6] = clamp(yy+bc); - d0[7] = 255; - } - - d0 += 8; - - c++; - } - y += 64; - } - - y += 64*4 - 64*2; - c += 64*4 - 8; - } - } - - // YCbCr H2V1 (1x2:1:1, 4 m_blocks per MCU) to RGB - void jpeg_decoder::H1V2Convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - uint8 *d0 = m_pScan_line_0; - uint8 *d1 = m_pScan_line_1; - uint8 *y; - uint8 *c; - - if (row < 8) - y = m_pSample_buf + row * 8; - else - y = m_pSample_buf + 64*1 + (row & 7) * 8; - - c = m_pSample_buf + 64*2 + (row >> 1) * 8; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - for (int j = 0; j < 8; j++) - { - int cb = c[0+j]; - int cr = c[64+j]; - - int rc = m_crr[cr]; - int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); - int bc = m_cbb[cb]; - - int yy = y[j]; - if (jpg_format == ERGBFormatJPG::BGRA) - { - d0[0] = clamp(yy+bc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+rc); - d0[3] = 255; - yy = y[8+j]; - d1[0] = clamp(yy+bc); - d1[1] = clamp(yy+gc); - d1[2] = clamp(yy+rc); - d1[3] = 255; - } - else - { - d0[0] = clamp(yy+rc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+bc); - d0[3] = 255; - yy = y[8+j]; - d1[0] = clamp(yy+rc); - d1[1] = clamp(yy+gc); - d1[2] = clamp(yy+bc); - d1[3] = 255; - } - - d0 += 4; - d1 += 4; - } - - y += 64*4; - c += 64*4; - } - } - - // YCbCr H2V2 (2x2:1:1, 6 m_blocks per MCU) to RGB - void jpeg_decoder::H2V2Convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - uint8 *d0 = m_pScan_line_0; - uint8 *d1 = m_pScan_line_1; - uint8 *y; - uint8 *c; - - if (row < 8) - y = m_pSample_buf + row * 8; - else - y = m_pSample_buf + 64*2 + (row & 7) * 8; - - c = m_pSample_buf + 64*4 + (row >> 1) * 8; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - for (int l = 0; l < 2; l++) - { - for (int j = 0; j < 8; j += 2) - { - int cb = c[0]; - int cr = c[64]; - - int rc = m_crr[cr]; - int gc = ((m_crg[cr] + m_cbg[cb]) >> 16); - int bc = m_cbb[cb]; - - int yy = y[j]; - if (jpg_format == ERGBFormatJPG::BGRA) - { - d0[0] = clamp(yy+bc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+rc); - d0[3] = 255; - yy = y[j+1]; - d0[4] = clamp(yy+bc); - d0[5] = clamp(yy+gc); - d0[6] = clamp(yy+rc); - d0[7] = 255; - yy = y[j+8]; - d1[0] = clamp(yy+bc); - d1[1] = clamp(yy+gc); - d1[2] = clamp(yy+rc); - d1[3] = 255; - yy = y[j+8+1]; - d1[4] = clamp(yy+bc); - d1[5] = clamp(yy+gc); - d1[6] = clamp(yy+rc); - d1[7] = 255; - } - else - { - d0[0] = clamp(yy+rc); - d0[1] = clamp(yy+gc); - d0[2] = clamp(yy+bc); - d0[3] = 255; - yy = y[j+1]; - d0[4] = clamp(yy+rc); - d0[5] = clamp(yy+gc); - d0[6] = clamp(yy+bc); - d0[7] = 255; - yy = y[j+8]; - d1[0] = clamp(yy+rc); - d1[1] = clamp(yy+gc); - d1[2] = clamp(yy+bc); - d1[3] = 255; - yy = y[j+8+1]; - d1[4] = clamp(yy+rc); - d1[5] = clamp(yy+gc); - d1[6] = clamp(yy+bc); - d1[7] = 255; - } - - d0 += 8; - d1 += 8; - - c++; - } - y += 64; - } - - y += 64*6 - 64*2; - c += 64*6 - 8; - } - } - - // Y (1 block per MCU) to 8-bit grayscale - void jpeg_decoder::gray_convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - uint8 *d = m_pScan_line_0; - uint8 *s = m_pSample_buf + row * 8; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - *(uint *)d = *(uint *)s; - *(uint *)(&d[4]) = *(uint *)(&s[4]); - - s += 64; - d += 8; - } - } - - void jpeg_decoder::expanded_convert() - { - int row = m_max_mcu_y_size - m_mcu_lines_left; - - uint8* Py = m_pSample_buf + (row / 8) * 64 * m_comp_h_samp[0] + (row & 7) * 8; - - uint8* d = m_pScan_line_0; - - for (int i = m_max_mcus_per_row; i > 0; i--) - { - for (int k = 0; k < m_max_mcu_x_size; k += 8) - { - const int Y_ofs = k * 8; - const int Cb_ofs = Y_ofs + 64 * m_expanded_blocks_per_component; - const int Cr_ofs = Y_ofs + 64 * m_expanded_blocks_per_component * 2; - for (int j = 0; j < 8; j++) - { - int y = Py[Y_ofs + j]; - int cb = Py[Cb_ofs + j]; - int cr = Py[Cr_ofs + j]; - - if (jpg_format == ERGBFormatJPG::BGRA) - { - d[0] = clamp(y + m_cbb[cb]); - d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); - d[2] = clamp(y + m_crr[cr]); - d[3] = 255; - } - else - { - d[0] = clamp(y + m_crr[cr]); - d[1] = clamp(y + ((m_crg[cr] + m_cbg[cb]) >> 16)); - d[2] = clamp(y + m_cbb[cb]); - d[3] = 255; - } - - d += 4; - } - } - - Py += 64 * m_expanded_blocks_per_mcu; - } - } - - // Find end of image (EOI) marker, so we can return to the user the exact size of the input stream. - void jpeg_decoder::find_eoi() - { - if (!m_progressive_flag) - { - // Attempt to read the EOI marker. - //get_bits_no_markers(m_bits_left & 7); - - // Prime the bit buffer - m_bits_left = 16; - get_bits(16); - get_bits(16); - - // The next marker _should_ be EOI - process_markers(); - } - - m_total_bytes_read -= m_in_buf_left; - } - - int jpeg_decoder::decode(const void** pScan_line, uint* pScan_line_len) - { - if ((m_error_code) || (!m_ready_flag)) - return JPGD_FAILED; - - if (m_total_lines_left == 0) - return JPGD_DONE; - - if (m_mcu_lines_left == 0) - { - if (setjmp(m_jmp_state)) - return JPGD_FAILED; - - if (m_progressive_flag) - load_next_row(); - else - decode_next_row(); - - // Find the EOI marker if that was the last row. - if (m_total_lines_left <= m_max_mcu_y_size) - find_eoi(); - - m_mcu_lines_left = m_max_mcu_y_size; - } - - if (m_freq_domain_chroma_upsample) - { - expanded_convert(); - *pScan_line = m_pScan_line_0; - } - else - { - switch (m_scan_type) - { - case JPGD_YH2V2: - { - if ((m_mcu_lines_left & 1) == 0) - { - H2V2Convert(); - *pScan_line = m_pScan_line_0; - } - else - *pScan_line = m_pScan_line_1; - - break; - } - case JPGD_YH2V1: - { - H2V1Convert(); - *pScan_line = m_pScan_line_0; - break; - } - case JPGD_YH1V2: - { - if ((m_mcu_lines_left & 1) == 0) - { - H1V2Convert(); - *pScan_line = m_pScan_line_0; - } - else - *pScan_line = m_pScan_line_1; - - break; - } - case JPGD_YH1V1: - { - H1V1Convert(); - *pScan_line = m_pScan_line_0; - break; - } - case JPGD_GRAYSCALE: - { - gray_convert(); - *pScan_line = m_pScan_line_0; - - break; - } - } - } - - *pScan_line_len = m_real_dest_bytes_per_scan_line; - - m_mcu_lines_left--; - m_total_lines_left--; - - return JPGD_SUCCESS; - } - - // Creates the tables needed for efficient Huffman decoding. - void jpeg_decoder::make_huff_table(int index, huff_tables *pH) - { - int p, i, l, si; - uint8 huffsize[257]; - uint huffcode[257]; - uint code; - uint subtree; - int code_size; - int lastp; - int nextfreeentry; - int currententry; - - pH->ac_table = m_huff_ac[index] != 0; - - p = 0; - - for (l = 1; l <= 16; l++) - { - for (i = 1; i <= m_huff_num[index][l]; i++) - huffsize[p++] = static_cast(l); - } - - huffsize[p] = 0; - - lastp = p; - - code = 0; - si = huffsize[0]; - p = 0; - - while (huffsize[p]) - { - while (huffsize[p] == si) - { - huffcode[p++] = code; - code++; - } - - code <<= 1; - si++; - } - - memset(pH->look_up, 0, sizeof(pH->look_up)); - memset(pH->look_up2, 0, sizeof(pH->look_up2)); - memset(pH->tree, 0, sizeof(pH->tree)); - memset(pH->code_size, 0, sizeof(pH->code_size)); - - nextfreeentry = -1; - - p = 0; - - while (p < lastp) - { - i = m_huff_val[index][p]; - code = huffcode[p]; - code_size = huffsize[p]; - - pH->code_size[i] = static_cast(code_size); - - if (code_size <= 8) - { - code <<= (8 - code_size); - - for (l = 1 << (8 - code_size); l > 0; l--) - { - JPGD_ASSERT(i < 256); - - pH->look_up[code] = i; - - bool has_extrabits = false; - int extra_bits = 0; - int num_extra_bits = i & 15; - - int bits_to_fetch = code_size; - if (num_extra_bits) - { - int total_codesize = code_size + num_extra_bits; - if (total_codesize <= 8) - { - has_extrabits = true; - extra_bits = ((1 << num_extra_bits) - 1) & (code >> (8 - total_codesize)); - JPGD_ASSERT(extra_bits <= 0x7FFF); - bits_to_fetch += num_extra_bits; - } - } - - if (!has_extrabits) - pH->look_up2[code] = i | (bits_to_fetch << 8); - else - pH->look_up2[code] = i | 0x8000 | (extra_bits << 16) | (bits_to_fetch << 8); - - code++; - } - } - else - { - subtree = (code >> (code_size - 8)) & 0xFF; - - currententry = pH->look_up[subtree]; - - if (currententry == 0) - { - pH->look_up[subtree] = currententry = nextfreeentry; - pH->look_up2[subtree] = currententry = nextfreeentry; - - nextfreeentry -= 2; - } - - code <<= (16 - (code_size - 8)); - - for (l = code_size; l > 9; l--) - { - if ((code & 0x8000) == 0) - currententry--; - - if (pH->tree[-currententry - 1] == 0) - { - pH->tree[-currententry - 1] = nextfreeentry; - - currententry = nextfreeentry; - - nextfreeentry -= 2; - } - else - currententry = pH->tree[-currententry - 1]; - - code <<= 1; - } - - if ((code & 0x8000) == 0) - currententry--; - - pH->tree[-currententry - 1] = i; - } - - p++; - } - } - - // Verifies the quantization tables needed for this scan are available. - void jpeg_decoder::check_quant_tables() - { - for (int i = 0; i < m_comps_in_scan; i++) - if (m_quant[m_comp_quant[m_comp_list[i]]] == NULL) - stop_decoding(JPGD_UNDEFINED_QUANT_TABLE); - } - - // Verifies that all the Huffman tables needed for this scan are available. - void jpeg_decoder::check_huff_tables() - { - for (int i = 0; i < m_comps_in_scan; i++) - { - if ((m_spectral_start == 0) && (m_huff_num[m_comp_dc_tab[m_comp_list[i]]] == NULL)) - stop_decoding(JPGD_UNDEFINED_HUFF_TABLE); - - if ((m_spectral_end > 0) && (m_huff_num[m_comp_ac_tab[m_comp_list[i]]] == NULL)) - stop_decoding(JPGD_UNDEFINED_HUFF_TABLE); - } - - for (int i = 0; i < JPGD_MAX_HUFF_TABLES; i++) - if (m_huff_num[i]) - { - if (!m_pHuff_tabs[i]) - m_pHuff_tabs[i] = (huff_tables *)alloc(sizeof(huff_tables)); - - make_huff_table(i, m_pHuff_tabs[i]); - } - } - - // Determines the component order inside each MCU. - // Also calcs how many MCU's are on each row, etc. - void jpeg_decoder::calc_mcu_block_order() - { - int component_num, component_id; - int max_h_samp = 0, max_v_samp = 0; - - for (component_id = 0; component_id < m_comps_in_frame; component_id++) - { - if (m_comp_h_samp[component_id] > max_h_samp) - max_h_samp = m_comp_h_samp[component_id]; - - if (m_comp_v_samp[component_id] > max_v_samp) - max_v_samp = m_comp_v_samp[component_id]; - } - - for (component_id = 0; component_id < m_comps_in_frame; component_id++) - { - m_comp_h_blocks[component_id] = ((((m_image_x_size * m_comp_h_samp[component_id]) + (max_h_samp - 1)) / max_h_samp) + 7) / 8; - m_comp_v_blocks[component_id] = ((((m_image_y_size * m_comp_v_samp[component_id]) + (max_v_samp - 1)) / max_v_samp) + 7) / 8; - } - - if (m_comps_in_scan == 1) - { - m_mcus_per_row = m_comp_h_blocks[m_comp_list[0]]; - m_mcus_per_col = m_comp_v_blocks[m_comp_list[0]]; - } - else - { - m_mcus_per_row = (((m_image_x_size + 7) / 8) + (max_h_samp - 1)) / max_h_samp; - m_mcus_per_col = (((m_image_y_size + 7) / 8) + (max_v_samp - 1)) / max_v_samp; - } - - if (m_comps_in_scan == 1) - { - m_mcu_org[0] = m_comp_list[0]; - - m_blocks_per_mcu = 1; - } - else - { - m_blocks_per_mcu = 0; - - for (component_num = 0; component_num < m_comps_in_scan; component_num++) - { - int num_blocks; - - component_id = m_comp_list[component_num]; - - num_blocks = m_comp_h_samp[component_id] * m_comp_v_samp[component_id]; - - while (num_blocks--) - m_mcu_org[m_blocks_per_mcu++] = component_id; - } - } - } - - // Starts a new scan. - int jpeg_decoder::init_scan() - { - if (!locate_sos_marker()) - return JPGD_FALSE; - - calc_mcu_block_order(); - - check_huff_tables(); - - check_quant_tables(); - - memset(m_last_dc_val, 0, m_comps_in_frame * sizeof(uint)); - - m_eob_run = 0; - - if (m_restart_interval) - { - m_restarts_left = m_restart_interval; - m_next_restart_num = 0; - } - - fix_in_buffer(); - - return JPGD_TRUE; - } - - // Starts a frame. Determines if the number of components or sampling factors - // are supported. - void jpeg_decoder::init_frame() - { - int i; - - if (m_comps_in_frame == 1) - { - if ((m_comp_h_samp[0] != 1) || (m_comp_v_samp[0] != 1)) - stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); - - m_scan_type = JPGD_GRAYSCALE; - m_max_blocks_per_mcu = 1; - m_max_mcu_x_size = 8; - m_max_mcu_y_size = 8; - } - else if (m_comps_in_frame == 3) - { - if ( ((m_comp_h_samp[1] != 1) || (m_comp_v_samp[1] != 1)) || - ((m_comp_h_samp[2] != 1) || (m_comp_v_samp[2] != 1)) ) - stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); - - if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 1)) - { - m_scan_type = JPGD_YH1V1; - - m_max_blocks_per_mcu = 3; - m_max_mcu_x_size = 8; - m_max_mcu_y_size = 8; - } - else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 1)) - { - m_scan_type = JPGD_YH2V1; - m_max_blocks_per_mcu = 4; - m_max_mcu_x_size = 16; - m_max_mcu_y_size = 8; - } - else if ((m_comp_h_samp[0] == 1) && (m_comp_v_samp[0] == 2)) - { - m_scan_type = JPGD_YH1V2; - m_max_blocks_per_mcu = 4; - m_max_mcu_x_size = 8; - m_max_mcu_y_size = 16; - } - else if ((m_comp_h_samp[0] == 2) && (m_comp_v_samp[0] == 2)) - { - m_scan_type = JPGD_YH2V2; - m_max_blocks_per_mcu = 6; - m_max_mcu_x_size = 16; - m_max_mcu_y_size = 16; - } - else - stop_decoding(JPGD_UNSUPPORTED_SAMP_FACTORS); - } - else - stop_decoding(JPGD_UNSUPPORTED_COLORSPACE); - - m_max_mcus_per_row = (m_image_x_size + (m_max_mcu_x_size - 1)) / m_max_mcu_x_size; - m_max_mcus_per_col = (m_image_y_size + (m_max_mcu_y_size - 1)) / m_max_mcu_y_size; - - // These values are for the *destination* pixels: after conversion. - if (m_scan_type == JPGD_GRAYSCALE) - m_dest_bytes_per_pixel = 1; - else - m_dest_bytes_per_pixel = 4; - - m_dest_bytes_per_scan_line = ((m_image_x_size + 15) & 0xFFF0) * m_dest_bytes_per_pixel; - - m_real_dest_bytes_per_scan_line = (m_image_x_size * m_dest_bytes_per_pixel); - - // Initialize two scan line buffers. - m_pScan_line_0 = (uint8 *)alloc(m_dest_bytes_per_scan_line, true); - if ((m_scan_type == JPGD_YH1V2) || (m_scan_type == JPGD_YH2V2)) - m_pScan_line_1 = (uint8 *)alloc(m_dest_bytes_per_scan_line, true); - - m_max_blocks_per_row = m_max_mcus_per_row * m_max_blocks_per_mcu; - - // Should never happen - if (m_max_blocks_per_row > JPGD_MAX_BLOCKS_PER_ROW) - stop_decoding(JPGD_ASSERTION_ERROR); - - // Allocate the coefficient buffer, enough for one MCU - m_pMCU_coefficients = (jpgd_block_t*)alloc(m_max_blocks_per_mcu * 64 * sizeof(jpgd_block_t)); - - for (i = 0; i < m_max_blocks_per_mcu; i++) - m_mcu_block_max_zag[i] = 64; - - m_expanded_blocks_per_component = m_comp_h_samp[0] * m_comp_v_samp[0]; - m_expanded_blocks_per_mcu = m_expanded_blocks_per_component * m_comps_in_frame; - m_expanded_blocks_per_row = m_max_mcus_per_row * m_expanded_blocks_per_mcu; - // Freq. domain chroma upsampling is only supported for H2V2 subsampling factor. -// BEGIN EPIC MOD -#if JPGD_SUPPORT_FREQ_DOMAIN_UPSAMPLING - m_freq_domain_chroma_upsample = (m_expanded_blocks_per_mcu == 4*3); -#else - m_freq_domain_chroma_upsample = 0; -#endif -// END EPIC MOD - - if (m_freq_domain_chroma_upsample) - m_pSample_buf = (uint8 *)alloc(m_expanded_blocks_per_row * 64); - else - m_pSample_buf = (uint8 *)alloc(m_max_blocks_per_row * 64); - - m_total_lines_left = m_image_y_size; - - m_mcu_lines_left = 0; - - create_look_ups(); - } - - // The coeff_buf series of methods originally stored the coefficients - // into a "virtual" file which was located in EMS, XMS, or a disk file. A cache - // was used to make this process more efficient. Now, we can store the entire - // thing in RAM. - jpeg_decoder::coeff_buf* jpeg_decoder::coeff_buf_open(int block_num_x, int block_num_y, int block_len_x, int block_len_y) - { - coeff_buf* cb = (coeff_buf*)alloc(sizeof(coeff_buf)); - - cb->block_num_x = block_num_x; - cb->block_num_y = block_num_y; - cb->block_len_x = block_len_x; - cb->block_len_y = block_len_y; - cb->block_size = (block_len_x * block_len_y) * sizeof(jpgd_block_t); - cb->pData = (uint8 *)alloc(cb->block_size * block_num_x * block_num_y, true); - return cb; - } - - inline jpgd_block_t *jpeg_decoder::coeff_buf_getp(coeff_buf *cb, int block_x, int block_y) - { - JPGD_ASSERT((block_x < cb->block_num_x) && (block_y < cb->block_num_y)); - return (jpgd_block_t *)(cb->pData + block_x * cb->block_size + block_y * (cb->block_size * cb->block_num_x)); - } - - // The following methods decode the various types of m_blocks encountered - // in progressively encoded images. - void jpeg_decoder::decode_block_dc_first(jpeg_decoder *pD, int component_id, int block_x, int block_y) - { - int s, r; - jpgd_block_t *p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y); - - if ((s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_dc_tab[component_id]])) != 0) - { - r = pD->get_bits_no_markers(s); - s = HUFF_EXTEND(r, s); - } - - pD->m_last_dc_val[component_id] = (s += pD->m_last_dc_val[component_id]); - - p[0] = static_cast(s << pD->m_successive_low); - } - - void jpeg_decoder::decode_block_dc_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y) - { - if (pD->get_bits_no_markers(1)) - { - jpgd_block_t *p = pD->coeff_buf_getp(pD->m_dc_coeffs[component_id], block_x, block_y); - - p[0] |= (1 << pD->m_successive_low); - } - } - - void jpeg_decoder::decode_block_ac_first(jpeg_decoder *pD, int component_id, int block_x, int block_y) - { - int k, s, r; - - if (pD->m_eob_run) - { - pD->m_eob_run--; - return; - } - - jpgd_block_t *p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y); - - for (k = pD->m_spectral_start; k <= pD->m_spectral_end; k++) - { - s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_ac_tab[component_id]]); - - r = s >> 4; - s &= 15; - - if (s) - { - if ((k += r) > 63) - pD->stop_decoding(JPGD_DECODE_ERROR); - - r = pD->get_bits_no_markers(s); - s = HUFF_EXTEND(r, s); - - p[g_ZAG[k]] = static_cast(s << pD->m_successive_low); - } - else - { - if (r == 15) - { - if ((k += 15) > 63) - pD->stop_decoding(JPGD_DECODE_ERROR); - } - else - { - pD->m_eob_run = 1 << r; - - if (r) - pD->m_eob_run += pD->get_bits_no_markers(r); - - pD->m_eob_run--; - - break; - } - } - } - } - - void jpeg_decoder::decode_block_ac_refine(jpeg_decoder *pD, int component_id, int block_x, int block_y) - { - int s, k, r; - int p1 = 1 << pD->m_successive_low; - int m1 = (-1) << pD->m_successive_low; - jpgd_block_t *p = pD->coeff_buf_getp(pD->m_ac_coeffs[component_id], block_x, block_y); - - k = pD->m_spectral_start; - - if (pD->m_eob_run == 0) - { - for ( ; k <= pD->m_spectral_end; k++) - { - s = pD->huff_decode(pD->m_pHuff_tabs[pD->m_comp_ac_tab[component_id]]); - - r = s >> 4; - s &= 15; - - if (s) - { - if (s != 1) - pD->stop_decoding(JPGD_DECODE_ERROR); - - if (pD->get_bits_no_markers(1)) - s = p1; - else - s = m1; - } - else - { - if (r != 15) - { - pD->m_eob_run = 1 << r; - - if (r) - pD->m_eob_run += pD->get_bits_no_markers(r); - - break; - } - } - - do - { - // BEGIN EPIC MOD - JPGD_ASSERT(k < 64); - // END EPIC MOD - - jpgd_block_t *this_coef = p + g_ZAG[k]; - - if (*this_coef != 0) - { - if (pD->get_bits_no_markers(1)) - { - if ((*this_coef & p1) == 0) - { - if (*this_coef >= 0) - *this_coef = static_cast(*this_coef + p1); - else - *this_coef = static_cast(*this_coef + m1); - } - } - } - else - { - if (--r < 0) - break; - } - - k++; - - } while (k <= pD->m_spectral_end); - - if ((s) && (k < 64)) - { - p[g_ZAG[k]] = static_cast(s); - } - } - } - - if (pD->m_eob_run > 0) - { - for ( ; k <= pD->m_spectral_end; k++) - { - // BEGIN EPIC MOD - JPGD_ASSERT(k < 64); - // END EPIC MOD - - jpgd_block_t *this_coef = p + g_ZAG[k]; - - if (*this_coef != 0) - { - if (pD->get_bits_no_markers(1)) - { - if ((*this_coef & p1) == 0) - { - if (*this_coef >= 0) - *this_coef = static_cast(*this_coef + p1); - else - *this_coef = static_cast(*this_coef + m1); - } - } - } - } - - pD->m_eob_run--; - } - } - - // Decode a scan in a progressively encoded image. - void jpeg_decoder::decode_scan(pDecode_block_func decode_block_func) - { - int mcu_row, mcu_col, mcu_block; - int block_x_mcu[JPGD_MAX_COMPONENTS], m_block_y_mcu[JPGD_MAX_COMPONENTS]; - - memset(m_block_y_mcu, 0, sizeof(m_block_y_mcu)); - - for (mcu_col = 0; mcu_col < m_mcus_per_col; mcu_col++) - { - int component_num, component_id; - - memset(block_x_mcu, 0, sizeof(block_x_mcu)); - - for (mcu_row = 0; mcu_row < m_mcus_per_row; mcu_row++) - { - int block_x_mcu_ofs = 0, block_y_mcu_ofs = 0; - - if ((m_restart_interval) && (m_restarts_left == 0)) - process_restart(); - - for (mcu_block = 0; mcu_block < m_blocks_per_mcu; mcu_block++) - { - component_id = m_mcu_org[mcu_block]; - - decode_block_func(this, component_id, block_x_mcu[component_id] + block_x_mcu_ofs, m_block_y_mcu[component_id] + block_y_mcu_ofs); - - if (m_comps_in_scan == 1) - block_x_mcu[component_id]++; - else - { - if (++block_x_mcu_ofs == m_comp_h_samp[component_id]) - { - block_x_mcu_ofs = 0; - - if (++block_y_mcu_ofs == m_comp_v_samp[component_id]) - { - block_y_mcu_ofs = 0; - block_x_mcu[component_id] += m_comp_h_samp[component_id]; - } - } - } - } - - m_restarts_left--; - } - - if (m_comps_in_scan == 1) - m_block_y_mcu[m_comp_list[0]]++; - else - { - for (component_num = 0; component_num < m_comps_in_scan; component_num++) - { - component_id = m_comp_list[component_num]; - m_block_y_mcu[component_id] += m_comp_v_samp[component_id]; - } - } - } - } - - // Decode a progressively encoded image. - void jpeg_decoder::init_progressive() - { - int i; - - if (m_comps_in_frame == 4) - stop_decoding(JPGD_UNSUPPORTED_COLORSPACE); - - // Allocate the coefficient buffers. - for (i = 0; i < m_comps_in_frame; i++) - { - m_dc_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 1, 1); - m_ac_coeffs[i] = coeff_buf_open(m_max_mcus_per_row * m_comp_h_samp[i], m_max_mcus_per_col * m_comp_v_samp[i], 8, 8); - } - - for ( ; ; ) - { - int dc_only_scan, refinement_scan; - pDecode_block_func decode_block_func; - - if (!init_scan()) - break; - - dc_only_scan = (m_spectral_start == 0); - refinement_scan = (m_successive_high != 0); - - if ((m_spectral_start > m_spectral_end) || (m_spectral_end > 63)) - stop_decoding(JPGD_BAD_SOS_SPECTRAL); - - if (dc_only_scan) - { - if (m_spectral_end) - stop_decoding(JPGD_BAD_SOS_SPECTRAL); - } - else if (m_comps_in_scan != 1) /* AC scans can only contain one component */ - stop_decoding(JPGD_BAD_SOS_SPECTRAL); - - if ((refinement_scan) && (m_successive_low != m_successive_high - 1)) - stop_decoding(JPGD_BAD_SOS_SUCCESSIVE); - - if (dc_only_scan) - { - if (refinement_scan) - decode_block_func = decode_block_dc_refine; - else - decode_block_func = decode_block_dc_first; - } - else - { - if (refinement_scan) - decode_block_func = decode_block_ac_refine; - else - decode_block_func = decode_block_ac_first; - } - - decode_scan(decode_block_func); - - m_bits_left = 16; - get_bits(16); - get_bits(16); - } - - m_comps_in_scan = m_comps_in_frame; - - for (i = 0; i < m_comps_in_frame; i++) - m_comp_list[i] = i; - - calc_mcu_block_order(); - } - - void jpeg_decoder::init_sequential() - { - if (!init_scan()) - stop_decoding(JPGD_UNEXPECTED_MARKER); - } - - void jpeg_decoder::decode_start() - { - init_frame(); - - if (m_progressive_flag) - init_progressive(); - else - init_sequential(); - } - - void jpeg_decoder::decode_init(jpeg_decoder_stream *pStream) - { - init(pStream); - locate_sof_marker(); - } - - jpeg_decoder::jpeg_decoder(jpeg_decoder_stream *pStream) - { - if (setjmp(m_jmp_state)) - return; - decode_init(pStream); - } - - int jpeg_decoder::begin_decoding() - { - if (m_ready_flag) - return JPGD_SUCCESS; - - if (m_error_code) - return JPGD_FAILED; - - if (setjmp(m_jmp_state)) - return JPGD_FAILED; - - decode_start(); - - m_ready_flag = true; - - return JPGD_SUCCESS; - } - - jpeg_decoder::~jpeg_decoder() - { - free_all_blocks(); - } - - jpeg_decoder_file_stream::jpeg_decoder_file_stream() - { - m_pFile = NULL; - m_eof_flag = false; - m_error_flag = false; - } - - void jpeg_decoder_file_stream::close() - { - if (m_pFile) - { - fclose(m_pFile); - m_pFile = NULL; - } - - m_eof_flag = false; - m_error_flag = false; - } - - jpeg_decoder_file_stream::~jpeg_decoder_file_stream() - { - close(); - } - - bool jpeg_decoder_file_stream::open(const char *Pfilename) - { - close(); - - m_eof_flag = false; - m_error_flag = false; - -#if defined(_MSC_VER) - m_pFile = NULL; - fopen_s(&m_pFile, Pfilename, "rb"); -#else - m_pFile = fopen(Pfilename, "rb"); -#endif - return m_pFile != NULL; - } - - int jpeg_decoder_file_stream::read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) - { - if (!m_pFile) - return -1; - - if (m_eof_flag) - { - *pEOF_flag = true; - return 0; - } - - if (m_error_flag) - return -1; - - int bytes_read = static_cast(fread(pBuf, 1, max_bytes_to_read, m_pFile)); - if (bytes_read < max_bytes_to_read) - { - if (ferror(m_pFile)) - { - m_error_flag = true; - return -1; - } - - m_eof_flag = true; - *pEOF_flag = true; - } - - return bytes_read; - } - - bool jpeg_decoder_mem_stream::open(const uint8 *pSrc_data, uint size) - { - close(); - m_pSrc_data = pSrc_data; - m_ofs = 0; - m_size = size; - return true; - } - - int jpeg_decoder_mem_stream::read(uint8 *pBuf, int max_bytes_to_read, bool *pEOF_flag) - { - *pEOF_flag = false; - - if (!m_pSrc_data) - return -1; - - uint bytes_remaining = m_size - m_ofs; - if ((uint)max_bytes_to_read > bytes_remaining) - { - max_bytes_to_read = bytes_remaining; - *pEOF_flag = true; - } - - memcpy(pBuf, m_pSrc_data + m_ofs, max_bytes_to_read); - m_ofs += max_bytes_to_read; - - return max_bytes_to_read; - } - - unsigned char *decompress_jpeg_image_from_stream(jpeg_decoder_stream *pStream, int *width, int *height, int *actual_comps, int req_comps) - { - if (!actual_comps) - return NULL; - *actual_comps = 0; - - if ((!pStream) || (!width) || (!height) || (!req_comps)) - return NULL; - - if ((req_comps != 1) && (req_comps != 3) && (req_comps != 4)) - return NULL; - - jpeg_decoder decoder(pStream); - if (decoder.get_error_code() != JPGD_SUCCESS) - return NULL; - - const int image_width = decoder.get_width(), image_height = decoder.get_height(); - *width = image_width; - *height = image_height; - *actual_comps = decoder.get_num_components(); - - if (decoder.begin_decoding() != JPGD_SUCCESS) - return NULL; - - const int dst_bpl = image_width * req_comps; - - uint8 *pImage_data = (uint8*)jpgd_malloc(dst_bpl * image_height); - if (!pImage_data) - return NULL; - - for (int y = 0; y < image_height; y++) - { - const uint8* pScan_line = 0; - uint scan_line_len; - if (decoder.decode((const void**)&pScan_line, &scan_line_len) != JPGD_SUCCESS) - { - jpgd_free(pImage_data); - return NULL; - } - - uint8 *pDst = pImage_data + y * dst_bpl; - - if (((req_comps == 4) && (decoder.get_num_components() == 3)) || - ((req_comps == 1) && (decoder.get_num_components() == 1))) - { - memcpy(pDst, pScan_line, dst_bpl); - } - else if (decoder.get_num_components() == 1) - { - if (req_comps == 3) - { - for (int x = 0; x < image_width; x++) - { - uint8 luma = pScan_line[x]; - pDst[0] = luma; - pDst[1] = luma; - pDst[2] = luma; - pDst += 3; - } - } - else - { - for (int x = 0; x < image_width; x++) - { - uint8 luma = pScan_line[x]; - pDst[0] = luma; - pDst[1] = luma; - pDst[2] = luma; - pDst[3] = 255; - pDst += 4; - } - } - } - else if (decoder.get_num_components() == 3) - { - if (req_comps == 1) - { - const int YR = 19595, YG = 38470, YB = 7471; - for (int x = 0; x < image_width; x++) - { - int r = pScan_line[x*4+0]; - int g = pScan_line[x*4+1]; - int b = pScan_line[x*4+2]; - *pDst++ = static_cast((r * YR + g * YG + b * YB + 32768) >> 16); - } - } - else - { - for (int x = 0; x < image_width; x++) - { - pDst[0] = pScan_line[x*4+0]; - pDst[1] = pScan_line[x*4+1]; - pDst[2] = pScan_line[x*4+2]; - pDst += 3; - } - } - } - } - - return pImage_data; - } - -// BEGIN EPIC MOD - unsigned char *decompress_jpeg_image_from_memory(const unsigned char *pSrc_data, int src_data_size, int *width, int *height, int *actual_comps, int req_comps, int format) - { - jpg_format = (ERGBFormatJPG)format; -// EMD EPIC MOD - jpgd::jpeg_decoder_mem_stream mem_stream(pSrc_data, src_data_size); - return decompress_jpeg_image_from_stream(&mem_stream, width, height, actual_comps, req_comps); - } - - unsigned char *decompress_jpeg_image_from_file(const char *pSrc_filename, int *width, int *height, int *actual_comps, int req_comps) - { - jpgd::jpeg_decoder_file_stream file_stream; - if (!file_stream.open(pSrc_filename)) - return NULL; - return decompress_jpeg_image_from_stream(&file_stream, width, height, actual_comps, req_comps); - } - -} // namespace jpgd diff --git a/spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/modeling/roi_heads/boundary_head/boundary_head.py b/spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/modeling/roi_heads/boundary_head/boundary_head.py deleted file mode 100644 index 643e58b01e04cab324420ce9a09f0310f2a97d91..0000000000000000000000000000000000000000 --- a/spaces/Cyril666/ContourNet-ABI/maskrcnn_benchmark/modeling/roi_heads/boundary_head/boundary_head.py +++ /dev/null @@ -1,104 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. -import torch -from torch import nn - -from maskrcnn_benchmark.structures.bounding_box import BoxList - -from .roi_boundary_feature_extractors import make_roi_boundary_feature_extractor -from .roi_boundary_predictors import make_roi_boundary_predictor -from .inference import make_roi_boundary_post_processor -from .loss import make_roi_boundary_loss_evaluator - -def keep_only_positive_boxes(boxes): - """ - Given a set of BoxList containing the `labels` field, - return a set of BoxList for which `labels > 0`. - - Arguments: - boxes (list of BoxList) - """ - assert isinstance(boxes, (list, tuple)) - assert isinstance(boxes[0], BoxList) - assert boxes[0].has_field("labels") - positive_boxes = [] - positive_inds = [] - num_boxes = 0 - for boxes_per_image in boxes: - labels = boxes_per_image.get_field("labels") - inds_mask = labels > 0 - inds = inds_mask.nonzero().squeeze(1) - positive_boxes.append(boxes_per_image[inds]) - positive_inds.append(inds_mask) - return positive_boxes, positive_inds - - -def keep_only_positive_boxes(boxes): - """ - Given a set of BoxList containing the `labels` field, - return a set of BoxList for which `labels > 0`. - - Arguments: - boxes (list of BoxList) - """ - assert isinstance(boxes, (list, tuple)) - assert isinstance(boxes[0], BoxList) - assert boxes[0].has_field("labels") - positive_boxes = [] - positive_inds = [] - num_boxes = 0 - for boxes_per_image in boxes: - labels = boxes_per_image.get_field("labels") - inds_mask = labels > 0 - inds = inds_mask.nonzero().squeeze(1) - positive_boxes.append(boxes_per_image[inds]) - positive_inds.append(inds_mask) - return positive_boxes, positive_inds - - -class ROIBOHead(torch.nn.Module): - def __init__(self, cfg, in_channels): - super(ROIBOHead, self).__init__() - self.cfg = cfg.clone() - self.feature_extractor = make_roi_boundary_feature_extractor(cfg, in_channels) - self.predictor = make_roi_boundary_predictor(cfg) - self.post_processor = make_roi_boundary_post_processor(cfg) - self.loss_evaluator = make_roi_boundary_loss_evaluator(cfg) - - def forward(self, features, proposals, targets=None): - """ - Arguments: - features (list[Tensor]): feature-maps from possibly several levels - proposals (list[BoxList]): proposal boxes - targets (list[BoxList], optional): the ground-truth targets. - - Returns: - x (Tensor): the result of the feature extractor - proposals (list[BoxList]): during training, the original proposals - are returned. During testing, the predicted boxlists are returned - with the `mask` field set - losses (dict[Tensor]): During training, returns the losses for the - head. During testing, returns an empty dict. - """ - - if self.training: - # during training, only focus on positive boxes - with torch.no_grad(): - # proposals = self.loss_evaluator.subsample(proposals, targets) - all_proposals = proposals - proposals, positive_inds = keep_only_positive_boxes(proposals) - - x = self.feature_extractor(features, proposals) - outputs_x, outputs_y= self.predictor(x) - - if not self.training: - result = self.post_processor(outputs_x, outputs_y, proposals) - - return x, result, {}, {}, {} - - loss_bo, loss_x, loss_y = self.loss_evaluator(proposals, outputs_x, outputs_y, targets) - - return x, proposals, dict(loss_bo=loss_bo), dict(loss_bo_x=loss_x), dict(loss_bo_y=loss_y) - - -def build_roi_boundary_head(cfg, in_channels): - return ROIBOHead(cfg, in_channels) diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fsspec/callbacks.py b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fsspec/callbacks.py deleted file mode 100644 index 4500d02cbcae78d9cd764956d4cc46963b525213..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fsspec/callbacks.py +++ /dev/null @@ -1,238 +0,0 @@ -class Callback: - """ - Base class and interface for callback mechanism - - This class can be used directly for monitoring file transfers by - providing ``callback=Callback(hooks=...)`` (see the ``hooks`` argument, - below), or subclassed for more specialised behaviour. - - Parameters - ---------- - size: int (optional) - Nominal quantity for the value that corresponds to a complete - transfer, e.g., total number of tiles or total number of - bytes - value: int (0) - Starting internal counter value - hooks: dict or None - A dict of named functions to be called on each update. The signature - of these must be ``f(size, value, **kwargs)`` - """ - - def __init__(self, size=None, value=0, hooks=None, **kwargs): - self.size = size - self.value = value - self.hooks = hooks or {} - self.kw = kwargs - - def set_size(self, size): - """ - Set the internal maximum size attribute - - Usually called if not initially set at instantiation. Note that this - triggers a ``call()``. - - Parameters - ---------- - size: int - """ - self.size = size - self.call() - - def absolute_update(self, value): - """ - Set the internal value state - - Triggers ``call()`` - - Parameters - ---------- - value: int - """ - self.value = value - self.call() - - def relative_update(self, inc=1): - """ - Delta increment the internal counter - - Triggers ``call()`` - - Parameters - ---------- - inc: int - """ - self.value += inc - self.call() - - def call(self, hook_name=None, **kwargs): - """ - Execute hook(s) with current state - - Each function is passed the internal size and current value - - Parameters - ---------- - hook_name: str or None - If given, execute on this hook - kwargs: passed on to (all) hook(s) - """ - if not self.hooks: - return - kw = self.kw.copy() - kw.update(kwargs) - if hook_name: - if hook_name not in self.hooks: - return - return self.hooks[hook_name](self.size, self.value, **kw) - for hook in self.hooks.values() or []: - hook(self.size, self.value, **kw) - - def wrap(self, iterable): - """ - Wrap an iterable to call ``relative_update`` on each iterations - - Parameters - ---------- - iterable: Iterable - The iterable that is being wrapped - """ - for item in iterable: - self.relative_update() - yield item - - def branch(self, path_1, path_2, kwargs): - """ - Set callbacks for child transfers - - If this callback is operating at a higher level, e.g., put, which may - trigger transfers that can also be monitored. The passed kwargs are - to be *mutated* to add ``callback=``, if this class supports branching - to children. - - Parameters - ---------- - path_1: str - Child's source path - path_2: str - Child's destination path - kwargs: dict - arguments passed to child method, e.g., put_file. - - Returns - ------- - - """ - return None - - def no_op(self, *_, **__): - pass - - def __getattr__(self, item): - """ - If undefined methods are called on this class, nothing happens - """ - return self.no_op - - @classmethod - def as_callback(cls, maybe_callback=None): - """Transform callback=... into Callback instance - - For the special value of ``None``, return the global instance of - ``NoOpCallback``. This is an alternative to including - ``callback=_DEFAULT_CALLBACK`` directly in a method signature. - """ - if maybe_callback is None: - return _DEFAULT_CALLBACK - return maybe_callback - - -class NoOpCallback(Callback): - """ - This implementation of Callback does exactly nothing - """ - - def call(self, *args, **kwargs): - return None - - -class DotPrinterCallback(Callback): - """ - Simple example Callback implementation - - Almost identical to Callback with a hook that prints a char; here we - demonstrate how the outer layer may print "#" and the inner layer "." - """ - - def __init__(self, chr_to_print="#", **kwargs): - self.chr = chr_to_print - super().__init__(**kwargs) - - def branch(self, path_1, path_2, kwargs): - """Mutate kwargs to add new instance with different print char""" - kwargs["callback"] = DotPrinterCallback(".") - - def call(self, **kwargs): - """Just outputs a character""" - print(self.chr, end="") - - -class TqdmCallback(Callback): - """ - A callback to display a progress bar using tqdm - - Parameters - ---------- - tqdm_kwargs : dict, (optional) - Any argument accepted by the tqdm constructor. - See the `tqdm doc `_. - Will be forwarded to tqdm. - - Examples - -------- - >>> import fsspec - >>> from fsspec.callbacks import TqdmCallback - >>> fs = fsspec.filesystem("memory") - >>> path2distant_data = "/your-path" - >>> fs.upload( - ".", - path2distant_data, - recursive=True, - callback=TqdmCallback(), - ) - - You can forward args to tqdm using the ``tqdm_kwargs`` parameter. - - >>> fs.upload( - ".", - path2distant_data, - recursive=True, - callback=TqdmCallback(tqdm_kwargs={"desc": "Your tqdm description"}), - ) - """ - - def __init__(self, tqdm_kwargs=None, *args, **kwargs): - try: - import tqdm - - self._tqdm = tqdm - except ImportError as exce: - raise ImportError( - "Using TqdmCallback requires tqdm to be installed" - ) from exce - - self._tqdm_kwargs = tqdm_kwargs or {} - super().__init__(*args, **kwargs) - - def set_size(self, size): - self.tqdm = self._tqdm.tqdm(total=size, **self._tqdm_kwargs) - - def relative_update(self, inc=1): - self.tqdm.update(inc) - - def __del__(self): - self.tqdm.close() - self.tqdm = None - - -_DEFAULT_CALLBACK = NoOpCallback() diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fsspec/utils.py b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fsspec/utils.py deleted file mode 100644 index 1aa630c01d4ee16a457b0296da9517a7f786fd92..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fsspec/utils.py +++ /dev/null @@ -1,558 +0,0 @@ -from __future__ import annotations - -import logging -import math -import os -import pathlib -import re -import sys -from contextlib import contextmanager -from functools import partial -from hashlib import md5 -from importlib.metadata import version -from urllib.parse import urlsplit - -DEFAULT_BLOCK_SIZE = 5 * 2**20 - - -def infer_storage_options(urlpath, inherit_storage_options=None): - """Infer storage options from URL path and merge it with existing storage - options. - - Parameters - ---------- - urlpath: str or unicode - Either local absolute file path or URL (hdfs://namenode:8020/file.csv) - inherit_storage_options: dict (optional) - Its contents will get merged with the inferred information from the - given path - - Returns - ------- - Storage options dict. - - Examples - -------- - >>> infer_storage_options('/mnt/datasets/test.csv') # doctest: +SKIP - {"protocol": "file", "path", "/mnt/datasets/test.csv"} - >>> infer_storage_options( - ... 'hdfs://username:pwd@node:123/mnt/datasets/test.csv?q=1', - ... inherit_storage_options={'extra': 'value'}, - ... ) # doctest: +SKIP - {"protocol": "hdfs", "username": "username", "password": "pwd", - "host": "node", "port": 123, "path": "/mnt/datasets/test.csv", - "url_query": "q=1", "extra": "value"} - """ - # Handle Windows paths including disk name in this special case - if ( - re.match(r"^[a-zA-Z]:[\\/]", urlpath) - or re.match(r"^[a-zA-Z0-9]+://", urlpath) is None - ): - return {"protocol": "file", "path": urlpath} - - parsed_path = urlsplit(urlpath) - protocol = parsed_path.scheme or "file" - if parsed_path.fragment: - path = "#".join([parsed_path.path, parsed_path.fragment]) - else: - path = parsed_path.path - if protocol == "file": - # Special case parsing file protocol URL on Windows according to: - # https://msdn.microsoft.com/en-us/library/jj710207.aspx - windows_path = re.match(r"^/([a-zA-Z])[:|]([\\/].*)$", path) - if windows_path: - path = "%s:%s" % windows_path.groups() - - if protocol in ["http", "https"]: - # for HTTP, we don't want to parse, as requests will anyway - return {"protocol": protocol, "path": urlpath} - - options = {"protocol": protocol, "path": path} - - if parsed_path.netloc: - # Parse `hostname` from netloc manually because `parsed_path.hostname` - # lowercases the hostname which is not always desirable (e.g. in S3): - # https://github.com/dask/dask/issues/1417 - options["host"] = parsed_path.netloc.rsplit("@", 1)[-1].rsplit(":", 1)[0] - - if protocol in ("s3", "s3a", "gcs", "gs"): - options["path"] = options["host"] + options["path"] - else: - options["host"] = options["host"] - if parsed_path.port: - options["port"] = parsed_path.port - if parsed_path.username: - options["username"] = parsed_path.username - if parsed_path.password: - options["password"] = parsed_path.password - - if parsed_path.query: - options["url_query"] = parsed_path.query - if parsed_path.fragment: - options["url_fragment"] = parsed_path.fragment - - if inherit_storage_options: - update_storage_options(options, inherit_storage_options) - - return options - - -def update_storage_options(options, inherited=None): - if not inherited: - inherited = {} - collisions = set(options) & set(inherited) - if collisions: - for collision in collisions: - if options.get(collision) != inherited.get(collision): - raise KeyError( - "Collision between inferred and specified storage " - "option:\n%s" % collision - ) - options.update(inherited) - - -# Compression extensions registered via fsspec.compression.register_compression -compressions: dict[str, str] = {} - - -def infer_compression(filename): - """Infer compression, if available, from filename. - - Infer a named compression type, if registered and available, from filename - extension. This includes builtin (gz, bz2, zip) compressions, as well as - optional compressions. See fsspec.compression.register_compression. - """ - extension = os.path.splitext(filename)[-1].strip(".").lower() - if extension in compressions: - return compressions[extension] - - -def build_name_function(max_int): - """Returns a function that receives a single integer - and returns it as a string padded by enough zero characters - to align with maximum possible integer - - >>> name_f = build_name_function(57) - - >>> name_f(7) - '07' - >>> name_f(31) - '31' - >>> build_name_function(1000)(42) - '0042' - >>> build_name_function(999)(42) - '042' - >>> build_name_function(0)(0) - '0' - """ - # handle corner cases max_int is 0 or exact power of 10 - max_int += 1e-8 - - pad_length = int(math.ceil(math.log10(max_int))) - - def name_function(i): - return str(i).zfill(pad_length) - - return name_function - - -def seek_delimiter(file, delimiter, blocksize): - r"""Seek current file to file start, file end, or byte after delimiter seq. - - Seeks file to next chunk delimiter, where chunks are defined on file start, - a delimiting sequence, and file end. Use file.tell() to see location afterwards. - Note that file start is a valid split, so must be at offset > 0 to seek for - delimiter. - - Parameters - ---------- - file: a file - delimiter: bytes - a delimiter like ``b'\n'`` or message sentinel, matching file .read() type - blocksize: int - Number of bytes to read from the file at once. - - - Returns - ------- - Returns True if a delimiter was found, False if at file start or end. - - """ - - if file.tell() == 0: - # beginning-of-file, return without seek - return False - - # Interface is for binary IO, with delimiter as bytes, but initialize last - # with result of file.read to preserve compatibility with text IO. - last = None - while True: - current = file.read(blocksize) - if not current: - # end-of-file without delimiter - return False - full = last + current if last else current - try: - if delimiter in full: - i = full.index(delimiter) - file.seek(file.tell() - (len(full) - i) + len(delimiter)) - return True - elif len(current) < blocksize: - # end-of-file without delimiter - return False - except (OSError, ValueError): - pass - last = full[-len(delimiter) :] - - -def read_block(f, offset, length, delimiter=None, split_before=False): - """Read a block of bytes from a file - - Parameters - ---------- - f: File - Open file - offset: int - Byte offset to start read - length: int - Number of bytes to read, read through end of file if None - delimiter: bytes (optional) - Ensure reading starts and stops at delimiter bytestring - split_before: bool (optional) - Start/stop read *before* delimiter bytestring. - - - If using the ``delimiter=`` keyword argument we ensure that the read - starts and stops at delimiter boundaries that follow the locations - ``offset`` and ``offset + length``. If ``offset`` is zero then we - start at zero, regardless of delimiter. The bytestring returned WILL - include the terminating delimiter string. - - Examples - -------- - - >>> from io import BytesIO # doctest: +SKIP - >>> f = BytesIO(b'Alice, 100\\nBob, 200\\nCharlie, 300') # doctest: +SKIP - >>> read_block(f, 0, 13) # doctest: +SKIP - b'Alice, 100\\nBo' - - >>> read_block(f, 0, 13, delimiter=b'\\n') # doctest: +SKIP - b'Alice, 100\\nBob, 200\\n' - - >>> read_block(f, 10, 10, delimiter=b'\\n') # doctest: +SKIP - b'Bob, 200\\nCharlie, 300' - """ - if delimiter: - f.seek(offset) - found_start_delim = seek_delimiter(f, delimiter, 2**16) - if length is None: - return f.read() - start = f.tell() - length -= start - offset - - f.seek(start + length) - found_end_delim = seek_delimiter(f, delimiter, 2**16) - end = f.tell() - - # Adjust split location to before delimiter iff seek found the - # delimiter sequence, not start or end of file. - if found_start_delim and split_before: - start -= len(delimiter) - - if found_end_delim and split_before: - end -= len(delimiter) - - offset = start - length = end - start - - f.seek(offset) - b = f.read(length) - return b - - -def tokenize(*args, **kwargs): - """Deterministic token - - (modified from dask.base) - - >>> tokenize([1, 2, '3']) - '9d71491b50023b06fc76928e6eddb952' - - >>> tokenize('Hello') == tokenize('Hello') - True - """ - if kwargs: - args += (kwargs,) - try: - return md5(str(args).encode()).hexdigest() - except ValueError: - # FIPS systems: https://github.com/fsspec/filesystem_spec/issues/380 - return md5(str(args).encode(), usedforsecurity=False).hexdigest() - - -def stringify_path(filepath): - """Attempt to convert a path-like object to a string. - - Parameters - ---------- - filepath: object to be converted - - Returns - ------- - filepath_str: maybe a string version of the object - - Notes - ----- - Objects supporting the fspath protocol are coerced according to its - __fspath__ method. - - For backwards compatibility with older Python version, pathlib.Path - objects are specially coerced. - - Any other object is passed through unchanged, which includes bytes, - strings, buffers, or anything else that's not even path-like. - """ - if isinstance(filepath, str): - return filepath - elif hasattr(filepath, "__fspath__"): - return filepath.__fspath__() - elif isinstance(filepath, pathlib.Path): - return str(filepath) - elif hasattr(filepath, "path"): - return filepath.path - else: - return filepath - - -def make_instance(cls, args, kwargs): - inst = cls(*args, **kwargs) - inst._determine_worker() - return inst - - -def common_prefix(paths): - """For a list of paths, find the shortest prefix common to all""" - parts = [p.split("/") for p in paths] - lmax = min(len(p) for p in parts) - end = 0 - for i in range(lmax): - end = all(p[i] == parts[0][i] for p in parts) - if not end: - break - i += end - return "/".join(parts[0][:i]) - - -def other_paths(paths, path2, is_dir=None, exists=False, flatten=False): - """In bulk file operations, construct a new file tree from a list of files - - Parameters - ---------- - paths: list of str - The input file tree - path2: str or list of str - Root to construct the new list in. If this is already a list of str, we just - assert it has the right number of elements. - is_dir: bool (optional) - For the special case where the input in one element, whether to regard the value - as the target path, or as a directory to put a file path within. If None, a - directory is inferred if the path ends in '/' - exists: bool (optional) - For a str destination, it is already exists (and is a dir), files should - end up inside. - flatten: bool (optional) - Whether to flatten the input directory tree structure so that the output files - are in the same directory. - - Returns - ------- - list of str - """ - - if isinstance(path2, str): - is_dir = is_dir or path2.endswith("/") - path2 = path2.rstrip("/") - - if flatten: - path2 = ["/".join((path2, p.split("/")[-1])) for p in paths] - else: - cp = common_prefix(paths) - if exists: - cp = cp.rsplit("/", 1)[0] - if not cp and all(not s.startswith("/") for s in paths): - path2 = ["/".join([path2, p]) for p in paths] - else: - path2 = [p.replace(cp, path2, 1) for p in paths] - else: - assert len(paths) == len(path2) - return path2 - - -def is_exception(obj): - return isinstance(obj, BaseException) - - -def isfilelike(f): - for attr in ["read", "close", "tell"]: - if not hasattr(f, attr): - return False - return True - - -def get_protocol(url): - parts = re.split(r"(\:\:|\://)", url, 1) - if len(parts) > 1: - return parts[0] - return "file" - - -def can_be_local(path): - """Can the given URL be used with open_local?""" - from fsspec import get_filesystem_class - - try: - return getattr(get_filesystem_class(get_protocol(path)), "local_file", False) - except (ValueError, ImportError): - # not in registry or import failed - return False - - -def get_package_version_without_import(name): - """For given package name, try to find the version without importing it - - Import and package.__version__ is still the backup here, so an import - *might* happen. - - Returns either the version string, or None if the package - or the version was not readily found. - """ - if name in sys.modules: - mod = sys.modules[name] - if hasattr(mod, "__version__"): - return mod.__version__ - try: - return version(name) - except: # noqa: E722 - pass - try: - import importlib - - mod = importlib.import_module(name) - return mod.__version__ - except (ImportError, AttributeError): - return None - - -def setup_logging(logger=None, logger_name=None, level="DEBUG", clear=True): - if logger is None and logger_name is None: - raise ValueError("Provide either logger object or logger name") - logger = logger or logging.getLogger(logger_name) - handle = logging.StreamHandler() - formatter = logging.Formatter( - "%(asctime)s - %(name)s - %(levelname)s - %(funcName)s -- %(message)s" - ) - handle.setFormatter(formatter) - if clear: - logger.handlers.clear() - logger.addHandler(handle) - logger.setLevel(level) - return logger - - -def _unstrip_protocol(name, fs): - return fs.unstrip_protocol(name) - - -def mirror_from(origin_name, methods): - """Mirror attributes and methods from the given - origin_name attribute of the instance to the - decorated class""" - - def origin_getter(method, self): - origin = getattr(self, origin_name) - return getattr(origin, method) - - def wrapper(cls): - for method in methods: - wrapped_method = partial(origin_getter, method) - setattr(cls, method, property(wrapped_method)) - return cls - - return wrapper - - -@contextmanager -def nullcontext(obj): - yield obj - - -def merge_offset_ranges(paths, starts, ends, max_gap=0, max_block=None, sort=True): - """Merge adjacent byte-offset ranges when the inter-range - gap is <= `max_gap`, and when the merged byte range does not - exceed `max_block` (if specified). By default, this function - will re-order the input paths and byte ranges to ensure sorted - order. If the user can guarantee that the inputs are already - sorted, passing `sort=False` will skip the re-ordering. - """ - # Check input - if not isinstance(paths, list): - raise TypeError - if not isinstance(starts, list): - starts = [starts] * len(paths) - if not isinstance(ends, list): - ends = [starts] * len(paths) - if len(starts) != len(paths) or len(ends) != len(paths): - raise ValueError - - # Early Return - if len(starts) <= 1: - return paths, starts, ends - - starts = [s or 0 for s in starts] - # Sort by paths and then ranges if `sort=True` - if sort: - paths, starts, ends = [ - list(v) - for v in zip( - *sorted( - zip(paths, starts, ends), - ) - ) - ] - - if paths: - # Loop through the coupled `paths`, `starts`, and - # `ends`, and merge adjacent blocks when appropriate - new_paths = paths[:1] - new_starts = starts[:1] - new_ends = ends[:1] - for i in range(1, len(paths)): - if paths[i] == paths[i - 1] and new_ends[-1] is None: - continue - elif ( - paths[i] != paths[i - 1] - or ((starts[i] - new_ends[-1]) > max_gap) - or ((max_block is not None and (ends[i] - new_starts[-1]) > max_block)) - ): - # Cannot merge with previous block. - # Add new `paths`, `starts`, and `ends` elements - new_paths.append(paths[i]) - new_starts.append(starts[i]) - new_ends.append(ends[i]) - else: - # Merge with previous block by updating the - # last element of `ends` - new_ends[-1] = ends[i] - return new_paths, new_starts, new_ends - - # `paths` is empty. Just return input lists - return paths, starts, ends - - -def file_size(filelike): - """Find length of any open read-mode file-like""" - pos = filelike.tell() - try: - return filelike.seek(0, 2) - finally: - filelike.seek(pos) diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/Upload-f29b2460.js b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/Upload-f29b2460.js deleted file mode 100644 index 50c3edcf23b6ed8b9305c38306428b30db1a7d36..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/Upload-f29b2460.js +++ /dev/null @@ -1,2 +0,0 @@ -import{S as H,e as I,s as J,a9 as L,N as A,O as V,K as o,U as F,p as W,M as B,Q as f,Y as m,af as b,ab as X,ac as Z,ad as x,z as $,v as ee,A as ae,a1 as le,B as te,F as y,h as ie}from"./index-3370be2a.js";import{b as ne}from"./ModifyUpload.svelte_svelte_type_style_lang-d2acacf0.js";function re(l){let a,n,r,c,g,u,i,k,z;const v=l[15].default,d=L(v,l,l[14],null);return{c(){a=A("div"),d&&d.c(),n=V(),r=A("input"),o(r,"type","file"),o(r,"accept",l[0]),r.multiple=c=l[4]==="multiple"||void 0,o(r,"webkitdirectory",g=l[4]==="directory"||void 0),o(r,"mozdirectory",u=l[4]==="directory"||void 0),o(r,"class","svelte-116rqfv"),o(a,"class","svelte-116rqfv"),F(a,"center",l[2]),F(a,"boundedheight",l[1]),F(a,"flex",l[3])},m(t,s){W(t,a,s),d&&d.m(a,null),B(a,n),B(a,r),l[23](r),i=!0,k||(z=[f(r,"change",l[8]),f(a,"drag",m(b(l[16]))),f(a,"dragstart",m(b(l[17]))),f(a,"dragend",m(b(l[18]))),f(a,"dragover",m(b(l[19]))),f(a,"dragenter",m(b(l[20]))),f(a,"dragleave",m(b(l[21]))),f(a,"drop",m(b(l[22]))),f(a,"click",l[7]),f(a,"drop",l[9]),f(a,"dragenter",l[6]),f(a,"dragleave",l[6])],k=!0)},p(t,[s]){d&&d.p&&(!i||s&16384)&&X(d,v,t,t[14],i?x(v,t[14],s,null):Z(t[14]),null),(!i||s&1)&&o(r,"accept",t[0]),(!i||s&16&&c!==(c=t[4]==="multiple"||void 0))&&(r.multiple=c),(!i||s&16&&g!==(g=t[4]==="directory"||void 0))&&o(r,"webkitdirectory",g),(!i||s&16&&u!==(u=t[4]==="directory"||void 0))&&o(r,"mozdirectory",u),(!i||s&4)&&F(a,"center",t[2]),(!i||s&2)&&F(a,"boundedheight",t[1]),(!i||s&8)&&F(a,"flex",t[3])},i(t){i||($(d,t),i=!0)},o(t){ee(d,t),i=!1},d(t){t&&ae(a),d&&d.d(t),l[23](null),k=!1,le(z)}}}function de(l,a,n){let{$$slots:r={},$$scope:c}=a,{filetype:g=null}=a,{include_file_metadata:u=!0}=a,{dragging:i=!1}=a,{boundedheight:k=!0}=a,{center:z=!0}=a,{flex:v=!0}=a,{file_count:d="single"}=a,{disable_click:t=!1}=a,{parse_to_data_url:s=!0}=a,w;const S=te(),C=()=>{n(10,i=!i)},E=()=>{t||(n(5,w.value="",w),w.click())},D=async e=>{let h=Array.from(e);if(!(!e.length||!window.FileReader)){if(d==="single"&&(h=[e[0]]),u)var T=h.map(_=>({name:_.name,size:_.size}));var p=[],U=[];s?U=await Promise.all(h.map(_=>ne(_))):U=h,u?s?p=U.map((_,q)=>({data:_,...T[q]})):p=U.map((_,q)=>({data:"",blob:_,...T[q]})):p=U,S("load",d==="single"?p[0]:p)}},K=async e=>{const h=e.target;h.files&&await D(h.files)},M=async e=>{n(10,i=!1),e.dataTransfer?.files&&await D(e.dataTransfer.files)};function N(e){y.call(this,l,e)}function O(e){y.call(this,l,e)}function P(e){y.call(this,l,e)}function Q(e){y.call(this,l,e)}function R(e){y.call(this,l,e)}function Y(e){y.call(this,l,e)}function j(e){y.call(this,l,e)}function G(e){ie[e?"unshift":"push"](()=>{w=e,n(5,w)})}return l.$$set=e=>{"filetype"in e&&n(0,g=e.filetype),"include_file_metadata"in e&&n(11,u=e.include_file_metadata),"dragging"in e&&n(10,i=e.dragging),"boundedheight"in e&&n(1,k=e.boundedheight),"center"in e&&n(2,z=e.center),"flex"in e&&n(3,v=e.flex),"file_count"in e&&n(4,d=e.file_count),"disable_click"in e&&n(12,t=e.disable_click),"parse_to_data_url"in e&&n(13,s=e.parse_to_data_url),"$$scope"in e&&n(14,c=e.$$scope)},[g,k,z,v,d,w,C,E,K,M,i,u,t,s,c,r,N,O,P,Q,R,Y,j,G]}class ue extends H{constructor(a){super(),I(this,a,de,re,J,{filetype:0,include_file_metadata:11,dragging:10,boundedheight:1,center:2,flex:3,file_count:4,disable_click:12,parse_to_data_url:13})}}export{ue as U}; -//# sourceMappingURL=Upload-f29b2460.js.map diff --git a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/httpcore/_sync/connection_pool.py b/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/httpcore/_sync/connection_pool.py deleted file mode 100644 index dbcaff1fcf1b1cbb404b3e7367b037942f4e9d03..0000000000000000000000000000000000000000 --- a/spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/httpcore/_sync/connection_pool.py +++ /dev/null @@ -1,356 +0,0 @@ -import ssl -import sys -from types import TracebackType -from typing import Iterable, Iterator, Iterable, List, Optional, Type - -from .._backends.sync import SyncBackend -from .._backends.base import SOCKET_OPTION, NetworkBackend -from .._exceptions import ConnectionNotAvailable, UnsupportedProtocol -from .._models import Origin, Request, Response -from .._synchronization import Event, Lock, ShieldCancellation -from .connection import HTTPConnection -from .interfaces import ConnectionInterface, RequestInterface - - -class RequestStatus: - def __init__(self, request: Request): - self.request = request - self.connection: Optional[ConnectionInterface] = None - self._connection_acquired = Event() - - def set_connection(self, connection: ConnectionInterface) -> None: - assert self.connection is None - self.connection = connection - self._connection_acquired.set() - - def unset_connection(self) -> None: - assert self.connection is not None - self.connection = None - self._connection_acquired = Event() - - def wait_for_connection( - self, timeout: Optional[float] = None - ) -> ConnectionInterface: - if self.connection is None: - self._connection_acquired.wait(timeout=timeout) - assert self.connection is not None - return self.connection - - -class ConnectionPool(RequestInterface): - """ - A connection pool for making HTTP requests. - """ - - def __init__( - self, - ssl_context: Optional[ssl.SSLContext] = None, - max_connections: Optional[int] = 10, - max_keepalive_connections: Optional[int] = None, - keepalive_expiry: Optional[float] = None, - http1: bool = True, - http2: bool = False, - retries: int = 0, - local_address: Optional[str] = None, - uds: Optional[str] = None, - network_backend: Optional[NetworkBackend] = None, - socket_options: Optional[Iterable[SOCKET_OPTION]] = None, - ) -> None: - """ - A connection pool for making HTTP requests. - - Parameters: - ssl_context: An SSL context to use for verifying connections. - If not specified, the default `httpcore.default_ssl_context()` - will be used. - max_connections: The maximum number of concurrent HTTP connections that - the pool should allow. Any attempt to send a request on a pool that - would exceed this amount will block until a connection is available. - max_keepalive_connections: The maximum number of idle HTTP connections - that will be maintained in the pool. - keepalive_expiry: The duration in seconds that an idle HTTP connection - may be maintained for before being expired from the pool. - http1: A boolean indicating if HTTP/1.1 requests should be supported - by the connection pool. Defaults to True. - http2: A boolean indicating if HTTP/2 requests should be supported by - the connection pool. Defaults to False. - retries: The maximum number of retries when trying to establish a - connection. - local_address: Local address to connect from. Can also be used to connect - using a particular address family. Using `local_address="0.0.0.0"` - will connect using an `AF_INET` address (IPv4), while using - `local_address="::"` will connect using an `AF_INET6` address (IPv6). - uds: Path to a Unix Domain Socket to use instead of TCP sockets. - network_backend: A backend instance to use for handling network I/O. - socket_options: Socket options that have to be included - in the TCP socket when the connection was established. - """ - self._ssl_context = ssl_context - - self._max_connections = ( - sys.maxsize if max_connections is None else max_connections - ) - self._max_keepalive_connections = ( - sys.maxsize - if max_keepalive_connections is None - else max_keepalive_connections - ) - self._max_keepalive_connections = min( - self._max_connections, self._max_keepalive_connections - ) - - self._keepalive_expiry = keepalive_expiry - self._http1 = http1 - self._http2 = http2 - self._retries = retries - self._local_address = local_address - self._uds = uds - - self._pool: List[ConnectionInterface] = [] - self._requests: List[RequestStatus] = [] - self._pool_lock = Lock() - self._network_backend = ( - SyncBackend() if network_backend is None else network_backend - ) - self._socket_options = socket_options - - def create_connection(self, origin: Origin) -> ConnectionInterface: - return HTTPConnection( - origin=origin, - ssl_context=self._ssl_context, - keepalive_expiry=self._keepalive_expiry, - http1=self._http1, - http2=self._http2, - retries=self._retries, - local_address=self._local_address, - uds=self._uds, - network_backend=self._network_backend, - socket_options=self._socket_options, - ) - - @property - def connections(self) -> List[ConnectionInterface]: - """ - Return a list of the connections currently in the pool. - - For example: - - ```python - >>> pool.connections - [ - , - , - , - ] - ``` - """ - return list(self._pool) - - def _attempt_to_acquire_connection(self, status: RequestStatus) -> bool: - """ - Attempt to provide a connection that can handle the given origin. - """ - origin = status.request.url.origin - - # If there are queued requests in front of us, then don't acquire a - # connection. We handle requests strictly in order. - waiting = [s for s in self._requests if s.connection is None] - if waiting and waiting[0] is not status: - return False - - # Reuse an existing connection if one is currently available. - for idx, connection in enumerate(self._pool): - if connection.can_handle_request(origin) and connection.is_available(): - self._pool.pop(idx) - self._pool.insert(0, connection) - status.set_connection(connection) - return True - - # If the pool is currently full, attempt to close one idle connection. - if len(self._pool) >= self._max_connections: - for idx, connection in reversed(list(enumerate(self._pool))): - if connection.is_idle(): - connection.close() - self._pool.pop(idx) - break - - # If the pool is still full, then we cannot acquire a connection. - if len(self._pool) >= self._max_connections: - return False - - # Otherwise create a new connection. - connection = self.create_connection(origin) - self._pool.insert(0, connection) - status.set_connection(connection) - return True - - def _close_expired_connections(self) -> None: - """ - Clean up the connection pool by closing off any connections that have expired. - """ - # Close any connections that have expired their keep-alive time. - for idx, connection in reversed(list(enumerate(self._pool))): - if connection.has_expired(): - connection.close() - self._pool.pop(idx) - - # If the pool size exceeds the maximum number of allowed keep-alive connections, - # then close off idle connections as required. - pool_size = len(self._pool) - for idx, connection in reversed(list(enumerate(self._pool))): - if connection.is_idle() and pool_size > self._max_keepalive_connections: - connection.close() - self._pool.pop(idx) - pool_size -= 1 - - def handle_request(self, request: Request) -> Response: - """ - Send an HTTP request, and return an HTTP response. - - This is the core implementation that is called into by `.request()` or `.stream()`. - """ - scheme = request.url.scheme.decode() - if scheme == "": - raise UnsupportedProtocol( - "Request URL is missing an 'http://' or 'https://' protocol." - ) - if scheme not in ("http", "https", "ws", "wss"): - raise UnsupportedProtocol( - f"Request URL has an unsupported protocol '{scheme}://'." - ) - - status = RequestStatus(request) - - with self._pool_lock: - self._requests.append(status) - self._close_expired_connections() - self._attempt_to_acquire_connection(status) - - while True: - timeouts = request.extensions.get("timeout", {}) - timeout = timeouts.get("pool", None) - try: - connection = status.wait_for_connection(timeout=timeout) - except BaseException as exc: - # If we timeout here, or if the task is cancelled, then make - # sure to remove the request from the queue before bubbling - # up the exception. - with self._pool_lock: - # Ensure only remove when task exists. - if status in self._requests: - self._requests.remove(status) - raise exc - - try: - response = connection.handle_request(request) - except ConnectionNotAvailable: - # The ConnectionNotAvailable exception is a special case, that - # indicates we need to retry the request on a new connection. - # - # The most common case where this can occur is when multiple - # requests are queued waiting for a single connection, which - # might end up as an HTTP/2 connection, but which actually ends - # up as HTTP/1.1. - with self._pool_lock: - # Maintain our position in the request queue, but reset the - # status so that the request becomes queued again. - status.unset_connection() - self._attempt_to_acquire_connection(status) - except BaseException as exc: - with ShieldCancellation(): - self.response_closed(status) - raise exc - else: - break - - # When we return the response, we wrap the stream in a special class - # that handles notifying the connection pool once the response - # has been released. - assert isinstance(response.stream, Iterable) - return Response( - status=response.status, - headers=response.headers, - content=ConnectionPoolByteStream(response.stream, self, status), - extensions=response.extensions, - ) - - def response_closed(self, status: RequestStatus) -> None: - """ - This method acts as a callback once the request/response cycle is complete. - - It is called into from the `ConnectionPoolByteStream.close()` method. - """ - assert status.connection is not None - connection = status.connection - - with self._pool_lock: - # Update the state of the connection pool. - if status in self._requests: - self._requests.remove(status) - - if connection.is_closed() and connection in self._pool: - self._pool.remove(connection) - - # Since we've had a response closed, it's possible we'll now be able - # to service one or more requests that are currently pending. - for status in self._requests: - if status.connection is None: - acquired = self._attempt_to_acquire_connection(status) - # If we could not acquire a connection for a queued request - # then we don't need to check anymore requests that are - # queued later behind it. - if not acquired: - break - - # Housekeeping. - self._close_expired_connections() - - def close(self) -> None: - """ - Close any connections in the pool. - """ - with self._pool_lock: - for connection in self._pool: - connection.close() - self._pool = [] - self._requests = [] - - def __enter__(self) -> "ConnectionPool": - return self - - def __exit__( - self, - exc_type: Optional[Type[BaseException]] = None, - exc_value: Optional[BaseException] = None, - traceback: Optional[TracebackType] = None, - ) -> None: - self.close() - - -class ConnectionPoolByteStream: - """ - A wrapper around the response byte stream, that additionally handles - notifying the connection pool when the response has been closed. - """ - - def __init__( - self, - stream: Iterable[bytes], - pool: ConnectionPool, - status: RequestStatus, - ) -> None: - self._stream = stream - self._pool = pool - self._status = status - - def __iter__(self) -> Iterator[bytes]: - for part in self._stream: - yield part - - def close(self) -> None: - try: - if hasattr(self._stream, "close"): - self._stream.close() - finally: - with ShieldCancellation(): - self._pool.response_closed(self._status) diff --git a/spaces/DragGan/DragGan/stylegan_human/edit/edit_helper.py b/spaces/DragGan/DragGan/stylegan_human/edit/edit_helper.py deleted file mode 100644 index 137a3dbd7cf1f48b21545673c422668b4d20765d..0000000000000000000000000000000000000000 --- a/spaces/DragGan/DragGan/stylegan_human/edit/edit_helper.py +++ /dev/null @@ -1,215 +0,0 @@ -# Copyright (c) SenseTime Research. All rights reserved. - -from legacy import save_obj, load_pkl -import torch -from torch.nn import functional as F -import pandas as pd -from .edit_config import attr_dict -import os - -def conv_warper(layer, input, style, noise): - # the conv should change - conv = layer.conv - batch, in_channel, height, width = input.shape - - style = style.view(batch, 1, in_channel, 1, 1) - weight = conv.scale * conv.weight * style - - if conv.demodulate: - demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8) - weight = weight * demod.view(batch, conv.out_channel, 1, 1, 1) - - weight = weight.view( - batch * conv.out_channel, in_channel, conv.kernel_size, conv.kernel_size - ) - - if conv.upsample: - input = input.view(1, batch * in_channel, height, width) - weight = weight.view( - batch, conv.out_channel, in_channel, conv.kernel_size, conv.kernel_size - ) - weight = weight.transpose(1, 2).reshape( - batch * in_channel, conv.out_channel, conv.kernel_size, conv.kernel_size - ) - out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch) - _, _, height, width = out.shape - out = out.view(batch, conv.out_channel, height, width) - out = conv.blur(out) - - elif conv.downsample: - input = conv.blur(input) - _, _, height, width = input.shape - input = input.view(1, batch * in_channel, height, width) - out = F.conv2d(input, weight, padding=0, stride=2, groups=batch) - _, _, height, width = out.shape - out = out.view(batch, conv.out_channel, height, width) - - else: - input = input.view(1, batch * in_channel, height, width) - out = F.conv2d(input, weight, padding=conv.padding, groups=batch) - _, _, height, width = out.shape - out = out.view(batch, conv.out_channel, height, width) - - out = layer.noise(out, noise=noise) - out = layer.activate(out) - - return out - -def decoder(G, style_space, latent, noise): - # an decoder warper for G - out = G.input(latent) - out = conv_warper(G.conv1, out, style_space[0], noise[0]) - skip = G.to_rgb1(out, latent[:, 1]) - - i = 1 - for conv1, conv2, noise1, noise2, to_rgb in zip( - G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs - ): - out = conv_warper(conv1, out, style_space[i], noise=noise1) - out = conv_warper(conv2, out, style_space[i+1], noise=noise2) - skip = to_rgb(out, latent[:, i + 2], skip) - i += 2 - image = skip - - return image - -def encoder_ifg(G, noise, attr_name, truncation=1, truncation_latent=None, - latent_dir='latent_direction/ss/', - step=0, total=0, real=False): - if not real: - styles = [noise] - styles = [G.style(s) for s in styles] - style_space = [] - - if truncation<1: - if not real: - style_t = [] - for style in styles: - style_t.append(truncation_latent + truncation * (style - truncation_latent)) - styles = style_t - else: # styles are latent (tensor: 1,18,512), for real PTI output - truncation_latent = truncation_latent.repeat(18,1).unsqueeze(0) # (1,512) --> (1,18,512) - styles = torch.add(truncation_latent,torch.mul(torch.sub(noise,truncation_latent),truncation)) - - - noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)] - if not real: - inject_index = G.n_latent - latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) - else: latent=styles - - style_space.append(G.conv1.conv.modulation(latent[:, 0])) - i = 1 - for conv1, conv2, noise1, noise2, to_rgb in zip( - G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs - ): - style_space.append(conv1.conv.modulation(latent[:, i])) - style_space.append(conv2.conv.modulation(latent[:, i+1])) - i += 2 - - # get layer, strength by dict - strength = attr_dict['interface_gan'][attr_name][0] - - if step != 0 and total != 0: - strength = step / total * strength - for i in range(15): - style_vect = load_pkl(os.path.join(latent_dir, '{}/style_vect_mean_{}.pkl'.format(attr_name, i))) - style_vect = torch.from_numpy(style_vect).to(latent.device).float() - style_space[i] += style_vect * strength - - return style_space, latent, noise - -def encoder_ss(G, noise, attr_name, truncation=1, truncation_latent=None, - statics_dir="latent_direction/ss_statics", - latent_dir="latent_direction/ss/", - step=0, total=0,real=False): - if not real: - styles = [noise] - styles = [G.style(s) for s in styles] - style_space = [] - - if truncation<1: - if not real: - style_t = [] - for style in styles: - style_t.append( - truncation_latent + truncation * (style - truncation_latent) - ) - styles = style_t - else: # styles are latent (tensor: 1,18,512), for real PTI output - truncation_latent = truncation_latent.repeat(18,1).unsqueeze(0) # (1,512) --> (1,18,512) - styles = torch.add(truncation_latent,torch.mul(torch.sub(noise,truncation_latent),truncation)) - - noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)] - - if not real: - inject_index = G.n_latent - latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) - else: latent = styles - - style_space.append(G.conv1.conv.modulation(latent[:, 0])) - i = 1 - for conv1, conv2, noise1, noise2, to_rgb in zip( - G.convs[::2], G.convs[1::2], noise[1::2], noise[2::2], G.to_rgbs - ): - style_space.append(conv1.conv.modulation(latent[:, i])) - style_space.append(conv2.conv.modulation(latent[:, i+1])) - i += 2 - # get threshold, layer, strength by dict - layer, strength, threshold = attr_dict['stylespace'][attr_name] - - statis_dir = os.path.join(statics_dir, "{}_statis/{}".format(attr_name, layer)) - statis_csv_path = os.path.join(statis_dir, "statis.csv") - statis_df = pd.read_csv(statis_csv_path) - statis_df = statis_df.sort_values(by='channel', ascending=True) - ch_mask = statis_df['strength'].values - ch_mask = torch.from_numpy(ch_mask).to(latent.device).float() - ch_mask = (ch_mask.abs()>threshold).float() - style_vect = load_pkl(os.path.join(latent_dir, '{}/style_vect_mean_{}.pkl'.format(attr_name, layer))) - style_vect = torch.from_numpy(style_vect).to(latent.device).float() - - style_vect = style_vect * ch_mask - - if step != 0 and total != 0: - strength = step / total * strength - - style_space[layer] += style_vect * strength - - return style_space, latent, noise - -def encoder_sefa(G, noise, attr_name, truncation=1, truncation_latent=None, - latent_dir='latent_direction/sefa/', - step=0, total=0, real=False): - if not real: - styles = [noise] - styles = [G.style(s) for s in styles] - - if truncation<1: - if not real: - style_t = [] - for style in styles: - style_t.append( - truncation_latent + truncation * (style - truncation_latent) - ) - styles = style_t - else: - truncation_latent = truncation_latent.repeat(18,1).unsqueeze(0) # (1,512) --> (1,18,512) - styles = torch.add(truncation_latent,torch.mul(torch.sub(noise,truncation_latent),truncation)) - - - noise = [getattr(G.noises, 'noise_{}'.format(i)) for i in range(G.num_layers)] - if not real: - inject_index = G.n_latent - latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1) - else: latent = styles - - layer, strength = attr_dict['sefa'][attr_name] - - sefa_vect = torch.load(os.path.join(latent_dir, '{}.pt'.format(attr_name))).to(latent.device).float() - if step != 0 and total != 0: - strength = step / total * strength - for l in layer: - latent[:, l, :] += (sefa_vect * strength * 2) - - - return latent, noise diff --git a/spaces/ECCV2022/bytetrack/tutorials/jde/byte_tracker.py b/spaces/ECCV2022/bytetrack/tutorials/jde/byte_tracker.py deleted file mode 100644 index 63baccebb1e7bd710d863984426bb94c2770d95d..0000000000000000000000000000000000000000 --- a/spaces/ECCV2022/bytetrack/tutorials/jde/byte_tracker.py +++ /dev/null @@ -1,369 +0,0 @@ -from collections import deque -import torch -import numpy as np -from utils.kalman_filter import KalmanFilter -from utils.log import logger -from models import * -from tracker import matching -from .basetrack import BaseTrack, TrackState - - -class STrack(BaseTrack): - - def __init__(self, tlwh, score): - - # wait activate - self._tlwh = np.asarray(tlwh, dtype=np.float) - self.kalman_filter = None - self.mean, self.covariance = None, None - self.is_activated = False - - self.score = score - self.tracklet_len = 0 - - def predict(self): - mean_state = self.mean.copy() - if self.state != TrackState.Tracked: - mean_state[7] = 0 - self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance) - - @staticmethod - def multi_predict(stracks, kalman_filter): - if len(stracks) > 0: - multi_mean = np.asarray([st.mean.copy() for st in stracks]) - multi_covariance = np.asarray([st.covariance for st in stracks]) - for i, st in enumerate(stracks): - if st.state != TrackState.Tracked: - multi_mean[i][7] = 0 -# multi_mean, multi_covariance = STrack.kalman_filter.multi_predict(multi_mean, multi_covariance) - multi_mean, multi_covariance = kalman_filter.multi_predict(multi_mean, multi_covariance) - for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)): - stracks[i].mean = mean - stracks[i].covariance = cov - - def activate(self, kalman_filter, frame_id): - """Start a new tracklet""" - self.kalman_filter = kalman_filter - self.track_id = self.next_id() - self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh)) - - self.tracklet_len = 0 - self.state = TrackState.Tracked - #self.is_activated = True - self.frame_id = frame_id - self.start_frame = frame_id - - def re_activate(self, new_track, frame_id, new_id=False): - self.mean, self.covariance = self.kalman_filter.update( - self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh) - ) - - self.tracklet_len = 0 - self.state = TrackState.Tracked - self.is_activated = True - self.frame_id = frame_id - if new_id: - self.track_id = self.next_id() - - def update(self, new_track, frame_id, update_feature=True): - """ - Update a matched track - :type new_track: STrack - :type frame_id: int - :type update_feature: bool - :return: - """ - self.frame_id = frame_id - self.tracklet_len += 1 - - new_tlwh = new_track.tlwh - self.mean, self.covariance = self.kalman_filter.update( - self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh)) - self.state = TrackState.Tracked - self.is_activated = True - - self.score = new_track.score - - @property - def tlwh(self): - """Get current position in bounding box format `(top left x, top left y, - width, height)`. - """ - if self.mean is None: - return self._tlwh.copy() - ret = self.mean[:4].copy() - ret[2] *= ret[3] - ret[:2] -= ret[2:] / 2 - return ret - - @property - def tlbr(self): - """Convert bounding box to format `(min x, min y, max x, max y)`, i.e., - `(top left, bottom right)`. - """ - ret = self.tlwh.copy() - ret[2:] += ret[:2] - return ret - - @staticmethod - def tlwh_to_xyah(tlwh): - """Convert bounding box to format `(center x, center y, aspect ratio, - height)`, where the aspect ratio is `width / height`. - """ - ret = np.asarray(tlwh).copy() - ret[:2] += ret[2:] / 2 - ret[2] /= ret[3] - return ret - - def to_xyah(self): - return self.tlwh_to_xyah(self.tlwh) - - @staticmethod - def tlbr_to_tlwh(tlbr): - ret = np.asarray(tlbr).copy() - ret[2:] -= ret[:2] - return ret - - @staticmethod - def tlwh_to_tlbr(tlwh): - ret = np.asarray(tlwh).copy() - ret[2:] += ret[:2] - return ret - - def __repr__(self): - return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame) - - -class BYTETracker(object): - def __init__(self, opt, frame_rate=30): - self.opt = opt - self.model = Darknet(opt.cfg, nID=14455) - # load_darknet_weights(self.model, opt.weights) - self.model.load_state_dict(torch.load(opt.weights, map_location='cpu')['model'], strict=False) - self.model.cuda().eval() - - self.tracked_stracks = [] # type: list[STrack] - self.lost_stracks = [] # type: list[STrack] - self.removed_stracks = [] # type: list[STrack] - - self.frame_id = 0 - self.det_thresh = opt.conf_thres - self.init_thresh = self.det_thresh + 0.2 - self.low_thresh = 0.3 - self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer) - self.max_time_lost = self.buffer_size - - self.kalman_filter = KalmanFilter() - - def update(self, im_blob, img0): - """ - Processes the image frame and finds bounding box(detections). - - Associates the detection with corresponding tracklets and also handles lost, removed, refound and active tracklets - - Parameters - ---------- - im_blob : torch.float32 - Tensor of shape depending upon the size of image. By default, shape of this tensor is [1, 3, 608, 1088] - - img0 : ndarray - ndarray of shape depending on the input image sequence. By default, shape is [608, 1080, 3] - - Returns - ------- - output_stracks : list of Strack(instances) - The list contains information regarding the online_tracklets for the recieved image tensor. - - """ - - self.frame_id += 1 - activated_starcks = [] # for storing active tracks, for the current frame - refind_stracks = [] # Lost Tracks whose detections are obtained in the current frame - lost_stracks = [] # The tracks which are not obtained in the current frame but are not removed.(Lost for some time lesser than the threshold for removing) - removed_stracks = [] - - t1 = time.time() - ''' Step 1: Network forward, get detections & embeddings''' - with torch.no_grad(): - pred = self.model(im_blob) - # pred is tensor of all the proposals (default number of proposals: 54264). Proposals have information associated with the bounding box and embeddings - pred = pred[pred[:, :, 4] > self.low_thresh] - # pred now has lesser number of proposals. Proposals rejected on basis of object confidence score - if len(pred) > 0: - dets = non_max_suppression(pred.unsqueeze(0), self.low_thresh, self.opt.nms_thres)[0].cpu() - # Final proposals are obtained in dets. Information of bounding box and embeddings also included - # Next step changes the detection scales - scale_coords(self.opt.img_size, dets[:, :4], img0.shape).round() - '''Detections is list of (x1, y1, x2, y2, object_conf, class_score, class_pred)''' - # class_pred is the embeddings. - - dets = dets.numpy() - remain_inds = dets[:, 4] > self.det_thresh - inds_low = dets[:, 4] > self.low_thresh - inds_high = dets[:, 4] < self.det_thresh - inds_second = np.logical_and(inds_low, inds_high) - dets_second = dets[inds_second] - dets = dets[remain_inds] - - detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4]) for - tlbrs in dets[:, :5]] - else: - detections = [] - dets_second = [] - - t2 = time.time() - # print('Forward: {} s'.format(t2-t1)) - - ''' Add newly detected tracklets to tracked_stracks''' - unconfirmed = [] - tracked_stracks = [] # type: list[STrack] - for track in self.tracked_stracks: - if not track.is_activated: - # previous tracks which are not active in the current frame are added in unconfirmed list - unconfirmed.append(track) - # print("Should not be here, in unconfirmed") - else: - # Active tracks are added to the local list 'tracked_stracks' - tracked_stracks.append(track) - - ''' Step 2: First association, with embedding''' - # Combining currently tracked_stracks and lost_stracks - strack_pool = joint_stracks(tracked_stracks, self.lost_stracks) - # Predict the current location with KF - STrack.multi_predict(strack_pool, self.kalman_filter) - dists = matching.iou_distance(strack_pool, detections) - # The dists is the list of distances of the detection with the tracks in strack_pool - matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.8) - # The matches is the array for corresponding matches of the detection with the corresponding strack_pool - - for itracked, idet in matches: - # itracked is the id of the track and idet is the detection - track = strack_pool[itracked] - det = detections[idet] - if track.state == TrackState.Tracked: - # If the track is active, add the detection to the track - track.update(detections[idet], self.frame_id) - activated_starcks.append(track) - else: - # We have obtained a detection from a track which is not active, hence put the track in refind_stracks list - track.re_activate(det, self.frame_id, new_id=False) - refind_stracks.append(track) - - # association the untrack to the low score detections - if len(dets_second) > 0: - detections_second = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4]) for - tlbrs in dets_second[:, :5]] - else: - detections_second = [] - r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked] - dists = matching.iou_distance(r_tracked_stracks, detections_second) - matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.4) - for itracked, idet in matches: - track = r_tracked_stracks[itracked] - det = detections_second[idet] - if track.state == TrackState.Tracked: - track.update(det, self.frame_id) - activated_starcks.append(track) - else: - track.re_activate(det, self.frame_id, new_id=False) - refind_stracks.append(track) - - for it in u_track: - track = r_tracked_stracks[it] - if not track.state == TrackState.Lost: - track.mark_lost() - lost_stracks.append(track) - # If no detections are obtained for tracks (u_track), the tracks are added to lost_tracks list and are marked lost - - '''Deal with unconfirmed tracks, usually tracks with only one beginning frame''' - detections = [detections[i] for i in u_detection] - dists = matching.iou_distance(unconfirmed, detections) - matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7) - for itracked, idet in matches: - unconfirmed[itracked].update(detections[idet], self.frame_id) - activated_starcks.append(unconfirmed[itracked]) - - # The tracks which are yet not matched - for it in u_unconfirmed: - track = unconfirmed[it] - track.mark_removed() - removed_stracks.append(track) - - # after all these confirmation steps, if a new detection is found, it is initialized for a new track - """ Step 4: Init new stracks""" - for inew in u_detection: - track = detections[inew] - if track.score < self.init_thresh: - continue - track.activate(self.kalman_filter, self.frame_id) - activated_starcks.append(track) - - """ Step 5: Update state""" - # If the tracks are lost for more frames than the threshold number, the tracks are removed. - for track in self.lost_stracks: - if self.frame_id - track.end_frame > self.max_time_lost: - track.mark_removed() - removed_stracks.append(track) - # print('Remained match {} s'.format(t4-t3)) - - # Update the self.tracked_stracks and self.lost_stracks using the updates in this step. - self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked] - self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks) - self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks) - # self.lost_stracks = [t for t in self.lost_stracks if t.state == TrackState.Lost] # type: list[STrack] - self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks) - self.lost_stracks.extend(lost_stracks) - self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks) - self.removed_stracks.extend(removed_stracks) - self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks) - - # get scores of lost tracks - output_stracks = [track for track in self.tracked_stracks if track.is_activated] - - logger.debug('===========Frame {}=========='.format(self.frame_id)) - logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks])) - logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks])) - logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks])) - logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks])) - # print('Final {} s'.format(t5-t4)) - return output_stracks - -def joint_stracks(tlista, tlistb): - exists = {} - res = [] - for t in tlista: - exists[t.track_id] = 1 - res.append(t) - for t in tlistb: - tid = t.track_id - if not exists.get(tid, 0): - exists[tid] = 1 - res.append(t) - return res - -def sub_stracks(tlista, tlistb): - stracks = {} - for t in tlista: - stracks[t.track_id] = t - for t in tlistb: - tid = t.track_id - if stracks.get(tid, 0): - del stracks[tid] - return list(stracks.values()) - -def remove_duplicate_stracks(stracksa, stracksb): - pdist = matching.iou_distance(stracksa, stracksb) - pairs = np.where(pdist<0.15) - dupa, dupb = list(), list() - for p,q in zip(*pairs): - timep = stracksa[p].frame_id - stracksa[p].start_frame - timeq = stracksb[q].frame_id - stracksb[q].start_frame - if timep > timeq: - dupb.append(q) - else: - dupa.append(p) - resa = [t for i,t in enumerate(stracksa) if not i in dupa] - resb = [t for i,t in enumerate(stracksb) if not i in dupb] - return resa, resb - - diff --git a/spaces/EPFL-VILAB/MultiMAE/mask2former/evaluation/instance_evaluation.py b/spaces/EPFL-VILAB/MultiMAE/mask2former/evaluation/instance_evaluation.py deleted file mode 100644 index bc2facec351e5f6ee965ee9acb4394f12c023f54..0000000000000000000000000000000000000000 --- a/spaces/EPFL-VILAB/MultiMAE/mask2former/evaluation/instance_evaluation.py +++ /dev/null @@ -1,107 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import contextlib -import copy -import io -import itertools -import json -import logging -import numpy as np -import os -import pickle -from collections import OrderedDict -import pycocotools.mask as mask_util -import torch -from pycocotools.coco import COCO -from pycocotools.cocoeval import COCOeval -from tabulate import tabulate - -import detectron2.utils.comm as comm -from detectron2.config import CfgNode -from detectron2.data import MetadataCatalog -from detectron2.data.datasets.coco import convert_to_coco_json -from detectron2.evaluation.coco_evaluation import COCOEvaluator, _evaluate_predictions_on_coco -from detectron2.evaluation.fast_eval_api import COCOeval_opt -from detectron2.structures import Boxes, BoxMode, pairwise_iou -from detectron2.utils.file_io import PathManager -from detectron2.utils.logger import create_small_table - - -# modified from COCOEvaluator for instance segmetnat -class InstanceSegEvaluator(COCOEvaluator): - """ - Evaluate AR for object proposals, AP for instance detection/segmentation, AP - for keypoint detection outputs using COCO's metrics. - See http://cocodataset.org/#detection-eval and - http://cocodataset.org/#keypoints-eval to understand its metrics. - The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means - the metric cannot be computed (e.g. due to no predictions made). - - In addition to COCO, this evaluator is able to support any bounding box detection, - instance segmentation, or keypoint detection dataset. - """ - - def _eval_predictions(self, predictions, img_ids=None): - """ - Evaluate predictions. Fill self._results with the metrics of the tasks. - """ - self._logger.info("Preparing results for COCO format ...") - coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) - tasks = self._tasks or self._tasks_from_predictions(coco_results) - - # unmap the category ids for COCO - if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): - dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id - # all_contiguous_ids = list(dataset_id_to_contiguous_id.values()) - # num_classes = len(all_contiguous_ids) - # assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1 - - reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} - for result in coco_results: - category_id = result["category_id"] - # assert category_id < num_classes, ( - # f"A prediction has class={category_id}, " - # f"but the dataset only has {num_classes} classes and " - # f"predicted class id should be in [0, {num_classes - 1}]." - # ) - assert category_id in reverse_id_mapping, ( - f"A prediction has class={category_id}, " - f"but the dataset only has class ids in {dataset_id_to_contiguous_id}." - ) - result["category_id"] = reverse_id_mapping[category_id] - - if self._output_dir: - file_path = os.path.join(self._output_dir, "coco_instances_results.json") - self._logger.info("Saving results to {}".format(file_path)) - with PathManager.open(file_path, "w") as f: - f.write(json.dumps(coco_results)) - f.flush() - - if not self._do_evaluation: - self._logger.info("Annotations are not available for evaluation.") - return - - self._logger.info( - "Evaluating predictions with {} COCO API...".format( - "unofficial" if self._use_fast_impl else "official" - ) - ) - for task in sorted(tasks): - assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" - coco_eval = ( - _evaluate_predictions_on_coco( - self._coco_api, - coco_results, - task, - kpt_oks_sigmas=self._kpt_oks_sigmas, - use_fast_impl=self._use_fast_impl, - img_ids=img_ids, - max_dets_per_image=self._max_dets_per_image, - ) - if len(coco_results) > 0 - else None # cocoapi does not handle empty results very well - ) - - res = self._derive_coco_results( - coco_eval, task, class_names=self._metadata.get("thing_classes") - ) - self._results[task] = res diff --git a/spaces/Egrt/MaskGAN/maskgan.py b/spaces/Egrt/MaskGAN/maskgan.py deleted file mode 100644 index 3ba3113b96e72f7d388c931af2cce4464d596852..0000000000000000000000000000000000000000 --- a/spaces/Egrt/MaskGAN/maskgan.py +++ /dev/null @@ -1,91 +0,0 @@ -''' -Author: Egrt -Date: 2022-04-07 14:00:52 -LastEditors: [egrt] -LastEditTime: 2022-05-04 11:47:21 -FilePath: \MaskGAN\maskgan.py -''' -import numpy as np -import torch -import torch.backends.cudnn as cudnn -from PIL import Image -from models.SwinIR import Generator -from utils.utils import cvtColor, preprocess_input - - -class MASKGAN(object): - #-----------------------------------------# - # 注意修改model_path - #-----------------------------------------# - _defaults = { - #-----------------------------------------------# - # model_path指向logs文件夹下的权值文件 - #-----------------------------------------------# - "model_path" : 'model_data/G_FFHQ.pth', - #-----------------------------------------------# - # 上采样的倍数,和训练时一样 - #-----------------------------------------------# - "scale_factor" : 1, - #-----------------------------------------------# - # hr_shape - #-----------------------------------------------# - "hr_shape" : [112, 112], - #-------------------------------# - # 是否使用Cuda - # 没有GPU可以设置成False - #-------------------------------# - "cuda" : False, - } - - #---------------------------------------------------# - # 初始化MASKGAN - #---------------------------------------------------# - def __init__(self, **kwargs): - self.__dict__.update(self._defaults) - for name, value in kwargs.items(): - setattr(self, name, value) - self.generate() - - def generate(self): - self.net = Generator(upscale=self.scale_factor, img_size=tuple(self.hr_shape), - window_size=7, img_range=1., depths=[6, 6, 6, 6], - embed_dim=96, num_heads=[6, 6, 6, 6], mlp_ratio=4, upsampler='pixelshuffledirect') - - device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - self.net = torch.load(self.model_path, map_location=device) - self.net = self.net.eval() - print('{} model, and classes loaded.'.format(self.model_path)) - - if self.cuda: - self.net = torch.nn.DataParallel(self.net) - cudnn.benchmark = True - self.net = self.net.cuda() - - def generate_1x1_image(self, image): - #---------------------------------------------------------# - # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。 - # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB - #---------------------------------------------------------# - image = cvtColor(image) - #---------------------------------------------------------# - # 添加上batch_size维度,并进行归一化 - #---------------------------------------------------------# - image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image, dtype=np.float32), [0.5,0.5,0.5], [0.5,0.5,0.5]), [2,0,1]), 0) - - with torch.no_grad(): - image_data = torch.from_numpy(image_data).type(torch.FloatTensor) - if self.cuda: - image_data = image_data.cuda() - - #---------------------------------------------------------# - # 将图像输入网络当中进行预测! - #---------------------------------------------------------# - hr_image = self.net(image_data)[0] - #---------------------------------------------------------# - # 将归一化的结果再转成rgb格式 - #---------------------------------------------------------# - hr_image = (hr_image.cpu().data.numpy().transpose(1, 2, 0) * 0.5 + 0.5) - hr_image = np.clip(hr_image * 255, 0, 255) - - hr_image = Image.fromarray(np.uint8(hr_image)) - return hr_image diff --git a/spaces/Ekimetrics/climate-question-answering/style.css b/spaces/Ekimetrics/climate-question-answering/style.css deleted file mode 100644 index b9098f83eee4c43f34be6e6643558eaf0e6d4a0c..0000000000000000000000000000000000000000 --- a/spaces/Ekimetrics/climate-question-answering/style.css +++ /dev/null @@ -1,273 +0,0 @@ - -/* :root { - --user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg'); - } */ - -.warning-box { - background-color: #fff3cd; - border: 1px solid #ffeeba; - border-radius: 4px; - padding: 15px 20px; - font-size: 14px; - color: #856404; - display: inline-block; - margin-bottom: 15px; - } - - -.tip-box { - background-color: #f0f9ff; - border: 1px solid #80d4fa; - border-radius: 4px; - margin-top:20px; - padding: 15px 20px; - font-size: 14px; - display: inline-block; - margin-bottom: 15px; - width: auto; - color:black !important; -} - -body.dark .warning-box * { - color:black !important; -} - - -body.dark .tip-box * { - color:black !important; -} - - -.tip-box-title { - font-weight: bold; - font-size: 14px; - margin-bottom: 5px; -} - -.light-bulb { - display: inline; - margin-right: 5px; -} - -.gr-box {border-color: #d6c37c} - -#hidden-message{ - display:none; -} - -.message{ - font-size:14px !important; -} - - -a { - text-decoration: none; - color: inherit; -} - -.card { - background-color: white; - border-radius: 10px; - box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); - overflow: hidden; - display: flex; - flex-direction: column; - margin:20px; -} - -.card-content { - padding: 20px; -} - -.card-content h2 { - font-size: 14px !important; - font-weight: bold; - margin-bottom: 10px; - margin-top:0px !important; - color:#dc2626!important;; -} - -.card-content p { - font-size: 12px; - margin-bottom: 0; -} - -.card-footer { - background-color: #f4f4f4; - font-size: 10px; - padding: 10px; - display: flex; - justify-content: space-between; - align-items: center; -} - -.card-footer span { - flex-grow: 1; - text-align: left; - color: #999 !important; -} - -.pdf-link { - display: inline-flex; - align-items: center; - margin-left: auto; - text-decoration: none!important; - font-size: 14px; -} - - - -.message.user{ - /* background-color:#7494b0 !important; */ - border:none; - /* color:white!important; */ -} - -.message.bot{ - /* background-color:#f2f2f7 !important; */ - border:none; -} - -/* .gallery-item > div:hover{ - background-color:#7494b0 !important; - color:white!important; -} - -.gallery-item:hover{ - border:#7494b0 !important; -} - -.gallery-item > div{ - background-color:white !important; - color:#577b9b!important; -} - -.label{ - color:#577b9b!important; -} */ - -/* .paginate{ - color:#577b9b!important; -} */ - - - -/* span[data-testid="block-info"]{ - background:none !important; - color:#577b9b; - } */ - -/* Pseudo-element for the circularly cropped picture */ -/* .message.bot::before { - content: ''; - position: absolute; - top: -10px; - left: -10px; - width: 30px; - height: 30px; - background-image: var(--user-image); - background-size: cover; - background-position: center; - border-radius: 50%; - z-index: 10; - } - */ - -label.selected{ - background:none !important; -} - -#submit-button{ - padding:0px !important; -} - - -@media screen and (min-width: 1024px) { - div#tab-examples{ - height:calc(100vh - 190px) !important; - overflow-y: auto; - } - - div#sources-textbox{ - height:calc(100vh - 190px) !important; - overflow-y: auto; - } - - div#chatbot-row{ - height:calc(100vh - 120px) !important; - } - - div#chatbot{ - height:calc(100vh - 220px) !important; - } - - .max-height{ - height:calc(100vh - 120px) !important; - overflow-y: auto; - } -} - -footer { - visibility: hidden; - display:none; -} - - -@media screen and (max-width: 767px) { - /* Your mobile-specific styles go here */ - - div#chatbot{ - height:500px !important; - } - - #submit-button{ - padding:0px !important; - min-width: 80px; - } - - /* This will hide all list items */ - div.tab-nav button { - display: none !important; - } - - /* This will show only the first list item */ - div.tab-nav button:first-child { - display: block !important; - } - - /* This will show only the first list item */ - div.tab-nav button:nth-child(2) { - display: block !important; - } - - #right-panel button{ - display: block !important; - } - - /* ... add other mobile-specific styles ... */ -} - - -body.dark .card{ - background-color: #374151; -} - -body.dark .card-content h2{ - color:#f4dbd3 !important; -} - -body.dark .card-footer { - background-color: #404652; -} - -body.dark .card-footer span { - color:white !important; -} - - -.doc-ref{ - color:#dc2626!important; - margin-right:1px; -} - - diff --git a/spaces/FL33TW00D/whisper-turbo/_next/static/buNTWDkfXYgaJCL9l6l1h/_ssgManifest.js b/spaces/FL33TW00D/whisper-turbo/_next/static/buNTWDkfXYgaJCL9l6l1h/_ssgManifest.js deleted file mode 100644 index 0511aa895e5036ab4b50d97112e1d6aed9a3cd79..0000000000000000000000000000000000000000 --- a/spaces/FL33TW00D/whisper-turbo/_next/static/buNTWDkfXYgaJCL9l6l1h/_ssgManifest.js +++ /dev/null @@ -1 +0,0 @@ -self.__SSG_MANIFEST=new Set,self.__SSG_MANIFEST_CB&&self.__SSG_MANIFEST_CB(); \ No newline at end of file diff --git a/spaces/Faridmaruf/RVCV2MODEL/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py b/spaces/Faridmaruf/RVCV2MODEL/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py deleted file mode 100644 index b412ba2814e114ca7bb00b6fd6ef217f63d788a3..0000000000000000000000000000000000000000 --- a/spaces/Faridmaruf/RVCV2MODEL/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py +++ /dev/null @@ -1,86 +0,0 @@ -from lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor -import pyworld -import numpy as np - - -class HarvestF0Predictor(F0Predictor): - def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100): - self.hop_length = hop_length - self.f0_min = f0_min - self.f0_max = f0_max - self.sampling_rate = sampling_rate - - def interpolate_f0(self, f0): - """ - 对F0进行插值处理 - """ - - data = np.reshape(f0, (f0.size, 1)) - - vuv_vector = np.zeros((data.size, 1), dtype=np.float32) - vuv_vector[data > 0.0] = 1.0 - vuv_vector[data <= 0.0] = 0.0 - - ip_data = data - - frame_number = data.size - last_value = 0.0 - for i in range(frame_number): - if data[i] <= 0.0: - j = i + 1 - for j in range(i + 1, frame_number): - if data[j] > 0.0: - break - if j < frame_number - 1: - if last_value > 0.0: - step = (data[j] - data[i - 1]) / float(j - i) - for k in range(i, j): - ip_data[k] = data[i - 1] + step * (k - i + 1) - else: - for k in range(i, j): - ip_data[k] = data[j] - else: - for k in range(i, frame_number): - ip_data[k] = last_value - else: - ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝 - last_value = data[i] - - return ip_data[:, 0], vuv_vector[:, 0] - - def resize_f0(self, x, target_len): - source = np.array(x) - source[source < 0.001] = np.nan - target = np.interp( - np.arange(0, len(source) * target_len, len(source)) / target_len, - np.arange(0, len(source)), - source, - ) - res = np.nan_to_num(target) - return res - - def compute_f0(self, wav, p_len=None): - if p_len is None: - p_len = wav.shape[0] // self.hop_length - f0, t = pyworld.harvest( - wav.astype(np.double), - fs=self.hop_length, - f0_ceil=self.f0_max, - f0_floor=self.f0_min, - frame_period=1000 * self.hop_length / self.sampling_rate, - ) - f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs) - return self.interpolate_f0(self.resize_f0(f0, p_len))[0] - - def compute_f0_uv(self, wav, p_len=None): - if p_len is None: - p_len = wav.shape[0] // self.hop_length - f0, t = pyworld.harvest( - wav.astype(np.double), - fs=self.sampling_rate, - f0_floor=self.f0_min, - f0_ceil=self.f0_max, - frame_period=1000 * self.hop_length / self.sampling_rate, - ) - f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate) - return self.interpolate_f0(self.resize_f0(f0, p_len)) diff --git a/spaces/Fernando22/freegpt-webui/g4f/Provider/Providers/H2o.py b/spaces/Fernando22/freegpt-webui/g4f/Provider/Providers/H2o.py deleted file mode 100644 index eabf94e2dc1e6167f746a820e34c335f2aa8578e..0000000000000000000000000000000000000000 --- a/spaces/Fernando22/freegpt-webui/g4f/Provider/Providers/H2o.py +++ /dev/null @@ -1,106 +0,0 @@ -from requests import Session -from uuid import uuid4 -from json import loads -import os -import json -import requests -from ...typing import sha256, Dict, get_type_hints - -url = 'https://gpt-gm.h2o.ai' -model = ['falcon-40b', 'falcon-7b', 'llama-13b'] -supports_stream = True -needs_auth = False - -models = { - 'falcon-7b': 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-7b-v3', - 'falcon-40b': 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1', - 'llama-13b': 'h2oai/h2ogpt-gm-oasst1-en-2048-open-llama-13b' -} - -def _create_completion(model: str, messages: list, stream: bool, **kwargs): - conversation = 'instruction: this is a conversation beween, a user and an AI assistant, respond to the latest message, referring to the conversation if needed\n' - for message in messages: - conversation += '%s: %s\n' % (message['role'], message['content']) - conversation += 'assistant:' - - client = Session() - client.headers = { - 'authority': 'gpt-gm.h2o.ai', - 'origin': 'https://gpt-gm.h2o.ai', - 'referer': 'https://gpt-gm.h2o.ai/', - 'sec-ch-ua': '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"', - 'sec-ch-ua-mobile': '?0', - 'sec-ch-ua-platform': '"Windows"', - 'sec-fetch-dest': 'document', - 'sec-fetch-mode': 'navigate', - 'sec-fetch-site': 'same-origin', - 'sec-fetch-user': '?1', - 'upgrade-insecure-requests': '1', - 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36', - } - - client.get('https://gpt-gm.h2o.ai/') - response = client.post('https://gpt-gm.h2o.ai/settings', data={ - 'ethicsModalAccepted': 'true', - 'shareConversationsWithModelAuthors': 'true', - 'ethicsModalAcceptedAt': '', - 'activeModel': 'h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1', - 'searchEnabled': 'true', - }) - - headers = { - 'authority': 'gpt-gm.h2o.ai', - 'accept': '*/*', - 'accept-language': 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3', - 'origin': 'https://gpt-gm.h2o.ai', - 'referer': 'https://gpt-gm.h2o.ai/', - 'sec-ch-ua': '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"', - 'sec-ch-ua-mobile': '?0', - 'sec-ch-ua-platform': '"Windows"', - 'sec-fetch-dest': 'empty', - 'sec-fetch-mode': 'cors', - 'sec-fetch-site': 'same-origin', - 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36', - } - - json_data = { - 'model': models[model] - } - - response = client.post('https://gpt-gm.h2o.ai/conversation', - headers=headers, json=json_data) - conversationId = response.json()['conversationId'] - - - completion = client.post(f'https://gpt-gm.h2o.ai/conversation/{conversationId}', stream=True, json = { - 'inputs': conversation, - 'parameters': { - 'temperature': kwargs.get('temperature', 0.4), - 'truncate': kwargs.get('truncate', 2048), - 'max_new_tokens': kwargs.get('max_new_tokens', 1024), - 'do_sample': kwargs.get('do_sample', True), - 'repetition_penalty': kwargs.get('repetition_penalty', 1.2), - 'return_full_text': kwargs.get('return_full_text', False) - }, - 'stream': True, - 'options': { - 'id': kwargs.get('id', str(uuid4())), - 'response_id': kwargs.get('response_id', str(uuid4())), - 'is_retry': False, - 'use_cache': False, - 'web_search_id': '' - } - }) - - for line in completion.iter_lines(): - if b'data' in line: - line = loads(line.decode('utf-8').replace('data:', '')) - token = line['token']['text'] - - if token == '<|endoftext|>': - break - else: - yield (token) - -params = f'g4f.Providers.{os.path.basename(__file__)[:-3]} supports: ' + \ - '(%s)' % ', '.join([f"{name}: {get_type_hints(_create_completion)[name].__name__}" for name in _create_completion.__code__.co_varnames[:_create_completion.__code__.co_argcount]]) \ No newline at end of file diff --git a/spaces/FireFrame/werz/README.md b/spaces/FireFrame/werz/README.md deleted file mode 100644 index 5df1c5786ff624447a197fa4db5738a6bad41c7c..0000000000000000000000000000000000000000 --- a/spaces/FireFrame/werz/README.md +++ /dev/null @@ -1,10 +0,0 @@ ---- -title: Werz -emoji: 👁 -colorFrom: yellow -colorTo: purple -sdk: static -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/GT4SD/hf-transformers/model_cards/description.md b/spaces/GT4SD/hf-transformers/model_cards/description.md deleted file mode 100644 index 7019094ba787b082f423e3c6c77c1494426db20d..0000000000000000000000000000000000000000 --- a/spaces/GT4SD/hf-transformers/model_cards/description.md +++ /dev/null @@ -1,6 +0,0 @@ -logo - -This UI gives access to some pretrained language models from [*HuggingFace*](https://github.com/huggingface/) that are distributed via GT4SD. - -For **examples** and **documentation** of the model parameters, please see below. -Moreover, we provide a **model card** ([Mitchell et al. (2019)](https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=XD4eHiE2cRUAAAAA:NL11gMa1hGPOUKTAbtXnbVQBDBbjxwcjGECF_i-WC_3g1aBgU1Hbz_f2b4kI_m1in-w__1ztGeHnwHs)) at the bottom of this page. diff --git a/spaces/Geonmo/socratic-models-image-captioning-with-BLOOM/prompts/extract_text_features.py b/spaces/Geonmo/socratic-models-image-captioning-with-BLOOM/prompts/extract_text_features.py deleted file mode 100644 index 2e536c845c960a6de2577619e2dc49343627bd82..0000000000000000000000000000000000000000 --- a/spaces/Geonmo/socratic-models-image-captioning-with-BLOOM/prompts/extract_text_features.py +++ /dev/null @@ -1,154 +0,0 @@ -import os -import numpy as np -import torch -import clip -import csv -import tqdm -from profanity_filter import ProfanityFilter - - -templates = [ - lambda c: f'a bad photo of a {c}.', - lambda c: f'a photo of many {c}.', - lambda c: f'a sculpture of a {c}.', - lambda c: f'a photo of the hard to see {c}.', - lambda c: f'a low resolution photo of the {c}.', - lambda c: f'a rendering of a {c}.', - lambda c: f'graffiti of a {c}.', - lambda c: f'a bad photo of the {c}.', - lambda c: f'a cropped photo of the {c}.', - lambda c: f'a tattoo of a {c}.', - lambda c: f'the embroidered {c}.', - lambda c: f'a photo of a hard to see {c}.', - lambda c: f'a bright photo of a {c}.', - lambda c: f'a photo of a clean {c}.', - lambda c: f'a photo of a dirty {c}.', - lambda c: f'a dark photo of the {c}.', - lambda c: f'a drawing of a {c}.', - lambda c: f'a photo of my {c}.', - lambda c: f'the plastic {c}.', - lambda c: f'a photo of the cool {c}.', - lambda c: f'a close-up photo of a {c}.', - lambda c: f'a black and white photo of the {c}.', - lambda c: f'a painting of the {c}.', - lambda c: f'a painting of a {c}.', - lambda c: f'a pixelated photo of the {c}.', - lambda c: f'a sculpture of the {c}.', - lambda c: f'a bright photo of the {c}.', - lambda c: f'a cropped photo of a {c}.', - lambda c: f'a plastic {c}.', - lambda c: f'a photo of the dirty {c}.', - lambda c: f'a jpeg corrupted photo of a {c}.', - lambda c: f'a blurry photo of the {c}.', - lambda c: f'a photo of the {c}.', - lambda c: f'a good photo of the {c}.', - lambda c: f'a rendering of the {c}.', - lambda c: f'a {c} in a video game.', - lambda c: f'a photo of one {c}.', - lambda c: f'a doodle of a {c}.', - lambda c: f'a close-up photo of the {c}.', - lambda c: f'a photo of a {c}.', - lambda c: f'the origami {c}.', - lambda c: f'the {c} in a video game.', - lambda c: f'a sketch of a {c}.', - lambda c: f'a doodle of the {c}.', - lambda c: f'a origami {c}.', - lambda c: f'a low resolution photo of a {c}.', - lambda c: f'the toy {c}.', - lambda c: f'a rendition of the {c}.', - lambda c: f'a photo of the clean {c}.', - lambda c: f'a photo of a large {c}.', - lambda c: f'a rendition of a {c}.', - lambda c: f'a photo of a nice {c}.', - lambda c: f'a photo of a weird {c}.', - lambda c: f'a blurry photo of a {c}.', - lambda c: f'a cartoon {c}.', - lambda c: f'art of a {c}.', - lambda c: f'a sketch of the {c}.', - lambda c: f'a embroidered {c}.', - lambda c: f'a pixelated photo of a {c}.', - lambda c: f'itap of the {c}.', - lambda c: f'a jpeg corrupted photo of the {c}.', - lambda c: f'a good photo of a {c}.', - lambda c: f'a plushie {c}.', - lambda c: f'a photo of the nice {c}.', - lambda c: f'a photo of the small {c}.', - lambda c: f'a photo of the weird {c}.', - lambda c: f'the cartoon {c}.', - lambda c: f'art of the {c}.', - lambda c: f'a drawing of the {c}.', - lambda c: f'a photo of the large {c}.', - lambda c: f'a black and white photo of a {c}.', - lambda c: f'the plushie {c}.', - lambda c: f'a dark photo of a {c}.', - lambda c: f'itap of a {c}.', - lambda c: f'graffiti of the {c}.', - lambda c: f'a toy {c}.', - lambda c: f'itap of my {c}.', - lambda c: f'a photo of a cool {c}.', - lambda c: f'a photo of a small {c}.', - lambda c: f'a tattoo of the {c}.', -] - -os.environ['CUDA_VISIBLE_DEVICES'] = '0' -device = "cuda" if torch.cuda.is_available() else "cpu" -clip_model, clip_preprocess = clip.load("ViT-L/14", device=device) - -''' -csv_data = open('openimage-classnames.csv') -csv_reader = csv.reader(csv_data) -class_names = [] -for row in csv_reader: - class_names.append(row[-1]) -''' -''' -txt_data = open('tencent-ml-images.txt') -pf = ProfanityFilter() -lines = txt_data.readlines() -class_names = [] -for line in lines[4:]: - class_name_precook = line.strip().split('\t')[-1] - safe_list = '' - for class_name in class_name_precook.split(', '): - if pf.is_clean(class_name): - safe_list += '%s, ' % class_name - safe_list = safe_list[:-2] - if len(safe_list) > 0: - class_names.append(safe_list) -f_w = open('tencent-ml-classnames.txt', 'w') -for cln in class_names: - f_w.write('%s\n' % cln) -f_w.close() -''' -place_categories = np.loadtxt('categories_places365.txt', dtype=str) -place_texts = [] -for place in place_categories[:, 0]: - place = place.split('/')[2:] - if len(place) > 1: - place = place[1] + ' ' + place[0] - else: - place = place[0] - place = place.replace('_', ' ') - place_texts.append(place) -class_names = place_texts -f_w = open('place365-classnames.txt', 'w') -for cln in class_names: - f_w.write('%s\n' % cln) -f_w.close() -print(class_names) - -class_weights = [] -with torch.no_grad(): - for classname in tqdm.tqdm(class_names, desc='encoding text'): - texts = [template(classname) for template in templates] - text_inputs = clip.tokenize(texts).to(device) - text_features = clip_model.encode_text(text_inputs) - text_features /= text_features.norm(dim=-1, keepdim=True) - text_features = text_features.mean(dim=0) - text_features /= text_features.norm() - class_weights.append(text_features) - -class_weights = torch.stack(class_weights) -print(class_weights.shape) -#torch.save(class_weights, 'clip_ViTL14_openimage_classifier_weights.pt') -torch.save(class_weights, 'clip_ViTL14_place365_classifier_weights.pt') diff --git a/spaces/Gradio-Blocks/beat-interpolator/examples/models/celeba256/model.py b/spaces/Gradio-Blocks/beat-interpolator/examples/models/celeba256/model.py deleted file mode 100644 index eb34339a77dc9c6076965897556a727a299b8fdd..0000000000000000000000000000000000000000 --- a/spaces/Gradio-Blocks/beat-interpolator/examples/models/celeba256/model.py +++ /dev/null @@ -1,37 +0,0 @@ -import torch -import numpy as np - - -def create_celeba256_inference(): - device = 'cuda' if torch.cuda.is_available() else 'cpu' - use_gpu = True if torch.cuda.is_available() else False - celeba256 = torch.hub.load( - 'facebookresearch/pytorch_GAN_zoo:hub', - 'PGAN', - model_name='celebAHQ-256', - pretrained=True, - useGPU=use_gpu - ) - celeba256_noise, _ = celeba256.buildNoiseData(1) - @torch.inference_mode() - def celeba256_generator(latents): - latents = [torch.from_numpy(latent).float().to(device) for latent in latents] - latents = torch.stack(latents) - out = celeba256.test(latents) - outs = [] - for out_i in out: - out_i = ((out_i.permute(1,2,0) + 1) * 127.5).clamp(0,255).cpu().numpy() - out_i = np.uint8(out_i) - outs.append(out_i) - return outs - - return { - 'name': 'Celeba256', - 'generator': celeba256_generator, - 'latent_dim': celeba256_noise.shape[1], - 'fps': 5, - 'batch_size': 1, - 'strength': 0.6, - 'max_duration': 20, - 'use_peak': True - } diff --git a/spaces/Gradio-Blocks/uniformer_image_detection/configs/reppoints/README.md b/spaces/Gradio-Blocks/uniformer_image_detection/configs/reppoints/README.md deleted file mode 100644 index 2ab22cd8e83151b5f028df96641fea5bfe6caa7a..0000000000000000000000000000000000000000 --- a/spaces/Gradio-Blocks/uniformer_image_detection/configs/reppoints/README.md +++ /dev/null @@ -1,54 +0,0 @@ -# RepPoints: Point Set Representation for Object Detection - -By [Ze Yang](https://yangze.tech/), [Shaohui Liu](http://b1ueber2y.me/), and [Han Hu](https://ancientmooner.github.io/). - -We provide code support and configuration files to reproduce the results in the paper for -["RepPoints: Point Set Representation for Object Detection"](https://arxiv.org/abs/1904.11490) on COCO object detection. - -## Introduction - -[ALGORITHM] - -**RepPoints**, initially described in [arXiv](https://arxiv.org/abs/1904.11490), is a new representation method for visual objects, on which visual understanding tasks are typically centered. Visual object representation, aiming at both geometric description and appearance feature extraction, is conventionally achieved by `bounding box + RoIPool (RoIAlign)`. The bounding box representation is convenient to use; however, it provides only a rectangular localization of objects that lacks geometric precision and may consequently degrade feature quality. Our new representation, RepPoints, models objects by a `point set` instead of a `bounding box`, which learns to adaptively position themselves over an object in a manner that circumscribes the object’s `spatial extent` and enables `semantically aligned feature extraction`. This richer and more flexible representation maintains the convenience of bounding boxes while facilitating various visual understanding applications. This repo demonstrated the effectiveness of RepPoints for COCO object detection. - -Another feature of this repo is the demonstration of an `anchor-free detector`, which can be as effective as state-of-the-art anchor-based detection methods. The anchor-free detector can utilize either `bounding box` or `RepPoints` as the basic object representation. - -
    - -

    Learning RepPoints in Object Detection.

    -
    - -## Citing RepPoints - -``` -@inproceedings{yang2019reppoints, - title={RepPoints: Point Set Representation for Object Detection}, - author={Yang, Ze and Liu, Shaohui and Hu, Han and Wang, Liwei and Lin, Stephen}, - booktitle={The IEEE International Conference on Computer Vision (ICCV)}, - month={Oct}, - year={2019} -} -``` - -## Results and models - -The results on COCO 2017val are shown in the table below. - -| Method | Backbone | GN | Anchor | convert func | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download | -|:---------:|:-------------:|:---:|:------:|:------------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:| -| BBox | R-50-FPN | Y | single | - | 1x | 3.9 | 15.9 | 36.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329-c98bfa96.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_fpn_gn-neck%2Bhead_1x_coco_20200329_145916.log.json) | -| BBox | R-50-FPN | Y | none | - | 1x | 3.9 | 15.4 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/bbox_r50_grid_center_fpn_gn-neck+Bhead_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330-00f73d58.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco/bbox_r50_grid_center_fpn_gn-neck%2Bhead_1x_coco_20200330_233609.log.json) | -| RepPoints | R-50-FPN | N | none | moment | 1x | 3.3 | 18.5 | 37.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r50_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330-b73db8d1.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_1x_coco/reppoints_moment_r50_fpn_1x_coco_20200330_233609.log.json) | -| RepPoints | R-50-FPN | Y | none | moment | 1x | 3.9 | 17.5 | 38.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329-4b38409a.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_1x_coco_20200329_145952.log.json) | -| RepPoints | R-50-FPN | Y | none | moment | 2x | 3.9 | - | 38.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329-91babaa2.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r50_fpn_gn-neck%2Bhead_2x_coco_20200329_150020.log.json) | -| RepPoints | R-101-FPN | Y | none | moment | 2x | 5.8 | 13.7 | 40.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329-4fbc7310.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_gn-neck%2Bhead_2x_coco_20200329_132205.log.json) | -| RepPoints | R-101-FPN-DCN | Y | none | moment | 2x | 5.9 | 12.1 | 42.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-3309fbf2.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329_132134.log.json) | -| RepPoints | X-101-FPN-DCN | Y | none | moment | 2x | 7.1 | 9.3 | 44.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329-f87da1ea.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck%2Bhead_2x_coco_20200329_132201.log.json) | - -**Notes:** - -- `R-xx`, `X-xx` denote the ResNet and ResNeXt architectures, respectively. -- `DCN` denotes replacing 3x3 conv with the 3x3 deformable convolution in `c3-c5` stages of backbone. -- `none` in the `anchor` column means 2-d `center point` (x,y) is used to represent the initial object hypothesis. `single` denotes one 4-d anchor box (x,y,w,h) with IoU based label assign criterion is adopted. -- `moment`, `partial MinMax`, `MinMax` in the `convert func` column are three functions to convert a point set to a pseudo box. -- Note the results here are slightly different from those reported in the paper, due to framework change. While the original paper uses an [MXNet](https://mxnet.apache.org/) implementation, we re-implement the method in [PyTorch](https://pytorch.org/) based on mmdetection. diff --git a/spaces/HESOAYM/ElviraMulti/modules/llama_func.py b/spaces/HESOAYM/ElviraMulti/modules/llama_func.py deleted file mode 100644 index aec202a851c8ec51d1a96ce23320919af0d22a95..0000000000000000000000000000000000000000 --- a/spaces/HESOAYM/ElviraMulti/modules/llama_func.py +++ /dev/null @@ -1,166 +0,0 @@ -import os -import logging - -from llama_index import download_loader -from llama_index import ( - Document, - LLMPredictor, - PromptHelper, - QuestionAnswerPrompt, - RefinePrompt, -) -import colorama -import PyPDF2 -from tqdm import tqdm - -from modules.presets import * -from modules.utils import * -from modules.config import local_embedding - - -def get_index_name(file_src): - file_paths = [x.name for x in file_src] - file_paths.sort(key=lambda x: os.path.basename(x)) - - md5_hash = hashlib.md5() - for file_path in file_paths: - with open(file_path, "rb") as f: - while chunk := f.read(8192): - md5_hash.update(chunk) - - return md5_hash.hexdigest() - - -def block_split(text): - blocks = [] - while len(text) > 0: - blocks.append(Document(text[:1000])) - text = text[1000:] - return blocks - - -def get_documents(file_src): - documents = [] - logging.debug("Loading documents...") - logging.debug(f"file_src: {file_src}") - for file in file_src: - filepath = file.name - filename = os.path.basename(filepath) - file_type = os.path.splitext(filepath)[1] - logging.info(f"loading file: {filename}") - try: - if file_type == ".pdf": - logging.debug("Loading PDF...") - try: - from modules.pdf_func import parse_pdf - from modules.config import advance_docs - - two_column = advance_docs["pdf"].get("two_column", False) - pdftext = parse_pdf(filepath, two_column).text - except: - pdftext = "" - with open(filepath, "rb") as pdfFileObj: - pdfReader = PyPDF2.PdfReader(pdfFileObj) - for page in tqdm(pdfReader.pages): - pdftext += page.extract_text() - text_raw = pdftext - elif file_type == ".docx": - logging.debug("Loading Word...") - DocxReader = download_loader("DocxReader") - loader = DocxReader() - text_raw = loader.load_data(file=filepath)[0].text - elif file_type == ".epub": - logging.debug("Loading EPUB...") - EpubReader = download_loader("EpubReader") - loader = EpubReader() - text_raw = loader.load_data(file=filepath)[0].text - elif file_type == ".xlsx": - logging.debug("Loading Excel...") - text_list = excel_to_string(filepath) - for elem in text_list: - documents.append(Document(elem)) - continue - else: - logging.debug("Loading text file...") - with open(filepath, "r", encoding="utf-8") as f: - text_raw = f.read() - except Exception as e: - logging.error(f"Error loading file: {filename}") - pass - text = add_space(text_raw) - # text = block_split(text) - # documents += text - documents += [Document(text)] - logging.debug("Documents loaded.") - return documents - - -def construct_index( - api_key, - file_src, - max_input_size=4096, - num_outputs=5, - max_chunk_overlap=20, - chunk_size_limit=600, - embedding_limit=None, - separator=" ", -): - from langchain.chat_models import ChatOpenAI - from langchain.embeddings.huggingface import HuggingFaceEmbeddings - from llama_index import GPTSimpleVectorIndex, ServiceContext, LangchainEmbedding, OpenAIEmbedding - - if api_key: - os.environ["OPENAI_API_KEY"] = api_key - else: - # 由于一个依赖的愚蠢的设计,这里必须要有一个API KEY - os.environ["OPENAI_API_KEY"] = "sk-xxxxxxx" - chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit - embedding_limit = None if embedding_limit == 0 else embedding_limit - separator = " " if separator == "" else separator - - prompt_helper = PromptHelper( - max_input_size=max_input_size, - num_output=num_outputs, - max_chunk_overlap=max_chunk_overlap, - embedding_limit=embedding_limit, - chunk_size_limit=600, - separator=separator, - ) - index_name = get_index_name(file_src) - if os.path.exists(f"./index/{index_name}.json"): - logging.info("找到了缓存的索引文件,加载中……") - return GPTSimpleVectorIndex.load_from_disk(f"./index/{index_name}.json") - else: - try: - documents = get_documents(file_src) - if local_embedding: - embed_model = LangchainEmbedding(HuggingFaceEmbeddings()) - else: - embed_model = OpenAIEmbedding() - logging.info("构建索引中……") - with retrieve_proxy(): - service_context = ServiceContext.from_defaults( - prompt_helper=prompt_helper, - chunk_size_limit=chunk_size_limit, - embed_model=embed_model, - ) - index = GPTSimpleVectorIndex.from_documents( - documents, service_context=service_context - ) - logging.debug("索引构建完成!") - os.makedirs("./index", exist_ok=True) - index.save_to_disk(f"./index/{index_name}.json") - logging.debug("索引已保存至本地!") - return index - - except Exception as e: - logging.error("索引构建失败!", e) - print(e) - return None - - -def add_space(text): - punctuations = {",": ", ", "。": "。 ", "?": "? ", "!": "! ", ":": ": ", ";": "; "} - for cn_punc, en_punc in punctuations.items(): - text = text.replace(cn_punc, en_punc) - return text diff --git a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/laser/laser_src/laser_transformer.py b/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/laser/laser_src/laser_transformer.py deleted file mode 100644 index 0be030994ff87334ca0392302374693f7f2c61b3..0000000000000000000000000000000000000000 --- a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/laser/laser_src/laser_transformer.py +++ /dev/null @@ -1,354 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import logging - -from typing import Any, Dict, List, Optional -from torch import Tensor - -import torch -import torch.nn as nn - -from fairseq.models import ( - FairseqEncoderDecoderModel, - register_model, - register_model_architecture, -) -from fairseq.models.transformer import ( - base_architecture, - Embedding, - TransformerModel, - TransformerEncoder, - TransformerDecoder, -) -from fairseq.modules import ( - TransformerDecoderLayer, -) - -logger = logging.getLogger(__name__) - - -@register_model("laser_transformer") -class LaserTransformerModel(FairseqEncoderDecoderModel): - """Train Transformer for LASER task - - Requires --task laser - """ - - def __init__(self, encoder, decoder): - super().__init__(encoder, decoder) - - def forward( - self, - src_tokens, - src_lengths, - prev_output_tokens=None, - tgt_tokens=None, - tgt_lengths=None, - target_language_id=-1, - dataset_name="", - ): - laser_encoder_out = self.encoder(src_tokens, src_lengths) - return self.decoder( - prev_output_tokens, laser_encoder_out, lang_id=target_language_id - ) - - @staticmethod - def add_args(parser): - """Add model-specific arguments to the parser.""" - TransformerModel.add_args(parser) - parser.add_argument( - "--decoder-lang-embed-dim", - type=int, - metavar="N", - help="decoder language embedding dimension", - ) - - @classmethod - def build_model(cls, args, task): - base_laser_transformer_architecture(args) - - num_langs = task.num_tasks if hasattr(task, "num_tasks") else 0 - - def load_embed_tokens(dictionary, embed_dim): - num_embeddings = len(dictionary) - padding_idx = dictionary.pad() - - return Embedding(num_embeddings, embed_dim, padding_idx) - - encoder_embed_tokens = load_embed_tokens( - task.source_dictionary, args.encoder_embed_dim - ) - decoder_embed_tokens = load_embed_tokens( - task.target_dictionary, args.decoder_embed_dim - ) - num_langs = task.num_tasks if hasattr(task, "num_tasks") else 0 - - encoder = LaserTransformerEncoder( - args, task.source_dictionary, encoder_embed_tokens - ) - - decoder = LaserTransformerDecoder( - args, - task.target_dictionary, - decoder_embed_tokens, - num_langs=num_langs, - lang_embed_dim=args.decoder_lang_embed_dim, - ) - - return cls(encoder, decoder) - - -class LaserTransformerEncoder(TransformerEncoder): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - def forward(self, src_tokens, *args, **kwargs): - encoder_out = super().forward(src_tokens, *args, **kwargs) - - x = encoder_out["encoder_out"][0] # T x B x C - padding_mask = src_tokens.eq(self.padding_idx).t().unsqueeze(-1) - - if padding_mask.any(): - x = x.float().masked_fill_(padding_mask, float("-inf")).type_as(x) - - # Build the sentence embedding by max-pooling over the encoder outputs - sentemb = x.max(dim=0)[0] - - # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in - # `foward` so we use a dictionary instead. - # TorchScript does not support mixed values so the values are all lists. - # The empty list is equivalent to None. - return {"sentemb": [sentemb]} # B x C - - @torch.jit.export - def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): - """ - Same as the one in transformer.py, with new_sentemb - """ - if len(encoder_out["sentemb"]) == 0: - new_sentemb = [] - else: - new_sentemb = [encoder_out["sentemb"][0].index_select(0, new_order)] - - return { - "sentemb": new_sentemb, # B x C - } - - -class LaserTransformerDecoder(TransformerDecoder): - def __init__(self, args, dictionary, *kargs, **kwargs): - self.num_langs = kwargs.get("num_langs", 1) - self.lang_embed_dim = kwargs.get("lang_embed_dim", 0) - kwargs.pop("num_langs", None) - kwargs.pop("lang_embed_dim", None) - - super().__init__(args, dictionary, *kargs, **kwargs, no_encoder_attn=True) - - if self.lang_embed_dim == 0: - self.embed_lang = None - else: - self.embed_lang = nn.Embedding(self.num_langs, self.lang_embed_dim) - nn.init.uniform_(self.embed_lang.weight, -0.1, 0.1) - - if self.output_projection is not None: - laser_output_embed_dim = ( - self.output_embed_dim + self.lang_embed_dim + args.encoder_embed_dim - ) - self.output_projection = nn.Linear( - laser_output_embed_dim, len(dictionary), bias=False - ) - nn.init.normal_( - self.output_projection.weight, - mean=0, - std=laser_output_embed_dim ** -0.5, - ) - - def build_decoder_layer(self, args, no_encoder_attn=False): - decoder_embed_dim = args.decoder_embed_dim - args.decoder_embed_dim = ( - decoder_embed_dim + self.lang_embed_dim + args.encoder_embed_dim - ) - res = TransformerDecoderLayer(args, no_encoder_attn=True) - args.decoder_embed_dim = decoder_embed_dim - - return res - - def extract_features( - self, - prev_output_tokens, - encoder_out: Optional[Dict[str, List[Tensor]]], - incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, - full_context_alignment: bool = False, - alignment_layer: Optional[int] = None, - alignment_heads: Optional[int] = None, - lang_id: Optional[int] = None, - ): - """ - Similar to *forward* but only return features. - - Includes several features from "Jointly Learning to Align and - Translate with Transformer Models" (Garg et al., EMNLP 2019). - - Args: - full_context_alignment (bool, optional): don't apply - auto-regressive mask to self-attention (default: False). - alignment_layer (int, optional): return mean alignment over - heads at this layer (default: last layer). - alignment_heads (int, optional): only average alignment over - this many heads (default: all heads). - - Returns: - tuple: - - the decoder's features of shape `(batch, tgt_len, embed_dim)` - - a dictionary with any model-specific outputs - """ - if alignment_layer is None: - alignment_layer = self.num_layers - 1 - - # embed positions - positions = ( - self.embed_positions( - prev_output_tokens, incremental_state=incremental_state - ) - if self.embed_positions is not None - else None - ) - - if incremental_state is not None: - prev_output_tokens = prev_output_tokens[:, -1:] - if positions is not None: - positions = positions[:, -1:] - - bsz, seqlen = prev_output_tokens.size() - - # embed tokens and positions - x = self.embed_scale * self.embed_tokens(prev_output_tokens) - - if self.quant_noise is not None: - x = self.quant_noise(x) - - if self.project_in_dim is not None: - x = self.project_in_dim(x) - - if positions is not None: - x += positions - - if self.layernorm_embedding is not None: - x = self.layernorm_embedding(x) - - x = self.dropout_module(x) - - # B x T x C -> T x B x C - x = x.transpose(0, 1) - - if self.embed_lang is not None: - lang_ids = prev_output_tokens.data.new_full((bsz,), lang_id) - langemb = self.embed_lang(lang_ids) - langemb = langemb.unsqueeze(0) - repeat_vals = [x.shape[0] // langemb.shape[0]] + [-1] * ( - len(langemb.shape) - 1 - ) - x = torch.cat((x, langemb.expand(*repeat_vals)), dim=-1) - - sentemb = encoder_out["sentemb"][0] - sentemb = sentemb.unsqueeze(0) - - repeat_vals = [x.shape[0] // sentemb.shape[0]] + [-1] * (len(sentemb.shape) - 1) - x = torch.cat((x, sentemb.expand(*repeat_vals)), dim=-1) - - self_attn_padding_mask: Optional[Tensor] = None - if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): - self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) - - # decoder layers - attn: Optional[Tensor] = None - inner_states: List[Optional[Tensor]] = [x] - for idx, layer in enumerate(self.layers): - if incremental_state is None and not full_context_alignment: - self_attn_mask = self.buffered_future_mask(x) - else: - self_attn_mask = None - - x, layer_attn, _ = layer( - x, - None, - None, - incremental_state, - self_attn_mask=self_attn_mask, - self_attn_padding_mask=self_attn_padding_mask, - need_attn=bool((idx == alignment_layer)), - need_head_weights=bool((idx == alignment_layer)), - ) - inner_states.append(x) - if layer_attn is not None and idx == alignment_layer: - attn = layer_attn.float().to(x) - - if attn is not None: - if alignment_heads is not None: - attn = attn[:alignment_heads] - - # average probabilities over heads - attn = attn.mean(dim=0) - - if self.layer_norm is not None: - x = self.layer_norm(x) - - # T x B x C -> B x T x C - x = x.transpose(0, 1) - - if self.project_out_dim is not None: - x = self.project_out_dim(x) - - return x, {"attn": [attn], "inner_states": inner_states} - - def forward( - self, - prev_output_tokens, - encoder_out: Optional[Dict[str, List[Tensor]]] = None, - incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, - features_only: bool = False, - alignment_layer: Optional[int] = None, - alignment_heads: Optional[int] = None, - src_lengths: Optional[Any] = None, - return_all_hiddens: bool = False, - lang_id: Optional[int] = None, - ): - """ - Args: - prev_output_tokens (LongTensor): previous decoder outputs of shape - `(batch, tgt_len)`, for teacher forcing - encoder_out (optional): output from the encoder, used for - encoder-side attention - incremental_state (dict): dictionary used for storing state during - :ref:`Incremental decoding` - features_only (bool, optional): only return features without - applying output layer (default: False). - - Returns: - tuple: - - the decoder's output of shape `(batch, tgt_len, vocab)` - - a dictionary with any model-specific outputs - """ - - assert lang_id is not None - - x, extra = self.extract_features( - prev_output_tokens, - encoder_out=encoder_out, - incremental_state=incremental_state, - alignment_layer=alignment_layer, - alignment_heads=alignment_heads, - lang_id=lang_id, - ) - if not features_only: - x = self.output_layer(x) - return x, extra - - -@register_model_architecture("laser_transformer", "laser_transformer") -def base_laser_transformer_architecture(args): - base_architecture(args) - args.decoder_lang_embed_dim = getattr(args, "decoder_lang_embed_dim", 0) diff --git a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/wav2vec/unsupervised/kaldi_self_train/st/decode_word_step2.sh b/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/wav2vec/unsupervised/kaldi_self_train/st/decode_word_step2.sh deleted file mode 100644 index 59a6cbb12539cf62658f8344f7be7cecf2e3380f..0000000000000000000000000000000000000000 --- a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/examples/wav2vec/unsupervised/kaldi_self_train/st/decode_word_step2.sh +++ /dev/null @@ -1,30 +0,0 @@ -#!/bin/bash - -# prepare a new data directory of HMM word output - -. ./path.sh - -set -eu - -out_dir= # same as in train.sh -dec_lmparam= # LM hyperparameters (e.g., 7.0.0) - -dec_exp=tri3b # what HMM stage to decode (e.g., tri3b) -dec_suffix=word -dec_splits="train valid" -dec_data_dir=$out_dir/dec_data_word # where to write HMM output - -data_dir=$out_dir/data -wrd_data_dir=$out_dir/data_word - -for x in $dec_splits; do - mkdir -p $dec_data_dir/$x - cp $data_dir/$x/{feats.scp,cmvn.scp,utt2spk,spk2utt} $dec_data_dir/$x/ - - tra=$out_dir/exp/$dec_exp/decode${dec_suffix}_${x}/scoring/${dec_lmparam}.tra - cat $tra | utils/int2sym.pl -f 2- $data_dir/lang_word/words.txt | \ - sed 's:::g' | sed 's:::g' > $dec_data_dir/$x/text - utils/fix_data_dir.sh $dec_data_dir/$x - echo "WER on $x is" $(compute-wer ark:$wrd_data_dir/${x}_gt/text ark:$dec_data_dir/$x/text | cut -d" " -f2-) -done - diff --git a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/tests/speech_recognition/test_vggtransformer.py b/spaces/HarryLee/eCommerceImageCaptioning/fairseq/tests/speech_recognition/test_vggtransformer.py deleted file mode 100644 index 4dc73b8c7379970dc0bcc16fcb088a64a1bd7e3b..0000000000000000000000000000000000000000 --- a/spaces/HarryLee/eCommerceImageCaptioning/fairseq/tests/speech_recognition/test_vggtransformer.py +++ /dev/null @@ -1,135 +0,0 @@ -#!/usr/bin/env python3 - -# import models/encoder/decoder to be tested -from examples.speech_recognition.models.vggtransformer import ( - TransformerDecoder, - VGGTransformerEncoder, - VGGTransformerModel, - vggtransformer_1, - vggtransformer_2, - vggtransformer_base, -) - -# import base test class -from .asr_test_base import ( - DEFAULT_TEST_VOCAB_SIZE, - TestFairseqDecoderBase, - TestFairseqEncoderBase, - TestFairseqEncoderDecoderModelBase, - get_dummy_dictionary, - get_dummy_encoder_output, - get_dummy_input, -) - - -class VGGTransformerModelTest_mid(TestFairseqEncoderDecoderModelBase): - def setUp(self): - def override_config(args): - """ - vggtrasformer_1 use 14 layers of transformer, - for testing purpose, it is too expensive. For fast turn-around - test, reduce the number of layers to 3. - """ - args.transformer_enc_config = ( - "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 3" - ) - - super().setUp() - extra_args_setter = [vggtransformer_1, override_config] - - self.setUpModel(VGGTransformerModel, extra_args_setter) - self.setUpInput(get_dummy_input(T=50, D=80, B=5, K=DEFAULT_TEST_VOCAB_SIZE)) - - -class VGGTransformerModelTest_big(TestFairseqEncoderDecoderModelBase): - def setUp(self): - def override_config(args): - """ - vggtrasformer_2 use 16 layers of transformer, - for testing purpose, it is too expensive. For fast turn-around - test, reduce the number of layers to 3. - """ - args.transformer_enc_config = ( - "((1024, 16, 4096, True, 0.15, 0.15, 0.15),) * 3" - ) - - super().setUp() - extra_args_setter = [vggtransformer_2, override_config] - - self.setUpModel(VGGTransformerModel, extra_args_setter) - self.setUpInput(get_dummy_input(T=50, D=80, B=5, K=DEFAULT_TEST_VOCAB_SIZE)) - - -class VGGTransformerModelTest_base(TestFairseqEncoderDecoderModelBase): - def setUp(self): - def override_config(args): - """ - vggtrasformer_base use 12 layers of transformer, - for testing purpose, it is too expensive. For fast turn-around - test, reduce the number of layers to 3. - """ - args.transformer_enc_config = ( - "((512, 8, 2048, True, 0.15, 0.15, 0.15),) * 3" - ) - - super().setUp() - extra_args_setter = [vggtransformer_base, override_config] - - self.setUpModel(VGGTransformerModel, extra_args_setter) - self.setUpInput(get_dummy_input(T=50, D=80, B=5, K=DEFAULT_TEST_VOCAB_SIZE)) - - -class VGGTransformerEncoderTest(TestFairseqEncoderBase): - def setUp(self): - super().setUp() - - self.setUpInput(get_dummy_input(T=50, D=80, B=5)) - - def test_forward(self): - print("1. test standard vggtransformer") - self.setUpEncoder(VGGTransformerEncoder(input_feat_per_channel=80)) - super().test_forward() - print("2. test vggtransformer with limited right context") - self.setUpEncoder( - VGGTransformerEncoder( - input_feat_per_channel=80, transformer_context=(-1, 5) - ) - ) - super().test_forward() - print("3. test vggtransformer with limited left context") - self.setUpEncoder( - VGGTransformerEncoder( - input_feat_per_channel=80, transformer_context=(5, -1) - ) - ) - super().test_forward() - print("4. test vggtransformer with limited right context and sampling") - self.setUpEncoder( - VGGTransformerEncoder( - input_feat_per_channel=80, - transformer_context=(-1, 12), - transformer_sampling=(2, 2), - ) - ) - super().test_forward() - print("5. test vggtransformer with windowed context and sampling") - self.setUpEncoder( - VGGTransformerEncoder( - input_feat_per_channel=80, - transformer_context=(12, 12), - transformer_sampling=(2, 2), - ) - ) - - -class TransformerDecoderTest(TestFairseqDecoderBase): - def setUp(self): - super().setUp() - - dict = get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE) - decoder = TransformerDecoder(dict) - dummy_encoder_output = get_dummy_encoder_output(encoder_out_shape=(50, 5, 256)) - - self.setUpDecoder(decoder) - self.setUpInput(dummy_encoder_output) - self.setUpPrevOutputTokens() diff --git a/spaces/Harveenchadha/en_to_indic_translation/compute_bleu.sh b/spaces/Harveenchadha/en_to_indic_translation/compute_bleu.sh deleted file mode 100644 index b8b55325ff183fce3b59b5b5319dbc1b9c438d1c..0000000000000000000000000000000000000000 --- a/spaces/Harveenchadha/en_to_indic_translation/compute_bleu.sh +++ /dev/null @@ -1,28 +0,0 @@ -pred_fname=$1 -ref_fname=$2 -src_lang=$3 -tgt_lang=$4 - -# we compute and report tokenized bleu scores. -# For computing BLEU scores, systems should output detokenized outputs. Your MT system might be doing it out of the box if you are using SentencePiece - nothing to do in that case. -# If you are using BPE then: -# 1. For English, you can use MosesDetokenizer (either the scripts in moses or the sacremoses python package) -# 2. For Indian languages, you can use the IndicNLP library detokenizer (note: please don't skip this step, since detok/tokenizer are not guaranteed to be reversible**. -# ^ both 1. and 2. are scripts/postprocess_translate.py - - -# For computing BLEU, we use sacrebleu: -# For English output: sacrebleu reffile < outputfile. This internally tokenizes using mteval-v13a -# For Indian language output, we need tokenized output and reference since we don't know how well the sacrebleu tokenizer works for Indic input. -# Hence we tokenize both preds and target files with IndicNLP tokenizer and then run: sacrebleu --tokenize none reffile < outputfile -if [ $tgt_lang == 'en' ]; then - # indic to en models - sacrebleu $ref_fname < $pred_fname -else - # indicnlp tokenize predictions and reference files before evaluation - input_size=`python scripts/preprocess_translate.py $ref_fname $ref_fname.tok $tgt_lang` - input_size=`python scripts/preprocess_translate.py $pred_fname $pred_fname.tok $tgt_lang` - - # since we are tokenizing with indicnlp separately, we are setting tokenize to none here - sacrebleu --tokenize none $ref_fname.tok < $pred_fname.tok -fi \ No newline at end of file diff --git a/spaces/Hina4867/bingo/src/components/providers.tsx b/spaces/Hina4867/bingo/src/components/providers.tsx deleted file mode 100644 index 892226412d80fe0b05211911b9e245cd22876460..0000000000000000000000000000000000000000 --- a/spaces/Hina4867/bingo/src/components/providers.tsx +++ /dev/null @@ -1,15 +0,0 @@ -'use client' - -import * as React from 'react' -import { ThemeProvider as NextThemesProvider } from 'next-themes' -import { ThemeProviderProps } from 'next-themes/dist/types' - -import { TooltipProvider } from '@/components/ui/tooltip' - -export function Providers({ children, ...props }: ThemeProviderProps) { - return ( - - {children} - - ) -} diff --git a/spaces/ICML2022/OFA/fairseq/fairseq/models/fconv_lm.py b/spaces/ICML2022/OFA/fairseq/fairseq/models/fconv_lm.py deleted file mode 100644 index 4b243d6669cb57880353b45a01843ec22010fb5f..0000000000000000000000000000000000000000 --- a/spaces/ICML2022/OFA/fairseq/fairseq/models/fconv_lm.py +++ /dev/null @@ -1,136 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -from fairseq import utils -from fairseq.models import ( - FairseqLanguageModel, - register_model, - register_model_architecture, -) -from fairseq.models.fconv import FConvDecoder -from fairseq.utils import safe_hasattr - - -@register_model("fconv_lm") -class FConvLanguageModel(FairseqLanguageModel): - def __init__(self, decoder): - super().__init__(decoder) - - @staticmethod - def add_args(parser): - """Add model-specific arguments to the parser.""" - parser.add_argument( - "--dropout", type=float, metavar="D", help="dropout probability" - ) - parser.add_argument( - "--decoder-embed-dim", - type=int, - metavar="N", - help="decoder embedding dimension", - ) - parser.add_argument( - "--decoder-layers", - type=str, - metavar="EXPR", - help="decoder layers [(dim, kernel_size), ...]", - ) - parser.add_argument( - "--decoder-out-embed-dim", - type=int, - metavar="N", - help="decoder output embedding dimension", - ) - parser.add_argument( - "--adaptive-softmax-cutoff", - metavar="EXPR", - help="comma separated list of adaptive softmax cutoff points. " - "Must be used with adaptive_loss criterion", - ) - parser.add_argument( - "--adaptive-softmax-dropout", - type=float, - metavar="D", - help="sets adaptive softmax dropout for the tail projections", - ) - parser.add_argument( - "--decoder-attention", - type=str, - metavar="EXPR", - help="decoder attention [True, ...]", - ) - - @classmethod - def build_model(cls, args, task): - """Build a new model instance.""" - # make sure all arguments are present in older models - base_lm_architecture(args) - - if safe_hasattr(args, "max_target_positions") and not safe_hasattr( - args, "tokens_per_sample" - ): - args.tokens_per_sample = args.max_target_positions - - decoder = FConvDecoder( - dictionary=task.target_dictionary, - embed_dim=args.decoder_embed_dim, - convolutions=eval(args.decoder_layers), - out_embed_dim=args.decoder_embed_dim, - attention=eval(args.decoder_attention), - dropout=args.dropout, - max_positions=args.tokens_per_sample, - share_embed=False, - positional_embeddings=False, - adaptive_softmax_cutoff=( - utils.eval_str_list(args.adaptive_softmax_cutoff, type=int) - if args.criterion == "adaptive_loss" - else None - ), - adaptive_softmax_dropout=args.adaptive_softmax_dropout, - ) - return FConvLanguageModel(decoder) - - -@register_model_architecture("fconv_lm", "fconv_lm") -def base_lm_architecture(args): - args.dropout = getattr(args, "dropout", 0.1) - args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128) - args.decoder_layers = getattr(args, "decoder_layers", "[(1268, 4)] * 13") - args.decoder_attention = getattr(args, "decoder_attention", "False") - args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) - args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) - - -@register_model_architecture("fconv_lm", "fconv_lm_dauphin_wikitext103") -def fconv_lm_dauphin_wikitext103(args): - layers = "[(850, 6)] * 3" - layers += " + [(850, 1)] * 1" - layers += " + [(850, 5)] * 4" - layers += " + [(850, 1)] * 1" - layers += " + [(850, 4)] * 3" - layers += " + [(1024, 4)] * 1" - layers += " + [(2048, 4)] * 1" - args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 280) - args.decoder_layers = getattr(args, "decoder_layers", layers) - args.decoder_attention = getattr(args, "decoder_attention", "False") - args.adaptive_softmax_cutoff = getattr( - args, "adaptive_softmax_cutoff", "10000,20000,200000" - ) - base_lm_architecture(args) - - -@register_model_architecture("fconv_lm", "fconv_lm_dauphin_gbw") -def fconv_lm_dauphin_gbw(args): - layers = "[(512, 5)]" - layers += " + [(128, 1, 0), (128, 5, 0), (512, 1, 3)] * 3" - layers += " + [(512, 1, 0), (512, 5, 0), (1024, 1, 3)] * 3" - layers += " + [(1024, 1, 0), (1024, 5, 0), (2048, 1, 3)] * 6" - layers += " + [(1024, 1, 0), (1024, 5, 0), (4096, 1, 3)]" - args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 128) - args.decoder_layers = getattr(args, "decoder_layers", layers) - args.decoder_attention = getattr(args, "decoder_attention", "False") - args.adaptive_softmax_cutoff = getattr( - args, "adaptive_softmax_cutoff", "10000,50000,200000" - ) - base_lm_architecture(args) diff --git a/spaces/ICML2022/OFA/fairseq/fairseq/modules/dynamicconv_layer/dynamicconv_cuda.cpp b/spaces/ICML2022/OFA/fairseq/fairseq/modules/dynamicconv_layer/dynamicconv_cuda.cpp deleted file mode 100644 index 744c363e550231b8e0fbb94f998d46039daf5c00..0000000000000000000000000000000000000000 --- a/spaces/ICML2022/OFA/fairseq/fairseq/modules/dynamicconv_layer/dynamicconv_cuda.cpp +++ /dev/null @@ -1,51 +0,0 @@ -/** - * Copyright (c) Facebook, Inc. and its affiliates. - * - * This source code is licensed under the MIT license found in the - * LICENSE file in the root directory of this source tree. - */ - -#include -#include - -std::vector -dynamicconv_cuda_forward(at::Tensor input, at::Tensor filters, int padding_l); - -std::vector dynamicconv_cuda_backward( - at::Tensor gradOutput, - int padding_l, - at::Tensor input, - at::Tensor filters); - -#define CHECK_CUDA(x) \ - AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor") -#define CHECK_CONTIGUOUS(x) \ - AT_ASSERTM(x.is_contiguous(), #x " must be contiguous") -#define CHECK_INPUT(x) \ - CHECK_CUDA(x); \ - CHECK_CONTIGUOUS(x) - -std::vector -dynamicconv_forward(at::Tensor input, at::Tensor filters, int padding_l) { - CHECK_INPUT(input); - CHECK_INPUT(filters); - - return dynamicconv_cuda_forward(input, filters, padding_l); -} - -std::vector dynamicconv_backward( - at::Tensor gradOutput, - int padding_l, - at::Tensor input, - at::Tensor filters) { - CHECK_INPUT(gradOutput); - CHECK_INPUT(input); - CHECK_INPUT(filters); - - return dynamicconv_cuda_backward(gradOutput, padding_l, input, filters); -} - -PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { - m.def("forward", &dynamicconv_forward, "dynamicconv forward (CUDA)"); - m.def("backward", &dynamicconv_backward, "dynamicconv backward (CUDA)"); -} diff --git a/spaces/IISRFactCheck/claim_detection/code/static/assets/index-9d4bce0e.css b/spaces/IISRFactCheck/claim_detection/code/static/assets/index-9d4bce0e.css deleted file mode 100644 index 33cd5657d880fe935b8efa97ada6958f30b8f188..0000000000000000000000000000000000000000 --- a/spaces/IISRFactCheck/claim_detection/code/static/assets/index-9d4bce0e.css +++ /dev/null @@ -1,5 +0,0 @@ -.initial-opacity[data-v-01b2556a]{opacity:initial}@keyframes v-shake{59%{margin-left:0}60%,80%{margin-left:2px}70%,90%{margin-left:-2px}}.bg-black{background-color:#000!important;color:#fff!important}.bg-white{background-color:#fff!important;color:#000!important}.bg-transparent{background-color:transparent!important;color:currentColor!important}.bg-red{background-color:#f44336!important;color:#fff!important}.bg-red-lighten-5{background-color:#ffebee!important;color:#000!important}.bg-red-lighten-4{background-color:#ffcdd2!important;color:#000!important}.bg-red-lighten-3{background-color:#ef9a9a!important;color:#000!important}.bg-red-lighten-2{background-color:#e57373!important;color:#fff!important}.bg-red-lighten-1{background-color:#ef5350!important;color:#fff!important}.bg-red-darken-1{background-color:#e53935!important;color:#fff!important}.bg-red-darken-2{background-color:#d32f2f!important;color:#fff!important}.bg-red-darken-3{background-color:#c62828!important;color:#fff!important}.bg-red-darken-4{background-color:#b71c1c!important;color:#fff!important}.bg-red-accent-1{background-color:#ff8a80!important;color:#000!important}.bg-red-accent-2{background-color:#ff5252!important;color:#fff!important}.bg-red-accent-3{background-color:#ff1744!important;color:#fff!important}.bg-red-accent-4{background-color:#d50000!important;color:#fff!important}.bg-pink{background-color:#e91e63!important;color:#fff!important}.bg-pink-lighten-5{background-color:#fce4ec!important;color:#000!important}.bg-pink-lighten-4{background-color:#f8bbd0!important;color:#000!important}.bg-pink-lighten-3{background-color:#f48fb1!important;color:#000!important}.bg-pink-lighten-2{background-color:#f06292!important;color:#fff!important}.bg-pink-lighten-1{background-color:#ec407a!important;color:#fff!important}.bg-pink-darken-1{background-color:#d81b60!important;color:#fff!important}.bg-pink-darken-2{background-color:#c2185b!important;color:#fff!important}.bg-pink-darken-3{background-color:#ad1457!important;color:#fff!important}.bg-pink-darken-4{background-color:#880e4f!important;color:#fff!important}.bg-pink-accent-1{background-color:#ff80ab!important;color:#fff!important}.bg-pink-accent-2{background-color:#ff4081!important;color:#fff!important}.bg-pink-accent-3{background-color:#f50057!important;color:#fff!important}.bg-pink-accent-4{background-color:#c51162!important;color:#fff!important}.bg-purple{background-color:#9c27b0!important;color:#fff!important}.bg-purple-lighten-5{background-color:#f3e5f5!important;color:#000!important}.bg-purple-lighten-4{background-color:#e1bee7!important;color:#000!important}.bg-purple-lighten-3{background-color:#ce93d8!important;color:#fff!important}.bg-purple-lighten-2{background-color:#ba68c8!important;color:#fff!important}.bg-purple-lighten-1{background-color:#ab47bc!important;color:#fff!important}.bg-purple-darken-1{background-color:#8e24aa!important;color:#fff!important}.bg-purple-darken-2{background-color:#7b1fa2!important;color:#fff!important}.bg-purple-darken-3{background-color:#6a1b9a!important;color:#fff!important}.bg-purple-darken-4{background-color:#4a148c!important;color:#fff!important}.bg-purple-accent-1{background-color:#ea80fc!important;color:#fff!important}.bg-purple-accent-2{background-color:#e040fb!important;color:#fff!important}.bg-purple-accent-3{background-color:#d500f9!important;color:#fff!important}.bg-purple-accent-4{background-color:#a0f!important;color:#fff!important}.bg-deep-purple{background-color:#673ab7!important;color:#fff!important}.bg-deep-purple-lighten-5{background-color:#ede7f6!important;color:#000!important}.bg-deep-purple-lighten-4{background-color:#d1c4e9!important;color:#000!important}.bg-deep-purple-lighten-3{background-color:#b39ddb!important;color:#fff!important}.bg-deep-purple-lighten-2{background-color:#9575cd!important;color:#fff!important}.bg-deep-purple-lighten-1{background-color:#7e57c2!important;color:#fff!important}.bg-deep-purple-darken-1{background-color:#5e35b1!important;color:#fff!important}.bg-deep-purple-darken-2{background-color:#512da8!important;color:#fff!important}.bg-deep-purple-darken-3{background-color:#4527a0!important;color:#fff!important}.bg-deep-purple-darken-4{background-color:#311b92!important;color:#fff!important}.bg-deep-purple-accent-1{background-color:#b388ff!important;color:#fff!important}.bg-deep-purple-accent-2{background-color:#7c4dff!important;color:#fff!important}.bg-deep-purple-accent-3{background-color:#651fff!important;color:#fff!important}.bg-deep-purple-accent-4{background-color:#6200ea!important;color:#fff!important}.bg-indigo{background-color:#3f51b5!important;color:#fff!important}.bg-indigo-lighten-5{background-color:#e8eaf6!important;color:#000!important}.bg-indigo-lighten-4{background-color:#c5cae9!important;color:#000!important}.bg-indigo-lighten-3{background-color:#9fa8da!important;color:#fff!important}.bg-indigo-lighten-2{background-color:#7986cb!important;color:#fff!important}.bg-indigo-lighten-1{background-color:#5c6bc0!important;color:#fff!important}.bg-indigo-darken-1{background-color:#3949ab!important;color:#fff!important}.bg-indigo-darken-2{background-color:#303f9f!important;color:#fff!important}.bg-indigo-darken-3{background-color:#283593!important;color:#fff!important}.bg-indigo-darken-4{background-color:#1a237e!important;color:#fff!important}.bg-indigo-accent-1{background-color:#8c9eff!important;color:#fff!important}.bg-indigo-accent-2{background-color:#536dfe!important;color:#fff!important}.bg-indigo-accent-3{background-color:#3d5afe!important;color:#fff!important}.bg-indigo-accent-4{background-color:#304ffe!important;color:#fff!important}.bg-blue{background-color:#2196f3!important;color:#fff!important}.bg-blue-lighten-5{background-color:#e3f2fd!important;color:#000!important}.bg-blue-lighten-4{background-color:#bbdefb!important;color:#000!important}.bg-blue-lighten-3{background-color:#90caf9!important;color:#000!important}.bg-blue-lighten-2{background-color:#64b5f6!important;color:#000!important}.bg-blue-lighten-1{background-color:#42a5f5!important;color:#fff!important}.bg-blue-darken-1{background-color:#1e88e5!important;color:#fff!important}.bg-blue-darken-2{background-color:#1976d2!important;color:#fff!important}.bg-blue-darken-3{background-color:#1565c0!important;color:#fff!important}.bg-blue-darken-4{background-color:#0d47a1!important;color:#fff!important}.bg-blue-accent-1{background-color:#82b1ff!important;color:#000!important}.bg-blue-accent-2{background-color:#448aff!important;color:#fff!important}.bg-blue-accent-3{background-color:#2979ff!important;color:#fff!important}.bg-blue-accent-4{background-color:#2962ff!important;color:#fff!important}.bg-light-blue{background-color:#03a9f4!important;color:#fff!important}.bg-light-blue-lighten-5{background-color:#e1f5fe!important;color:#000!important}.bg-light-blue-lighten-4{background-color:#b3e5fc!important;color:#000!important}.bg-light-blue-lighten-3{background-color:#81d4fa!important;color:#000!important}.bg-light-blue-lighten-2{background-color:#4fc3f7!important;color:#000!important}.bg-light-blue-lighten-1{background-color:#29b6f6!important;color:#000!important}.bg-light-blue-darken-1{background-color:#039be5!important;color:#fff!important}.bg-light-blue-darken-2{background-color:#0288d1!important;color:#fff!important}.bg-light-blue-darken-3{background-color:#0277bd!important;color:#fff!important}.bg-light-blue-darken-4{background-color:#01579b!important;color:#fff!important}.bg-light-blue-accent-1{background-color:#80d8ff!important;color:#000!important}.bg-light-blue-accent-2{background-color:#40c4ff!important;color:#000!important}.bg-light-blue-accent-3{background-color:#00b0ff!important;color:#fff!important}.bg-light-blue-accent-4{background-color:#0091ea!important;color:#fff!important}.bg-cyan{background-color:#00bcd4!important;color:#000!important}.bg-cyan-lighten-5{background-color:#e0f7fa!important;color:#000!important}.bg-cyan-lighten-4{background-color:#b2ebf2!important;color:#000!important}.bg-cyan-lighten-3{background-color:#80deea!important;color:#000!important}.bg-cyan-lighten-2{background-color:#4dd0e1!important;color:#000!important}.bg-cyan-lighten-1{background-color:#26c6da!important;color:#000!important}.bg-cyan-darken-1{background-color:#00acc1!important;color:#fff!important}.bg-cyan-darken-2{background-color:#0097a7!important;color:#fff!important}.bg-cyan-darken-3{background-color:#00838f!important;color:#fff!important}.bg-cyan-darken-4{background-color:#006064!important;color:#fff!important}.bg-cyan-accent-1{background-color:#84ffff!important;color:#000!important}.bg-cyan-accent-2{background-color:#18ffff!important;color:#000!important}.bg-cyan-accent-3{background-color:#00e5ff!important;color:#000!important}.bg-cyan-accent-4{background-color:#00b8d4!important;color:#fff!important}.bg-teal{background-color:#009688!important;color:#fff!important}.bg-teal-lighten-5{background-color:#e0f2f1!important;color:#000!important}.bg-teal-lighten-4{background-color:#b2dfdb!important;color:#000!important}.bg-teal-lighten-3{background-color:#80cbc4!important;color:#000!important}.bg-teal-lighten-2{background-color:#4db6ac!important;color:#fff!important}.bg-teal-lighten-1{background-color:#26a69a!important;color:#fff!important}.bg-teal-darken-1{background-color:#00897b!important;color:#fff!important}.bg-teal-darken-2{background-color:#00796b!important;color:#fff!important}.bg-teal-darken-3{background-color:#00695c!important;color:#fff!important}.bg-teal-darken-4{background-color:#004d40!important;color:#fff!important}.bg-teal-accent-1{background-color:#a7ffeb!important;color:#000!important}.bg-teal-accent-2{background-color:#64ffda!important;color:#000!important}.bg-teal-accent-3{background-color:#1de9b6!important;color:#000!important}.bg-teal-accent-4{background-color:#00bfa5!important;color:#fff!important}.bg-green{background-color:#4caf50!important;color:#fff!important}.bg-green-lighten-5{background-color:#e8f5e9!important;color:#000!important}.bg-green-lighten-4{background-color:#c8e6c9!important;color:#000!important}.bg-green-lighten-3{background-color:#a5d6a7!important;color:#000!important}.bg-green-lighten-2{background-color:#81c784!important;color:#000!important}.bg-green-lighten-1{background-color:#66bb6a!important;color:#fff!important}.bg-green-darken-1{background-color:#43a047!important;color:#fff!important}.bg-green-darken-2{background-color:#388e3c!important;color:#fff!important}.bg-green-darken-3{background-color:#2e7d32!important;color:#fff!important}.bg-green-darken-4{background-color:#1b5e20!important;color:#fff!important}.bg-green-accent-1{background-color:#b9f6ca!important;color:#000!important}.bg-green-accent-2{background-color:#69f0ae!important;color:#000!important}.bg-green-accent-3{background-color:#00e676!important;color:#000!important}.bg-green-accent-4{background-color:#00c853!important;color:#000!important}.bg-light-green{background-color:#8bc34a!important;color:#000!important}.bg-light-green-lighten-5{background-color:#f1f8e9!important;color:#000!important}.bg-light-green-lighten-4{background-color:#dcedc8!important;color:#000!important}.bg-light-green-lighten-3{background-color:#c5e1a5!important;color:#000!important}.bg-light-green-lighten-2{background-color:#aed581!important;color:#000!important}.bg-light-green-lighten-1{background-color:#9ccc65!important;color:#000!important}.bg-light-green-darken-1{background-color:#7cb342!important;color:#fff!important}.bg-light-green-darken-2{background-color:#689f38!important;color:#fff!important}.bg-light-green-darken-3{background-color:#558b2f!important;color:#fff!important}.bg-light-green-darken-4{background-color:#33691e!important;color:#fff!important}.bg-light-green-accent-1{background-color:#ccff90!important;color:#000!important}.bg-light-green-accent-2{background-color:#b2ff59!important;color:#000!important}.bg-light-green-accent-3{background-color:#76ff03!important;color:#000!important}.bg-light-green-accent-4{background-color:#64dd17!important;color:#000!important}.bg-lime{background-color:#cddc39!important;color:#000!important}.bg-lime-lighten-5{background-color:#f9fbe7!important;color:#000!important}.bg-lime-lighten-4{background-color:#f0f4c3!important;color:#000!important}.bg-lime-lighten-3{background-color:#e6ee9c!important;color:#000!important}.bg-lime-lighten-2{background-color:#dce775!important;color:#000!important}.bg-lime-lighten-1{background-color:#d4e157!important;color:#000!important}.bg-lime-darken-1{background-color:#c0ca33!important;color:#000!important}.bg-lime-darken-2{background-color:#afb42b!important;color:#000!important}.bg-lime-darken-3{background-color:#9e9d24!important;color:#fff!important}.bg-lime-darken-4{background-color:#827717!important;color:#fff!important}.bg-lime-accent-1{background-color:#f4ff81!important;color:#000!important}.bg-lime-accent-2{background-color:#eeff41!important;color:#000!important}.bg-lime-accent-3{background-color:#c6ff00!important;color:#000!important}.bg-lime-accent-4{background-color:#aeea00!important;color:#000!important}.bg-yellow{background-color:#ffeb3b!important;color:#000!important}.bg-yellow-lighten-5{background-color:#fffde7!important;color:#000!important}.bg-yellow-lighten-4{background-color:#fff9c4!important;color:#000!important}.bg-yellow-lighten-3{background-color:#fff59d!important;color:#000!important}.bg-yellow-lighten-2{background-color:#fff176!important;color:#000!important}.bg-yellow-lighten-1{background-color:#ffee58!important;color:#000!important}.bg-yellow-darken-1{background-color:#fdd835!important;color:#000!important}.bg-yellow-darken-2{background-color:#fbc02d!important;color:#000!important}.bg-yellow-darken-3{background-color:#f9a825!important;color:#000!important}.bg-yellow-darken-4{background-color:#f57f17!important;color:#fff!important}.bg-yellow-accent-1{background-color:#ffff8d!important;color:#000!important}.bg-yellow-accent-2{background-color:#ff0!important;color:#000!important}.bg-yellow-accent-3{background-color:#ffea00!important;color:#000!important}.bg-yellow-accent-4{background-color:#ffd600!important;color:#000!important}.bg-amber{background-color:#ffc107!important;color:#000!important}.bg-amber-lighten-5{background-color:#fff8e1!important;color:#000!important}.bg-amber-lighten-4{background-color:#ffecb3!important;color:#000!important}.bg-amber-lighten-3{background-color:#ffe082!important;color:#000!important}.bg-amber-lighten-2{background-color:#ffd54f!important;color:#000!important}.bg-amber-lighten-1{background-color:#ffca28!important;color:#000!important}.bg-amber-darken-1{background-color:#ffb300!important;color:#000!important}.bg-amber-darken-2{background-color:#ffa000!important;color:#000!important}.bg-amber-darken-3{background-color:#ff8f00!important;color:#000!important}.bg-amber-darken-4{background-color:#ff6f00!important;color:#fff!important}.bg-amber-accent-1{background-color:#ffe57f!important;color:#000!important}.bg-amber-accent-2{background-color:#ffd740!important;color:#000!important}.bg-amber-accent-3{background-color:#ffc400!important;color:#000!important}.bg-amber-accent-4{background-color:#ffab00!important;color:#000!important}.bg-orange{background-color:#ff9800!important;color:#000!important}.bg-orange-lighten-5{background-color:#fff3e0!important;color:#000!important}.bg-orange-lighten-4{background-color:#ffe0b2!important;color:#000!important}.bg-orange-lighten-3{background-color:#ffcc80!important;color:#000!important}.bg-orange-lighten-2{background-color:#ffb74d!important;color:#000!important}.bg-orange-lighten-1{background-color:#ffa726!important;color:#000!important}.bg-orange-darken-1{background-color:#fb8c00!important;color:#fff!important}.bg-orange-darken-2{background-color:#f57c00!important;color:#fff!important}.bg-orange-darken-3{background-color:#ef6c00!important;color:#fff!important}.bg-orange-darken-4{background-color:#e65100!important;color:#fff!important}.bg-orange-accent-1{background-color:#ffd180!important;color:#000!important}.bg-orange-accent-2{background-color:#ffab40!important;color:#000!important}.bg-orange-accent-3{background-color:#ff9100!important;color:#000!important}.bg-orange-accent-4{background-color:#ff6d00!important;color:#fff!important}.bg-deep-orange{background-color:#ff5722!important;color:#fff!important}.bg-deep-orange-lighten-5{background-color:#fbe9e7!important;color:#000!important}.bg-deep-orange-lighten-4{background-color:#ffccbc!important;color:#000!important}.bg-deep-orange-lighten-3{background-color:#ffab91!important;color:#000!important}.bg-deep-orange-lighten-2{background-color:#ff8a65!important;color:#000!important}.bg-deep-orange-lighten-1{background-color:#ff7043!important;color:#fff!important}.bg-deep-orange-darken-1{background-color:#f4511e!important;color:#fff!important}.bg-deep-orange-darken-2{background-color:#e64a19!important;color:#fff!important}.bg-deep-orange-darken-3{background-color:#d84315!important;color:#fff!important}.bg-deep-orange-darken-4{background-color:#bf360c!important;color:#fff!important}.bg-deep-orange-accent-1{background-color:#ff9e80!important;color:#000!important}.bg-deep-orange-accent-2{background-color:#ff6e40!important;color:#fff!important}.bg-deep-orange-accent-3{background-color:#ff3d00!important;color:#fff!important}.bg-deep-orange-accent-4{background-color:#dd2c00!important;color:#fff!important}.bg-brown{background-color:#795548!important;color:#fff!important}.bg-brown-lighten-5{background-color:#efebe9!important;color:#000!important}.bg-brown-lighten-4{background-color:#d7ccc8!important;color:#000!important}.bg-brown-lighten-3{background-color:#bcaaa4!important;color:#000!important}.bg-brown-lighten-2{background-color:#a1887f!important;color:#fff!important}.bg-brown-lighten-1{background-color:#8d6e63!important;color:#fff!important}.bg-brown-darken-1{background-color:#6d4c41!important;color:#fff!important}.bg-brown-darken-2{background-color:#5d4037!important;color:#fff!important}.bg-brown-darken-3{background-color:#4e342e!important;color:#fff!important}.bg-brown-darken-4{background-color:#3e2723!important;color:#fff!important}.bg-blue-grey{background-color:#607d8b!important;color:#fff!important}.bg-blue-grey-lighten-5{background-color:#eceff1!important;color:#000!important}.bg-blue-grey-lighten-4{background-color:#cfd8dc!important;color:#000!important}.bg-blue-grey-lighten-3{background-color:#b0bec5!important;color:#000!important}.bg-blue-grey-lighten-2{background-color:#90a4ae!important;color:#fff!important}.bg-blue-grey-lighten-1{background-color:#78909c!important;color:#fff!important}.bg-blue-grey-darken-1{background-color:#546e7a!important;color:#fff!important}.bg-blue-grey-darken-2{background-color:#455a64!important;color:#fff!important}.bg-blue-grey-darken-3{background-color:#37474f!important;color:#fff!important}.bg-blue-grey-darken-4{background-color:#263238!important;color:#fff!important}.bg-grey{background-color:#9e9e9e!important;color:#fff!important}.bg-grey-lighten-5{background-color:#fafafa!important;color:#000!important}.bg-grey-lighten-4{background-color:#f5f5f5!important;color:#000!important}.bg-grey-lighten-3{background-color:#eee!important;color:#000!important}.bg-grey-lighten-2{background-color:#e0e0e0!important;color:#000!important}.bg-grey-lighten-1{background-color:#bdbdbd!important;color:#000!important}.bg-grey-darken-1{background-color:#757575!important;color:#fff!important}.bg-grey-darken-2{background-color:#616161!important;color:#fff!important}.bg-grey-darken-3{background-color:#424242!important;color:#fff!important}.bg-grey-darken-4{background-color:#212121!important;color:#fff!important}.bg-shades-black{background-color:#000!important;color:#fff!important}.bg-shades-white{background-color:#fff!important;color:#000!important}.bg-shades-transparent{background-color:transparent!important;color:currentColor!important}.text-black{color:#000!important}.text-white{color:#fff!important}.text-transparent{color:transparent!important}.text-red{color:#f44336!important}.text-red-lighten-5{color:#ffebee!important}.text-red-lighten-4{color:#ffcdd2!important}.text-red-lighten-3{color:#ef9a9a!important}.text-red-lighten-2{color:#e57373!important}.text-red-lighten-1{color:#ef5350!important}.text-red-darken-1{color:#e53935!important}.text-red-darken-2{color:#d32f2f!important}.text-red-darken-3{color:#c62828!important}.text-red-darken-4{color:#b71c1c!important}.text-red-accent-1{color:#ff8a80!important}.text-red-accent-2{color:#ff5252!important}.text-red-accent-3{color:#ff1744!important}.text-red-accent-4{color:#d50000!important}.text-pink{color:#e91e63!important}.text-pink-lighten-5{color:#fce4ec!important}.text-pink-lighten-4{color:#f8bbd0!important}.text-pink-lighten-3{color:#f48fb1!important}.text-pink-lighten-2{color:#f06292!important}.text-pink-lighten-1{color:#ec407a!important}.text-pink-darken-1{color:#d81b60!important}.text-pink-darken-2{color:#c2185b!important}.text-pink-darken-3{color:#ad1457!important}.text-pink-darken-4{color:#880e4f!important}.text-pink-accent-1{color:#ff80ab!important}.text-pink-accent-2{color:#ff4081!important}.text-pink-accent-3{color:#f50057!important}.text-pink-accent-4{color:#c51162!important}.text-purple{color:#9c27b0!important}.text-purple-lighten-5{color:#f3e5f5!important}.text-purple-lighten-4{color:#e1bee7!important}.text-purple-lighten-3{color:#ce93d8!important}.text-purple-lighten-2{color:#ba68c8!important}.text-purple-lighten-1{color:#ab47bc!important}.text-purple-darken-1{color:#8e24aa!important}.text-purple-darken-2{color:#7b1fa2!important}.text-purple-darken-3{color:#6a1b9a!important}.text-purple-darken-4{color:#4a148c!important}.text-purple-accent-1{color:#ea80fc!important}.text-purple-accent-2{color:#e040fb!important}.text-purple-accent-3{color:#d500f9!important}.text-purple-accent-4{color:#a0f!important}.text-deep-purple{color:#673ab7!important}.text-deep-purple-lighten-5{color:#ede7f6!important}.text-deep-purple-lighten-4{color:#d1c4e9!important}.text-deep-purple-lighten-3{color:#b39ddb!important}.text-deep-purple-lighten-2{color:#9575cd!important}.text-deep-purple-lighten-1{color:#7e57c2!important}.text-deep-purple-darken-1{color:#5e35b1!important}.text-deep-purple-darken-2{color:#512da8!important}.text-deep-purple-darken-3{color:#4527a0!important}.text-deep-purple-darken-4{color:#311b92!important}.text-deep-purple-accent-1{color:#b388ff!important}.text-deep-purple-accent-2{color:#7c4dff!important}.text-deep-purple-accent-3{color:#651fff!important}.text-deep-purple-accent-4{color:#6200ea!important}.text-indigo{color:#3f51b5!important}.text-indigo-lighten-5{color:#e8eaf6!important}.text-indigo-lighten-4{color:#c5cae9!important}.text-indigo-lighten-3{color:#9fa8da!important}.text-indigo-lighten-2{color:#7986cb!important}.text-indigo-lighten-1{color:#5c6bc0!important}.text-indigo-darken-1{color:#3949ab!important}.text-indigo-darken-2{color:#303f9f!important}.text-indigo-darken-3{color:#283593!important}.text-indigo-darken-4{color:#1a237e!important}.text-indigo-accent-1{color:#8c9eff!important}.text-indigo-accent-2{color:#536dfe!important}.text-indigo-accent-3{color:#3d5afe!important}.text-indigo-accent-4{color:#304ffe!important}.text-blue{color:#2196f3!important}.text-blue-lighten-5{color:#e3f2fd!important}.text-blue-lighten-4{color:#bbdefb!important}.text-blue-lighten-3{color:#90caf9!important}.text-blue-lighten-2{color:#64b5f6!important}.text-blue-lighten-1{color:#42a5f5!important}.text-blue-darken-1{color:#1e88e5!important}.text-blue-darken-2{color:#1976d2!important}.text-blue-darken-3{color:#1565c0!important}.text-blue-darken-4{color:#0d47a1!important}.text-blue-accent-1{color:#82b1ff!important}.text-blue-accent-2{color:#448aff!important}.text-blue-accent-3{color:#2979ff!important}.text-blue-accent-4{color:#2962ff!important}.text-light-blue{color:#03a9f4!important}.text-light-blue-lighten-5{color:#e1f5fe!important}.text-light-blue-lighten-4{color:#b3e5fc!important}.text-light-blue-lighten-3{color:#81d4fa!important}.text-light-blue-lighten-2{color:#4fc3f7!important}.text-light-blue-lighten-1{color:#29b6f6!important}.text-light-blue-darken-1{color:#039be5!important}.text-light-blue-darken-2{color:#0288d1!important}.text-light-blue-darken-3{color:#0277bd!important}.text-light-blue-darken-4{color:#01579b!important}.text-light-blue-accent-1{color:#80d8ff!important}.text-light-blue-accent-2{color:#40c4ff!important}.text-light-blue-accent-3{color:#00b0ff!important}.text-light-blue-accent-4{color:#0091ea!important}.text-cyan{color:#00bcd4!important}.text-cyan-lighten-5{color:#e0f7fa!important}.text-cyan-lighten-4{color:#b2ebf2!important}.text-cyan-lighten-3{color:#80deea!important}.text-cyan-lighten-2{color:#4dd0e1!important}.text-cyan-lighten-1{color:#26c6da!important}.text-cyan-darken-1{color:#00acc1!important}.text-cyan-darken-2{color:#0097a7!important}.text-cyan-darken-3{color:#00838f!important}.text-cyan-darken-4{color:#006064!important}.text-cyan-accent-1{color:#84ffff!important}.text-cyan-accent-2{color:#18ffff!important}.text-cyan-accent-3{color:#00e5ff!important}.text-cyan-accent-4{color:#00b8d4!important}.text-teal{color:#009688!important}.text-teal-lighten-5{color:#e0f2f1!important}.text-teal-lighten-4{color:#b2dfdb!important}.text-teal-lighten-3{color:#80cbc4!important}.text-teal-lighten-2{color:#4db6ac!important}.text-teal-lighten-1{color:#26a69a!important}.text-teal-darken-1{color:#00897b!important}.text-teal-darken-2{color:#00796b!important}.text-teal-darken-3{color:#00695c!important}.text-teal-darken-4{color:#004d40!important}.text-teal-accent-1{color:#a7ffeb!important}.text-teal-accent-2{color:#64ffda!important}.text-teal-accent-3{color:#1de9b6!important}.text-teal-accent-4{color:#00bfa5!important}.text-green{color:#4caf50!important}.text-green-lighten-5{color:#e8f5e9!important}.text-green-lighten-4{color:#c8e6c9!important}.text-green-lighten-3{color:#a5d6a7!important}.text-green-lighten-2{color:#81c784!important}.text-green-lighten-1{color:#66bb6a!important}.text-green-darken-1{color:#43a047!important}.text-green-darken-2{color:#388e3c!important}.text-green-darken-3{color:#2e7d32!important}.text-green-darken-4{color:#1b5e20!important}.text-green-accent-1{color:#b9f6ca!important}.text-green-accent-2{color:#69f0ae!important}.text-green-accent-3{color:#00e676!important}.text-green-accent-4{color:#00c853!important}.text-light-green{color:#8bc34a!important}.text-light-green-lighten-5{color:#f1f8e9!important}.text-light-green-lighten-4{color:#dcedc8!important}.text-light-green-lighten-3{color:#c5e1a5!important}.text-light-green-lighten-2{color:#aed581!important}.text-light-green-lighten-1{color:#9ccc65!important}.text-light-green-darken-1{color:#7cb342!important}.text-light-green-darken-2{color:#689f38!important}.text-light-green-darken-3{color:#558b2f!important}.text-light-green-darken-4{color:#33691e!important}.text-light-green-accent-1{color:#ccff90!important}.text-light-green-accent-2{color:#b2ff59!important}.text-light-green-accent-3{color:#76ff03!important}.text-light-green-accent-4{color:#64dd17!important}.text-lime{color:#cddc39!important}.text-lime-lighten-5{color:#f9fbe7!important}.text-lime-lighten-4{color:#f0f4c3!important}.text-lime-lighten-3{color:#e6ee9c!important}.text-lime-lighten-2{color:#dce775!important}.text-lime-lighten-1{color:#d4e157!important}.text-lime-darken-1{color:#c0ca33!important}.text-lime-darken-2{color:#afb42b!important}.text-lime-darken-3{color:#9e9d24!important}.text-lime-darken-4{color:#827717!important}.text-lime-accent-1{color:#f4ff81!important}.text-lime-accent-2{color:#eeff41!important}.text-lime-accent-3{color:#c6ff00!important}.text-lime-accent-4{color:#aeea00!important}.text-yellow{color:#ffeb3b!important}.text-yellow-lighten-5{color:#fffde7!important}.text-yellow-lighten-4{color:#fff9c4!important}.text-yellow-lighten-3{color:#fff59d!important}.text-yellow-lighten-2{color:#fff176!important}.text-yellow-lighten-1{color:#ffee58!important}.text-yellow-darken-1{color:#fdd835!important}.text-yellow-darken-2{color:#fbc02d!important}.text-yellow-darken-3{color:#f9a825!important}.text-yellow-darken-4{color:#f57f17!important}.text-yellow-accent-1{color:#ffff8d!important}.text-yellow-accent-2{color:#ff0!important}.text-yellow-accent-3{color:#ffea00!important}.text-yellow-accent-4{color:#ffd600!important}.text-amber{color:#ffc107!important}.text-amber-lighten-5{color:#fff8e1!important}.text-amber-lighten-4{color:#ffecb3!important}.text-amber-lighten-3{color:#ffe082!important}.text-amber-lighten-2{color:#ffd54f!important}.text-amber-lighten-1{color:#ffca28!important}.text-amber-darken-1{color:#ffb300!important}.text-amber-darken-2{color:#ffa000!important}.text-amber-darken-3{color:#ff8f00!important}.text-amber-darken-4{color:#ff6f00!important}.text-amber-accent-1{color:#ffe57f!important}.text-amber-accent-2{color:#ffd740!important}.text-amber-accent-3{color:#ffc400!important}.text-amber-accent-4{color:#ffab00!important}.text-orange{color:#ff9800!important}.text-orange-lighten-5{color:#fff3e0!important}.text-orange-lighten-4{color:#ffe0b2!important}.text-orange-lighten-3{color:#ffcc80!important}.text-orange-lighten-2{color:#ffb74d!important}.text-orange-lighten-1{color:#ffa726!important}.text-orange-darken-1{color:#fb8c00!important}.text-orange-darken-2{color:#f57c00!important}.text-orange-darken-3{color:#ef6c00!important}.text-orange-darken-4{color:#e65100!important}.text-orange-accent-1{color:#ffd180!important}.text-orange-accent-2{color:#ffab40!important}.text-orange-accent-3{color:#ff9100!important}.text-orange-accent-4{color:#ff6d00!important}.text-deep-orange{color:#ff5722!important}.text-deep-orange-lighten-5{color:#fbe9e7!important}.text-deep-orange-lighten-4{color:#ffccbc!important}.text-deep-orange-lighten-3{color:#ffab91!important}.text-deep-orange-lighten-2{color:#ff8a65!important}.text-deep-orange-lighten-1{color:#ff7043!important}.text-deep-orange-darken-1{color:#f4511e!important}.text-deep-orange-darken-2{color:#e64a19!important}.text-deep-orange-darken-3{color:#d84315!important}.text-deep-orange-darken-4{color:#bf360c!important}.text-deep-orange-accent-1{color:#ff9e80!important}.text-deep-orange-accent-2{color:#ff6e40!important}.text-deep-orange-accent-3{color:#ff3d00!important}.text-deep-orange-accent-4{color:#dd2c00!important}.text-brown{color:#795548!important}.text-brown-lighten-5{color:#efebe9!important}.text-brown-lighten-4{color:#d7ccc8!important}.text-brown-lighten-3{color:#bcaaa4!important}.text-brown-lighten-2{color:#a1887f!important}.text-brown-lighten-1{color:#8d6e63!important}.text-brown-darken-1{color:#6d4c41!important}.text-brown-darken-2{color:#5d4037!important}.text-brown-darken-3{color:#4e342e!important}.text-brown-darken-4{color:#3e2723!important}.text-blue-grey{color:#607d8b!important}.text-blue-grey-lighten-5{color:#eceff1!important}.text-blue-grey-lighten-4{color:#cfd8dc!important}.text-blue-grey-lighten-3{color:#b0bec5!important}.text-blue-grey-lighten-2{color:#90a4ae!important}.text-blue-grey-lighten-1{color:#78909c!important}.text-blue-grey-darken-1{color:#546e7a!important}.text-blue-grey-darken-2{color:#455a64!important}.text-blue-grey-darken-3{color:#37474f!important}.text-blue-grey-darken-4{color:#263238!important}.text-grey{color:#9e9e9e!important}.text-grey-lighten-5{color:#fafafa!important}.text-grey-lighten-4{color:#f5f5f5!important}.text-grey-lighten-3{color:#eee!important}.text-grey-lighten-2{color:#e0e0e0!important}.text-grey-lighten-1{color:#bdbdbd!important}.text-grey-darken-1{color:#757575!important}.text-grey-darken-2{color:#616161!important}.text-grey-darken-3{color:#424242!important}.text-grey-darken-4{color:#212121!important}.text-shades-black{color:#000!important}.text-shades-white{color:#fff!important}.text-shades-transparent{color:transparent!important}/*! - * ress.css • v2.0.4 - * MIT License - * github.com/filipelinhares/ress - */html{box-sizing:border-box;overflow-y:scroll;-webkit-text-size-adjust:100%;word-break:normal;-moz-tab-size:4;tab-size:4}*,:before,:after{background-repeat:no-repeat;box-sizing:inherit}:before,:after{text-decoration:inherit;vertical-align:inherit}*{padding:0;margin:0}hr{overflow:visible;height:0}details,main{display:block}summary{display:list-item}small{font-size:80%}[hidden]{display:none}abbr[title]{border-bottom:none;text-decoration:underline;text-decoration:underline dotted}a{background-color:transparent}a:active,a:hover{outline-width:0}code,kbd,pre,samp{font-family:monospace,monospace}pre{font-size:1em}b,strong{font-weight:bolder}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sub{bottom:-.25em}sup{top:-.5em}input{border-radius:0}[disabled]{cursor:default}[type=number]::-webkit-inner-spin-button,[type=number]::-webkit-outer-spin-button{height:auto}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}[type=search]::-webkit-search-cancel-button,[type=search]::-webkit-search-decoration{-webkit-appearance:none}textarea{overflow:auto;resize:vertical}button,input,optgroup,select,textarea{font:inherit}optgroup{font-weight:700}button{overflow:visible}button,select{text-transform:none}button,[type=button],[type=reset],[type=submit],[role=button]{cursor:pointer;color:inherit}button::-moz-focus-inner,[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner{border-style:none;padding:0}button:-moz-focusring,[type=button]::-moz-focus-inner,[type=reset]::-moz-focus-inner,[type=submit]::-moz-focus-inner{outline:1px dotted ButtonText}button,html [type=button],[type=reset],[type=submit]{-webkit-appearance:button}button,input,select,textarea{background-color:transparent;border-style:none}select{-moz-appearance:none;-webkit-appearance:none}select::-ms-expand{display:none}select::-ms-value{color:currentColor}legend{border:0;color:inherit;display:table;white-space:normal;max-width:100%}::-webkit-file-upload-button{-webkit-appearance:button;color:inherit;font:inherit}::-ms-clear,::-ms-reveal{display:none}img{border-style:none}progress{vertical-align:baseline}@media screen{[hidden~=screen]{display:inherit}[hidden~=screen]:not(:active):not(:focus):not(:target){position:absolute!important;clip:rect(0 0 0 0)!important}}[aria-busy=true]{cursor:progress}[aria-controls]{cursor:pointer}[aria-disabled=true]{cursor:default}.elevation-24{box-shadow:0 11px 15px -7px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 24px 38px 3px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 9px 46px 8px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-23{box-shadow:0 11px 14px -7px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 23px 36px 3px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 9px 44px 8px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-22{box-shadow:0 10px 14px -6px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 22px 35px 3px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 8px 42px 7px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-21{box-shadow:0 10px 13px -6px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 21px 33px 3px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 8px 40px 7px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-20{box-shadow:0 10px 13px -6px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 20px 31px 3px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 8px 38px 7px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-19{box-shadow:0 9px 12px -6px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 19px 29px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 7px 36px 6px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-18{box-shadow:0 9px 11px -5px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 18px 28px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 7px 34px 6px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-17{box-shadow:0 8px 11px -5px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 17px 26px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 6px 32px 5px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-16{box-shadow:0 8px 10px -5px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 16px 24px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 6px 30px 5px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-15{box-shadow:0 8px 9px -5px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 15px 22px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 6px 28px 5px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-14{box-shadow:0 7px 9px -4px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 14px 21px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 5px 26px 4px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-13{box-shadow:0 7px 8px -4px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 13px 19px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 5px 24px 4px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-12{box-shadow:0 7px 8px -4px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 12px 17px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 5px 22px 4px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-11{box-shadow:0 6px 7px -4px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 11px 15px 1px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 4px 20px 3px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-10{box-shadow:0 6px 6px -3px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 10px 14px 1px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 4px 18px 3px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-9{box-shadow:0 5px 6px -3px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 9px 12px 1px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 3px 16px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-8{box-shadow:0 5px 5px -3px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 8px 10px 1px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 3px 14px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-7{box-shadow:0 4px 5px -2px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 7px 10px 1px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 2px 16px 1px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-6{box-shadow:0 3px 5px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 6px 10px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 18px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-5{box-shadow:0 3px 5px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 5px 8px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 14px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-4{box-shadow:0 2px 4px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 4px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 10px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-3{box-shadow:0 3px 3px -2px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 3px 4px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 8px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-2{box-shadow:0 3px 1px -2px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 2px 2px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-1{box-shadow:0 2px 1px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 1px 1px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 3px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.elevation-0{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))!important}.dialog-transition-enter-active,.dialog-bottom-transition-enter-active,.dialog-top-transition-enter-active{transition:225ms cubic-bezier(0,0,.2,1)}.dialog-transition-leave-active,.dialog-bottom-transition-leave-active,.dialog-top-transition-leave-active{transition:125ms cubic-bezier(.4,0,1,1)}.dialog-transition-enter-active,.dialog-transition-leave-active,.dialog-bottom-transition-enter-active,.dialog-bottom-transition-leave-active,.dialog-top-transition-enter-active,.dialog-top-transition-leave-active{transition-property:transform,opacity;pointer-events:none}.dialog-transition-enter-from,.dialog-transition-leave-to{transform:scale(.9);opacity:0}.dialog-transition-enter-to,.dialog-transition-leave-from{opacity:1}.dialog-bottom-transition-enter-from,.dialog-bottom-transition-leave-to{transform:translateY(calc(50vh + 50%))}.dialog-top-transition-enter-from,.dialog-top-transition-leave-to{transform:translateY(calc(-50vh - 50%))}.picker-transition-enter-active,.picker-reverse-transition-enter-active,.picker-transition-leave-active,.picker-reverse-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.picker-transition-move,.picker-reverse-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.picker-transition-enter-from,.picker-transition-leave-to,.picker-reverse-transition-enter-from,.picker-reverse-transition-leave-to{opacity:0}.picker-transition-leave-from,.picker-transition-leave-active,.picker-transition-leave-to,.picker-reverse-transition-leave-from,.picker-reverse-transition-leave-active,.picker-reverse-transition-leave-to{position:absolute!important}.picker-transition-enter-active,.picker-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.picker-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.picker-transition-enter-from{transform:translateY(100%)}.picker-transition-leave-to{transform:translateY(-100%)}.picker-reverse-transition-enter-active,.picker-reverse-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.picker-reverse-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.picker-reverse-transition-enter-from{transform:translateY(-100%)}.picker-reverse-transition-leave-to{transform:translateY(100%)}.expand-transition-enter-active,.expand-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.expand-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.expand-x-transition-enter-active,.expand-x-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.expand-x-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.scale-transition-enter-active,.scale-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.scale-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.scale-transition-enter-from,.scale-transition-leave-from,.scale-transition-leave-to{opacity:0;transform:scale(0)}.scale-rotate-transition-enter-active,.scale-rotate-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.scale-rotate-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.scale-rotate-transition-enter-from,.scale-rotate-transition-leave,.scale-rotate-transition-leave-to{opacity:0;transform:scale(0) rotate(-45deg)}.scale-rotate-reverse-transition-enter-active,.scale-rotate-reverse-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.scale-rotate-reverse-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.scale-rotate-reverse-transition-enter-from,.scale-rotate-reverse-transition-leave-from,.scale-rotate-reverse-transition-leave-to{opacity:0;transform:scale(0) rotate(45deg)}.message-transition-enter-active,.message-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.message-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.message-transition-enter-from,.message-transition-leave-to{opacity:0;transform:translateY(-15px)}.message-transition-leave-from,.message-transition-leave-active{position:absolute}.slide-y-transition-enter-active,.slide-y-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.slide-y-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.slide-y-transition-enter-from,.slide-y-transition-leave-to{opacity:0;transform:translateY(-15px)}.slide-y-reverse-transition-enter-active,.slide-y-reverse-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.slide-y-reverse-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.slide-y-reverse-transition-enter-from,.slide-y-reverse-transition-leave-to{opacity:0;transform:translateY(15px)}.scroll-y-transition-enter-active,.scroll-y-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.scroll-y-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.scroll-y-transition-enter-from,.scroll-y-transition-leave-to{opacity:0}.scroll-y-transition-enter-from{transform:translateY(-15px)}.scroll-y-transition-leave-to{transform:translateY(15px)}.scroll-y-reverse-transition-enter-active,.scroll-y-reverse-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.scroll-y-reverse-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.scroll-y-reverse-transition-enter-from,.scroll-y-reverse-transition-leave-to{opacity:0}.scroll-y-reverse-transition-enter-from{transform:translateY(15px)}.scroll-y-reverse-transition-leave-to{transform:translateY(-15px)}.scroll-x-transition-enter-active,.scroll-x-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.scroll-x-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.scroll-x-transition-enter-from,.scroll-x-transition-leave-to{opacity:0}.scroll-x-transition-enter-from{transform:translate(-15px)}.scroll-x-transition-leave-to{transform:translate(15px)}.scroll-x-reverse-transition-enter-active,.scroll-x-reverse-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.scroll-x-reverse-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.scroll-x-reverse-transition-enter-from,.scroll-x-reverse-transition-leave-to{opacity:0}.scroll-x-reverse-transition-enter-from{transform:translate(15px)}.scroll-x-reverse-transition-leave-to{transform:translate(-15px)}.slide-x-transition-enter-active,.slide-x-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.slide-x-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.slide-x-transition-enter-from,.slide-x-transition-leave-to{opacity:0;transform:translate(-15px)}.slide-x-reverse-transition-enter-active,.slide-x-reverse-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.slide-x-reverse-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.slide-x-reverse-transition-enter-from,.slide-x-reverse-transition-leave-to{opacity:0;transform:translate(15px)}.fade-transition-enter-active,.fade-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.fade-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.fade-transition-enter-from,.fade-transition-leave-to{opacity:0!important}.fab-transition-enter-active,.fab-transition-leave-active{transition:.3s cubic-bezier(.4,0,.2,1)}.fab-transition-move{transition:transform .5s cubic-bezier(.4,0,.2,1)}.fab-transition-enter-from,.fab-transition-leave-to{transform:scale(0) rotate(-45deg)}.v-locale--is-rtl{direction:rtl}.v-locale--is-ltr{direction:ltr}.blockquote{padding:16px 0 16px 24px;font-size:18px;font-weight:300}html{font-family:Roboto,sans-serif;line-height:1.5;font-size:1rem;overflow-x:hidden;text-rendering:optimizeLegibility;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale;-webkit-tap-highlight-color:rgba(0,0,0,0)}html.overflow-y-hidden{overflow-y:hidden!important}:root{--v-theme-background: #fff;--v-theme-on-background: #000;--v-theme-surface: #fff;--v-theme-on-surface: #000;--v-theme-overlay-multiplier: 1;--v-scrollbar-offset: 0px}@supports (-webkit-touch-callout: none){body{cursor:pointer}}@media only print{.hidden-print-only{display:none!important}}@media only screen{.hidden-screen-only{display:none!important}}@media (max-width: 599.98px){.hidden-xs{display:none!important}}@media (min-width: 600px) and (max-width: 959.98px){.hidden-sm{display:none!important}}@media (min-width: 960px) and (max-width: 1279.98px){.hidden-md{display:none!important}}@media (min-width: 1280px) and (max-width: 1919.98px){.hidden-lg{display:none!important}}@media (min-width: 1920px) and (max-width: 2559.98px){.hidden-xl{display:none!important}}@media (min-width: 2560px){.hidden-xxl{display:none!important}}@media (min-width: 600px){.hidden-sm-and-up{display:none!important}}@media (min-width: 960px){.hidden-md-and-up{display:none!important}}@media (min-width: 1280px){.hidden-lg-and-up{display:none!important}}@media (min-width: 1920px){.hidden-xl-and-up{display:none!important}}@media (max-width: 959.98px){.hidden-sm-and-down{display:none!important}}@media (max-width: 1279.98px){.hidden-md-and-down{display:none!important}}@media (max-width: 1919.98px){.hidden-lg-and-down{display:none!important}}@media (max-width: 2559.98px){.hidden-xl-and-down{display:none!important}}.d-sr-only,.d-sr-only-focusable:not(:focus){border:0!important;clip:rect(0,0,0,0)!important;height:1px!important;margin:-1px!important;overflow:hidden!important;padding:0!important;position:absolute!important;white-space:nowrap!important;width:1px!important}.overflow-auto{overflow:auto!important}.overflow-hidden{overflow:hidden!important}.overflow-visible{overflow:visible!important}.overflow-x-auto{overflow-x:auto!important}.overflow-x-hidden{overflow-x:hidden!important}.overflow-y-auto{overflow-y:auto!important}.overflow-y-hidden{overflow-y:hidden!important}.d-none{display:none!important}.d-inline{display:inline!important}.d-inline-block{display:inline-block!important}.d-block{display:block!important}.d-table{display:table!important}.d-table-row{display:table-row!important}.d-table-cell{display:table-cell!important}.d-flex{display:flex!important}.d-inline-flex{display:inline-flex!important}.float-none{float:none!important}.float-left{float:left!important}.float-right{float:right!important}.v-locale--is-rtl .float-end{float:left!important}.v-locale--is-rtl .float-start,.v-locale--is-ltr .float-end{float:right!important}.v-locale--is-ltr .float-start{float:left!important}.flex-fill{flex:1 1 auto!important}.flex-row{flex-direction:row!important}.flex-column{flex-direction:column!important}.flex-row-reverse{flex-direction:row-reverse!important}.flex-column-reverse{flex-direction:column-reverse!important}.flex-grow-0{flex-grow:0!important}.flex-grow-1{flex-grow:1!important}.flex-shrink-0{flex-shrink:0!important}.flex-shrink-1{flex-shrink:1!important}.flex-wrap{flex-wrap:wrap!important}.flex-nowrap{flex-wrap:nowrap!important}.flex-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-start{justify-content:flex-start!important}.justify-end{justify-content:flex-end!important}.justify-center{justify-content:center!important}.justify-space-between{justify-content:space-between!important}.justify-space-around{justify-content:space-around!important}.justify-space-evenly{justify-content:space-evenly!important}.align-start{align-items:flex-start!important}.align-end{align-items:flex-end!important}.align-center{align-items:center!important}.align-baseline{align-items:baseline!important}.align-stretch{align-items:stretch!important}.align-content-start{align-content:flex-start!important}.align-content-end{align-content:flex-end!important}.align-content-center{align-content:center!important}.align-content-space-between{align-content:space-between!important}.align-content-space-around{align-content:space-around!important}.align-content-space-evenly{align-content:space-evenly!important}.align-content-stretch{align-content:stretch!important}.align-self-auto{align-self:auto!important}.align-self-start{align-self:flex-start!important}.align-self-end{align-self:flex-end!important}.align-self-center{align-self:center!important}.align-self-baseline{align-self:baseline!important}.align-self-stretch{align-self:stretch!important}.order-first{order:-1!important}.order-0{order:0!important}.order-1{order:1!important}.order-2{order:2!important}.order-3{order:3!important}.order-4{order:4!important}.order-5{order:5!important}.order-6{order:6!important}.order-7{order:7!important}.order-8{order:8!important}.order-9{order:9!important}.order-10{order:10!important}.order-11{order:11!important}.order-12{order:12!important}.order-last{order:13!important}.ma-0{margin:0!important}.ma-1{margin:4px!important}.ma-2{margin:8px!important}.ma-3{margin:12px!important}.ma-4{margin:16px!important}.ma-5{margin:20px!important}.ma-6{margin:24px!important}.ma-7{margin:28px!important}.ma-8{margin:32px!important}.ma-9{margin:36px!important}.ma-10{margin:40px!important}.ma-11{margin:44px!important}.ma-12{margin:48px!important}.ma-13{margin:52px!important}.ma-14{margin:56px!important}.ma-15{margin:60px!important}.ma-16{margin:64px!important}.ma-auto{margin:auto!important}.mx-0{margin-right:0!important;margin-left:0!important}.mx-1{margin-right:4px!important;margin-left:4px!important}.mx-2{margin-right:8px!important;margin-left:8px!important}.mx-3{margin-right:12px!important;margin-left:12px!important}.mx-4{margin-right:16px!important;margin-left:16px!important}.mx-5{margin-right:20px!important;margin-left:20px!important}.mx-6{margin-right:24px!important;margin-left:24px!important}.mx-7{margin-right:28px!important;margin-left:28px!important}.mx-8{margin-right:32px!important;margin-left:32px!important}.mx-9{margin-right:36px!important;margin-left:36px!important}.mx-10{margin-right:40px!important;margin-left:40px!important}.mx-11{margin-right:44px!important;margin-left:44px!important}.mx-12{margin-right:48px!important;margin-left:48px!important}.mx-13{margin-right:52px!important;margin-left:52px!important}.mx-14{margin-right:56px!important;margin-left:56px!important}.mx-15{margin-right:60px!important;margin-left:60px!important}.mx-16{margin-right:64px!important;margin-left:64px!important}.mx-auto{margin-right:auto!important;margin-left:auto!important}.my-0{margin-top:0!important;margin-bottom:0!important}.my-1{margin-top:4px!important;margin-bottom:4px!important}.my-2{margin-top:8px!important;margin-bottom:8px!important}.my-3{margin-top:12px!important;margin-bottom:12px!important}.my-4{margin-top:16px!important;margin-bottom:16px!important}.my-5{margin-top:20px!important;margin-bottom:20px!important}.my-6{margin-top:24px!important;margin-bottom:24px!important}.my-7{margin-top:28px!important;margin-bottom:28px!important}.my-8{margin-top:32px!important;margin-bottom:32px!important}.my-9{margin-top:36px!important;margin-bottom:36px!important}.my-10{margin-top:40px!important;margin-bottom:40px!important}.my-11{margin-top:44px!important;margin-bottom:44px!important}.my-12{margin-top:48px!important;margin-bottom:48px!important}.my-13{margin-top:52px!important;margin-bottom:52px!important}.my-14{margin-top:56px!important;margin-bottom:56px!important}.my-15{margin-top:60px!important;margin-bottom:60px!important}.my-16{margin-top:64px!important;margin-bottom:64px!important}.my-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-0{margin-top:0!important}.mt-1{margin-top:4px!important}.mt-2{margin-top:8px!important}.mt-3{margin-top:12px!important}.mt-4{margin-top:16px!important}.mt-5{margin-top:20px!important}.mt-6{margin-top:24px!important}.mt-7{margin-top:28px!important}.mt-8{margin-top:32px!important}.mt-9{margin-top:36px!important}.mt-10{margin-top:40px!important}.mt-11{margin-top:44px!important}.mt-12{margin-top:48px!important}.mt-13{margin-top:52px!important}.mt-14{margin-top:56px!important}.mt-15{margin-top:60px!important}.mt-16{margin-top:64px!important}.mt-auto{margin-top:auto!important}.mr-0{margin-right:0!important}.mr-1{margin-right:4px!important}.mr-2{margin-right:8px!important}.mr-3{margin-right:12px!important}.mr-4{margin-right:16px!important}.mr-5{margin-right:20px!important}.mr-6{margin-right:24px!important}.mr-7{margin-right:28px!important}.mr-8{margin-right:32px!important}.mr-9{margin-right:36px!important}.mr-10{margin-right:40px!important}.mr-11{margin-right:44px!important}.mr-12{margin-right:48px!important}.mr-13{margin-right:52px!important}.mr-14{margin-right:56px!important}.mr-15{margin-right:60px!important}.mr-16{margin-right:64px!important}.mr-auto{margin-right:auto!important}.mb-0{margin-bottom:0!important}.mb-1{margin-bottom:4px!important}.mb-2{margin-bottom:8px!important}.mb-3{margin-bottom:12px!important}.mb-4{margin-bottom:16px!important}.mb-5{margin-bottom:20px!important}.mb-6{margin-bottom:24px!important}.mb-7{margin-bottom:28px!important}.mb-8{margin-bottom:32px!important}.mb-9{margin-bottom:36px!important}.mb-10{margin-bottom:40px!important}.mb-11{margin-bottom:44px!important}.mb-12{margin-bottom:48px!important}.mb-13{margin-bottom:52px!important}.mb-14{margin-bottom:56px!important}.mb-15{margin-bottom:60px!important}.mb-16{margin-bottom:64px!important}.mb-auto{margin-bottom:auto!important}.ml-0{margin-left:0!important}.ml-1{margin-left:4px!important}.ml-2{margin-left:8px!important}.ml-3{margin-left:12px!important}.ml-4{margin-left:16px!important}.ml-5{margin-left:20px!important}.ml-6{margin-left:24px!important}.ml-7{margin-left:28px!important}.ml-8{margin-left:32px!important}.ml-9{margin-left:36px!important}.ml-10{margin-left:40px!important}.ml-11{margin-left:44px!important}.ml-12{margin-left:48px!important}.ml-13{margin-left:52px!important}.ml-14{margin-left:56px!important}.ml-15{margin-left:60px!important}.ml-16{margin-left:64px!important}.ml-auto{margin-left:auto!important}.ms-0{margin-inline-start:0px!important}.ms-1{margin-inline-start:4px!important}.ms-2{margin-inline-start:8px!important}.ms-3{margin-inline-start:12px!important}.ms-4{margin-inline-start:16px!important}.ms-5{margin-inline-start:20px!important}.ms-6{margin-inline-start:24px!important}.ms-7{margin-inline-start:28px!important}.ms-8{margin-inline-start:32px!important}.ms-9{margin-inline-start:36px!important}.ms-10{margin-inline-start:40px!important}.ms-11{margin-inline-start:44px!important}.ms-12{margin-inline-start:48px!important}.ms-13{margin-inline-start:52px!important}.ms-14{margin-inline-start:56px!important}.ms-15{margin-inline-start:60px!important}.ms-16{margin-inline-start:64px!important}.ms-auto{margin-inline-start:auto!important}.me-0{margin-inline-end:0px!important}.me-1{margin-inline-end:4px!important}.me-2{margin-inline-end:8px!important}.me-3{margin-inline-end:12px!important}.me-4{margin-inline-end:16px!important}.me-5{margin-inline-end:20px!important}.me-6{margin-inline-end:24px!important}.me-7{margin-inline-end:28px!important}.me-8{margin-inline-end:32px!important}.me-9{margin-inline-end:36px!important}.me-10{margin-inline-end:40px!important}.me-11{margin-inline-end:44px!important}.me-12{margin-inline-end:48px!important}.me-13{margin-inline-end:52px!important}.me-14{margin-inline-end:56px!important}.me-15{margin-inline-end:60px!important}.me-16{margin-inline-end:64px!important}.me-auto{margin-inline-end:auto!important}.ma-n1{margin:-4px!important}.ma-n2{margin:-8px!important}.ma-n3{margin:-12px!important}.ma-n4{margin:-16px!important}.ma-n5{margin:-20px!important}.ma-n6{margin:-24px!important}.ma-n7{margin:-28px!important}.ma-n8{margin:-32px!important}.ma-n9{margin:-36px!important}.ma-n10{margin:-40px!important}.ma-n11{margin:-44px!important}.ma-n12{margin:-48px!important}.ma-n13{margin:-52px!important}.ma-n14{margin:-56px!important}.ma-n15{margin:-60px!important}.ma-n16{margin:-64px!important}.mx-n1{margin-right:-4px!important;margin-left:-4px!important}.mx-n2{margin-right:-8px!important;margin-left:-8px!important}.mx-n3{margin-right:-12px!important;margin-left:-12px!important}.mx-n4{margin-right:-16px!important;margin-left:-16px!important}.mx-n5{margin-right:-20px!important;margin-left:-20px!important}.mx-n6{margin-right:-24px!important;margin-left:-24px!important}.mx-n7{margin-right:-28px!important;margin-left:-28px!important}.mx-n8{margin-right:-32px!important;margin-left:-32px!important}.mx-n9{margin-right:-36px!important;margin-left:-36px!important}.mx-n10{margin-right:-40px!important;margin-left:-40px!important}.mx-n11{margin-right:-44px!important;margin-left:-44px!important}.mx-n12{margin-right:-48px!important;margin-left:-48px!important}.mx-n13{margin-right:-52px!important;margin-left:-52px!important}.mx-n14{margin-right:-56px!important;margin-left:-56px!important}.mx-n15{margin-right:-60px!important;margin-left:-60px!important}.mx-n16{margin-right:-64px!important;margin-left:-64px!important}.my-n1{margin-top:-4px!important;margin-bottom:-4px!important}.my-n2{margin-top:-8px!important;margin-bottom:-8px!important}.my-n3{margin-top:-12px!important;margin-bottom:-12px!important}.my-n4{margin-top:-16px!important;margin-bottom:-16px!important}.my-n5{margin-top:-20px!important;margin-bottom:-20px!important}.my-n6{margin-top:-24px!important;margin-bottom:-24px!important}.my-n7{margin-top:-28px!important;margin-bottom:-28px!important}.my-n8{margin-top:-32px!important;margin-bottom:-32px!important}.my-n9{margin-top:-36px!important;margin-bottom:-36px!important}.my-n10{margin-top:-40px!important;margin-bottom:-40px!important}.my-n11{margin-top:-44px!important;margin-bottom:-44px!important}.my-n12{margin-top:-48px!important;margin-bottom:-48px!important}.my-n13{margin-top:-52px!important;margin-bottom:-52px!important}.my-n14{margin-top:-56px!important;margin-bottom:-56px!important}.my-n15{margin-top:-60px!important;margin-bottom:-60px!important}.my-n16{margin-top:-64px!important;margin-bottom:-64px!important}.mt-n1{margin-top:-4px!important}.mt-n2{margin-top:-8px!important}.mt-n3{margin-top:-12px!important}.mt-n4{margin-top:-16px!important}.mt-n5{margin-top:-20px!important}.mt-n6{margin-top:-24px!important}.mt-n7{margin-top:-28px!important}.mt-n8{margin-top:-32px!important}.mt-n9{margin-top:-36px!important}.mt-n10{margin-top:-40px!important}.mt-n11{margin-top:-44px!important}.mt-n12{margin-top:-48px!important}.mt-n13{margin-top:-52px!important}.mt-n14{margin-top:-56px!important}.mt-n15{margin-top:-60px!important}.mt-n16{margin-top:-64px!important}.mr-n1{margin-right:-4px!important}.mr-n2{margin-right:-8px!important}.mr-n3{margin-right:-12px!important}.mr-n4{margin-right:-16px!important}.mr-n5{margin-right:-20px!important}.mr-n6{margin-right:-24px!important}.mr-n7{margin-right:-28px!important}.mr-n8{margin-right:-32px!important}.mr-n9{margin-right:-36px!important}.mr-n10{margin-right:-40px!important}.mr-n11{margin-right:-44px!important}.mr-n12{margin-right:-48px!important}.mr-n13{margin-right:-52px!important}.mr-n14{margin-right:-56px!important}.mr-n15{margin-right:-60px!important}.mr-n16{margin-right:-64px!important}.mb-n1{margin-bottom:-4px!important}.mb-n2{margin-bottom:-8px!important}.mb-n3{margin-bottom:-12px!important}.mb-n4{margin-bottom:-16px!important}.mb-n5{margin-bottom:-20px!important}.mb-n6{margin-bottom:-24px!important}.mb-n7{margin-bottom:-28px!important}.mb-n8{margin-bottom:-32px!important}.mb-n9{margin-bottom:-36px!important}.mb-n10{margin-bottom:-40px!important}.mb-n11{margin-bottom:-44px!important}.mb-n12{margin-bottom:-48px!important}.mb-n13{margin-bottom:-52px!important}.mb-n14{margin-bottom:-56px!important}.mb-n15{margin-bottom:-60px!important}.mb-n16{margin-bottom:-64px!important}.ml-n1{margin-left:-4px!important}.ml-n2{margin-left:-8px!important}.ml-n3{margin-left:-12px!important}.ml-n4{margin-left:-16px!important}.ml-n5{margin-left:-20px!important}.ml-n6{margin-left:-24px!important}.ml-n7{margin-left:-28px!important}.ml-n8{margin-left:-32px!important}.ml-n9{margin-left:-36px!important}.ml-n10{margin-left:-40px!important}.ml-n11{margin-left:-44px!important}.ml-n12{margin-left:-48px!important}.ml-n13{margin-left:-52px!important}.ml-n14{margin-left:-56px!important}.ml-n15{margin-left:-60px!important}.ml-n16{margin-left:-64px!important}.ms-n1{margin-inline-start:-4px!important}.ms-n2{margin-inline-start:-8px!important}.ms-n3{margin-inline-start:-12px!important}.ms-n4{margin-inline-start:-16px!important}.ms-n5{margin-inline-start:-20px!important}.ms-n6{margin-inline-start:-24px!important}.ms-n7{margin-inline-start:-28px!important}.ms-n8{margin-inline-start:-32px!important}.ms-n9{margin-inline-start:-36px!important}.ms-n10{margin-inline-start:-40px!important}.ms-n11{margin-inline-start:-44px!important}.ms-n12{margin-inline-start:-48px!important}.ms-n13{margin-inline-start:-52px!important}.ms-n14{margin-inline-start:-56px!important}.ms-n15{margin-inline-start:-60px!important}.ms-n16{margin-inline-start:-64px!important}.me-n1{margin-inline-end:-4px!important}.me-n2{margin-inline-end:-8px!important}.me-n3{margin-inline-end:-12px!important}.me-n4{margin-inline-end:-16px!important}.me-n5{margin-inline-end:-20px!important}.me-n6{margin-inline-end:-24px!important}.me-n7{margin-inline-end:-28px!important}.me-n8{margin-inline-end:-32px!important}.me-n9{margin-inline-end:-36px!important}.me-n10{margin-inline-end:-40px!important}.me-n11{margin-inline-end:-44px!important}.me-n12{margin-inline-end:-48px!important}.me-n13{margin-inline-end:-52px!important}.me-n14{margin-inline-end:-56px!important}.me-n15{margin-inline-end:-60px!important}.me-n16{margin-inline-end:-64px!important}.pa-0{padding:0!important}.pa-1{padding:4px!important}.pa-2{padding:8px!important}.pa-3{padding:12px!important}.pa-4{padding:16px!important}.pa-5{padding:20px!important}.pa-6{padding:24px!important}.pa-7{padding:28px!important}.pa-8{padding:32px!important}.pa-9{padding:36px!important}.pa-10{padding:40px!important}.pa-11{padding:44px!important}.pa-12{padding:48px!important}.pa-13{padding:52px!important}.pa-14{padding:56px!important}.pa-15{padding:60px!important}.pa-16{padding:64px!important}.px-0{padding-right:0!important;padding-left:0!important}.px-1{padding-right:4px!important;padding-left:4px!important}.px-2{padding-right:8px!important;padding-left:8px!important}.px-3{padding-right:12px!important;padding-left:12px!important}.px-4{padding-right:16px!important;padding-left:16px!important}.px-5{padding-right:20px!important;padding-left:20px!important}.px-6{padding-right:24px!important;padding-left:24px!important}.px-7{padding-right:28px!important;padding-left:28px!important}.px-8{padding-right:32px!important;padding-left:32px!important}.px-9{padding-right:36px!important;padding-left:36px!important}.px-10{padding-right:40px!important;padding-left:40px!important}.px-11{padding-right:44px!important;padding-left:44px!important}.px-12{padding-right:48px!important;padding-left:48px!important}.px-13{padding-right:52px!important;padding-left:52px!important}.px-14{padding-right:56px!important;padding-left:56px!important}.px-15{padding-right:60px!important;padding-left:60px!important}.px-16{padding-right:64px!important;padding-left:64px!important}.py-0{padding-top:0!important;padding-bottom:0!important}.py-1{padding-top:4px!important;padding-bottom:4px!important}.py-2{padding-top:8px!important;padding-bottom:8px!important}.py-3{padding-top:12px!important;padding-bottom:12px!important}.py-4{padding-top:16px!important;padding-bottom:16px!important}.py-5{padding-top:20px!important;padding-bottom:20px!important}.py-6{padding-top:24px!important;padding-bottom:24px!important}.py-7{padding-top:28px!important;padding-bottom:28px!important}.py-8{padding-top:32px!important;padding-bottom:32px!important}.py-9{padding-top:36px!important;padding-bottom:36px!important}.py-10{padding-top:40px!important;padding-bottom:40px!important}.py-11{padding-top:44px!important;padding-bottom:44px!important}.py-12{padding-top:48px!important;padding-bottom:48px!important}.py-13{padding-top:52px!important;padding-bottom:52px!important}.py-14{padding-top:56px!important;padding-bottom:56px!important}.py-15{padding-top:60px!important;padding-bottom:60px!important}.py-16{padding-top:64px!important;padding-bottom:64px!important}.pt-0{padding-top:0!important}.pt-1{padding-top:4px!important}.pt-2{padding-top:8px!important}.pt-3{padding-top:12px!important}.pt-4{padding-top:16px!important}.pt-5{padding-top:20px!important}.pt-6{padding-top:24px!important}.pt-7{padding-top:28px!important}.pt-8{padding-top:32px!important}.pt-9{padding-top:36px!important}.pt-10{padding-top:40px!important}.pt-11{padding-top:44px!important}.pt-12{padding-top:48px!important}.pt-13{padding-top:52px!important}.pt-14{padding-top:56px!important}.pt-15{padding-top:60px!important}.pt-16{padding-top:64px!important}.pr-0{padding-right:0!important}.pr-1{padding-right:4px!important}.pr-2{padding-right:8px!important}.pr-3{padding-right:12px!important}.pr-4{padding-right:16px!important}.pr-5{padding-right:20px!important}.pr-6{padding-right:24px!important}.pr-7{padding-right:28px!important}.pr-8{padding-right:32px!important}.pr-9{padding-right:36px!important}.pr-10{padding-right:40px!important}.pr-11{padding-right:44px!important}.pr-12{padding-right:48px!important}.pr-13{padding-right:52px!important}.pr-14{padding-right:56px!important}.pr-15{padding-right:60px!important}.pr-16{padding-right:64px!important}.pb-0{padding-bottom:0!important}.pb-1{padding-bottom:4px!important}.pb-2{padding-bottom:8px!important}.pb-3{padding-bottom:12px!important}.pb-4{padding-bottom:16px!important}.pb-5{padding-bottom:20px!important}.pb-6{padding-bottom:24px!important}.pb-7{padding-bottom:28px!important}.pb-8{padding-bottom:32px!important}.pb-9{padding-bottom:36px!important}.pb-10{padding-bottom:40px!important}.pb-11{padding-bottom:44px!important}.pb-12{padding-bottom:48px!important}.pb-13{padding-bottom:52px!important}.pb-14{padding-bottom:56px!important}.pb-15{padding-bottom:60px!important}.pb-16{padding-bottom:64px!important}.pl-0{padding-left:0!important}.pl-1{padding-left:4px!important}.pl-2{padding-left:8px!important}.pl-3{padding-left:12px!important}.pl-4{padding-left:16px!important}.pl-5{padding-left:20px!important}.pl-6{padding-left:24px!important}.pl-7{padding-left:28px!important}.pl-8{padding-left:32px!important}.pl-9{padding-left:36px!important}.pl-10{padding-left:40px!important}.pl-11{padding-left:44px!important}.pl-12{padding-left:48px!important}.pl-13{padding-left:52px!important}.pl-14{padding-left:56px!important}.pl-15{padding-left:60px!important}.pl-16{padding-left:64px!important}.ps-0{padding-inline-start:0px!important}.ps-1{padding-inline-start:4px!important}.ps-2{padding-inline-start:8px!important}.ps-3{padding-inline-start:12px!important}.ps-4{padding-inline-start:16px!important}.ps-5{padding-inline-start:20px!important}.ps-6{padding-inline-start:24px!important}.ps-7{padding-inline-start:28px!important}.ps-8{padding-inline-start:32px!important}.ps-9{padding-inline-start:36px!important}.ps-10{padding-inline-start:40px!important}.ps-11{padding-inline-start:44px!important}.ps-12{padding-inline-start:48px!important}.ps-13{padding-inline-start:52px!important}.ps-14{padding-inline-start:56px!important}.ps-15{padding-inline-start:60px!important}.ps-16{padding-inline-start:64px!important}.pe-0{padding-inline-end:0px!important}.pe-1{padding-inline-end:4px!important}.pe-2{padding-inline-end:8px!important}.pe-3{padding-inline-end:12px!important}.pe-4{padding-inline-end:16px!important}.pe-5{padding-inline-end:20px!important}.pe-6{padding-inline-end:24px!important}.pe-7{padding-inline-end:28px!important}.pe-8{padding-inline-end:32px!important}.pe-9{padding-inline-end:36px!important}.pe-10{padding-inline-end:40px!important}.pe-11{padding-inline-end:44px!important}.pe-12{padding-inline-end:48px!important}.pe-13{padding-inline-end:52px!important}.pe-14{padding-inline-end:56px!important}.pe-15{padding-inline-end:60px!important}.pe-16{padding-inline-end:64px!important}.rounded-0{border-radius:0!important}.rounded-sm{border-radius:2px!important}.rounded{border-radius:4px!important}.rounded-lg{border-radius:8px!important}.rounded-xl{border-radius:24px!important}.rounded-pill{border-radius:9999px!important}.rounded-circle{border-radius:50%!important}.rounded-shaped{border-radius:24px 0!important}.rounded-t-0{border-top-left-radius:0!important;border-top-right-radius:0!important}.rounded-t-sm{border-top-left-radius:2px!important;border-top-right-radius:2px!important}.rounded-t{border-top-left-radius:4px!important;border-top-right-radius:4px!important}.rounded-t-lg{border-top-left-radius:8px!important;border-top-right-radius:8px!important}.rounded-t-xl{border-top-left-radius:24px!important;border-top-right-radius:24px!important}.rounded-t-pill{border-top-left-radius:9999px!important;border-top-right-radius:9999px!important}.rounded-t-circle{border-top-left-radius:50%!important;border-top-right-radius:50%!important}.rounded-t-shaped{border-top-left-radius:24px!important;border-top-right-radius:0!important}.v-locale--is-ltr .rounded-e-0{border-top-right-radius:0!important;border-bottom-right-radius:0!important}.v-locale--is-rtl .rounded-e-0{border-top-left-radius:0!important;border-bottom-left-radius:0!important}.v-locale--is-ltr .rounded-e-sm{border-top-right-radius:2px!important;border-bottom-right-radius:2px!important}.v-locale--is-rtl .rounded-e-sm{border-top-left-radius:2px!important;border-bottom-left-radius:2px!important}.v-locale--is-ltr .rounded-e{border-top-right-radius:4px!important;border-bottom-right-radius:4px!important}.v-locale--is-rtl .rounded-e{border-top-left-radius:4px!important;border-bottom-left-radius:4px!important}.v-locale--is-ltr .rounded-e-lg{border-top-right-radius:8px!important;border-bottom-right-radius:8px!important}.v-locale--is-rtl .rounded-e-lg{border-top-left-radius:8px!important;border-bottom-left-radius:8px!important}.v-locale--is-ltr .rounded-e-xl{border-top-right-radius:24px!important;border-bottom-right-radius:24px!important}.v-locale--is-rtl .rounded-e-xl{border-top-left-radius:24px!important;border-bottom-left-radius:24px!important}.v-locale--is-ltr .rounded-e-pill{border-top-right-radius:9999px!important;border-bottom-right-radius:9999px!important}.v-locale--is-rtl .rounded-e-pill{border-top-left-radius:9999px!important;border-bottom-left-radius:9999px!important}.v-locale--is-ltr .rounded-e-circle{border-top-right-radius:50%!important;border-bottom-right-radius:50%!important}.v-locale--is-rtl .rounded-e-circle{border-top-left-radius:50%!important;border-bottom-left-radius:50%!important}.v-locale--is-ltr .rounded-e-shaped{border-top-right-radius:24px!important;border-bottom-right-radius:0!important}.v-locale--is-rtl .rounded-e-shaped{border-top-left-radius:24px!important;border-bottom-left-radius:0!important}.rounded-b-0{border-bottom-left-radius:0!important;border-bottom-right-radius:0!important}.rounded-b-sm{border-bottom-left-radius:2px!important;border-bottom-right-radius:2px!important}.rounded-b{border-bottom-left-radius:4px!important;border-bottom-right-radius:4px!important}.rounded-b-lg{border-bottom-left-radius:8px!important;border-bottom-right-radius:8px!important}.rounded-b-xl{border-bottom-left-radius:24px!important;border-bottom-right-radius:24px!important}.rounded-b-pill{border-bottom-left-radius:9999px!important;border-bottom-right-radius:9999px!important}.rounded-b-circle{border-bottom-left-radius:50%!important;border-bottom-right-radius:50%!important}.rounded-b-shaped{border-bottom-left-radius:24px!important;border-bottom-right-radius:0!important}.v-locale--is-ltr .rounded-s-0{border-top-left-radius:0!important;border-bottom-left-radius:0!important}.v-locale--is-rtl .rounded-s-0{border-top-right-radius:0!important;border-bottom-right-radius:0!important}.v-locale--is-ltr .rounded-s-sm{border-top-left-radius:2px!important;border-bottom-left-radius:2px!important}.v-locale--is-rtl .rounded-s-sm{border-top-right-radius:2px!important;border-bottom-right-radius:2px!important}.v-locale--is-ltr .rounded-s{border-top-left-radius:4px!important;border-bottom-left-radius:4px!important}.v-locale--is-rtl .rounded-s{border-top-right-radius:4px!important;border-bottom-right-radius:4px!important}.v-locale--is-ltr .rounded-s-lg{border-top-left-radius:8px!important;border-bottom-left-radius:8px!important}.v-locale--is-rtl .rounded-s-lg{border-top-right-radius:8px!important;border-bottom-right-radius:8px!important}.v-locale--is-ltr .rounded-s-xl{border-top-left-radius:24px!important;border-bottom-left-radius:24px!important}.v-locale--is-rtl .rounded-s-xl{border-top-right-radius:24px!important;border-bottom-right-radius:24px!important}.v-locale--is-ltr .rounded-s-pill{border-top-left-radius:9999px!important;border-bottom-left-radius:9999px!important}.v-locale--is-rtl .rounded-s-pill{border-top-right-radius:9999px!important;border-bottom-right-radius:9999px!important}.v-locale--is-ltr .rounded-s-circle{border-top-left-radius:50%!important;border-bottom-left-radius:50%!important}.v-locale--is-rtl .rounded-s-circle{border-top-right-radius:50%!important;border-bottom-right-radius:50%!important}.v-locale--is-ltr .rounded-s-shaped{border-top-left-radius:24px!important;border-bottom-left-radius:0!important}.v-locale--is-rtl .rounded-s-shaped{border-top-right-radius:24px!important;border-bottom-right-radius:0!important}.v-locale--is-ltr .rounded-ts-0{border-top-left-radius:0!important}.v-locale--is-rtl .rounded-ts-0{border-top-right-radius:0!important}.v-locale--is-ltr .rounded-ts-sm{border-top-left-radius:2px!important}.v-locale--is-rtl .rounded-ts-sm{border-top-right-radius:2px!important}.v-locale--is-ltr .rounded-ts{border-top-left-radius:4px!important}.v-locale--is-rtl .rounded-ts{border-top-right-radius:4px!important}.v-locale--is-ltr .rounded-ts-lg{border-top-left-radius:8px!important}.v-locale--is-rtl .rounded-ts-lg{border-top-right-radius:8px!important}.v-locale--is-ltr .rounded-ts-xl{border-top-left-radius:24px!important}.v-locale--is-rtl .rounded-ts-xl{border-top-right-radius:24px!important}.v-locale--is-ltr .rounded-ts-pill{border-top-left-radius:9999px!important}.v-locale--is-rtl .rounded-ts-pill{border-top-right-radius:9999px!important}.v-locale--is-ltr .rounded-ts-circle{border-top-left-radius:50%!important}.v-locale--is-rtl .rounded-ts-circle{border-top-right-radius:50%!important}.v-locale--is-ltr .rounded-ts-shaped{border-top-left-radius:24px 0!important}.v-locale--is-rtl .rounded-ts-shaped{border-top-right-radius:24px 0!important}.v-locale--is-ltr .rounded-te-0{border-top-right-radius:0!important}.v-locale--is-rtl .rounded-te-0{border-top-left-radius:0!important}.v-locale--is-ltr .rounded-te-sm{border-top-right-radius:2px!important}.v-locale--is-rtl .rounded-te-sm{border-top-left-radius:2px!important}.v-locale--is-ltr .rounded-te{border-top-right-radius:4px!important}.v-locale--is-rtl .rounded-te{border-top-left-radius:4px!important}.v-locale--is-ltr .rounded-te-lg{border-top-right-radius:8px!important}.v-locale--is-rtl .rounded-te-lg{border-top-left-radius:8px!important}.v-locale--is-ltr .rounded-te-xl{border-top-right-radius:24px!important}.v-locale--is-rtl .rounded-te-xl{border-top-left-radius:24px!important}.v-locale--is-ltr .rounded-te-pill{border-top-right-radius:9999px!important}.v-locale--is-rtl .rounded-te-pill{border-top-left-radius:9999px!important}.v-locale--is-ltr .rounded-te-circle{border-top-right-radius:50%!important}.v-locale--is-rtl .rounded-te-circle{border-top-left-radius:50%!important}.v-locale--is-ltr .rounded-te-shaped{border-top-right-radius:24px 0!important}.v-locale--is-rtl .rounded-te-shaped{border-top-left-radius:24px 0!important}.v-locale--is-ltr .rounded-be-0{border-bottom-right-radius:0!important}.v-locale--is-rtl .rounded-be-0{border-bottom-left-radius:0!important}.v-locale--is-ltr .rounded-be-sm{border-bottom-right-radius:2px!important}.v-locale--is-rtl .rounded-be-sm{border-bottom-left-radius:2px!important}.v-locale--is-ltr .rounded-be{border-bottom-right-radius:4px!important}.v-locale--is-rtl .rounded-be{border-bottom-left-radius:4px!important}.v-locale--is-ltr .rounded-be-lg{border-bottom-right-radius:8px!important}.v-locale--is-rtl .rounded-be-lg{border-bottom-left-radius:8px!important}.v-locale--is-ltr .rounded-be-xl{border-bottom-right-radius:24px!important}.v-locale--is-rtl .rounded-be-xl{border-bottom-left-radius:24px!important}.v-locale--is-ltr .rounded-be-pill{border-bottom-right-radius:9999px!important}.v-locale--is-rtl .rounded-be-pill{border-bottom-left-radius:9999px!important}.v-locale--is-ltr .rounded-be-circle{border-bottom-right-radius:50%!important}.v-locale--is-rtl .rounded-be-circle{border-bottom-left-radius:50%!important}.v-locale--is-ltr .rounded-be-shaped{border-bottom-right-radius:24px 0!important}.v-locale--is-rtl .rounded-be-shaped{border-bottom-left-radius:24px 0!important}.v-locale--is-ltr .rounded-bs-0{border-bottom-left-radius:0!important}.v-locale--is-rtl .rounded-bs-0{border-bottom-right-radius:0!important}.v-locale--is-ltr .rounded-bs-sm{border-bottom-left-radius:2px!important}.v-locale--is-rtl .rounded-bs-sm{border-bottom-right-radius:2px!important}.v-locale--is-ltr .rounded-bs{border-bottom-left-radius:4px!important}.v-locale--is-rtl .rounded-bs{border-bottom-right-radius:4px!important}.v-locale--is-ltr .rounded-bs-lg{border-bottom-left-radius:8px!important}.v-locale--is-rtl .rounded-bs-lg{border-bottom-right-radius:8px!important}.v-locale--is-ltr .rounded-bs-xl{border-bottom-left-radius:24px!important}.v-locale--is-rtl .rounded-bs-xl{border-bottom-right-radius:24px!important}.v-locale--is-ltr .rounded-bs-pill{border-bottom-left-radius:9999px!important}.v-locale--is-rtl .rounded-bs-pill{border-bottom-right-radius:9999px!important}.v-locale--is-ltr .rounded-bs-circle{border-bottom-left-radius:50%!important}.v-locale--is-rtl .rounded-bs-circle{border-bottom-right-radius:50%!important}.v-locale--is-ltr .rounded-bs-shaped{border-bottom-left-radius:24px 0!important}.v-locale--is-rtl .rounded-bs-shaped{border-bottom-right-radius:24px 0!important}.border-0{border-width:0!important;border-style:solid!important;border-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border{border-width:thin!important;border-style:solid!important;border-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-sm{border-width:1px!important;border-style:solid!important;border-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-md{border-width:2px!important;border-style:solid!important;border-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-lg{border-width:4px!important;border-style:solid!important;border-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-xl{border-width:8px!important;border-style:solid!important;border-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-opacity-0{--v-border-opacity: 0 !important}.border-opacity{--v-border-opacity: .12 !important}.border-opacity-25{--v-border-opacity: .25 !important}.border-opacity-50{--v-border-opacity: .5 !important}.border-opacity-75{--v-border-opacity: .75 !important}.border-opacity-100{--v-border-opacity: 1 !important}.border-t-0{border-block-start-width:0!important;border-block-start-style:solid!important;border-block-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-t{border-block-start-width:thin!important;border-block-start-style:solid!important;border-block-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-t-sm{border-block-start-width:1px!important;border-block-start-style:solid!important;border-block-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-t-md{border-block-start-width:2px!important;border-block-start-style:solid!important;border-block-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-t-lg{border-block-start-width:4px!important;border-block-start-style:solid!important;border-block-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-t-xl{border-block-start-width:8px!important;border-block-start-style:solid!important;border-block-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-e-0{border-inline-end-width:0!important;border-inline-end-style:solid!important;border-inline-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-e{border-inline-end-width:thin!important;border-inline-end-style:solid!important;border-inline-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-e-sm{border-inline-end-width:1px!important;border-inline-end-style:solid!important;border-inline-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-e-md{border-inline-end-width:2px!important;border-inline-end-style:solid!important;border-inline-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-e-lg{border-inline-end-width:4px!important;border-inline-end-style:solid!important;border-inline-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-e-xl{border-inline-end-width:8px!important;border-inline-end-style:solid!important;border-inline-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-b-0{border-block-end-width:0!important;border-block-end-style:solid!important;border-block-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-b{border-block-end-width:thin!important;border-block-end-style:solid!important;border-block-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-b-sm{border-block-end-width:1px!important;border-block-end-style:solid!important;border-block-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-b-md{border-block-end-width:2px!important;border-block-end-style:solid!important;border-block-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-b-lg{border-block-end-width:4px!important;border-block-end-style:solid!important;border-block-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-b-xl{border-block-end-width:8px!important;border-block-end-style:solid!important;border-block-end-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-s-0{border-inline-start-width:0!important;border-inline-start-style:solid!important;border-inline-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-s{border-inline-start-width:thin!important;border-inline-start-style:solid!important;border-inline-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-s-sm{border-inline-start-width:1px!important;border-inline-start-style:solid!important;border-inline-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-s-md{border-inline-start-width:2px!important;border-inline-start-style:solid!important;border-inline-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-s-lg{border-inline-start-width:4px!important;border-inline-start-style:solid!important;border-inline-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-s-xl{border-inline-start-width:8px!important;border-inline-start-style:solid!important;border-inline-start-color:rgba(var(--v-border-color),var(--v-border-opacity))!important}.border-solid{border-style:solid!important}.border-dashed{border-style:dashed!important}.border-dotted{border-style:dotted!important}.border-double{border-style:double!important}.border-none{border-style:none!important}.text-left{text-align:left!important}.text-right{text-align:right!important}.text-center{text-align:center!important}.text-justify{text-align:justify!important}.text-start{text-align:start!important}.text-end{text-align:end!important}.text-decoration-line-through{text-decoration:line-through!important}.text-decoration-none{text-decoration:none!important}.text-decoration-overline{text-decoration:overline!important}.text-decoration-underline{text-decoration:underline!important}.text-wrap{white-space:normal!important}.text-no-wrap{white-space:nowrap!important}.text-pre{white-space:pre!important}.text-pre-line{white-space:pre-line!important}.text-pre-wrap{white-space:pre-wrap!important}.text-break{overflow-wrap:break-word!important;word-break:break-word!important}.text-high-emphasis{color:rgba(var(--v-theme-on-background),var(--v-high-emphasis-opacity))!important}.text-medium-emphasis{color:rgba(var(--v-theme-on-background),var(--v-medium-emphasis-opacity))!important}.text-disabled{color:rgba(var(--v-theme-on-background),var(--v-disabled-opacity))!important}.text-truncate{white-space:nowrap!important;overflow:hidden!important;text-overflow:ellipsis!important}.text-h1{font-size:6rem!important;font-weight:300;line-height:6rem;letter-spacing:-.015625em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-h2{font-size:3.75rem!important;font-weight:300;line-height:3.75rem;letter-spacing:-.0083333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-h3{font-size:3rem!important;font-weight:400;line-height:3.125rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-h4{font-size:2.125rem!important;font-weight:400;line-height:2.5rem;letter-spacing:.0073529412em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-h5{font-size:1.5rem!important;font-weight:400;line-height:2rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-h6{font-size:1.25rem!important;font-weight:500;line-height:2rem;letter-spacing:.0125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-subtitle-1{font-size:1rem!important;font-weight:400;line-height:1.75rem;letter-spacing:.009375em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-subtitle-2{font-size:.875rem!important;font-weight:500;line-height:1.375rem;letter-spacing:.0071428571em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-body-1{font-size:1rem!important;font-weight:400;line-height:1.5rem;letter-spacing:.03125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-body-2{font-size:.875rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0178571429em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-button{font-size:.875rem!important;font-weight:500;line-height:2.25rem;letter-spacing:.0892857143em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}.text-caption{font-size:.75rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0333333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-overline{font-size:.75rem!important;font-weight:500;line-height:2rem;letter-spacing:.1666666667em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}.text-none{text-transform:none!important}.text-capitalize{text-transform:capitalize!important}.text-lowercase{text-transform:lowercase!important}.text-uppercase{text-transform:uppercase!important}.font-weight-thin{font-weight:100!important}.font-weight-light{font-weight:300!important}.font-weight-regular{font-weight:400!important}.font-weight-medium{font-weight:500!important}.font-weight-bold{font-weight:700!important}.font-weight-black{font-weight:900!important}.font-italic{font-style:italic!important}.text-mono{font-family:monospace!important}.position-static{position:static!important}.position-relative{position:relative!important}.position-fixed{position:fixed!important}.position-absolute{position:absolute!important}.position-sticky{position:sticky!important}.fill-height{height:100%!important}.h-auto{height:auto!important}.h-screen{height:100vh!important}.h-0{height:0!important}.h-25{height:25%!important}.h-50{height:50%!important}.h-75{height:75%!important}.h-100{height:100%!important}.w-auto{width:auto!important}.w-0{width:0!important}.w-25{width:25%!important}.w-33{width:33%!important}.w-50{width:50%!important}.w-66{width:66%!important}.w-75{width:75%!important}.w-100{width:100%!important}@media (min-width: 600px){.d-sm-none{display:none!important}.d-sm-inline{display:inline!important}.d-sm-inline-block{display:inline-block!important}.d-sm-block{display:block!important}.d-sm-table{display:table!important}.d-sm-table-row{display:table-row!important}.d-sm-table-cell{display:table-cell!important}.d-sm-flex{display:flex!important}.d-sm-inline-flex{display:inline-flex!important}.float-sm-none{float:none!important}.float-sm-left{float:left!important}.float-sm-right{float:right!important}.v-locale--is-rtl .float-sm-end{float:left!important}.v-locale--is-rtl .float-sm-start,.v-locale--is-ltr .float-sm-end{float:right!important}.v-locale--is-ltr .float-sm-start{float:left!important}.flex-sm-fill{flex:1 1 auto!important}.flex-sm-row{flex-direction:row!important}.flex-sm-column{flex-direction:column!important}.flex-sm-row-reverse{flex-direction:row-reverse!important}.flex-sm-column-reverse{flex-direction:column-reverse!important}.flex-sm-grow-0{flex-grow:0!important}.flex-sm-grow-1{flex-grow:1!important}.flex-sm-shrink-0{flex-shrink:0!important}.flex-sm-shrink-1{flex-shrink:1!important}.flex-sm-wrap{flex-wrap:wrap!important}.flex-sm-nowrap{flex-wrap:nowrap!important}.flex-sm-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-sm-start{justify-content:flex-start!important}.justify-sm-end{justify-content:flex-end!important}.justify-sm-center{justify-content:center!important}.justify-sm-space-between{justify-content:space-between!important}.justify-sm-space-around{justify-content:space-around!important}.justify-sm-space-evenly{justify-content:space-evenly!important}.align-sm-start{align-items:flex-start!important}.align-sm-end{align-items:flex-end!important}.align-sm-center{align-items:center!important}.align-sm-baseline{align-items:baseline!important}.align-sm-stretch{align-items:stretch!important}.align-content-sm-start{align-content:flex-start!important}.align-content-sm-end{align-content:flex-end!important}.align-content-sm-center{align-content:center!important}.align-content-sm-space-between{align-content:space-between!important}.align-content-sm-space-around{align-content:space-around!important}.align-content-sm-space-evenly{align-content:space-evenly!important}.align-content-sm-stretch{align-content:stretch!important}.align-self-sm-auto{align-self:auto!important}.align-self-sm-start{align-self:flex-start!important}.align-self-sm-end{align-self:flex-end!important}.align-self-sm-center{align-self:center!important}.align-self-sm-baseline{align-self:baseline!important}.align-self-sm-stretch{align-self:stretch!important}.order-sm-first{order:-1!important}.order-sm-0{order:0!important}.order-sm-1{order:1!important}.order-sm-2{order:2!important}.order-sm-3{order:3!important}.order-sm-4{order:4!important}.order-sm-5{order:5!important}.order-sm-6{order:6!important}.order-sm-7{order:7!important}.order-sm-8{order:8!important}.order-sm-9{order:9!important}.order-sm-10{order:10!important}.order-sm-11{order:11!important}.order-sm-12{order:12!important}.order-sm-last{order:13!important}.ma-sm-0{margin:0!important}.ma-sm-1{margin:4px!important}.ma-sm-2{margin:8px!important}.ma-sm-3{margin:12px!important}.ma-sm-4{margin:16px!important}.ma-sm-5{margin:20px!important}.ma-sm-6{margin:24px!important}.ma-sm-7{margin:28px!important}.ma-sm-8{margin:32px!important}.ma-sm-9{margin:36px!important}.ma-sm-10{margin:40px!important}.ma-sm-11{margin:44px!important}.ma-sm-12{margin:48px!important}.ma-sm-13{margin:52px!important}.ma-sm-14{margin:56px!important}.ma-sm-15{margin:60px!important}.ma-sm-16{margin:64px!important}.ma-sm-auto{margin:auto!important}.mx-sm-0{margin-right:0!important;margin-left:0!important}.mx-sm-1{margin-right:4px!important;margin-left:4px!important}.mx-sm-2{margin-right:8px!important;margin-left:8px!important}.mx-sm-3{margin-right:12px!important;margin-left:12px!important}.mx-sm-4{margin-right:16px!important;margin-left:16px!important}.mx-sm-5{margin-right:20px!important;margin-left:20px!important}.mx-sm-6{margin-right:24px!important;margin-left:24px!important}.mx-sm-7{margin-right:28px!important;margin-left:28px!important}.mx-sm-8{margin-right:32px!important;margin-left:32px!important}.mx-sm-9{margin-right:36px!important;margin-left:36px!important}.mx-sm-10{margin-right:40px!important;margin-left:40px!important}.mx-sm-11{margin-right:44px!important;margin-left:44px!important}.mx-sm-12{margin-right:48px!important;margin-left:48px!important}.mx-sm-13{margin-right:52px!important;margin-left:52px!important}.mx-sm-14{margin-right:56px!important;margin-left:56px!important}.mx-sm-15{margin-right:60px!important;margin-left:60px!important}.mx-sm-16{margin-right:64px!important;margin-left:64px!important}.mx-sm-auto{margin-right:auto!important;margin-left:auto!important}.my-sm-0{margin-top:0!important;margin-bottom:0!important}.my-sm-1{margin-top:4px!important;margin-bottom:4px!important}.my-sm-2{margin-top:8px!important;margin-bottom:8px!important}.my-sm-3{margin-top:12px!important;margin-bottom:12px!important}.my-sm-4{margin-top:16px!important;margin-bottom:16px!important}.my-sm-5{margin-top:20px!important;margin-bottom:20px!important}.my-sm-6{margin-top:24px!important;margin-bottom:24px!important}.my-sm-7{margin-top:28px!important;margin-bottom:28px!important}.my-sm-8{margin-top:32px!important;margin-bottom:32px!important}.my-sm-9{margin-top:36px!important;margin-bottom:36px!important}.my-sm-10{margin-top:40px!important;margin-bottom:40px!important}.my-sm-11{margin-top:44px!important;margin-bottom:44px!important}.my-sm-12{margin-top:48px!important;margin-bottom:48px!important}.my-sm-13{margin-top:52px!important;margin-bottom:52px!important}.my-sm-14{margin-top:56px!important;margin-bottom:56px!important}.my-sm-15{margin-top:60px!important;margin-bottom:60px!important}.my-sm-16{margin-top:64px!important;margin-bottom:64px!important}.my-sm-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-sm-0{margin-top:0!important}.mt-sm-1{margin-top:4px!important}.mt-sm-2{margin-top:8px!important}.mt-sm-3{margin-top:12px!important}.mt-sm-4{margin-top:16px!important}.mt-sm-5{margin-top:20px!important}.mt-sm-6{margin-top:24px!important}.mt-sm-7{margin-top:28px!important}.mt-sm-8{margin-top:32px!important}.mt-sm-9{margin-top:36px!important}.mt-sm-10{margin-top:40px!important}.mt-sm-11{margin-top:44px!important}.mt-sm-12{margin-top:48px!important}.mt-sm-13{margin-top:52px!important}.mt-sm-14{margin-top:56px!important}.mt-sm-15{margin-top:60px!important}.mt-sm-16{margin-top:64px!important}.mt-sm-auto{margin-top:auto!important}.mr-sm-0{margin-right:0!important}.mr-sm-1{margin-right:4px!important}.mr-sm-2{margin-right:8px!important}.mr-sm-3{margin-right:12px!important}.mr-sm-4{margin-right:16px!important}.mr-sm-5{margin-right:20px!important}.mr-sm-6{margin-right:24px!important}.mr-sm-7{margin-right:28px!important}.mr-sm-8{margin-right:32px!important}.mr-sm-9{margin-right:36px!important}.mr-sm-10{margin-right:40px!important}.mr-sm-11{margin-right:44px!important}.mr-sm-12{margin-right:48px!important}.mr-sm-13{margin-right:52px!important}.mr-sm-14{margin-right:56px!important}.mr-sm-15{margin-right:60px!important}.mr-sm-16{margin-right:64px!important}.mr-sm-auto{margin-right:auto!important}.mb-sm-0{margin-bottom:0!important}.mb-sm-1{margin-bottom:4px!important}.mb-sm-2{margin-bottom:8px!important}.mb-sm-3{margin-bottom:12px!important}.mb-sm-4{margin-bottom:16px!important}.mb-sm-5{margin-bottom:20px!important}.mb-sm-6{margin-bottom:24px!important}.mb-sm-7{margin-bottom:28px!important}.mb-sm-8{margin-bottom:32px!important}.mb-sm-9{margin-bottom:36px!important}.mb-sm-10{margin-bottom:40px!important}.mb-sm-11{margin-bottom:44px!important}.mb-sm-12{margin-bottom:48px!important}.mb-sm-13{margin-bottom:52px!important}.mb-sm-14{margin-bottom:56px!important}.mb-sm-15{margin-bottom:60px!important}.mb-sm-16{margin-bottom:64px!important}.mb-sm-auto{margin-bottom:auto!important}.ml-sm-0{margin-left:0!important}.ml-sm-1{margin-left:4px!important}.ml-sm-2{margin-left:8px!important}.ml-sm-3{margin-left:12px!important}.ml-sm-4{margin-left:16px!important}.ml-sm-5{margin-left:20px!important}.ml-sm-6{margin-left:24px!important}.ml-sm-7{margin-left:28px!important}.ml-sm-8{margin-left:32px!important}.ml-sm-9{margin-left:36px!important}.ml-sm-10{margin-left:40px!important}.ml-sm-11{margin-left:44px!important}.ml-sm-12{margin-left:48px!important}.ml-sm-13{margin-left:52px!important}.ml-sm-14{margin-left:56px!important}.ml-sm-15{margin-left:60px!important}.ml-sm-16{margin-left:64px!important}.ml-sm-auto{margin-left:auto!important}.ms-sm-0{margin-inline-start:0px!important}.ms-sm-1{margin-inline-start:4px!important}.ms-sm-2{margin-inline-start:8px!important}.ms-sm-3{margin-inline-start:12px!important}.ms-sm-4{margin-inline-start:16px!important}.ms-sm-5{margin-inline-start:20px!important}.ms-sm-6{margin-inline-start:24px!important}.ms-sm-7{margin-inline-start:28px!important}.ms-sm-8{margin-inline-start:32px!important}.ms-sm-9{margin-inline-start:36px!important}.ms-sm-10{margin-inline-start:40px!important}.ms-sm-11{margin-inline-start:44px!important}.ms-sm-12{margin-inline-start:48px!important}.ms-sm-13{margin-inline-start:52px!important}.ms-sm-14{margin-inline-start:56px!important}.ms-sm-15{margin-inline-start:60px!important}.ms-sm-16{margin-inline-start:64px!important}.ms-sm-auto{margin-inline-start:auto!important}.me-sm-0{margin-inline-end:0px!important}.me-sm-1{margin-inline-end:4px!important}.me-sm-2{margin-inline-end:8px!important}.me-sm-3{margin-inline-end:12px!important}.me-sm-4{margin-inline-end:16px!important}.me-sm-5{margin-inline-end:20px!important}.me-sm-6{margin-inline-end:24px!important}.me-sm-7{margin-inline-end:28px!important}.me-sm-8{margin-inline-end:32px!important}.me-sm-9{margin-inline-end:36px!important}.me-sm-10{margin-inline-end:40px!important}.me-sm-11{margin-inline-end:44px!important}.me-sm-12{margin-inline-end:48px!important}.me-sm-13{margin-inline-end:52px!important}.me-sm-14{margin-inline-end:56px!important}.me-sm-15{margin-inline-end:60px!important}.me-sm-16{margin-inline-end:64px!important}.me-sm-auto{margin-inline-end:auto!important}.ma-sm-n1{margin:-4px!important}.ma-sm-n2{margin:-8px!important}.ma-sm-n3{margin:-12px!important}.ma-sm-n4{margin:-16px!important}.ma-sm-n5{margin:-20px!important}.ma-sm-n6{margin:-24px!important}.ma-sm-n7{margin:-28px!important}.ma-sm-n8{margin:-32px!important}.ma-sm-n9{margin:-36px!important}.ma-sm-n10{margin:-40px!important}.ma-sm-n11{margin:-44px!important}.ma-sm-n12{margin:-48px!important}.ma-sm-n13{margin:-52px!important}.ma-sm-n14{margin:-56px!important}.ma-sm-n15{margin:-60px!important}.ma-sm-n16{margin:-64px!important}.mx-sm-n1{margin-right:-4px!important;margin-left:-4px!important}.mx-sm-n2{margin-right:-8px!important;margin-left:-8px!important}.mx-sm-n3{margin-right:-12px!important;margin-left:-12px!important}.mx-sm-n4{margin-right:-16px!important;margin-left:-16px!important}.mx-sm-n5{margin-right:-20px!important;margin-left:-20px!important}.mx-sm-n6{margin-right:-24px!important;margin-left:-24px!important}.mx-sm-n7{margin-right:-28px!important;margin-left:-28px!important}.mx-sm-n8{margin-right:-32px!important;margin-left:-32px!important}.mx-sm-n9{margin-right:-36px!important;margin-left:-36px!important}.mx-sm-n10{margin-right:-40px!important;margin-left:-40px!important}.mx-sm-n11{margin-right:-44px!important;margin-left:-44px!important}.mx-sm-n12{margin-right:-48px!important;margin-left:-48px!important}.mx-sm-n13{margin-right:-52px!important;margin-left:-52px!important}.mx-sm-n14{margin-right:-56px!important;margin-left:-56px!important}.mx-sm-n15{margin-right:-60px!important;margin-left:-60px!important}.mx-sm-n16{margin-right:-64px!important;margin-left:-64px!important}.my-sm-n1{margin-top:-4px!important;margin-bottom:-4px!important}.my-sm-n2{margin-top:-8px!important;margin-bottom:-8px!important}.my-sm-n3{margin-top:-12px!important;margin-bottom:-12px!important}.my-sm-n4{margin-top:-16px!important;margin-bottom:-16px!important}.my-sm-n5{margin-top:-20px!important;margin-bottom:-20px!important}.my-sm-n6{margin-top:-24px!important;margin-bottom:-24px!important}.my-sm-n7{margin-top:-28px!important;margin-bottom:-28px!important}.my-sm-n8{margin-top:-32px!important;margin-bottom:-32px!important}.my-sm-n9{margin-top:-36px!important;margin-bottom:-36px!important}.my-sm-n10{margin-top:-40px!important;margin-bottom:-40px!important}.my-sm-n11{margin-top:-44px!important;margin-bottom:-44px!important}.my-sm-n12{margin-top:-48px!important;margin-bottom:-48px!important}.my-sm-n13{margin-top:-52px!important;margin-bottom:-52px!important}.my-sm-n14{margin-top:-56px!important;margin-bottom:-56px!important}.my-sm-n15{margin-top:-60px!important;margin-bottom:-60px!important}.my-sm-n16{margin-top:-64px!important;margin-bottom:-64px!important}.mt-sm-n1{margin-top:-4px!important}.mt-sm-n2{margin-top:-8px!important}.mt-sm-n3{margin-top:-12px!important}.mt-sm-n4{margin-top:-16px!important}.mt-sm-n5{margin-top:-20px!important}.mt-sm-n6{margin-top:-24px!important}.mt-sm-n7{margin-top:-28px!important}.mt-sm-n8{margin-top:-32px!important}.mt-sm-n9{margin-top:-36px!important}.mt-sm-n10{margin-top:-40px!important}.mt-sm-n11{margin-top:-44px!important}.mt-sm-n12{margin-top:-48px!important}.mt-sm-n13{margin-top:-52px!important}.mt-sm-n14{margin-top:-56px!important}.mt-sm-n15{margin-top:-60px!important}.mt-sm-n16{margin-top:-64px!important}.mr-sm-n1{margin-right:-4px!important}.mr-sm-n2{margin-right:-8px!important}.mr-sm-n3{margin-right:-12px!important}.mr-sm-n4{margin-right:-16px!important}.mr-sm-n5{margin-right:-20px!important}.mr-sm-n6{margin-right:-24px!important}.mr-sm-n7{margin-right:-28px!important}.mr-sm-n8{margin-right:-32px!important}.mr-sm-n9{margin-right:-36px!important}.mr-sm-n10{margin-right:-40px!important}.mr-sm-n11{margin-right:-44px!important}.mr-sm-n12{margin-right:-48px!important}.mr-sm-n13{margin-right:-52px!important}.mr-sm-n14{margin-right:-56px!important}.mr-sm-n15{margin-right:-60px!important}.mr-sm-n16{margin-right:-64px!important}.mb-sm-n1{margin-bottom:-4px!important}.mb-sm-n2{margin-bottom:-8px!important}.mb-sm-n3{margin-bottom:-12px!important}.mb-sm-n4{margin-bottom:-16px!important}.mb-sm-n5{margin-bottom:-20px!important}.mb-sm-n6{margin-bottom:-24px!important}.mb-sm-n7{margin-bottom:-28px!important}.mb-sm-n8{margin-bottom:-32px!important}.mb-sm-n9{margin-bottom:-36px!important}.mb-sm-n10{margin-bottom:-40px!important}.mb-sm-n11{margin-bottom:-44px!important}.mb-sm-n12{margin-bottom:-48px!important}.mb-sm-n13{margin-bottom:-52px!important}.mb-sm-n14{margin-bottom:-56px!important}.mb-sm-n15{margin-bottom:-60px!important}.mb-sm-n16{margin-bottom:-64px!important}.ml-sm-n1{margin-left:-4px!important}.ml-sm-n2{margin-left:-8px!important}.ml-sm-n3{margin-left:-12px!important}.ml-sm-n4{margin-left:-16px!important}.ml-sm-n5{margin-left:-20px!important}.ml-sm-n6{margin-left:-24px!important}.ml-sm-n7{margin-left:-28px!important}.ml-sm-n8{margin-left:-32px!important}.ml-sm-n9{margin-left:-36px!important}.ml-sm-n10{margin-left:-40px!important}.ml-sm-n11{margin-left:-44px!important}.ml-sm-n12{margin-left:-48px!important}.ml-sm-n13{margin-left:-52px!important}.ml-sm-n14{margin-left:-56px!important}.ml-sm-n15{margin-left:-60px!important}.ml-sm-n16{margin-left:-64px!important}.ms-sm-n1{margin-inline-start:-4px!important}.ms-sm-n2{margin-inline-start:-8px!important}.ms-sm-n3{margin-inline-start:-12px!important}.ms-sm-n4{margin-inline-start:-16px!important}.ms-sm-n5{margin-inline-start:-20px!important}.ms-sm-n6{margin-inline-start:-24px!important}.ms-sm-n7{margin-inline-start:-28px!important}.ms-sm-n8{margin-inline-start:-32px!important}.ms-sm-n9{margin-inline-start:-36px!important}.ms-sm-n10{margin-inline-start:-40px!important}.ms-sm-n11{margin-inline-start:-44px!important}.ms-sm-n12{margin-inline-start:-48px!important}.ms-sm-n13{margin-inline-start:-52px!important}.ms-sm-n14{margin-inline-start:-56px!important}.ms-sm-n15{margin-inline-start:-60px!important}.ms-sm-n16{margin-inline-start:-64px!important}.me-sm-n1{margin-inline-end:-4px!important}.me-sm-n2{margin-inline-end:-8px!important}.me-sm-n3{margin-inline-end:-12px!important}.me-sm-n4{margin-inline-end:-16px!important}.me-sm-n5{margin-inline-end:-20px!important}.me-sm-n6{margin-inline-end:-24px!important}.me-sm-n7{margin-inline-end:-28px!important}.me-sm-n8{margin-inline-end:-32px!important}.me-sm-n9{margin-inline-end:-36px!important}.me-sm-n10{margin-inline-end:-40px!important}.me-sm-n11{margin-inline-end:-44px!important}.me-sm-n12{margin-inline-end:-48px!important}.me-sm-n13{margin-inline-end:-52px!important}.me-sm-n14{margin-inline-end:-56px!important}.me-sm-n15{margin-inline-end:-60px!important}.me-sm-n16{margin-inline-end:-64px!important}.pa-sm-0{padding:0!important}.pa-sm-1{padding:4px!important}.pa-sm-2{padding:8px!important}.pa-sm-3{padding:12px!important}.pa-sm-4{padding:16px!important}.pa-sm-5{padding:20px!important}.pa-sm-6{padding:24px!important}.pa-sm-7{padding:28px!important}.pa-sm-8{padding:32px!important}.pa-sm-9{padding:36px!important}.pa-sm-10{padding:40px!important}.pa-sm-11{padding:44px!important}.pa-sm-12{padding:48px!important}.pa-sm-13{padding:52px!important}.pa-sm-14{padding:56px!important}.pa-sm-15{padding:60px!important}.pa-sm-16{padding:64px!important}.px-sm-0{padding-right:0!important;padding-left:0!important}.px-sm-1{padding-right:4px!important;padding-left:4px!important}.px-sm-2{padding-right:8px!important;padding-left:8px!important}.px-sm-3{padding-right:12px!important;padding-left:12px!important}.px-sm-4{padding-right:16px!important;padding-left:16px!important}.px-sm-5{padding-right:20px!important;padding-left:20px!important}.px-sm-6{padding-right:24px!important;padding-left:24px!important}.px-sm-7{padding-right:28px!important;padding-left:28px!important}.px-sm-8{padding-right:32px!important;padding-left:32px!important}.px-sm-9{padding-right:36px!important;padding-left:36px!important}.px-sm-10{padding-right:40px!important;padding-left:40px!important}.px-sm-11{padding-right:44px!important;padding-left:44px!important}.px-sm-12{padding-right:48px!important;padding-left:48px!important}.px-sm-13{padding-right:52px!important;padding-left:52px!important}.px-sm-14{padding-right:56px!important;padding-left:56px!important}.px-sm-15{padding-right:60px!important;padding-left:60px!important}.px-sm-16{padding-right:64px!important;padding-left:64px!important}.py-sm-0{padding-top:0!important;padding-bottom:0!important}.py-sm-1{padding-top:4px!important;padding-bottom:4px!important}.py-sm-2{padding-top:8px!important;padding-bottom:8px!important}.py-sm-3{padding-top:12px!important;padding-bottom:12px!important}.py-sm-4{padding-top:16px!important;padding-bottom:16px!important}.py-sm-5{padding-top:20px!important;padding-bottom:20px!important}.py-sm-6{padding-top:24px!important;padding-bottom:24px!important}.py-sm-7{padding-top:28px!important;padding-bottom:28px!important}.py-sm-8{padding-top:32px!important;padding-bottom:32px!important}.py-sm-9{padding-top:36px!important;padding-bottom:36px!important}.py-sm-10{padding-top:40px!important;padding-bottom:40px!important}.py-sm-11{padding-top:44px!important;padding-bottom:44px!important}.py-sm-12{padding-top:48px!important;padding-bottom:48px!important}.py-sm-13{padding-top:52px!important;padding-bottom:52px!important}.py-sm-14{padding-top:56px!important;padding-bottom:56px!important}.py-sm-15{padding-top:60px!important;padding-bottom:60px!important}.py-sm-16{padding-top:64px!important;padding-bottom:64px!important}.pt-sm-0{padding-top:0!important}.pt-sm-1{padding-top:4px!important}.pt-sm-2{padding-top:8px!important}.pt-sm-3{padding-top:12px!important}.pt-sm-4{padding-top:16px!important}.pt-sm-5{padding-top:20px!important}.pt-sm-6{padding-top:24px!important}.pt-sm-7{padding-top:28px!important}.pt-sm-8{padding-top:32px!important}.pt-sm-9{padding-top:36px!important}.pt-sm-10{padding-top:40px!important}.pt-sm-11{padding-top:44px!important}.pt-sm-12{padding-top:48px!important}.pt-sm-13{padding-top:52px!important}.pt-sm-14{padding-top:56px!important}.pt-sm-15{padding-top:60px!important}.pt-sm-16{padding-top:64px!important}.pr-sm-0{padding-right:0!important}.pr-sm-1{padding-right:4px!important}.pr-sm-2{padding-right:8px!important}.pr-sm-3{padding-right:12px!important}.pr-sm-4{padding-right:16px!important}.pr-sm-5{padding-right:20px!important}.pr-sm-6{padding-right:24px!important}.pr-sm-7{padding-right:28px!important}.pr-sm-8{padding-right:32px!important}.pr-sm-9{padding-right:36px!important}.pr-sm-10{padding-right:40px!important}.pr-sm-11{padding-right:44px!important}.pr-sm-12{padding-right:48px!important}.pr-sm-13{padding-right:52px!important}.pr-sm-14{padding-right:56px!important}.pr-sm-15{padding-right:60px!important}.pr-sm-16{padding-right:64px!important}.pb-sm-0{padding-bottom:0!important}.pb-sm-1{padding-bottom:4px!important}.pb-sm-2{padding-bottom:8px!important}.pb-sm-3{padding-bottom:12px!important}.pb-sm-4{padding-bottom:16px!important}.pb-sm-5{padding-bottom:20px!important}.pb-sm-6{padding-bottom:24px!important}.pb-sm-7{padding-bottom:28px!important}.pb-sm-8{padding-bottom:32px!important}.pb-sm-9{padding-bottom:36px!important}.pb-sm-10{padding-bottom:40px!important}.pb-sm-11{padding-bottom:44px!important}.pb-sm-12{padding-bottom:48px!important}.pb-sm-13{padding-bottom:52px!important}.pb-sm-14{padding-bottom:56px!important}.pb-sm-15{padding-bottom:60px!important}.pb-sm-16{padding-bottom:64px!important}.pl-sm-0{padding-left:0!important}.pl-sm-1{padding-left:4px!important}.pl-sm-2{padding-left:8px!important}.pl-sm-3{padding-left:12px!important}.pl-sm-4{padding-left:16px!important}.pl-sm-5{padding-left:20px!important}.pl-sm-6{padding-left:24px!important}.pl-sm-7{padding-left:28px!important}.pl-sm-8{padding-left:32px!important}.pl-sm-9{padding-left:36px!important}.pl-sm-10{padding-left:40px!important}.pl-sm-11{padding-left:44px!important}.pl-sm-12{padding-left:48px!important}.pl-sm-13{padding-left:52px!important}.pl-sm-14{padding-left:56px!important}.pl-sm-15{padding-left:60px!important}.pl-sm-16{padding-left:64px!important}.ps-sm-0{padding-inline-start:0px!important}.ps-sm-1{padding-inline-start:4px!important}.ps-sm-2{padding-inline-start:8px!important}.ps-sm-3{padding-inline-start:12px!important}.ps-sm-4{padding-inline-start:16px!important}.ps-sm-5{padding-inline-start:20px!important}.ps-sm-6{padding-inline-start:24px!important}.ps-sm-7{padding-inline-start:28px!important}.ps-sm-8{padding-inline-start:32px!important}.ps-sm-9{padding-inline-start:36px!important}.ps-sm-10{padding-inline-start:40px!important}.ps-sm-11{padding-inline-start:44px!important}.ps-sm-12{padding-inline-start:48px!important}.ps-sm-13{padding-inline-start:52px!important}.ps-sm-14{padding-inline-start:56px!important}.ps-sm-15{padding-inline-start:60px!important}.ps-sm-16{padding-inline-start:64px!important}.pe-sm-0{padding-inline-end:0px!important}.pe-sm-1{padding-inline-end:4px!important}.pe-sm-2{padding-inline-end:8px!important}.pe-sm-3{padding-inline-end:12px!important}.pe-sm-4{padding-inline-end:16px!important}.pe-sm-5{padding-inline-end:20px!important}.pe-sm-6{padding-inline-end:24px!important}.pe-sm-7{padding-inline-end:28px!important}.pe-sm-8{padding-inline-end:32px!important}.pe-sm-9{padding-inline-end:36px!important}.pe-sm-10{padding-inline-end:40px!important}.pe-sm-11{padding-inline-end:44px!important}.pe-sm-12{padding-inline-end:48px!important}.pe-sm-13{padding-inline-end:52px!important}.pe-sm-14{padding-inline-end:56px!important}.pe-sm-15{padding-inline-end:60px!important}.pe-sm-16{padding-inline-end:64px!important}.text-sm-left{text-align:left!important}.text-sm-right{text-align:right!important}.text-sm-center{text-align:center!important}.text-sm-justify{text-align:justify!important}.text-sm-start{text-align:start!important}.text-sm-end{text-align:end!important}.text-sm-h1{font-size:6rem!important;font-weight:300;line-height:6rem;letter-spacing:-.015625em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-h2{font-size:3.75rem!important;font-weight:300;line-height:3.75rem;letter-spacing:-.0083333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-h3{font-size:3rem!important;font-weight:400;line-height:3.125rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-h4{font-size:2.125rem!important;font-weight:400;line-height:2.5rem;letter-spacing:.0073529412em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-h5{font-size:1.5rem!important;font-weight:400;line-height:2rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-h6{font-size:1.25rem!important;font-weight:500;line-height:2rem;letter-spacing:.0125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-subtitle-1{font-size:1rem!important;font-weight:400;line-height:1.75rem;letter-spacing:.009375em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-subtitle-2{font-size:.875rem!important;font-weight:500;line-height:1.375rem;letter-spacing:.0071428571em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-body-1{font-size:1rem!important;font-weight:400;line-height:1.5rem;letter-spacing:.03125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-body-2{font-size:.875rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0178571429em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-button{font-size:.875rem!important;font-weight:500;line-height:2.25rem;letter-spacing:.0892857143em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}.text-sm-caption{font-size:.75rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0333333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-sm-overline{font-size:.75rem!important;font-weight:500;line-height:2rem;letter-spacing:.1666666667em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}}@media (min-width: 960px){.d-md-none{display:none!important}.d-md-inline{display:inline!important}.d-md-inline-block{display:inline-block!important}.d-md-block{display:block!important}.d-md-table{display:table!important}.d-md-table-row{display:table-row!important}.d-md-table-cell{display:table-cell!important}.d-md-flex{display:flex!important}.d-md-inline-flex{display:inline-flex!important}.float-md-none{float:none!important}.float-md-left{float:left!important}.float-md-right{float:right!important}.v-locale--is-rtl .float-md-end{float:left!important}.v-locale--is-rtl .float-md-start,.v-locale--is-ltr .float-md-end{float:right!important}.v-locale--is-ltr .float-md-start{float:left!important}.flex-md-fill{flex:1 1 auto!important}.flex-md-row{flex-direction:row!important}.flex-md-column{flex-direction:column!important}.flex-md-row-reverse{flex-direction:row-reverse!important}.flex-md-column-reverse{flex-direction:column-reverse!important}.flex-md-grow-0{flex-grow:0!important}.flex-md-grow-1{flex-grow:1!important}.flex-md-shrink-0{flex-shrink:0!important}.flex-md-shrink-1{flex-shrink:1!important}.flex-md-wrap{flex-wrap:wrap!important}.flex-md-nowrap{flex-wrap:nowrap!important}.flex-md-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-md-start{justify-content:flex-start!important}.justify-md-end{justify-content:flex-end!important}.justify-md-center{justify-content:center!important}.justify-md-space-between{justify-content:space-between!important}.justify-md-space-around{justify-content:space-around!important}.justify-md-space-evenly{justify-content:space-evenly!important}.align-md-start{align-items:flex-start!important}.align-md-end{align-items:flex-end!important}.align-md-center{align-items:center!important}.align-md-baseline{align-items:baseline!important}.align-md-stretch{align-items:stretch!important}.align-content-md-start{align-content:flex-start!important}.align-content-md-end{align-content:flex-end!important}.align-content-md-center{align-content:center!important}.align-content-md-space-between{align-content:space-between!important}.align-content-md-space-around{align-content:space-around!important}.align-content-md-space-evenly{align-content:space-evenly!important}.align-content-md-stretch{align-content:stretch!important}.align-self-md-auto{align-self:auto!important}.align-self-md-start{align-self:flex-start!important}.align-self-md-end{align-self:flex-end!important}.align-self-md-center{align-self:center!important}.align-self-md-baseline{align-self:baseline!important}.align-self-md-stretch{align-self:stretch!important}.order-md-first{order:-1!important}.order-md-0{order:0!important}.order-md-1{order:1!important}.order-md-2{order:2!important}.order-md-3{order:3!important}.order-md-4{order:4!important}.order-md-5{order:5!important}.order-md-6{order:6!important}.order-md-7{order:7!important}.order-md-8{order:8!important}.order-md-9{order:9!important}.order-md-10{order:10!important}.order-md-11{order:11!important}.order-md-12{order:12!important}.order-md-last{order:13!important}.ma-md-0{margin:0!important}.ma-md-1{margin:4px!important}.ma-md-2{margin:8px!important}.ma-md-3{margin:12px!important}.ma-md-4{margin:16px!important}.ma-md-5{margin:20px!important}.ma-md-6{margin:24px!important}.ma-md-7{margin:28px!important}.ma-md-8{margin:32px!important}.ma-md-9{margin:36px!important}.ma-md-10{margin:40px!important}.ma-md-11{margin:44px!important}.ma-md-12{margin:48px!important}.ma-md-13{margin:52px!important}.ma-md-14{margin:56px!important}.ma-md-15{margin:60px!important}.ma-md-16{margin:64px!important}.ma-md-auto{margin:auto!important}.mx-md-0{margin-right:0!important;margin-left:0!important}.mx-md-1{margin-right:4px!important;margin-left:4px!important}.mx-md-2{margin-right:8px!important;margin-left:8px!important}.mx-md-3{margin-right:12px!important;margin-left:12px!important}.mx-md-4{margin-right:16px!important;margin-left:16px!important}.mx-md-5{margin-right:20px!important;margin-left:20px!important}.mx-md-6{margin-right:24px!important;margin-left:24px!important}.mx-md-7{margin-right:28px!important;margin-left:28px!important}.mx-md-8{margin-right:32px!important;margin-left:32px!important}.mx-md-9{margin-right:36px!important;margin-left:36px!important}.mx-md-10{margin-right:40px!important;margin-left:40px!important}.mx-md-11{margin-right:44px!important;margin-left:44px!important}.mx-md-12{margin-right:48px!important;margin-left:48px!important}.mx-md-13{margin-right:52px!important;margin-left:52px!important}.mx-md-14{margin-right:56px!important;margin-left:56px!important}.mx-md-15{margin-right:60px!important;margin-left:60px!important}.mx-md-16{margin-right:64px!important;margin-left:64px!important}.mx-md-auto{margin-right:auto!important;margin-left:auto!important}.my-md-0{margin-top:0!important;margin-bottom:0!important}.my-md-1{margin-top:4px!important;margin-bottom:4px!important}.my-md-2{margin-top:8px!important;margin-bottom:8px!important}.my-md-3{margin-top:12px!important;margin-bottom:12px!important}.my-md-4{margin-top:16px!important;margin-bottom:16px!important}.my-md-5{margin-top:20px!important;margin-bottom:20px!important}.my-md-6{margin-top:24px!important;margin-bottom:24px!important}.my-md-7{margin-top:28px!important;margin-bottom:28px!important}.my-md-8{margin-top:32px!important;margin-bottom:32px!important}.my-md-9{margin-top:36px!important;margin-bottom:36px!important}.my-md-10{margin-top:40px!important;margin-bottom:40px!important}.my-md-11{margin-top:44px!important;margin-bottom:44px!important}.my-md-12{margin-top:48px!important;margin-bottom:48px!important}.my-md-13{margin-top:52px!important;margin-bottom:52px!important}.my-md-14{margin-top:56px!important;margin-bottom:56px!important}.my-md-15{margin-top:60px!important;margin-bottom:60px!important}.my-md-16{margin-top:64px!important;margin-bottom:64px!important}.my-md-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-md-0{margin-top:0!important}.mt-md-1{margin-top:4px!important}.mt-md-2{margin-top:8px!important}.mt-md-3{margin-top:12px!important}.mt-md-4{margin-top:16px!important}.mt-md-5{margin-top:20px!important}.mt-md-6{margin-top:24px!important}.mt-md-7{margin-top:28px!important}.mt-md-8{margin-top:32px!important}.mt-md-9{margin-top:36px!important}.mt-md-10{margin-top:40px!important}.mt-md-11{margin-top:44px!important}.mt-md-12{margin-top:48px!important}.mt-md-13{margin-top:52px!important}.mt-md-14{margin-top:56px!important}.mt-md-15{margin-top:60px!important}.mt-md-16{margin-top:64px!important}.mt-md-auto{margin-top:auto!important}.mr-md-0{margin-right:0!important}.mr-md-1{margin-right:4px!important}.mr-md-2{margin-right:8px!important}.mr-md-3{margin-right:12px!important}.mr-md-4{margin-right:16px!important}.mr-md-5{margin-right:20px!important}.mr-md-6{margin-right:24px!important}.mr-md-7{margin-right:28px!important}.mr-md-8{margin-right:32px!important}.mr-md-9{margin-right:36px!important}.mr-md-10{margin-right:40px!important}.mr-md-11{margin-right:44px!important}.mr-md-12{margin-right:48px!important}.mr-md-13{margin-right:52px!important}.mr-md-14{margin-right:56px!important}.mr-md-15{margin-right:60px!important}.mr-md-16{margin-right:64px!important}.mr-md-auto{margin-right:auto!important}.mb-md-0{margin-bottom:0!important}.mb-md-1{margin-bottom:4px!important}.mb-md-2{margin-bottom:8px!important}.mb-md-3{margin-bottom:12px!important}.mb-md-4{margin-bottom:16px!important}.mb-md-5{margin-bottom:20px!important}.mb-md-6{margin-bottom:24px!important}.mb-md-7{margin-bottom:28px!important}.mb-md-8{margin-bottom:32px!important}.mb-md-9{margin-bottom:36px!important}.mb-md-10{margin-bottom:40px!important}.mb-md-11{margin-bottom:44px!important}.mb-md-12{margin-bottom:48px!important}.mb-md-13{margin-bottom:52px!important}.mb-md-14{margin-bottom:56px!important}.mb-md-15{margin-bottom:60px!important}.mb-md-16{margin-bottom:64px!important}.mb-md-auto{margin-bottom:auto!important}.ml-md-0{margin-left:0!important}.ml-md-1{margin-left:4px!important}.ml-md-2{margin-left:8px!important}.ml-md-3{margin-left:12px!important}.ml-md-4{margin-left:16px!important}.ml-md-5{margin-left:20px!important}.ml-md-6{margin-left:24px!important}.ml-md-7{margin-left:28px!important}.ml-md-8{margin-left:32px!important}.ml-md-9{margin-left:36px!important}.ml-md-10{margin-left:40px!important}.ml-md-11{margin-left:44px!important}.ml-md-12{margin-left:48px!important}.ml-md-13{margin-left:52px!important}.ml-md-14{margin-left:56px!important}.ml-md-15{margin-left:60px!important}.ml-md-16{margin-left:64px!important}.ml-md-auto{margin-left:auto!important}.ms-md-0{margin-inline-start:0px!important}.ms-md-1{margin-inline-start:4px!important}.ms-md-2{margin-inline-start:8px!important}.ms-md-3{margin-inline-start:12px!important}.ms-md-4{margin-inline-start:16px!important}.ms-md-5{margin-inline-start:20px!important}.ms-md-6{margin-inline-start:24px!important}.ms-md-7{margin-inline-start:28px!important}.ms-md-8{margin-inline-start:32px!important}.ms-md-9{margin-inline-start:36px!important}.ms-md-10{margin-inline-start:40px!important}.ms-md-11{margin-inline-start:44px!important}.ms-md-12{margin-inline-start:48px!important}.ms-md-13{margin-inline-start:52px!important}.ms-md-14{margin-inline-start:56px!important}.ms-md-15{margin-inline-start:60px!important}.ms-md-16{margin-inline-start:64px!important}.ms-md-auto{margin-inline-start:auto!important}.me-md-0{margin-inline-end:0px!important}.me-md-1{margin-inline-end:4px!important}.me-md-2{margin-inline-end:8px!important}.me-md-3{margin-inline-end:12px!important}.me-md-4{margin-inline-end:16px!important}.me-md-5{margin-inline-end:20px!important}.me-md-6{margin-inline-end:24px!important}.me-md-7{margin-inline-end:28px!important}.me-md-8{margin-inline-end:32px!important}.me-md-9{margin-inline-end:36px!important}.me-md-10{margin-inline-end:40px!important}.me-md-11{margin-inline-end:44px!important}.me-md-12{margin-inline-end:48px!important}.me-md-13{margin-inline-end:52px!important}.me-md-14{margin-inline-end:56px!important}.me-md-15{margin-inline-end:60px!important}.me-md-16{margin-inline-end:64px!important}.me-md-auto{margin-inline-end:auto!important}.ma-md-n1{margin:-4px!important}.ma-md-n2{margin:-8px!important}.ma-md-n3{margin:-12px!important}.ma-md-n4{margin:-16px!important}.ma-md-n5{margin:-20px!important}.ma-md-n6{margin:-24px!important}.ma-md-n7{margin:-28px!important}.ma-md-n8{margin:-32px!important}.ma-md-n9{margin:-36px!important}.ma-md-n10{margin:-40px!important}.ma-md-n11{margin:-44px!important}.ma-md-n12{margin:-48px!important}.ma-md-n13{margin:-52px!important}.ma-md-n14{margin:-56px!important}.ma-md-n15{margin:-60px!important}.ma-md-n16{margin:-64px!important}.mx-md-n1{margin-right:-4px!important;margin-left:-4px!important}.mx-md-n2{margin-right:-8px!important;margin-left:-8px!important}.mx-md-n3{margin-right:-12px!important;margin-left:-12px!important}.mx-md-n4{margin-right:-16px!important;margin-left:-16px!important}.mx-md-n5{margin-right:-20px!important;margin-left:-20px!important}.mx-md-n6{margin-right:-24px!important;margin-left:-24px!important}.mx-md-n7{margin-right:-28px!important;margin-left:-28px!important}.mx-md-n8{margin-right:-32px!important;margin-left:-32px!important}.mx-md-n9{margin-right:-36px!important;margin-left:-36px!important}.mx-md-n10{margin-right:-40px!important;margin-left:-40px!important}.mx-md-n11{margin-right:-44px!important;margin-left:-44px!important}.mx-md-n12{margin-right:-48px!important;margin-left:-48px!important}.mx-md-n13{margin-right:-52px!important;margin-left:-52px!important}.mx-md-n14{margin-right:-56px!important;margin-left:-56px!important}.mx-md-n15{margin-right:-60px!important;margin-left:-60px!important}.mx-md-n16{margin-right:-64px!important;margin-left:-64px!important}.my-md-n1{margin-top:-4px!important;margin-bottom:-4px!important}.my-md-n2{margin-top:-8px!important;margin-bottom:-8px!important}.my-md-n3{margin-top:-12px!important;margin-bottom:-12px!important}.my-md-n4{margin-top:-16px!important;margin-bottom:-16px!important}.my-md-n5{margin-top:-20px!important;margin-bottom:-20px!important}.my-md-n6{margin-top:-24px!important;margin-bottom:-24px!important}.my-md-n7{margin-top:-28px!important;margin-bottom:-28px!important}.my-md-n8{margin-top:-32px!important;margin-bottom:-32px!important}.my-md-n9{margin-top:-36px!important;margin-bottom:-36px!important}.my-md-n10{margin-top:-40px!important;margin-bottom:-40px!important}.my-md-n11{margin-top:-44px!important;margin-bottom:-44px!important}.my-md-n12{margin-top:-48px!important;margin-bottom:-48px!important}.my-md-n13{margin-top:-52px!important;margin-bottom:-52px!important}.my-md-n14{margin-top:-56px!important;margin-bottom:-56px!important}.my-md-n15{margin-top:-60px!important;margin-bottom:-60px!important}.my-md-n16{margin-top:-64px!important;margin-bottom:-64px!important}.mt-md-n1{margin-top:-4px!important}.mt-md-n2{margin-top:-8px!important}.mt-md-n3{margin-top:-12px!important}.mt-md-n4{margin-top:-16px!important}.mt-md-n5{margin-top:-20px!important}.mt-md-n6{margin-top:-24px!important}.mt-md-n7{margin-top:-28px!important}.mt-md-n8{margin-top:-32px!important}.mt-md-n9{margin-top:-36px!important}.mt-md-n10{margin-top:-40px!important}.mt-md-n11{margin-top:-44px!important}.mt-md-n12{margin-top:-48px!important}.mt-md-n13{margin-top:-52px!important}.mt-md-n14{margin-top:-56px!important}.mt-md-n15{margin-top:-60px!important}.mt-md-n16{margin-top:-64px!important}.mr-md-n1{margin-right:-4px!important}.mr-md-n2{margin-right:-8px!important}.mr-md-n3{margin-right:-12px!important}.mr-md-n4{margin-right:-16px!important}.mr-md-n5{margin-right:-20px!important}.mr-md-n6{margin-right:-24px!important}.mr-md-n7{margin-right:-28px!important}.mr-md-n8{margin-right:-32px!important}.mr-md-n9{margin-right:-36px!important}.mr-md-n10{margin-right:-40px!important}.mr-md-n11{margin-right:-44px!important}.mr-md-n12{margin-right:-48px!important}.mr-md-n13{margin-right:-52px!important}.mr-md-n14{margin-right:-56px!important}.mr-md-n15{margin-right:-60px!important}.mr-md-n16{margin-right:-64px!important}.mb-md-n1{margin-bottom:-4px!important}.mb-md-n2{margin-bottom:-8px!important}.mb-md-n3{margin-bottom:-12px!important}.mb-md-n4{margin-bottom:-16px!important}.mb-md-n5{margin-bottom:-20px!important}.mb-md-n6{margin-bottom:-24px!important}.mb-md-n7{margin-bottom:-28px!important}.mb-md-n8{margin-bottom:-32px!important}.mb-md-n9{margin-bottom:-36px!important}.mb-md-n10{margin-bottom:-40px!important}.mb-md-n11{margin-bottom:-44px!important}.mb-md-n12{margin-bottom:-48px!important}.mb-md-n13{margin-bottom:-52px!important}.mb-md-n14{margin-bottom:-56px!important}.mb-md-n15{margin-bottom:-60px!important}.mb-md-n16{margin-bottom:-64px!important}.ml-md-n1{margin-left:-4px!important}.ml-md-n2{margin-left:-8px!important}.ml-md-n3{margin-left:-12px!important}.ml-md-n4{margin-left:-16px!important}.ml-md-n5{margin-left:-20px!important}.ml-md-n6{margin-left:-24px!important}.ml-md-n7{margin-left:-28px!important}.ml-md-n8{margin-left:-32px!important}.ml-md-n9{margin-left:-36px!important}.ml-md-n10{margin-left:-40px!important}.ml-md-n11{margin-left:-44px!important}.ml-md-n12{margin-left:-48px!important}.ml-md-n13{margin-left:-52px!important}.ml-md-n14{margin-left:-56px!important}.ml-md-n15{margin-left:-60px!important}.ml-md-n16{margin-left:-64px!important}.ms-md-n1{margin-inline-start:-4px!important}.ms-md-n2{margin-inline-start:-8px!important}.ms-md-n3{margin-inline-start:-12px!important}.ms-md-n4{margin-inline-start:-16px!important}.ms-md-n5{margin-inline-start:-20px!important}.ms-md-n6{margin-inline-start:-24px!important}.ms-md-n7{margin-inline-start:-28px!important}.ms-md-n8{margin-inline-start:-32px!important}.ms-md-n9{margin-inline-start:-36px!important}.ms-md-n10{margin-inline-start:-40px!important}.ms-md-n11{margin-inline-start:-44px!important}.ms-md-n12{margin-inline-start:-48px!important}.ms-md-n13{margin-inline-start:-52px!important}.ms-md-n14{margin-inline-start:-56px!important}.ms-md-n15{margin-inline-start:-60px!important}.ms-md-n16{margin-inline-start:-64px!important}.me-md-n1{margin-inline-end:-4px!important}.me-md-n2{margin-inline-end:-8px!important}.me-md-n3{margin-inline-end:-12px!important}.me-md-n4{margin-inline-end:-16px!important}.me-md-n5{margin-inline-end:-20px!important}.me-md-n6{margin-inline-end:-24px!important}.me-md-n7{margin-inline-end:-28px!important}.me-md-n8{margin-inline-end:-32px!important}.me-md-n9{margin-inline-end:-36px!important}.me-md-n10{margin-inline-end:-40px!important}.me-md-n11{margin-inline-end:-44px!important}.me-md-n12{margin-inline-end:-48px!important}.me-md-n13{margin-inline-end:-52px!important}.me-md-n14{margin-inline-end:-56px!important}.me-md-n15{margin-inline-end:-60px!important}.me-md-n16{margin-inline-end:-64px!important}.pa-md-0{padding:0!important}.pa-md-1{padding:4px!important}.pa-md-2{padding:8px!important}.pa-md-3{padding:12px!important}.pa-md-4{padding:16px!important}.pa-md-5{padding:20px!important}.pa-md-6{padding:24px!important}.pa-md-7{padding:28px!important}.pa-md-8{padding:32px!important}.pa-md-9{padding:36px!important}.pa-md-10{padding:40px!important}.pa-md-11{padding:44px!important}.pa-md-12{padding:48px!important}.pa-md-13{padding:52px!important}.pa-md-14{padding:56px!important}.pa-md-15{padding:60px!important}.pa-md-16{padding:64px!important}.px-md-0{padding-right:0!important;padding-left:0!important}.px-md-1{padding-right:4px!important;padding-left:4px!important}.px-md-2{padding-right:8px!important;padding-left:8px!important}.px-md-3{padding-right:12px!important;padding-left:12px!important}.px-md-4{padding-right:16px!important;padding-left:16px!important}.px-md-5{padding-right:20px!important;padding-left:20px!important}.px-md-6{padding-right:24px!important;padding-left:24px!important}.px-md-7{padding-right:28px!important;padding-left:28px!important}.px-md-8{padding-right:32px!important;padding-left:32px!important}.px-md-9{padding-right:36px!important;padding-left:36px!important}.px-md-10{padding-right:40px!important;padding-left:40px!important}.px-md-11{padding-right:44px!important;padding-left:44px!important}.px-md-12{padding-right:48px!important;padding-left:48px!important}.px-md-13{padding-right:52px!important;padding-left:52px!important}.px-md-14{padding-right:56px!important;padding-left:56px!important}.px-md-15{padding-right:60px!important;padding-left:60px!important}.px-md-16{padding-right:64px!important;padding-left:64px!important}.py-md-0{padding-top:0!important;padding-bottom:0!important}.py-md-1{padding-top:4px!important;padding-bottom:4px!important}.py-md-2{padding-top:8px!important;padding-bottom:8px!important}.py-md-3{padding-top:12px!important;padding-bottom:12px!important}.py-md-4{padding-top:16px!important;padding-bottom:16px!important}.py-md-5{padding-top:20px!important;padding-bottom:20px!important}.py-md-6{padding-top:24px!important;padding-bottom:24px!important}.py-md-7{padding-top:28px!important;padding-bottom:28px!important}.py-md-8{padding-top:32px!important;padding-bottom:32px!important}.py-md-9{padding-top:36px!important;padding-bottom:36px!important}.py-md-10{padding-top:40px!important;padding-bottom:40px!important}.py-md-11{padding-top:44px!important;padding-bottom:44px!important}.py-md-12{padding-top:48px!important;padding-bottom:48px!important}.py-md-13{padding-top:52px!important;padding-bottom:52px!important}.py-md-14{padding-top:56px!important;padding-bottom:56px!important}.py-md-15{padding-top:60px!important;padding-bottom:60px!important}.py-md-16{padding-top:64px!important;padding-bottom:64px!important}.pt-md-0{padding-top:0!important}.pt-md-1{padding-top:4px!important}.pt-md-2{padding-top:8px!important}.pt-md-3{padding-top:12px!important}.pt-md-4{padding-top:16px!important}.pt-md-5{padding-top:20px!important}.pt-md-6{padding-top:24px!important}.pt-md-7{padding-top:28px!important}.pt-md-8{padding-top:32px!important}.pt-md-9{padding-top:36px!important}.pt-md-10{padding-top:40px!important}.pt-md-11{padding-top:44px!important}.pt-md-12{padding-top:48px!important}.pt-md-13{padding-top:52px!important}.pt-md-14{padding-top:56px!important}.pt-md-15{padding-top:60px!important}.pt-md-16{padding-top:64px!important}.pr-md-0{padding-right:0!important}.pr-md-1{padding-right:4px!important}.pr-md-2{padding-right:8px!important}.pr-md-3{padding-right:12px!important}.pr-md-4{padding-right:16px!important}.pr-md-5{padding-right:20px!important}.pr-md-6{padding-right:24px!important}.pr-md-7{padding-right:28px!important}.pr-md-8{padding-right:32px!important}.pr-md-9{padding-right:36px!important}.pr-md-10{padding-right:40px!important}.pr-md-11{padding-right:44px!important}.pr-md-12{padding-right:48px!important}.pr-md-13{padding-right:52px!important}.pr-md-14{padding-right:56px!important}.pr-md-15{padding-right:60px!important}.pr-md-16{padding-right:64px!important}.pb-md-0{padding-bottom:0!important}.pb-md-1{padding-bottom:4px!important}.pb-md-2{padding-bottom:8px!important}.pb-md-3{padding-bottom:12px!important}.pb-md-4{padding-bottom:16px!important}.pb-md-5{padding-bottom:20px!important}.pb-md-6{padding-bottom:24px!important}.pb-md-7{padding-bottom:28px!important}.pb-md-8{padding-bottom:32px!important}.pb-md-9{padding-bottom:36px!important}.pb-md-10{padding-bottom:40px!important}.pb-md-11{padding-bottom:44px!important}.pb-md-12{padding-bottom:48px!important}.pb-md-13{padding-bottom:52px!important}.pb-md-14{padding-bottom:56px!important}.pb-md-15{padding-bottom:60px!important}.pb-md-16{padding-bottom:64px!important}.pl-md-0{padding-left:0!important}.pl-md-1{padding-left:4px!important}.pl-md-2{padding-left:8px!important}.pl-md-3{padding-left:12px!important}.pl-md-4{padding-left:16px!important}.pl-md-5{padding-left:20px!important}.pl-md-6{padding-left:24px!important}.pl-md-7{padding-left:28px!important}.pl-md-8{padding-left:32px!important}.pl-md-9{padding-left:36px!important}.pl-md-10{padding-left:40px!important}.pl-md-11{padding-left:44px!important}.pl-md-12{padding-left:48px!important}.pl-md-13{padding-left:52px!important}.pl-md-14{padding-left:56px!important}.pl-md-15{padding-left:60px!important}.pl-md-16{padding-left:64px!important}.ps-md-0{padding-inline-start:0px!important}.ps-md-1{padding-inline-start:4px!important}.ps-md-2{padding-inline-start:8px!important}.ps-md-3{padding-inline-start:12px!important}.ps-md-4{padding-inline-start:16px!important}.ps-md-5{padding-inline-start:20px!important}.ps-md-6{padding-inline-start:24px!important}.ps-md-7{padding-inline-start:28px!important}.ps-md-8{padding-inline-start:32px!important}.ps-md-9{padding-inline-start:36px!important}.ps-md-10{padding-inline-start:40px!important}.ps-md-11{padding-inline-start:44px!important}.ps-md-12{padding-inline-start:48px!important}.ps-md-13{padding-inline-start:52px!important}.ps-md-14{padding-inline-start:56px!important}.ps-md-15{padding-inline-start:60px!important}.ps-md-16{padding-inline-start:64px!important}.pe-md-0{padding-inline-end:0px!important}.pe-md-1{padding-inline-end:4px!important}.pe-md-2{padding-inline-end:8px!important}.pe-md-3{padding-inline-end:12px!important}.pe-md-4{padding-inline-end:16px!important}.pe-md-5{padding-inline-end:20px!important}.pe-md-6{padding-inline-end:24px!important}.pe-md-7{padding-inline-end:28px!important}.pe-md-8{padding-inline-end:32px!important}.pe-md-9{padding-inline-end:36px!important}.pe-md-10{padding-inline-end:40px!important}.pe-md-11{padding-inline-end:44px!important}.pe-md-12{padding-inline-end:48px!important}.pe-md-13{padding-inline-end:52px!important}.pe-md-14{padding-inline-end:56px!important}.pe-md-15{padding-inline-end:60px!important}.pe-md-16{padding-inline-end:64px!important}.text-md-left{text-align:left!important}.text-md-right{text-align:right!important}.text-md-center{text-align:center!important}.text-md-justify{text-align:justify!important}.text-md-start{text-align:start!important}.text-md-end{text-align:end!important}.text-md-h1{font-size:6rem!important;font-weight:300;line-height:6rem;letter-spacing:-.015625em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-h2{font-size:3.75rem!important;font-weight:300;line-height:3.75rem;letter-spacing:-.0083333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-h3{font-size:3rem!important;font-weight:400;line-height:3.125rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-h4{font-size:2.125rem!important;font-weight:400;line-height:2.5rem;letter-spacing:.0073529412em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-h5{font-size:1.5rem!important;font-weight:400;line-height:2rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-h6{font-size:1.25rem!important;font-weight:500;line-height:2rem;letter-spacing:.0125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-subtitle-1{font-size:1rem!important;font-weight:400;line-height:1.75rem;letter-spacing:.009375em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-subtitle-2{font-size:.875rem!important;font-weight:500;line-height:1.375rem;letter-spacing:.0071428571em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-body-1{font-size:1rem!important;font-weight:400;line-height:1.5rem;letter-spacing:.03125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-body-2{font-size:.875rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0178571429em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-button{font-size:.875rem!important;font-weight:500;line-height:2.25rem;letter-spacing:.0892857143em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}.text-md-caption{font-size:.75rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0333333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-md-overline{font-size:.75rem!important;font-weight:500;line-height:2rem;letter-spacing:.1666666667em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}}@media (min-width: 1280px){.d-lg-none{display:none!important}.d-lg-inline{display:inline!important}.d-lg-inline-block{display:inline-block!important}.d-lg-block{display:block!important}.d-lg-table{display:table!important}.d-lg-table-row{display:table-row!important}.d-lg-table-cell{display:table-cell!important}.d-lg-flex{display:flex!important}.d-lg-inline-flex{display:inline-flex!important}.float-lg-none{float:none!important}.float-lg-left{float:left!important}.float-lg-right{float:right!important}.v-locale--is-rtl .float-lg-end{float:left!important}.v-locale--is-rtl .float-lg-start,.v-locale--is-ltr .float-lg-end{float:right!important}.v-locale--is-ltr .float-lg-start{float:left!important}.flex-lg-fill{flex:1 1 auto!important}.flex-lg-row{flex-direction:row!important}.flex-lg-column{flex-direction:column!important}.flex-lg-row-reverse{flex-direction:row-reverse!important}.flex-lg-column-reverse{flex-direction:column-reverse!important}.flex-lg-grow-0{flex-grow:0!important}.flex-lg-grow-1{flex-grow:1!important}.flex-lg-shrink-0{flex-shrink:0!important}.flex-lg-shrink-1{flex-shrink:1!important}.flex-lg-wrap{flex-wrap:wrap!important}.flex-lg-nowrap{flex-wrap:nowrap!important}.flex-lg-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-lg-start{justify-content:flex-start!important}.justify-lg-end{justify-content:flex-end!important}.justify-lg-center{justify-content:center!important}.justify-lg-space-between{justify-content:space-between!important}.justify-lg-space-around{justify-content:space-around!important}.justify-lg-space-evenly{justify-content:space-evenly!important}.align-lg-start{align-items:flex-start!important}.align-lg-end{align-items:flex-end!important}.align-lg-center{align-items:center!important}.align-lg-baseline{align-items:baseline!important}.align-lg-stretch{align-items:stretch!important}.align-content-lg-start{align-content:flex-start!important}.align-content-lg-end{align-content:flex-end!important}.align-content-lg-center{align-content:center!important}.align-content-lg-space-between{align-content:space-between!important}.align-content-lg-space-around{align-content:space-around!important}.align-content-lg-space-evenly{align-content:space-evenly!important}.align-content-lg-stretch{align-content:stretch!important}.align-self-lg-auto{align-self:auto!important}.align-self-lg-start{align-self:flex-start!important}.align-self-lg-end{align-self:flex-end!important}.align-self-lg-center{align-self:center!important}.align-self-lg-baseline{align-self:baseline!important}.align-self-lg-stretch{align-self:stretch!important}.order-lg-first{order:-1!important}.order-lg-0{order:0!important}.order-lg-1{order:1!important}.order-lg-2{order:2!important}.order-lg-3{order:3!important}.order-lg-4{order:4!important}.order-lg-5{order:5!important}.order-lg-6{order:6!important}.order-lg-7{order:7!important}.order-lg-8{order:8!important}.order-lg-9{order:9!important}.order-lg-10{order:10!important}.order-lg-11{order:11!important}.order-lg-12{order:12!important}.order-lg-last{order:13!important}.ma-lg-0{margin:0!important}.ma-lg-1{margin:4px!important}.ma-lg-2{margin:8px!important}.ma-lg-3{margin:12px!important}.ma-lg-4{margin:16px!important}.ma-lg-5{margin:20px!important}.ma-lg-6{margin:24px!important}.ma-lg-7{margin:28px!important}.ma-lg-8{margin:32px!important}.ma-lg-9{margin:36px!important}.ma-lg-10{margin:40px!important}.ma-lg-11{margin:44px!important}.ma-lg-12{margin:48px!important}.ma-lg-13{margin:52px!important}.ma-lg-14{margin:56px!important}.ma-lg-15{margin:60px!important}.ma-lg-16{margin:64px!important}.ma-lg-auto{margin:auto!important}.mx-lg-0{margin-right:0!important;margin-left:0!important}.mx-lg-1{margin-right:4px!important;margin-left:4px!important}.mx-lg-2{margin-right:8px!important;margin-left:8px!important}.mx-lg-3{margin-right:12px!important;margin-left:12px!important}.mx-lg-4{margin-right:16px!important;margin-left:16px!important}.mx-lg-5{margin-right:20px!important;margin-left:20px!important}.mx-lg-6{margin-right:24px!important;margin-left:24px!important}.mx-lg-7{margin-right:28px!important;margin-left:28px!important}.mx-lg-8{margin-right:32px!important;margin-left:32px!important}.mx-lg-9{margin-right:36px!important;margin-left:36px!important}.mx-lg-10{margin-right:40px!important;margin-left:40px!important}.mx-lg-11{margin-right:44px!important;margin-left:44px!important}.mx-lg-12{margin-right:48px!important;margin-left:48px!important}.mx-lg-13{margin-right:52px!important;margin-left:52px!important}.mx-lg-14{margin-right:56px!important;margin-left:56px!important}.mx-lg-15{margin-right:60px!important;margin-left:60px!important}.mx-lg-16{margin-right:64px!important;margin-left:64px!important}.mx-lg-auto{margin-right:auto!important;margin-left:auto!important}.my-lg-0{margin-top:0!important;margin-bottom:0!important}.my-lg-1{margin-top:4px!important;margin-bottom:4px!important}.my-lg-2{margin-top:8px!important;margin-bottom:8px!important}.my-lg-3{margin-top:12px!important;margin-bottom:12px!important}.my-lg-4{margin-top:16px!important;margin-bottom:16px!important}.my-lg-5{margin-top:20px!important;margin-bottom:20px!important}.my-lg-6{margin-top:24px!important;margin-bottom:24px!important}.my-lg-7{margin-top:28px!important;margin-bottom:28px!important}.my-lg-8{margin-top:32px!important;margin-bottom:32px!important}.my-lg-9{margin-top:36px!important;margin-bottom:36px!important}.my-lg-10{margin-top:40px!important;margin-bottom:40px!important}.my-lg-11{margin-top:44px!important;margin-bottom:44px!important}.my-lg-12{margin-top:48px!important;margin-bottom:48px!important}.my-lg-13{margin-top:52px!important;margin-bottom:52px!important}.my-lg-14{margin-top:56px!important;margin-bottom:56px!important}.my-lg-15{margin-top:60px!important;margin-bottom:60px!important}.my-lg-16{margin-top:64px!important;margin-bottom:64px!important}.my-lg-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-lg-0{margin-top:0!important}.mt-lg-1{margin-top:4px!important}.mt-lg-2{margin-top:8px!important}.mt-lg-3{margin-top:12px!important}.mt-lg-4{margin-top:16px!important}.mt-lg-5{margin-top:20px!important}.mt-lg-6{margin-top:24px!important}.mt-lg-7{margin-top:28px!important}.mt-lg-8{margin-top:32px!important}.mt-lg-9{margin-top:36px!important}.mt-lg-10{margin-top:40px!important}.mt-lg-11{margin-top:44px!important}.mt-lg-12{margin-top:48px!important}.mt-lg-13{margin-top:52px!important}.mt-lg-14{margin-top:56px!important}.mt-lg-15{margin-top:60px!important}.mt-lg-16{margin-top:64px!important}.mt-lg-auto{margin-top:auto!important}.mr-lg-0{margin-right:0!important}.mr-lg-1{margin-right:4px!important}.mr-lg-2{margin-right:8px!important}.mr-lg-3{margin-right:12px!important}.mr-lg-4{margin-right:16px!important}.mr-lg-5{margin-right:20px!important}.mr-lg-6{margin-right:24px!important}.mr-lg-7{margin-right:28px!important}.mr-lg-8{margin-right:32px!important}.mr-lg-9{margin-right:36px!important}.mr-lg-10{margin-right:40px!important}.mr-lg-11{margin-right:44px!important}.mr-lg-12{margin-right:48px!important}.mr-lg-13{margin-right:52px!important}.mr-lg-14{margin-right:56px!important}.mr-lg-15{margin-right:60px!important}.mr-lg-16{margin-right:64px!important}.mr-lg-auto{margin-right:auto!important}.mb-lg-0{margin-bottom:0!important}.mb-lg-1{margin-bottom:4px!important}.mb-lg-2{margin-bottom:8px!important}.mb-lg-3{margin-bottom:12px!important}.mb-lg-4{margin-bottom:16px!important}.mb-lg-5{margin-bottom:20px!important}.mb-lg-6{margin-bottom:24px!important}.mb-lg-7{margin-bottom:28px!important}.mb-lg-8{margin-bottom:32px!important}.mb-lg-9{margin-bottom:36px!important}.mb-lg-10{margin-bottom:40px!important}.mb-lg-11{margin-bottom:44px!important}.mb-lg-12{margin-bottom:48px!important}.mb-lg-13{margin-bottom:52px!important}.mb-lg-14{margin-bottom:56px!important}.mb-lg-15{margin-bottom:60px!important}.mb-lg-16{margin-bottom:64px!important}.mb-lg-auto{margin-bottom:auto!important}.ml-lg-0{margin-left:0!important}.ml-lg-1{margin-left:4px!important}.ml-lg-2{margin-left:8px!important}.ml-lg-3{margin-left:12px!important}.ml-lg-4{margin-left:16px!important}.ml-lg-5{margin-left:20px!important}.ml-lg-6{margin-left:24px!important}.ml-lg-7{margin-left:28px!important}.ml-lg-8{margin-left:32px!important}.ml-lg-9{margin-left:36px!important}.ml-lg-10{margin-left:40px!important}.ml-lg-11{margin-left:44px!important}.ml-lg-12{margin-left:48px!important}.ml-lg-13{margin-left:52px!important}.ml-lg-14{margin-left:56px!important}.ml-lg-15{margin-left:60px!important}.ml-lg-16{margin-left:64px!important}.ml-lg-auto{margin-left:auto!important}.ms-lg-0{margin-inline-start:0px!important}.ms-lg-1{margin-inline-start:4px!important}.ms-lg-2{margin-inline-start:8px!important}.ms-lg-3{margin-inline-start:12px!important}.ms-lg-4{margin-inline-start:16px!important}.ms-lg-5{margin-inline-start:20px!important}.ms-lg-6{margin-inline-start:24px!important}.ms-lg-7{margin-inline-start:28px!important}.ms-lg-8{margin-inline-start:32px!important}.ms-lg-9{margin-inline-start:36px!important}.ms-lg-10{margin-inline-start:40px!important}.ms-lg-11{margin-inline-start:44px!important}.ms-lg-12{margin-inline-start:48px!important}.ms-lg-13{margin-inline-start:52px!important}.ms-lg-14{margin-inline-start:56px!important}.ms-lg-15{margin-inline-start:60px!important}.ms-lg-16{margin-inline-start:64px!important}.ms-lg-auto{margin-inline-start:auto!important}.me-lg-0{margin-inline-end:0px!important}.me-lg-1{margin-inline-end:4px!important}.me-lg-2{margin-inline-end:8px!important}.me-lg-3{margin-inline-end:12px!important}.me-lg-4{margin-inline-end:16px!important}.me-lg-5{margin-inline-end:20px!important}.me-lg-6{margin-inline-end:24px!important}.me-lg-7{margin-inline-end:28px!important}.me-lg-8{margin-inline-end:32px!important}.me-lg-9{margin-inline-end:36px!important}.me-lg-10{margin-inline-end:40px!important}.me-lg-11{margin-inline-end:44px!important}.me-lg-12{margin-inline-end:48px!important}.me-lg-13{margin-inline-end:52px!important}.me-lg-14{margin-inline-end:56px!important}.me-lg-15{margin-inline-end:60px!important}.me-lg-16{margin-inline-end:64px!important}.me-lg-auto{margin-inline-end:auto!important}.ma-lg-n1{margin:-4px!important}.ma-lg-n2{margin:-8px!important}.ma-lg-n3{margin:-12px!important}.ma-lg-n4{margin:-16px!important}.ma-lg-n5{margin:-20px!important}.ma-lg-n6{margin:-24px!important}.ma-lg-n7{margin:-28px!important}.ma-lg-n8{margin:-32px!important}.ma-lg-n9{margin:-36px!important}.ma-lg-n10{margin:-40px!important}.ma-lg-n11{margin:-44px!important}.ma-lg-n12{margin:-48px!important}.ma-lg-n13{margin:-52px!important}.ma-lg-n14{margin:-56px!important}.ma-lg-n15{margin:-60px!important}.ma-lg-n16{margin:-64px!important}.mx-lg-n1{margin-right:-4px!important;margin-left:-4px!important}.mx-lg-n2{margin-right:-8px!important;margin-left:-8px!important}.mx-lg-n3{margin-right:-12px!important;margin-left:-12px!important}.mx-lg-n4{margin-right:-16px!important;margin-left:-16px!important}.mx-lg-n5{margin-right:-20px!important;margin-left:-20px!important}.mx-lg-n6{margin-right:-24px!important;margin-left:-24px!important}.mx-lg-n7{margin-right:-28px!important;margin-left:-28px!important}.mx-lg-n8{margin-right:-32px!important;margin-left:-32px!important}.mx-lg-n9{margin-right:-36px!important;margin-left:-36px!important}.mx-lg-n10{margin-right:-40px!important;margin-left:-40px!important}.mx-lg-n11{margin-right:-44px!important;margin-left:-44px!important}.mx-lg-n12{margin-right:-48px!important;margin-left:-48px!important}.mx-lg-n13{margin-right:-52px!important;margin-left:-52px!important}.mx-lg-n14{margin-right:-56px!important;margin-left:-56px!important}.mx-lg-n15{margin-right:-60px!important;margin-left:-60px!important}.mx-lg-n16{margin-right:-64px!important;margin-left:-64px!important}.my-lg-n1{margin-top:-4px!important;margin-bottom:-4px!important}.my-lg-n2{margin-top:-8px!important;margin-bottom:-8px!important}.my-lg-n3{margin-top:-12px!important;margin-bottom:-12px!important}.my-lg-n4{margin-top:-16px!important;margin-bottom:-16px!important}.my-lg-n5{margin-top:-20px!important;margin-bottom:-20px!important}.my-lg-n6{margin-top:-24px!important;margin-bottom:-24px!important}.my-lg-n7{margin-top:-28px!important;margin-bottom:-28px!important}.my-lg-n8{margin-top:-32px!important;margin-bottom:-32px!important}.my-lg-n9{margin-top:-36px!important;margin-bottom:-36px!important}.my-lg-n10{margin-top:-40px!important;margin-bottom:-40px!important}.my-lg-n11{margin-top:-44px!important;margin-bottom:-44px!important}.my-lg-n12{margin-top:-48px!important;margin-bottom:-48px!important}.my-lg-n13{margin-top:-52px!important;margin-bottom:-52px!important}.my-lg-n14{margin-top:-56px!important;margin-bottom:-56px!important}.my-lg-n15{margin-top:-60px!important;margin-bottom:-60px!important}.my-lg-n16{margin-top:-64px!important;margin-bottom:-64px!important}.mt-lg-n1{margin-top:-4px!important}.mt-lg-n2{margin-top:-8px!important}.mt-lg-n3{margin-top:-12px!important}.mt-lg-n4{margin-top:-16px!important}.mt-lg-n5{margin-top:-20px!important}.mt-lg-n6{margin-top:-24px!important}.mt-lg-n7{margin-top:-28px!important}.mt-lg-n8{margin-top:-32px!important}.mt-lg-n9{margin-top:-36px!important}.mt-lg-n10{margin-top:-40px!important}.mt-lg-n11{margin-top:-44px!important}.mt-lg-n12{margin-top:-48px!important}.mt-lg-n13{margin-top:-52px!important}.mt-lg-n14{margin-top:-56px!important}.mt-lg-n15{margin-top:-60px!important}.mt-lg-n16{margin-top:-64px!important}.mr-lg-n1{margin-right:-4px!important}.mr-lg-n2{margin-right:-8px!important}.mr-lg-n3{margin-right:-12px!important}.mr-lg-n4{margin-right:-16px!important}.mr-lg-n5{margin-right:-20px!important}.mr-lg-n6{margin-right:-24px!important}.mr-lg-n7{margin-right:-28px!important}.mr-lg-n8{margin-right:-32px!important}.mr-lg-n9{margin-right:-36px!important}.mr-lg-n10{margin-right:-40px!important}.mr-lg-n11{margin-right:-44px!important}.mr-lg-n12{margin-right:-48px!important}.mr-lg-n13{margin-right:-52px!important}.mr-lg-n14{margin-right:-56px!important}.mr-lg-n15{margin-right:-60px!important}.mr-lg-n16{margin-right:-64px!important}.mb-lg-n1{margin-bottom:-4px!important}.mb-lg-n2{margin-bottom:-8px!important}.mb-lg-n3{margin-bottom:-12px!important}.mb-lg-n4{margin-bottom:-16px!important}.mb-lg-n5{margin-bottom:-20px!important}.mb-lg-n6{margin-bottom:-24px!important}.mb-lg-n7{margin-bottom:-28px!important}.mb-lg-n8{margin-bottom:-32px!important}.mb-lg-n9{margin-bottom:-36px!important}.mb-lg-n10{margin-bottom:-40px!important}.mb-lg-n11{margin-bottom:-44px!important}.mb-lg-n12{margin-bottom:-48px!important}.mb-lg-n13{margin-bottom:-52px!important}.mb-lg-n14{margin-bottom:-56px!important}.mb-lg-n15{margin-bottom:-60px!important}.mb-lg-n16{margin-bottom:-64px!important}.ml-lg-n1{margin-left:-4px!important}.ml-lg-n2{margin-left:-8px!important}.ml-lg-n3{margin-left:-12px!important}.ml-lg-n4{margin-left:-16px!important}.ml-lg-n5{margin-left:-20px!important}.ml-lg-n6{margin-left:-24px!important}.ml-lg-n7{margin-left:-28px!important}.ml-lg-n8{margin-left:-32px!important}.ml-lg-n9{margin-left:-36px!important}.ml-lg-n10{margin-left:-40px!important}.ml-lg-n11{margin-left:-44px!important}.ml-lg-n12{margin-left:-48px!important}.ml-lg-n13{margin-left:-52px!important}.ml-lg-n14{margin-left:-56px!important}.ml-lg-n15{margin-left:-60px!important}.ml-lg-n16{margin-left:-64px!important}.ms-lg-n1{margin-inline-start:-4px!important}.ms-lg-n2{margin-inline-start:-8px!important}.ms-lg-n3{margin-inline-start:-12px!important}.ms-lg-n4{margin-inline-start:-16px!important}.ms-lg-n5{margin-inline-start:-20px!important}.ms-lg-n6{margin-inline-start:-24px!important}.ms-lg-n7{margin-inline-start:-28px!important}.ms-lg-n8{margin-inline-start:-32px!important}.ms-lg-n9{margin-inline-start:-36px!important}.ms-lg-n10{margin-inline-start:-40px!important}.ms-lg-n11{margin-inline-start:-44px!important}.ms-lg-n12{margin-inline-start:-48px!important}.ms-lg-n13{margin-inline-start:-52px!important}.ms-lg-n14{margin-inline-start:-56px!important}.ms-lg-n15{margin-inline-start:-60px!important}.ms-lg-n16{margin-inline-start:-64px!important}.me-lg-n1{margin-inline-end:-4px!important}.me-lg-n2{margin-inline-end:-8px!important}.me-lg-n3{margin-inline-end:-12px!important}.me-lg-n4{margin-inline-end:-16px!important}.me-lg-n5{margin-inline-end:-20px!important}.me-lg-n6{margin-inline-end:-24px!important}.me-lg-n7{margin-inline-end:-28px!important}.me-lg-n8{margin-inline-end:-32px!important}.me-lg-n9{margin-inline-end:-36px!important}.me-lg-n10{margin-inline-end:-40px!important}.me-lg-n11{margin-inline-end:-44px!important}.me-lg-n12{margin-inline-end:-48px!important}.me-lg-n13{margin-inline-end:-52px!important}.me-lg-n14{margin-inline-end:-56px!important}.me-lg-n15{margin-inline-end:-60px!important}.me-lg-n16{margin-inline-end:-64px!important}.pa-lg-0{padding:0!important}.pa-lg-1{padding:4px!important}.pa-lg-2{padding:8px!important}.pa-lg-3{padding:12px!important}.pa-lg-4{padding:16px!important}.pa-lg-5{padding:20px!important}.pa-lg-6{padding:24px!important}.pa-lg-7{padding:28px!important}.pa-lg-8{padding:32px!important}.pa-lg-9{padding:36px!important}.pa-lg-10{padding:40px!important}.pa-lg-11{padding:44px!important}.pa-lg-12{padding:48px!important}.pa-lg-13{padding:52px!important}.pa-lg-14{padding:56px!important}.pa-lg-15{padding:60px!important}.pa-lg-16{padding:64px!important}.px-lg-0{padding-right:0!important;padding-left:0!important}.px-lg-1{padding-right:4px!important;padding-left:4px!important}.px-lg-2{padding-right:8px!important;padding-left:8px!important}.px-lg-3{padding-right:12px!important;padding-left:12px!important}.px-lg-4{padding-right:16px!important;padding-left:16px!important}.px-lg-5{padding-right:20px!important;padding-left:20px!important}.px-lg-6{padding-right:24px!important;padding-left:24px!important}.px-lg-7{padding-right:28px!important;padding-left:28px!important}.px-lg-8{padding-right:32px!important;padding-left:32px!important}.px-lg-9{padding-right:36px!important;padding-left:36px!important}.px-lg-10{padding-right:40px!important;padding-left:40px!important}.px-lg-11{padding-right:44px!important;padding-left:44px!important}.px-lg-12{padding-right:48px!important;padding-left:48px!important}.px-lg-13{padding-right:52px!important;padding-left:52px!important}.px-lg-14{padding-right:56px!important;padding-left:56px!important}.px-lg-15{padding-right:60px!important;padding-left:60px!important}.px-lg-16{padding-right:64px!important;padding-left:64px!important}.py-lg-0{padding-top:0!important;padding-bottom:0!important}.py-lg-1{padding-top:4px!important;padding-bottom:4px!important}.py-lg-2{padding-top:8px!important;padding-bottom:8px!important}.py-lg-3{padding-top:12px!important;padding-bottom:12px!important}.py-lg-4{padding-top:16px!important;padding-bottom:16px!important}.py-lg-5{padding-top:20px!important;padding-bottom:20px!important}.py-lg-6{padding-top:24px!important;padding-bottom:24px!important}.py-lg-7{padding-top:28px!important;padding-bottom:28px!important}.py-lg-8{padding-top:32px!important;padding-bottom:32px!important}.py-lg-9{padding-top:36px!important;padding-bottom:36px!important}.py-lg-10{padding-top:40px!important;padding-bottom:40px!important}.py-lg-11{padding-top:44px!important;padding-bottom:44px!important}.py-lg-12{padding-top:48px!important;padding-bottom:48px!important}.py-lg-13{padding-top:52px!important;padding-bottom:52px!important}.py-lg-14{padding-top:56px!important;padding-bottom:56px!important}.py-lg-15{padding-top:60px!important;padding-bottom:60px!important}.py-lg-16{padding-top:64px!important;padding-bottom:64px!important}.pt-lg-0{padding-top:0!important}.pt-lg-1{padding-top:4px!important}.pt-lg-2{padding-top:8px!important}.pt-lg-3{padding-top:12px!important}.pt-lg-4{padding-top:16px!important}.pt-lg-5{padding-top:20px!important}.pt-lg-6{padding-top:24px!important}.pt-lg-7{padding-top:28px!important}.pt-lg-8{padding-top:32px!important}.pt-lg-9{padding-top:36px!important}.pt-lg-10{padding-top:40px!important}.pt-lg-11{padding-top:44px!important}.pt-lg-12{padding-top:48px!important}.pt-lg-13{padding-top:52px!important}.pt-lg-14{padding-top:56px!important}.pt-lg-15{padding-top:60px!important}.pt-lg-16{padding-top:64px!important}.pr-lg-0{padding-right:0!important}.pr-lg-1{padding-right:4px!important}.pr-lg-2{padding-right:8px!important}.pr-lg-3{padding-right:12px!important}.pr-lg-4{padding-right:16px!important}.pr-lg-5{padding-right:20px!important}.pr-lg-6{padding-right:24px!important}.pr-lg-7{padding-right:28px!important}.pr-lg-8{padding-right:32px!important}.pr-lg-9{padding-right:36px!important}.pr-lg-10{padding-right:40px!important}.pr-lg-11{padding-right:44px!important}.pr-lg-12{padding-right:48px!important}.pr-lg-13{padding-right:52px!important}.pr-lg-14{padding-right:56px!important}.pr-lg-15{padding-right:60px!important}.pr-lg-16{padding-right:64px!important}.pb-lg-0{padding-bottom:0!important}.pb-lg-1{padding-bottom:4px!important}.pb-lg-2{padding-bottom:8px!important}.pb-lg-3{padding-bottom:12px!important}.pb-lg-4{padding-bottom:16px!important}.pb-lg-5{padding-bottom:20px!important}.pb-lg-6{padding-bottom:24px!important}.pb-lg-7{padding-bottom:28px!important}.pb-lg-8{padding-bottom:32px!important}.pb-lg-9{padding-bottom:36px!important}.pb-lg-10{padding-bottom:40px!important}.pb-lg-11{padding-bottom:44px!important}.pb-lg-12{padding-bottom:48px!important}.pb-lg-13{padding-bottom:52px!important}.pb-lg-14{padding-bottom:56px!important}.pb-lg-15{padding-bottom:60px!important}.pb-lg-16{padding-bottom:64px!important}.pl-lg-0{padding-left:0!important}.pl-lg-1{padding-left:4px!important}.pl-lg-2{padding-left:8px!important}.pl-lg-3{padding-left:12px!important}.pl-lg-4{padding-left:16px!important}.pl-lg-5{padding-left:20px!important}.pl-lg-6{padding-left:24px!important}.pl-lg-7{padding-left:28px!important}.pl-lg-8{padding-left:32px!important}.pl-lg-9{padding-left:36px!important}.pl-lg-10{padding-left:40px!important}.pl-lg-11{padding-left:44px!important}.pl-lg-12{padding-left:48px!important}.pl-lg-13{padding-left:52px!important}.pl-lg-14{padding-left:56px!important}.pl-lg-15{padding-left:60px!important}.pl-lg-16{padding-left:64px!important}.ps-lg-0{padding-inline-start:0px!important}.ps-lg-1{padding-inline-start:4px!important}.ps-lg-2{padding-inline-start:8px!important}.ps-lg-3{padding-inline-start:12px!important}.ps-lg-4{padding-inline-start:16px!important}.ps-lg-5{padding-inline-start:20px!important}.ps-lg-6{padding-inline-start:24px!important}.ps-lg-7{padding-inline-start:28px!important}.ps-lg-8{padding-inline-start:32px!important}.ps-lg-9{padding-inline-start:36px!important}.ps-lg-10{padding-inline-start:40px!important}.ps-lg-11{padding-inline-start:44px!important}.ps-lg-12{padding-inline-start:48px!important}.ps-lg-13{padding-inline-start:52px!important}.ps-lg-14{padding-inline-start:56px!important}.ps-lg-15{padding-inline-start:60px!important}.ps-lg-16{padding-inline-start:64px!important}.pe-lg-0{padding-inline-end:0px!important}.pe-lg-1{padding-inline-end:4px!important}.pe-lg-2{padding-inline-end:8px!important}.pe-lg-3{padding-inline-end:12px!important}.pe-lg-4{padding-inline-end:16px!important}.pe-lg-5{padding-inline-end:20px!important}.pe-lg-6{padding-inline-end:24px!important}.pe-lg-7{padding-inline-end:28px!important}.pe-lg-8{padding-inline-end:32px!important}.pe-lg-9{padding-inline-end:36px!important}.pe-lg-10{padding-inline-end:40px!important}.pe-lg-11{padding-inline-end:44px!important}.pe-lg-12{padding-inline-end:48px!important}.pe-lg-13{padding-inline-end:52px!important}.pe-lg-14{padding-inline-end:56px!important}.pe-lg-15{padding-inline-end:60px!important}.pe-lg-16{padding-inline-end:64px!important}.text-lg-left{text-align:left!important}.text-lg-right{text-align:right!important}.text-lg-center{text-align:center!important}.text-lg-justify{text-align:justify!important}.text-lg-start{text-align:start!important}.text-lg-end{text-align:end!important}.text-lg-h1{font-size:6rem!important;font-weight:300;line-height:6rem;letter-spacing:-.015625em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-h2{font-size:3.75rem!important;font-weight:300;line-height:3.75rem;letter-spacing:-.0083333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-h3{font-size:3rem!important;font-weight:400;line-height:3.125rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-h4{font-size:2.125rem!important;font-weight:400;line-height:2.5rem;letter-spacing:.0073529412em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-h5{font-size:1.5rem!important;font-weight:400;line-height:2rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-h6{font-size:1.25rem!important;font-weight:500;line-height:2rem;letter-spacing:.0125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-subtitle-1{font-size:1rem!important;font-weight:400;line-height:1.75rem;letter-spacing:.009375em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-subtitle-2{font-size:.875rem!important;font-weight:500;line-height:1.375rem;letter-spacing:.0071428571em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-body-1{font-size:1rem!important;font-weight:400;line-height:1.5rem;letter-spacing:.03125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-body-2{font-size:.875rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0178571429em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-button{font-size:.875rem!important;font-weight:500;line-height:2.25rem;letter-spacing:.0892857143em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}.text-lg-caption{font-size:.75rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0333333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-lg-overline{font-size:.75rem!important;font-weight:500;line-height:2rem;letter-spacing:.1666666667em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}}@media (min-width: 1920px){.d-xl-none{display:none!important}.d-xl-inline{display:inline!important}.d-xl-inline-block{display:inline-block!important}.d-xl-block{display:block!important}.d-xl-table{display:table!important}.d-xl-table-row{display:table-row!important}.d-xl-table-cell{display:table-cell!important}.d-xl-flex{display:flex!important}.d-xl-inline-flex{display:inline-flex!important}.float-xl-none{float:none!important}.float-xl-left{float:left!important}.float-xl-right{float:right!important}.v-locale--is-rtl .float-xl-end{float:left!important}.v-locale--is-rtl .float-xl-start,.v-locale--is-ltr .float-xl-end{float:right!important}.v-locale--is-ltr .float-xl-start{float:left!important}.flex-xl-fill{flex:1 1 auto!important}.flex-xl-row{flex-direction:row!important}.flex-xl-column{flex-direction:column!important}.flex-xl-row-reverse{flex-direction:row-reverse!important}.flex-xl-column-reverse{flex-direction:column-reverse!important}.flex-xl-grow-0{flex-grow:0!important}.flex-xl-grow-1{flex-grow:1!important}.flex-xl-shrink-0{flex-shrink:0!important}.flex-xl-shrink-1{flex-shrink:1!important}.flex-xl-wrap{flex-wrap:wrap!important}.flex-xl-nowrap{flex-wrap:nowrap!important}.flex-xl-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-xl-start{justify-content:flex-start!important}.justify-xl-end{justify-content:flex-end!important}.justify-xl-center{justify-content:center!important}.justify-xl-space-between{justify-content:space-between!important}.justify-xl-space-around{justify-content:space-around!important}.justify-xl-space-evenly{justify-content:space-evenly!important}.align-xl-start{align-items:flex-start!important}.align-xl-end{align-items:flex-end!important}.align-xl-center{align-items:center!important}.align-xl-baseline{align-items:baseline!important}.align-xl-stretch{align-items:stretch!important}.align-content-xl-start{align-content:flex-start!important}.align-content-xl-end{align-content:flex-end!important}.align-content-xl-center{align-content:center!important}.align-content-xl-space-between{align-content:space-between!important}.align-content-xl-space-around{align-content:space-around!important}.align-content-xl-space-evenly{align-content:space-evenly!important}.align-content-xl-stretch{align-content:stretch!important}.align-self-xl-auto{align-self:auto!important}.align-self-xl-start{align-self:flex-start!important}.align-self-xl-end{align-self:flex-end!important}.align-self-xl-center{align-self:center!important}.align-self-xl-baseline{align-self:baseline!important}.align-self-xl-stretch{align-self:stretch!important}.order-xl-first{order:-1!important}.order-xl-0{order:0!important}.order-xl-1{order:1!important}.order-xl-2{order:2!important}.order-xl-3{order:3!important}.order-xl-4{order:4!important}.order-xl-5{order:5!important}.order-xl-6{order:6!important}.order-xl-7{order:7!important}.order-xl-8{order:8!important}.order-xl-9{order:9!important}.order-xl-10{order:10!important}.order-xl-11{order:11!important}.order-xl-12{order:12!important}.order-xl-last{order:13!important}.ma-xl-0{margin:0!important}.ma-xl-1{margin:4px!important}.ma-xl-2{margin:8px!important}.ma-xl-3{margin:12px!important}.ma-xl-4{margin:16px!important}.ma-xl-5{margin:20px!important}.ma-xl-6{margin:24px!important}.ma-xl-7{margin:28px!important}.ma-xl-8{margin:32px!important}.ma-xl-9{margin:36px!important}.ma-xl-10{margin:40px!important}.ma-xl-11{margin:44px!important}.ma-xl-12{margin:48px!important}.ma-xl-13{margin:52px!important}.ma-xl-14{margin:56px!important}.ma-xl-15{margin:60px!important}.ma-xl-16{margin:64px!important}.ma-xl-auto{margin:auto!important}.mx-xl-0{margin-right:0!important;margin-left:0!important}.mx-xl-1{margin-right:4px!important;margin-left:4px!important}.mx-xl-2{margin-right:8px!important;margin-left:8px!important}.mx-xl-3{margin-right:12px!important;margin-left:12px!important}.mx-xl-4{margin-right:16px!important;margin-left:16px!important}.mx-xl-5{margin-right:20px!important;margin-left:20px!important}.mx-xl-6{margin-right:24px!important;margin-left:24px!important}.mx-xl-7{margin-right:28px!important;margin-left:28px!important}.mx-xl-8{margin-right:32px!important;margin-left:32px!important}.mx-xl-9{margin-right:36px!important;margin-left:36px!important}.mx-xl-10{margin-right:40px!important;margin-left:40px!important}.mx-xl-11{margin-right:44px!important;margin-left:44px!important}.mx-xl-12{margin-right:48px!important;margin-left:48px!important}.mx-xl-13{margin-right:52px!important;margin-left:52px!important}.mx-xl-14{margin-right:56px!important;margin-left:56px!important}.mx-xl-15{margin-right:60px!important;margin-left:60px!important}.mx-xl-16{margin-right:64px!important;margin-left:64px!important}.mx-xl-auto{margin-right:auto!important;margin-left:auto!important}.my-xl-0{margin-top:0!important;margin-bottom:0!important}.my-xl-1{margin-top:4px!important;margin-bottom:4px!important}.my-xl-2{margin-top:8px!important;margin-bottom:8px!important}.my-xl-3{margin-top:12px!important;margin-bottom:12px!important}.my-xl-4{margin-top:16px!important;margin-bottom:16px!important}.my-xl-5{margin-top:20px!important;margin-bottom:20px!important}.my-xl-6{margin-top:24px!important;margin-bottom:24px!important}.my-xl-7{margin-top:28px!important;margin-bottom:28px!important}.my-xl-8{margin-top:32px!important;margin-bottom:32px!important}.my-xl-9{margin-top:36px!important;margin-bottom:36px!important}.my-xl-10{margin-top:40px!important;margin-bottom:40px!important}.my-xl-11{margin-top:44px!important;margin-bottom:44px!important}.my-xl-12{margin-top:48px!important;margin-bottom:48px!important}.my-xl-13{margin-top:52px!important;margin-bottom:52px!important}.my-xl-14{margin-top:56px!important;margin-bottom:56px!important}.my-xl-15{margin-top:60px!important;margin-bottom:60px!important}.my-xl-16{margin-top:64px!important;margin-bottom:64px!important}.my-xl-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-xl-0{margin-top:0!important}.mt-xl-1{margin-top:4px!important}.mt-xl-2{margin-top:8px!important}.mt-xl-3{margin-top:12px!important}.mt-xl-4{margin-top:16px!important}.mt-xl-5{margin-top:20px!important}.mt-xl-6{margin-top:24px!important}.mt-xl-7{margin-top:28px!important}.mt-xl-8{margin-top:32px!important}.mt-xl-9{margin-top:36px!important}.mt-xl-10{margin-top:40px!important}.mt-xl-11{margin-top:44px!important}.mt-xl-12{margin-top:48px!important}.mt-xl-13{margin-top:52px!important}.mt-xl-14{margin-top:56px!important}.mt-xl-15{margin-top:60px!important}.mt-xl-16{margin-top:64px!important}.mt-xl-auto{margin-top:auto!important}.mr-xl-0{margin-right:0!important}.mr-xl-1{margin-right:4px!important}.mr-xl-2{margin-right:8px!important}.mr-xl-3{margin-right:12px!important}.mr-xl-4{margin-right:16px!important}.mr-xl-5{margin-right:20px!important}.mr-xl-6{margin-right:24px!important}.mr-xl-7{margin-right:28px!important}.mr-xl-8{margin-right:32px!important}.mr-xl-9{margin-right:36px!important}.mr-xl-10{margin-right:40px!important}.mr-xl-11{margin-right:44px!important}.mr-xl-12{margin-right:48px!important}.mr-xl-13{margin-right:52px!important}.mr-xl-14{margin-right:56px!important}.mr-xl-15{margin-right:60px!important}.mr-xl-16{margin-right:64px!important}.mr-xl-auto{margin-right:auto!important}.mb-xl-0{margin-bottom:0!important}.mb-xl-1{margin-bottom:4px!important}.mb-xl-2{margin-bottom:8px!important}.mb-xl-3{margin-bottom:12px!important}.mb-xl-4{margin-bottom:16px!important}.mb-xl-5{margin-bottom:20px!important}.mb-xl-6{margin-bottom:24px!important}.mb-xl-7{margin-bottom:28px!important}.mb-xl-8{margin-bottom:32px!important}.mb-xl-9{margin-bottom:36px!important}.mb-xl-10{margin-bottom:40px!important}.mb-xl-11{margin-bottom:44px!important}.mb-xl-12{margin-bottom:48px!important}.mb-xl-13{margin-bottom:52px!important}.mb-xl-14{margin-bottom:56px!important}.mb-xl-15{margin-bottom:60px!important}.mb-xl-16{margin-bottom:64px!important}.mb-xl-auto{margin-bottom:auto!important}.ml-xl-0{margin-left:0!important}.ml-xl-1{margin-left:4px!important}.ml-xl-2{margin-left:8px!important}.ml-xl-3{margin-left:12px!important}.ml-xl-4{margin-left:16px!important}.ml-xl-5{margin-left:20px!important}.ml-xl-6{margin-left:24px!important}.ml-xl-7{margin-left:28px!important}.ml-xl-8{margin-left:32px!important}.ml-xl-9{margin-left:36px!important}.ml-xl-10{margin-left:40px!important}.ml-xl-11{margin-left:44px!important}.ml-xl-12{margin-left:48px!important}.ml-xl-13{margin-left:52px!important}.ml-xl-14{margin-left:56px!important}.ml-xl-15{margin-left:60px!important}.ml-xl-16{margin-left:64px!important}.ml-xl-auto{margin-left:auto!important}.ms-xl-0{margin-inline-start:0px!important}.ms-xl-1{margin-inline-start:4px!important}.ms-xl-2{margin-inline-start:8px!important}.ms-xl-3{margin-inline-start:12px!important}.ms-xl-4{margin-inline-start:16px!important}.ms-xl-5{margin-inline-start:20px!important}.ms-xl-6{margin-inline-start:24px!important}.ms-xl-7{margin-inline-start:28px!important}.ms-xl-8{margin-inline-start:32px!important}.ms-xl-9{margin-inline-start:36px!important}.ms-xl-10{margin-inline-start:40px!important}.ms-xl-11{margin-inline-start:44px!important}.ms-xl-12{margin-inline-start:48px!important}.ms-xl-13{margin-inline-start:52px!important}.ms-xl-14{margin-inline-start:56px!important}.ms-xl-15{margin-inline-start:60px!important}.ms-xl-16{margin-inline-start:64px!important}.ms-xl-auto{margin-inline-start:auto!important}.me-xl-0{margin-inline-end:0px!important}.me-xl-1{margin-inline-end:4px!important}.me-xl-2{margin-inline-end:8px!important}.me-xl-3{margin-inline-end:12px!important}.me-xl-4{margin-inline-end:16px!important}.me-xl-5{margin-inline-end:20px!important}.me-xl-6{margin-inline-end:24px!important}.me-xl-7{margin-inline-end:28px!important}.me-xl-8{margin-inline-end:32px!important}.me-xl-9{margin-inline-end:36px!important}.me-xl-10{margin-inline-end:40px!important}.me-xl-11{margin-inline-end:44px!important}.me-xl-12{margin-inline-end:48px!important}.me-xl-13{margin-inline-end:52px!important}.me-xl-14{margin-inline-end:56px!important}.me-xl-15{margin-inline-end:60px!important}.me-xl-16{margin-inline-end:64px!important}.me-xl-auto{margin-inline-end:auto!important}.ma-xl-n1{margin:-4px!important}.ma-xl-n2{margin:-8px!important}.ma-xl-n3{margin:-12px!important}.ma-xl-n4{margin:-16px!important}.ma-xl-n5{margin:-20px!important}.ma-xl-n6{margin:-24px!important}.ma-xl-n7{margin:-28px!important}.ma-xl-n8{margin:-32px!important}.ma-xl-n9{margin:-36px!important}.ma-xl-n10{margin:-40px!important}.ma-xl-n11{margin:-44px!important}.ma-xl-n12{margin:-48px!important}.ma-xl-n13{margin:-52px!important}.ma-xl-n14{margin:-56px!important}.ma-xl-n15{margin:-60px!important}.ma-xl-n16{margin:-64px!important}.mx-xl-n1{margin-right:-4px!important;margin-left:-4px!important}.mx-xl-n2{margin-right:-8px!important;margin-left:-8px!important}.mx-xl-n3{margin-right:-12px!important;margin-left:-12px!important}.mx-xl-n4{margin-right:-16px!important;margin-left:-16px!important}.mx-xl-n5{margin-right:-20px!important;margin-left:-20px!important}.mx-xl-n6{margin-right:-24px!important;margin-left:-24px!important}.mx-xl-n7{margin-right:-28px!important;margin-left:-28px!important}.mx-xl-n8{margin-right:-32px!important;margin-left:-32px!important}.mx-xl-n9{margin-right:-36px!important;margin-left:-36px!important}.mx-xl-n10{margin-right:-40px!important;margin-left:-40px!important}.mx-xl-n11{margin-right:-44px!important;margin-left:-44px!important}.mx-xl-n12{margin-right:-48px!important;margin-left:-48px!important}.mx-xl-n13{margin-right:-52px!important;margin-left:-52px!important}.mx-xl-n14{margin-right:-56px!important;margin-left:-56px!important}.mx-xl-n15{margin-right:-60px!important;margin-left:-60px!important}.mx-xl-n16{margin-right:-64px!important;margin-left:-64px!important}.my-xl-n1{margin-top:-4px!important;margin-bottom:-4px!important}.my-xl-n2{margin-top:-8px!important;margin-bottom:-8px!important}.my-xl-n3{margin-top:-12px!important;margin-bottom:-12px!important}.my-xl-n4{margin-top:-16px!important;margin-bottom:-16px!important}.my-xl-n5{margin-top:-20px!important;margin-bottom:-20px!important}.my-xl-n6{margin-top:-24px!important;margin-bottom:-24px!important}.my-xl-n7{margin-top:-28px!important;margin-bottom:-28px!important}.my-xl-n8{margin-top:-32px!important;margin-bottom:-32px!important}.my-xl-n9{margin-top:-36px!important;margin-bottom:-36px!important}.my-xl-n10{margin-top:-40px!important;margin-bottom:-40px!important}.my-xl-n11{margin-top:-44px!important;margin-bottom:-44px!important}.my-xl-n12{margin-top:-48px!important;margin-bottom:-48px!important}.my-xl-n13{margin-top:-52px!important;margin-bottom:-52px!important}.my-xl-n14{margin-top:-56px!important;margin-bottom:-56px!important}.my-xl-n15{margin-top:-60px!important;margin-bottom:-60px!important}.my-xl-n16{margin-top:-64px!important;margin-bottom:-64px!important}.mt-xl-n1{margin-top:-4px!important}.mt-xl-n2{margin-top:-8px!important}.mt-xl-n3{margin-top:-12px!important}.mt-xl-n4{margin-top:-16px!important}.mt-xl-n5{margin-top:-20px!important}.mt-xl-n6{margin-top:-24px!important}.mt-xl-n7{margin-top:-28px!important}.mt-xl-n8{margin-top:-32px!important}.mt-xl-n9{margin-top:-36px!important}.mt-xl-n10{margin-top:-40px!important}.mt-xl-n11{margin-top:-44px!important}.mt-xl-n12{margin-top:-48px!important}.mt-xl-n13{margin-top:-52px!important}.mt-xl-n14{margin-top:-56px!important}.mt-xl-n15{margin-top:-60px!important}.mt-xl-n16{margin-top:-64px!important}.mr-xl-n1{margin-right:-4px!important}.mr-xl-n2{margin-right:-8px!important}.mr-xl-n3{margin-right:-12px!important}.mr-xl-n4{margin-right:-16px!important}.mr-xl-n5{margin-right:-20px!important}.mr-xl-n6{margin-right:-24px!important}.mr-xl-n7{margin-right:-28px!important}.mr-xl-n8{margin-right:-32px!important}.mr-xl-n9{margin-right:-36px!important}.mr-xl-n10{margin-right:-40px!important}.mr-xl-n11{margin-right:-44px!important}.mr-xl-n12{margin-right:-48px!important}.mr-xl-n13{margin-right:-52px!important}.mr-xl-n14{margin-right:-56px!important}.mr-xl-n15{margin-right:-60px!important}.mr-xl-n16{margin-right:-64px!important}.mb-xl-n1{margin-bottom:-4px!important}.mb-xl-n2{margin-bottom:-8px!important}.mb-xl-n3{margin-bottom:-12px!important}.mb-xl-n4{margin-bottom:-16px!important}.mb-xl-n5{margin-bottom:-20px!important}.mb-xl-n6{margin-bottom:-24px!important}.mb-xl-n7{margin-bottom:-28px!important}.mb-xl-n8{margin-bottom:-32px!important}.mb-xl-n9{margin-bottom:-36px!important}.mb-xl-n10{margin-bottom:-40px!important}.mb-xl-n11{margin-bottom:-44px!important}.mb-xl-n12{margin-bottom:-48px!important}.mb-xl-n13{margin-bottom:-52px!important}.mb-xl-n14{margin-bottom:-56px!important}.mb-xl-n15{margin-bottom:-60px!important}.mb-xl-n16{margin-bottom:-64px!important}.ml-xl-n1{margin-left:-4px!important}.ml-xl-n2{margin-left:-8px!important}.ml-xl-n3{margin-left:-12px!important}.ml-xl-n4{margin-left:-16px!important}.ml-xl-n5{margin-left:-20px!important}.ml-xl-n6{margin-left:-24px!important}.ml-xl-n7{margin-left:-28px!important}.ml-xl-n8{margin-left:-32px!important}.ml-xl-n9{margin-left:-36px!important}.ml-xl-n10{margin-left:-40px!important}.ml-xl-n11{margin-left:-44px!important}.ml-xl-n12{margin-left:-48px!important}.ml-xl-n13{margin-left:-52px!important}.ml-xl-n14{margin-left:-56px!important}.ml-xl-n15{margin-left:-60px!important}.ml-xl-n16{margin-left:-64px!important}.ms-xl-n1{margin-inline-start:-4px!important}.ms-xl-n2{margin-inline-start:-8px!important}.ms-xl-n3{margin-inline-start:-12px!important}.ms-xl-n4{margin-inline-start:-16px!important}.ms-xl-n5{margin-inline-start:-20px!important}.ms-xl-n6{margin-inline-start:-24px!important}.ms-xl-n7{margin-inline-start:-28px!important}.ms-xl-n8{margin-inline-start:-32px!important}.ms-xl-n9{margin-inline-start:-36px!important}.ms-xl-n10{margin-inline-start:-40px!important}.ms-xl-n11{margin-inline-start:-44px!important}.ms-xl-n12{margin-inline-start:-48px!important}.ms-xl-n13{margin-inline-start:-52px!important}.ms-xl-n14{margin-inline-start:-56px!important}.ms-xl-n15{margin-inline-start:-60px!important}.ms-xl-n16{margin-inline-start:-64px!important}.me-xl-n1{margin-inline-end:-4px!important}.me-xl-n2{margin-inline-end:-8px!important}.me-xl-n3{margin-inline-end:-12px!important}.me-xl-n4{margin-inline-end:-16px!important}.me-xl-n5{margin-inline-end:-20px!important}.me-xl-n6{margin-inline-end:-24px!important}.me-xl-n7{margin-inline-end:-28px!important}.me-xl-n8{margin-inline-end:-32px!important}.me-xl-n9{margin-inline-end:-36px!important}.me-xl-n10{margin-inline-end:-40px!important}.me-xl-n11{margin-inline-end:-44px!important}.me-xl-n12{margin-inline-end:-48px!important}.me-xl-n13{margin-inline-end:-52px!important}.me-xl-n14{margin-inline-end:-56px!important}.me-xl-n15{margin-inline-end:-60px!important}.me-xl-n16{margin-inline-end:-64px!important}.pa-xl-0{padding:0!important}.pa-xl-1{padding:4px!important}.pa-xl-2{padding:8px!important}.pa-xl-3{padding:12px!important}.pa-xl-4{padding:16px!important}.pa-xl-5{padding:20px!important}.pa-xl-6{padding:24px!important}.pa-xl-7{padding:28px!important}.pa-xl-8{padding:32px!important}.pa-xl-9{padding:36px!important}.pa-xl-10{padding:40px!important}.pa-xl-11{padding:44px!important}.pa-xl-12{padding:48px!important}.pa-xl-13{padding:52px!important}.pa-xl-14{padding:56px!important}.pa-xl-15{padding:60px!important}.pa-xl-16{padding:64px!important}.px-xl-0{padding-right:0!important;padding-left:0!important}.px-xl-1{padding-right:4px!important;padding-left:4px!important}.px-xl-2{padding-right:8px!important;padding-left:8px!important}.px-xl-3{padding-right:12px!important;padding-left:12px!important}.px-xl-4{padding-right:16px!important;padding-left:16px!important}.px-xl-5{padding-right:20px!important;padding-left:20px!important}.px-xl-6{padding-right:24px!important;padding-left:24px!important}.px-xl-7{padding-right:28px!important;padding-left:28px!important}.px-xl-8{padding-right:32px!important;padding-left:32px!important}.px-xl-9{padding-right:36px!important;padding-left:36px!important}.px-xl-10{padding-right:40px!important;padding-left:40px!important}.px-xl-11{padding-right:44px!important;padding-left:44px!important}.px-xl-12{padding-right:48px!important;padding-left:48px!important}.px-xl-13{padding-right:52px!important;padding-left:52px!important}.px-xl-14{padding-right:56px!important;padding-left:56px!important}.px-xl-15{padding-right:60px!important;padding-left:60px!important}.px-xl-16{padding-right:64px!important;padding-left:64px!important}.py-xl-0{padding-top:0!important;padding-bottom:0!important}.py-xl-1{padding-top:4px!important;padding-bottom:4px!important}.py-xl-2{padding-top:8px!important;padding-bottom:8px!important}.py-xl-3{padding-top:12px!important;padding-bottom:12px!important}.py-xl-4{padding-top:16px!important;padding-bottom:16px!important}.py-xl-5{padding-top:20px!important;padding-bottom:20px!important}.py-xl-6{padding-top:24px!important;padding-bottom:24px!important}.py-xl-7{padding-top:28px!important;padding-bottom:28px!important}.py-xl-8{padding-top:32px!important;padding-bottom:32px!important}.py-xl-9{padding-top:36px!important;padding-bottom:36px!important}.py-xl-10{padding-top:40px!important;padding-bottom:40px!important}.py-xl-11{padding-top:44px!important;padding-bottom:44px!important}.py-xl-12{padding-top:48px!important;padding-bottom:48px!important}.py-xl-13{padding-top:52px!important;padding-bottom:52px!important}.py-xl-14{padding-top:56px!important;padding-bottom:56px!important}.py-xl-15{padding-top:60px!important;padding-bottom:60px!important}.py-xl-16{padding-top:64px!important;padding-bottom:64px!important}.pt-xl-0{padding-top:0!important}.pt-xl-1{padding-top:4px!important}.pt-xl-2{padding-top:8px!important}.pt-xl-3{padding-top:12px!important}.pt-xl-4{padding-top:16px!important}.pt-xl-5{padding-top:20px!important}.pt-xl-6{padding-top:24px!important}.pt-xl-7{padding-top:28px!important}.pt-xl-8{padding-top:32px!important}.pt-xl-9{padding-top:36px!important}.pt-xl-10{padding-top:40px!important}.pt-xl-11{padding-top:44px!important}.pt-xl-12{padding-top:48px!important}.pt-xl-13{padding-top:52px!important}.pt-xl-14{padding-top:56px!important}.pt-xl-15{padding-top:60px!important}.pt-xl-16{padding-top:64px!important}.pr-xl-0{padding-right:0!important}.pr-xl-1{padding-right:4px!important}.pr-xl-2{padding-right:8px!important}.pr-xl-3{padding-right:12px!important}.pr-xl-4{padding-right:16px!important}.pr-xl-5{padding-right:20px!important}.pr-xl-6{padding-right:24px!important}.pr-xl-7{padding-right:28px!important}.pr-xl-8{padding-right:32px!important}.pr-xl-9{padding-right:36px!important}.pr-xl-10{padding-right:40px!important}.pr-xl-11{padding-right:44px!important}.pr-xl-12{padding-right:48px!important}.pr-xl-13{padding-right:52px!important}.pr-xl-14{padding-right:56px!important}.pr-xl-15{padding-right:60px!important}.pr-xl-16{padding-right:64px!important}.pb-xl-0{padding-bottom:0!important}.pb-xl-1{padding-bottom:4px!important}.pb-xl-2{padding-bottom:8px!important}.pb-xl-3{padding-bottom:12px!important}.pb-xl-4{padding-bottom:16px!important}.pb-xl-5{padding-bottom:20px!important}.pb-xl-6{padding-bottom:24px!important}.pb-xl-7{padding-bottom:28px!important}.pb-xl-8{padding-bottom:32px!important}.pb-xl-9{padding-bottom:36px!important}.pb-xl-10{padding-bottom:40px!important}.pb-xl-11{padding-bottom:44px!important}.pb-xl-12{padding-bottom:48px!important}.pb-xl-13{padding-bottom:52px!important}.pb-xl-14{padding-bottom:56px!important}.pb-xl-15{padding-bottom:60px!important}.pb-xl-16{padding-bottom:64px!important}.pl-xl-0{padding-left:0!important}.pl-xl-1{padding-left:4px!important}.pl-xl-2{padding-left:8px!important}.pl-xl-3{padding-left:12px!important}.pl-xl-4{padding-left:16px!important}.pl-xl-5{padding-left:20px!important}.pl-xl-6{padding-left:24px!important}.pl-xl-7{padding-left:28px!important}.pl-xl-8{padding-left:32px!important}.pl-xl-9{padding-left:36px!important}.pl-xl-10{padding-left:40px!important}.pl-xl-11{padding-left:44px!important}.pl-xl-12{padding-left:48px!important}.pl-xl-13{padding-left:52px!important}.pl-xl-14{padding-left:56px!important}.pl-xl-15{padding-left:60px!important}.pl-xl-16{padding-left:64px!important}.ps-xl-0{padding-inline-start:0px!important}.ps-xl-1{padding-inline-start:4px!important}.ps-xl-2{padding-inline-start:8px!important}.ps-xl-3{padding-inline-start:12px!important}.ps-xl-4{padding-inline-start:16px!important}.ps-xl-5{padding-inline-start:20px!important}.ps-xl-6{padding-inline-start:24px!important}.ps-xl-7{padding-inline-start:28px!important}.ps-xl-8{padding-inline-start:32px!important}.ps-xl-9{padding-inline-start:36px!important}.ps-xl-10{padding-inline-start:40px!important}.ps-xl-11{padding-inline-start:44px!important}.ps-xl-12{padding-inline-start:48px!important}.ps-xl-13{padding-inline-start:52px!important}.ps-xl-14{padding-inline-start:56px!important}.ps-xl-15{padding-inline-start:60px!important}.ps-xl-16{padding-inline-start:64px!important}.pe-xl-0{padding-inline-end:0px!important}.pe-xl-1{padding-inline-end:4px!important}.pe-xl-2{padding-inline-end:8px!important}.pe-xl-3{padding-inline-end:12px!important}.pe-xl-4{padding-inline-end:16px!important}.pe-xl-5{padding-inline-end:20px!important}.pe-xl-6{padding-inline-end:24px!important}.pe-xl-7{padding-inline-end:28px!important}.pe-xl-8{padding-inline-end:32px!important}.pe-xl-9{padding-inline-end:36px!important}.pe-xl-10{padding-inline-end:40px!important}.pe-xl-11{padding-inline-end:44px!important}.pe-xl-12{padding-inline-end:48px!important}.pe-xl-13{padding-inline-end:52px!important}.pe-xl-14{padding-inline-end:56px!important}.pe-xl-15{padding-inline-end:60px!important}.pe-xl-16{padding-inline-end:64px!important}.text-xl-left{text-align:left!important}.text-xl-right{text-align:right!important}.text-xl-center{text-align:center!important}.text-xl-justify{text-align:justify!important}.text-xl-start{text-align:start!important}.text-xl-end{text-align:end!important}.text-xl-h1{font-size:6rem!important;font-weight:300;line-height:6rem;letter-spacing:-.015625em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-h2{font-size:3.75rem!important;font-weight:300;line-height:3.75rem;letter-spacing:-.0083333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-h3{font-size:3rem!important;font-weight:400;line-height:3.125rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-h4{font-size:2.125rem!important;font-weight:400;line-height:2.5rem;letter-spacing:.0073529412em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-h5{font-size:1.5rem!important;font-weight:400;line-height:2rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-h6{font-size:1.25rem!important;font-weight:500;line-height:2rem;letter-spacing:.0125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-subtitle-1{font-size:1rem!important;font-weight:400;line-height:1.75rem;letter-spacing:.009375em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-subtitle-2{font-size:.875rem!important;font-weight:500;line-height:1.375rem;letter-spacing:.0071428571em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-body-1{font-size:1rem!important;font-weight:400;line-height:1.5rem;letter-spacing:.03125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-body-2{font-size:.875rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0178571429em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-button{font-size:.875rem!important;font-weight:500;line-height:2.25rem;letter-spacing:.0892857143em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}.text-xl-caption{font-size:.75rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0333333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xl-overline{font-size:.75rem!important;font-weight:500;line-height:2rem;letter-spacing:.1666666667em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}}@media (min-width: 2560px){.d-xxl-none{display:none!important}.d-xxl-inline{display:inline!important}.d-xxl-inline-block{display:inline-block!important}.d-xxl-block{display:block!important}.d-xxl-table{display:table!important}.d-xxl-table-row{display:table-row!important}.d-xxl-table-cell{display:table-cell!important}.d-xxl-flex{display:flex!important}.d-xxl-inline-flex{display:inline-flex!important}.float-xxl-none{float:none!important}.float-xxl-left{float:left!important}.float-xxl-right{float:right!important}.v-locale--is-rtl .float-xxl-end{float:left!important}.v-locale--is-rtl .float-xxl-start,.v-locale--is-ltr .float-xxl-end{float:right!important}.v-locale--is-ltr .float-xxl-start{float:left!important}.flex-xxl-fill{flex:1 1 auto!important}.flex-xxl-row{flex-direction:row!important}.flex-xxl-column{flex-direction:column!important}.flex-xxl-row-reverse{flex-direction:row-reverse!important}.flex-xxl-column-reverse{flex-direction:column-reverse!important}.flex-xxl-grow-0{flex-grow:0!important}.flex-xxl-grow-1{flex-grow:1!important}.flex-xxl-shrink-0{flex-shrink:0!important}.flex-xxl-shrink-1{flex-shrink:1!important}.flex-xxl-wrap{flex-wrap:wrap!important}.flex-xxl-nowrap{flex-wrap:nowrap!important}.flex-xxl-wrap-reverse{flex-wrap:wrap-reverse!important}.justify-xxl-start{justify-content:flex-start!important}.justify-xxl-end{justify-content:flex-end!important}.justify-xxl-center{justify-content:center!important}.justify-xxl-space-between{justify-content:space-between!important}.justify-xxl-space-around{justify-content:space-around!important}.justify-xxl-space-evenly{justify-content:space-evenly!important}.align-xxl-start{align-items:flex-start!important}.align-xxl-end{align-items:flex-end!important}.align-xxl-center{align-items:center!important}.align-xxl-baseline{align-items:baseline!important}.align-xxl-stretch{align-items:stretch!important}.align-content-xxl-start{align-content:flex-start!important}.align-content-xxl-end{align-content:flex-end!important}.align-content-xxl-center{align-content:center!important}.align-content-xxl-space-between{align-content:space-between!important}.align-content-xxl-space-around{align-content:space-around!important}.align-content-xxl-space-evenly{align-content:space-evenly!important}.align-content-xxl-stretch{align-content:stretch!important}.align-self-xxl-auto{align-self:auto!important}.align-self-xxl-start{align-self:flex-start!important}.align-self-xxl-end{align-self:flex-end!important}.align-self-xxl-center{align-self:center!important}.align-self-xxl-baseline{align-self:baseline!important}.align-self-xxl-stretch{align-self:stretch!important}.order-xxl-first{order:-1!important}.order-xxl-0{order:0!important}.order-xxl-1{order:1!important}.order-xxl-2{order:2!important}.order-xxl-3{order:3!important}.order-xxl-4{order:4!important}.order-xxl-5{order:5!important}.order-xxl-6{order:6!important}.order-xxl-7{order:7!important}.order-xxl-8{order:8!important}.order-xxl-9{order:9!important}.order-xxl-10{order:10!important}.order-xxl-11{order:11!important}.order-xxl-12{order:12!important}.order-xxl-last{order:13!important}.ma-xxl-0{margin:0!important}.ma-xxl-1{margin:4px!important}.ma-xxl-2{margin:8px!important}.ma-xxl-3{margin:12px!important}.ma-xxl-4{margin:16px!important}.ma-xxl-5{margin:20px!important}.ma-xxl-6{margin:24px!important}.ma-xxl-7{margin:28px!important}.ma-xxl-8{margin:32px!important}.ma-xxl-9{margin:36px!important}.ma-xxl-10{margin:40px!important}.ma-xxl-11{margin:44px!important}.ma-xxl-12{margin:48px!important}.ma-xxl-13{margin:52px!important}.ma-xxl-14{margin:56px!important}.ma-xxl-15{margin:60px!important}.ma-xxl-16{margin:64px!important}.ma-xxl-auto{margin:auto!important}.mx-xxl-0{margin-right:0!important;margin-left:0!important}.mx-xxl-1{margin-right:4px!important;margin-left:4px!important}.mx-xxl-2{margin-right:8px!important;margin-left:8px!important}.mx-xxl-3{margin-right:12px!important;margin-left:12px!important}.mx-xxl-4{margin-right:16px!important;margin-left:16px!important}.mx-xxl-5{margin-right:20px!important;margin-left:20px!important}.mx-xxl-6{margin-right:24px!important;margin-left:24px!important}.mx-xxl-7{margin-right:28px!important;margin-left:28px!important}.mx-xxl-8{margin-right:32px!important;margin-left:32px!important}.mx-xxl-9{margin-right:36px!important;margin-left:36px!important}.mx-xxl-10{margin-right:40px!important;margin-left:40px!important}.mx-xxl-11{margin-right:44px!important;margin-left:44px!important}.mx-xxl-12{margin-right:48px!important;margin-left:48px!important}.mx-xxl-13{margin-right:52px!important;margin-left:52px!important}.mx-xxl-14{margin-right:56px!important;margin-left:56px!important}.mx-xxl-15{margin-right:60px!important;margin-left:60px!important}.mx-xxl-16{margin-right:64px!important;margin-left:64px!important}.mx-xxl-auto{margin-right:auto!important;margin-left:auto!important}.my-xxl-0{margin-top:0!important;margin-bottom:0!important}.my-xxl-1{margin-top:4px!important;margin-bottom:4px!important}.my-xxl-2{margin-top:8px!important;margin-bottom:8px!important}.my-xxl-3{margin-top:12px!important;margin-bottom:12px!important}.my-xxl-4{margin-top:16px!important;margin-bottom:16px!important}.my-xxl-5{margin-top:20px!important;margin-bottom:20px!important}.my-xxl-6{margin-top:24px!important;margin-bottom:24px!important}.my-xxl-7{margin-top:28px!important;margin-bottom:28px!important}.my-xxl-8{margin-top:32px!important;margin-bottom:32px!important}.my-xxl-9{margin-top:36px!important;margin-bottom:36px!important}.my-xxl-10{margin-top:40px!important;margin-bottom:40px!important}.my-xxl-11{margin-top:44px!important;margin-bottom:44px!important}.my-xxl-12{margin-top:48px!important;margin-bottom:48px!important}.my-xxl-13{margin-top:52px!important;margin-bottom:52px!important}.my-xxl-14{margin-top:56px!important;margin-bottom:56px!important}.my-xxl-15{margin-top:60px!important;margin-bottom:60px!important}.my-xxl-16{margin-top:64px!important;margin-bottom:64px!important}.my-xxl-auto{margin-top:auto!important;margin-bottom:auto!important}.mt-xxl-0{margin-top:0!important}.mt-xxl-1{margin-top:4px!important}.mt-xxl-2{margin-top:8px!important}.mt-xxl-3{margin-top:12px!important}.mt-xxl-4{margin-top:16px!important}.mt-xxl-5{margin-top:20px!important}.mt-xxl-6{margin-top:24px!important}.mt-xxl-7{margin-top:28px!important}.mt-xxl-8{margin-top:32px!important}.mt-xxl-9{margin-top:36px!important}.mt-xxl-10{margin-top:40px!important}.mt-xxl-11{margin-top:44px!important}.mt-xxl-12{margin-top:48px!important}.mt-xxl-13{margin-top:52px!important}.mt-xxl-14{margin-top:56px!important}.mt-xxl-15{margin-top:60px!important}.mt-xxl-16{margin-top:64px!important}.mt-xxl-auto{margin-top:auto!important}.mr-xxl-0{margin-right:0!important}.mr-xxl-1{margin-right:4px!important}.mr-xxl-2{margin-right:8px!important}.mr-xxl-3{margin-right:12px!important}.mr-xxl-4{margin-right:16px!important}.mr-xxl-5{margin-right:20px!important}.mr-xxl-6{margin-right:24px!important}.mr-xxl-7{margin-right:28px!important}.mr-xxl-8{margin-right:32px!important}.mr-xxl-9{margin-right:36px!important}.mr-xxl-10{margin-right:40px!important}.mr-xxl-11{margin-right:44px!important}.mr-xxl-12{margin-right:48px!important}.mr-xxl-13{margin-right:52px!important}.mr-xxl-14{margin-right:56px!important}.mr-xxl-15{margin-right:60px!important}.mr-xxl-16{margin-right:64px!important}.mr-xxl-auto{margin-right:auto!important}.mb-xxl-0{margin-bottom:0!important}.mb-xxl-1{margin-bottom:4px!important}.mb-xxl-2{margin-bottom:8px!important}.mb-xxl-3{margin-bottom:12px!important}.mb-xxl-4{margin-bottom:16px!important}.mb-xxl-5{margin-bottom:20px!important}.mb-xxl-6{margin-bottom:24px!important}.mb-xxl-7{margin-bottom:28px!important}.mb-xxl-8{margin-bottom:32px!important}.mb-xxl-9{margin-bottom:36px!important}.mb-xxl-10{margin-bottom:40px!important}.mb-xxl-11{margin-bottom:44px!important}.mb-xxl-12{margin-bottom:48px!important}.mb-xxl-13{margin-bottom:52px!important}.mb-xxl-14{margin-bottom:56px!important}.mb-xxl-15{margin-bottom:60px!important}.mb-xxl-16{margin-bottom:64px!important}.mb-xxl-auto{margin-bottom:auto!important}.ml-xxl-0{margin-left:0!important}.ml-xxl-1{margin-left:4px!important}.ml-xxl-2{margin-left:8px!important}.ml-xxl-3{margin-left:12px!important}.ml-xxl-4{margin-left:16px!important}.ml-xxl-5{margin-left:20px!important}.ml-xxl-6{margin-left:24px!important}.ml-xxl-7{margin-left:28px!important}.ml-xxl-8{margin-left:32px!important}.ml-xxl-9{margin-left:36px!important}.ml-xxl-10{margin-left:40px!important}.ml-xxl-11{margin-left:44px!important}.ml-xxl-12{margin-left:48px!important}.ml-xxl-13{margin-left:52px!important}.ml-xxl-14{margin-left:56px!important}.ml-xxl-15{margin-left:60px!important}.ml-xxl-16{margin-left:64px!important}.ml-xxl-auto{margin-left:auto!important}.ms-xxl-0{margin-inline-start:0px!important}.ms-xxl-1{margin-inline-start:4px!important}.ms-xxl-2{margin-inline-start:8px!important}.ms-xxl-3{margin-inline-start:12px!important}.ms-xxl-4{margin-inline-start:16px!important}.ms-xxl-5{margin-inline-start:20px!important}.ms-xxl-6{margin-inline-start:24px!important}.ms-xxl-7{margin-inline-start:28px!important}.ms-xxl-8{margin-inline-start:32px!important}.ms-xxl-9{margin-inline-start:36px!important}.ms-xxl-10{margin-inline-start:40px!important}.ms-xxl-11{margin-inline-start:44px!important}.ms-xxl-12{margin-inline-start:48px!important}.ms-xxl-13{margin-inline-start:52px!important}.ms-xxl-14{margin-inline-start:56px!important}.ms-xxl-15{margin-inline-start:60px!important}.ms-xxl-16{margin-inline-start:64px!important}.ms-xxl-auto{margin-inline-start:auto!important}.me-xxl-0{margin-inline-end:0px!important}.me-xxl-1{margin-inline-end:4px!important}.me-xxl-2{margin-inline-end:8px!important}.me-xxl-3{margin-inline-end:12px!important}.me-xxl-4{margin-inline-end:16px!important}.me-xxl-5{margin-inline-end:20px!important}.me-xxl-6{margin-inline-end:24px!important}.me-xxl-7{margin-inline-end:28px!important}.me-xxl-8{margin-inline-end:32px!important}.me-xxl-9{margin-inline-end:36px!important}.me-xxl-10{margin-inline-end:40px!important}.me-xxl-11{margin-inline-end:44px!important}.me-xxl-12{margin-inline-end:48px!important}.me-xxl-13{margin-inline-end:52px!important}.me-xxl-14{margin-inline-end:56px!important}.me-xxl-15{margin-inline-end:60px!important}.me-xxl-16{margin-inline-end:64px!important}.me-xxl-auto{margin-inline-end:auto!important}.ma-xxl-n1{margin:-4px!important}.ma-xxl-n2{margin:-8px!important}.ma-xxl-n3{margin:-12px!important}.ma-xxl-n4{margin:-16px!important}.ma-xxl-n5{margin:-20px!important}.ma-xxl-n6{margin:-24px!important}.ma-xxl-n7{margin:-28px!important}.ma-xxl-n8{margin:-32px!important}.ma-xxl-n9{margin:-36px!important}.ma-xxl-n10{margin:-40px!important}.ma-xxl-n11{margin:-44px!important}.ma-xxl-n12{margin:-48px!important}.ma-xxl-n13{margin:-52px!important}.ma-xxl-n14{margin:-56px!important}.ma-xxl-n15{margin:-60px!important}.ma-xxl-n16{margin:-64px!important}.mx-xxl-n1{margin-right:-4px!important;margin-left:-4px!important}.mx-xxl-n2{margin-right:-8px!important;margin-left:-8px!important}.mx-xxl-n3{margin-right:-12px!important;margin-left:-12px!important}.mx-xxl-n4{margin-right:-16px!important;margin-left:-16px!important}.mx-xxl-n5{margin-right:-20px!important;margin-left:-20px!important}.mx-xxl-n6{margin-right:-24px!important;margin-left:-24px!important}.mx-xxl-n7{margin-right:-28px!important;margin-left:-28px!important}.mx-xxl-n8{margin-right:-32px!important;margin-left:-32px!important}.mx-xxl-n9{margin-right:-36px!important;margin-left:-36px!important}.mx-xxl-n10{margin-right:-40px!important;margin-left:-40px!important}.mx-xxl-n11{margin-right:-44px!important;margin-left:-44px!important}.mx-xxl-n12{margin-right:-48px!important;margin-left:-48px!important}.mx-xxl-n13{margin-right:-52px!important;margin-left:-52px!important}.mx-xxl-n14{margin-right:-56px!important;margin-left:-56px!important}.mx-xxl-n15{margin-right:-60px!important;margin-left:-60px!important}.mx-xxl-n16{margin-right:-64px!important;margin-left:-64px!important}.my-xxl-n1{margin-top:-4px!important;margin-bottom:-4px!important}.my-xxl-n2{margin-top:-8px!important;margin-bottom:-8px!important}.my-xxl-n3{margin-top:-12px!important;margin-bottom:-12px!important}.my-xxl-n4{margin-top:-16px!important;margin-bottom:-16px!important}.my-xxl-n5{margin-top:-20px!important;margin-bottom:-20px!important}.my-xxl-n6{margin-top:-24px!important;margin-bottom:-24px!important}.my-xxl-n7{margin-top:-28px!important;margin-bottom:-28px!important}.my-xxl-n8{margin-top:-32px!important;margin-bottom:-32px!important}.my-xxl-n9{margin-top:-36px!important;margin-bottom:-36px!important}.my-xxl-n10{margin-top:-40px!important;margin-bottom:-40px!important}.my-xxl-n11{margin-top:-44px!important;margin-bottom:-44px!important}.my-xxl-n12{margin-top:-48px!important;margin-bottom:-48px!important}.my-xxl-n13{margin-top:-52px!important;margin-bottom:-52px!important}.my-xxl-n14{margin-top:-56px!important;margin-bottom:-56px!important}.my-xxl-n15{margin-top:-60px!important;margin-bottom:-60px!important}.my-xxl-n16{margin-top:-64px!important;margin-bottom:-64px!important}.mt-xxl-n1{margin-top:-4px!important}.mt-xxl-n2{margin-top:-8px!important}.mt-xxl-n3{margin-top:-12px!important}.mt-xxl-n4{margin-top:-16px!important}.mt-xxl-n5{margin-top:-20px!important}.mt-xxl-n6{margin-top:-24px!important}.mt-xxl-n7{margin-top:-28px!important}.mt-xxl-n8{margin-top:-32px!important}.mt-xxl-n9{margin-top:-36px!important}.mt-xxl-n10{margin-top:-40px!important}.mt-xxl-n11{margin-top:-44px!important}.mt-xxl-n12{margin-top:-48px!important}.mt-xxl-n13{margin-top:-52px!important}.mt-xxl-n14{margin-top:-56px!important}.mt-xxl-n15{margin-top:-60px!important}.mt-xxl-n16{margin-top:-64px!important}.mr-xxl-n1{margin-right:-4px!important}.mr-xxl-n2{margin-right:-8px!important}.mr-xxl-n3{margin-right:-12px!important}.mr-xxl-n4{margin-right:-16px!important}.mr-xxl-n5{margin-right:-20px!important}.mr-xxl-n6{margin-right:-24px!important}.mr-xxl-n7{margin-right:-28px!important}.mr-xxl-n8{margin-right:-32px!important}.mr-xxl-n9{margin-right:-36px!important}.mr-xxl-n10{margin-right:-40px!important}.mr-xxl-n11{margin-right:-44px!important}.mr-xxl-n12{margin-right:-48px!important}.mr-xxl-n13{margin-right:-52px!important}.mr-xxl-n14{margin-right:-56px!important}.mr-xxl-n15{margin-right:-60px!important}.mr-xxl-n16{margin-right:-64px!important}.mb-xxl-n1{margin-bottom:-4px!important}.mb-xxl-n2{margin-bottom:-8px!important}.mb-xxl-n3{margin-bottom:-12px!important}.mb-xxl-n4{margin-bottom:-16px!important}.mb-xxl-n5{margin-bottom:-20px!important}.mb-xxl-n6{margin-bottom:-24px!important}.mb-xxl-n7{margin-bottom:-28px!important}.mb-xxl-n8{margin-bottom:-32px!important}.mb-xxl-n9{margin-bottom:-36px!important}.mb-xxl-n10{margin-bottom:-40px!important}.mb-xxl-n11{margin-bottom:-44px!important}.mb-xxl-n12{margin-bottom:-48px!important}.mb-xxl-n13{margin-bottom:-52px!important}.mb-xxl-n14{margin-bottom:-56px!important}.mb-xxl-n15{margin-bottom:-60px!important}.mb-xxl-n16{margin-bottom:-64px!important}.ml-xxl-n1{margin-left:-4px!important}.ml-xxl-n2{margin-left:-8px!important}.ml-xxl-n3{margin-left:-12px!important}.ml-xxl-n4{margin-left:-16px!important}.ml-xxl-n5{margin-left:-20px!important}.ml-xxl-n6{margin-left:-24px!important}.ml-xxl-n7{margin-left:-28px!important}.ml-xxl-n8{margin-left:-32px!important}.ml-xxl-n9{margin-left:-36px!important}.ml-xxl-n10{margin-left:-40px!important}.ml-xxl-n11{margin-left:-44px!important}.ml-xxl-n12{margin-left:-48px!important}.ml-xxl-n13{margin-left:-52px!important}.ml-xxl-n14{margin-left:-56px!important}.ml-xxl-n15{margin-left:-60px!important}.ml-xxl-n16{margin-left:-64px!important}.ms-xxl-n1{margin-inline-start:-4px!important}.ms-xxl-n2{margin-inline-start:-8px!important}.ms-xxl-n3{margin-inline-start:-12px!important}.ms-xxl-n4{margin-inline-start:-16px!important}.ms-xxl-n5{margin-inline-start:-20px!important}.ms-xxl-n6{margin-inline-start:-24px!important}.ms-xxl-n7{margin-inline-start:-28px!important}.ms-xxl-n8{margin-inline-start:-32px!important}.ms-xxl-n9{margin-inline-start:-36px!important}.ms-xxl-n10{margin-inline-start:-40px!important}.ms-xxl-n11{margin-inline-start:-44px!important}.ms-xxl-n12{margin-inline-start:-48px!important}.ms-xxl-n13{margin-inline-start:-52px!important}.ms-xxl-n14{margin-inline-start:-56px!important}.ms-xxl-n15{margin-inline-start:-60px!important}.ms-xxl-n16{margin-inline-start:-64px!important}.me-xxl-n1{margin-inline-end:-4px!important}.me-xxl-n2{margin-inline-end:-8px!important}.me-xxl-n3{margin-inline-end:-12px!important}.me-xxl-n4{margin-inline-end:-16px!important}.me-xxl-n5{margin-inline-end:-20px!important}.me-xxl-n6{margin-inline-end:-24px!important}.me-xxl-n7{margin-inline-end:-28px!important}.me-xxl-n8{margin-inline-end:-32px!important}.me-xxl-n9{margin-inline-end:-36px!important}.me-xxl-n10{margin-inline-end:-40px!important}.me-xxl-n11{margin-inline-end:-44px!important}.me-xxl-n12{margin-inline-end:-48px!important}.me-xxl-n13{margin-inline-end:-52px!important}.me-xxl-n14{margin-inline-end:-56px!important}.me-xxl-n15{margin-inline-end:-60px!important}.me-xxl-n16{margin-inline-end:-64px!important}.pa-xxl-0{padding:0!important}.pa-xxl-1{padding:4px!important}.pa-xxl-2{padding:8px!important}.pa-xxl-3{padding:12px!important}.pa-xxl-4{padding:16px!important}.pa-xxl-5{padding:20px!important}.pa-xxl-6{padding:24px!important}.pa-xxl-7{padding:28px!important}.pa-xxl-8{padding:32px!important}.pa-xxl-9{padding:36px!important}.pa-xxl-10{padding:40px!important}.pa-xxl-11{padding:44px!important}.pa-xxl-12{padding:48px!important}.pa-xxl-13{padding:52px!important}.pa-xxl-14{padding:56px!important}.pa-xxl-15{padding:60px!important}.pa-xxl-16{padding:64px!important}.px-xxl-0{padding-right:0!important;padding-left:0!important}.px-xxl-1{padding-right:4px!important;padding-left:4px!important}.px-xxl-2{padding-right:8px!important;padding-left:8px!important}.px-xxl-3{padding-right:12px!important;padding-left:12px!important}.px-xxl-4{padding-right:16px!important;padding-left:16px!important}.px-xxl-5{padding-right:20px!important;padding-left:20px!important}.px-xxl-6{padding-right:24px!important;padding-left:24px!important}.px-xxl-7{padding-right:28px!important;padding-left:28px!important}.px-xxl-8{padding-right:32px!important;padding-left:32px!important}.px-xxl-9{padding-right:36px!important;padding-left:36px!important}.px-xxl-10{padding-right:40px!important;padding-left:40px!important}.px-xxl-11{padding-right:44px!important;padding-left:44px!important}.px-xxl-12{padding-right:48px!important;padding-left:48px!important}.px-xxl-13{padding-right:52px!important;padding-left:52px!important}.px-xxl-14{padding-right:56px!important;padding-left:56px!important}.px-xxl-15{padding-right:60px!important;padding-left:60px!important}.px-xxl-16{padding-right:64px!important;padding-left:64px!important}.py-xxl-0{padding-top:0!important;padding-bottom:0!important}.py-xxl-1{padding-top:4px!important;padding-bottom:4px!important}.py-xxl-2{padding-top:8px!important;padding-bottom:8px!important}.py-xxl-3{padding-top:12px!important;padding-bottom:12px!important}.py-xxl-4{padding-top:16px!important;padding-bottom:16px!important}.py-xxl-5{padding-top:20px!important;padding-bottom:20px!important}.py-xxl-6{padding-top:24px!important;padding-bottom:24px!important}.py-xxl-7{padding-top:28px!important;padding-bottom:28px!important}.py-xxl-8{padding-top:32px!important;padding-bottom:32px!important}.py-xxl-9{padding-top:36px!important;padding-bottom:36px!important}.py-xxl-10{padding-top:40px!important;padding-bottom:40px!important}.py-xxl-11{padding-top:44px!important;padding-bottom:44px!important}.py-xxl-12{padding-top:48px!important;padding-bottom:48px!important}.py-xxl-13{padding-top:52px!important;padding-bottom:52px!important}.py-xxl-14{padding-top:56px!important;padding-bottom:56px!important}.py-xxl-15{padding-top:60px!important;padding-bottom:60px!important}.py-xxl-16{padding-top:64px!important;padding-bottom:64px!important}.pt-xxl-0{padding-top:0!important}.pt-xxl-1{padding-top:4px!important}.pt-xxl-2{padding-top:8px!important}.pt-xxl-3{padding-top:12px!important}.pt-xxl-4{padding-top:16px!important}.pt-xxl-5{padding-top:20px!important}.pt-xxl-6{padding-top:24px!important}.pt-xxl-7{padding-top:28px!important}.pt-xxl-8{padding-top:32px!important}.pt-xxl-9{padding-top:36px!important}.pt-xxl-10{padding-top:40px!important}.pt-xxl-11{padding-top:44px!important}.pt-xxl-12{padding-top:48px!important}.pt-xxl-13{padding-top:52px!important}.pt-xxl-14{padding-top:56px!important}.pt-xxl-15{padding-top:60px!important}.pt-xxl-16{padding-top:64px!important}.pr-xxl-0{padding-right:0!important}.pr-xxl-1{padding-right:4px!important}.pr-xxl-2{padding-right:8px!important}.pr-xxl-3{padding-right:12px!important}.pr-xxl-4{padding-right:16px!important}.pr-xxl-5{padding-right:20px!important}.pr-xxl-6{padding-right:24px!important}.pr-xxl-7{padding-right:28px!important}.pr-xxl-8{padding-right:32px!important}.pr-xxl-9{padding-right:36px!important}.pr-xxl-10{padding-right:40px!important}.pr-xxl-11{padding-right:44px!important}.pr-xxl-12{padding-right:48px!important}.pr-xxl-13{padding-right:52px!important}.pr-xxl-14{padding-right:56px!important}.pr-xxl-15{padding-right:60px!important}.pr-xxl-16{padding-right:64px!important}.pb-xxl-0{padding-bottom:0!important}.pb-xxl-1{padding-bottom:4px!important}.pb-xxl-2{padding-bottom:8px!important}.pb-xxl-3{padding-bottom:12px!important}.pb-xxl-4{padding-bottom:16px!important}.pb-xxl-5{padding-bottom:20px!important}.pb-xxl-6{padding-bottom:24px!important}.pb-xxl-7{padding-bottom:28px!important}.pb-xxl-8{padding-bottom:32px!important}.pb-xxl-9{padding-bottom:36px!important}.pb-xxl-10{padding-bottom:40px!important}.pb-xxl-11{padding-bottom:44px!important}.pb-xxl-12{padding-bottom:48px!important}.pb-xxl-13{padding-bottom:52px!important}.pb-xxl-14{padding-bottom:56px!important}.pb-xxl-15{padding-bottom:60px!important}.pb-xxl-16{padding-bottom:64px!important}.pl-xxl-0{padding-left:0!important}.pl-xxl-1{padding-left:4px!important}.pl-xxl-2{padding-left:8px!important}.pl-xxl-3{padding-left:12px!important}.pl-xxl-4{padding-left:16px!important}.pl-xxl-5{padding-left:20px!important}.pl-xxl-6{padding-left:24px!important}.pl-xxl-7{padding-left:28px!important}.pl-xxl-8{padding-left:32px!important}.pl-xxl-9{padding-left:36px!important}.pl-xxl-10{padding-left:40px!important}.pl-xxl-11{padding-left:44px!important}.pl-xxl-12{padding-left:48px!important}.pl-xxl-13{padding-left:52px!important}.pl-xxl-14{padding-left:56px!important}.pl-xxl-15{padding-left:60px!important}.pl-xxl-16{padding-left:64px!important}.ps-xxl-0{padding-inline-start:0px!important}.ps-xxl-1{padding-inline-start:4px!important}.ps-xxl-2{padding-inline-start:8px!important}.ps-xxl-3{padding-inline-start:12px!important}.ps-xxl-4{padding-inline-start:16px!important}.ps-xxl-5{padding-inline-start:20px!important}.ps-xxl-6{padding-inline-start:24px!important}.ps-xxl-7{padding-inline-start:28px!important}.ps-xxl-8{padding-inline-start:32px!important}.ps-xxl-9{padding-inline-start:36px!important}.ps-xxl-10{padding-inline-start:40px!important}.ps-xxl-11{padding-inline-start:44px!important}.ps-xxl-12{padding-inline-start:48px!important}.ps-xxl-13{padding-inline-start:52px!important}.ps-xxl-14{padding-inline-start:56px!important}.ps-xxl-15{padding-inline-start:60px!important}.ps-xxl-16{padding-inline-start:64px!important}.pe-xxl-0{padding-inline-end:0px!important}.pe-xxl-1{padding-inline-end:4px!important}.pe-xxl-2{padding-inline-end:8px!important}.pe-xxl-3{padding-inline-end:12px!important}.pe-xxl-4{padding-inline-end:16px!important}.pe-xxl-5{padding-inline-end:20px!important}.pe-xxl-6{padding-inline-end:24px!important}.pe-xxl-7{padding-inline-end:28px!important}.pe-xxl-8{padding-inline-end:32px!important}.pe-xxl-9{padding-inline-end:36px!important}.pe-xxl-10{padding-inline-end:40px!important}.pe-xxl-11{padding-inline-end:44px!important}.pe-xxl-12{padding-inline-end:48px!important}.pe-xxl-13{padding-inline-end:52px!important}.pe-xxl-14{padding-inline-end:56px!important}.pe-xxl-15{padding-inline-end:60px!important}.pe-xxl-16{padding-inline-end:64px!important}.text-xxl-left{text-align:left!important}.text-xxl-right{text-align:right!important}.text-xxl-center{text-align:center!important}.text-xxl-justify{text-align:justify!important}.text-xxl-start{text-align:start!important}.text-xxl-end{text-align:end!important}.text-xxl-h1{font-size:6rem!important;font-weight:300;line-height:6rem;letter-spacing:-.015625em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-h2{font-size:3.75rem!important;font-weight:300;line-height:3.75rem;letter-spacing:-.0083333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-h3{font-size:3rem!important;font-weight:400;line-height:3.125rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-h4{font-size:2.125rem!important;font-weight:400;line-height:2.5rem;letter-spacing:.0073529412em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-h5{font-size:1.5rem!important;font-weight:400;line-height:2rem;letter-spacing:normal!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-h6{font-size:1.25rem!important;font-weight:500;line-height:2rem;letter-spacing:.0125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-subtitle-1{font-size:1rem!important;font-weight:400;line-height:1.75rem;letter-spacing:.009375em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-subtitle-2{font-size:.875rem!important;font-weight:500;line-height:1.375rem;letter-spacing:.0071428571em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-body-1{font-size:1rem!important;font-weight:400;line-height:1.5rem;letter-spacing:.03125em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-body-2{font-size:.875rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0178571429em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-button{font-size:.875rem!important;font-weight:500;line-height:2.25rem;letter-spacing:.0892857143em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}.text-xxl-caption{font-size:.75rem!important;font-weight:400;line-height:1.25rem;letter-spacing:.0333333333em!important;font-family:Roboto,sans-serif!important;text-transform:none!important}.text-xxl-overline{font-size:.75rem!important;font-weight:500;line-height:2rem;letter-spacing:.1666666667em!important;font-family:Roboto,sans-serif!important;text-transform:uppercase!important}}@media print{.d-print-none{display:none!important}.d-print-inline{display:inline!important}.d-print-inline-block{display:inline-block!important}.d-print-block{display:block!important}.d-print-table{display:table!important}.d-print-table-row{display:table-row!important}.d-print-table-cell{display:table-cell!important}.d-print-flex{display:flex!important}.d-print-inline-flex{display:inline-flex!important}.float-print-none{float:none!important}.float-print-left{float:left!important}.float-print-right{float:right!important}.v-locale--is-rtl .float-print-end{float:left!important}.v-locale--is-rtl .float-print-start,.v-locale--is-ltr .float-print-end{float:right!important}.v-locale--is-ltr .float-print-start{float:left!important}}.v-application{display:flex;background:rgb(var(--v-theme-background));color:rgba(var(--v-theme-on-background),var(--v-high-emphasis-opacity))}.v-application__wrap{backface-visibility:hidden;display:flex;flex-direction:column;flex:1 1 auto;max-width:100%;min-height:100vh;position:relative}.v-app-bar{display:flex}.v-app-bar.v-toolbar{background:rgb(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-app-bar.v-toolbar:not(.v-toolbar--flat){box-shadow:0 2px 4px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 4px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 10px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-app-bar:not(.v-toolbar--absolute){padding-inline-end:var(--v-scrollbar-offset)}.v-toolbar{align-items:flex-start;display:flex;flex:none;flex-direction:column;justify-content:space-between;max-width:100%;overflow:hidden;position:relative;transition:.2s cubic-bezier(.4,0,.2,1);transition-property:height,width,transform,max-width,left,right,top,bottom;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:0;background:rgb(var(--v-theme-on-surface-variant));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-toolbar--border{border-width:thin;box-shadow:none}.v-toolbar--absolute{position:absolute}.v-toolbar--collapse{max-width:112px;overflow:hidden}.v-toolbar--collapse .v-toolbar-title{display:none}.v-toolbar--collapse.v-locale--is-ltr,.v-locale--is-ltr .v-toolbar--collapse{border-bottom-right-radius:24px}.v-toolbar--collapse.v-locale--is-rtl,.v-locale--is-rtl .v-toolbar--collapse{border-bottom-left-radius:24px}.v-toolbar--flat{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-toolbar--floating{display:inline-flex}.v-toolbar--rounded{border-radius:4px}.v-toolbar__content,.v-toolbar__extension{align-items:center;display:flex;flex:0 0 auto;position:relative;transition:inherit;width:100%}.v-toolbar__content>.v-btn:first-child{margin-inline-start:10px}.v-toolbar__content>.v-btn:last-child{margin-inline-end:10px}.v-toolbar__content>.v-toolbar-title{margin-inline-start:16px}.v-toolbar--density-prominent .v-toolbar__content{align-items:flex-start}.v-toolbar__image{position:absolute;top:0;left:0;width:100%;height:100%;display:flex}.v-toolbar__prepend,.v-toolbar__append{align-items:center;display:flex}.v-toolbar__prepend{margin-inline-start:10px;margin-inline-end:auto}.v-toolbar__append{margin-inline-start:auto;margin-inline-end:10px}.v-toolbar-title{flex:1 1;min-width:0;font-size:1.25rem;font-weight:400;letter-spacing:0;line-height:1.75rem;text-transform:none}.v-toolbar--density-prominent .v-toolbar-title{align-self:flex-end;padding-bottom:6px;font-size:1.5rem;font-weight:400;letter-spacing:0;line-height:2.25rem;text-transform:none}.v-toolbar-title__placeholder{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.v-toolbar-items{display:flex;height:inherit}.v-toolbar-items>.v-btn{border-radius:0}.v-img{--v-theme-overlay-multiplier: 3;z-index:0}.v-img--booting .v-responsive__sizer{transition:none}.v-img__img,.v-img__picture,.v-img__gradient,.v-img__placeholder,.v-img__error{z-index:-1;position:absolute;top:0;left:0;width:100%;height:100%}.v-img__img--preload{filter:blur(4px)}.v-img__img--contain{object-fit:contain}.v-img__img--cover{object-fit:cover}.v-img__gradient{background-repeat:no-repeat}.v-responsive{display:flex;flex:1 0 auto;max-height:100%;max-width:100%;overflow:hidden;position:relative}.v-responsive__content{flex:1 0 0px;max-width:100%}.v-responsive__sizer~.v-responsive__content{margin-inline-start:-100%}.v-responsive__sizer{flex:1 0 0px;transition:padding-bottom .2s cubic-bezier(.4,0,.2,1);pointer-events:none}.v-btn{align-items:center;border-radius:4px;display:inline-grid;grid-template-areas:"prepend content append";grid-template-columns:max-content auto max-content;font-weight:500;justify-content:center;letter-spacing:.0892857143em;line-height:normal;max-width:100%;outline:none;position:relative;text-decoration:none;text-indent:.0892857143em;text-transform:uppercase;transition-property:box-shadow,transform,opacity,background;transition-duration:.28s;transition-timing-function:cubic-bezier(.4,0,.2,1);user-select:none;vertical-align:middle;flex-shrink:0;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0}.v-btn--size-x-small{--v-btn-size: .625rem;--v-btn-height: 20px;font-size:.625rem;min-width:36px;padding:0 8px}.v-btn--size-small{--v-btn-size: .75rem;--v-btn-height: 28px;font-size:.75rem;min-width:50px;padding:0 12px}.v-btn--size-default{--v-btn-size: .875rem;--v-btn-height: 36px;font-size:.875rem;min-width:64px;padding:0 16px}.v-btn--size-large{--v-btn-size: 1rem;--v-btn-height: 44px;font-size:1rem;min-width:78px;padding:0 20px}.v-btn--size-x-large{--v-btn-size: 1.125rem;--v-btn-height: 52px;font-size:1.125rem;min-width:92px;padding:0 24px}.v-btn.v-btn--density-default{height:calc(var(--v-btn-height) + 0px)}.v-btn.v-btn--density-comfortable{height:calc(var(--v-btn-height) + -8px)}.v-btn.v-btn--density-compact{height:calc(var(--v-btn-height) + -12px)}.v-btn--border{border-width:thin;box-shadow:none}.v-btn--absolute{position:absolute}.v-btn--fixed{position:fixed}.v-btn:hover>.v-btn__overlay{opacity:calc(.04 * var(--v-theme-overlay-multiplier))}.v-btn:focus-visible>.v-btn__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}@supports not selector(:focus-visible){.v-btn:focus>.v-btn__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}}.v-btn--active>.v-btn__overlay,.v-btn[aria-haspopup=menu][aria-expanded=true]>.v-btn__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}.v-btn--active:hover>.v-btn__overlay,.v-btn[aria-haspopup=menu][aria-expanded=true]:hover>.v-btn__overlay{opacity:calc(.16 * var(--v-theme-overlay-multiplier))}.v-btn--active:focus-visible>.v-btn__overlay,.v-btn[aria-haspopup=menu][aria-expanded=true]:focus-visible>.v-btn__overlay{opacity:calc(.24 * var(--v-theme-overlay-multiplier))}@supports not selector(:focus-visible){.v-btn--active:focus>.v-btn__overlay,.v-btn[aria-haspopup=menu][aria-expanded=true]:focus>.v-btn__overlay{opacity:calc(.24 * var(--v-theme-overlay-multiplier))}}.v-btn--variant-plain,.v-btn--variant-outlined,.v-btn--variant-text,.v-btn--variant-tonal{background:transparent;color:inherit}.v-btn--variant-plain{opacity:.62}.v-btn--variant-plain:focus,.v-btn--variant-plain:hover{opacity:1}.v-btn--variant-plain .v-btn__overlay{display:none}.v-btn--variant-elevated,.v-btn--variant-flat{background:rgb(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-btn--variant-elevated{box-shadow:0 3px 1px -2px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 2px 2px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-btn--variant-flat{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-btn--variant-outlined{border:thin solid currentColor}.v-btn--variant-text .v-btn__overlay{background:currentColor}.v-btn--variant-tonal .v-btn__underlay{background:currentColor;opacity:var(--v-activated-opacity);border-radius:inherit;position:absolute;top:0;right:0;bottom:0;left:0;pointer-events:none}@supports selector(:focus-visible){.v-btn:after{content:"";position:absolute;top:0;left:0;width:100%;height:100%;pointer-events:none;border:2px solid currentColor;border-radius:inherit;opacity:0;transition:opacity .2s ease-in-out}.v-btn:focus-visible:after{opacity:calc(.25 * var(--v-theme-overlay-multiplier))}}.v-btn--icon{border-radius:50%;min-width:0;padding:0}.v-btn--icon.v-btn--size-default{font-size:1rem}.v-btn--icon.v-btn--density-default{width:calc(var(--v-btn-height) + 12px);height:calc(var(--v-btn-height) + 12px)}.v-btn--icon.v-btn--density-comfortable{width:calc(var(--v-btn-height) + 0px);height:calc(var(--v-btn-height) + 0px)}.v-btn--icon.v-btn--density-compact{width:calc(var(--v-btn-height) + -8px);height:calc(var(--v-btn-height) + -8px)}.v-btn--elevated:hover,.v-btn--elevated:focus{box-shadow:0 2px 4px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 4px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 10px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-btn--elevated:active{box-shadow:0 5px 5px -3px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 8px 10px 1px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 3px 14px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-btn--flat{box-shadow:none}.v-btn--block{display:flex;flex:1 0 auto;min-width:100%}.v-btn--disabled{pointer-events:none;opacity:.26}.v-btn--disabled.v-btn--variant-elevated,.v-btn--disabled.v-btn--variant-flat{box-shadow:none;opacity:1;color:rgba(var(--v-theme-on-surface),.26);background:rgb(var(--v-theme-surface))}.v-btn--disabled.v-btn--variant-elevated .v-btn__overlay,.v-btn--disabled.v-btn--variant-flat .v-btn__overlay{opacity:.4615384615}.v-btn--loading{pointer-events:none}.v-btn--loading .v-btn__content,.v-btn--loading .v-btn__prepend,.v-btn--loading .v-btn__append{opacity:0}.v-btn--stacked{grid-template-areas:"prepend" "content" "append";grid-template-columns:auto;grid-template-rows:max-content max-content max-content;justify-items:center;align-content:center}.v-btn--stacked .v-btn__content{flex-direction:column;line-height:1.25}.v-btn--stacked .v-btn__prepend,.v-btn--stacked .v-btn__append,.v-btn--stacked .v-btn__content>.v-icon--start,.v-btn--stacked .v-btn__content>.v-icon--end{margin-inline-start:0;margin-inline-end:0}.v-btn--stacked .v-btn__prepend,.v-btn--stacked .v-btn__content>.v-icon--start{margin-bottom:4px}.v-btn--stacked .v-btn__append,.v-btn--stacked .v-btn__content>.v-icon--end{margin-top:4px}.v-btn--stacked.v-btn--size-x-small{--v-btn-size: .625rem;--v-btn-height: 56px;font-size:.625rem;min-width:56px;padding:0 12px}.v-btn--stacked.v-btn--size-small{--v-btn-size: .75rem;--v-btn-height: 64px;font-size:.75rem;min-width:64px;padding:0 14px}.v-btn--stacked.v-btn--size-default{--v-btn-size: .875rem;--v-btn-height: 72px;font-size:.875rem;min-width:72px;padding:0 16px}.v-btn--stacked.v-btn--size-large{--v-btn-size: 1rem;--v-btn-height: 80px;font-size:1rem;min-width:80px;padding:0 18px}.v-btn--stacked.v-btn--size-x-large{--v-btn-size: 1.125rem;--v-btn-height: 88px;font-size:1.125rem;min-width:88px;padding:0 20px}.v-btn--stacked.v-btn--density-default{height:calc(var(--v-btn-height) + 0px)}.v-btn--stacked.v-btn--density-comfortable{height:calc(var(--v-btn-height) + -16px)}.v-btn--stacked.v-btn--density-compact{height:calc(var(--v-btn-height) + -24px)}.v-btn--rounded{border-radius:24px}.v-btn .v-icon{--v-icon-size-multiplier: .8571428571}.v-btn--icon .v-icon{--v-icon-size-multiplier: 1}.v-btn--stacked .v-icon{--v-icon-size-multiplier: 1.1428571429}.v-btn__loader{align-items:center;display:flex;height:100%;justify-content:center;left:0;position:absolute;top:0;width:100%}.v-btn__content,.v-btn__prepend,.v-btn__append{align-items:center;display:flex;transition:transform,opacity .2s cubic-bezier(.4,0,.2,1)}.v-btn__prepend{grid-area:prepend;margin-inline-start:calc(var(--v-btn-height) / -9);margin-inline-end:calc(var(--v-btn-height) / 4.5)}.v-btn__append{grid-area:append;margin-inline-start:calc(var(--v-btn-height) / 4.5);margin-inline-end:calc(var(--v-btn-height) / -9)}.v-btn__content{grid-area:content;justify-content:center;white-space:nowrap}.v-btn__content>.v-icon--start{margin-inline-start:calc(var(--v-btn-height) / -9);margin-inline-end:calc(var(--v-btn-height) / 4.5)}.v-btn__content>.v-icon--end{margin-inline-start:calc(var(--v-btn-height) / 4.5);margin-inline-end:calc(var(--v-btn-height) / -9)}.v-btn--stacked .v-btn__content{white-space:normal}.v-btn__overlay{background-color:currentColor;border-radius:inherit;opacity:0;transition:opacity .2s ease-in-out}.v-btn__overlay,.v-btn__underlay{position:absolute;top:0;left:0;width:100%;height:100%;pointer-events:none}.v-app-bar .v-btn{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-card-actions .v-btn{padding:0 8px;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-card-actions .v-btn~.v-btn{margin-inline-start:.5rem}.v-banner-actions .v-btn{padding:0 8px}.v-pagination .v-btn{border-radius:4px}.v-btn__overlay{transition:none}.v-pagination__item--is-active .v-btn__overlay{opacity:var(--v-border-opacity)}.v-snackbar-actions .v-btn{padding:0 8px}.v-btn-toggle .v-btn.v-btn--selected:not(.v-btn--disabled) .v-btn__overlay{opacity:var(--v-activated-opacity)}.v-btn-group{display:inline-flex;flex-wrap:nowrap;max-width:100%;min-width:0;overflow:hidden;vertical-align:middle;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:4px;background:transparent;color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-btn-group--border{border-width:thin;box-shadow:none}.v-btn-group--density-default.v-btn-group{height:48px}.v-btn-group--density-comfortable.v-btn-group{height:40px}.v-btn-group--density-compact.v-btn-group{height:36px}.v-btn-group .v-btn{border-radius:0;border-color:inherit}.v-btn-group .v-btn:not(:last-child){border-inline-end:none}.v-btn-group .v-btn:not(:first-child){border-inline-start:none}.v-btn-group .v-btn:first-child{border-start-start-radius:inherit;border-end-start-radius:inherit}.v-btn-group .v-btn:last-child{border-start-end-radius:inherit;border-end-end-radius:inherit}.v-btn-group--divided .v-btn:not(:last-child){border-inline-end-width:thin;border-inline-end-style:solid;border-inline-end-color:rgba(var(--v-border-color),var(--v-border-opacity))}.v-btn-group--tile{border-radius:0}.v-icon{--v-icon-size-multiplier: 1;align-items:center;display:inline-flex;font-feature-settings:"liga";height:1em;justify-content:center;letter-spacing:normal;line-height:1;position:relative;text-indent:0;user-select:none;vertical-align:middle;width:1em}.v-icon--clickable{cursor:pointer}.v-icon--size-x-small{font-size:calc(var(--v-icon-size-multiplier) * 1em)}.v-icon--size-small{font-size:calc(var(--v-icon-size-multiplier) * 1.25em)}.v-icon--size-default{font-size:calc(var(--v-icon-size-multiplier) * 1.5em)}.v-icon--size-large{font-size:calc(var(--v-icon-size-multiplier) * 1.75em)}.v-icon--size-x-large{font-size:calc(var(--v-icon-size-multiplier) * 2em)}.v-icon__svg{fill:currentColor;width:100%;height:100%}.v-icon--start{margin-inline-end:8px}.v-icon--end{margin-inline-start:8px}.v-progress-circular{align-items:center;display:inline-flex;justify-content:center;position:relative;vertical-align:middle}.v-progress-circular>svg{width:100%;height:100%;margin:auto;position:absolute;top:0;bottom:0;left:0;right:0;z-index:0}.v-progress-circular__content{align-items:center;display:flex;justify-content:center}.v-progress-circular__underlay{color:rgba(var(--v-border-color),var(--v-border-opacity));stroke:currentColor;z-index:1}.v-progress-circular__overlay{stroke:currentColor;transition:all .2s ease-in-out,stroke-width 0s;z-index:2}.v-progress-circular--size-x-small{height:16px;width:16px}.v-progress-circular--size-small{height:24px;width:24px}.v-progress-circular--size-default{height:32px;width:32px}.v-progress-circular--size-large{height:48px;width:48px}.v-progress-circular--size-x-large{height:64px;width:64px}.v-progress-circular--indeterminate>svg{animation:progress-circular-rotate 1.4s linear infinite;transform-origin:center center;transition:all .2s ease-in-out}.v-progress-circular--indeterminate .v-progress-circular__overlay{animation:progress-circular-dash 1.4s ease-in-out infinite;stroke-dasharray:25,200;stroke-dashoffset:0;stroke-linecap:round}.v-progress-circular--disable-shrink>svg{animation-duration:.7s}.v-progress-circular--disable-shrink .v-progress-circular__overlay{animation:none}.v-progress-circular--indeterminate:not(.v-progress-circular--visible)>svg,.v-progress-circular--indeterminate:not(.v-progress-circular--visible) .v-progress-circular__overlay{animation-play-state:paused!important}@keyframes progress-circular-dash{0%{stroke-dasharray:1,200;stroke-dashoffset:0px}50%{stroke-dasharray:100,200;stroke-dashoffset:-15px}to{stroke-dasharray:100,200;stroke-dashoffset:-124px}}@keyframes progress-circular-rotate{to{transform:rotate(270deg)}}.v-ripple__container{color:inherit;border-radius:inherit;position:absolute;width:100%;height:100%;left:0;top:0;overflow:hidden;z-index:0;pointer-events:none;contain:strict}.v-ripple__animation{color:inherit;position:absolute;top:0;left:0;border-radius:50%;background:currentColor;opacity:0;pointer-events:none;overflow:hidden;will-change:transform,opacity}.v-ripple__animation--enter{transition:none}.v-ripple__animation--in{transition:transform .25s cubic-bezier(0,0,.2,1),opacity .1s cubic-bezier(0,0,.2,1)}.v-ripple__animation--out{transition:opacity .3s cubic-bezier(0,0,.2,1)}.v-progress-linear{background:transparent;overflow:hidden;position:relative;transition:.2s cubic-bezier(.4,0,.2,1);width:100%}.v-progress-linear__background{background:currentColor;bottom:0;left:0;opacity:var(--v-border-opacity);position:absolute;top:0;transition-property:width,left,right;transition:inherit}.v-progress-linear__content{align-items:center;display:flex;height:100%;justify-content:center;left:0;pointer-events:none;position:absolute;top:0;width:100%}.v-progress-linear__determinate,.v-progress-linear__indeterminate{background:currentColor}.v-progress-linear__determinate{height:inherit;left:0;position:absolute;transition:inherit;transition-property:width,left,right}.v-progress-linear__indeterminate .long,.v-progress-linear__indeterminate .short{animation-play-state:paused;animation-duration:2.2s;animation-iteration-count:infinite;bottom:0;height:inherit;left:0;position:absolute;right:auto;top:0;width:auto;will-change:left,right}.v-progress-linear__indeterminate .long{animation-name:indeterminate-ltr}.v-progress-linear__indeterminate .short{animation-name:indeterminate-short-ltr}.v-progress-linear__stream{animation:stream .25s infinite linear;animation-play-state:paused;bottom:0;left:auto;opacity:.3;pointer-events:none;position:absolute;transition:inherit;transition-property:width,left,right}.v-progress-linear--reverse .v-progress-linear__background,.v-progress-linear--reverse .v-progress-linear__determinate,.v-progress-linear--reverse .v-progress-linear__content,.v-progress-linear--reverse .v-progress-linear__indeterminate .long,.v-progress-linear--reverse .v-progress-linear__indeterminate .short{left:auto;right:0}.v-progress-linear--reverse .v-progress-linear__indeterminate .long{animation-name:indeterminate-rtl}.v-progress-linear--reverse .v-progress-linear__indeterminate .short{animation-name:indeterminate-short-rtl}.v-progress-linear--reverse .v-progress-linear__stream{right:auto}.v-progress-linear--absolute,.v-progress-linear--fixed{left:0;z-index:1}.v-progress-linear--absolute{position:absolute}.v-progress-linear--fixed{position:fixed}.v-progress-linear--rounded{border-radius:4px}.v-progress-linear--rounded.v-progress-linear--rounded-bar .v-progress-linear__determinate,.v-progress-linear--rounded.v-progress-linear--rounded-bar .v-progress-linear__indeterminate{border-radius:inherit}.v-progress-linear--striped .v-progress-linear__determinate{animation:progress-linear-stripes 1s infinite linear;background-image:linear-gradient(135deg,hsla(0deg,0%,100%,.25) 25%,transparent 0,transparent 50%,hsla(0deg,0%,100%,.25) 0,hsla(0deg,0%,100%,.25) 75%,transparent 0,transparent);background-repeat:repeat;background-size:var(--v-progress-linear-height)}.v-progress-linear--active .v-progress-linear__indeterminate .long,.v-progress-linear--active .v-progress-linear__indeterminate .short,.v-progress-linear--active .v-progress-linear__stream{animation-play-state:running}.v-progress-linear--rounded-bar .v-progress-linear__determinate,.v-progress-linear--rounded-bar .v-progress-linear__indeterminate,.v-progress-linear--rounded-bar .v-progress-linear__stream+.v-progress-linear__background{border-radius:4px}.v-progress-linear--rounded-bar .v-progress-linear__determinate.v-locale--is-ltr,.v-locale--is-ltr .v-progress-linear--rounded-bar .v-progress-linear__determinate{border-top-left-radius:0;border-bottom-left-radius:0}.v-progress-linear--rounded-bar .v-progress-linear__determinate.v-locale--is-rtl,.v-locale--is-rtl .v-progress-linear--rounded-bar .v-progress-linear__determinate{border-top-right-radius:0;border-bottom-right-radius:0}@keyframes indeterminate-ltr{0%{left:-90%;right:100%}60%{left:-90%;right:100%}to{left:100%;right:-35%}}@keyframes indeterminate-rtl{0%{left:100%;right:-90%}60%{left:100%;right:-90%}to{left:-35%;right:100%}}@keyframes indeterminate-short-ltr{0%{left:-200%;right:100%}60%{left:107%;right:-8%}to{left:107%;right:-8%}}@keyframes indeterminate-short-rtl{0%{left:100%;right:-200%}60%{left:-8%;right:107%}to{left:-8%;right:107%}}@keyframes stream{to{transform:translate(var(--v-progress-linear-stream-to))}}@keyframes progress-linear-stripes{0%{background-position-x:var(--v-progress-linear-height)}}.v-alert{display:grid;flex:1 1;grid-template-areas:"prepend content append close" ". content . .";grid-template-columns:max-content auto max-content max-content;position:relative;padding:16px;overflow:hidden;--v-border-color: currentColor;border-radius:4px}.v-alert--absolute{position:absolute}.v-alert--fixed{position:fixed}.v-alert--sticky{position:sticky}.v-alert--variant-plain,.v-alert--variant-outlined,.v-alert--variant-text,.v-alert--variant-tonal{background:transparent;color:inherit}.v-alert--variant-plain{opacity:.62}.v-alert--variant-plain:focus,.v-alert--variant-plain:hover{opacity:1}.v-alert--variant-plain .v-alert__overlay{display:none}.v-alert--variant-elevated,.v-alert--variant-flat{background:rgb(var(--v-theme-on-surface-variant));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-alert--variant-elevated{box-shadow:0 2px 1px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 1px 1px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 3px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-alert--variant-flat{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-alert--variant-outlined{border:thin solid currentColor}.v-alert--variant-text .v-alert__overlay{background:currentColor}.v-alert--variant-tonal .v-alert__underlay{background:currentColor;opacity:var(--v-activated-opacity);border-radius:inherit;position:absolute;top:0;right:0;bottom:0;left:0;pointer-events:none}.v-alert--prominent{grid-template-areas:"prepend content append close" "prepend content . ."}.v-alert.v-alert--border{--v-border-opacity: .38}.v-alert.v-alert--border.v-alert--border-start{padding-inline-start:24px}.v-alert.v-alert--border.v-alert--border-end{padding-inline-end:24px}.v-alert--variant-plain{transition:.2s opacity cubic-bezier(.4,0,.2,1)}.v-alert--density-default{padding-bottom:16px;padding-top:16px}.v-alert--density-default.v-alert--border-top{padding-top:24px}.v-alert--density-default.v-alert--border-bottom{padding-bottom:24px}.v-alert--density-comfortable{padding-bottom:12px;padding-top:12px}.v-alert--density-comfortable.v-alert--border-top{padding-top:20px}.v-alert--density-comfortable.v-alert--border-bottom{padding-bottom:20px}.v-alert--density-compact{padding-bottom:8px;padding-top:8px}.v-alert--density-compact.v-alert--border-top{padding-top:16px}.v-alert--density-compact.v-alert--border-bottom{padding-bottom:16px}.v-alert__border{border-radius:inherit;bottom:0;left:0;opacity:var(--v-border-opacity);position:absolute;pointer-events:none;right:0;top:0;width:100%;border-color:currentColor;border-style:solid;border-width:0}.v-alert__border--border{border-width:8px;box-shadow:none}.v-alert--border-start .v-alert__border{border-inline-start-width:8px}.v-alert--border-end .v-alert__border{border-inline-end-width:8px}.v-alert--border-top .v-alert__border{border-top-width:8px}.v-alert--border-bottom .v-alert__border{border-bottom-width:8px}.v-alert__close{flex:0 1 auto;grid-area:close}.v-alert__content{align-self:center;grid-area:content;overflow:hidden}.v-alert__append,.v-alert__close{align-self:flex-start;margin-inline-start:90px}.v-alert__append{align-self:flex-start;grid-area:append}.v-alert__append+.v-alert__close{margin-inline-start:16px}.v-alert__prepend{align-self:flex-start;display:flex;align-items:center;grid-area:prepend;margin-inline-end:16px}.v-alert--prominent .v-alert__prepend{align-self:center}.v-alert__underlay{grid-area:none;position:absolute}.v-alert--border-start .v-alert__underlay{border-top-left-radius:0;border-bottom-left-radius:0}.v-alert--border-end .v-alert__underlay{border-top-right-radius:0;border-bottom-right-radius:0}.v-alert--border-top .v-alert__underlay{border-top-left-radius:0;border-top-right-radius:0}.v-alert--border-bottom .v-alert__underlay{border-bottom-left-radius:0;border-bottom-right-radius:0}.v-alert-title{align-items:center;align-self:center;display:flex;font-size:1.25rem;font-weight:500;hyphens:auto;letter-spacing:.0125em;line-height:1.75rem;overflow-wrap:normal;text-transform:none;word-break:normal;word-wrap:break-word}.v-input--density-default{--autocomplete-chips-margin-bottom: 0px}.v-input--density-comfortable{--autocomplete-chips-margin-bottom: 2px}.v-input--density-compact{--autocomplete-chips-margin-bottom: 4px}.v-autocomplete .v-field .v-text-field__prefix,.v-autocomplete .v-field .v-text-field__suffix,.v-autocomplete .v-field .v-field__input,.v-autocomplete .v-field.v-field{cursor:text}.v-autocomplete .v-field .v-field__input>input{align-self:flex-start;flex:1 1}.v-autocomplete .v-field .v-field__append-inner>.v-icon{margin-inline-start:4px;transition:.2s cubic-bezier(.4,0,.2,1)}.v-autocomplete .v-field:not(.v-field--focused) input{min-width:0}.v-autocomplete .v-field--dirty .v-autocomplete__selection{margin-inline-end:2px}.v-autocomplete .v-field--single-line .v-autocomplete__selection-text{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.v-autocomplete__content{overflow:hidden;box-shadow:0 2px 4px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 4px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 10px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:4px}.v-autocomplete__mask{background:rgb(var(--v-theme-on-surface-variant))}.v-autocomplete__selection{display:inline-flex;letter-spacing:inherit;line-height:inherit;max-width:100%}.v-autocomplete--active-menu .v-field__append-inner>.v-icon{opacity:var(--v-high-emphasis-opacity);transform:rotate(180deg)}.v-autocomplete--chips .v-autocomplete__selection{margin-top:2px;margin-bottom:var(--autocomplete-chips-margin-bottom)}.v-autocomplete--chips .v-autocomplete__selection:first-child{margin-inline-start:0}.v-autocomplete--single.v-text-field input{flex:1 1;position:absolute;left:0;right:0;width:100%;padding-inline-start:inherit;padding-inline-end:inherit}.v-autocomplete--single .v-field--active input{transition:none}.v-autocomplete--single .v-field--dirty:not(.v-field--focused) input{opacity:0}.v-autocomplete--single .v-field--focused .v-autocomplete__selection-text{opacity:0}.v-autocomplete--selection-slot.v-text-field input{position:relative;padding-inline-start:0}.v-input--density-default{--select-chips-margin-bottom: 0px}.v-input--density-comfortable{--select-chips-margin-bottom: 2px}.v-input--density-compact{--select-chips-margin-bottom: 4px}.v-select .v-field .v-text-field__prefix,.v-select .v-field .v-text-field__suffix,.v-select .v-field .v-field__input,.v-select .v-field.v-field{cursor:pointer}.v-select .v-field .v-field__input>input{align-self:flex-start;opacity:1;flex:0 0;position:absolute;width:100%;transition:none;pointer-events:none}.v-select .v-field .v-field__append-inner>.v-icon{margin-inline-start:4px;transition:.2s cubic-bezier(.4,0,.2,1)}.v-select .v-field--dirty .v-select__selection{margin-inline-end:2px}.v-select .v-field--single-line .v-select__selection-text{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.v-select__content{overflow:hidden;box-shadow:0 2px 4px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 4px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 10px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:4px}.v-select__selection{display:inline-flex;letter-spacing:inherit;line-height:inherit;max-width:100%}.v-select--active-menu .v-field__append-inner>.v-icon{opacity:var(--v-high-emphasis-opacity);transform:rotate(180deg)}.v-select--chips .v-select__selection{margin-top:2px;margin-bottom:var(--select-chips-margin-bottom)}.v-select--chips .v-select__selection:first-child{margin-inline-start:0}.v-select--selected .v-field .v-field__input>input{opacity:0}.v-text-field input{color:inherit;opacity:0;flex:1;transition:.15s opacity cubic-bezier(.4,0,.2,1);min-width:0}.v-text-field input:focus,.v-text-field input:active{outline:none}.v-text-field input:invalid{box-shadow:none}.v-text-field .v-field{cursor:text}.v-text-field--prefixed.v-text-field .v-field__input{--v-field-padding-start: 6px}.v-text-field--suffixed.v-text-field .v-field__input{--v-field-padding-end: 0}.v-text-field .v-input__details{padding-inline-start:16px;padding-inline-end:16px}.v-text-field .v-field--no-label input,.v-text-field .v-field--active input{opacity:1}.v-text-field .v-field--single-line input{transition:none}.v-text-field__prefix,.v-text-field__suffix{align-items:center;color:rgba(var(--v-theme-on-surface),var(--v-medium-emphasis-opacity));cursor:default;display:flex;opacity:0;transition:inherit;white-space:nowrap;padding-top:calc(var(--v-field-padding-top, 4px) + var(--v-input-padding-top, 0));padding-bottom:var(--v-field-padding-bottom, 6px)}.v-field--active .v-text-field__prefix,.v-field--active .v-text-field__suffix{opacity:1}.v-field--disabled .v-text-field__prefix,.v-field--disabled .v-text-field__suffix{color:rgba(var(--v-theme-on-surface),var(--v-disabled-opacity))}.v-text-field__prefix{padding-inline-start:var(--v-field-padding-start)}.v-text-field__suffix{padding-inline-end:var(--v-field-padding-end)}.v-text-field--flush-details .v-input__details{padding:0}.v-field{display:grid;grid-template-areas:"prepend-inner field clear append-inner";grid-template-columns:min-content minmax(0,1fr) min-content min-content;font-size:16px;letter-spacing:.009375em;max-width:100%;border-radius:4px;contain:layout;flex:1 0;grid-area:control;position:relative;--v-field-padding-start: 16px;--v-field-padding-end: 16px;--v-field-padding-top: 10px;--v-field-padding-bottom: 6px}.v-field--disabled{opacity:var(--v-disabled-opacity);pointer-events:none}.v-field--prepended{padding-inline-start:12px}.v-field--appended{padding-inline-end:12px}.v-field--variant-solo{background:rgb(var(--v-theme-surface));border-color:transparent;color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity));box-shadow:0 3px 1px -2px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 2px 2px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-field--variant-filled{border-bottom-left-radius:0;border-bottom-right-radius:0}.v-input--density-default .v-field--variant-solo,.v-input--density-default .v-field--variant-filled{--v-input-control-height: 56px;--v-field-padding-bottom: 6px}.v-input--density-comfortable .v-field--variant-solo,.v-input--density-comfortable .v-field--variant-filled{--v-input-control-height: 48px;--v-field-padding-bottom: 2px}.v-input--density-compact .v-field--variant-solo,.v-input--density-compact .v-field--variant-filled{--v-input-control-height: 40px;--v-field-padding-bottom: -2px}.v-field--variant-outlined,.v-field--single-line,.v-field--no-label{--v-field-padding-top: 0px}.v-input--density-default .v-field--variant-outlined,.v-input--density-default .v-field--single-line,.v-input--density-default .v-field--no-label{--v-field-padding-bottom: 16px}.v-input--density-comfortable .v-field--variant-outlined,.v-input--density-comfortable .v-field--single-line,.v-input--density-comfortable .v-field--no-label{--v-field-padding-bottom: 12px}.v-input--density-compact .v-field--variant-outlined,.v-input--density-compact .v-field--single-line,.v-input--density-compact .v-field--no-label{--v-field-padding-bottom: 8px}.v-field--variant-plain,.v-field--variant-underlined{border-radius:0;padding:0}.v-field--variant-plain.v-field,.v-field--variant-underlined.v-field{--v-field-padding-start: 0px;--v-field-padding-end: 0px;--v-field-padding-top: 6px;--v-field-padding-bottom: 2px}.v-input--density-default .v-field--variant-plain,.v-input--density-default .v-field--variant-underlined{--v-input-control-height: 48px}.v-input--density-comfortable .v-field--variant-plain,.v-input--density-comfortable .v-field--variant-underlined{--v-input-control-height: 40px}.v-input--density-compact .v-field--variant-plain,.v-input--density-compact .v-field--variant-underlined{--v-input-control-height: 32px}.v-field.v-field--prepended{--v-field-padding-start: 6px}.v-field.v-field--appended{--v-field-padding-end: 6px}.v-field__input{color:inherit;display:flex;flex-wrap:wrap;letter-spacing:.009375em;opacity:var(--v-high-emphasis-opacity);min-height:var(--v-input-control-height, 56px);padding-inline-start:var(--v-field-padding-start);padding-inline-end:var(--v-field-padding-end);padding-top:calc(var(--v-field-padding-top, 10px) + var(--v-input-padding-top, 0));padding-bottom:var(--v-field-padding-bottom, 6px);width:100%}.v-field__input input{letter-spacing:inherit}.v-field__input input::placeholder,input.v-field__input::placeholder,textarea.v-field__input::placeholder{color:currentColor;opacity:var(--v-disabled-opacity)}.v-field__input:focus,.v-field__input:active{outline:none}.v-field__input:invalid{box-shadow:none}.v-field__field{flex:1 0;grid-area:field;position:relative;align-items:flex-start;display:flex}.v-field__prepend-inner{grid-area:prepend-inner;padding-inline-end:var(--v-field-padding-after)}.v-field__clearable{grid-area:clear}.v-field__append-inner{grid-area:append-inner;padding-inline-start:var(--v-field-padding-after)}.v-field__prepend-inner,.v-field__append-inner,.v-field__clearable{align-items:flex-start;display:flex;padding-top:var(--v-input-padding-top, 10px)}.v-field--focused .v-field__prepend-inner,.v-field--focused .v-field__append-inner{opacity:1}.v-field__prepend-inner>.v-icon,.v-field__append-inner>.v-icon,.v-field__clearable>.v-icon{opacity:var(--v-medium-emphasis-opacity)}.v-field--disabled .v-field__prepend-inner>.v-icon,.v-field--error .v-field__prepend-inner>.v-icon,.v-field--disabled .v-field__append-inner>.v-icon,.v-field--error .v-field__append-inner>.v-icon,.v-field--disabled .v-field__clearable>.v-icon,.v-field--error .v-field__clearable>.v-icon{opacity:1}.v-field--error:not(.v-field--disabled) .v-field__prepend-inner>.v-icon,.v-field--error:not(.v-field--disabled) .v-field__append-inner>.v-icon,.v-field--error:not(.v-field--disabled) .v-field__clearable>.v-icon{color:rgb(var(--v-theme-error))}.v-field__clearable{cursor:pointer;opacity:0;margin-inline-start:4px;margin-inline-end:4px;transition:.15s cubic-bezier(.4,0,.2,1);transition-property:opacity,transform,width}.v-field--focused .v-field__clearable,.v-field--persistent-clear .v-field__clearable{opacity:1}@media (hover: hover){.v-field:hover .v-field__clearable{opacity:1}}.v-label.v-field-label{contain:layout paint;margin-inline-start:var(--v-field-padding-start);margin-inline-end:var(--v-field-padding-end);max-width:calc(100% - var(--v-field-padding-start) - var(--v-field-padding-end));pointer-events:none;position:absolute;top:var(--v-input-padding-top, 10px);transform-origin:left center;transition:.15s cubic-bezier(.4,0,.2,1);transition-property:opacity,transform}.v-field--active .v-label.v-field-label{visibility:hidden}.v-field--focused .v-label.v-field-label,.v-field--error .v-label.v-field-label{opacity:1}.v-field--error:not(.v-field--disabled) .v-label.v-field-label{color:rgb(var(--v-theme-error))}.v-label.v-field-label--floating{--v-field-label-scale: .75em;font-size:var(--v-field-label-scale);visibility:hidden;max-width:100%}.v-field.v-field--active .v-label.v-field-label--floating{visibility:visible}.v-input--density-default .v-field--variant-solo .v-label.v-field-label--floating,.v-input--density-default .v-field--variant-filled .v-label.v-field-label--floating{top:7px}.v-input--density-comfortable .v-field--variant-solo .v-label.v-field-label--floating,.v-input--density-comfortable .v-field--variant-filled .v-label.v-field-label--floating{top:5px}.v-input--density-compact .v-field--variant-solo .v-label.v-field-label--floating,.v-input--density-compact .v-field--variant-filled .v-label.v-field-label--floating{top:3px}.v-field--variant-plain .v-label.v-field-label--floating,.v-field--variant-underlined .v-label.v-field-label--floating{transform:translateY(-16px);margin:0}.v-field--variant-outlined .v-label.v-field-label--floating{transform:translateY(-50%);transform-origin:center;position:static;margin:0 4px}.v-field__outline{--v-field-border-width: 1px;--v-field-border-opacity: .38;align-items:stretch;contain:layout;display:flex;height:100%;left:0;pointer-events:none;position:absolute;right:0;width:100%}@media (hover: hover){.v-field:hover .v-field__outline{--v-field-border-opacity: var(--v-high-emphasis-opacity)}}.v-field--error:not(.v-field--disabled) .v-field__outline{color:rgb(var(--v-theme-error))}.v-field.v-field--focused .v-field__outline,.v-input.v-input--error .v-field__outline{--v-field-border-opacity: 1}.v-field--variant-outlined.v-field--focused .v-field__outline{--v-field-border-width: 2px}.v-field--variant-filled .v-field__outline:before,.v-field--variant-underlined .v-field__outline:before{border-style:solid;border-width:0 0 var(--v-field-border-width);opacity:var(--v-field-border-opacity);transition:opacity .25s cubic-bezier(.4,0,.2,1);content:"";position:absolute;top:0;left:0;width:100%;height:100%}.v-field--variant-filled .v-field__outline:after,.v-field--variant-underlined .v-field__outline:after{border-color:currentColor;border-style:solid;border-width:0 0 2px;transform:scaleX(0);transition:transform .15s cubic-bezier(.4,0,.2,1);content:"";position:absolute;top:0;left:0;width:100%;height:100%}.v-field--focused.v-field--variant-filled .v-field__outline:after,.v-field--focused.v-field--variant-underlined .v-field__outline:after{transform:scaleX(1)}.v-field--variant-outlined .v-field__outline{border-radius:inherit}.v-field--variant-outlined .v-field__outline__start,.v-field--variant-outlined .v-field__outline__notch:before,.v-field--variant-outlined .v-field__outline__notch:after,.v-field--variant-outlined .v-field__outline__end{border:0 solid currentColor;opacity:var(--v-field-border-opacity);transition:opacity .25s cubic-bezier(.4,0,.2,1)}.v-field--variant-outlined .v-field__outline__start{flex:0 0 12px;border-top-width:var(--v-field-border-width);border-bottom-width:var(--v-field-border-width);border-inline-start-width:var(--v-field-border-width)}.v-field--variant-outlined .v-field__outline__start.v-locale--is-ltr,.v-locale--is-ltr .v-field--variant-outlined .v-field__outline__start{border-radius:4px 0 0 4px}.v-field--variant-outlined .v-field__outline__start.v-locale--is-rtl,.v-locale--is-rtl .v-field--variant-outlined .v-field__outline__start{border-radius:0 4px 4px 0}.v-field--variant-outlined .v-field__outline__notch{flex:none;position:relative;border-width:0 0 var(--v-field-border-width)}.v-field--variant-outlined .v-field__outline__notch:before,.v-field--variant-outlined .v-field__outline__notch:after{opacity:var(--v-field-border-opacity);transition:opacity .25s cubic-bezier(.4,0,.2,1);content:"";position:absolute;top:0;left:0;width:100%;height:100%}.v-field--variant-outlined .v-field__outline__notch:before{border-width:var(--v-field-border-width) 0 0}.v-field--variant-outlined .v-field__outline__notch:after{bottom:0;border-width:0 0 var(--v-field-border-width)}.v-field--active.v-field--variant-outlined .v-field__outline__notch:before{opacity:0}.v-field--variant-outlined .v-field__outline__end{flex:1;border-top-width:var(--v-field-border-width);border-bottom-width:var(--v-field-border-width);border-inline-end-width:var(--v-field-border-width)}.v-field--variant-outlined .v-field__outline__end.v-locale--is-ltr,.v-locale--is-ltr .v-field--variant-outlined .v-field__outline__end{border-radius:0 4px 4px 0}.v-field--variant-outlined .v-field__outline__end.v-locale--is-rtl,.v-locale--is-rtl .v-field--variant-outlined .v-field__outline__end{border-radius:4px 0 0 4px}.v-field__loader{bottom:0;left:0;position:absolute;right:0;width:100%}.v-field--variant-filled .v-field__overlay{background-color:currentColor;border-radius:inherit;opacity:.04;pointer-events:none;transition:opacity .25s cubic-bezier(.4,0,.2,1);position:absolute;top:0;left:0;width:100%;height:100%}.v-field--variant-filled.v-field--has-background .v-field__overlay{opacity:0}@media (hover: hover){.v-field--variant-filled:hover .v-field__overlay{opacity:calc(.08 * var(--v-theme-overlay-multiplier))}}.v-field--variant-filled.v-field--focused .v-field__overlay{opacity:calc(.16 * var(--v-theme-overlay-multiplier))}.v-field--reverse .v-field__input.v-locale--is-ltr,.v-locale--is-ltr .v-field--reverse .v-field__input{text-align:right}.v-field--reverse .v-field__input.v-locale--is-rtl,.v-locale--is-rtl .v-field--reverse .v-field__input{text-align:left}.v-input--disabled .v-field--variant-filled .v-field__outline:before,.v-input--disabled .v-field--variant-underlined .v-field__outline:before{border-image:repeating-linear-gradient(to right,rgba(var(--v-theme-on-surface),var(--v-disabled-opacity)) 0px,rgba(var(--v-theme-on-surface),var(--v-disabled-opacity)) 2px,transparent 2px,transparent 4px) 1 repeat}.v-field--loading .v-field__outline:after,.v-field--loading .v-field__outline:before{opacity:0}.v-label{align-items:center;display:inline-flex;font-size:1rem;letter-spacing:.009375em;min-width:0;opacity:var(--v-medium-emphasis-opacity);overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.v-label--clickable{cursor:pointer}.v-input{display:grid;flex:1 1 auto;font-size:1rem;font-weight:400;line-height:1.5}.v-input--disabled{pointer-events:none}.v-input--density-default{--v-input-control-height: 56px;--v-input-padding-top: 16px}.v-input--density-comfortable{--v-input-control-height: 48px;--v-input-padding-top: 12px}.v-input--density-compact{--v-input-control-height: 40px;--v-input-padding-top: 8px}.v-input--vertical{grid-template-areas:"append" "control" "prepend";grid-template-rows:max-content auto max-content;grid-template-columns:min-content}.v-input--vertical .v-input__prepend{margin-block-start:16px}.v-input--vertical .v-input__append{margin-block-end:16px}.v-input--horizontal{grid-template-areas:"prepend control append" "a messages b";grid-template-columns:max-content minmax(0,1fr) max-content;grid-template-rows:auto auto}.v-input--horizontal .v-input__prepend{margin-inline-end:16px}.v-input--horizontal .v-input__append{margin-inline-start:16px}.v-input__details{align-items:flex-end;display:flex;font-size:.75rem;font-weight:400;grid-area:messages;letter-spacing:.0333333333em;line-height:normal;min-height:22px;padding-top:6px;overflow:hidden;justify-content:space-between}.v-input__details>.v-icon,.v-input__prepend>.v-icon,.v-input__append>.v-icon{opacity:var(--v-medium-emphasis-opacity)}.v-input--disabled .v-input__details>.v-icon,.v-input--disabled .v-input__details .v-messages,.v-input--error .v-input__details>.v-icon,.v-input--error .v-input__details .v-messages,.v-input--disabled .v-input__prepend>.v-icon,.v-input--disabled .v-input__prepend .v-messages,.v-input--error .v-input__prepend>.v-icon,.v-input--error .v-input__prepend .v-messages,.v-input--disabled .v-input__append>.v-icon,.v-input--disabled .v-input__append .v-messages,.v-input--error .v-input__append>.v-icon,.v-input--error .v-input__append .v-messages{opacity:1}.v-input--disabled .v-input__details,.v-input--disabled .v-input__prepend,.v-input--disabled .v-input__append{opacity:var(--v-disabled-opacity)}.v-input--error:not(.v-input--disabled) .v-input__details>.v-icon,.v-input--error:not(.v-input--disabled) .v-input__details .v-messages,.v-input--error:not(.v-input--disabled) .v-input__prepend>.v-icon,.v-input--error:not(.v-input--disabled) .v-input__prepend .v-messages,.v-input--error:not(.v-input--disabled) .v-input__append>.v-icon,.v-input--error:not(.v-input--disabled) .v-input__append .v-messages{color:rgb(var(--v-theme-error))}.v-input__prepend,.v-input__append{display:flex;padding-top:var(--v-input-padding-top)}.v-input__prepend{grid-area:prepend}.v-input__append{grid-area:append}.v-input__control{display:flex;grid-area:control}.v-messages{flex:1 1 auto;font-size:12px;min-height:14px;min-width:1px;opacity:var(--v-medium-emphasis-opacity);position:relative}.v-messages__message{line-height:12px;word-break:break-word;overflow-wrap:break-word;word-wrap:break-word;hyphens:auto;transition-duration:.15s}.v-counter{color:rgba(var(--v-theme-on-surface),var(--v-medium-emphasis-opacity));flex:0 1 auto;font-size:12px;transition-duration:.15s}.v-checkbox .v-selection-control{min-height:var(--v-input-control-height)}.v-selection-control{align-items:center;contain:layout;display:flex;flex:1 0;grid-area:control;position:relative;user-select:none}.v-selection-control .v-label{white-space:normal;word-break:break-word;height:100%;width:100%}.v-selection-control--disabled{opacity:var(--v-disabled-opacity);pointer-events:none}.v-selection-control--error .v-label,.v-selection-control--disabled .v-label{opacity:1}.v-selection-control--error:not(.v-selection-control--disabled) .v-label{color:rgb(var(--v-theme-error))}.v-selection-control--inline{display:inline-flex;flex:0 0 auto;min-width:0;max-width:100%}.v-selection-control--inline .v-label{width:auto}.v-selection-control--density-default{--v-selection-control-size: 40px}.v-selection-control--density-comfortable{--v-selection-control-size: 36px}.v-selection-control--density-compact{--v-selection-control-size: 28px}.v-selection-control__wrapper{width:var(--v-selection-control-size);height:var(--v-selection-control-size);display:inline-flex;align-items:center;position:relative;justify-content:center;flex:none}.v-selection-control__input{width:var(--v-selection-control-size);height:var(--v-selection-control-size);align-items:center;display:flex;flex:none;justify-content:center;position:relative;border-radius:50%}.v-selection-control__input input{cursor:pointer;position:absolute;left:0;top:0;width:100%;height:100%;opacity:0}.v-selection-control__input:before{content:"";position:absolute;top:0;left:0;width:100%;height:100%;border-radius:100%;background-color:currentColor;opacity:0;pointer-events:none}.v-selection-control__input:hover:before{opacity:calc(.04 * var(--v-theme-overlay-multiplier))}.v-selection-control__input>.v-icon{opacity:var(--v-medium-emphasis-opacity)}.v-selection-control--disabled .v-selection-control__input>.v-icon,.v-selection-control--dirty .v-selection-control__input>.v-icon,.v-selection-control--error .v-selection-control__input>.v-icon{opacity:1}.v-selection-control--error:not(.v-selection-control--disabled) .v-selection-control__input>.v-icon{color:rgb(var(--v-theme-error))}.v-selection-control--focus-visible .v-selection-control__input:before{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}.v-selection-control-group{grid-area:control;display:flex;flex-direction:column}.v-selection-control-group--inline{flex-direction:row;flex-wrap:wrap}.v-chip{align-items:center;cursor:default;display:inline-flex;font-weight:400;max-width:100%;overflow:hidden;position:relative;text-decoration:none;white-space:nowrap;vertical-align:middle;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0;border-radius:9999px}.v-chip.v-chip--size-x-small{--v-chip-size: .625rem;--v-chip-height: 20px;font-size:.625rem;padding:0 8px}.v-chip.v-chip--size-x-small .v-avatar{--v-avatar-height: 14px}.v-chip--pill.v-chip.v-chip--size-x-small .v-avatar{--v-avatar-height: 20px}.v-chip.v-chip--size-x-small .v-chip__filter,.v-chip.v-chip--size-x-small .v-chip__prepend,.v-chip.v-chip--size-x-small>.v-avatar--start,.v-chip.v-chip--size-x-small>.v-icon--start{margin-inline-end:4px}.v-chip.v-chip--size-x-small .v-chip__filter,.v-chip.v-chip--size-x-small .v-chip__prepend,.v-chip.v-chip--size-x-small .v-icon--start{margin-inline-start:-4px}.v-chip.v-chip--size-x-small .v-avatar--start{margin-inline-start:-5.6px}.v-chip--pill.v-chip.v-chip--size-x-small .v-avatar--start{margin-inline-start:-8px}.v-chip.v-chip--size-x-small .v-chip__append,.v-chip.v-chip--size-x-small .v-chip__close,.v-chip.v-chip--size-x-small>.v-avatar--end,.v-chip.v-chip--size-x-small>.v-icon--end{margin-inline-start:4px;margin-inline-end:-4px}.v-chip--pill.v-chip.v-chip--size-x-small .v-avatar--end,.v-chip--pill.v-chip.v-chip--size-x-small .v-icon--end{margin-inline-end:-8px}.v-chip--pill.v-chip.v-chip--size-x-small .v-avatar--end+.v-chip__close,.v-chip--pill.v-chip.v-chip--size-x-small .v-icon--end+.v-chip__close{margin-inline-start:8px}.v-chip.v-chip--size-small{--v-chip-size: .75rem;--v-chip-height: 26px;font-size:.75rem;padding:0 10px}.v-chip.v-chip--size-small .v-avatar{--v-avatar-height: 20px}.v-chip--pill.v-chip.v-chip--size-small .v-avatar{--v-avatar-height: 26px}.v-chip.v-chip--size-small .v-chip__filter,.v-chip.v-chip--size-small .v-chip__prepend,.v-chip.v-chip--size-small>.v-avatar--start,.v-chip.v-chip--size-small>.v-icon--start{margin-inline-end:5px}.v-chip.v-chip--size-small .v-chip__filter,.v-chip.v-chip--size-small .v-chip__prepend,.v-chip.v-chip--size-small .v-icon--start{margin-inline-start:-5px}.v-chip.v-chip--size-small .v-avatar--start{margin-inline-start:-7px}.v-chip--pill.v-chip.v-chip--size-small .v-avatar--start{margin-inline-start:-10px}.v-chip.v-chip--size-small .v-chip__append,.v-chip.v-chip--size-small .v-chip__close,.v-chip.v-chip--size-small>.v-avatar--end,.v-chip.v-chip--size-small>.v-icon--end{margin-inline-start:5px;margin-inline-end:-5px}.v-chip--pill.v-chip.v-chip--size-small .v-avatar--end,.v-chip--pill.v-chip.v-chip--size-small .v-icon--end{margin-inline-end:-10px}.v-chip--pill.v-chip.v-chip--size-small .v-avatar--end+.v-chip__close,.v-chip--pill.v-chip.v-chip--size-small .v-icon--end+.v-chip__close{margin-inline-start:10px}.v-chip.v-chip--size-default{--v-chip-size: .875rem;--v-chip-height: 32px;font-size:.875rem;padding:0 12px}.v-chip.v-chip--size-default .v-avatar{--v-avatar-height: 26px}.v-chip--pill.v-chip.v-chip--size-default .v-avatar{--v-avatar-height: 32px}.v-chip.v-chip--size-default .v-chip__filter,.v-chip.v-chip--size-default .v-chip__prepend,.v-chip.v-chip--size-default>.v-avatar--start,.v-chip.v-chip--size-default>.v-icon--start{margin-inline-end:6px}.v-chip.v-chip--size-default .v-chip__filter,.v-chip.v-chip--size-default .v-chip__prepend,.v-chip.v-chip--size-default .v-icon--start{margin-inline-start:-6px}.v-chip.v-chip--size-default .v-avatar--start{margin-inline-start:-8.4px}.v-chip--pill.v-chip.v-chip--size-default .v-avatar--start{margin-inline-start:-12px}.v-chip.v-chip--size-default .v-chip__append,.v-chip.v-chip--size-default .v-chip__close,.v-chip.v-chip--size-default>.v-avatar--end,.v-chip.v-chip--size-default>.v-icon--end{margin-inline-start:6px;margin-inline-end:-6px}.v-chip--pill.v-chip.v-chip--size-default .v-avatar--end,.v-chip--pill.v-chip.v-chip--size-default .v-icon--end{margin-inline-end:-12px}.v-chip--pill.v-chip.v-chip--size-default .v-avatar--end+.v-chip__close,.v-chip--pill.v-chip.v-chip--size-default .v-icon--end+.v-chip__close{margin-inline-start:12px}.v-chip.v-chip--size-large{--v-chip-size: 1rem;--v-chip-height: 38px;font-size:1rem;padding:0 14px}.v-chip.v-chip--size-large .v-avatar{--v-avatar-height: 32px}.v-chip--pill.v-chip.v-chip--size-large .v-avatar{--v-avatar-height: 38px}.v-chip.v-chip--size-large .v-chip__filter,.v-chip.v-chip--size-large .v-chip__prepend,.v-chip.v-chip--size-large>.v-avatar--start,.v-chip.v-chip--size-large>.v-icon--start{margin-inline-end:7px}.v-chip.v-chip--size-large .v-chip__filter,.v-chip.v-chip--size-large .v-chip__prepend,.v-chip.v-chip--size-large .v-icon--start{margin-inline-start:-7px}.v-chip.v-chip--size-large .v-avatar--start{margin-inline-start:-9.8px}.v-chip--pill.v-chip.v-chip--size-large .v-avatar--start{margin-inline-start:-14px}.v-chip.v-chip--size-large .v-chip__append,.v-chip.v-chip--size-large .v-chip__close,.v-chip.v-chip--size-large>.v-avatar--end,.v-chip.v-chip--size-large>.v-icon--end{margin-inline-start:7px;margin-inline-end:-7px}.v-chip--pill.v-chip.v-chip--size-large .v-avatar--end,.v-chip--pill.v-chip.v-chip--size-large .v-icon--end{margin-inline-end:-14px}.v-chip--pill.v-chip.v-chip--size-large .v-avatar--end+.v-chip__close,.v-chip--pill.v-chip.v-chip--size-large .v-icon--end+.v-chip__close{margin-inline-start:14px}.v-chip.v-chip--size-x-large{--v-chip-size: 1.125rem;--v-chip-height: 44px;font-size:1.125rem;padding:0 17px}.v-chip.v-chip--size-x-large .v-avatar{--v-avatar-height: 38px}.v-chip--pill.v-chip.v-chip--size-x-large .v-avatar{--v-avatar-height: 44px}.v-chip.v-chip--size-x-large .v-chip__filter,.v-chip.v-chip--size-x-large .v-chip__prepend,.v-chip.v-chip--size-x-large>.v-avatar--start,.v-chip.v-chip--size-x-large>.v-icon--start{margin-inline-end:8.5px}.v-chip.v-chip--size-x-large .v-chip__filter,.v-chip.v-chip--size-x-large .v-chip__prepend,.v-chip.v-chip--size-x-large .v-icon--start{margin-inline-start:-8.5px}.v-chip.v-chip--size-x-large .v-avatar--start{margin-inline-start:-11.9px}.v-chip--pill.v-chip.v-chip--size-x-large .v-avatar--start{margin-inline-start:-17px}.v-chip.v-chip--size-x-large .v-chip__append,.v-chip.v-chip--size-x-large .v-chip__close,.v-chip.v-chip--size-x-large>.v-avatar--end,.v-chip.v-chip--size-x-large>.v-icon--end{margin-inline-start:8.5px;margin-inline-end:-8.5px}.v-chip--pill.v-chip.v-chip--size-x-large .v-avatar--end,.v-chip--pill.v-chip.v-chip--size-x-large .v-icon--end{margin-inline-end:-17px}.v-chip--pill.v-chip.v-chip--size-x-large .v-avatar--end+.v-chip__close,.v-chip--pill.v-chip.v-chip--size-x-large .v-icon--end+.v-chip__close{margin-inline-start:17px}.v-chip.v-chip--density-default{height:calc(var(--v-chip-height) + 0px)}.v-chip.v-chip--density-comfortable{height:calc(var(--v-chip-height) + -8px)}.v-chip.v-chip--density-compact{height:calc(var(--v-chip-height) + -12px)}.v-chip:hover>.v-chip__overlay{opacity:calc(.04 * var(--v-theme-overlay-multiplier))}.v-chip:focus-visible>.v-chip__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}@supports not selector(:focus-visible){.v-chip:focus>.v-chip__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}}.v-chip--active>.v-chip__overlay,.v-chip[aria-haspopup=menu][aria-expanded=true]>.v-chip__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}.v-chip--active:hover>.v-chip__overlay,.v-chip[aria-haspopup=menu][aria-expanded=true]:hover>.v-chip__overlay{opacity:calc(.16 * var(--v-theme-overlay-multiplier))}.v-chip--active:focus-visible>.v-chip__overlay,.v-chip[aria-haspopup=menu][aria-expanded=true]:focus-visible>.v-chip__overlay{opacity:calc(.24 * var(--v-theme-overlay-multiplier))}@supports not selector(:focus-visible){.v-chip--active:focus>.v-chip__overlay,.v-chip[aria-haspopup=menu][aria-expanded=true]:focus>.v-chip__overlay{opacity:calc(.24 * var(--v-theme-overlay-multiplier))}}.v-chip--variant-plain,.v-chip--variant-outlined,.v-chip--variant-text,.v-chip--variant-tonal{background:transparent;color:inherit}.v-chip--variant-plain{opacity:.26}.v-chip--variant-plain:focus,.v-chip--variant-plain:hover{opacity:1}.v-chip--variant-plain .v-chip__overlay{display:none}.v-chip--variant-elevated,.v-chip--variant-flat{background:rgb(var(--v-theme-surface-variant));color:rgb(var(--v-theme-on-surface-variant))}.v-chip--variant-elevated{box-shadow:0 2px 1px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 1px 1px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 3px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-chip--variant-flat{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-chip--variant-outlined{border:thin solid currentColor}.v-chip--variant-text .v-chip__overlay{background:currentColor}.v-chip--variant-tonal .v-chip__underlay{background:currentColor;opacity:var(--v-activated-opacity);border-radius:inherit;position:absolute;top:0;right:0;bottom:0;left:0;pointer-events:none}.v-chip--border{border-width:thin}.v-chip--link{cursor:pointer}.v-chip--filter{user-select:none}.v-chip__filter,.v-chip__prepend,.v-chip__append,.v-chip__close{align-items:center;display:inline-flex}.v-chip__close{cursor:pointer;flex:0 1 auto;font-size:18px;max-height:18px;max-width:18px;user-select:none}.v-chip__close .v-icon{font-size:inherit}.v-chip__filter{transition:.15s cubic-bezier(.4,0,.2,1)}.v-chip__overlay{position:absolute;top:0;left:0;width:100%;height:100%;background-color:currentColor;border-radius:inherit;pointer-events:none;opacity:0;transition:opacity .2s ease-in-out}.v-chip--disabled{opacity:.3;pointer-events:none;user-select:none}.v-chip--label{border-radius:4px}.v-avatar{flex:none;align-items:center;display:inline-flex;justify-content:center;line-height:normal;overflow:hidden;position:relative;text-align:center;transition:.2s cubic-bezier(.4,0,.2,1);transition-property:width,height;vertical-align:middle;border-radius:50%}.v-avatar.v-avatar--size-x-small{--v-avatar-height: 24px}.v-avatar.v-avatar--size-small{--v-avatar-height: 32px}.v-avatar.v-avatar--size-default{--v-avatar-height: 40px}.v-avatar.v-avatar--size-large{--v-avatar-height: 48px}.v-avatar.v-avatar--size-x-large{--v-avatar-height: 56px}.v-avatar.v-avatar--density-default{height:calc(var(--v-avatar-height) + 0px);width:calc(var(--v-avatar-height) + 0px)}.v-avatar.v-avatar--density-comfortable{height:calc(var(--v-avatar-height) + -4px);width:calc(var(--v-avatar-height) + -4px)}.v-avatar.v-avatar--density-compact{height:calc(var(--v-avatar-height) + -8px);width:calc(var(--v-avatar-height) + -8px)}.v-avatar--variant-plain,.v-avatar--variant-outlined,.v-avatar--variant-text,.v-avatar--variant-tonal{background:transparent;color:inherit}.v-avatar--variant-plain{opacity:.62}.v-avatar--variant-plain:focus,.v-avatar--variant-plain:hover{opacity:1}.v-avatar--variant-plain .v-avatar__overlay{display:none}.v-avatar--variant-elevated,.v-avatar--variant-flat{background:var(--v-theme-surface);color:rgba(var(--v-theme-on-surface),var(--v-medium-emphasis-opacity))}.v-avatar--variant-elevated{box-shadow:0 2px 1px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 1px 1px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 3px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-avatar--variant-flat{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-avatar--variant-outlined{border:thin solid currentColor}.v-avatar--variant-text .v-avatar__overlay{background:currentColor}.v-avatar--variant-tonal .v-avatar__underlay{background:currentColor;opacity:var(--v-activated-opacity);border-radius:inherit;position:absolute;top:0;right:0;bottom:0;left:0;pointer-events:none}.v-avatar--rounded{border-radius:4px}.v-avatar .v-img{height:100%;width:100%}.v-chip-group{display:flex;max-width:100%;min-width:0;overflow-x:auto;padding:4px 0}.v-chip-group .v-chip{margin:4px 8px 4px 0}.v-chip-group .v-chip.v-chip--selected:not(.v-chip--disabled) .v-chip__overlay{opacity:var(--v-activated-opacity)}.v-chip-group--column{flex-wrap:wrap;white-space:normal}.v-list{overflow:auto;padding:8px 0;position:relative;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:0;background:rgba(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-list--border{border-width:thin;box-shadow:none}.v-list--disabled{pointer-events:none;user-select:none}.v-list--nav{padding-inline-start:8px;padding-inline-end:8px}.v-navigation-drawer--rail:not(.v-navigation-drawer--is-hovering) .v-list .v-avatar{--v-avatar-height: 24px}.v-list--rounded{border-radius:4px}.v-list--subheader{padding-top:0}.v-list-img{border-radius:inherit;display:flex;height:100%;left:0;overflow:hidden;position:absolute;top:0;width:100%;z-index:-1}.v-list-subheader{align-items:center;background:inherit;color:rgba(var(--v-theme-on-surface),var(--v-medium-emphasis-opacity));display:flex;font-size:.875rem;font-weight:400;line-height:1.375rem;padding-inline-end:16px;min-height:40px;transition:.2s min-height cubic-bezier(.4,0,.2,1)}.v-list-subheader__text{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.v-list--density-default .v-list-subheader{min-height:40px;padding-inline-start:calc(16px + var(--indent-padding))!important}.v-list--density-comfortable .v-list-subheader{min-height:36px;padding-inline-start:calc(16px + var(--indent-padding))!important}.v-list--density-compact .v-list-subheader{min-height:32px;padding-inline-start:calc(16px + var(--indent-padding))!important}.v-list-subheader--inset{--indent-padding: 56px}.v-list--nav .v-list-subheader{font-size:.75rem}.v-list-subheader--sticky{background:inherit;left:0;position:sticky;top:0;z-index:1}.v-list__overlay{background-color:currentColor;border-radius:inherit;bottom:0;left:0;opacity:0;pointer-events:none;position:absolute;right:0;top:0;transition:opacity .2s ease-in-out}.v-divider{display:block;flex:1 1 100%;height:0px;max-height:0px;transition:inherit;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:thin 0 0 0}.v-divider--vertical{align-self:stretch;border-width:0 thin 0 0;display:inline-flex;height:inherit;margin-left:-1px;max-height:100%;max-width:0px;vertical-align:text-bottom;width:0px}.v-divider--inset:not(.v-divider--vertical){max-width:calc(100% - 72px);margin-inline-start:72px}.v-divider--inset.v-divider--vertical{margin-bottom:8px;margin-top:8px;max-height:calc(100% - 16px)}.v-list-item{align-items:center;display:grid;flex:none;grid-template-areas:"prepend content append";grid-template-columns:max-content auto max-content;outline:none;max-width:100%;padding:4px 16px;position:relative;text-decoration:none;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0;border-radius:0}.v-list-item--border{border-width:thin;box-shadow:none}.v-list-item:hover>.v-list-item__overlay{opacity:calc(.04 * var(--v-theme-overlay-multiplier))}.v-list-item:focus-visible>.v-list-item__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}@supports not selector(:focus-visible){.v-list-item:focus>.v-list-item__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}}.v-list-item--active>.v-list-item__overlay,.v-list-item[aria-haspopup=menu][aria-expanded=true]>.v-list-item__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}.v-list-item--active:hover>.v-list-item__overlay,.v-list-item[aria-haspopup=menu][aria-expanded=true]:hover>.v-list-item__overlay{opacity:calc(.16 * var(--v-theme-overlay-multiplier))}.v-list-item--active:focus-visible>.v-list-item__overlay,.v-list-item[aria-haspopup=menu][aria-expanded=true]:focus-visible>.v-list-item__overlay{opacity:calc(.24 * var(--v-theme-overlay-multiplier))}@supports not selector(:focus-visible){.v-list-item--active:focus>.v-list-item__overlay,.v-list-item[aria-haspopup=menu][aria-expanded=true]:focus>.v-list-item__overlay{opacity:calc(.24 * var(--v-theme-overlay-multiplier))}}.v-list-item--variant-plain,.v-list-item--variant-outlined,.v-list-item--variant-text,.v-list-item--variant-tonal{background:transparent;color:inherit}.v-list-item--variant-plain{opacity:.62}.v-list-item--variant-plain:focus,.v-list-item--variant-plain:hover{opacity:1}.v-list-item--variant-plain .v-list-item__overlay{display:none}.v-list-item--variant-elevated,.v-list-item--variant-flat{background:rgba(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-list-item--variant-elevated{box-shadow:0 2px 1px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 1px 1px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 3px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-list-item--variant-flat{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-list-item--variant-outlined{border:thin solid currentColor}.v-list-item--variant-text .v-list-item__overlay{background:currentColor}.v-list-item--variant-tonal .v-list-item__underlay{background:currentColor;opacity:var(--v-activated-opacity);border-radius:inherit;position:absolute;top:0;right:0;bottom:0;left:0;pointer-events:none}.v-list-item__prepend>.v-icon,.v-list-item__append>.v-icon{opacity:var(--v-medium-emphasis-opacity)}.v-list-item--active .v-list-item__prepend>.v-icon,.v-list-item--active .v-list-item__append>.v-icon{opacity:1}.v-list-item--rounded{border-radius:4px}.v-list-item--disabled{pointer-events:none;user-select:none;opacity:.6}.v-list-item--link{cursor:pointer}.v-list-item__prepend{align-items:center;align-self:center;display:flex;grid-area:prepend}.v-list-item__prepend>.v-avatar{margin-inline-end:16px}.v-list-item__prepend>.v-icon{margin-inline-end:32px}.v-list-item--two-line .v-list-item__prepend,.v-list-item--three-line .v-list-item__prepend{align-self:start}.v-list-item__append{align-self:center;display:flex;align-items:center;grid-area:append}.v-list-item__append>.v-avatar{margin-inline-start:16px}.v-list-item__append>.v-icon{margin-inline-start:32px}.v-list-item--two-line .v-list-item__append,.v-list-item--three-line .v-list-item__append{align-self:start}.v-list-item__content{align-self:center;grid-area:content;overflow:hidden}.v-list-item-action{align-self:center;display:flex;align-items:center;grid-area:prepend;flex:none;transition:inherit;transition-property:height,width}.v-list-item-action--start{margin-inline-end:12px}.v-list-item-action--end{margin-inline-start:12px}.v-list-item-media{margin-top:0;margin-bottom:0}.v-list-item-media--start{margin-inline-end:16px}.v-list-item-media--end{margin-inline-start:16px}.v-list-item--two-line .v-list-item-media{margin-top:-4px;margin-bottom:-4px}.v-list-item--three-line .v-list-item-media{margin-top:0;margin-bottom:0}.v-list-item-subtitle{-webkit-box-orient:vertical;display:-webkit-box;opacity:var(--v-medium-emphasis-opacity);overflow:hidden;padding:0;text-overflow:ellipsis;font-size:.875rem;font-weight:400;letter-spacing:.0178571429em;line-height:1rem;text-transform:none}.v-list-item--one-line .v-list-item-subtitle{-webkit-line-clamp:1}.v-list-item--two-line .v-list-item-subtitle{-webkit-line-clamp:2}.v-list-item--three-line .v-list-item-subtitle{-webkit-line-clamp:3}.v-list-item--nav .v-list-item-subtitle{font-size:.75rem;font-weight:400;letter-spacing:.0178571429em;line-height:1rem}.v-list-item-title{hyphens:auto;overflow-wrap:normal;overflow:hidden;padding:0;white-space:nowrap;text-overflow:ellipsis;word-break:normal;word-wrap:break-word;font-size:1rem;font-weight:400;letter-spacing:.009375em;line-height:1.5rem;text-transform:none}.v-list-item--nav .v-list-item-title{font-size:.8125rem;font-weight:500;letter-spacing:normal;line-height:1rem}.v-list-item--density-default{min-height:40px}.v-list-item--density-default.v-list-item--one-line{min-height:48px;padding-top:4px;padding-bottom:4px}.v-list-item--density-default.v-list-item--two-line{min-height:64px;padding-top:12px;padding-bottom:12px}.v-list-item--density-default.v-list-item--three-line{min-height:88px;padding-top:16px;padding-bottom:16px}.v-list-item--density-default:not(.v-list-item--nav).v-list-item--one-line{padding-inline-start:16px;padding-inline-end:16px}.v-list-item--density-default:not(.v-list-item--nav).v-list-item--two-line{padding-inline-start:16px;padding-inline-end:16px}.v-list-item--density-default:not(.v-list-item--nav).v-list-item--three-line{padding-inline-start:16px;padding-inline-end:16px}.v-list-item--density-comfortable{min-height:36px}.v-list-item--density-comfortable.v-list-item--one-line{min-height:44px;padding-top:0;padding-bottom:0}.v-list-item--density-comfortable.v-list-item--two-line{min-height:60px;padding-top:8px;padding-bottom:8px}.v-list-item--density-comfortable.v-list-item--three-line{min-height:84px;padding-top:12px;padding-bottom:12px}.v-list-item--density-comfortable:not(.v-list-item--nav).v-list-item--one-line{padding-inline-start:16px;padding-inline-end:16px}.v-list-item--density-comfortable:not(.v-list-item--nav).v-list-item--two-line{padding-inline-start:16px;padding-inline-end:16px}.v-list-item--density-comfortable:not(.v-list-item--nav).v-list-item--three-line{padding-inline-start:16px;padding-inline-end:16px}.v-list-item--density-compact{min-height:32px}.v-list-item--density-compact.v-list-item--one-line{min-height:40px;padding-top:-4px;padding-bottom:-4px}.v-list-item--density-compact.v-list-item--two-line{min-height:56px;padding-top:4px;padding-bottom:4px}.v-list-item--density-compact.v-list-item--three-line{min-height:80px;padding-top:8px;padding-bottom:8px}.v-list-item--density-compact:not(.v-list-item--nav).v-list-item--one-line{padding-inline-start:16px;padding-inline-end:16px}.v-list-item--density-compact:not(.v-list-item--nav).v-list-item--two-line{padding-inline-start:16px;padding-inline-end:16px}.v-list-item--density-compact:not(.v-list-item--nav).v-list-item--three-line{padding-inline-start:16px;padding-inline-end:16px}.v-list-item--nav{padding-inline-start:8px;padding-inline-end:8px}.v-list .v-list-item--nav:not(:last-child):not(:only-child){margin-bottom:4px}.v-list-item__underlay{position:absolute}.v-list-item__overlay{background-color:currentColor;border-radius:inherit;bottom:0;left:0;opacity:0;pointer-events:none;position:absolute;right:0;top:0;transition:opacity .2s ease-in-out}.v-list-item--active.v-list-item--variant-elevated .v-list-item__overlay{--v-theme-overlay-multiplier: 0}.v-list{--indent-padding: 0px}.v-list--nav{--indent-padding: -8px}.v-list-group{--list-indent-size: 16px;--parent-padding: var(--indent-padding);--prepend-width: 40px}.v-list-group--fluid{--list-indent-size: 0px}.v-list-group--prepend{--parent-padding: calc(var(--indent-padding) + var(--prepend-width))}.v-list-group--fluid.v-list-group--prepend{--parent-padding: var(--indent-padding)}.v-list-group__items{--indent-padding: calc(var(--parent-padding) + var(--list-indent-size))}.v-list-group__items .v-list-item{padding-inline-start:calc(16px + var(--indent-padding))!important}.v-list-group__header.v-list-item--active:not(:focus-visible) .v-list-item__overlay{opacity:0}.v-menu .v-overlay__content{display:flex;flex-direction:column;border-radius:4px}.v-menu .v-overlay__content>.v-card,.v-menu .v-overlay__content>.v-sheet,.v-menu .v-overlay__content>.v-list{background:rgb(var(--v-theme-surface));border-radius:inherit;overflow:auto;height:100%;box-shadow:0 5px 5px -3px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 8px 10px 1px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 3px 14px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-overlay-container{contain:layout;left:0;pointer-events:none;position:absolute;top:0;display:contents}.v-overlay-scroll-blocked{padding-inline-end:var(--v-scrollbar-offset);overflow-y:hidden!important}html.v-overlay-scroll-blocked{position:fixed;top:var(--v-body-scroll-y);left:var(--v-body-scroll-x);width:100%;height:100%}.v-overlay{border-radius:inherit;display:flex;left:0;pointer-events:none;position:fixed;top:0;bottom:0;right:0}.v-overlay__content{outline:none;position:absolute;pointer-events:auto;contain:layout}.v-overlay__scrim{pointer-events:auto;background:rgb(var(--v-theme-on-surface));border-radius:inherit;bottom:0;left:0;opacity:32%;position:fixed;right:0;top:0}.v-overlay--absolute,.v-overlay--contained .v-overlay__scrim{position:absolute}.v-overlay--scroll-blocked{padding-inline-end:var(--v-scrollbar-offset)}.v-badge{display:inline-block;line-height:1}.v-badge__badge{align-items:center;border-radius:10px;font-size:.75rem;font-weight:500;height:1.25rem;justify-content:center;min-width:20px;padding:4px 6px;pointer-events:auto;position:absolute;text-align:center;text-indent:0;transition:.225s cubic-bezier(.4,0,.2,1);white-space:nowrap;background:rgb(var(--v-theme-surface-variant));color:rgba(var(--v-theme-on-surface-variant),var(--v-high-emphasis-opacity))}.v-badge--bordered .v-badge__badge:after{border-radius:inherit;border-style:solid;border-width:2px;bottom:0;color:rgb(var(--v-theme-background));content:"";left:0;position:absolute;right:0;top:0;transform:scale(1.2)}.v-badge--dot .v-badge__badge{border-radius:4.5px;height:9px;min-width:0;padding:0;width:9px}.v-badge--dot .v-badge__badge:after{border-width:1.5px}.v-badge--inline .v-badge__badge{position:relative;vertical-align:middle}.v-badge__badge .v-icon{color:inherit;font-size:.75rem;margin:0 -2px}.v-badge__badge img,.v-badge__badge .v-img{height:100%;width:100%}.v-badge__wrapper{display:flex;position:relative}.v-badge--inline .v-badge__wrapper{align-items:center;display:inline-flex;justify-content:center;margin:0 4px}.v-banner{display:grid;flex:1 1;font-size:.875rem;grid-template-areas:"prepend content actions";grid-template-columns:max-content auto max-content;grid-template-rows:max-content max-content;line-height:1.375rem;overflow:hidden;padding-inline-start:16px;padding-inline-end:8px;padding-top:16px;padding-bottom:16px;position:relative;width:100%;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0 0 thin 0;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:0;background:rgb(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-banner--border{border-width:thin;box-shadow:none}.v-banner--absolute{position:absolute}.v-banner--fixed{position:fixed}.v-banner--sticky{position:sticky}.v-banner--rounded{border-radius:4px}.v-banner--stacked:not(.v-banner--one-line){grid-template-areas:"prepend content" ". actions"}.v-banner--stacked .v-banner-text{padding-inline-end:36px}.v-banner--density-default .v-banner-actions{margin-bottom:-8px}.v-banner--density-default.v-banner--one-line{padding-top:8px;padding-bottom:8px}.v-banner--density-default.v-banner--one-line .v-banner-actions{margin-bottom:0}.v-banner--density-default.v-banner--one-line{padding-top:10px}.v-banner--density-default.v-banner--two-line{padding-top:16px;padding-bottom:16px}.v-banner--density-default.v-banner--three-line{padding-top:24px;padding-bottom:16px}.v-banner--density-default:not(.v-banner--one-line) .v-banner-actions,.v-banner--density-default.v-banner--two-line .v-banner-actions,.v-banner--density-default.v-banner--three-line .v-banner-actions{margin-top:20px}.v-banner--density-comfortable .v-banner-actions{margin-bottom:-4px}.v-banner--density-comfortable.v-banner--one-line{padding-top:4px;padding-bottom:4px}.v-banner--density-comfortable.v-banner--one-line .v-banner-actions{margin-bottom:0}.v-banner--density-comfortable.v-banner--two-line{padding-top:12px;padding-bottom:12px}.v-banner--density-comfortable.v-banner--three-line{padding-top:20px;padding-bottom:12px}.v-banner--density-comfortable:not(.v-banner--one-line) .v-banner-actions,.v-banner--density-comfortable.v-banner--two-line .v-banner-actions,.v-banner--density-comfortable.v-banner--three-line .v-banner-actions{margin-top:16px}.v-banner--density-compact .v-banner-actions{margin-bottom:0}.v-banner--density-compact.v-banner--one-line{padding-top:0;padding-bottom:0}.v-banner--density-compact.v-banner--one-line .v-banner-actions{margin-bottom:0}.v-banner--density-compact.v-banner--two-line{padding-top:8px;padding-bottom:8px}.v-banner--density-compact.v-banner--three-line{padding-top:16px;padding-bottom:8px}.v-banner--density-compact:not(.v-banner--one-line) .v-banner-actions,.v-banner--density-compact.v-banner--two-line .v-banner-actions,.v-banner--density-compact.v-banner--three-line .v-banner-actions{margin-top:12px}.v-banner--sticky{top:0}.v-banner__content{grid-area:content}.v-banner__prepend{align-self:flex-start;grid-area:prepend;margin-inline-end:24px}.v-banner-actions{align-self:flex-end;display:flex;flex:0 1;grid-area:actions;justify-content:flex-end}.v-banner--two-line .v-banner-actions,.v-banner--three-line .v-banner-actions{margin-top:20px}.v-banner-text{-webkit-box-orient:vertical;display:-webkit-box;padding-inline-end:90px;overflow:hidden}.v-banner--one-line .v-banner-text{-webkit-line-clamp:1}.v-banner--two-line .v-banner-text{-webkit-line-clamp:2}.v-banner--three-line .v-banner-text{-webkit-line-clamp:3}.v-banner--two-line .v-banner-text,.v-banner--three-line .v-banner-text{align-self:flex-start}.v-bottom-navigation{display:flex;max-width:100%;overflow:hidden;position:absolute;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0;border-radius:0;background:rgb(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-bottom-navigation--border{border-width:thin;box-shadow:none}.v-bottom-navigation--active{box-shadow:0 2px 4px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 4px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 10px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-bottom-navigation__content{display:flex;flex:none;font-size:.75rem;justify-content:center;transition:transform,color .2s,.1s cubic-bezier(.4,0,.2,1);width:100%}.v-bottom-navigation .v-bottom-navigation__content>.v-btn{font-size:inherit;height:100%;max-width:168px;min-width:80px;text-transform:none;transition:inherit;width:auto;border-radius:0}.v-bottom-navigation .v-bottom-navigation__content>.v-btn .v-btn__content,.v-bottom-navigation .v-bottom-navigation__content>.v-btn .v-btn__icon{transition:inherit}.v-bottom-navigation .v-bottom-navigation__content>.v-btn .v-btn__icon{font-size:1.5rem}.v-bottom-navigation--grow .v-bottom-navigation__content>.v-btn{flex-grow:1}.v-bottom-navigation--shift .v-bottom-navigation__content .v-btn:not(.v-btn--selected) .v-btn__content>span{opacity:0}.v-bottom-navigation--shift .v-bottom-navigation__content .v-btn:not(.v-btn--selected) .v-btn__content{transform:translateY(.5rem)}.v-breadcrumbs{display:flex;align-items:center;line-height:1.375rem;padding:16px 12px}.v-breadcrumbs--rounded{border-radius:4px}.v-breadcrumbs--density-default{padding-top:16px;padding-bottom:16px}.v-breadcrumbs--density-comfortable{padding-top:12px;padding-bottom:12px}.v-breadcrumbs--density-compact{padding-top:8px;padding-bottom:8px}.v-breadcrumbs__prepend{align-items:center;display:inline-flex}.v-breadcrumbs-item{align-items:center;color:inherit;display:inline-flex;padding:0 4px;text-decoration:none;vertical-align:middle}.v-breadcrumbs-item--disabled{opacity:var(--v-disabled-opacity);pointer-events:none}.v-breadcrumbs-item--link:hover{text-decoration:underline}.v-breadcrumbs-item .v-icon{font-size:1rem;margin-inline-start:-4px;margin-inline-end:2px}.v-breadcrumbs-divider{display:inline-block;padding:0 8px;vertical-align:middle}.v-card{display:block;overflow:hidden;overflow-wrap:break-word;position:relative;padding:0;text-decoration:none;transition-duration:.28s;transition-property:box-shadow,opacity,background;transition-timing-function:cubic-bezier(.4,0,.2,1);z-index:0;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0;border-radius:4px}.v-card--border{border-width:thin;box-shadow:none}.v-card--absolute{position:absolute}.v-card--fixed{position:fixed}.v-card:hover>.v-card__overlay{opacity:calc(.04 * var(--v-theme-overlay-multiplier))}.v-card:focus-visible>.v-card__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}@supports not selector(:focus-visible){.v-card:focus>.v-card__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}}.v-card--active>.v-card__overlay,.v-card[aria-haspopup=menu][aria-expanded=true]>.v-card__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}.v-card--active:hover>.v-card__overlay,.v-card[aria-haspopup=menu][aria-expanded=true]:hover>.v-card__overlay{opacity:calc(.16 * var(--v-theme-overlay-multiplier))}.v-card--active:focus-visible>.v-card__overlay,.v-card[aria-haspopup=menu][aria-expanded=true]:focus-visible>.v-card__overlay{opacity:calc(.24 * var(--v-theme-overlay-multiplier))}@supports not selector(:focus-visible){.v-card--active:focus>.v-card__overlay,.v-card[aria-haspopup=menu][aria-expanded=true]:focus>.v-card__overlay{opacity:calc(.24 * var(--v-theme-overlay-multiplier))}}.v-card--variant-plain,.v-card--variant-outlined,.v-card--variant-text,.v-card--variant-tonal{background:transparent;color:inherit}.v-card--variant-plain{opacity:.62}.v-card--variant-plain:focus,.v-card--variant-plain:hover{opacity:1}.v-card--variant-plain .v-card__overlay{display:none}.v-card--variant-elevated,.v-card--variant-flat{background:rgb(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-card--variant-elevated{box-shadow:0 2px 1px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 1px 1px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 3px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-card--variant-flat{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-card--variant-outlined{border:thin solid currentColor}.v-card--variant-text .v-card__overlay{background:currentColor}.v-card--variant-tonal .v-card__underlay{background:currentColor;opacity:var(--v-activated-opacity);border-radius:inherit;position:absolute;top:0;right:0;bottom:0;left:0;pointer-events:none}.v-card--disabled{pointer-events:none;user-select:none}.v-card--disabled>:not(.v-card__loader){opacity:.6}.v-card--flat{box-shadow:none}.v-card--hover{cursor:pointer;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-card--hover:before,.v-card--hover:after{border-radius:inherit;bottom:0;content:"";display:block;left:0;pointer-events:none;position:absolute;right:0;top:0;transition:inherit}.v-card--hover:before{opacity:1;z-index:-1;box-shadow:0 2px 1px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 1px 1px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 3px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-card--hover:after{z-index:1;opacity:0;box-shadow:0 5px 5px -3px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 8px 10px 1px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 3px 14px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-card--hover:hover:after{opacity:1}.v-card--hover:hover:before{opacity:0}.v-card--link{cursor:pointer}.v-card-actions{align-items:center;display:flex;flex:none;min-height:52px;padding:.5rem}.v-card-item{align-items:center;display:grid;flex:none;grid-template-areas:"prepend content append";grid-template-columns:max-content auto max-content;padding:.625rem 1rem}.v-card-item+.v-card-text{padding-top:0}.v-card-item__prepend{grid-area:prepend;padding-inline-end:1rem}.v-card-item__append{grid-area:append;padding-inline-start:1rem}.v-card-item__content{align-self:center;grid-area:content;overflow:hidden}.v-card-title{display:block;flex:none;font-size:1.25rem;font-weight:500;hyphens:auto;letter-spacing:.0125em;min-width:0;overflow-wrap:normal;overflow:hidden;padding:.5rem 1rem;text-overflow:ellipsis;text-transform:none;white-space:nowrap;word-break:normal;word-wrap:break-word}.v-card .v-card-title{line-height:2rem}.v-card--density-comfortable .v-card-title{line-height:1.75rem}.v-card--density-compact .v-card-title{line-height:1.55rem}.v-card-item .v-card-title{padding:0}.v-card-title+.v-card-text,.v-card-title+.v-card-actions{padding-top:0}.v-card-subtitle{display:block;flex:none;font-size:.875rem;font-weight:400;letter-spacing:.0178571429em;opacity:var(--v-medium-emphasis-opacity);overflow:hidden;padding:0 1rem;text-overflow:ellipsis;text-transform:none;white-space:nowrap}.v-card .v-card-subtitle{line-height:1.25rem}.v-card--density-comfortable .v-card-subtitle{line-height:1.125rem}.v-card--density-compact .v-card-subtitle{line-height:1rem}.v-card-item .v-card-subtitle{padding:0 0 .25rem}.v-card-text{flex:1 1 auto;font-size:.875rem;font-weight:400;letter-spacing:.0178571429em;padding:1rem;text-transform:none}.v-card .v-card-text{line-height:1.25rem}.v-card--density-comfortable .v-card-text{line-height:1.2rem}.v-card--density-compact .v-card-text{line-height:1.15rem}.v-card__image{display:flex;height:100%;flex:1 1 auto;left:0;overflow:hidden;position:absolute;top:0;width:100%;z-index:-1}.v-card__content{border-radius:inherit;overflow:hidden;position:relative}.v-card__loader{bottom:auto;top:0;left:0;position:absolute;right:0;width:100%;z-index:1}.v-card__overlay{background-color:currentColor;border-radius:inherit;position:absolute;top:0;right:0;bottom:0;left:0;pointer-events:none;opacity:0;transition:opacity .2s ease-in-out}.v-carousel{overflow:hidden;position:relative;width:100%}.v-carousel__controls{align-items:center;background:rgba(var(--v-theme-surface-variant),.3);bottom:0;display:flex;height:50px;justify-content:center;list-style-type:none;position:absolute;width:100%;z-index:1}.v-carousel__controls>.v-item-group{flex:0 1 auto}.v-carousel__controls__item{margin:0 8px}.v-carousel__controls__item .v-icon{opacity:.5}.v-carousel__controls__item--active .v-icon{opacity:1;vertical-align:middle}.v-carousel__controls__item:hover{background:none}.v-carousel__controls__item:hover .v-icon{opacity:.8}.v-carousel__progress{margin:0;position:absolute;bottom:0;left:0;right:0}.v-carousel-item{display:block;height:inherit;text-decoration:none}.v-carousel-item>.v-img{height:inherit}.v-carousel--hide-delimiter-background .v-carousel__controls{background:transparent}.v-carousel--vertical-delimiters .v-carousel__controls{flex-direction:column;height:100%!important;width:50px}.v-window{overflow:hidden}.v-window__container{display:flex;flex-direction:column;height:inherit;position:relative;transition:.3s cubic-bezier(.25,.8,.5,1)}.v-window__controls{position:absolute;left:0;top:0;width:100%;height:100%;display:flex;align-items:center;justify-content:space-between;padding:0 16px;pointer-events:none}.v-window__controls *{pointer-events:auto}.v-window--show-arrows-on-hover{overflow:hidden}.v-window--show-arrows-on-hover .v-window__left{transform:translate(-200%)}.v-window--show-arrows-on-hover .v-window__right{transform:translate(200%)}.v-window--show-arrows-on-hover:hover .v-window__left,.v-window--show-arrows-on-hover:hover .v-window__right{transform:translate(0)}.v-window-x-transition-enter-active,.v-window-x-transition-leave-active,.v-window-x-reverse-transition-enter-active,.v-window-x-reverse-transition-leave-active,.v-window-y-transition-enter-active,.v-window-y-transition-leave-active,.v-window-y-reverse-transition-enter-active,.v-window-y-reverse-transition-leave-active{transition:.3s cubic-bezier(.25,.8,.5,1)}.v-window-x-transition-leave-from,.v-window-x-transition-leave-to,.v-window-x-reverse-transition-leave-from,.v-window-x-reverse-transition-leave-to,.v-window-y-transition-leave-from,.v-window-y-transition-leave-to,.v-window-y-reverse-transition-leave-from,.v-window-y-reverse-transition-leave-to{position:absolute!important;top:0;width:100%}.v-window-x-transition-enter-from{transform:translate(100%)}.v-window-x-transition-leave-to,.v-window-x-reverse-transition-enter-from{transform:translate(-100%)}.v-window-x-reverse-transition-leave-to{transform:translate(100%)}.v-window-y-transition-enter-from{transform:translateY(100%)}.v-window-y-transition-leave-to,.v-window-y-reverse-transition-enter-from{transform:translateY(-100%)}.v-window-y-reverse-transition-leave-to{transform:translateY(100%)}.v-code{background-color:rgb(var(--v-theme-code));color:rgb(var(--v-theme-on-code));border-radius:4px;line-height:1.8;font-size:.9em;font-weight:400;padding:.2em .4em}.v-color-picker{align-self:flex-start;contain:content}.v-color-picker.v-sheet{box-shadow:0 3px 1px -2px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 2px 2px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:4px}.v-color-picker__controls{display:flex;flex-direction:column;padding:16px}.v-color-picker--flat{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-color-picker--flat .v-color-picker__track:not(.v-input--is-disabled) .v-slider__thumb{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-color-picker-canvas{position:relative;overflow:hidden;contain:strict}.v-color-picker-canvas__dot{position:absolute;top:0;left:0;width:15px;height:15px;background:transparent;border-radius:50%;box-shadow:0 0 0 1.5px #fff,inset 0 0 1px 1.5px #0000004d}.v-color-picker-canvas__dot--disabled{box-shadow:0 0 0 1.5px #ffffffb3,inset 0 0 1px 1.5px #0000004d}.v-color-picker-canvas:hover .v-color-picker-canvas__dot{will-change:transform}.v-color-picker-edit{display:flex}.v-color-picker-edit__input{width:100%;display:flex;flex-wrap:wrap;justify-content:center;text-align:center}.v-color-picker-edit__input:not(:last-child).v-locale--is-ltr,.v-locale--is-ltr .v-color-picker-edit__input:not(:last-child){margin-right:8px}.v-color-picker-edit__input:not(:last-child).v-locale--is-rtl,.v-locale--is-rtl .v-color-picker-edit__input:not(:last-child){margin-left:8px}.v-color-picker-edit__input input{border-radius:4px;margin-bottom:8px;min-width:0;outline:none;text-align:center;width:100%;height:32px;background:rgba(var(--v-theme-surface-variant),.2);color:rgba(var(--v-theme-on-surface))}.v-color-picker-edit__input span{font-size:.75rem}.v-color-picker-preview__alpha .v-slider-track__background{background-color:transparent!important}.v-color-picker-preview__alpha .v-slider-track__background.v-locale--is-ltr,.v-locale--is-ltr .v-color-picker-preview__alpha .v-slider-track__background{background-image:linear-gradient(to right,transparent,var(--v-color-picker-color-hsv))}.v-color-picker-preview__alpha .v-slider-track__background.v-locale--is-rtl,.v-locale--is-rtl .v-color-picker-preview__alpha .v-slider-track__background{background-image:linear-gradient(to left,transparent,var(--v-color-picker-color-hsv))}.v-color-picker-preview__alpha .v-slider-track__background:after{content:"";z-index:-1;left:0;top:0;width:100%;height:100%;position:absolute;background:url() repeat;border-radius:inherit}.v-color-picker-preview__sliders{display:flex;flex:1 0 auto;flex-direction:column}.v-color-picker-preview__dot{position:relative;height:30px;width:30px;background:url() repeat;border-radius:50%;overflow:hidden}.v-color-picker-preview__dot.v-locale--is-ltr,.v-locale--is-ltr .v-color-picker-preview__dot{margin-right:24px}.v-color-picker-preview__dot.v-locale--is-rtl,.v-locale--is-rtl .v-color-picker-preview__dot{margin-left:24px}.v-color-picker-preview__dot>div{width:100%;height:100%}.v-color-picker-preview__hue:not(.v-input--is-disabled) .v-slider-track__background.v-locale--is-ltr,.v-locale--is-ltr .v-color-picker-preview__hue:not(.v-input--is-disabled) .v-slider-track__background{background:linear-gradient(to right,#F00 0%,#FF0 16.66%,#0F0 33.33%,#0FF 50%,#00F 66.66%,#F0F 83.33%,#F00 100%)}.v-color-picker-preview__hue:not(.v-input--is-disabled) .v-slider-track__background.v-locale--is-rtl,.v-locale--is-rtl .v-color-picker-preview__hue:not(.v-input--is-disabled) .v-slider-track__background{background:linear-gradient(to left,#F00 0%,#FF0 16.66%,#0F0 33.33%,#0FF 50%,#00F 66.66%,#F0F 83.33%,#F00 100%)}.v-color-picker-preview__track{position:relative;width:100%;margin:0!important}.v-color-picker-preview__track .v-slider-track__fill{display:none}.v-color-picker-preview{align-items:center;display:flex;margin-bottom:24px}.v-slider .v-slider__container input{cursor:default;padding:0;width:100%;display:none}.v-slider .v-input__append,.v-slider .v-input__prepend{padding:0}.v-slider__container{position:relative;min-height:inherit;width:100%;height:100%;display:flex;justify-content:center;align-items:center;cursor:pointer}.v-input--disabled .v-slider__container{opacity:var(--v-disabled-opacity)}.v-input--error:not(.v-input--disabled) .v-slider__container{color:rgb(var(--v-theme-error))}.v-slider.v-input--horizontal{align-items:center;margin-inline-start:8px;margin-inline-end:8px}.v-slider.v-input--horizontal .v-input__control{min-height:32px;display:flex;align-items:center}.v-slider.v-input--vertical{justify-content:center;margin-top:12px;margin-bottom:12px}.v-slider.v-input--vertical .v-input__control{min-height:300px}.v-slider.v-input--disabled{pointer-events:none}.v-slider--has-labels .v-input__control{margin-bottom:4px}.v-slider__label{margin-inline-end:12px}.v-slider-thumb{touch-action:none;color:rgb(var(--v-theme-surface-variant))}.v-input--error:not(.v-input--disabled) .v-slider-thumb{color:inherit}.v-slider-thumb__label{background:rgba(var(--v-theme-surface-variant),.7);color:rgb(var(--v-theme-on-surface-variant))}.v-slider-thumb__label:before{color:rgba(var(--v-theme-surface-variant),.7)}.v-slider-thumb{outline:none;position:absolute;transition:.3s cubic-bezier(.25,.8,.5,1)}.v-slider-thumb__surface{cursor:pointer;width:var(--v-slider-thumb-size);height:var(--v-slider-thumb-size);border-radius:50%;user-select:none;background-color:currentColor}.v-slider-thumb__surface:before{transition:.3s cubic-bezier(.4,0,.2,1);content:"";color:inherit;width:100%;height:100%;border-radius:50%;background:currentColor;position:absolute;pointer-events:none;opacity:0}.v-slider-thumb__surface:after{content:"";width:42px;height:42px;position:absolute;top:50%;left:50%;transform:translate(-50%,-50%)}.v-slider-thumb__label-container{position:absolute;transition:.2s cubic-bezier(.4,0,1,1)}.v-slider-thumb__label{display:flex;align-items:center;justify-content:center;font-size:.75rem;min-width:35px;height:25px;border-radius:4px;padding:6px;position:absolute;user-select:none;transition:.2s cubic-bezier(.4,0,1,1)}.v-slider-thumb__label:before{content:"";width:0;height:0;position:absolute}.v-slider-thumb__ripple{position:absolute;left:calc(var(--v-slider-thumb-size) / -2);top:calc(var(--v-slider-thumb-size) / -2);width:calc(var(--v-slider-thumb-size) * 2);height:calc(var(--v-slider-thumb-size) * 2);background:inherit}.v-slider.v-input--horizontal .v-slider-thumb{top:50%;transform:translateY(-50%)}.v-slider.v-input--horizontal .v-slider-thumb.v-locale--is-ltr,.v-locale--is-ltr .v-slider.v-input--horizontal .v-slider-thumb{left:calc(var(--v-slider-thumb-position) - var(--v-slider-thumb-size) / 2)}.v-slider.v-input--horizontal .v-slider-thumb.v-locale--is-rtl,.v-locale--is-rtl .v-slider.v-input--horizontal .v-slider-thumb{right:calc(var(--v-slider-thumb-position) - var(--v-slider-thumb-size) / 2)}.v-slider.v-input--horizontal .v-slider-thumb__label-container{left:calc(var(--v-slider-thumb-size) / 2);top:0}.v-slider.v-input--horizontal .v-slider-thumb__label{bottom:calc(var(--v-slider-thumb-size) / 2)}.v-slider.v-input--horizontal .v-slider-thumb__label.v-locale--is-ltr,.v-locale--is-ltr .v-slider.v-input--horizontal .v-slider-thumb__label{transform:translate(-50%)}.v-slider.v-input--horizontal .v-slider-thumb__label.v-locale--is-rtl,.v-locale--is-rtl .v-slider.v-input--horizontal .v-slider-thumb__label{transform:translate(50%)}.v-slider.v-input--horizontal .v-slider-thumb__label:before{border-left:6px solid transparent;border-right:6px solid transparent;border-top:6px solid currentColor;bottom:-6px}.v-slider.v-input--vertical .v-slider-thumb{top:calc(var(--v-slider-thumb-position) - var(--v-slider-thumb-size) / 2)}.v-slider.v-input--vertical .v-slider-thumb__label-container{top:calc(var(--v-slider-thumb-size) / 2);right:0}.v-slider.v-input--vertical .v-slider-thumb__label{top:-12.5px;left:calc(var(--v-slider-thumb-size) / 2)}.v-slider.v-input--vertical .v-slider-thumb__label:before{border-right:6px solid currentColor;border-top:6px solid transparent;border-bottom:6px solid transparent;left:-6px}.v-slider-thumb--focused .v-slider-thumb__surface:before{transform:scale(2);opacity:var(--v-focus-opacity)}.v-slider-thumb--pressed{transition:none}.v-slider-thumb--pressed .v-slider-thumb__surface:before{opacity:var(--v-pressed-opacity)}@media (hover: hover){.v-slider-thumb:hover .v-slider-thumb__surface:before{transform:scale(2)}.v-slider-thumb:hover:not(.v-slider-thumb--focused) .v-slider-thumb__surface:before{opacity:var(--v-hover-opacity)}}.v-slider-track__background,.v-slider-track__fill,.v-slider-track__tick{background-color:rgb(var(--v-theme-surface-variant))}.v-slider-track__tick--filled{background-color:rgb(var(--v-theme-on-surface-variant))}.v-slider-track{border-radius:6px}.v-slider-track__background,.v-slider-track__fill{position:absolute;transition:.3s cubic-bezier(.25,.8,.5,1);border-radius:inherit}.v-slider--pressed .v-slider-track__background,.v-slider--pressed .v-slider-track__fill{transition:none}.v-input--error:not(.v-input--disabled) .v-slider-track__background,.v-input--error:not(.v-input--disabled) .v-slider-track__fill{background-color:currentColor}.v-slider-track__ticks{height:100%;width:100%;position:relative}.v-slider-track__tick{position:absolute;opacity:0;transition:.2s opacity cubic-bezier(.4,0,.2,1);border-radius:2px;width:var(--v-slider-tick-size);height:var(--v-slider-tick-size);transform:translate(calc(var(--v-slider-tick-size) / -2),calc(var(--v-slider-tick-size) / -2))}.v-slider-track__tick--first .v-slider-track__tick-label.v-locale--is-ltr,.v-locale--is-ltr .v-slider-track__tick--first .v-slider-track__tick-label{transform:none}.v-slider-track__tick--first .v-slider-track__tick-label.v-locale--is-rtl,.v-locale--is-rtl .v-slider-track__tick--first .v-slider-track__tick-label{transform:translate(100%)}.v-slider-track__tick--last .v-slider-track__tick-label.v-locale--is-ltr,.v-locale--is-ltr .v-slider-track__tick--last .v-slider-track__tick-label{transform:translate(-100%)}.v-slider-track__tick--last .v-slider-track__tick-label.v-locale--is-rtl,.v-locale--is-rtl .v-slider-track__tick--last .v-slider-track__tick-label{transform:none}.v-slider-track__tick-label{position:absolute;user-select:none;white-space:nowrap}.v-slider.v-input--horizontal .v-slider-track{display:flex;align-items:center;width:100%;height:calc(var(--v-slider-track-size) + 2px);touch-action:pan-y}.v-slider.v-input--horizontal .v-slider-track__background{height:var(--v-slider-track-size)}.v-slider.v-input--horizontal .v-slider-track__fill{height:inherit}.v-slider.v-input--horizontal .v-slider-track__tick{margin-top:calc(calc(var(--v-slider-track-size) + 2px) / 2)}.v-slider.v-input--horizontal .v-slider-track__tick.v-locale--is-rtl,.v-locale--is-rtl .v-slider.v-input--horizontal .v-slider-track__tick{transform:translate(calc(var(--v-slider-tick-size) / 2),calc(var(--v-slider-tick-size) / -2))}.v-slider.v-input--horizontal .v-slider-track__tick .v-slider-track__tick-label{margin-top:calc(var(--v-slider-track-size) / 2 + 8px)}.v-slider.v-input--horizontal .v-slider-track__tick .v-slider-track__tick-label.v-locale--is-ltr,.v-locale--is-ltr .v-slider.v-input--horizontal .v-slider-track__tick .v-slider-track__tick-label{transform:translate(-50%)}.v-slider.v-input--horizontal .v-slider-track__tick .v-slider-track__tick-label.v-locale--is-rtl,.v-locale--is-rtl .v-slider.v-input--horizontal .v-slider-track__tick .v-slider-track__tick-label{transform:translate(50%)}.v-slider.v-input--horizontal .v-slider-track__tick--first{margin-inline-start:calc(var(--v-slider-tick-size) + 1px)}.v-slider.v-input--horizontal .v-slider-track__tick--first .v-slider-track__tick-label.v-locale--is-ltr,.v-locale--is-ltr .v-slider.v-input--horizontal .v-slider-track__tick--first .v-slider-track__tick-label,.v-slider.v-input--horizontal .v-slider-track__tick--first .v-slider-track__tick-label.v-locale--is-rtl,.v-locale--is-rtl .v-slider.v-input--horizontal .v-slider-track__tick--first .v-slider-track__tick-label{transform:translate(0)}.v-slider.v-input--horizontal .v-slider-track__tick--last{margin-inline-start:calc(100% - var(--v-slider-tick-size) - 1px)}.v-slider.v-input--horizontal .v-slider-track__tick--last .v-slider-track__tick-label.v-locale--is-ltr,.v-locale--is-ltr .v-slider.v-input--horizontal .v-slider-track__tick--last .v-slider-track__tick-label{transform:translate(-100%)}.v-slider.v-input--horizontal .v-slider-track__tick--last .v-slider-track__tick-label.v-locale--is-rtl,.v-locale--is-rtl .v-slider.v-input--horizontal .v-slider-track__tick--last .v-slider-track__tick-label{transform:translate(100%)}.v-slider.v-input--vertical .v-slider-track{height:100%;display:flex;justify-content:center;width:calc(var(--v-slider-track-size) + 2px);touch-action:pan-x}.v-slider.v-input--vertical .v-slider-track__background{width:var(--v-slider-track-size)}.v-slider.v-input--vertical .v-slider-track__fill{width:inherit}.v-slider.v-input--vertical .v-slider-track__ticks{height:100%}.v-slider.v-input--vertical .v-slider-track__tick{margin-inline-start:calc(calc(var(--v-slider-track-size) + 2px) / 2);transform:translate(calc(var(--v-slider-tick-size) / -2),calc(var(--v-slider-tick-size) / 2))}.v-slider.v-input--vertical .v-slider-track__tick.v-locale--is-rtl,.v-locale--is-rtl .v-slider.v-input--vertical .v-slider-track__tick{transform:translate(calc(var(--v-slider-tick-size) / 2),calc(var(--v-slider-tick-size) / 2))}.v-slider.v-input--vertical .v-slider-track__tick--first{bottom:calc(0% + var(--v-slider-tick-size) + 1px)}.v-slider.v-input--vertical .v-slider-track__tick--last{bottom:calc(100% - var(--v-slider-tick-size) - 1px)}.v-slider.v-input--vertical .v-slider-track__tick .v-slider-track__tick-label{margin-inline-start:calc(var(--v-slider-track-size) / 2 + 12px);transform:translateY(-50%)}.v-slider-track__ticks--always-show .v-slider-track__tick,.v-slider--focused .v-slider-track__tick{opacity:1}.v-slider-track__background--opacity{opacity:.38}.v-color-picker-swatches{overflow-y:auto}.v-color-picker-swatches>div{display:flex;flex-wrap:wrap;justify-content:center;padding:8px}.v-color-picker-swatches__swatch{display:flex;flex-direction:column;margin-bottom:10px}.v-color-picker-swatches__color{position:relative;height:18px;max-height:18px;width:45px;margin:2px 4px;border-radius:2px;user-select:none;overflow:hidden;background:url() repeat;cursor:pointer}.v-color-picker-swatches__color>div{display:flex;align-items:center;justify-content:center;width:100%;height:100%}.v-sheet{display:block;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:0;background:rgb(var(--v-theme-surface));color:rgba(var(--v-theme-on-background),var(--v-high-emphasis-opacity))}.v-sheet--border{border-width:thin;box-shadow:none}.v-sheet--absolute{position:absolute}.v-sheet--fixed{position:fixed}.v-sheet--rounded{border-radius:4px}.v-input--density-default{--combobox-chips-margin-bottom: 0px}.v-input--density-comfortable{--combobox-chips-margin-bottom: 2px}.v-input--density-compact{--combobox-chips-margin-bottom: 4px}.v-combobox .v-field .v-text-field__prefix,.v-combobox .v-field .v-text-field__suffix,.v-combobox .v-field .v-field__input,.v-combobox .v-field.v-field{cursor:text}.v-combobox .v-field .v-field__input>input{align-self:flex-start;flex:1 1}.v-combobox .v-field .v-field__append-inner>.v-icon{margin-inline-start:4px;transition:.2s cubic-bezier(.4,0,.2,1)}.v-combobox .v-field:not(.v-field--focused) input{min-width:0}.v-combobox .v-field--dirty .v-combobox__selection{margin-inline-end:2px}.v-combobox .v-field--single-line .v-combobox__selection-text{overflow:hidden;text-overflow:ellipsis;white-space:nowrap}.v-combobox__content{overflow:hidden;box-shadow:0 2px 4px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 4px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 10px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:4px}.v-combobox__mask{background:rgb(var(--v-theme-on-surface-variant))}.v-combobox__selection{display:inline-flex;letter-spacing:inherit;line-height:inherit;max-width:100%}.v-combobox--active-menu .v-field__append-inner>.v-icon{opacity:var(--v-high-emphasis-opacity);transform:rotate(180deg)}.v-combobox--chips .v-combobox__selection{margin-top:2px;margin-bottom:var(--combobox-chips-margin-bottom)}.v-combobox--chips .v-combobox__selection:first-child{margin-inline-start:0}.v-combobox--selecting-index .v-combobox__selection{opacity:var(--v-medium-emphasis-opacity)}.v-combobox--selecting-index .v-combobox__selection--selected{opacity:1}.v-combobox--selecting-index .v-field__input>input{caret-color:transparent!important}.v-combobox--single.v-text-field input{flex:1 1;position:absolute;left:0;right:0;width:100%;padding-inline-start:inherit;padding-inline-end:inherit}.v-combobox--single .v-field--active input{transition:none}.v-combobox--single .v-field--dirty:not(.v-field--focused) input{opacity:0}.v-combobox--single .v-field--focused .v-combobox__selection{opacity:0}.v-dialog{align-items:center;justify-content:center;margin:auto}.v-dialog .v-overlay__content{max-height:calc(100% - 48px);width:calc(100% - 48px);max-width:calc(100% - 48px);margin:24px;display:flex;flex-direction:column}.v-dialog .v-overlay__content>.v-card,.v-dialog .v-overlay__content>.v-sheet{--v-scrollbar-offset: 0px;border-radius:4px;overflow-y:auto;box-shadow:0 11px 15px -7px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 24px 38px 3px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 9px 46px 8px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-dialog .v-overlay__content>.v-card{display:flex;flex-direction:column}.v-dialog .v-overlay__content>.v-card>.v-card-item{padding:14px 24px 0}.v-dialog .v-overlay__content>.v-card>.v-card-item+.v-card-text{padding-top:10px}.v-dialog .v-overlay__content>.v-card>.v-card-text{font-size:inherit;letter-spacing:.03125em;line-height:inherit;padding:16px 24px 10px}.v-dialog--fullscreen{--v-scrollbar-offset: 0px}.v-dialog--fullscreen .v-overlay__content{border-radius:0;margin:0;padding:0;width:100%;height:100%;max-width:100%;max-height:100%;overflow-y:auto;top:0;left:0}.v-dialog--fullscreen .v-overlay__content>.v-card,.v-dialog--fullscreen .v-overlay__content>.v-sheet{min-height:100%;min-width:100%;border-radius:0}.v-dialog--scrollable .v-overlay__content,.v-dialog--scrollable .v-overlay__content>form{display:flex}.v-dialog--scrollable .v-overlay__content>.v-card,.v-dialog--scrollable .v-overlay__content>form>.v-card{display:flex;flex:1 1 100%;flex-direction:column;max-height:100%;max-width:100%}.v-dialog--scrollable .v-overlay__content>.v-card>.v-card-text,.v-dialog--scrollable .v-overlay__content>form>.v-card>.v-card-text{backface-visibility:hidden;overflow-y:auto}.v-expansion-panel{background-color:rgb(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-expansion-panel:not(:first-child):after{border-color:rgba(var(--v-border-color),var(--v-border-opacity))}.v-expansion-panel--disabled .v-expansion-panel-title{color:rgba(var(--v-theme-on-surface),.26)}.v-expansion-panel--disabled .v-expansion-panel-title .v-expansion-panel-title__overlay{opacity:.4615384615}.v-expansion-panels{display:flex;flex-wrap:wrap;justify-content:center;list-style-type:none;padding:0;width:100%;position:relative;z-index:1}.v-expansion-panels:not(.v-expansion-panels--variant-accordion)>:not(:first-child):not(:last-child):not(.v-expansion-panel--active):not(.v-expansion-panel--before-active){border-bottom-left-radius:0!important;border-bottom-right-radius:0!important}.v-expansion-panels:not(.v-expansion-panels--variant-accordion)>:not(:first-child):not(:last-child):not(.v-expansion-panel--active):not(.v-expansion-panel--after-active){border-top-left-radius:0!important;border-top-right-radius:0!important}.v-expansion-panels:not(.v-expansion-panels--variant-accordion)>:first-child:not(:last-child):not(.v-expansion-panel--active):not(.v-expansion-panel--before-active){border-bottom-left-radius:0!important;border-bottom-right-radius:0!important}.v-expansion-panels:not(.v-expansion-panels--variant-accordion)>:last-child:not(:first-child):not(.v-expansion-panel--active):not(.v-expansion-panel--after-active){border-top-left-radius:0!important;border-top-right-radius:0!important}.v-expansion-panels--variant-accordion>:first-child{border-bottom-left-radius:0!important;border-bottom-right-radius:0!important}.v-expansion-panels--variant-accordion>:last-child{border-top-left-radius:0!important;border-top-right-radius:0!important}.v-expansion-panels--variant-accordion>:last-child .v-expansion-panel-title--active{border-bottom-left-radius:initial;border-bottom-right-radius:initial}.v-expansion-panels--variant-accordion>:not(:first-child):not(:last-child){border-radius:0!important}.v-expansion-panels--variant-accordion .v-expansion-panel-title__overlay{transition:.3s border-radius cubic-bezier(.4,0,.2,1)}.v-expansion-panel{flex:1 0 100%;max-width:100%;position:relative;transition:.3s all cubic-bezier(.4,0,.2,1);transition-property:margin-top,border-radius,border,max-width;border-radius:4px}.v-expansion-panel:not(:first-child):after{border-top-style:solid;border-top-width:thin;content:"";left:0;position:absolute;right:0;top:0;transition:.3s opacity cubic-bezier(.4,0,.2,1)}.v-expansion-panel--disabled .v-expansion-panel-title{pointer-events:none}.v-expansion-panel--active:not(:first-child),.v-expansion-panel--active+.v-expansion-panel{margin-top:16px}.v-expansion-panel--active:not(:first-child):after,.v-expansion-panel--active+.v-expansion-panel:after{opacity:0}.v-expansion-panel--active>.v-expansion-panel-title{border-bottom-left-radius:0;border-bottom-right-radius:0;min-height:64px}.v-expansion-panel__shadow{position:absolute;top:0;left:0;width:100%;height:100%;box-shadow:0 3px 1px -2px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 2px 2px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:inherit;z-index:-1}.v-expansion-panel-title{align-items:center;text-align:start;border-radius:inherit;display:flex;font-size:.9375rem;line-height:1;min-height:48px;outline:none;padding:16px 24px;position:relative;transition:.3s min-height cubic-bezier(.4,0,.2,1);width:100%;justify-content:space-between}.v-expansion-panel-title:hover>.v-expansion-panel-title__overlay{opacity:calc(.04 * var(--v-theme-overlay-multiplier))}.v-expansion-panel-title:focus-visible>.v-expansion-panel-title__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}@supports not selector(:focus-visible){.v-expansion-panel-title:focus>.v-expansion-panel-title__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}}.v-expansion-panel-title--active>.v-expansion-panel-title__overlay,.v-expansion-panel-title[aria-haspopup=menu][aria-expanded=true]>.v-expansion-panel-title__overlay{opacity:calc(.12 * var(--v-theme-overlay-multiplier))}.v-expansion-panel-title--active:hover>.v-expansion-panel-title__overlay,.v-expansion-panel-title[aria-haspopup=menu][aria-expanded=true]:hover>.v-expansion-panel-title__overlay{opacity:calc(.16 * var(--v-theme-overlay-multiplier))}.v-expansion-panel-title--active:focus-visible>.v-expansion-panel-title__overlay,.v-expansion-panel-title[aria-haspopup=menu][aria-expanded=true]:focus-visible>.v-expansion-panel-title__overlay{opacity:calc(.24 * var(--v-theme-overlay-multiplier))}@supports not selector(:focus-visible){.v-expansion-panel-title--active:focus>.v-expansion-panel-title__overlay,.v-expansion-panel-title[aria-haspopup=menu][aria-expanded=true]:focus>.v-expansion-panel-title__overlay{opacity:calc(.24 * var(--v-theme-overlay-multiplier))}}.v-expansion-panel-title--active:before{opacity:.12}.v-expansion-panel-title__overlay{position:absolute;top:0;left:0;width:100%;height:100%;background-color:currentColor;border-radius:inherit;opacity:0}.v-expansion-panel-title__icon{display:inline-flex;margin-bottom:-4px;margin-top:-4px;user-select:none;margin-inline-start:auto}.v-expansion-panel-text{display:flex}.v-expansion-panel-text__wrapper{padding:8px 24px 16px;flex:1 1 auto;max-width:100%}.v-expansion-panels--variant-accordion>.v-expansion-panel{margin-top:0}.v-expansion-panels--variant-accordion>.v-expansion-panel:after{opacity:1}.v-expansion-panels--variant-popout>.v-expansion-panel{max-width:calc(100% - 32px)}.v-expansion-panels--variant-popout>.v-expansion-panel--active{max-width:calc(100% + 16px)}.v-expansion-panels--variant-inset>.v-expansion-panel{max-width:100%}.v-expansion-panels--variant-inset>.v-expansion-panel--active{max-width:calc(100% - 32px)}.v-input--density-default{--file-input-chips-margin-bottom: 0px}.v-input--density-comfortable{--file-input-chips-margin-bottom: 2px}.v-input--density-compact{--file-input-chips-margin-bottom: 4px}.v-file-input input[type=file]{height:100%;left:0;opacity:0;position:absolute;top:0;width:100%}.v-file-input .v-chip{margin-top:2px;margin-bottom:var(--file-input-chips-margin-bottom)}.v-footer{align-items:center;display:flex;flex:1 1 auto;padding:8px 16px;position:relative;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));border-radius:0;background:rgb(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-footer--border{border-width:thin;box-shadow:none}.v-footer--absolute{position:absolute}.v-footer--fixed{position:fixed}.v-footer--rounded{border-radius:4px}.v-container{width:100%;padding:16px;margin-right:auto;margin-left:auto}@media (min-width: 960px){.v-container{max-width:900px}}@media (min-width: 1280px){.v-container{max-width:1200px}}@media (min-width: 1920px){.v-container{max-width:1800px}}@media (min-width: 2560px){.v-container{max-width:2400px}}.v-container--fluid{max-width:100%}.v-row{display:flex;flex-wrap:wrap;flex:1 1 auto;margin:-12px}.v-row+.v-row{margin-top:12px}.v-row+.v-row--dense{margin-top:4px}.v-row--dense{margin:-4px}.v-row--dense>.v-col,.v-row--dense>[class*=v-col-]{padding:4px}.v-row.v-row--no-gutters{margin:0}.v-row.v-row--no-gutters>.v-col,.v-row.v-row--no-gutters>[class*=v-col-]{padding:0}.v-col-xxl,.v-col-xxl-auto,.v-col-xxl-12,.v-col-xxl-11,.v-col-xxl-10,.v-col-xxl-9,.v-col-xxl-8,.v-col-xxl-7,.v-col-xxl-6,.v-col-xxl-5,.v-col-xxl-4,.v-col-xxl-3,.v-col-xxl-2,.v-col-xxl-1,.v-col-xl,.v-col-xl-auto,.v-col-xl-12,.v-col-xl-11,.v-col-xl-10,.v-col-xl-9,.v-col-xl-8,.v-col-xl-7,.v-col-xl-6,.v-col-xl-5,.v-col-xl-4,.v-col-xl-3,.v-col-xl-2,.v-col-xl-1,.v-col-lg,.v-col-lg-auto,.v-col-lg-12,.v-col-lg-11,.v-col-lg-10,.v-col-lg-9,.v-col-lg-8,.v-col-lg-7,.v-col-lg-6,.v-col-lg-5,.v-col-lg-4,.v-col-lg-3,.v-col-lg-2,.v-col-lg-1,.v-col-md,.v-col-md-auto,.v-col-md-12,.v-col-md-11,.v-col-md-10,.v-col-md-9,.v-col-md-8,.v-col-md-7,.v-col-md-6,.v-col-md-5,.v-col-md-4,.v-col-md-3,.v-col-md-2,.v-col-md-1,.v-col-sm,.v-col-sm-auto,.v-col-sm-12,.v-col-sm-11,.v-col-sm-10,.v-col-sm-9,.v-col-sm-8,.v-col-sm-7,.v-col-sm-6,.v-col-sm-5,.v-col-sm-4,.v-col-sm-3,.v-col-sm-2,.v-col-sm-1,.v-col,.v-col-auto,.v-col-12,.v-col-11,.v-col-10,.v-col-9,.v-col-8,.v-col-7,.v-col-6,.v-col-5,.v-col-4,.v-col-3,.v-col-2,.v-col-1{width:100%;padding:12px}.v-col{flex-basis:0;flex-grow:1;max-width:100%}.v-col-auto{flex:0 0 auto;width:auto;max-width:100%}.v-col-1{flex:0 0 8.3333333333%;max-width:8.3333333333%}.v-col-2{flex:0 0 16.6666666667%;max-width:16.6666666667%}.v-col-3{flex:0 0 25%;max-width:25%}.v-col-4{flex:0 0 33.3333333333%;max-width:33.3333333333%}.v-col-5{flex:0 0 41.6666666667%;max-width:41.6666666667%}.v-col-6{flex:0 0 50%;max-width:50%}.v-col-7{flex:0 0 58.3333333333%;max-width:58.3333333333%}.v-col-8{flex:0 0 66.6666666667%;max-width:66.6666666667%}.v-col-9{flex:0 0 75%;max-width:75%}.v-col-10{flex:0 0 83.3333333333%;max-width:83.3333333333%}.v-col-11{flex:0 0 91.6666666667%;max-width:91.6666666667%}.v-col-12{flex:0 0 100%;max-width:100%}.offset-1.v-locale--is-ltr,.v-locale--is-ltr .offset-1{margin-left:8.3333333333%}.offset-1.v-locale--is-rtl,.v-locale--is-rtl .offset-1{margin-right:8.3333333333%}.offset-2.v-locale--is-ltr,.v-locale--is-ltr .offset-2{margin-left:16.6666666667%}.offset-2.v-locale--is-rtl,.v-locale--is-rtl .offset-2{margin-right:16.6666666667%}.offset-3.v-locale--is-ltr,.v-locale--is-ltr .offset-3{margin-left:25%}.offset-3.v-locale--is-rtl,.v-locale--is-rtl .offset-3{margin-right:25%}.offset-4.v-locale--is-ltr,.v-locale--is-ltr .offset-4{margin-left:33.3333333333%}.offset-4.v-locale--is-rtl,.v-locale--is-rtl .offset-4{margin-right:33.3333333333%}.offset-5.v-locale--is-ltr,.v-locale--is-ltr .offset-5{margin-left:41.6666666667%}.offset-5.v-locale--is-rtl,.v-locale--is-rtl .offset-5{margin-right:41.6666666667%}.offset-6.v-locale--is-ltr,.v-locale--is-ltr .offset-6{margin-left:50%}.offset-6.v-locale--is-rtl,.v-locale--is-rtl .offset-6{margin-right:50%}.offset-7.v-locale--is-ltr,.v-locale--is-ltr .offset-7{margin-left:58.3333333333%}.offset-7.v-locale--is-rtl,.v-locale--is-rtl .offset-7{margin-right:58.3333333333%}.offset-8.v-locale--is-ltr,.v-locale--is-ltr .offset-8{margin-left:66.6666666667%}.offset-8.v-locale--is-rtl,.v-locale--is-rtl .offset-8{margin-right:66.6666666667%}.offset-9.v-locale--is-ltr,.v-locale--is-ltr .offset-9{margin-left:75%}.offset-9.v-locale--is-rtl,.v-locale--is-rtl .offset-9{margin-right:75%}.offset-10.v-locale--is-ltr,.v-locale--is-ltr .offset-10{margin-left:83.3333333333%}.offset-10.v-locale--is-rtl,.v-locale--is-rtl .offset-10{margin-right:83.3333333333%}.offset-11.v-locale--is-ltr,.v-locale--is-ltr .offset-11{margin-left:91.6666666667%}.offset-11.v-locale--is-rtl,.v-locale--is-rtl .offset-11{margin-right:91.6666666667%}@media (min-width: 600px){.v-col-sm{flex-basis:0;flex-grow:1;max-width:100%}.v-col-sm-auto{flex:0 0 auto;width:auto;max-width:100%}.v-col-sm-1{flex:0 0 8.3333333333%;max-width:8.3333333333%}.v-col-sm-2{flex:0 0 16.6666666667%;max-width:16.6666666667%}.v-col-sm-3{flex:0 0 25%;max-width:25%}.v-col-sm-4{flex:0 0 33.3333333333%;max-width:33.3333333333%}.v-col-sm-5{flex:0 0 41.6666666667%;max-width:41.6666666667%}.v-col-sm-6{flex:0 0 50%;max-width:50%}.v-col-sm-7{flex:0 0 58.3333333333%;max-width:58.3333333333%}.v-col-sm-8{flex:0 0 66.6666666667%;max-width:66.6666666667%}.v-col-sm-9{flex:0 0 75%;max-width:75%}.v-col-sm-10{flex:0 0 83.3333333333%;max-width:83.3333333333%}.v-col-sm-11{flex:0 0 91.6666666667%;max-width:91.6666666667%}.v-col-sm-12{flex:0 0 100%;max-width:100%}.offset-sm-0.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-0{margin-left:0}.offset-sm-0.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-0{margin-right:0}.offset-sm-1.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-1{margin-left:8.3333333333%}.offset-sm-1.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-1{margin-right:8.3333333333%}.offset-sm-2.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-2{margin-left:16.6666666667%}.offset-sm-2.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-2{margin-right:16.6666666667%}.offset-sm-3.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-3{margin-left:25%}.offset-sm-3.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-3{margin-right:25%}.offset-sm-4.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-4{margin-left:33.3333333333%}.offset-sm-4.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-4{margin-right:33.3333333333%}.offset-sm-5.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-5{margin-left:41.6666666667%}.offset-sm-5.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-5{margin-right:41.6666666667%}.offset-sm-6.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-6{margin-left:50%}.offset-sm-6.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-6{margin-right:50%}.offset-sm-7.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-7{margin-left:58.3333333333%}.offset-sm-7.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-7{margin-right:58.3333333333%}.offset-sm-8.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-8{margin-left:66.6666666667%}.offset-sm-8.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-8{margin-right:66.6666666667%}.offset-sm-9.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-9{margin-left:75%}.offset-sm-9.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-9{margin-right:75%}.offset-sm-10.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-10{margin-left:83.3333333333%}.offset-sm-10.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-10{margin-right:83.3333333333%}.offset-sm-11.v-locale--is-ltr,.v-locale--is-ltr .offset-sm-11{margin-left:91.6666666667%}.offset-sm-11.v-locale--is-rtl,.v-locale--is-rtl .offset-sm-11{margin-right:91.6666666667%}}@media (min-width: 960px){.v-col-md{flex-basis:0;flex-grow:1;max-width:100%}.v-col-md-auto{flex:0 0 auto;width:auto;max-width:100%}.v-col-md-1{flex:0 0 8.3333333333%;max-width:8.3333333333%}.v-col-md-2{flex:0 0 16.6666666667%;max-width:16.6666666667%}.v-col-md-3{flex:0 0 25%;max-width:25%}.v-col-md-4{flex:0 0 33.3333333333%;max-width:33.3333333333%}.v-col-md-5{flex:0 0 41.6666666667%;max-width:41.6666666667%}.v-col-md-6{flex:0 0 50%;max-width:50%}.v-col-md-7{flex:0 0 58.3333333333%;max-width:58.3333333333%}.v-col-md-8{flex:0 0 66.6666666667%;max-width:66.6666666667%}.v-col-md-9{flex:0 0 75%;max-width:75%}.v-col-md-10{flex:0 0 83.3333333333%;max-width:83.3333333333%}.v-col-md-11{flex:0 0 91.6666666667%;max-width:91.6666666667%}.v-col-md-12{flex:0 0 100%;max-width:100%}.offset-md-0.v-locale--is-ltr,.v-locale--is-ltr .offset-md-0{margin-left:0}.offset-md-0.v-locale--is-rtl,.v-locale--is-rtl .offset-md-0{margin-right:0}.offset-md-1.v-locale--is-ltr,.v-locale--is-ltr .offset-md-1{margin-left:8.3333333333%}.offset-md-1.v-locale--is-rtl,.v-locale--is-rtl .offset-md-1{margin-right:8.3333333333%}.offset-md-2.v-locale--is-ltr,.v-locale--is-ltr .offset-md-2{margin-left:16.6666666667%}.offset-md-2.v-locale--is-rtl,.v-locale--is-rtl .offset-md-2{margin-right:16.6666666667%}.offset-md-3.v-locale--is-ltr,.v-locale--is-ltr .offset-md-3{margin-left:25%}.offset-md-3.v-locale--is-rtl,.v-locale--is-rtl .offset-md-3{margin-right:25%}.offset-md-4.v-locale--is-ltr,.v-locale--is-ltr .offset-md-4{margin-left:33.3333333333%}.offset-md-4.v-locale--is-rtl,.v-locale--is-rtl .offset-md-4{margin-right:33.3333333333%}.offset-md-5.v-locale--is-ltr,.v-locale--is-ltr .offset-md-5{margin-left:41.6666666667%}.offset-md-5.v-locale--is-rtl,.v-locale--is-rtl .offset-md-5{margin-right:41.6666666667%}.offset-md-6.v-locale--is-ltr,.v-locale--is-ltr .offset-md-6{margin-left:50%}.offset-md-6.v-locale--is-rtl,.v-locale--is-rtl .offset-md-6{margin-right:50%}.offset-md-7.v-locale--is-ltr,.v-locale--is-ltr .offset-md-7{margin-left:58.3333333333%}.offset-md-7.v-locale--is-rtl,.v-locale--is-rtl .offset-md-7{margin-right:58.3333333333%}.offset-md-8.v-locale--is-ltr,.v-locale--is-ltr .offset-md-8{margin-left:66.6666666667%}.offset-md-8.v-locale--is-rtl,.v-locale--is-rtl .offset-md-8{margin-right:66.6666666667%}.offset-md-9.v-locale--is-ltr,.v-locale--is-ltr .offset-md-9{margin-left:75%}.offset-md-9.v-locale--is-rtl,.v-locale--is-rtl .offset-md-9{margin-right:75%}.offset-md-10.v-locale--is-ltr,.v-locale--is-ltr .offset-md-10{margin-left:83.3333333333%}.offset-md-10.v-locale--is-rtl,.v-locale--is-rtl .offset-md-10{margin-right:83.3333333333%}.offset-md-11.v-locale--is-ltr,.v-locale--is-ltr .offset-md-11{margin-left:91.6666666667%}.offset-md-11.v-locale--is-rtl,.v-locale--is-rtl .offset-md-11{margin-right:91.6666666667%}}@media (min-width: 1280px){.v-col-lg{flex-basis:0;flex-grow:1;max-width:100%}.v-col-lg-auto{flex:0 0 auto;width:auto;max-width:100%}.v-col-lg-1{flex:0 0 8.3333333333%;max-width:8.3333333333%}.v-col-lg-2{flex:0 0 16.6666666667%;max-width:16.6666666667%}.v-col-lg-3{flex:0 0 25%;max-width:25%}.v-col-lg-4{flex:0 0 33.3333333333%;max-width:33.3333333333%}.v-col-lg-5{flex:0 0 41.6666666667%;max-width:41.6666666667%}.v-col-lg-6{flex:0 0 50%;max-width:50%}.v-col-lg-7{flex:0 0 58.3333333333%;max-width:58.3333333333%}.v-col-lg-8{flex:0 0 66.6666666667%;max-width:66.6666666667%}.v-col-lg-9{flex:0 0 75%;max-width:75%}.v-col-lg-10{flex:0 0 83.3333333333%;max-width:83.3333333333%}.v-col-lg-11{flex:0 0 91.6666666667%;max-width:91.6666666667%}.v-col-lg-12{flex:0 0 100%;max-width:100%}.offset-lg-0.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-0{margin-left:0}.offset-lg-0.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-0{margin-right:0}.offset-lg-1.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-1{margin-left:8.3333333333%}.offset-lg-1.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-1{margin-right:8.3333333333%}.offset-lg-2.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-2{margin-left:16.6666666667%}.offset-lg-2.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-2{margin-right:16.6666666667%}.offset-lg-3.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-3{margin-left:25%}.offset-lg-3.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-3{margin-right:25%}.offset-lg-4.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-4{margin-left:33.3333333333%}.offset-lg-4.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-4{margin-right:33.3333333333%}.offset-lg-5.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-5{margin-left:41.6666666667%}.offset-lg-5.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-5{margin-right:41.6666666667%}.offset-lg-6.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-6{margin-left:50%}.offset-lg-6.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-6{margin-right:50%}.offset-lg-7.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-7{margin-left:58.3333333333%}.offset-lg-7.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-7{margin-right:58.3333333333%}.offset-lg-8.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-8{margin-left:66.6666666667%}.offset-lg-8.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-8{margin-right:66.6666666667%}.offset-lg-9.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-9{margin-left:75%}.offset-lg-9.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-9{margin-right:75%}.offset-lg-10.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-10{margin-left:83.3333333333%}.offset-lg-10.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-10{margin-right:83.3333333333%}.offset-lg-11.v-locale--is-ltr,.v-locale--is-ltr .offset-lg-11{margin-left:91.6666666667%}.offset-lg-11.v-locale--is-rtl,.v-locale--is-rtl .offset-lg-11{margin-right:91.6666666667%}}@media (min-width: 1920px){.v-col-xl{flex-basis:0;flex-grow:1;max-width:100%}.v-col-xl-auto{flex:0 0 auto;width:auto;max-width:100%}.v-col-xl-1{flex:0 0 8.3333333333%;max-width:8.3333333333%}.v-col-xl-2{flex:0 0 16.6666666667%;max-width:16.6666666667%}.v-col-xl-3{flex:0 0 25%;max-width:25%}.v-col-xl-4{flex:0 0 33.3333333333%;max-width:33.3333333333%}.v-col-xl-5{flex:0 0 41.6666666667%;max-width:41.6666666667%}.v-col-xl-6{flex:0 0 50%;max-width:50%}.v-col-xl-7{flex:0 0 58.3333333333%;max-width:58.3333333333%}.v-col-xl-8{flex:0 0 66.6666666667%;max-width:66.6666666667%}.v-col-xl-9{flex:0 0 75%;max-width:75%}.v-col-xl-10{flex:0 0 83.3333333333%;max-width:83.3333333333%}.v-col-xl-11{flex:0 0 91.6666666667%;max-width:91.6666666667%}.v-col-xl-12{flex:0 0 100%;max-width:100%}.offset-xl-0.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-0{margin-left:0}.offset-xl-0.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-0{margin-right:0}.offset-xl-1.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-1{margin-left:8.3333333333%}.offset-xl-1.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-1{margin-right:8.3333333333%}.offset-xl-2.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-2{margin-left:16.6666666667%}.offset-xl-2.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-2{margin-right:16.6666666667%}.offset-xl-3.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-3{margin-left:25%}.offset-xl-3.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-3{margin-right:25%}.offset-xl-4.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-4{margin-left:33.3333333333%}.offset-xl-4.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-4{margin-right:33.3333333333%}.offset-xl-5.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-5{margin-left:41.6666666667%}.offset-xl-5.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-5{margin-right:41.6666666667%}.offset-xl-6.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-6{margin-left:50%}.offset-xl-6.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-6{margin-right:50%}.offset-xl-7.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-7{margin-left:58.3333333333%}.offset-xl-7.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-7{margin-right:58.3333333333%}.offset-xl-8.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-8{margin-left:66.6666666667%}.offset-xl-8.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-8{margin-right:66.6666666667%}.offset-xl-9.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-9{margin-left:75%}.offset-xl-9.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-9{margin-right:75%}.offset-xl-10.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-10{margin-left:83.3333333333%}.offset-xl-10.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-10{margin-right:83.3333333333%}.offset-xl-11.v-locale--is-ltr,.v-locale--is-ltr .offset-xl-11{margin-left:91.6666666667%}.offset-xl-11.v-locale--is-rtl,.v-locale--is-rtl .offset-xl-11{margin-right:91.6666666667%}}@media (min-width: 2560px){.v-col-xxl{flex-basis:0;flex-grow:1;max-width:100%}.v-col-xxl-auto{flex:0 0 auto;width:auto;max-width:100%}.v-col-xxl-1{flex:0 0 8.3333333333%;max-width:8.3333333333%}.v-col-xxl-2{flex:0 0 16.6666666667%;max-width:16.6666666667%}.v-col-xxl-3{flex:0 0 25%;max-width:25%}.v-col-xxl-4{flex:0 0 33.3333333333%;max-width:33.3333333333%}.v-col-xxl-5{flex:0 0 41.6666666667%;max-width:41.6666666667%}.v-col-xxl-6{flex:0 0 50%;max-width:50%}.v-col-xxl-7{flex:0 0 58.3333333333%;max-width:58.3333333333%}.v-col-xxl-8{flex:0 0 66.6666666667%;max-width:66.6666666667%}.v-col-xxl-9{flex:0 0 75%;max-width:75%}.v-col-xxl-10{flex:0 0 83.3333333333%;max-width:83.3333333333%}.v-col-xxl-11{flex:0 0 91.6666666667%;max-width:91.6666666667%}.v-col-xxl-12{flex:0 0 100%;max-width:100%}.offset-xxl-0.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-0{margin-left:0}.offset-xxl-0.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-0{margin-right:0}.offset-xxl-1.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-1{margin-left:8.3333333333%}.offset-xxl-1.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-1{margin-right:8.3333333333%}.offset-xxl-2.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-2{margin-left:16.6666666667%}.offset-xxl-2.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-2{margin-right:16.6666666667%}.offset-xxl-3.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-3{margin-left:25%}.offset-xxl-3.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-3{margin-right:25%}.offset-xxl-4.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-4{margin-left:33.3333333333%}.offset-xxl-4.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-4{margin-right:33.3333333333%}.offset-xxl-5.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-5{margin-left:41.6666666667%}.offset-xxl-5.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-5{margin-right:41.6666666667%}.offset-xxl-6.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-6{margin-left:50%}.offset-xxl-6.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-6{margin-right:50%}.offset-xxl-7.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-7{margin-left:58.3333333333%}.offset-xxl-7.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-7{margin-right:58.3333333333%}.offset-xxl-8.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-8{margin-left:66.6666666667%}.offset-xxl-8.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-8{margin-right:66.6666666667%}.offset-xxl-9.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-9{margin-left:75%}.offset-xxl-9.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-9{margin-right:75%}.offset-xxl-10.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-10{margin-left:83.3333333333%}.offset-xxl-10.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-10{margin-right:83.3333333333%}.offset-xxl-11.v-locale--is-ltr,.v-locale--is-ltr .offset-xxl-11{margin-left:91.6666666667%}.offset-xxl-11.v-locale--is-rtl,.v-locale--is-rtl .offset-xxl-11{margin-right:91.6666666667%}}.v-item-group{flex:0 1 auto;max-width:100%;position:relative;transition:.2s cubic-bezier(.4,0,.2,1)}.v-kbd{background:rgb(var(--v-theme-kbd));color:rgb(var(--v-theme-on-kbd));border-radius:3px;font-size:85%;font-weight:400;padding:.2em .4rem;box-shadow:0 3px 1px -2px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 2px 2px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-layout{--v-scrollbar-offset: 0px;display:flex;flex:1 1 auto}.v-layout--full-height{--v-scrollbar-offset: inherit;height:100%}.v-layout-item{position:absolute;transition:.2s cubic-bezier(.4,0,.2,1)}.v-layout-item--absolute{position:absolute}.v-locale-provider{display:contents}.v-main{flex:1 0 auto;max-width:100%;transition:.2s cubic-bezier(.4,0,.2,1);padding-left:var(--v-layout-left);padding-right:var(--v-layout-right);padding-top:var(--v-layout-top);padding-bottom:var(--v-layout-bottom)}.v-main__scroller{max-width:100%;position:relative}.v-main--scrollable{display:flex;position:absolute;top:0;left:0;width:100%;height:100%}.v-main--scrollable>.v-main__scroller{flex:1 1 auto;overflow-y:auto;--v-layout-left: 0px;--v-layout-right: 0px;--v-layout-top: 0px;--v-layout-bottom: 0px}.v-navigation-drawer{-webkit-overflow-scrolling:touch;display:flex;flex-direction:column;height:100%;max-width:100%;pointer-events:auto;transition-duration:.2s;transition-property:box-shadow,transform,visibility,width,height,left,right,top,bottom;transition-timing-function:cubic-bezier(.4,0,.2,1);will-change:transform;position:absolute;border-color:rgba(var(--v-border-color),var(--v-border-opacity));border-style:solid;border-width:0;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));background:rgb(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-navigation-drawer--border{border-width:thin;box-shadow:none}.v-navigation-drawer--rounded{border-radius:4px}.v-navigation-drawer--bottom{left:0;border-top-width:thin}.v-navigation-drawer--left{top:0;left:0;right:auto;border-right-width:thin}.v-navigation-drawer--right{top:0;left:auto;right:0;border-left-width:thin}.v-navigation-drawer--floating{border:none}.v-navigation-drawer--temporary{box-shadow:0 8px 10px -5px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 16px 24px 2px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 6px 30px 5px var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-navigation-drawer--sticky{height:auto;transition:box-shadow,transform,visibility,width,height,left,right}.v-navigation-drawer .v-list{overflow:hidden}.v-navigation-drawer__content{flex:0 1 auto;height:100%;max-width:100%;overflow-x:hidden;overflow-y:auto}.v-navigation-drawer__img{height:100%;left:0;position:absolute;top:0;width:100%;z-index:-1}.v-navigation-drawer__img img{height:inherit;object-fit:cover;width:inherit}.v-navigation-drawer__scrim{position:absolute;width:100%;height:100%;background:black;opacity:.2;transition:opacity .2s cubic-bezier(.4,0,.2,1);z-index:1}.v-pagination__list{display:inline-flex;list-style-type:none;justify-content:center;width:100%}.v-pagination__item,.v-pagination__first,.v-pagination__prev,.v-pagination__next,.v-pagination__last{margin:.3rem}.v-parallax{position:relative;overflow:hidden}.v-parallax--active>.v-img__img{will-change:transform}.v-radio-group>.v-input__control{flex-direction:column}.v-radio-group>.v-input__control>.v-label{margin-inline-start:8px}.v-radio-group>.v-input__control>.v-label+.v-selection-control-group{margin-top:8px}.v-rating{max-width:100%;display:inline-flex;white-space:nowrap}.v-rating--readonly{pointer-events:none}.v-rating__wrapper{align-items:center;display:inline-flex;flex-direction:column}.v-rating__wrapper--bottom{flex-direction:column-reverse}.v-rating__item{display:inline-flex;position:relative}.v-rating__item label{cursor:pointer}.v-rating__item .v-btn--variant-plain{opacity:1}.v-rating__item .v-btn{transition-property:transform}.v-rating__item .v-btn .v-icon{transition:inherit;transition-timing-function:cubic-bezier(0,0,.2,1)}.v-rating--hover .v-rating__item:hover:not(.v-rating__item--focused) .v-btn{transform:scale(1.25)}.v-rating__item--focused .v-btn__overlay{display:block;opacity:var(--v-hover-opacity)}.v-rating__item--half{overflow:hidden;position:absolute;clip-path:polygon(0 0,50% 0,50% 100%,0 100%);z-index:1}.v-rating__item--half .v-btn__overlay,.v-rating__item--half:hover .v-btn__overlay{opacity:0}.v-rating__hidden{height:0;opacity:0;position:absolute;width:0}.v-slide-group{display:flex;overflow:hidden}.v-slide-group__next,.v-slide-group__prev{align-items:center;display:flex;flex:0 1 52px;justify-content:center;min-width:52px;cursor:pointer}.v-slide-group__next--disabled,.v-slide-group__prev--disabled{pointer-events:none;opacity:var(--v-disabled-opacity)}.v-slide-group__content{display:flex;flex:1 0 auto;position:relative;transition:.2s all cubic-bezier(.4,0,.2,1);white-space:nowrap}.v-slide-group__content>*{white-space:initial}.v-slide-group__container{contain:content;display:flex;flex:1 1 auto;overflow:hidden}.v-slide-group--vertical,.v-slide-group--vertical .v-slide-group__container,.v-slide-group--vertical .v-slide-group__content{flex-direction:column}.v-snackbar{justify-content:center;padding-inline-end:var(--v-scrollbar-offset)}.v-snackbar:not(.v-snackbar--absolute){height:100vh;position:fixed;z-index:10000}.v-snackbar:not(.v-snackbar--centered):not(.v-snackbar--top){align-items:flex-end}.v-snackbar__wrapper{align-items:center;display:flex;margin:8px;max-width:672px;min-height:48px;min-width:344px;padding:0;pointer-events:auto;position:relative;border-radius:4px}.v-snackbar--variant-plain,.v-snackbar--variant-outlined,.v-snackbar--variant-text,.v-snackbar--variant-tonal{background:transparent;color:inherit}.v-snackbar--variant-plain{opacity:.62}.v-snackbar--variant-plain:focus,.v-snackbar--variant-plain:hover{opacity:1}.v-snackbar--variant-plain .v-snackbar__overlay{display:none}.v-snackbar--variant-elevated,.v-snackbar--variant-flat{background:rgb(var(--v-theme-surface-variant));color:rgb(var(--v-theme-on-surface-variant))}.v-snackbar--variant-elevated{box-shadow:0 3px 5px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 6px 10px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 18px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-snackbar--variant-flat{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-snackbar--variant-outlined{border:thin solid currentColor}.v-snackbar--variant-text .v-snackbar__overlay{background:currentColor}.v-snackbar--variant-tonal .v-snackbar__underlay{background:currentColor;opacity:var(--v-activated-opacity);border-radius:inherit;position:absolute;top:0;right:0;bottom:0;left:0;pointer-events:none}.v-snackbar__content{flex-grow:1;font-size:.875rem;font-weight:400;letter-spacing:.0178571429em;line-height:1.25rem;margin-right:auto;padding:14px 16px;text-align:initial}.v-snackbar__actions{align-items:center;align-self:center;display:flex;margin-inline-end:8px}.v-snackbar__actions>.v-btn{padding:0 8px;min-width:auto}.v-snackbar--absolute{height:100%;position:absolute;z-index:1}.v-snackbar--multi-line .v-snackbar__wrapper{min-height:68px}.v-snackbar--vertical .v-snackbar__wrapper{flex-direction:column}.v-snackbar--vertical .v-snackbar__wrapper .v-snackbar__actions{align-self:flex-end;margin-bottom:8px}.v-snackbar-transition-enter-active,.v-snackbar-transition-leave-active{transition-duration:.15s;transition-timing-function:cubic-bezier(0,0,.2,1)}.v-snackbar-transition-enter-active{transition-property:opacity,transform}.v-snackbar-transition-enter-from{opacity:0;transform:scale(.8)}.v-snackbar-transition-leave-active{transition-property:opacity}.v-snackbar-transition-leave-to{opacity:0}.v-switch .v-label{padding-inline-start:10px}.v-switch__loader{display:flex}.v-switch__track,.v-switch__thumb{background-color:currentColor;transition:none}.v-selection-control--error:not(.v-selection-control--disabled) .v-switch__track,.v-selection-control--error:not(.v-selection-control--disabled) .v-switch__thumb{background-color:rgb(var(--v-theme-error))}.v-switch__track{border-radius:8px;height:14px;opacity:.6;width:36px;cursor:pointer}.v-switch--inset .v-switch__track{border-radius:14px;height:28px;width:48px}.v-switch__thumb{align-items:center;border-radius:50%;color:rgb(var(--v-theme-surface));display:flex;height:20px;justify-content:center;width:20px;pointer-events:none;transition:.15s transform cubic-bezier(.4,0,.2,1);box-shadow:0 2px 4px -1px var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 4px 5px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 1px 10px 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-switch--inset .v-switch__thumb{box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-switch:not(.v-switch--loading) .v-icon~.v-switch__thumb{display:none}.v-switch--loading .v-selection-control__input>.v-icon{display:none}.v-switch .v-selection-control{min-height:var(--v-input-control-height)}.v-switch .v-selection-control__wrapper{width:auto}.v-switch .v-selection-control__input{border-radius:50%;transition:.15s transform cubic-bezier(.4,0,.2,1);transform:translate(-10px);position:absolute}.v-switch .v-selection-control--dirty .v-selection-control__input{transform:translate(10px)}.v-switch.v-switch--indeterminate .v-selection-control__input{transform:scale(.8)}.v-switch.v-switch--indeterminate .v-switch__thumb{transform:scale(.75);box-shadow:none}.v-system-bar{align-items:center;display:flex;flex:1 1 auto;height:24px;justify-content:flex-end;max-width:100%;padding:0 8px;position:relative;text-align:end;width:100%;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12));background:rgba(var(--v-theme-on-surface-variant));color:rgba(var(--v-theme-on-surface),var(--v-medium-emphasis-opacity));font-size:.75rem;font-weight:400;letter-spacing:.0333333333em;line-height:1.25rem;text-transform:none}.v-system-bar .v-icon{opacity:var(--v-medium-emphasis-opacity)}.v-system-bar--absolute{position:absolute}.v-system-bar--fixed{position:fixed}.v-system-bar--rounded{border-radius:0}.v-system-bar--window{height:32px}.v-tabs{display:flex;height:var(--v-tabs-height)}.v-tabs--density-default{--v-tabs-height: 48px}.v-tabs--density-default.v-tabs--stacked{--v-tabs-height: 72px}.v-tabs--density-comfortable{--v-tabs-height: 44px}.v-tabs--density-comfortable.v-tabs--stacked{--v-tabs-height: 68px}.v-tabs--density-compact{--v-tabs-height: 36px}.v-tabs--density-compact.v-tabs--stacked{--v-tabs-height: 60px}.v-tabs.v-slide-group--vertical{height:auto;--v-tabs-height: 48px}.v-tabs--align-tabs-title:not(.v-slide-group--has-affixes) .v-tab:first-child{margin-inline-start:42px}.v-tabs--fixed-tabs .v-slide-group__content>*:last-child,.v-tabs--align-tabs-center .v-slide-group__content>*:last-child{margin-inline-end:auto}.v-tabs--fixed-tabs .v-slide-group__content>*:first-child,.v-tabs--align-tabs-center .v-slide-group__content>*:first-child{margin-inline-start:auto}.v-tabs--grow{flex-grow:1}.v-tabs--grow .v-tab{flex:1 0 auto;max-width:none}.v-tabs--align-tabs-end .v-tab:first-child{margin-inline-start:auto}.v-tabs--align-tabs-end .v-tab:last-child{margin-inline-end:0}@media (max-width: 1279.98px){.v-tabs.v-slide-group--is-overflowing.v-slide-group--horizontal:not(.v-slide-group--has-affixes) .v-tab:first-child{margin-inline-start:52px}.v-tabs.v-slide-group--is-overflowing.v-slide-group--horizontal:not(.v-slide-group--has-affixes) .v-tab:last-child{margin-inline-end:52px}}.v-tab.v-tab{--v-btn-height: var(--v-tabs-height);min-width:90px}.v-slide-group--horizontal .v-tab{max-width:360px}.v-slide-group--vertical .v-tab{justify-content:start}.v-tab__slider{position:absolute;bottom:0;left:0;height:2px;width:100%;background:currentColor;pointer-events:none;opacity:0}.v-tab--selected .v-tab__slider{opacity:1}.v-slide-group--vertical .v-tab__slider{top:0;height:100%;width:2px}.v-table{background:rgb(var(--v-theme-surface));color:rgba(var(--v-theme-on-surface),var(--v-high-emphasis-opacity))}.v-table .v-table-divider{border-right:thin solid rgba(var(--v-border-color),var(--v-border-opacity))}.v-table .v-table__wrapper>table>thead>tr:last-child>th{border-bottom:thin solid rgba(var(--v-border-color),var(--v-border-opacity))}.v-table .v-table__wrapper>table>tbody>tr:not(:last-child)>td,.v-table .v-table__wrapper>table>tbody>tr:not(:last-child)>th{border-bottom:thin solid rgba(var(--v-border-color),var(--v-border-opacity))}.v-table .v-table__wrapper>table>tfoot>tr>td,.v-table .v-table__wrapper>table>tfoot>tr>th{border-top:thin solid rgba(var(--v-border-color),var(--v-border-opacity))}.v-table.v-table--hover>.v-table__wrapper>table>tbody>tr:hover{background:rgba(var(--v-border-color),var(--v-hover-opacity))}.v-table.v-table--fixed-header>.v-table__wrapper>table>thead>tr>th{background:rgb(var(--v-theme-surface));box-shadow:inset 0 -1px 0 rgba(var(--v-border-color),var(--v-border-opacity));z-index:1}.v-table.v-table--fixed-footer>tfoot>tr>th,.v-table.v-table--fixed-footer>tfoot>tr>td{background:rgb(var(--v-theme-surface));box-shadow:inset 0 1px 0 rgba(var(--v-border-color),var(--v-border-opacity))}.v-table{border-radius:inherit;line-height:1.5;max-width:100%}.v-table>.v-table__wrapper>table{width:100%;border-spacing:0}.v-table>.v-table__wrapper>table>tbody>tr>td,.v-table>.v-table__wrapper>table>tbody>tr>th,.v-table>.v-table__wrapper>table>thead>tr>td,.v-table>.v-table__wrapper>table>thead>tr>th,.v-table>.v-table__wrapper>table>tfoot>tr>td,.v-table>.v-table__wrapper>table>tfoot>tr>th{padding:0 16px;transition:height cubic-bezier(.4,0,.2,1)}.v-table>.v-table__wrapper>table>tbody>tr>th,.v-table>.v-table__wrapper>table>thead>tr>th,.v-table>.v-table__wrapper>table>tfoot>tr>th{user-select:none;font-size:.75rem}.v-table>.v-table__wrapper>table>tbody>tr>th.v-locale--is-ltr,.v-locale--is-ltr .v-table>.v-table__wrapper>table>tbody>tr>th,.v-table>.v-table__wrapper>table>thead>tr>th.v-locale--is-ltr,.v-locale--is-ltr .v-table>.v-table__wrapper>table>thead>tr>th,.v-table>.v-table__wrapper>table>tfoot>tr>th.v-locale--is-ltr,.v-locale--is-ltr .v-table>.v-table__wrapper>table>tfoot>tr>th{text-align:left}.v-table>.v-table__wrapper>table>tbody>tr>th.v-locale--is-rtl,.v-locale--is-rtl .v-table>.v-table__wrapper>table>tbody>tr>th,.v-table>.v-table__wrapper>table>thead>tr>th.v-locale--is-rtl,.v-locale--is-rtl .v-table>.v-table__wrapper>table>thead>tr>th,.v-table>.v-table__wrapper>table>tfoot>tr>th.v-locale--is-rtl,.v-locale--is-rtl .v-table>.v-table__wrapper>table>tfoot>tr>th{text-align:right}.v-table>.v-table__wrapper>table>tbody>tr>td,.v-table>.v-table__wrapper>table>thead>tr>td,.v-table>.v-table__wrapper>table>tfoot>tr>td{font-size:.875rem}.v-table--density-default>.v-table__wrapper>table>tbody>tr>th,.v-table--density-default>.v-table__wrapper>table>thead>tr>th,.v-table--density-default>.v-table__wrapper>table>tfoot>tr>th{height:48px}.v-table--density-default>.v-table__wrapper>table>tbody>tr>td,.v-table--density-default>.v-table__wrapper>table>thead>tr>td,.v-table--density-default>.v-table__wrapper>table>tfoot>tr>td{height:48px}.v-table--density-comfortable>.v-table__wrapper>table>tbody>tr>th,.v-table--density-comfortable>.v-table__wrapper>table>thead>tr>th,.v-table--density-comfortable>.v-table__wrapper>table>tfoot>tr>th{height:40px}.v-table--density-comfortable>.v-table__wrapper>table>tbody>tr>td,.v-table--density-comfortable>.v-table__wrapper>table>thead>tr>td,.v-table--density-comfortable>.v-table__wrapper>table>tfoot>tr>td{height:40px}.v-table--density-compact>.v-table__wrapper>table>tbody>tr>th,.v-table--density-compact>.v-table__wrapper>table>thead>tr>th,.v-table--density-compact>.v-table__wrapper>table>tfoot>tr>th{height:32px}.v-table--density-compact>.v-table__wrapper>table>tbody>tr>td,.v-table--density-compact>.v-table__wrapper>table>thead>tr>td,.v-table--density-compact>.v-table__wrapper>table>tfoot>tr>td{height:32px}.v-table__wrapper{border-radius:inherit;overflow-x:auto;overflow-y:hidden}.v-table--has-top>.v-table__wrapper>table>tbody>tr:first-child:hover>td:first-child{border-top-left-radius:0}.v-table--has-top>.v-table__wrapper>table>tbody>tr:first-child:hover>td:last-child{border-top-right-radius:0}.v-table--has-bottom>.v-table__wrapper>table>tbody>tr:last-child:hover>td:first-child{border-bottom-left-radius:0}.v-table--has-bottom>.v-table__wrapper>table>tbody>tr:last-child:hover>td:last-child{border-bottom-right-radius:0}.v-table--fixed-height>.v-table__wrapper{overflow-y:auto}.v-table--fixed-header>.v-table__wrapper>table>thead>tr>th{border-bottom:0px!important;position:sticky;top:0}.v-table--fixed-footer>.v-table__wrapper>table>tfoot>tr>td,.v-table--fixed-footer>.v-table__wrapper>table>tfoot>tr>th{border-top:0px!important;position:sticky;bottom:0}.v-textarea .v-field{--v-textarea-control-height: var(--v-input-control-height)}.v-textarea .v-field__field{--v-input-control-height: var(--v-textarea-control-height)}.v-textarea .v-field__input{flex:1 1 auto;outline:none;-webkit-mask-image:linear-gradient(to bottom,transparent,transparent calc(var(--v-field-padding-top, 0) + var(--v-input-padding-top, 0) - 6px),black calc(var(--v-field-padding-top, 0) + var(--v-input-padding-top, 0) + 4px));mask-image:linear-gradient(to bottom,transparent,transparent calc(var(--v-field-padding-top, 0) + var(--v-input-padding-top, 0) - 6px),black calc(var(--v-field-padding-top, 0) + var(--v-input-padding-top, 0) + 4px))}.v-textarea--auto-grow .v-field__input{overflow:hidden}.v-textarea--no-resize .v-field__input{resize:none}.v-textarea__sizer{visibility:hidden;position:absolute;top:0;left:0;height:0!important;min-height:0!important;pointer-events:none}.v-textarea .v-field--no-label textarea,.v-textarea .v-field--active textarea{opacity:1}.v-textarea textarea{opacity:0;flex:1;min-width:0;transition:.15s opacity cubic-bezier(.4,0,.2,1)}.v-textarea textarea:focus,.v-textarea textarea:active{outline:none}.v-textarea textarea:invalid{box-shadow:none}.v-theme-provider{background:rgb(var(--v-theme-background));color:rgb(var(--v-theme-on-background))}.v-timeline .v-timeline-divider__dot{background:rgb(var(--v-theme-on-surface-variant))}.v-timeline .v-timeline-divider__inner-dot{background:rgb(var(--v-theme-on-surface))}.v-timeline{display:grid;grid-auto-flow:dense;position:relative}.v-timeline--horizontal.v-timeline{grid-column-gap:24px;width:100%}.v-timeline--horizontal.v-timeline .v-timeline-item:first-child .v-timeline-divider,.v-timeline--horizontal.v-timeline .v-timeline-item:first-child .v-timeline-item__body,.v-timeline--horizontal.v-timeline .v-timeline-item:first-child .v-timeline-item__opposite{padding-inline-start:24px}.v-timeline--horizontal.v-timeline .v-timeline-item:last-child .v-timeline-divider,.v-timeline--horizontal.v-timeline .v-timeline-item:last-child .v-timeline-item__body,.v-timeline--horizontal.v-timeline .v-timeline-item:last-child .v-timeline-item__opposite{padding-inline-end:24px}.v-timeline--horizontal.v-timeline .v-timeline-item:nth-child(2n) .v-timeline-item__body{grid-row:3;padding-block-start:24px}.v-timeline--horizontal.v-timeline .v-timeline-item:nth-child(2n) .v-timeline-item__opposite{grid-row:1;padding-block-end:24px;align-self:flex-end}.v-timeline--horizontal.v-timeline .v-timeline-item:nth-child(2n+1) .v-timeline-item__body{grid-row:1;padding-block-end:24px;align-self:flex-end}.v-timeline--horizontal.v-timeline .v-timeline-item:nth-child(2n+1) .v-timeline-item__opposite{grid-row:3;padding-block-start:24px}.v-timeline--vertical.v-timeline{grid-row-gap:24px;height:100%}.v-timeline--vertical.v-timeline .v-timeline-item:first-child .v-timeline-divider,.v-timeline--vertical.v-timeline .v-timeline-item:first-child .v-timeline-item__body,.v-timeline--vertical.v-timeline .v-timeline-item:first-child .v-timeline-item__opposite{padding-block-start:24px}.v-timeline--vertical.v-timeline .v-timeline-item:last-child .v-timeline-divider,.v-timeline--vertical.v-timeline .v-timeline-item:last-child .v-timeline-item__body,.v-timeline--vertical.v-timeline .v-timeline-item:last-child .v-timeline-item__opposite{padding-block-end:24px}.v-timeline--vertical.v-timeline .v-timeline-item:nth-child(2n) .v-timeline-item__body{grid-column:1;justify-self:flex-end;padding-inline-end:24px}.v-timeline--vertical.v-timeline .v-timeline-item:nth-child(2n) .v-timeline-item__opposite{grid-column:3;padding-inline-start:24px}.v-timeline--vertical.v-timeline .v-timeline-item:nth-child(2n+1) .v-timeline-item__body{grid-column:3;padding-inline-start:24px}.v-timeline--vertical.v-timeline .v-timeline-item:nth-child(2n+1) .v-timeline-item__opposite{grid-column:1;justify-self:flex-end;padding-inline-end:24px}.v-timeline-item{display:contents}.v-timeline-divider{position:relative;display:flex;align-items:center}.v-timeline--horizontal .v-timeline-divider{flex-direction:row;grid-row:2;width:100%}.v-timeline--vertical .v-timeline-divider{height:100%;flex-direction:column;grid-column:2}.v-timeline-divider__before{background:rgba(var(--v-border-color),var(--v-border-opacity));position:absolute}.v-timeline--horizontal .v-timeline-divider__before{height:var(--v-timeline-line-thickness);width:calc(var(--v-timeline-line-size-base) + 12px - var(--v-timeline-line-inset))}.v-timeline--horizontal .v-timeline-divider__before.v-locale--is-ltr,.v-locale--is-ltr .v-timeline--horizontal .v-timeline-divider__before{left:-12px;right:initial}.v-timeline--horizontal .v-timeline-divider__before.v-locale--is-rtl,.v-locale--is-rtl .v-timeline--horizontal .v-timeline-divider__before{right:-12px;left:initial}.v-timeline--vertical .v-timeline-divider__before{height:calc(var(--v-timeline-line-size-base) + 12px - var(--v-timeline-line-inset));width:var(--v-timeline-line-thickness);top:-12px}.v-timeline-divider__after{background:rgba(var(--v-border-color),var(--v-border-opacity));position:absolute}.v-timeline--horizontal .v-timeline-divider__after{height:var(--v-timeline-line-thickness);width:calc(var(--v-timeline-line-size-base) + 12px - var(--v-timeline-line-inset))}.v-timeline--horizontal .v-timeline-divider__after.v-locale--is-ltr,.v-locale--is-ltr .v-timeline--horizontal .v-timeline-divider__after{right:-12px;left:initial}.v-timeline--horizontal .v-timeline-divider__after.v-locale--is-rtl,.v-locale--is-rtl .v-timeline--horizontal .v-timeline-divider__after{left:-12px;right:initial}.v-timeline--vertical .v-timeline-divider__after{height:calc(var(--v-timeline-line-size-base) + 12px - var(--v-timeline-line-inset));width:var(--v-timeline-line-thickness);bottom:-12px}.v-timeline--vertical .v-timeline-item:first-child .v-timeline-divider__before{height:calc(var(--v-timeline-line-size-base) + 12px - var(--v-timeline-line-inset));top:0}.v-timeline--horizontal .v-timeline-item:first-child .v-timeline-divider__before{width:calc(var(--v-timeline-line-size-base) + 12px - var(--v-timeline-line-inset))}.v-timeline--horizontal .v-timeline-item:first-child .v-timeline-divider__before.v-locale--is-ltr,.v-locale--is-ltr .v-timeline--horizontal .v-timeline-item:first-child .v-timeline-divider__before{left:0;right:initial}.v-timeline--horizontal .v-timeline-item:first-child .v-timeline-divider__before.v-locale--is-rtl,.v-locale--is-rtl .v-timeline--horizontal .v-timeline-item:first-child .v-timeline-divider__before{right:0;left:initial}.v-timeline--vertical .v-timeline-item:first-child .v-timeline-divider__after{height:calc(var(--v-timeline-line-size-base) - var(--v-timeline-line-inset) + var(--v-timeline-line-size-offset))}.v-timeline--horizontal .v-timeline-item:first-child .v-timeline-divider__after{width:calc(var(--v-timeline-line-size-base) - var(--v-timeline-line-inset) + var(--v-timeline-line-size-offset))}.v-timeline--horizontal .v-timeline-item:first-child .v-timeline-divider__after.v-locale--is-ltr,.v-locale--is-ltr .v-timeline--horizontal .v-timeline-item:first-child .v-timeline-divider__after{right:-12px;left:initial}.v-timeline--horizontal .v-timeline-item:first-child .v-timeline-divider__after.v-locale--is-rtl,.v-locale--is-rtl .v-timeline--horizontal .v-timeline-item:first-child .v-timeline-divider__after{left:-12px;right:initial}.v-timeline--vertical .v-timeline-item:last-child .v-timeline-divider__before{height:calc(var(--v-timeline-line-size-base) - var(--v-timeline-line-inset) + var(--v-timeline-line-size-offset))}.v-timeline--horizontal .v-timeline-item:last-child .v-timeline-divider__before{width:calc(var(--v-timeline-line-size-base) - var(--v-timeline-line-inset) + var(--v-timeline-line-size-offset))}.v-timeline--vertical .v-timeline-item:last-child .v-timeline-divider__after{height:calc(var(--v-timeline-line-size-base) + 12px - var(--v-timeline-line-inset));bottom:0}.v-timeline--horizontal .v-timeline-item:last-child .v-timeline-divider__after{width:calc(var(--v-timeline-line-size-base) + 12px - var(--v-timeline-line-inset))}.v-timeline--horizontal .v-timeline-item:last-child .v-timeline-divider__after.v-locale--is-ltr,.v-locale--is-ltr .v-timeline--horizontal .v-timeline-item:last-child .v-timeline-divider__after{right:0;left:initial}.v-timeline--horizontal .v-timeline-item:last-child .v-timeline-divider__after.v-locale--is-rtl,.v-locale--is-rtl .v-timeline--horizontal .v-timeline-item:last-child .v-timeline-divider__after{left:0;right:initial}.v-timeline-divider__dot{z-index:1;flex-shrink:0;border-radius:50%;display:flex;justify-content:center;align-items:center;box-shadow:0 0 0 0 var(--v-shadow-key-umbra-opacity, rgba(0, 0, 0, .2)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .14)),0 0 0 0 var(--v-shadow-key-penumbra-opacity, rgba(0, 0, 0, .12))}.v-timeline-divider__dot--size-x-small{height:22px;width:22px}.v-timeline-divider__dot--size-x-small .v-timeline-divider__inner-dot{height:calc(100% - 6px);width:calc(100% - 6px)}.v-timeline-divider__dot--size-small{height:30px;width:30px}.v-timeline-divider__dot--size-small .v-timeline-divider__inner-dot{height:calc(100% - 8px);width:calc(100% - 8px)}.v-timeline-divider__dot--size-default{height:38px;width:38px}.v-timeline-divider__dot--size-default .v-timeline-divider__inner-dot{height:calc(100% - 8px);width:calc(100% - 8px)}.v-timeline-divider__dot--size-large{height:46px;width:46px}.v-timeline-divider__dot--size-large .v-timeline-divider__inner-dot{height:calc(100% - 8px);width:calc(100% - 8px)}.v-timeline-divider__dot--size-x-large{height:54px;width:54px}.v-timeline-divider__dot--size-x-large .v-timeline-divider__inner-dot{height:calc(100% - 10px);width:calc(100% - 10px)}.v-timeline-divider__inner-dot{align-items:center;border-radius:50%;display:flex;justify-content:center}.v-timeline--horizontal.v-timeline--justify-center{grid-template-rows:minmax(auto,50%) min-content minmax(auto,50%)}.v-timeline--vertical.v-timeline--justify-center{grid-template-columns:minmax(auto,50%) min-content minmax(auto,50%)}.v-timeline--horizontal.v-timeline--justify-auto{grid-template-rows:auto min-content auto}.v-timeline--vertical.v-timeline--justify-auto{grid-template-columns:auto min-content auto}.v-timeline--horizontal.v-timeline--density-comfortable{height:100%}.v-timeline--horizontal.v-timeline--density-comfortable.v-timeline--side-end{grid-template-rows:min-content min-content auto}.v-timeline--horizontal.v-timeline--density-comfortable.v-timeline--side-start{grid-template-rows:auto min-content min-content}.v-timeline--vertical.v-timeline--density-comfortable{width:100%}.v-timeline--vertical.v-timeline--density-comfortable.v-timeline--side-end{grid-template-columns:min-content min-content auto}.v-timeline--vertical.v-timeline--density-comfortable.v-timeline--side-start{grid-template-columns:auto min-content min-content}.v-timeline--horizontal.v-timeline--density-compact.v-timeline--side-end{grid-template-rows:0 min-content auto}.v-timeline--horizontal.v-timeline--density-compact.v-timeline--side-start{grid-template-rows:auto min-content 0}.v-timeline--horizontal.v-timeline--density-compact .v-timeline-item__body{grid-row:1}.v-timeline--vertical.v-timeline--density-compact.v-timeline--side-end{grid-template-columns:0 min-content auto}.v-timeline--vertical.v-timeline--density-compact.v-timeline--side-start{grid-template-columns:auto min-content 0}.v-timeline--vertical.v-timeline--density-compact .v-timeline-item__body{grid-column:3}.v-timeline--horizontal.v-timeline.v-timeline--side-end .v-timeline-item .v-timeline-item__body{grid-row:3;padding-block-end:initial;padding-block-start:24px}.v-timeline--horizontal.v-timeline.v-timeline--side-end .v-timeline-item .v-timeline-item__opposite{grid-row:1;padding-block-end:24px;padding-block-start:initial}.v-timeline--vertical.v-timeline.v-timeline--side-end .v-timeline-item .v-timeline-item__body{grid-column:3;padding-inline-start:24px;padding-inline-end:initial;justify-self:flex-start}.v-timeline--vertical.v-timeline.v-timeline--side-end .v-timeline-item .v-timeline-item__opposite{grid-column:1;justify-self:flex-end;padding-inline-end:24px;padding-inline-start:initial}.v-timeline--horizontal.v-timeline.v-timeline--side-start .v-timeline-item .v-timeline-item__body{grid-row:1;padding-block-end:24px;padding-block-start:initial}.v-timeline--horizontal.v-timeline.v-timeline--side-start .v-timeline-item .v-timeline-item__opposite{grid-row:3;padding-block-end:initial;padding-block-start:24px}.v-timeline--vertical.v-timeline.v-timeline--side-start .v-timeline-item .v-timeline-item__body{grid-column:1;justify-self:flex-end;padding-inline-end:24px}.v-timeline--vertical.v-timeline.v-timeline--side-start .v-timeline-item .v-timeline-item__opposite{grid-column:3;padding-inline-start:24px;justify-self:flex-start}.v-timeline-divider--fill-dot .v-timeline-divider__inner-dot{height:inherit;width:inherit}.v-timeline--truncate-line-start .v-timeline-item:first-child .v-timeline-divider__before{display:none}.v-timeline--truncate-line-end .v-timeline-item:last-child .v-timeline-divider__after{display:none}.v-timeline--align-center{--v-timeline-line-size-base: 50%;--v-timeline-line-size-offset: 0px}.v-timeline--horizontal.v-timeline--align-center{justify-items:center}.v-timeline--horizontal.v-timeline--align-center .v-timeline-divider{justify-content:center}.v-timeline--vertical.v-timeline--align-center{align-items:center}.v-timeline--vertical.v-timeline--align-center .v-timeline-divider{justify-content:center}.v-timeline--align-start{--v-timeline-line-size-base: 100%;--v-timeline-line-size-offset: 12px}.v-timeline--align-start .v-timeline-item:first-child .v-timeline-divider__before{--v-timeline-line-size-offset: 24px}.v-timeline--align-start .v-timeline-item:first-child .v-timeline-divider__after{--v-timeline-line-size-offset: -12px}.v-timeline--align-start .v-timeline-item:last-child .v-timeline-divider__after{--v-timeline-line-size-offset: 0px}.v-timeline--horizontal.v-timeline--align-start{justify-items:flex-start}.v-timeline--horizontal.v-timeline--align-start .v-timeline-divider{justify-content:flex-start}.v-timeline--horizontal.v-timeline--align-start .v-timeline-divider .v-timeline-divider__before{width:calc(var(--v-timeline-line-size-offset) + var(--v-timeline-dot-size) / 2 - var(--v-timeline-line-inset))}.v-timeline--horizontal.v-timeline--align-start .v-timeline-divider .v-timeline-divider__after{width:calc(var(--v-timeline-line-size-base) - var(--v-timeline-dot-size) / 2 + var(--v-timeline-line-size-offset) - var(--v-timeline-line-inset))}.v-timeline--vertical.v-timeline--align-start{align-items:flex-start}.v-timeline--vertical.v-timeline--align-start .v-timeline-divider{justify-content:flex-start}.v-timeline--vertical.v-timeline--align-start .v-timeline-divider .v-timeline-divider__before{height:calc(var(--v-timeline-line-size-offset) + var(--v-timeline-dot-size) / 2 - var(--v-timeline-line-inset))}.v-timeline--vertical.v-timeline--align-start .v-timeline-divider .v-timeline-divider__after{height:calc(var(--v-timeline-line-size-base) - var(--v-timeline-dot-size) / 2 + var(--v-timeline-line-size-offset) - var(--v-timeline-line-inset))}.v-timeline--truncate-line-start .v-timeline-item:first-child .v-timeline-divider__after{--v-timeline-line-size-offset: 12px}.v-timeline--vertical.v-timeline--truncate-line-start .v-timeline-item:first-child .v-timeline-divider,.v-timeline--vertical.v-timeline--truncate-line-start .v-timeline-item:first-child .v-timeline-item__body,.v-timeline--vertical.v-timeline--truncate-line-start .v-timeline-item:first-child .v-timeline-item__opposite{padding-block-start:0}.v-timeline--horizontal.v-timeline--truncate-line-start .v-timeline-item:first-child .v-timeline-divider,.v-timeline--horizontal.v-timeline--truncate-line-start .v-timeline-item:first-child .v-timeline-item__body,.v-timeline--horizontal.v-timeline--truncate-line-start .v-timeline-item:first-child .v-timeline-item__opposite{padding-inline-start:0}.v-timeline--truncate-line-end .v-timeline-item:last-child .v-timeline-divider__before{--v-timeline-line-size-offset: 12px}.v-timeline--vertical.v-timeline--truncate-line-end .v-timeline-item:last-child .v-timeline-divider,.v-timeline--vertical.v-timeline--truncate-line-end .v-timeline-item:last-child .v-timeline-item__body,.v-timeline--vertical.v-timeline--truncate-line-end .v-timeline-item:last-child .v-timeline-item__opposite{padding-block-end:0}.v-timeline--horizontal.v-timeline--truncate-line-end .v-timeline-item:last-child .v-timeline-divider,.v-timeline--horizontal.v-timeline--truncate-line-end .v-timeline-item:last-child .v-timeline-item__body,.v-timeline--horizontal.v-timeline--truncate-line-end .v-timeline-item:last-child .v-timeline-item__opposite{padding-inline-end:0}.v-tooltip .v-overlay__content{background:rgba(var(--v-theme-surface-variant),.7);color:rgb(var(--v-theme-on-surface-variant));border-radius:4px;font-size:.875rem;line-height:1.6;display:inline-block;padding:5px 16px;text-transform:initial;width:auto;opacity:1;pointer-events:none;transition-property:opacity,transform}.v-tooltip .v-overlay__content[class*=enter-active]{transition-timing-function:cubic-bezier(0,0,.2,1);transition-duration:.15s}.v-tooltip .v-overlay__content[class*=leave-active]{transition-timing-function:cubic-bezier(.4,0,1,1);transition-duration:75ms}@font-face{font-family:Material Design Icons;src:url(/assets/materialdesignicons-webfont-f5966bae.eot?v=7.1.96);src:url(/assets/materialdesignicons-webfont-f5966bae.eot?#iefix&v=7.1.96) format("embedded-opentype"),url(/assets/materialdesignicons-webfont-739dc70d.woff2?v=7.1.96) format("woff2"),url(/assets/materialdesignicons-webfont-6d5e4be4.woff?v=7.1.96) format("woff"),url(/assets/materialdesignicons-webfont-c02d41ce.ttf?v=7.1.96) format("truetype");font-weight:400;font-style:normal}.mdi:before,.mdi-set{display:inline-block;font: 24px/1 Material Design Icons;font-size:inherit;text-rendering:auto;line-height:inherit;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.mdi-ab-testing:before{content:"\f01c9"}.mdi-abacus:before{content:"\f16e0"}.mdi-abjad-arabic:before{content:"\f1328"}.mdi-abjad-hebrew:before{content:"\f1329"}.mdi-abugida-devanagari:before{content:"\f132a"}.mdi-abugida-thai:before{content:"\f132b"}.mdi-access-point:before{content:"\f0003"}.mdi-access-point-check:before{content:"\f1538"}.mdi-access-point-minus:before{content:"\f1539"}.mdi-access-point-network:before{content:"\f0002"}.mdi-access-point-network-off:before{content:"\f0be1"}.mdi-access-point-off:before{content:"\f1511"}.mdi-access-point-plus:before{content:"\f153a"}.mdi-access-point-remove:before{content:"\f153b"}.mdi-account:before{content:"\f0004"}.mdi-account-alert:before{content:"\f0005"}.mdi-account-alert-outline:before{content:"\f0b50"}.mdi-account-arrow-down:before{content:"\f1868"}.mdi-account-arrow-down-outline:before{content:"\f1869"}.mdi-account-arrow-left:before{content:"\f0b51"}.mdi-account-arrow-left-outline:before{content:"\f0b52"}.mdi-account-arrow-right:before{content:"\f0b53"}.mdi-account-arrow-right-outline:before{content:"\f0b54"}.mdi-account-arrow-up:before{content:"\f1867"}.mdi-account-arrow-up-outline:before{content:"\f186a"}.mdi-account-badge:before{content:"\f1b0a"}.mdi-account-badge-outline:before{content:"\f1b0b"}.mdi-account-box:before{content:"\f0006"}.mdi-account-box-multiple:before{content:"\f0934"}.mdi-account-box-multiple-outline:before{content:"\f100a"}.mdi-account-box-outline:before{content:"\f0007"}.mdi-account-cancel:before{content:"\f12df"}.mdi-account-cancel-outline:before{content:"\f12e0"}.mdi-account-card:before{content:"\f1ba4"}.mdi-account-card-outline:before{content:"\f1ba5"}.mdi-account-cash:before{content:"\f1097"}.mdi-account-cash-outline:before{content:"\f1098"}.mdi-account-check:before{content:"\f0008"}.mdi-account-check-outline:before{content:"\f0be2"}.mdi-account-child:before{content:"\f0a89"}.mdi-account-child-circle:before{content:"\f0a8a"}.mdi-account-child-outline:before{content:"\f10c8"}.mdi-account-circle:before{content:"\f0009"}.mdi-account-circle-outline:before{content:"\f0b55"}.mdi-account-clock:before{content:"\f0b56"}.mdi-account-clock-outline:before{content:"\f0b57"}.mdi-account-cog:before{content:"\f1370"}.mdi-account-cog-outline:before{content:"\f1371"}.mdi-account-convert:before{content:"\f000a"}.mdi-account-convert-outline:before{content:"\f1301"}.mdi-account-cowboy-hat:before{content:"\f0e9b"}.mdi-account-cowboy-hat-outline:before{content:"\f17f3"}.mdi-account-credit-card:before{content:"\f1ba6"}.mdi-account-credit-card-outline:before{content:"\f1ba7"}.mdi-account-details:before{content:"\f0631"}.mdi-account-details-outline:before{content:"\f1372"}.mdi-account-edit:before{content:"\f06bc"}.mdi-account-edit-outline:before{content:"\f0ffb"}.mdi-account-eye:before{content:"\f0420"}.mdi-account-eye-outline:before{content:"\f127b"}.mdi-account-filter:before{content:"\f0936"}.mdi-account-filter-outline:before{content:"\f0f9d"}.mdi-account-group:before{content:"\f0849"}.mdi-account-group-outline:before{content:"\f0b58"}.mdi-account-hard-hat:before{content:"\f05b5"}.mdi-account-hard-hat-outline:before{content:"\f1a1f"}.mdi-account-heart:before{content:"\f0899"}.mdi-account-heart-outline:before{content:"\f0be3"}.mdi-account-injury:before{content:"\f1815"}.mdi-account-injury-outline:before{content:"\f1816"}.mdi-account-key:before{content:"\f000b"}.mdi-account-key-outline:before{content:"\f0be4"}.mdi-account-lock:before{content:"\f115e"}.mdi-account-lock-open:before{content:"\f1960"}.mdi-account-lock-open-outline:before{content:"\f1961"}.mdi-account-lock-outline:before{content:"\f115f"}.mdi-account-minus:before{content:"\f000d"}.mdi-account-minus-outline:before{content:"\f0aec"}.mdi-account-multiple:before{content:"\f000e"}.mdi-account-multiple-check:before{content:"\f08c5"}.mdi-account-multiple-check-outline:before{content:"\f11fe"}.mdi-account-multiple-minus:before{content:"\f05d3"}.mdi-account-multiple-minus-outline:before{content:"\f0be5"}.mdi-account-multiple-outline:before{content:"\f000f"}.mdi-account-multiple-plus:before{content:"\f0010"}.mdi-account-multiple-plus-outline:before{content:"\f0800"}.mdi-account-multiple-remove:before{content:"\f120a"}.mdi-account-multiple-remove-outline:before{content:"\f120b"}.mdi-account-music:before{content:"\f0803"}.mdi-account-music-outline:before{content:"\f0ce9"}.mdi-account-network:before{content:"\f0011"}.mdi-account-network-off:before{content:"\f1af1"}.mdi-account-network-off-outline:before{content:"\f1af2"}.mdi-account-network-outline:before{content:"\f0be6"}.mdi-account-off:before{content:"\f0012"}.mdi-account-off-outline:before{content:"\f0be7"}.mdi-account-outline:before{content:"\f0013"}.mdi-account-plus:before{content:"\f0014"}.mdi-account-plus-outline:before{content:"\f0801"}.mdi-account-question:before{content:"\f0b59"}.mdi-account-question-outline:before{content:"\f0b5a"}.mdi-account-reactivate:before{content:"\f152b"}.mdi-account-reactivate-outline:before{content:"\f152c"}.mdi-account-remove:before{content:"\f0015"}.mdi-account-remove-outline:before{content:"\f0aed"}.mdi-account-school:before{content:"\f1a20"}.mdi-account-school-outline:before{content:"\f1a21"}.mdi-account-search:before{content:"\f0016"}.mdi-account-search-outline:before{content:"\f0935"}.mdi-account-settings:before{content:"\f0630"}.mdi-account-settings-outline:before{content:"\f10c9"}.mdi-account-star:before{content:"\f0017"}.mdi-account-star-outline:before{content:"\f0be8"}.mdi-account-supervisor:before{content:"\f0a8b"}.mdi-account-supervisor-circle:before{content:"\f0a8c"}.mdi-account-supervisor-circle-outline:before{content:"\f14ec"}.mdi-account-supervisor-outline:before{content:"\f112d"}.mdi-account-switch:before{content:"\f0019"}.mdi-account-switch-outline:before{content:"\f04cb"}.mdi-account-sync:before{content:"\f191b"}.mdi-account-sync-outline:before{content:"\f191c"}.mdi-account-tag:before{content:"\f1c1b"}.mdi-account-tag-outline:before{content:"\f1c1c"}.mdi-account-tie:before{content:"\f0ce3"}.mdi-account-tie-hat:before{content:"\f1898"}.mdi-account-tie-hat-outline:before{content:"\f1899"}.mdi-account-tie-outline:before{content:"\f10ca"}.mdi-account-tie-voice:before{content:"\f1308"}.mdi-account-tie-voice-off:before{content:"\f130a"}.mdi-account-tie-voice-off-outline:before{content:"\f130b"}.mdi-account-tie-voice-outline:before{content:"\f1309"}.mdi-account-tie-woman:before{content:"\f1a8c"}.mdi-account-voice:before{content:"\f05cb"}.mdi-account-voice-off:before{content:"\f0ed4"}.mdi-account-wrench:before{content:"\f189a"}.mdi-account-wrench-outline:before{content:"\f189b"}.mdi-adjust:before{content:"\f001a"}.mdi-advertisements:before{content:"\f192a"}.mdi-advertisements-off:before{content:"\f192b"}.mdi-air-conditioner:before{content:"\f001b"}.mdi-air-filter:before{content:"\f0d43"}.mdi-air-horn:before{content:"\f0dac"}.mdi-air-humidifier:before{content:"\f1099"}.mdi-air-humidifier-off:before{content:"\f1466"}.mdi-air-purifier:before{content:"\f0d44"}.mdi-air-purifier-off:before{content:"\f1b57"}.mdi-airbag:before{content:"\f0be9"}.mdi-airballoon:before{content:"\f001c"}.mdi-airballoon-outline:before{content:"\f100b"}.mdi-airplane:before{content:"\f001d"}.mdi-airplane-alert:before{content:"\f187a"}.mdi-airplane-check:before{content:"\f187b"}.mdi-airplane-clock:before{content:"\f187c"}.mdi-airplane-cog:before{content:"\f187d"}.mdi-airplane-edit:before{content:"\f187e"}.mdi-airplane-landing:before{content:"\f05d4"}.mdi-airplane-marker:before{content:"\f187f"}.mdi-airplane-minus:before{content:"\f1880"}.mdi-airplane-off:before{content:"\f001e"}.mdi-airplane-plus:before{content:"\f1881"}.mdi-airplane-remove:before{content:"\f1882"}.mdi-airplane-search:before{content:"\f1883"}.mdi-airplane-settings:before{content:"\f1884"}.mdi-airplane-takeoff:before{content:"\f05d5"}.mdi-airport:before{content:"\f084b"}.mdi-alarm:before{content:"\f0020"}.mdi-alarm-bell:before{content:"\f078e"}.mdi-alarm-check:before{content:"\f0021"}.mdi-alarm-light:before{content:"\f078f"}.mdi-alarm-light-off:before{content:"\f171e"}.mdi-alarm-light-off-outline:before{content:"\f171f"}.mdi-alarm-light-outline:before{content:"\f0bea"}.mdi-alarm-multiple:before{content:"\f0022"}.mdi-alarm-note:before{content:"\f0e71"}.mdi-alarm-note-off:before{content:"\f0e72"}.mdi-alarm-off:before{content:"\f0023"}.mdi-alarm-panel:before{content:"\f15c4"}.mdi-alarm-panel-outline:before{content:"\f15c5"}.mdi-alarm-plus:before{content:"\f0024"}.mdi-alarm-snooze:before{content:"\f068e"}.mdi-album:before{content:"\f0025"}.mdi-alert:before{content:"\f0026"}.mdi-alert-box:before{content:"\f0027"}.mdi-alert-box-outline:before{content:"\f0ce4"}.mdi-alert-circle:before{content:"\f0028"}.mdi-alert-circle-check:before{content:"\f11ed"}.mdi-alert-circle-check-outline:before{content:"\f11ee"}.mdi-alert-circle-outline:before{content:"\f05d6"}.mdi-alert-decagram:before{content:"\f06bd"}.mdi-alert-decagram-outline:before{content:"\f0ce5"}.mdi-alert-minus:before{content:"\f14bb"}.mdi-alert-minus-outline:before{content:"\f14be"}.mdi-alert-octagon:before{content:"\f0029"}.mdi-alert-octagon-outline:before{content:"\f0ce6"}.mdi-alert-octagram:before{content:"\f0767"}.mdi-alert-octagram-outline:before{content:"\f0ce7"}.mdi-alert-outline:before{content:"\f002a"}.mdi-alert-plus:before{content:"\f14ba"}.mdi-alert-plus-outline:before{content:"\f14bd"}.mdi-alert-remove:before{content:"\f14bc"}.mdi-alert-remove-outline:before{content:"\f14bf"}.mdi-alert-rhombus:before{content:"\f11ce"}.mdi-alert-rhombus-outline:before{content:"\f11cf"}.mdi-alien:before{content:"\f089a"}.mdi-alien-outline:before{content:"\f10cb"}.mdi-align-horizontal-center:before{content:"\f11c3"}.mdi-align-horizontal-distribute:before{content:"\f1962"}.mdi-align-horizontal-left:before{content:"\f11c2"}.mdi-align-horizontal-right:before{content:"\f11c4"}.mdi-align-vertical-bottom:before{content:"\f11c5"}.mdi-align-vertical-center:before{content:"\f11c6"}.mdi-align-vertical-distribute:before{content:"\f1963"}.mdi-align-vertical-top:before{content:"\f11c7"}.mdi-all-inclusive:before{content:"\f06be"}.mdi-all-inclusive-box:before{content:"\f188d"}.mdi-all-inclusive-box-outline:before{content:"\f188e"}.mdi-allergy:before{content:"\f1258"}.mdi-alpha:before{content:"\f002b"}.mdi-alpha-a:before{content:"\f0aee"}.mdi-alpha-a-box:before{content:"\f0b08"}.mdi-alpha-a-box-outline:before{content:"\f0beb"}.mdi-alpha-a-circle:before{content:"\f0bec"}.mdi-alpha-a-circle-outline:before{content:"\f0bed"}.mdi-alpha-b:before{content:"\f0aef"}.mdi-alpha-b-box:before{content:"\f0b09"}.mdi-alpha-b-box-outline:before{content:"\f0bee"}.mdi-alpha-b-circle:before{content:"\f0bef"}.mdi-alpha-b-circle-outline:before{content:"\f0bf0"}.mdi-alpha-c:before{content:"\f0af0"}.mdi-alpha-c-box:before{content:"\f0b0a"}.mdi-alpha-c-box-outline:before{content:"\f0bf1"}.mdi-alpha-c-circle:before{content:"\f0bf2"}.mdi-alpha-c-circle-outline:before{content:"\f0bf3"}.mdi-alpha-d:before{content:"\f0af1"}.mdi-alpha-d-box:before{content:"\f0b0b"}.mdi-alpha-d-box-outline:before{content:"\f0bf4"}.mdi-alpha-d-circle:before{content:"\f0bf5"}.mdi-alpha-d-circle-outline:before{content:"\f0bf6"}.mdi-alpha-e:before{content:"\f0af2"}.mdi-alpha-e-box:before{content:"\f0b0c"}.mdi-alpha-e-box-outline:before{content:"\f0bf7"}.mdi-alpha-e-circle:before{content:"\f0bf8"}.mdi-alpha-e-circle-outline:before{content:"\f0bf9"}.mdi-alpha-f:before{content:"\f0af3"}.mdi-alpha-f-box:before{content:"\f0b0d"}.mdi-alpha-f-box-outline:before{content:"\f0bfa"}.mdi-alpha-f-circle:before{content:"\f0bfb"}.mdi-alpha-f-circle-outline:before{content:"\f0bfc"}.mdi-alpha-g:before{content:"\f0af4"}.mdi-alpha-g-box:before{content:"\f0b0e"}.mdi-alpha-g-box-outline:before{content:"\f0bfd"}.mdi-alpha-g-circle:before{content:"\f0bfe"}.mdi-alpha-g-circle-outline:before{content:"\f0bff"}.mdi-alpha-h:before{content:"\f0af5"}.mdi-alpha-h-box:before{content:"\f0b0f"}.mdi-alpha-h-box-outline:before{content:"\f0c00"}.mdi-alpha-h-circle:before{content:"\f0c01"}.mdi-alpha-h-circle-outline:before{content:"\f0c02"}.mdi-alpha-i:before{content:"\f0af6"}.mdi-alpha-i-box:before{content:"\f0b10"}.mdi-alpha-i-box-outline:before{content:"\f0c03"}.mdi-alpha-i-circle:before{content:"\f0c04"}.mdi-alpha-i-circle-outline:before{content:"\f0c05"}.mdi-alpha-j:before{content:"\f0af7"}.mdi-alpha-j-box:before{content:"\f0b11"}.mdi-alpha-j-box-outline:before{content:"\f0c06"}.mdi-alpha-j-circle:before{content:"\f0c07"}.mdi-alpha-j-circle-outline:before{content:"\f0c08"}.mdi-alpha-k:before{content:"\f0af8"}.mdi-alpha-k-box:before{content:"\f0b12"}.mdi-alpha-k-box-outline:before{content:"\f0c09"}.mdi-alpha-k-circle:before{content:"\f0c0a"}.mdi-alpha-k-circle-outline:before{content:"\f0c0b"}.mdi-alpha-l:before{content:"\f0af9"}.mdi-alpha-l-box:before{content:"\f0b13"}.mdi-alpha-l-box-outline:before{content:"\f0c0c"}.mdi-alpha-l-circle:before{content:"\f0c0d"}.mdi-alpha-l-circle-outline:before{content:"\f0c0e"}.mdi-alpha-m:before{content:"\f0afa"}.mdi-alpha-m-box:before{content:"\f0b14"}.mdi-alpha-m-box-outline:before{content:"\f0c0f"}.mdi-alpha-m-circle:before{content:"\f0c10"}.mdi-alpha-m-circle-outline:before{content:"\f0c11"}.mdi-alpha-n:before{content:"\f0afb"}.mdi-alpha-n-box:before{content:"\f0b15"}.mdi-alpha-n-box-outline:before{content:"\f0c12"}.mdi-alpha-n-circle:before{content:"\f0c13"}.mdi-alpha-n-circle-outline:before{content:"\f0c14"}.mdi-alpha-o:before{content:"\f0afc"}.mdi-alpha-o-box:before{content:"\f0b16"}.mdi-alpha-o-box-outline:before{content:"\f0c15"}.mdi-alpha-o-circle:before{content:"\f0c16"}.mdi-alpha-o-circle-outline:before{content:"\f0c17"}.mdi-alpha-p:before{content:"\f0afd"}.mdi-alpha-p-box:before{content:"\f0b17"}.mdi-alpha-p-box-outline:before{content:"\f0c18"}.mdi-alpha-p-circle:before{content:"\f0c19"}.mdi-alpha-p-circle-outline:before{content:"\f0c1a"}.mdi-alpha-q:before{content:"\f0afe"}.mdi-alpha-q-box:before{content:"\f0b18"}.mdi-alpha-q-box-outline:before{content:"\f0c1b"}.mdi-alpha-q-circle:before{content:"\f0c1c"}.mdi-alpha-q-circle-outline:before{content:"\f0c1d"}.mdi-alpha-r:before{content:"\f0aff"}.mdi-alpha-r-box:before{content:"\f0b19"}.mdi-alpha-r-box-outline:before{content:"\f0c1e"}.mdi-alpha-r-circle:before{content:"\f0c1f"}.mdi-alpha-r-circle-outline:before{content:"\f0c20"}.mdi-alpha-s:before{content:"\f0b00"}.mdi-alpha-s-box:before{content:"\f0b1a"}.mdi-alpha-s-box-outline:before{content:"\f0c21"}.mdi-alpha-s-circle:before{content:"\f0c22"}.mdi-alpha-s-circle-outline:before{content:"\f0c23"}.mdi-alpha-t:before{content:"\f0b01"}.mdi-alpha-t-box:before{content:"\f0b1b"}.mdi-alpha-t-box-outline:before{content:"\f0c24"}.mdi-alpha-t-circle:before{content:"\f0c25"}.mdi-alpha-t-circle-outline:before{content:"\f0c26"}.mdi-alpha-u:before{content:"\f0b02"}.mdi-alpha-u-box:before{content:"\f0b1c"}.mdi-alpha-u-box-outline:before{content:"\f0c27"}.mdi-alpha-u-circle:before{content:"\f0c28"}.mdi-alpha-u-circle-outline:before{content:"\f0c29"}.mdi-alpha-v:before{content:"\f0b03"}.mdi-alpha-v-box:before{content:"\f0b1d"}.mdi-alpha-v-box-outline:before{content:"\f0c2a"}.mdi-alpha-v-circle:before{content:"\f0c2b"}.mdi-alpha-v-circle-outline:before{content:"\f0c2c"}.mdi-alpha-w:before{content:"\f0b04"}.mdi-alpha-w-box:before{content:"\f0b1e"}.mdi-alpha-w-box-outline:before{content:"\f0c2d"}.mdi-alpha-w-circle:before{content:"\f0c2e"}.mdi-alpha-w-circle-outline:before{content:"\f0c2f"}.mdi-alpha-x:before{content:"\f0b05"}.mdi-alpha-x-box:before{content:"\f0b1f"}.mdi-alpha-x-box-outline:before{content:"\f0c30"}.mdi-alpha-x-circle:before{content:"\f0c31"}.mdi-alpha-x-circle-outline:before{content:"\f0c32"}.mdi-alpha-y:before{content:"\f0b06"}.mdi-alpha-y-box:before{content:"\f0b20"}.mdi-alpha-y-box-outline:before{content:"\f0c33"}.mdi-alpha-y-circle:before{content:"\f0c34"}.mdi-alpha-y-circle-outline:before{content:"\f0c35"}.mdi-alpha-z:before{content:"\f0b07"}.mdi-alpha-z-box:before{content:"\f0b21"}.mdi-alpha-z-box-outline:before{content:"\f0c36"}.mdi-alpha-z-circle:before{content:"\f0c37"}.mdi-alpha-z-circle-outline:before{content:"\f0c38"}.mdi-alphabet-aurebesh:before{content:"\f132c"}.mdi-alphabet-cyrillic:before{content:"\f132d"}.mdi-alphabet-greek:before{content:"\f132e"}.mdi-alphabet-latin:before{content:"\f132f"}.mdi-alphabet-piqad:before{content:"\f1330"}.mdi-alphabet-tengwar:before{content:"\f1337"}.mdi-alphabetical:before{content:"\f002c"}.mdi-alphabetical-off:before{content:"\f100c"}.mdi-alphabetical-variant:before{content:"\f100d"}.mdi-alphabetical-variant-off:before{content:"\f100e"}.mdi-altimeter:before{content:"\f05d7"}.mdi-ambulance:before{content:"\f002f"}.mdi-ammunition:before{content:"\f0ce8"}.mdi-ampersand:before{content:"\f0a8d"}.mdi-amplifier:before{content:"\f0030"}.mdi-amplifier-off:before{content:"\f11b5"}.mdi-anchor:before{content:"\f0031"}.mdi-android:before{content:"\f0032"}.mdi-android-studio:before{content:"\f0034"}.mdi-angle-acute:before{content:"\f0937"}.mdi-angle-obtuse:before{content:"\f0938"}.mdi-angle-right:before{content:"\f0939"}.mdi-angular:before{content:"\f06b2"}.mdi-angularjs:before{content:"\f06bf"}.mdi-animation:before{content:"\f05d8"}.mdi-animation-outline:before{content:"\f0a8f"}.mdi-animation-play:before{content:"\f093a"}.mdi-animation-play-outline:before{content:"\f0a90"}.mdi-ansible:before{content:"\f109a"}.mdi-antenna:before{content:"\f1119"}.mdi-anvil:before{content:"\f089b"}.mdi-apache-kafka:before{content:"\f100f"}.mdi-api:before{content:"\f109b"}.mdi-api-off:before{content:"\f1257"}.mdi-apple:before{content:"\f0035"}.mdi-apple-finder:before{content:"\f0036"}.mdi-apple-icloud:before{content:"\f0038"}.mdi-apple-ios:before{content:"\f0037"}.mdi-apple-keyboard-caps:before{content:"\f0632"}.mdi-apple-keyboard-command:before{content:"\f0633"}.mdi-apple-keyboard-control:before{content:"\f0634"}.mdi-apple-keyboard-option:before{content:"\f0635"}.mdi-apple-keyboard-shift:before{content:"\f0636"}.mdi-apple-safari:before{content:"\f0039"}.mdi-application:before{content:"\f08c6"}.mdi-application-array:before{content:"\f10f5"}.mdi-application-array-outline:before{content:"\f10f6"}.mdi-application-braces:before{content:"\f10f7"}.mdi-application-braces-outline:before{content:"\f10f8"}.mdi-application-brackets:before{content:"\f0c8b"}.mdi-application-brackets-outline:before{content:"\f0c8c"}.mdi-application-cog:before{content:"\f0675"}.mdi-application-cog-outline:before{content:"\f1577"}.mdi-application-edit:before{content:"\f00ae"}.mdi-application-edit-outline:before{content:"\f0619"}.mdi-application-export:before{content:"\f0dad"}.mdi-application-import:before{content:"\f0dae"}.mdi-application-outline:before{content:"\f0614"}.mdi-application-parentheses:before{content:"\f10f9"}.mdi-application-parentheses-outline:before{content:"\f10fa"}.mdi-application-settings:before{content:"\f0b60"}.mdi-application-settings-outline:before{content:"\f1555"}.mdi-application-variable:before{content:"\f10fb"}.mdi-application-variable-outline:before{content:"\f10fc"}.mdi-approximately-equal:before{content:"\f0f9e"}.mdi-approximately-equal-box:before{content:"\f0f9f"}.mdi-apps:before{content:"\f003b"}.mdi-apps-box:before{content:"\f0d46"}.mdi-arch:before{content:"\f08c7"}.mdi-archive:before{content:"\f003c"}.mdi-archive-alert:before{content:"\f14fd"}.mdi-archive-alert-outline:before{content:"\f14fe"}.mdi-archive-arrow-down:before{content:"\f1259"}.mdi-archive-arrow-down-outline:before{content:"\f125a"}.mdi-archive-arrow-up:before{content:"\f125b"}.mdi-archive-arrow-up-outline:before{content:"\f125c"}.mdi-archive-cancel:before{content:"\f174b"}.mdi-archive-cancel-outline:before{content:"\f174c"}.mdi-archive-check:before{content:"\f174d"}.mdi-archive-check-outline:before{content:"\f174e"}.mdi-archive-clock:before{content:"\f174f"}.mdi-archive-clock-outline:before{content:"\f1750"}.mdi-archive-cog:before{content:"\f1751"}.mdi-archive-cog-outline:before{content:"\f1752"}.mdi-archive-edit:before{content:"\f1753"}.mdi-archive-edit-outline:before{content:"\f1754"}.mdi-archive-eye:before{content:"\f1755"}.mdi-archive-eye-outline:before{content:"\f1756"}.mdi-archive-lock:before{content:"\f1757"}.mdi-archive-lock-open:before{content:"\f1758"}.mdi-archive-lock-open-outline:before{content:"\f1759"}.mdi-archive-lock-outline:before{content:"\f175a"}.mdi-archive-marker:before{content:"\f175b"}.mdi-archive-marker-outline:before{content:"\f175c"}.mdi-archive-minus:before{content:"\f175d"}.mdi-archive-minus-outline:before{content:"\f175e"}.mdi-archive-music:before{content:"\f175f"}.mdi-archive-music-outline:before{content:"\f1760"}.mdi-archive-off:before{content:"\f1761"}.mdi-archive-off-outline:before{content:"\f1762"}.mdi-archive-outline:before{content:"\f120e"}.mdi-archive-plus:before{content:"\f1763"}.mdi-archive-plus-outline:before{content:"\f1764"}.mdi-archive-refresh:before{content:"\f1765"}.mdi-archive-refresh-outline:before{content:"\f1766"}.mdi-archive-remove:before{content:"\f1767"}.mdi-archive-remove-outline:before{content:"\f1768"}.mdi-archive-search:before{content:"\f1769"}.mdi-archive-search-outline:before{content:"\f176a"}.mdi-archive-settings:before{content:"\f176b"}.mdi-archive-settings-outline:before{content:"\f176c"}.mdi-archive-star:before{content:"\f176d"}.mdi-archive-star-outline:before{content:"\f176e"}.mdi-archive-sync:before{content:"\f176f"}.mdi-archive-sync-outline:before{content:"\f1770"}.mdi-arm-flex:before{content:"\f0fd7"}.mdi-arm-flex-outline:before{content:"\f0fd6"}.mdi-arrange-bring-forward:before{content:"\f003d"}.mdi-arrange-bring-to-front:before{content:"\f003e"}.mdi-arrange-send-backward:before{content:"\f003f"}.mdi-arrange-send-to-back:before{content:"\f0040"}.mdi-arrow-all:before{content:"\f0041"}.mdi-arrow-bottom-left:before{content:"\f0042"}.mdi-arrow-bottom-left-bold-box:before{content:"\f1964"}.mdi-arrow-bottom-left-bold-box-outline:before{content:"\f1965"}.mdi-arrow-bottom-left-bold-outline:before{content:"\f09b7"}.mdi-arrow-bottom-left-thick:before{content:"\f09b8"}.mdi-arrow-bottom-left-thin:before{content:"\f19b6"}.mdi-arrow-bottom-left-thin-circle-outline:before{content:"\f1596"}.mdi-arrow-bottom-right:before{content:"\f0043"}.mdi-arrow-bottom-right-bold-box:before{content:"\f1966"}.mdi-arrow-bottom-right-bold-box-outline:before{content:"\f1967"}.mdi-arrow-bottom-right-bold-outline:before{content:"\f09b9"}.mdi-arrow-bottom-right-thick:before{content:"\f09ba"}.mdi-arrow-bottom-right-thin:before{content:"\f19b7"}.mdi-arrow-bottom-right-thin-circle-outline:before{content:"\f1595"}.mdi-arrow-collapse:before{content:"\f0615"}.mdi-arrow-collapse-all:before{content:"\f0044"}.mdi-arrow-collapse-down:before{content:"\f0792"}.mdi-arrow-collapse-horizontal:before{content:"\f084c"}.mdi-arrow-collapse-left:before{content:"\f0793"}.mdi-arrow-collapse-right:before{content:"\f0794"}.mdi-arrow-collapse-up:before{content:"\f0795"}.mdi-arrow-collapse-vertical:before{content:"\f084d"}.mdi-arrow-decision:before{content:"\f09bb"}.mdi-arrow-decision-auto:before{content:"\f09bc"}.mdi-arrow-decision-auto-outline:before{content:"\f09bd"}.mdi-arrow-decision-outline:before{content:"\f09be"}.mdi-arrow-down:before{content:"\f0045"}.mdi-arrow-down-bold:before{content:"\f072e"}.mdi-arrow-down-bold-box:before{content:"\f072f"}.mdi-arrow-down-bold-box-outline:before{content:"\f0730"}.mdi-arrow-down-bold-circle:before{content:"\f0047"}.mdi-arrow-down-bold-circle-outline:before{content:"\f0048"}.mdi-arrow-down-bold-hexagon-outline:before{content:"\f0049"}.mdi-arrow-down-bold-outline:before{content:"\f09bf"}.mdi-arrow-down-box:before{content:"\f06c0"}.mdi-arrow-down-circle:before{content:"\f0cdb"}.mdi-arrow-down-circle-outline:before{content:"\f0cdc"}.mdi-arrow-down-drop-circle:before{content:"\f004a"}.mdi-arrow-down-drop-circle-outline:before{content:"\f004b"}.mdi-arrow-down-left:before{content:"\f17a1"}.mdi-arrow-down-left-bold:before{content:"\f17a2"}.mdi-arrow-down-right:before{content:"\f17a3"}.mdi-arrow-down-right-bold:before{content:"\f17a4"}.mdi-arrow-down-thick:before{content:"\f0046"}.mdi-arrow-down-thin:before{content:"\f19b3"}.mdi-arrow-down-thin-circle-outline:before{content:"\f1599"}.mdi-arrow-expand:before{content:"\f0616"}.mdi-arrow-expand-all:before{content:"\f004c"}.mdi-arrow-expand-down:before{content:"\f0796"}.mdi-arrow-expand-horizontal:before{content:"\f084e"}.mdi-arrow-expand-left:before{content:"\f0797"}.mdi-arrow-expand-right:before{content:"\f0798"}.mdi-arrow-expand-up:before{content:"\f0799"}.mdi-arrow-expand-vertical:before{content:"\f084f"}.mdi-arrow-horizontal-lock:before{content:"\f115b"}.mdi-arrow-left:before{content:"\f004d"}.mdi-arrow-left-bold:before{content:"\f0731"}.mdi-arrow-left-bold-box:before{content:"\f0732"}.mdi-arrow-left-bold-box-outline:before{content:"\f0733"}.mdi-arrow-left-bold-circle:before{content:"\f004f"}.mdi-arrow-left-bold-circle-outline:before{content:"\f0050"}.mdi-arrow-left-bold-hexagon-outline:before{content:"\f0051"}.mdi-arrow-left-bold-outline:before{content:"\f09c0"}.mdi-arrow-left-bottom:before{content:"\f17a5"}.mdi-arrow-left-bottom-bold:before{content:"\f17a6"}.mdi-arrow-left-box:before{content:"\f06c1"}.mdi-arrow-left-circle:before{content:"\f0cdd"}.mdi-arrow-left-circle-outline:before{content:"\f0cde"}.mdi-arrow-left-drop-circle:before{content:"\f0052"}.mdi-arrow-left-drop-circle-outline:before{content:"\f0053"}.mdi-arrow-left-right:before{content:"\f0e73"}.mdi-arrow-left-right-bold:before{content:"\f0e74"}.mdi-arrow-left-right-bold-outline:before{content:"\f09c1"}.mdi-arrow-left-thick:before{content:"\f004e"}.mdi-arrow-left-thin:before{content:"\f19b1"}.mdi-arrow-left-thin-circle-outline:before{content:"\f159a"}.mdi-arrow-left-top:before{content:"\f17a7"}.mdi-arrow-left-top-bold:before{content:"\f17a8"}.mdi-arrow-projectile:before{content:"\f1840"}.mdi-arrow-projectile-multiple:before{content:"\f183f"}.mdi-arrow-right:before{content:"\f0054"}.mdi-arrow-right-bold:before{content:"\f0734"}.mdi-arrow-right-bold-box:before{content:"\f0735"}.mdi-arrow-right-bold-box-outline:before{content:"\f0736"}.mdi-arrow-right-bold-circle:before{content:"\f0056"}.mdi-arrow-right-bold-circle-outline:before{content:"\f0057"}.mdi-arrow-right-bold-hexagon-outline:before{content:"\f0058"}.mdi-arrow-right-bold-outline:before{content:"\f09c2"}.mdi-arrow-right-bottom:before{content:"\f17a9"}.mdi-arrow-right-bottom-bold:before{content:"\f17aa"}.mdi-arrow-right-box:before{content:"\f06c2"}.mdi-arrow-right-circle:before{content:"\f0cdf"}.mdi-arrow-right-circle-outline:before{content:"\f0ce0"}.mdi-arrow-right-drop-circle:before{content:"\f0059"}.mdi-arrow-right-drop-circle-outline:before{content:"\f005a"}.mdi-arrow-right-thick:before{content:"\f0055"}.mdi-arrow-right-thin:before{content:"\f19b0"}.mdi-arrow-right-thin-circle-outline:before{content:"\f1598"}.mdi-arrow-right-top:before{content:"\f17ab"}.mdi-arrow-right-top-bold:before{content:"\f17ac"}.mdi-arrow-split-horizontal:before{content:"\f093b"}.mdi-arrow-split-vertical:before{content:"\f093c"}.mdi-arrow-top-left:before{content:"\f005b"}.mdi-arrow-top-left-bold-box:before{content:"\f1968"}.mdi-arrow-top-left-bold-box-outline:before{content:"\f1969"}.mdi-arrow-top-left-bold-outline:before{content:"\f09c3"}.mdi-arrow-top-left-bottom-right:before{content:"\f0e75"}.mdi-arrow-top-left-bottom-right-bold:before{content:"\f0e76"}.mdi-arrow-top-left-thick:before{content:"\f09c4"}.mdi-arrow-top-left-thin:before{content:"\f19b5"}.mdi-arrow-top-left-thin-circle-outline:before{content:"\f1593"}.mdi-arrow-top-right:before{content:"\f005c"}.mdi-arrow-top-right-bold-box:before{content:"\f196a"}.mdi-arrow-top-right-bold-box-outline:before{content:"\f196b"}.mdi-arrow-top-right-bold-outline:before{content:"\f09c5"}.mdi-arrow-top-right-bottom-left:before{content:"\f0e77"}.mdi-arrow-top-right-bottom-left-bold:before{content:"\f0e78"}.mdi-arrow-top-right-thick:before{content:"\f09c6"}.mdi-arrow-top-right-thin:before{content:"\f19b4"}.mdi-arrow-top-right-thin-circle-outline:before{content:"\f1594"}.mdi-arrow-u-down-left:before{content:"\f17ad"}.mdi-arrow-u-down-left-bold:before{content:"\f17ae"}.mdi-arrow-u-down-right:before{content:"\f17af"}.mdi-arrow-u-down-right-bold:before{content:"\f17b0"}.mdi-arrow-u-left-bottom:before{content:"\f17b1"}.mdi-arrow-u-left-bottom-bold:before{content:"\f17b2"}.mdi-arrow-u-left-top:before{content:"\f17b3"}.mdi-arrow-u-left-top-bold:before{content:"\f17b4"}.mdi-arrow-u-right-bottom:before{content:"\f17b5"}.mdi-arrow-u-right-bottom-bold:before{content:"\f17b6"}.mdi-arrow-u-right-top:before{content:"\f17b7"}.mdi-arrow-u-right-top-bold:before{content:"\f17b8"}.mdi-arrow-u-up-left:before{content:"\f17b9"}.mdi-arrow-u-up-left-bold:before{content:"\f17ba"}.mdi-arrow-u-up-right:before{content:"\f17bb"}.mdi-arrow-u-up-right-bold:before{content:"\f17bc"}.mdi-arrow-up:before{content:"\f005d"}.mdi-arrow-up-bold:before{content:"\f0737"}.mdi-arrow-up-bold-box:before{content:"\f0738"}.mdi-arrow-up-bold-box-outline:before{content:"\f0739"}.mdi-arrow-up-bold-circle:before{content:"\f005f"}.mdi-arrow-up-bold-circle-outline:before{content:"\f0060"}.mdi-arrow-up-bold-hexagon-outline:before{content:"\f0061"}.mdi-arrow-up-bold-outline:before{content:"\f09c7"}.mdi-arrow-up-box:before{content:"\f06c3"}.mdi-arrow-up-circle:before{content:"\f0ce1"}.mdi-arrow-up-circle-outline:before{content:"\f0ce2"}.mdi-arrow-up-down:before{content:"\f0e79"}.mdi-arrow-up-down-bold:before{content:"\f0e7a"}.mdi-arrow-up-down-bold-outline:before{content:"\f09c8"}.mdi-arrow-up-drop-circle:before{content:"\f0062"}.mdi-arrow-up-drop-circle-outline:before{content:"\f0063"}.mdi-arrow-up-left:before{content:"\f17bd"}.mdi-arrow-up-left-bold:before{content:"\f17be"}.mdi-arrow-up-right:before{content:"\f17bf"}.mdi-arrow-up-right-bold:before{content:"\f17c0"}.mdi-arrow-up-thick:before{content:"\f005e"}.mdi-arrow-up-thin:before{content:"\f19b2"}.mdi-arrow-up-thin-circle-outline:before{content:"\f1597"}.mdi-arrow-vertical-lock:before{content:"\f115c"}.mdi-artboard:before{content:"\f1b9a"}.mdi-artstation:before{content:"\f0b5b"}.mdi-aspect-ratio:before{content:"\f0a24"}.mdi-assistant:before{content:"\f0064"}.mdi-asterisk:before{content:"\f06c4"}.mdi-asterisk-circle-outline:before{content:"\f1a27"}.mdi-at:before{content:"\f0065"}.mdi-atlassian:before{content:"\f0804"}.mdi-atm:before{content:"\f0d47"}.mdi-atom:before{content:"\f0768"}.mdi-atom-variant:before{content:"\f0e7b"}.mdi-attachment:before{content:"\f0066"}.mdi-attachment-check:before{content:"\f1ac1"}.mdi-attachment-lock:before{content:"\f19c4"}.mdi-attachment-minus:before{content:"\f1ac2"}.mdi-attachment-off:before{content:"\f1ac3"}.mdi-attachment-plus:before{content:"\f1ac4"}.mdi-attachment-remove:before{content:"\f1ac5"}.mdi-atv:before{content:"\f1b70"}.mdi-audio-input-rca:before{content:"\f186b"}.mdi-audio-input-stereo-minijack:before{content:"\f186c"}.mdi-audio-input-xlr:before{content:"\f186d"}.mdi-audio-video:before{content:"\f093d"}.mdi-audio-video-off:before{content:"\f11b6"}.mdi-augmented-reality:before{content:"\f0850"}.mdi-aurora:before{content:"\f1bb9"}.mdi-auto-download:before{content:"\f137e"}.mdi-auto-fix:before{content:"\f0068"}.mdi-auto-upload:before{content:"\f0069"}.mdi-autorenew:before{content:"\f006a"}.mdi-autorenew-off:before{content:"\f19e7"}.mdi-av-timer:before{content:"\f006b"}.mdi-awning:before{content:"\f1b87"}.mdi-awning-outline:before{content:"\f1b88"}.mdi-aws:before{content:"\f0e0f"}.mdi-axe:before{content:"\f08c8"}.mdi-axe-battle:before{content:"\f1842"}.mdi-axis:before{content:"\f0d48"}.mdi-axis-arrow:before{content:"\f0d49"}.mdi-axis-arrow-info:before{content:"\f140e"}.mdi-axis-arrow-lock:before{content:"\f0d4a"}.mdi-axis-lock:before{content:"\f0d4b"}.mdi-axis-x-arrow:before{content:"\f0d4c"}.mdi-axis-x-arrow-lock:before{content:"\f0d4d"}.mdi-axis-x-rotate-clockwise:before{content:"\f0d4e"}.mdi-axis-x-rotate-counterclockwise:before{content:"\f0d4f"}.mdi-axis-x-y-arrow-lock:before{content:"\f0d50"}.mdi-axis-y-arrow:before{content:"\f0d51"}.mdi-axis-y-arrow-lock:before{content:"\f0d52"}.mdi-axis-y-rotate-clockwise:before{content:"\f0d53"}.mdi-axis-y-rotate-counterclockwise:before{content:"\f0d54"}.mdi-axis-z-arrow:before{content:"\f0d55"}.mdi-axis-z-arrow-lock:before{content:"\f0d56"}.mdi-axis-z-rotate-clockwise:before{content:"\f0d57"}.mdi-axis-z-rotate-counterclockwise:before{content:"\f0d58"}.mdi-babel:before{content:"\f0a25"}.mdi-baby:before{content:"\f006c"}.mdi-baby-bottle:before{content:"\f0f39"}.mdi-baby-bottle-outline:before{content:"\f0f3a"}.mdi-baby-buggy:before{content:"\f13e0"}.mdi-baby-buggy-off:before{content:"\f1af3"}.mdi-baby-carriage:before{content:"\f068f"}.mdi-baby-carriage-off:before{content:"\f0fa0"}.mdi-baby-face:before{content:"\f0e7c"}.mdi-baby-face-outline:before{content:"\f0e7d"}.mdi-backburger:before{content:"\f006d"}.mdi-backspace:before{content:"\f006e"}.mdi-backspace-outline:before{content:"\f0b5c"}.mdi-backspace-reverse:before{content:"\f0e7e"}.mdi-backspace-reverse-outline:before{content:"\f0e7f"}.mdi-backup-restore:before{content:"\f006f"}.mdi-bacteria:before{content:"\f0ed5"}.mdi-bacteria-outline:before{content:"\f0ed6"}.mdi-badge-account:before{content:"\f0da7"}.mdi-badge-account-alert:before{content:"\f0da8"}.mdi-badge-account-alert-outline:before{content:"\f0da9"}.mdi-badge-account-horizontal:before{content:"\f0e0d"}.mdi-badge-account-horizontal-outline:before{content:"\f0e0e"}.mdi-badge-account-outline:before{content:"\f0daa"}.mdi-badminton:before{content:"\f0851"}.mdi-bag-carry-on:before{content:"\f0f3b"}.mdi-bag-carry-on-check:before{content:"\f0d65"}.mdi-bag-carry-on-off:before{content:"\f0f3c"}.mdi-bag-checked:before{content:"\f0f3d"}.mdi-bag-personal:before{content:"\f0e10"}.mdi-bag-personal-off:before{content:"\f0e11"}.mdi-bag-personal-off-outline:before{content:"\f0e12"}.mdi-bag-personal-outline:before{content:"\f0e13"}.mdi-bag-personal-tag:before{content:"\f1b0c"}.mdi-bag-personal-tag-outline:before{content:"\f1b0d"}.mdi-bag-suitcase:before{content:"\f158b"}.mdi-bag-suitcase-off:before{content:"\f158d"}.mdi-bag-suitcase-off-outline:before{content:"\f158e"}.mdi-bag-suitcase-outline:before{content:"\f158c"}.mdi-baguette:before{content:"\f0f3e"}.mdi-balcony:before{content:"\f1817"}.mdi-balloon:before{content:"\f0a26"}.mdi-ballot:before{content:"\f09c9"}.mdi-ballot-outline:before{content:"\f09ca"}.mdi-ballot-recount:before{content:"\f0c39"}.mdi-ballot-recount-outline:before{content:"\f0c3a"}.mdi-bandage:before{content:"\f0daf"}.mdi-bank:before{content:"\f0070"}.mdi-bank-check:before{content:"\f1655"}.mdi-bank-circle:before{content:"\f1c03"}.mdi-bank-circle-outline:before{content:"\f1c04"}.mdi-bank-minus:before{content:"\f0db0"}.mdi-bank-off:before{content:"\f1656"}.mdi-bank-off-outline:before{content:"\f1657"}.mdi-bank-outline:before{content:"\f0e80"}.mdi-bank-plus:before{content:"\f0db1"}.mdi-bank-remove:before{content:"\f0db2"}.mdi-bank-transfer:before{content:"\f0a27"}.mdi-bank-transfer-in:before{content:"\f0a28"}.mdi-bank-transfer-out:before{content:"\f0a29"}.mdi-barcode:before{content:"\f0071"}.mdi-barcode-off:before{content:"\f1236"}.mdi-barcode-scan:before{content:"\f0072"}.mdi-barley:before{content:"\f0073"}.mdi-barley-off:before{content:"\f0b5d"}.mdi-barn:before{content:"\f0b5e"}.mdi-barrel:before{content:"\f0074"}.mdi-barrel-outline:before{content:"\f1a28"}.mdi-baseball:before{content:"\f0852"}.mdi-baseball-bat:before{content:"\f0853"}.mdi-baseball-diamond:before{content:"\f15ec"}.mdi-baseball-diamond-outline:before{content:"\f15ed"}.mdi-bash:before{content:"\f1183"}.mdi-basket:before{content:"\f0076"}.mdi-basket-check:before{content:"\f18e5"}.mdi-basket-check-outline:before{content:"\f18e6"}.mdi-basket-fill:before{content:"\f0077"}.mdi-basket-minus:before{content:"\f1523"}.mdi-basket-minus-outline:before{content:"\f1524"}.mdi-basket-off:before{content:"\f1525"}.mdi-basket-off-outline:before{content:"\f1526"}.mdi-basket-outline:before{content:"\f1181"}.mdi-basket-plus:before{content:"\f1527"}.mdi-basket-plus-outline:before{content:"\f1528"}.mdi-basket-remove:before{content:"\f1529"}.mdi-basket-remove-outline:before{content:"\f152a"}.mdi-basket-unfill:before{content:"\f0078"}.mdi-basketball:before{content:"\f0806"}.mdi-basketball-hoop:before{content:"\f0c3b"}.mdi-basketball-hoop-outline:before{content:"\f0c3c"}.mdi-bat:before{content:"\f0b5f"}.mdi-bathtub:before{content:"\f1818"}.mdi-bathtub-outline:before{content:"\f1819"}.mdi-battery:before{content:"\f0079"}.mdi-battery-10:before{content:"\f007a"}.mdi-battery-10-bluetooth:before{content:"\f093e"}.mdi-battery-20:before{content:"\f007b"}.mdi-battery-20-bluetooth:before{content:"\f093f"}.mdi-battery-30:before{content:"\f007c"}.mdi-battery-30-bluetooth:before{content:"\f0940"}.mdi-battery-40:before{content:"\f007d"}.mdi-battery-40-bluetooth:before{content:"\f0941"}.mdi-battery-50:before{content:"\f007e"}.mdi-battery-50-bluetooth:before{content:"\f0942"}.mdi-battery-60:before{content:"\f007f"}.mdi-battery-60-bluetooth:before{content:"\f0943"}.mdi-battery-70:before{content:"\f0080"}.mdi-battery-70-bluetooth:before{content:"\f0944"}.mdi-battery-80:before{content:"\f0081"}.mdi-battery-80-bluetooth:before{content:"\f0945"}.mdi-battery-90:before{content:"\f0082"}.mdi-battery-90-bluetooth:before{content:"\f0946"}.mdi-battery-alert:before{content:"\f0083"}.mdi-battery-alert-bluetooth:before{content:"\f0947"}.mdi-battery-alert-variant:before{content:"\f10cc"}.mdi-battery-alert-variant-outline:before{content:"\f10cd"}.mdi-battery-arrow-down:before{content:"\f17de"}.mdi-battery-arrow-down-outline:before{content:"\f17df"}.mdi-battery-arrow-up:before{content:"\f17e0"}.mdi-battery-arrow-up-outline:before{content:"\f17e1"}.mdi-battery-bluetooth:before{content:"\f0948"}.mdi-battery-bluetooth-variant:before{content:"\f0949"}.mdi-battery-charging:before{content:"\f0084"}.mdi-battery-charging-10:before{content:"\f089c"}.mdi-battery-charging-100:before{content:"\f0085"}.mdi-battery-charging-20:before{content:"\f0086"}.mdi-battery-charging-30:before{content:"\f0087"}.mdi-battery-charging-40:before{content:"\f0088"}.mdi-battery-charging-50:before{content:"\f089d"}.mdi-battery-charging-60:before{content:"\f0089"}.mdi-battery-charging-70:before{content:"\f089e"}.mdi-battery-charging-80:before{content:"\f008a"}.mdi-battery-charging-90:before{content:"\f008b"}.mdi-battery-charging-high:before{content:"\f12a6"}.mdi-battery-charging-low:before{content:"\f12a4"}.mdi-battery-charging-medium:before{content:"\f12a5"}.mdi-battery-charging-outline:before{content:"\f089f"}.mdi-battery-charging-wireless:before{content:"\f0807"}.mdi-battery-charging-wireless-10:before{content:"\f0808"}.mdi-battery-charging-wireless-20:before{content:"\f0809"}.mdi-battery-charging-wireless-30:before{content:"\f080a"}.mdi-battery-charging-wireless-40:before{content:"\f080b"}.mdi-battery-charging-wireless-50:before{content:"\f080c"}.mdi-battery-charging-wireless-60:before{content:"\f080d"}.mdi-battery-charging-wireless-70:before{content:"\f080e"}.mdi-battery-charging-wireless-80:before{content:"\f080f"}.mdi-battery-charging-wireless-90:before{content:"\f0810"}.mdi-battery-charging-wireless-alert:before{content:"\f0811"}.mdi-battery-charging-wireless-outline:before{content:"\f0812"}.mdi-battery-check:before{content:"\f17e2"}.mdi-battery-check-outline:before{content:"\f17e3"}.mdi-battery-clock:before{content:"\f19e5"}.mdi-battery-clock-outline:before{content:"\f19e6"}.mdi-battery-heart:before{content:"\f120f"}.mdi-battery-heart-outline:before{content:"\f1210"}.mdi-battery-heart-variant:before{content:"\f1211"}.mdi-battery-high:before{content:"\f12a3"}.mdi-battery-lock:before{content:"\f179c"}.mdi-battery-lock-open:before{content:"\f179d"}.mdi-battery-low:before{content:"\f12a1"}.mdi-battery-medium:before{content:"\f12a2"}.mdi-battery-minus:before{content:"\f17e4"}.mdi-battery-minus-outline:before{content:"\f17e5"}.mdi-battery-minus-variant:before{content:"\f008c"}.mdi-battery-negative:before{content:"\f008d"}.mdi-battery-off:before{content:"\f125d"}.mdi-battery-off-outline:before{content:"\f125e"}.mdi-battery-outline:before{content:"\f008e"}.mdi-battery-plus:before{content:"\f17e6"}.mdi-battery-plus-outline:before{content:"\f17e7"}.mdi-battery-plus-variant:before{content:"\f008f"}.mdi-battery-positive:before{content:"\f0090"}.mdi-battery-remove:before{content:"\f17e8"}.mdi-battery-remove-outline:before{content:"\f17e9"}.mdi-battery-sync:before{content:"\f1834"}.mdi-battery-sync-outline:before{content:"\f1835"}.mdi-battery-unknown:before{content:"\f0091"}.mdi-battery-unknown-bluetooth:before{content:"\f094a"}.mdi-beach:before{content:"\f0092"}.mdi-beaker:before{content:"\f0cea"}.mdi-beaker-alert:before{content:"\f1229"}.mdi-beaker-alert-outline:before{content:"\f122a"}.mdi-beaker-check:before{content:"\f122b"}.mdi-beaker-check-outline:before{content:"\f122c"}.mdi-beaker-minus:before{content:"\f122d"}.mdi-beaker-minus-outline:before{content:"\f122e"}.mdi-beaker-outline:before{content:"\f0690"}.mdi-beaker-plus:before{content:"\f122f"}.mdi-beaker-plus-outline:before{content:"\f1230"}.mdi-beaker-question:before{content:"\f1231"}.mdi-beaker-question-outline:before{content:"\f1232"}.mdi-beaker-remove:before{content:"\f1233"}.mdi-beaker-remove-outline:before{content:"\f1234"}.mdi-bed:before{content:"\f02e3"}.mdi-bed-clock:before{content:"\f1b94"}.mdi-bed-double:before{content:"\f0fd4"}.mdi-bed-double-outline:before{content:"\f0fd3"}.mdi-bed-empty:before{content:"\f08a0"}.mdi-bed-king:before{content:"\f0fd2"}.mdi-bed-king-outline:before{content:"\f0fd1"}.mdi-bed-outline:before{content:"\f0099"}.mdi-bed-queen:before{content:"\f0fd0"}.mdi-bed-queen-outline:before{content:"\f0fdb"}.mdi-bed-single:before{content:"\f106d"}.mdi-bed-single-outline:before{content:"\f106e"}.mdi-bee:before{content:"\f0fa1"}.mdi-bee-flower:before{content:"\f0fa2"}.mdi-beehive-off-outline:before{content:"\f13ed"}.mdi-beehive-outline:before{content:"\f10ce"}.mdi-beekeeper:before{content:"\f14e2"}.mdi-beer:before{content:"\f0098"}.mdi-beer-outline:before{content:"\f130c"}.mdi-bell:before{content:"\f009a"}.mdi-bell-alert:before{content:"\f0d59"}.mdi-bell-alert-outline:before{content:"\f0e81"}.mdi-bell-badge:before{content:"\f116b"}.mdi-bell-badge-outline:before{content:"\f0178"}.mdi-bell-cancel:before{content:"\f13e7"}.mdi-bell-cancel-outline:before{content:"\f13e8"}.mdi-bell-check:before{content:"\f11e5"}.mdi-bell-check-outline:before{content:"\f11e6"}.mdi-bell-circle:before{content:"\f0d5a"}.mdi-bell-circle-outline:before{content:"\f0d5b"}.mdi-bell-cog:before{content:"\f1a29"}.mdi-bell-cog-outline:before{content:"\f1a2a"}.mdi-bell-minus:before{content:"\f13e9"}.mdi-bell-minus-outline:before{content:"\f13ea"}.mdi-bell-off:before{content:"\f009b"}.mdi-bell-off-outline:before{content:"\f0a91"}.mdi-bell-outline:before{content:"\f009c"}.mdi-bell-plus:before{content:"\f009d"}.mdi-bell-plus-outline:before{content:"\f0a92"}.mdi-bell-remove:before{content:"\f13eb"}.mdi-bell-remove-outline:before{content:"\f13ec"}.mdi-bell-ring:before{content:"\f009e"}.mdi-bell-ring-outline:before{content:"\f009f"}.mdi-bell-sleep:before{content:"\f00a0"}.mdi-bell-sleep-outline:before{content:"\f0a93"}.mdi-beta:before{content:"\f00a1"}.mdi-betamax:before{content:"\f09cb"}.mdi-biathlon:before{content:"\f0e14"}.mdi-bicycle:before{content:"\f109c"}.mdi-bicycle-basket:before{content:"\f1235"}.mdi-bicycle-cargo:before{content:"\f189c"}.mdi-bicycle-electric:before{content:"\f15b4"}.mdi-bicycle-penny-farthing:before{content:"\f15e9"}.mdi-bike:before{content:"\f00a3"}.mdi-bike-fast:before{content:"\f111f"}.mdi-billboard:before{content:"\f1010"}.mdi-billiards:before{content:"\f0b61"}.mdi-billiards-rack:before{content:"\f0b62"}.mdi-binoculars:before{content:"\f00a5"}.mdi-bio:before{content:"\f00a6"}.mdi-biohazard:before{content:"\f00a7"}.mdi-bird:before{content:"\f15c6"}.mdi-bitbucket:before{content:"\f00a8"}.mdi-bitcoin:before{content:"\f0813"}.mdi-black-mesa:before{content:"\f00a9"}.mdi-blender:before{content:"\f0ceb"}.mdi-blender-outline:before{content:"\f181a"}.mdi-blender-software:before{content:"\f00ab"}.mdi-blinds:before{content:"\f00ac"}.mdi-blinds-horizontal:before{content:"\f1a2b"}.mdi-blinds-horizontal-closed:before{content:"\f1a2c"}.mdi-blinds-open:before{content:"\f1011"}.mdi-blinds-vertical:before{content:"\f1a2d"}.mdi-blinds-vertical-closed:before{content:"\f1a2e"}.mdi-block-helper:before{content:"\f00ad"}.mdi-blood-bag:before{content:"\f0cec"}.mdi-bluetooth:before{content:"\f00af"}.mdi-bluetooth-audio:before{content:"\f00b0"}.mdi-bluetooth-connect:before{content:"\f00b1"}.mdi-bluetooth-off:before{content:"\f00b2"}.mdi-bluetooth-settings:before{content:"\f00b3"}.mdi-bluetooth-transfer:before{content:"\f00b4"}.mdi-blur:before{content:"\f00b5"}.mdi-blur-linear:before{content:"\f00b6"}.mdi-blur-off:before{content:"\f00b7"}.mdi-blur-radial:before{content:"\f00b8"}.mdi-bolt:before{content:"\f0db3"}.mdi-bomb:before{content:"\f0691"}.mdi-bomb-off:before{content:"\f06c5"}.mdi-bone:before{content:"\f00b9"}.mdi-bone-off:before{content:"\f19e0"}.mdi-book:before{content:"\f00ba"}.mdi-book-account:before{content:"\f13ad"}.mdi-book-account-outline:before{content:"\f13ae"}.mdi-book-alert:before{content:"\f167c"}.mdi-book-alert-outline:before{content:"\f167d"}.mdi-book-alphabet:before{content:"\f061d"}.mdi-book-arrow-down:before{content:"\f167e"}.mdi-book-arrow-down-outline:before{content:"\f167f"}.mdi-book-arrow-left:before{content:"\f1680"}.mdi-book-arrow-left-outline:before{content:"\f1681"}.mdi-book-arrow-right:before{content:"\f1682"}.mdi-book-arrow-right-outline:before{content:"\f1683"}.mdi-book-arrow-up:before{content:"\f1684"}.mdi-book-arrow-up-outline:before{content:"\f1685"}.mdi-book-cancel:before{content:"\f1686"}.mdi-book-cancel-outline:before{content:"\f1687"}.mdi-book-check:before{content:"\f14f3"}.mdi-book-check-outline:before{content:"\f14f4"}.mdi-book-clock:before{content:"\f1688"}.mdi-book-clock-outline:before{content:"\f1689"}.mdi-book-cog:before{content:"\f168a"}.mdi-book-cog-outline:before{content:"\f168b"}.mdi-book-cross:before{content:"\f00a2"}.mdi-book-edit:before{content:"\f168c"}.mdi-book-edit-outline:before{content:"\f168d"}.mdi-book-education:before{content:"\f16c9"}.mdi-book-education-outline:before{content:"\f16ca"}.mdi-book-heart:before{content:"\f1a1d"}.mdi-book-heart-outline:before{content:"\f1a1e"}.mdi-book-information-variant:before{content:"\f106f"}.mdi-book-lock:before{content:"\f079a"}.mdi-book-lock-open:before{content:"\f079b"}.mdi-book-lock-open-outline:before{content:"\f168e"}.mdi-book-lock-outline:before{content:"\f168f"}.mdi-book-marker:before{content:"\f1690"}.mdi-book-marker-outline:before{content:"\f1691"}.mdi-book-minus:before{content:"\f05d9"}.mdi-book-minus-multiple:before{content:"\f0a94"}.mdi-book-minus-multiple-outline:before{content:"\f090b"}.mdi-book-minus-outline:before{content:"\f1692"}.mdi-book-multiple:before{content:"\f00bb"}.mdi-book-multiple-outline:before{content:"\f0436"}.mdi-book-music:before{content:"\f0067"}.mdi-book-music-outline:before{content:"\f1693"}.mdi-book-off:before{content:"\f1694"}.mdi-book-off-outline:before{content:"\f1695"}.mdi-book-open:before{content:"\f00bd"}.mdi-book-open-blank-variant:before{content:"\f00be"}.mdi-book-open-outline:before{content:"\f0b63"}.mdi-book-open-page-variant:before{content:"\f05da"}.mdi-book-open-page-variant-outline:before{content:"\f15d6"}.mdi-book-open-variant:before{content:"\f14f7"}.mdi-book-outline:before{content:"\f0b64"}.mdi-book-play:before{content:"\f0e82"}.mdi-book-play-outline:before{content:"\f0e83"}.mdi-book-plus:before{content:"\f05db"}.mdi-book-plus-multiple:before{content:"\f0a95"}.mdi-book-plus-multiple-outline:before{content:"\f0ade"}.mdi-book-plus-outline:before{content:"\f1696"}.mdi-book-refresh:before{content:"\f1697"}.mdi-book-refresh-outline:before{content:"\f1698"}.mdi-book-remove:before{content:"\f0a97"}.mdi-book-remove-multiple:before{content:"\f0a96"}.mdi-book-remove-multiple-outline:before{content:"\f04ca"}.mdi-book-remove-outline:before{content:"\f1699"}.mdi-book-search:before{content:"\f0e84"}.mdi-book-search-outline:before{content:"\f0e85"}.mdi-book-settings:before{content:"\f169a"}.mdi-book-settings-outline:before{content:"\f169b"}.mdi-book-sync:before{content:"\f169c"}.mdi-book-sync-outline:before{content:"\f16c8"}.mdi-book-variant:before{content:"\f00bf"}.mdi-bookmark:before{content:"\f00c0"}.mdi-bookmark-box:before{content:"\f1b75"}.mdi-bookmark-box-multiple:before{content:"\f196c"}.mdi-bookmark-box-multiple-outline:before{content:"\f196d"}.mdi-bookmark-box-outline:before{content:"\f1b76"}.mdi-bookmark-check:before{content:"\f00c1"}.mdi-bookmark-check-outline:before{content:"\f137b"}.mdi-bookmark-minus:before{content:"\f09cc"}.mdi-bookmark-minus-outline:before{content:"\f09cd"}.mdi-bookmark-multiple:before{content:"\f0e15"}.mdi-bookmark-multiple-outline:before{content:"\f0e16"}.mdi-bookmark-music:before{content:"\f00c2"}.mdi-bookmark-music-outline:before{content:"\f1379"}.mdi-bookmark-off:before{content:"\f09ce"}.mdi-bookmark-off-outline:before{content:"\f09cf"}.mdi-bookmark-outline:before{content:"\f00c3"}.mdi-bookmark-plus:before{content:"\f00c5"}.mdi-bookmark-plus-outline:before{content:"\f00c4"}.mdi-bookmark-remove:before{content:"\f00c6"}.mdi-bookmark-remove-outline:before{content:"\f137a"}.mdi-bookshelf:before{content:"\f125f"}.mdi-boom-gate:before{content:"\f0e86"}.mdi-boom-gate-alert:before{content:"\f0e87"}.mdi-boom-gate-alert-outline:before{content:"\f0e88"}.mdi-boom-gate-arrow-down:before{content:"\f0e89"}.mdi-boom-gate-arrow-down-outline:before{content:"\f0e8a"}.mdi-boom-gate-arrow-up:before{content:"\f0e8c"}.mdi-boom-gate-arrow-up-outline:before{content:"\f0e8d"}.mdi-boom-gate-outline:before{content:"\f0e8b"}.mdi-boom-gate-up:before{content:"\f17f9"}.mdi-boom-gate-up-outline:before{content:"\f17fa"}.mdi-boombox:before{content:"\f05dc"}.mdi-boomerang:before{content:"\f10cf"}.mdi-bootstrap:before{content:"\f06c6"}.mdi-border-all:before{content:"\f00c7"}.mdi-border-all-variant:before{content:"\f08a1"}.mdi-border-bottom:before{content:"\f00c8"}.mdi-border-bottom-variant:before{content:"\f08a2"}.mdi-border-color:before{content:"\f00c9"}.mdi-border-horizontal:before{content:"\f00ca"}.mdi-border-inside:before{content:"\f00cb"}.mdi-border-left:before{content:"\f00cc"}.mdi-border-left-variant:before{content:"\f08a3"}.mdi-border-none:before{content:"\f00cd"}.mdi-border-none-variant:before{content:"\f08a4"}.mdi-border-outside:before{content:"\f00ce"}.mdi-border-radius:before{content:"\f1af4"}.mdi-border-right:before{content:"\f00cf"}.mdi-border-right-variant:before{content:"\f08a5"}.mdi-border-style:before{content:"\f00d0"}.mdi-border-top:before{content:"\f00d1"}.mdi-border-top-variant:before{content:"\f08a6"}.mdi-border-vertical:before{content:"\f00d2"}.mdi-bottle-soda:before{content:"\f1070"}.mdi-bottle-soda-classic:before{content:"\f1071"}.mdi-bottle-soda-classic-outline:before{content:"\f1363"}.mdi-bottle-soda-outline:before{content:"\f1072"}.mdi-bottle-tonic:before{content:"\f112e"}.mdi-bottle-tonic-outline:before{content:"\f112f"}.mdi-bottle-tonic-plus:before{content:"\f1130"}.mdi-bottle-tonic-plus-outline:before{content:"\f1131"}.mdi-bottle-tonic-skull:before{content:"\f1132"}.mdi-bottle-tonic-skull-outline:before{content:"\f1133"}.mdi-bottle-wine:before{content:"\f0854"}.mdi-bottle-wine-outline:before{content:"\f1310"}.mdi-bow-arrow:before{content:"\f1841"}.mdi-bow-tie:before{content:"\f0678"}.mdi-bowl:before{content:"\f028e"}.mdi-bowl-mix:before{content:"\f0617"}.mdi-bowl-mix-outline:before{content:"\f02e4"}.mdi-bowl-outline:before{content:"\f02a9"}.mdi-bowling:before{content:"\f00d3"}.mdi-box:before{content:"\f00d4"}.mdi-box-cutter:before{content:"\f00d5"}.mdi-box-cutter-off:before{content:"\f0b4a"}.mdi-box-shadow:before{content:"\f0637"}.mdi-boxing-glove:before{content:"\f0b65"}.mdi-braille:before{content:"\f09d0"}.mdi-brain:before{content:"\f09d1"}.mdi-bread-slice:before{content:"\f0cee"}.mdi-bread-slice-outline:before{content:"\f0cef"}.mdi-bridge:before{content:"\f0618"}.mdi-briefcase:before{content:"\f00d6"}.mdi-briefcase-account:before{content:"\f0cf0"}.mdi-briefcase-account-outline:before{content:"\f0cf1"}.mdi-briefcase-arrow-left-right:before{content:"\f1a8d"}.mdi-briefcase-arrow-left-right-outline:before{content:"\f1a8e"}.mdi-briefcase-arrow-up-down:before{content:"\f1a8f"}.mdi-briefcase-arrow-up-down-outline:before{content:"\f1a90"}.mdi-briefcase-check:before{content:"\f00d7"}.mdi-briefcase-check-outline:before{content:"\f131e"}.mdi-briefcase-clock:before{content:"\f10d0"}.mdi-briefcase-clock-outline:before{content:"\f10d1"}.mdi-briefcase-download:before{content:"\f00d8"}.mdi-briefcase-download-outline:before{content:"\f0c3d"}.mdi-briefcase-edit:before{content:"\f0a98"}.mdi-briefcase-edit-outline:before{content:"\f0c3e"}.mdi-briefcase-eye:before{content:"\f17d9"}.mdi-briefcase-eye-outline:before{content:"\f17da"}.mdi-briefcase-minus:before{content:"\f0a2a"}.mdi-briefcase-minus-outline:before{content:"\f0c3f"}.mdi-briefcase-off:before{content:"\f1658"}.mdi-briefcase-off-outline:before{content:"\f1659"}.mdi-briefcase-outline:before{content:"\f0814"}.mdi-briefcase-plus:before{content:"\f0a2b"}.mdi-briefcase-plus-outline:before{content:"\f0c40"}.mdi-briefcase-remove:before{content:"\f0a2c"}.mdi-briefcase-remove-outline:before{content:"\f0c41"}.mdi-briefcase-search:before{content:"\f0a2d"}.mdi-briefcase-search-outline:before{content:"\f0c42"}.mdi-briefcase-upload:before{content:"\f00d9"}.mdi-briefcase-upload-outline:before{content:"\f0c43"}.mdi-briefcase-variant:before{content:"\f1494"}.mdi-briefcase-variant-off:before{content:"\f165a"}.mdi-briefcase-variant-off-outline:before{content:"\f165b"}.mdi-briefcase-variant-outline:before{content:"\f1495"}.mdi-brightness-1:before{content:"\f00da"}.mdi-brightness-2:before{content:"\f00db"}.mdi-brightness-3:before{content:"\f00dc"}.mdi-brightness-4:before{content:"\f00dd"}.mdi-brightness-5:before{content:"\f00de"}.mdi-brightness-6:before{content:"\f00df"}.mdi-brightness-7:before{content:"\f00e0"}.mdi-brightness-auto:before{content:"\f00e1"}.mdi-brightness-percent:before{content:"\f0cf2"}.mdi-broadcast:before{content:"\f1720"}.mdi-broadcast-off:before{content:"\f1721"}.mdi-broom:before{content:"\f00e2"}.mdi-brush:before{content:"\f00e3"}.mdi-brush-off:before{content:"\f1771"}.mdi-brush-outline:before{content:"\f1a0d"}.mdi-brush-variant:before{content:"\f1813"}.mdi-bucket:before{content:"\f1415"}.mdi-bucket-outline:before{content:"\f1416"}.mdi-buffet:before{content:"\f0578"}.mdi-bug:before{content:"\f00e4"}.mdi-bug-check:before{content:"\f0a2e"}.mdi-bug-check-outline:before{content:"\f0a2f"}.mdi-bug-outline:before{content:"\f0a30"}.mdi-bug-pause:before{content:"\f1af5"}.mdi-bug-pause-outline:before{content:"\f1af6"}.mdi-bug-play:before{content:"\f1af7"}.mdi-bug-play-outline:before{content:"\f1af8"}.mdi-bug-stop:before{content:"\f1af9"}.mdi-bug-stop-outline:before{content:"\f1afa"}.mdi-bugle:before{content:"\f0db4"}.mdi-bulkhead-light:before{content:"\f1a2f"}.mdi-bulldozer:before{content:"\f0b22"}.mdi-bullet:before{content:"\f0cf3"}.mdi-bulletin-board:before{content:"\f00e5"}.mdi-bullhorn:before{content:"\f00e6"}.mdi-bullhorn-outline:before{content:"\f0b23"}.mdi-bullhorn-variant:before{content:"\f196e"}.mdi-bullhorn-variant-outline:before{content:"\f196f"}.mdi-bullseye:before{content:"\f05dd"}.mdi-bullseye-arrow:before{content:"\f08c9"}.mdi-bulma:before{content:"\f12e7"}.mdi-bunk-bed:before{content:"\f1302"}.mdi-bunk-bed-outline:before{content:"\f0097"}.mdi-bus:before{content:"\f00e7"}.mdi-bus-alert:before{content:"\f0a99"}.mdi-bus-articulated-end:before{content:"\f079c"}.mdi-bus-articulated-front:before{content:"\f079d"}.mdi-bus-clock:before{content:"\f08ca"}.mdi-bus-double-decker:before{content:"\f079e"}.mdi-bus-electric:before{content:"\f191d"}.mdi-bus-marker:before{content:"\f1212"}.mdi-bus-multiple:before{content:"\f0f3f"}.mdi-bus-school:before{content:"\f079f"}.mdi-bus-side:before{content:"\f07a0"}.mdi-bus-stop:before{content:"\f1012"}.mdi-bus-stop-covered:before{content:"\f1013"}.mdi-bus-stop-uncovered:before{content:"\f1014"}.mdi-butterfly:before{content:"\f1589"}.mdi-butterfly-outline:before{content:"\f158a"}.mdi-button-cursor:before{content:"\f1b4f"}.mdi-button-pointer:before{content:"\f1b50"}.mdi-cabin-a-frame:before{content:"\f188c"}.mdi-cable-data:before{content:"\f1394"}.mdi-cached:before{content:"\f00e8"}.mdi-cactus:before{content:"\f0db5"}.mdi-cake:before{content:"\f00e9"}.mdi-cake-layered:before{content:"\f00ea"}.mdi-cake-variant:before{content:"\f00eb"}.mdi-cake-variant-outline:before{content:"\f17f0"}.mdi-calculator:before{content:"\f00ec"}.mdi-calculator-variant:before{content:"\f0a9a"}.mdi-calculator-variant-outline:before{content:"\f15a6"}.mdi-calendar:before{content:"\f00ed"}.mdi-calendar-account:before{content:"\f0ed7"}.mdi-calendar-account-outline:before{content:"\f0ed8"}.mdi-calendar-alert:before{content:"\f0a31"}.mdi-calendar-alert-outline:before{content:"\f1b62"}.mdi-calendar-arrow-left:before{content:"\f1134"}.mdi-calendar-arrow-right:before{content:"\f1135"}.mdi-calendar-badge:before{content:"\f1b9d"}.mdi-calendar-badge-outline:before{content:"\f1b9e"}.mdi-calendar-blank:before{content:"\f00ee"}.mdi-calendar-blank-multiple:before{content:"\f1073"}.mdi-calendar-blank-outline:before{content:"\f0b66"}.mdi-calendar-check:before{content:"\f00ef"}.mdi-calendar-check-outline:before{content:"\f0c44"}.mdi-calendar-clock:before{content:"\f00f0"}.mdi-calendar-clock-outline:before{content:"\f16e1"}.mdi-calendar-collapse-horizontal:before{content:"\f189d"}.mdi-calendar-collapse-horizontal-outline:before{content:"\f1b63"}.mdi-calendar-cursor:before{content:"\f157b"}.mdi-calendar-cursor-outline:before{content:"\f1b64"}.mdi-calendar-edit:before{content:"\f08a7"}.mdi-calendar-edit-outline:before{content:"\f1b65"}.mdi-calendar-end:before{content:"\f166c"}.mdi-calendar-end-outline:before{content:"\f1b66"}.mdi-calendar-expand-horizontal:before{content:"\f189e"}.mdi-calendar-expand-horizontal-outline:before{content:"\f1b67"}.mdi-calendar-export:before{content:"\f0b24"}.mdi-calendar-export-outline:before{content:"\f1b68"}.mdi-calendar-filter:before{content:"\f1a32"}.mdi-calendar-filter-outline:before{content:"\f1a33"}.mdi-calendar-heart:before{content:"\f09d2"}.mdi-calendar-heart-outline:before{content:"\f1b69"}.mdi-calendar-import:before{content:"\f0b25"}.mdi-calendar-import-outline:before{content:"\f1b6a"}.mdi-calendar-lock:before{content:"\f1641"}.mdi-calendar-lock-open:before{content:"\f1b5b"}.mdi-calendar-lock-open-outline:before{content:"\f1b5c"}.mdi-calendar-lock-outline:before{content:"\f1642"}.mdi-calendar-minus:before{content:"\f0d5c"}.mdi-calendar-minus-outline:before{content:"\f1b6b"}.mdi-calendar-month:before{content:"\f0e17"}.mdi-calendar-month-outline:before{content:"\f0e18"}.mdi-calendar-multiple:before{content:"\f00f1"}.mdi-calendar-multiple-check:before{content:"\f00f2"}.mdi-calendar-multiselect:before{content:"\f0a32"}.mdi-calendar-multiselect-outline:before{content:"\f1b55"}.mdi-calendar-outline:before{content:"\f0b67"}.mdi-calendar-plus:before{content:"\f00f3"}.mdi-calendar-plus-outline:before{content:"\f1b6c"}.mdi-calendar-question:before{content:"\f0692"}.mdi-calendar-question-outline:before{content:"\f1b6d"}.mdi-calendar-range:before{content:"\f0679"}.mdi-calendar-range-outline:before{content:"\f0b68"}.mdi-calendar-refresh:before{content:"\f01e1"}.mdi-calendar-refresh-outline:before{content:"\f0203"}.mdi-calendar-remove:before{content:"\f00f4"}.mdi-calendar-remove-outline:before{content:"\f0c45"}.mdi-calendar-search:before{content:"\f094c"}.mdi-calendar-search-outline:before{content:"\f1b6e"}.mdi-calendar-star:before{content:"\f09d3"}.mdi-calendar-star-outline:before{content:"\f1b53"}.mdi-calendar-start:before{content:"\f166d"}.mdi-calendar-start-outline:before{content:"\f1b6f"}.mdi-calendar-sync:before{content:"\f0e8e"}.mdi-calendar-sync-outline:before{content:"\f0e8f"}.mdi-calendar-text:before{content:"\f00f5"}.mdi-calendar-text-outline:before{content:"\f0c46"}.mdi-calendar-today:before{content:"\f00f6"}.mdi-calendar-today-outline:before{content:"\f1a30"}.mdi-calendar-week:before{content:"\f0a33"}.mdi-calendar-week-begin:before{content:"\f0a34"}.mdi-calendar-week-begin-outline:before{content:"\f1a31"}.mdi-calendar-week-outline:before{content:"\f1a34"}.mdi-calendar-weekend:before{content:"\f0ed9"}.mdi-calendar-weekend-outline:before{content:"\f0eda"}.mdi-call-made:before{content:"\f00f7"}.mdi-call-merge:before{content:"\f00f8"}.mdi-call-missed:before{content:"\f00f9"}.mdi-call-received:before{content:"\f00fa"}.mdi-call-split:before{content:"\f00fb"}.mdi-camcorder:before{content:"\f00fc"}.mdi-camcorder-off:before{content:"\f00ff"}.mdi-camera:before{content:"\f0100"}.mdi-camera-account:before{content:"\f08cb"}.mdi-camera-burst:before{content:"\f0693"}.mdi-camera-control:before{content:"\f0b69"}.mdi-camera-document:before{content:"\f1871"}.mdi-camera-document-off:before{content:"\f1872"}.mdi-camera-enhance:before{content:"\f0101"}.mdi-camera-enhance-outline:before{content:"\f0b6a"}.mdi-camera-flip:before{content:"\f15d9"}.mdi-camera-flip-outline:before{content:"\f15da"}.mdi-camera-front:before{content:"\f0102"}.mdi-camera-front-variant:before{content:"\f0103"}.mdi-camera-gopro:before{content:"\f07a1"}.mdi-camera-image:before{content:"\f08cc"}.mdi-camera-iris:before{content:"\f0104"}.mdi-camera-lock:before{content:"\f1a14"}.mdi-camera-lock-open:before{content:"\f1c0d"}.mdi-camera-lock-open-outline:before{content:"\f1c0e"}.mdi-camera-lock-outline:before{content:"\f1a15"}.mdi-camera-marker:before{content:"\f19a7"}.mdi-camera-marker-outline:before{content:"\f19a8"}.mdi-camera-metering-center:before{content:"\f07a2"}.mdi-camera-metering-matrix:before{content:"\f07a3"}.mdi-camera-metering-partial:before{content:"\f07a4"}.mdi-camera-metering-spot:before{content:"\f07a5"}.mdi-camera-off:before{content:"\f05df"}.mdi-camera-off-outline:before{content:"\f19bf"}.mdi-camera-outline:before{content:"\f0d5d"}.mdi-camera-party-mode:before{content:"\f0105"}.mdi-camera-plus:before{content:"\f0edb"}.mdi-camera-plus-outline:before{content:"\f0edc"}.mdi-camera-rear:before{content:"\f0106"}.mdi-camera-rear-variant:before{content:"\f0107"}.mdi-camera-retake:before{content:"\f0e19"}.mdi-camera-retake-outline:before{content:"\f0e1a"}.mdi-camera-switch:before{content:"\f0108"}.mdi-camera-switch-outline:before{content:"\f084a"}.mdi-camera-timer:before{content:"\f0109"}.mdi-camera-wireless:before{content:"\f0db6"}.mdi-camera-wireless-outline:before{content:"\f0db7"}.mdi-campfire:before{content:"\f0edd"}.mdi-cancel:before{content:"\f073a"}.mdi-candelabra:before{content:"\f17d2"}.mdi-candelabra-fire:before{content:"\f17d3"}.mdi-candle:before{content:"\f05e2"}.mdi-candy:before{content:"\f1970"}.mdi-candy-off:before{content:"\f1971"}.mdi-candy-off-outline:before{content:"\f1972"}.mdi-candy-outline:before{content:"\f1973"}.mdi-candycane:before{content:"\f010a"}.mdi-cannabis:before{content:"\f07a6"}.mdi-cannabis-off:before{content:"\f166e"}.mdi-caps-lock:before{content:"\f0a9b"}.mdi-car:before{content:"\f010b"}.mdi-car-2-plus:before{content:"\f1015"}.mdi-car-3-plus:before{content:"\f1016"}.mdi-car-arrow-left:before{content:"\f13b2"}.mdi-car-arrow-right:before{content:"\f13b3"}.mdi-car-back:before{content:"\f0e1b"}.mdi-car-battery:before{content:"\f010c"}.mdi-car-brake-abs:before{content:"\f0c47"}.mdi-car-brake-alert:before{content:"\f0c48"}.mdi-car-brake-fluid-level:before{content:"\f1909"}.mdi-car-brake-hold:before{content:"\f0d5e"}.mdi-car-brake-low-pressure:before{content:"\f190a"}.mdi-car-brake-parking:before{content:"\f0d5f"}.mdi-car-brake-retarder:before{content:"\f1017"}.mdi-car-brake-temperature:before{content:"\f190b"}.mdi-car-brake-worn-linings:before{content:"\f190c"}.mdi-car-child-seat:before{content:"\f0fa3"}.mdi-car-clock:before{content:"\f1974"}.mdi-car-clutch:before{content:"\f1018"}.mdi-car-cog:before{content:"\f13cc"}.mdi-car-connected:before{content:"\f010d"}.mdi-car-convertible:before{content:"\f07a7"}.mdi-car-coolant-level:before{content:"\f1019"}.mdi-car-cruise-control:before{content:"\f0d60"}.mdi-car-defrost-front:before{content:"\f0d61"}.mdi-car-defrost-rear:before{content:"\f0d62"}.mdi-car-door:before{content:"\f0b6b"}.mdi-car-door-lock:before{content:"\f109d"}.mdi-car-electric:before{content:"\f0b6c"}.mdi-car-electric-outline:before{content:"\f15b5"}.mdi-car-emergency:before{content:"\f160f"}.mdi-car-esp:before{content:"\f0c49"}.mdi-car-estate:before{content:"\f07a8"}.mdi-car-hatchback:before{content:"\f07a9"}.mdi-car-info:before{content:"\f11be"}.mdi-car-key:before{content:"\f0b6d"}.mdi-car-lifted-pickup:before{content:"\f152d"}.mdi-car-light-alert:before{content:"\f190d"}.mdi-car-light-dimmed:before{content:"\f0c4a"}.mdi-car-light-fog:before{content:"\f0c4b"}.mdi-car-light-high:before{content:"\f0c4c"}.mdi-car-limousine:before{content:"\f08cd"}.mdi-car-multiple:before{content:"\f0b6e"}.mdi-car-off:before{content:"\f0e1c"}.mdi-car-outline:before{content:"\f14ed"}.mdi-car-parking-lights:before{content:"\f0d63"}.mdi-car-pickup:before{content:"\f07aa"}.mdi-car-search:before{content:"\f1b8d"}.mdi-car-search-outline:before{content:"\f1b8e"}.mdi-car-seat:before{content:"\f0fa4"}.mdi-car-seat-cooler:before{content:"\f0fa5"}.mdi-car-seat-heater:before{content:"\f0fa6"}.mdi-car-select:before{content:"\f1879"}.mdi-car-settings:before{content:"\f13cd"}.mdi-car-shift-pattern:before{content:"\f0f40"}.mdi-car-side:before{content:"\f07ab"}.mdi-car-speed-limiter:before{content:"\f190e"}.mdi-car-sports:before{content:"\f07ac"}.mdi-car-tire-alert:before{content:"\f0c4d"}.mdi-car-traction-control:before{content:"\f0d64"}.mdi-car-turbocharger:before{content:"\f101a"}.mdi-car-wash:before{content:"\f010e"}.mdi-car-windshield:before{content:"\f101b"}.mdi-car-windshield-outline:before{content:"\f101c"}.mdi-car-wireless:before{content:"\f1878"}.mdi-car-wrench:before{content:"\f1814"}.mdi-carabiner:before{content:"\f14c0"}.mdi-caravan:before{content:"\f07ad"}.mdi-card:before{content:"\f0b6f"}.mdi-card-account-details:before{content:"\f05d2"}.mdi-card-account-details-outline:before{content:"\f0dab"}.mdi-card-account-details-star:before{content:"\f02a3"}.mdi-card-account-details-star-outline:before{content:"\f06db"}.mdi-card-account-mail:before{content:"\f018e"}.mdi-card-account-mail-outline:before{content:"\f0e98"}.mdi-card-account-phone:before{content:"\f0e99"}.mdi-card-account-phone-outline:before{content:"\f0e9a"}.mdi-card-bulleted:before{content:"\f0b70"}.mdi-card-bulleted-off:before{content:"\f0b71"}.mdi-card-bulleted-off-outline:before{content:"\f0b72"}.mdi-card-bulleted-outline:before{content:"\f0b73"}.mdi-card-bulleted-settings:before{content:"\f0b74"}.mdi-card-bulleted-settings-outline:before{content:"\f0b75"}.mdi-card-minus:before{content:"\f1600"}.mdi-card-minus-outline:before{content:"\f1601"}.mdi-card-multiple:before{content:"\f17f1"}.mdi-card-multiple-outline:before{content:"\f17f2"}.mdi-card-off:before{content:"\f1602"}.mdi-card-off-outline:before{content:"\f1603"}.mdi-card-outline:before{content:"\f0b76"}.mdi-card-plus:before{content:"\f11ff"}.mdi-card-plus-outline:before{content:"\f1200"}.mdi-card-remove:before{content:"\f1604"}.mdi-card-remove-outline:before{content:"\f1605"}.mdi-card-search:before{content:"\f1074"}.mdi-card-search-outline:before{content:"\f1075"}.mdi-card-text:before{content:"\f0b77"}.mdi-card-text-outline:before{content:"\f0b78"}.mdi-cards:before{content:"\f0638"}.mdi-cards-club:before{content:"\f08ce"}.mdi-cards-club-outline:before{content:"\f189f"}.mdi-cards-diamond:before{content:"\f08cf"}.mdi-cards-diamond-outline:before{content:"\f101d"}.mdi-cards-heart:before{content:"\f08d0"}.mdi-cards-heart-outline:before{content:"\f18a0"}.mdi-cards-outline:before{content:"\f0639"}.mdi-cards-playing:before{content:"\f18a1"}.mdi-cards-playing-club:before{content:"\f18a2"}.mdi-cards-playing-club-multiple:before{content:"\f18a3"}.mdi-cards-playing-club-multiple-outline:before{content:"\f18a4"}.mdi-cards-playing-club-outline:before{content:"\f18a5"}.mdi-cards-playing-diamond:before{content:"\f18a6"}.mdi-cards-playing-diamond-multiple:before{content:"\f18a7"}.mdi-cards-playing-diamond-multiple-outline:before{content:"\f18a8"}.mdi-cards-playing-diamond-outline:before{content:"\f18a9"}.mdi-cards-playing-heart:before{content:"\f18aa"}.mdi-cards-playing-heart-multiple:before{content:"\f18ab"}.mdi-cards-playing-heart-multiple-outline:before{content:"\f18ac"}.mdi-cards-playing-heart-outline:before{content:"\f18ad"}.mdi-cards-playing-outline:before{content:"\f063a"}.mdi-cards-playing-spade:before{content:"\f18ae"}.mdi-cards-playing-spade-multiple:before{content:"\f18af"}.mdi-cards-playing-spade-multiple-outline:before{content:"\f18b0"}.mdi-cards-playing-spade-outline:before{content:"\f18b1"}.mdi-cards-spade:before{content:"\f08d1"}.mdi-cards-spade-outline:before{content:"\f18b2"}.mdi-cards-variant:before{content:"\f06c7"}.mdi-carrot:before{content:"\f010f"}.mdi-cart:before{content:"\f0110"}.mdi-cart-arrow-down:before{content:"\f0d66"}.mdi-cart-arrow-right:before{content:"\f0c4e"}.mdi-cart-arrow-up:before{content:"\f0d67"}.mdi-cart-check:before{content:"\f15ea"}.mdi-cart-heart:before{content:"\f18e0"}.mdi-cart-minus:before{content:"\f0d68"}.mdi-cart-off:before{content:"\f066b"}.mdi-cart-outline:before{content:"\f0111"}.mdi-cart-percent:before{content:"\f1bae"}.mdi-cart-plus:before{content:"\f0112"}.mdi-cart-remove:before{content:"\f0d69"}.mdi-cart-variant:before{content:"\f15eb"}.mdi-case-sensitive-alt:before{content:"\f0113"}.mdi-cash:before{content:"\f0114"}.mdi-cash-100:before{content:"\f0115"}.mdi-cash-check:before{content:"\f14ee"}.mdi-cash-clock:before{content:"\f1a91"}.mdi-cash-fast:before{content:"\f185c"}.mdi-cash-lock:before{content:"\f14ea"}.mdi-cash-lock-open:before{content:"\f14eb"}.mdi-cash-marker:before{content:"\f0db8"}.mdi-cash-minus:before{content:"\f1260"}.mdi-cash-multiple:before{content:"\f0116"}.mdi-cash-plus:before{content:"\f1261"}.mdi-cash-refund:before{content:"\f0a9c"}.mdi-cash-register:before{content:"\f0cf4"}.mdi-cash-remove:before{content:"\f1262"}.mdi-cash-sync:before{content:"\f1a92"}.mdi-cassette:before{content:"\f09d4"}.mdi-cast:before{content:"\f0118"}.mdi-cast-audio:before{content:"\f101e"}.mdi-cast-audio-variant:before{content:"\f1749"}.mdi-cast-connected:before{content:"\f0119"}.mdi-cast-education:before{content:"\f0e1d"}.mdi-cast-off:before{content:"\f078a"}.mdi-cast-variant:before{content:"\f001f"}.mdi-castle:before{content:"\f011a"}.mdi-cat:before{content:"\f011b"}.mdi-cctv:before{content:"\f07ae"}.mdi-cctv-off:before{content:"\f185f"}.mdi-ceiling-fan:before{content:"\f1797"}.mdi-ceiling-fan-light:before{content:"\f1798"}.mdi-ceiling-light:before{content:"\f0769"}.mdi-ceiling-light-multiple:before{content:"\f18dd"}.mdi-ceiling-light-multiple-outline:before{content:"\f18de"}.mdi-ceiling-light-outline:before{content:"\f17c7"}.mdi-cellphone:before{content:"\f011c"}.mdi-cellphone-arrow-down:before{content:"\f09d5"}.mdi-cellphone-arrow-down-variant:before{content:"\f19c5"}.mdi-cellphone-basic:before{content:"\f011e"}.mdi-cellphone-charging:before{content:"\f1397"}.mdi-cellphone-check:before{content:"\f17fd"}.mdi-cellphone-cog:before{content:"\f0951"}.mdi-cellphone-dock:before{content:"\f011f"}.mdi-cellphone-information:before{content:"\f0f41"}.mdi-cellphone-key:before{content:"\f094e"}.mdi-cellphone-link:before{content:"\f0121"}.mdi-cellphone-link-off:before{content:"\f0122"}.mdi-cellphone-lock:before{content:"\f094f"}.mdi-cellphone-marker:before{content:"\f183a"}.mdi-cellphone-message:before{content:"\f08d3"}.mdi-cellphone-message-off:before{content:"\f10d2"}.mdi-cellphone-nfc:before{content:"\f0e90"}.mdi-cellphone-nfc-off:before{content:"\f12d8"}.mdi-cellphone-off:before{content:"\f0950"}.mdi-cellphone-play:before{content:"\f101f"}.mdi-cellphone-remove:before{content:"\f094d"}.mdi-cellphone-screenshot:before{content:"\f0a35"}.mdi-cellphone-settings:before{content:"\f0123"}.mdi-cellphone-sound:before{content:"\f0952"}.mdi-cellphone-text:before{content:"\f08d2"}.mdi-cellphone-wireless:before{content:"\f0815"}.mdi-centos:before{content:"\f111a"}.mdi-certificate:before{content:"\f0124"}.mdi-certificate-outline:before{content:"\f1188"}.mdi-chair-rolling:before{content:"\f0f48"}.mdi-chair-school:before{content:"\f0125"}.mdi-chandelier:before{content:"\f1793"}.mdi-charity:before{content:"\f0c4f"}.mdi-chart-arc:before{content:"\f0126"}.mdi-chart-areaspline:before{content:"\f0127"}.mdi-chart-areaspline-variant:before{content:"\f0e91"}.mdi-chart-bar:before{content:"\f0128"}.mdi-chart-bar-stacked:before{content:"\f076a"}.mdi-chart-bell-curve:before{content:"\f0c50"}.mdi-chart-bell-curve-cumulative:before{content:"\f0fa7"}.mdi-chart-box:before{content:"\f154d"}.mdi-chart-box-outline:before{content:"\f154e"}.mdi-chart-box-plus-outline:before{content:"\f154f"}.mdi-chart-bubble:before{content:"\f05e3"}.mdi-chart-donut:before{content:"\f07af"}.mdi-chart-donut-variant:before{content:"\f07b0"}.mdi-chart-gantt:before{content:"\f066c"}.mdi-chart-histogram:before{content:"\f0129"}.mdi-chart-line:before{content:"\f012a"}.mdi-chart-line-stacked:before{content:"\f076b"}.mdi-chart-line-variant:before{content:"\f07b1"}.mdi-chart-multiline:before{content:"\f08d4"}.mdi-chart-multiple:before{content:"\f1213"}.mdi-chart-pie:before{content:"\f012b"}.mdi-chart-pie-outline:before{content:"\f1bdf"}.mdi-chart-ppf:before{content:"\f1380"}.mdi-chart-sankey:before{content:"\f11df"}.mdi-chart-sankey-variant:before{content:"\f11e0"}.mdi-chart-scatter-plot:before{content:"\f0e92"}.mdi-chart-scatter-plot-hexbin:before{content:"\f066d"}.mdi-chart-timeline:before{content:"\f066e"}.mdi-chart-timeline-variant:before{content:"\f0e93"}.mdi-chart-timeline-variant-shimmer:before{content:"\f15b6"}.mdi-chart-tree:before{content:"\f0e94"}.mdi-chart-waterfall:before{content:"\f1918"}.mdi-chat:before{content:"\f0b79"}.mdi-chat-alert:before{content:"\f0b7a"}.mdi-chat-alert-outline:before{content:"\f12c9"}.mdi-chat-minus:before{content:"\f1410"}.mdi-chat-minus-outline:before{content:"\f1413"}.mdi-chat-outline:before{content:"\f0ede"}.mdi-chat-plus:before{content:"\f140f"}.mdi-chat-plus-outline:before{content:"\f1412"}.mdi-chat-processing:before{content:"\f0b7b"}.mdi-chat-processing-outline:before{content:"\f12ca"}.mdi-chat-question:before{content:"\f1738"}.mdi-chat-question-outline:before{content:"\f1739"}.mdi-chat-remove:before{content:"\f1411"}.mdi-chat-remove-outline:before{content:"\f1414"}.mdi-chat-sleep:before{content:"\f12d1"}.mdi-chat-sleep-outline:before{content:"\f12d2"}.mdi-check:before{content:"\f012c"}.mdi-check-all:before{content:"\f012d"}.mdi-check-bold:before{content:"\f0e1e"}.mdi-check-circle:before{content:"\f05e0"}.mdi-check-circle-outline:before{content:"\f05e1"}.mdi-check-decagram:before{content:"\f0791"}.mdi-check-decagram-outline:before{content:"\f1740"}.mdi-check-network:before{content:"\f0c53"}.mdi-check-network-outline:before{content:"\f0c54"}.mdi-check-outline:before{content:"\f0855"}.mdi-check-underline:before{content:"\f0e1f"}.mdi-check-underline-circle:before{content:"\f0e20"}.mdi-check-underline-circle-outline:before{content:"\f0e21"}.mdi-checkbook:before{content:"\f0a9d"}.mdi-checkbox-blank:before{content:"\f012e"}.mdi-checkbox-blank-badge:before{content:"\f1176"}.mdi-checkbox-blank-badge-outline:before{content:"\f0117"}.mdi-checkbox-blank-circle:before{content:"\f012f"}.mdi-checkbox-blank-circle-outline:before{content:"\f0130"}.mdi-checkbox-blank-off:before{content:"\f12ec"}.mdi-checkbox-blank-off-outline:before{content:"\f12ed"}.mdi-checkbox-blank-outline:before{content:"\f0131"}.mdi-checkbox-intermediate:before{content:"\f0856"}.mdi-checkbox-intermediate-variant:before{content:"\f1b54"}.mdi-checkbox-marked:before{content:"\f0132"}.mdi-checkbox-marked-circle:before{content:"\f0133"}.mdi-checkbox-marked-circle-outline:before{content:"\f0134"}.mdi-checkbox-marked-circle-plus-outline:before{content:"\f1927"}.mdi-checkbox-marked-outline:before{content:"\f0135"}.mdi-checkbox-multiple-blank:before{content:"\f0136"}.mdi-checkbox-multiple-blank-circle:before{content:"\f063b"}.mdi-checkbox-multiple-blank-circle-outline:before{content:"\f063c"}.mdi-checkbox-multiple-blank-outline:before{content:"\f0137"}.mdi-checkbox-multiple-marked:before{content:"\f0138"}.mdi-checkbox-multiple-marked-circle:before{content:"\f063d"}.mdi-checkbox-multiple-marked-circle-outline:before{content:"\f063e"}.mdi-checkbox-multiple-marked-outline:before{content:"\f0139"}.mdi-checkbox-multiple-outline:before{content:"\f0c51"}.mdi-checkbox-outline:before{content:"\f0c52"}.mdi-checkerboard:before{content:"\f013a"}.mdi-checkerboard-minus:before{content:"\f1202"}.mdi-checkerboard-plus:before{content:"\f1201"}.mdi-checkerboard-remove:before{content:"\f1203"}.mdi-cheese:before{content:"\f12b9"}.mdi-cheese-off:before{content:"\f13ee"}.mdi-chef-hat:before{content:"\f0b7c"}.mdi-chemical-weapon:before{content:"\f013b"}.mdi-chess-bishop:before{content:"\f085c"}.mdi-chess-king:before{content:"\f0857"}.mdi-chess-knight:before{content:"\f0858"}.mdi-chess-pawn:before{content:"\f0859"}.mdi-chess-queen:before{content:"\f085a"}.mdi-chess-rook:before{content:"\f085b"}.mdi-chevron-double-down:before{content:"\f013c"}.mdi-chevron-double-left:before{content:"\f013d"}.mdi-chevron-double-right:before{content:"\f013e"}.mdi-chevron-double-up:before{content:"\f013f"}.mdi-chevron-down:before{content:"\f0140"}.mdi-chevron-down-box:before{content:"\f09d6"}.mdi-chevron-down-box-outline:before{content:"\f09d7"}.mdi-chevron-down-circle:before{content:"\f0b26"}.mdi-chevron-down-circle-outline:before{content:"\f0b27"}.mdi-chevron-left:before{content:"\f0141"}.mdi-chevron-left-box:before{content:"\f09d8"}.mdi-chevron-left-box-outline:before{content:"\f09d9"}.mdi-chevron-left-circle:before{content:"\f0b28"}.mdi-chevron-left-circle-outline:before{content:"\f0b29"}.mdi-chevron-right:before{content:"\f0142"}.mdi-chevron-right-box:before{content:"\f09da"}.mdi-chevron-right-box-outline:before{content:"\f09db"}.mdi-chevron-right-circle:before{content:"\f0b2a"}.mdi-chevron-right-circle-outline:before{content:"\f0b2b"}.mdi-chevron-triple-down:before{content:"\f0db9"}.mdi-chevron-triple-left:before{content:"\f0dba"}.mdi-chevron-triple-right:before{content:"\f0dbb"}.mdi-chevron-triple-up:before{content:"\f0dbc"}.mdi-chevron-up:before{content:"\f0143"}.mdi-chevron-up-box:before{content:"\f09dc"}.mdi-chevron-up-box-outline:before{content:"\f09dd"}.mdi-chevron-up-circle:before{content:"\f0b2c"}.mdi-chevron-up-circle-outline:before{content:"\f0b2d"}.mdi-chili-alert:before{content:"\f17ea"}.mdi-chili-alert-outline:before{content:"\f17eb"}.mdi-chili-hot:before{content:"\f07b2"}.mdi-chili-hot-outline:before{content:"\f17ec"}.mdi-chili-medium:before{content:"\f07b3"}.mdi-chili-medium-outline:before{content:"\f17ed"}.mdi-chili-mild:before{content:"\f07b4"}.mdi-chili-mild-outline:before{content:"\f17ee"}.mdi-chili-off:before{content:"\f1467"}.mdi-chili-off-outline:before{content:"\f17ef"}.mdi-chip:before{content:"\f061a"}.mdi-church:before{content:"\f0144"}.mdi-church-outline:before{content:"\f1b02"}.mdi-cigar:before{content:"\f1189"}.mdi-cigar-off:before{content:"\f141b"}.mdi-circle:before{content:"\f0765"}.mdi-circle-box:before{content:"\f15dc"}.mdi-circle-box-outline:before{content:"\f15dd"}.mdi-circle-double:before{content:"\f0e95"}.mdi-circle-edit-outline:before{content:"\f08d5"}.mdi-circle-expand:before{content:"\f0e96"}.mdi-circle-half:before{content:"\f1395"}.mdi-circle-half-full:before{content:"\f1396"}.mdi-circle-medium:before{content:"\f09de"}.mdi-circle-multiple:before{content:"\f0b38"}.mdi-circle-multiple-outline:before{content:"\f0695"}.mdi-circle-off-outline:before{content:"\f10d3"}.mdi-circle-opacity:before{content:"\f1853"}.mdi-circle-outline:before{content:"\f0766"}.mdi-circle-slice-1:before{content:"\f0a9e"}.mdi-circle-slice-2:before{content:"\f0a9f"}.mdi-circle-slice-3:before{content:"\f0aa0"}.mdi-circle-slice-4:before{content:"\f0aa1"}.mdi-circle-slice-5:before{content:"\f0aa2"}.mdi-circle-slice-6:before{content:"\f0aa3"}.mdi-circle-slice-7:before{content:"\f0aa4"}.mdi-circle-slice-8:before{content:"\f0aa5"}.mdi-circle-small:before{content:"\f09df"}.mdi-circular-saw:before{content:"\f0e22"}.mdi-city:before{content:"\f0146"}.mdi-city-variant:before{content:"\f0a36"}.mdi-city-variant-outline:before{content:"\f0a37"}.mdi-clipboard:before{content:"\f0147"}.mdi-clipboard-account:before{content:"\f0148"}.mdi-clipboard-account-outline:before{content:"\f0c55"}.mdi-clipboard-alert:before{content:"\f0149"}.mdi-clipboard-alert-outline:before{content:"\f0cf7"}.mdi-clipboard-arrow-down:before{content:"\f014a"}.mdi-clipboard-arrow-down-outline:before{content:"\f0c56"}.mdi-clipboard-arrow-left:before{content:"\f014b"}.mdi-clipboard-arrow-left-outline:before{content:"\f0cf8"}.mdi-clipboard-arrow-right:before{content:"\f0cf9"}.mdi-clipboard-arrow-right-outline:before{content:"\f0cfa"}.mdi-clipboard-arrow-up:before{content:"\f0c57"}.mdi-clipboard-arrow-up-outline:before{content:"\f0c58"}.mdi-clipboard-check:before{content:"\f014e"}.mdi-clipboard-check-multiple:before{content:"\f1263"}.mdi-clipboard-check-multiple-outline:before{content:"\f1264"}.mdi-clipboard-check-outline:before{content:"\f08a8"}.mdi-clipboard-clock:before{content:"\f16e2"}.mdi-clipboard-clock-outline:before{content:"\f16e3"}.mdi-clipboard-edit:before{content:"\f14e5"}.mdi-clipboard-edit-outline:before{content:"\f14e6"}.mdi-clipboard-file:before{content:"\f1265"}.mdi-clipboard-file-outline:before{content:"\f1266"}.mdi-clipboard-flow:before{content:"\f06c8"}.mdi-clipboard-flow-outline:before{content:"\f1117"}.mdi-clipboard-list:before{content:"\f10d4"}.mdi-clipboard-list-outline:before{content:"\f10d5"}.mdi-clipboard-minus:before{content:"\f1618"}.mdi-clipboard-minus-outline:before{content:"\f1619"}.mdi-clipboard-multiple:before{content:"\f1267"}.mdi-clipboard-multiple-outline:before{content:"\f1268"}.mdi-clipboard-off:before{content:"\f161a"}.mdi-clipboard-off-outline:before{content:"\f161b"}.mdi-clipboard-outline:before{content:"\f014c"}.mdi-clipboard-play:before{content:"\f0c59"}.mdi-clipboard-play-multiple:before{content:"\f1269"}.mdi-clipboard-play-multiple-outline:before{content:"\f126a"}.mdi-clipboard-play-outline:before{content:"\f0c5a"}.mdi-clipboard-plus:before{content:"\f0751"}.mdi-clipboard-plus-outline:before{content:"\f131f"}.mdi-clipboard-pulse:before{content:"\f085d"}.mdi-clipboard-pulse-outline:before{content:"\f085e"}.mdi-clipboard-remove:before{content:"\f161c"}.mdi-clipboard-remove-outline:before{content:"\f161d"}.mdi-clipboard-search:before{content:"\f161e"}.mdi-clipboard-search-outline:before{content:"\f161f"}.mdi-clipboard-text:before{content:"\f014d"}.mdi-clipboard-text-clock:before{content:"\f18f9"}.mdi-clipboard-text-clock-outline:before{content:"\f18fa"}.mdi-clipboard-text-multiple:before{content:"\f126b"}.mdi-clipboard-text-multiple-outline:before{content:"\f126c"}.mdi-clipboard-text-off:before{content:"\f1620"}.mdi-clipboard-text-off-outline:before{content:"\f1621"}.mdi-clipboard-text-outline:before{content:"\f0a38"}.mdi-clipboard-text-play:before{content:"\f0c5b"}.mdi-clipboard-text-play-outline:before{content:"\f0c5c"}.mdi-clipboard-text-search:before{content:"\f1622"}.mdi-clipboard-text-search-outline:before{content:"\f1623"}.mdi-clippy:before{content:"\f014f"}.mdi-clock:before{content:"\f0954"}.mdi-clock-alert:before{content:"\f0955"}.mdi-clock-alert-outline:before{content:"\f05ce"}.mdi-clock-check:before{content:"\f0fa8"}.mdi-clock-check-outline:before{content:"\f0fa9"}.mdi-clock-digital:before{content:"\f0e97"}.mdi-clock-edit:before{content:"\f19ba"}.mdi-clock-edit-outline:before{content:"\f19bb"}.mdi-clock-end:before{content:"\f0151"}.mdi-clock-fast:before{content:"\f0152"}.mdi-clock-in:before{content:"\f0153"}.mdi-clock-minus:before{content:"\f1863"}.mdi-clock-minus-outline:before{content:"\f1864"}.mdi-clock-out:before{content:"\f0154"}.mdi-clock-outline:before{content:"\f0150"}.mdi-clock-plus:before{content:"\f1861"}.mdi-clock-plus-outline:before{content:"\f1862"}.mdi-clock-remove:before{content:"\f1865"}.mdi-clock-remove-outline:before{content:"\f1866"}.mdi-clock-start:before{content:"\f0155"}.mdi-clock-time-eight:before{content:"\f1446"}.mdi-clock-time-eight-outline:before{content:"\f1452"}.mdi-clock-time-eleven:before{content:"\f1449"}.mdi-clock-time-eleven-outline:before{content:"\f1455"}.mdi-clock-time-five:before{content:"\f1443"}.mdi-clock-time-five-outline:before{content:"\f144f"}.mdi-clock-time-four:before{content:"\f1442"}.mdi-clock-time-four-outline:before{content:"\f144e"}.mdi-clock-time-nine:before{content:"\f1447"}.mdi-clock-time-nine-outline:before{content:"\f1453"}.mdi-clock-time-one:before{content:"\f143f"}.mdi-clock-time-one-outline:before{content:"\f144b"}.mdi-clock-time-seven:before{content:"\f1445"}.mdi-clock-time-seven-outline:before{content:"\f1451"}.mdi-clock-time-six:before{content:"\f1444"}.mdi-clock-time-six-outline:before{content:"\f1450"}.mdi-clock-time-ten:before{content:"\f1448"}.mdi-clock-time-ten-outline:before{content:"\f1454"}.mdi-clock-time-three:before{content:"\f1441"}.mdi-clock-time-three-outline:before{content:"\f144d"}.mdi-clock-time-twelve:before{content:"\f144a"}.mdi-clock-time-twelve-outline:before{content:"\f1456"}.mdi-clock-time-two:before{content:"\f1440"}.mdi-clock-time-two-outline:before{content:"\f144c"}.mdi-close:before{content:"\f0156"}.mdi-close-box:before{content:"\f0157"}.mdi-close-box-multiple:before{content:"\f0c5d"}.mdi-close-box-multiple-outline:before{content:"\f0c5e"}.mdi-close-box-outline:before{content:"\f0158"}.mdi-close-circle:before{content:"\f0159"}.mdi-close-circle-multiple:before{content:"\f062a"}.mdi-close-circle-multiple-outline:before{content:"\f0883"}.mdi-close-circle-outline:before{content:"\f015a"}.mdi-close-network:before{content:"\f015b"}.mdi-close-network-outline:before{content:"\f0c5f"}.mdi-close-octagon:before{content:"\f015c"}.mdi-close-octagon-outline:before{content:"\f015d"}.mdi-close-outline:before{content:"\f06c9"}.mdi-close-thick:before{content:"\f1398"}.mdi-closed-caption:before{content:"\f015e"}.mdi-closed-caption-outline:before{content:"\f0dbd"}.mdi-cloud:before{content:"\f015f"}.mdi-cloud-alert:before{content:"\f09e0"}.mdi-cloud-alert-outline:before{content:"\f1be0"}.mdi-cloud-arrow-down:before{content:"\f1be1"}.mdi-cloud-arrow-down-outline:before{content:"\f1be2"}.mdi-cloud-arrow-left:before{content:"\f1be3"}.mdi-cloud-arrow-left-outline:before{content:"\f1be4"}.mdi-cloud-arrow-right:before{content:"\f1be5"}.mdi-cloud-arrow-right-outline:before{content:"\f1be6"}.mdi-cloud-arrow-up:before{content:"\f1be7"}.mdi-cloud-arrow-up-outline:before{content:"\f1be8"}.mdi-cloud-braces:before{content:"\f07b5"}.mdi-cloud-cancel:before{content:"\f1be9"}.mdi-cloud-cancel-outline:before{content:"\f1bea"}.mdi-cloud-check:before{content:"\f1beb"}.mdi-cloud-check-outline:before{content:"\f1bec"}.mdi-cloud-check-variant:before{content:"\f0160"}.mdi-cloud-check-variant-outline:before{content:"\f12cc"}.mdi-cloud-circle:before{content:"\f0161"}.mdi-cloud-circle-outline:before{content:"\f1bed"}.mdi-cloud-clock:before{content:"\f1bee"}.mdi-cloud-clock-outline:before{content:"\f1bef"}.mdi-cloud-cog:before{content:"\f1bf0"}.mdi-cloud-cog-outline:before{content:"\f1bf1"}.mdi-cloud-download:before{content:"\f0162"}.mdi-cloud-download-outline:before{content:"\f0b7d"}.mdi-cloud-lock:before{content:"\f11f1"}.mdi-cloud-lock-open:before{content:"\f1bf2"}.mdi-cloud-lock-open-outline:before{content:"\f1bf3"}.mdi-cloud-lock-outline:before{content:"\f11f2"}.mdi-cloud-minus:before{content:"\f1bf4"}.mdi-cloud-minus-outline:before{content:"\f1bf5"}.mdi-cloud-off:before{content:"\f1bf6"}.mdi-cloud-off-outline:before{content:"\f0164"}.mdi-cloud-outline:before{content:"\f0163"}.mdi-cloud-percent:before{content:"\f1a35"}.mdi-cloud-percent-outline:before{content:"\f1a36"}.mdi-cloud-plus:before{content:"\f1bf7"}.mdi-cloud-plus-outline:before{content:"\f1bf8"}.mdi-cloud-print:before{content:"\f0165"}.mdi-cloud-print-outline:before{content:"\f0166"}.mdi-cloud-question:before{content:"\f0a39"}.mdi-cloud-question-outline:before{content:"\f1bf9"}.mdi-cloud-refresh:before{content:"\f1bfa"}.mdi-cloud-refresh-outline:before{content:"\f1bfb"}.mdi-cloud-refresh-variant:before{content:"\f052a"}.mdi-cloud-refresh-variant-outline:before{content:"\f1bfc"}.mdi-cloud-remove:before{content:"\f1bfd"}.mdi-cloud-remove-outline:before{content:"\f1bfe"}.mdi-cloud-search:before{content:"\f0956"}.mdi-cloud-search-outline:before{content:"\f0957"}.mdi-cloud-sync:before{content:"\f063f"}.mdi-cloud-sync-outline:before{content:"\f12d6"}.mdi-cloud-tags:before{content:"\f07b6"}.mdi-cloud-upload:before{content:"\f0167"}.mdi-cloud-upload-outline:before{content:"\f0b7e"}.mdi-clouds:before{content:"\f1b95"}.mdi-clover:before{content:"\f0816"}.mdi-coach-lamp:before{content:"\f1020"}.mdi-coach-lamp-variant:before{content:"\f1a37"}.mdi-coat-rack:before{content:"\f109e"}.mdi-code-array:before{content:"\f0168"}.mdi-code-braces:before{content:"\f0169"}.mdi-code-braces-box:before{content:"\f10d6"}.mdi-code-brackets:before{content:"\f016a"}.mdi-code-equal:before{content:"\f016b"}.mdi-code-greater-than:before{content:"\f016c"}.mdi-code-greater-than-or-equal:before{content:"\f016d"}.mdi-code-json:before{content:"\f0626"}.mdi-code-less-than:before{content:"\f016e"}.mdi-code-less-than-or-equal:before{content:"\f016f"}.mdi-code-not-equal:before{content:"\f0170"}.mdi-code-not-equal-variant:before{content:"\f0171"}.mdi-code-parentheses:before{content:"\f0172"}.mdi-code-parentheses-box:before{content:"\f10d7"}.mdi-code-string:before{content:"\f0173"}.mdi-code-tags:before{content:"\f0174"}.mdi-code-tags-check:before{content:"\f0694"}.mdi-codepen:before{content:"\f0175"}.mdi-coffee:before{content:"\f0176"}.mdi-coffee-maker:before{content:"\f109f"}.mdi-coffee-maker-check:before{content:"\f1931"}.mdi-coffee-maker-check-outline:before{content:"\f1932"}.mdi-coffee-maker-outline:before{content:"\f181b"}.mdi-coffee-off:before{content:"\f0faa"}.mdi-coffee-off-outline:before{content:"\f0fab"}.mdi-coffee-outline:before{content:"\f06ca"}.mdi-coffee-to-go:before{content:"\f0177"}.mdi-coffee-to-go-outline:before{content:"\f130e"}.mdi-coffin:before{content:"\f0b7f"}.mdi-cog:before{content:"\f0493"}.mdi-cog-box:before{content:"\f0494"}.mdi-cog-clockwise:before{content:"\f11dd"}.mdi-cog-counterclockwise:before{content:"\f11de"}.mdi-cog-off:before{content:"\f13ce"}.mdi-cog-off-outline:before{content:"\f13cf"}.mdi-cog-outline:before{content:"\f08bb"}.mdi-cog-pause:before{content:"\f1933"}.mdi-cog-pause-outline:before{content:"\f1934"}.mdi-cog-play:before{content:"\f1935"}.mdi-cog-play-outline:before{content:"\f1936"}.mdi-cog-refresh:before{content:"\f145e"}.mdi-cog-refresh-outline:before{content:"\f145f"}.mdi-cog-stop:before{content:"\f1937"}.mdi-cog-stop-outline:before{content:"\f1938"}.mdi-cog-sync:before{content:"\f1460"}.mdi-cog-sync-outline:before{content:"\f1461"}.mdi-cog-transfer:before{content:"\f105b"}.mdi-cog-transfer-outline:before{content:"\f105c"}.mdi-cogs:before{content:"\f08d6"}.mdi-collage:before{content:"\f0640"}.mdi-collapse-all:before{content:"\f0aa6"}.mdi-collapse-all-outline:before{content:"\f0aa7"}.mdi-color-helper:before{content:"\f0179"}.mdi-comma:before{content:"\f0e23"}.mdi-comma-box:before{content:"\f0e2b"}.mdi-comma-box-outline:before{content:"\f0e24"}.mdi-comma-circle:before{content:"\f0e25"}.mdi-comma-circle-outline:before{content:"\f0e26"}.mdi-comment:before{content:"\f017a"}.mdi-comment-account:before{content:"\f017b"}.mdi-comment-account-outline:before{content:"\f017c"}.mdi-comment-alert:before{content:"\f017d"}.mdi-comment-alert-outline:before{content:"\f017e"}.mdi-comment-arrow-left:before{content:"\f09e1"}.mdi-comment-arrow-left-outline:before{content:"\f09e2"}.mdi-comment-arrow-right:before{content:"\f09e3"}.mdi-comment-arrow-right-outline:before{content:"\f09e4"}.mdi-comment-bookmark:before{content:"\f15ae"}.mdi-comment-bookmark-outline:before{content:"\f15af"}.mdi-comment-check:before{content:"\f017f"}.mdi-comment-check-outline:before{content:"\f0180"}.mdi-comment-edit:before{content:"\f11bf"}.mdi-comment-edit-outline:before{content:"\f12c4"}.mdi-comment-eye:before{content:"\f0a3a"}.mdi-comment-eye-outline:before{content:"\f0a3b"}.mdi-comment-flash:before{content:"\f15b0"}.mdi-comment-flash-outline:before{content:"\f15b1"}.mdi-comment-minus:before{content:"\f15df"}.mdi-comment-minus-outline:before{content:"\f15e0"}.mdi-comment-multiple:before{content:"\f085f"}.mdi-comment-multiple-outline:before{content:"\f0181"}.mdi-comment-off:before{content:"\f15e1"}.mdi-comment-off-outline:before{content:"\f15e2"}.mdi-comment-outline:before{content:"\f0182"}.mdi-comment-plus:before{content:"\f09e5"}.mdi-comment-plus-outline:before{content:"\f0183"}.mdi-comment-processing:before{content:"\f0184"}.mdi-comment-processing-outline:before{content:"\f0185"}.mdi-comment-question:before{content:"\f0817"}.mdi-comment-question-outline:before{content:"\f0186"}.mdi-comment-quote:before{content:"\f1021"}.mdi-comment-quote-outline:before{content:"\f1022"}.mdi-comment-remove:before{content:"\f05de"}.mdi-comment-remove-outline:before{content:"\f0187"}.mdi-comment-search:before{content:"\f0a3c"}.mdi-comment-search-outline:before{content:"\f0a3d"}.mdi-comment-text:before{content:"\f0188"}.mdi-comment-text-multiple:before{content:"\f0860"}.mdi-comment-text-multiple-outline:before{content:"\f0861"}.mdi-comment-text-outline:before{content:"\f0189"}.mdi-compare:before{content:"\f018a"}.mdi-compare-horizontal:before{content:"\f1492"}.mdi-compare-remove:before{content:"\f18b3"}.mdi-compare-vertical:before{content:"\f1493"}.mdi-compass:before{content:"\f018b"}.mdi-compass-off:before{content:"\f0b80"}.mdi-compass-off-outline:before{content:"\f0b81"}.mdi-compass-outline:before{content:"\f018c"}.mdi-compass-rose:before{content:"\f1382"}.mdi-compost:before{content:"\f1a38"}.mdi-cone:before{content:"\f194c"}.mdi-cone-off:before{content:"\f194d"}.mdi-connection:before{content:"\f1616"}.mdi-console:before{content:"\f018d"}.mdi-console-line:before{content:"\f07b7"}.mdi-console-network:before{content:"\f08a9"}.mdi-console-network-outline:before{content:"\f0c60"}.mdi-consolidate:before{content:"\f10d8"}.mdi-contactless-payment:before{content:"\f0d6a"}.mdi-contactless-payment-circle:before{content:"\f0321"}.mdi-contactless-payment-circle-outline:before{content:"\f0408"}.mdi-contacts:before{content:"\f06cb"}.mdi-contacts-outline:before{content:"\f05b8"}.mdi-contain:before{content:"\f0a3e"}.mdi-contain-end:before{content:"\f0a3f"}.mdi-contain-start:before{content:"\f0a40"}.mdi-content-copy:before{content:"\f018f"}.mdi-content-cut:before{content:"\f0190"}.mdi-content-duplicate:before{content:"\f0191"}.mdi-content-paste:before{content:"\f0192"}.mdi-content-save:before{content:"\f0193"}.mdi-content-save-alert:before{content:"\f0f42"}.mdi-content-save-alert-outline:before{content:"\f0f43"}.mdi-content-save-all:before{content:"\f0194"}.mdi-content-save-all-outline:before{content:"\f0f44"}.mdi-content-save-check:before{content:"\f18ea"}.mdi-content-save-check-outline:before{content:"\f18eb"}.mdi-content-save-cog:before{content:"\f145b"}.mdi-content-save-cog-outline:before{content:"\f145c"}.mdi-content-save-edit:before{content:"\f0cfb"}.mdi-content-save-edit-outline:before{content:"\f0cfc"}.mdi-content-save-minus:before{content:"\f1b43"}.mdi-content-save-minus-outline:before{content:"\f1b44"}.mdi-content-save-move:before{content:"\f0e27"}.mdi-content-save-move-outline:before{content:"\f0e28"}.mdi-content-save-off:before{content:"\f1643"}.mdi-content-save-off-outline:before{content:"\f1644"}.mdi-content-save-outline:before{content:"\f0818"}.mdi-content-save-plus:before{content:"\f1b41"}.mdi-content-save-plus-outline:before{content:"\f1b42"}.mdi-content-save-settings:before{content:"\f061b"}.mdi-content-save-settings-outline:before{content:"\f0b2e"}.mdi-contrast:before{content:"\f0195"}.mdi-contrast-box:before{content:"\f0196"}.mdi-contrast-circle:before{content:"\f0197"}.mdi-controller:before{content:"\f02b4"}.mdi-controller-classic:before{content:"\f0b82"}.mdi-controller-classic-outline:before{content:"\f0b83"}.mdi-controller-off:before{content:"\f02b5"}.mdi-cookie:before{content:"\f0198"}.mdi-cookie-alert:before{content:"\f16d0"}.mdi-cookie-alert-outline:before{content:"\f16d1"}.mdi-cookie-check:before{content:"\f16d2"}.mdi-cookie-check-outline:before{content:"\f16d3"}.mdi-cookie-clock:before{content:"\f16e4"}.mdi-cookie-clock-outline:before{content:"\f16e5"}.mdi-cookie-cog:before{content:"\f16d4"}.mdi-cookie-cog-outline:before{content:"\f16d5"}.mdi-cookie-edit:before{content:"\f16e6"}.mdi-cookie-edit-outline:before{content:"\f16e7"}.mdi-cookie-lock:before{content:"\f16e8"}.mdi-cookie-lock-outline:before{content:"\f16e9"}.mdi-cookie-minus:before{content:"\f16da"}.mdi-cookie-minus-outline:before{content:"\f16db"}.mdi-cookie-off:before{content:"\f16ea"}.mdi-cookie-off-outline:before{content:"\f16eb"}.mdi-cookie-outline:before{content:"\f16de"}.mdi-cookie-plus:before{content:"\f16d6"}.mdi-cookie-plus-outline:before{content:"\f16d7"}.mdi-cookie-refresh:before{content:"\f16ec"}.mdi-cookie-refresh-outline:before{content:"\f16ed"}.mdi-cookie-remove:before{content:"\f16d8"}.mdi-cookie-remove-outline:before{content:"\f16d9"}.mdi-cookie-settings:before{content:"\f16dc"}.mdi-cookie-settings-outline:before{content:"\f16dd"}.mdi-coolant-temperature:before{content:"\f03c8"}.mdi-copyleft:before{content:"\f1939"}.mdi-copyright:before{content:"\f05e6"}.mdi-cordova:before{content:"\f0958"}.mdi-corn:before{content:"\f07b8"}.mdi-corn-off:before{content:"\f13ef"}.mdi-cosine-wave:before{content:"\f1479"}.mdi-counter:before{content:"\f0199"}.mdi-countertop:before{content:"\f181c"}.mdi-countertop-outline:before{content:"\f181d"}.mdi-cow:before{content:"\f019a"}.mdi-cow-off:before{content:"\f18fc"}.mdi-cpu-32-bit:before{content:"\f0edf"}.mdi-cpu-64-bit:before{content:"\f0ee0"}.mdi-cradle:before{content:"\f198b"}.mdi-cradle-outline:before{content:"\f1991"}.mdi-crane:before{content:"\f0862"}.mdi-creation:before{content:"\f0674"}.mdi-creative-commons:before{content:"\f0d6b"}.mdi-credit-card:before{content:"\f0fef"}.mdi-credit-card-check:before{content:"\f13d0"}.mdi-credit-card-check-outline:before{content:"\f13d1"}.mdi-credit-card-chip:before{content:"\f190f"}.mdi-credit-card-chip-outline:before{content:"\f1910"}.mdi-credit-card-clock:before{content:"\f0ee1"}.mdi-credit-card-clock-outline:before{content:"\f0ee2"}.mdi-credit-card-edit:before{content:"\f17d7"}.mdi-credit-card-edit-outline:before{content:"\f17d8"}.mdi-credit-card-fast:before{content:"\f1911"}.mdi-credit-card-fast-outline:before{content:"\f1912"}.mdi-credit-card-lock:before{content:"\f18e7"}.mdi-credit-card-lock-outline:before{content:"\f18e8"}.mdi-credit-card-marker:before{content:"\f06a8"}.mdi-credit-card-marker-outline:before{content:"\f0dbe"}.mdi-credit-card-minus:before{content:"\f0fac"}.mdi-credit-card-minus-outline:before{content:"\f0fad"}.mdi-credit-card-multiple:before{content:"\f0ff0"}.mdi-credit-card-multiple-outline:before{content:"\f019c"}.mdi-credit-card-off:before{content:"\f0ff1"}.mdi-credit-card-off-outline:before{content:"\f05e4"}.mdi-credit-card-outline:before{content:"\f019b"}.mdi-credit-card-plus:before{content:"\f0ff2"}.mdi-credit-card-plus-outline:before{content:"\f0676"}.mdi-credit-card-refresh:before{content:"\f1645"}.mdi-credit-card-refresh-outline:before{content:"\f1646"}.mdi-credit-card-refund:before{content:"\f0ff3"}.mdi-credit-card-refund-outline:before{content:"\f0aa8"}.mdi-credit-card-remove:before{content:"\f0fae"}.mdi-credit-card-remove-outline:before{content:"\f0faf"}.mdi-credit-card-scan:before{content:"\f0ff4"}.mdi-credit-card-scan-outline:before{content:"\f019d"}.mdi-credit-card-search:before{content:"\f1647"}.mdi-credit-card-search-outline:before{content:"\f1648"}.mdi-credit-card-settings:before{content:"\f0ff5"}.mdi-credit-card-settings-outline:before{content:"\f08d7"}.mdi-credit-card-sync:before{content:"\f1649"}.mdi-credit-card-sync-outline:before{content:"\f164a"}.mdi-credit-card-wireless:before{content:"\f0802"}.mdi-credit-card-wireless-off:before{content:"\f057a"}.mdi-credit-card-wireless-off-outline:before{content:"\f057b"}.mdi-credit-card-wireless-outline:before{content:"\f0d6c"}.mdi-cricket:before{content:"\f0d6d"}.mdi-crop:before{content:"\f019e"}.mdi-crop-free:before{content:"\f019f"}.mdi-crop-landscape:before{content:"\f01a0"}.mdi-crop-portrait:before{content:"\f01a1"}.mdi-crop-rotate:before{content:"\f0696"}.mdi-crop-square:before{content:"\f01a2"}.mdi-cross:before{content:"\f0953"}.mdi-cross-bolnisi:before{content:"\f0ced"}.mdi-cross-celtic:before{content:"\f0cf5"}.mdi-cross-outline:before{content:"\f0cf6"}.mdi-crosshairs:before{content:"\f01a3"}.mdi-crosshairs-gps:before{content:"\f01a4"}.mdi-crosshairs-off:before{content:"\f0f45"}.mdi-crosshairs-question:before{content:"\f1136"}.mdi-crowd:before{content:"\f1975"}.mdi-crown:before{content:"\f01a5"}.mdi-crown-circle:before{content:"\f17dc"}.mdi-crown-circle-outline:before{content:"\f17dd"}.mdi-crown-outline:before{content:"\f11d0"}.mdi-cryengine:before{content:"\f0959"}.mdi-crystal-ball:before{content:"\f0b2f"}.mdi-cube:before{content:"\f01a6"}.mdi-cube-off:before{content:"\f141c"}.mdi-cube-off-outline:before{content:"\f141d"}.mdi-cube-outline:before{content:"\f01a7"}.mdi-cube-scan:before{content:"\f0b84"}.mdi-cube-send:before{content:"\f01a8"}.mdi-cube-unfolded:before{content:"\f01a9"}.mdi-cup:before{content:"\f01aa"}.mdi-cup-off:before{content:"\f05e5"}.mdi-cup-off-outline:before{content:"\f137d"}.mdi-cup-outline:before{content:"\f130f"}.mdi-cup-water:before{content:"\f01ab"}.mdi-cupboard:before{content:"\f0f46"}.mdi-cupboard-outline:before{content:"\f0f47"}.mdi-cupcake:before{content:"\f095a"}.mdi-curling:before{content:"\f0863"}.mdi-currency-bdt:before{content:"\f0864"}.mdi-currency-brl:before{content:"\f0b85"}.mdi-currency-btc:before{content:"\f01ac"}.mdi-currency-cny:before{content:"\f07ba"}.mdi-currency-eth:before{content:"\f07bb"}.mdi-currency-eur:before{content:"\f01ad"}.mdi-currency-eur-off:before{content:"\f1315"}.mdi-currency-fra:before{content:"\f1a39"}.mdi-currency-gbp:before{content:"\f01ae"}.mdi-currency-ils:before{content:"\f0c61"}.mdi-currency-inr:before{content:"\f01af"}.mdi-currency-jpy:before{content:"\f07bc"}.mdi-currency-krw:before{content:"\f07bd"}.mdi-currency-kzt:before{content:"\f0865"}.mdi-currency-mnt:before{content:"\f1512"}.mdi-currency-ngn:before{content:"\f01b0"}.mdi-currency-php:before{content:"\f09e6"}.mdi-currency-rial:before{content:"\f0e9c"}.mdi-currency-rub:before{content:"\f01b1"}.mdi-currency-rupee:before{content:"\f1976"}.mdi-currency-sign:before{content:"\f07be"}.mdi-currency-thb:before{content:"\f1c05"}.mdi-currency-try:before{content:"\f01b2"}.mdi-currency-twd:before{content:"\f07bf"}.mdi-currency-uah:before{content:"\f1b9b"}.mdi-currency-usd:before{content:"\f01c1"}.mdi-currency-usd-off:before{content:"\f067a"}.mdi-current-ac:before{content:"\f1480"}.mdi-current-dc:before{content:"\f095c"}.mdi-cursor-default:before{content:"\f01c0"}.mdi-cursor-default-click:before{content:"\f0cfd"}.mdi-cursor-default-click-outline:before{content:"\f0cfe"}.mdi-cursor-default-gesture:before{content:"\f1127"}.mdi-cursor-default-gesture-outline:before{content:"\f1128"}.mdi-cursor-default-outline:before{content:"\f01bf"}.mdi-cursor-move:before{content:"\f01be"}.mdi-cursor-pointer:before{content:"\f01bd"}.mdi-cursor-text:before{content:"\f05e7"}.mdi-curtains:before{content:"\f1846"}.mdi-curtains-closed:before{content:"\f1847"}.mdi-cylinder:before{content:"\f194e"}.mdi-cylinder-off:before{content:"\f194f"}.mdi-dance-ballroom:before{content:"\f15fb"}.mdi-dance-pole:before{content:"\f1578"}.mdi-data-matrix:before{content:"\f153c"}.mdi-data-matrix-edit:before{content:"\f153d"}.mdi-data-matrix-minus:before{content:"\f153e"}.mdi-data-matrix-plus:before{content:"\f153f"}.mdi-data-matrix-remove:before{content:"\f1540"}.mdi-data-matrix-scan:before{content:"\f1541"}.mdi-database:before{content:"\f01bc"}.mdi-database-alert:before{content:"\f163a"}.mdi-database-alert-outline:before{content:"\f1624"}.mdi-database-arrow-down:before{content:"\f163b"}.mdi-database-arrow-down-outline:before{content:"\f1625"}.mdi-database-arrow-left:before{content:"\f163c"}.mdi-database-arrow-left-outline:before{content:"\f1626"}.mdi-database-arrow-right:before{content:"\f163d"}.mdi-database-arrow-right-outline:before{content:"\f1627"}.mdi-database-arrow-up:before{content:"\f163e"}.mdi-database-arrow-up-outline:before{content:"\f1628"}.mdi-database-check:before{content:"\f0aa9"}.mdi-database-check-outline:before{content:"\f1629"}.mdi-database-clock:before{content:"\f163f"}.mdi-database-clock-outline:before{content:"\f162a"}.mdi-database-cog:before{content:"\f164b"}.mdi-database-cog-outline:before{content:"\f164c"}.mdi-database-edit:before{content:"\f0b86"}.mdi-database-edit-outline:before{content:"\f162b"}.mdi-database-export:before{content:"\f095e"}.mdi-database-export-outline:before{content:"\f162c"}.mdi-database-eye:before{content:"\f191f"}.mdi-database-eye-off:before{content:"\f1920"}.mdi-database-eye-off-outline:before{content:"\f1921"}.mdi-database-eye-outline:before{content:"\f1922"}.mdi-database-import:before{content:"\f095d"}.mdi-database-import-outline:before{content:"\f162d"}.mdi-database-lock:before{content:"\f0aaa"}.mdi-database-lock-outline:before{content:"\f162e"}.mdi-database-marker:before{content:"\f12f6"}.mdi-database-marker-outline:before{content:"\f162f"}.mdi-database-minus:before{content:"\f01bb"}.mdi-database-minus-outline:before{content:"\f1630"}.mdi-database-off:before{content:"\f1640"}.mdi-database-off-outline:before{content:"\f1631"}.mdi-database-outline:before{content:"\f1632"}.mdi-database-plus:before{content:"\f01ba"}.mdi-database-plus-outline:before{content:"\f1633"}.mdi-database-refresh:before{content:"\f05c2"}.mdi-database-refresh-outline:before{content:"\f1634"}.mdi-database-remove:before{content:"\f0d00"}.mdi-database-remove-outline:before{content:"\f1635"}.mdi-database-search:before{content:"\f0866"}.mdi-database-search-outline:before{content:"\f1636"}.mdi-database-settings:before{content:"\f0d01"}.mdi-database-settings-outline:before{content:"\f1637"}.mdi-database-sync:before{content:"\f0cff"}.mdi-database-sync-outline:before{content:"\f1638"}.mdi-death-star:before{content:"\f08d8"}.mdi-death-star-variant:before{content:"\f08d9"}.mdi-deathly-hallows:before{content:"\f0b87"}.mdi-debian:before{content:"\f08da"}.mdi-debug-step-into:before{content:"\f01b9"}.mdi-debug-step-out:before{content:"\f01b8"}.mdi-debug-step-over:before{content:"\f01b7"}.mdi-decagram:before{content:"\f076c"}.mdi-decagram-outline:before{content:"\f076d"}.mdi-decimal:before{content:"\f10a1"}.mdi-decimal-comma:before{content:"\f10a2"}.mdi-decimal-comma-decrease:before{content:"\f10a3"}.mdi-decimal-comma-increase:before{content:"\f10a4"}.mdi-decimal-decrease:before{content:"\f01b6"}.mdi-decimal-increase:before{content:"\f01b5"}.mdi-delete:before{content:"\f01b4"}.mdi-delete-alert:before{content:"\f10a5"}.mdi-delete-alert-outline:before{content:"\f10a6"}.mdi-delete-circle:before{content:"\f0683"}.mdi-delete-circle-outline:before{content:"\f0b88"}.mdi-delete-clock:before{content:"\f1556"}.mdi-delete-clock-outline:before{content:"\f1557"}.mdi-delete-empty:before{content:"\f06cc"}.mdi-delete-empty-outline:before{content:"\f0e9d"}.mdi-delete-forever:before{content:"\f05e8"}.mdi-delete-forever-outline:before{content:"\f0b89"}.mdi-delete-off:before{content:"\f10a7"}.mdi-delete-off-outline:before{content:"\f10a8"}.mdi-delete-outline:before{content:"\f09e7"}.mdi-delete-restore:before{content:"\f0819"}.mdi-delete-sweep:before{content:"\f05e9"}.mdi-delete-sweep-outline:before{content:"\f0c62"}.mdi-delete-variant:before{content:"\f01b3"}.mdi-delta:before{content:"\f01c2"}.mdi-desk:before{content:"\f1239"}.mdi-desk-lamp:before{content:"\f095f"}.mdi-desk-lamp-off:before{content:"\f1b1f"}.mdi-desk-lamp-on:before{content:"\f1b20"}.mdi-deskphone:before{content:"\f01c3"}.mdi-desktop-classic:before{content:"\f07c0"}.mdi-desktop-tower:before{content:"\f01c5"}.mdi-desktop-tower-monitor:before{content:"\f0aab"}.mdi-details:before{content:"\f01c6"}.mdi-dev-to:before{content:"\f0d6e"}.mdi-developer-board:before{content:"\f0697"}.mdi-deviantart:before{content:"\f01c7"}.mdi-devices:before{content:"\f0fb0"}.mdi-dharmachakra:before{content:"\f094b"}.mdi-diabetes:before{content:"\f1126"}.mdi-dialpad:before{content:"\f061c"}.mdi-diameter:before{content:"\f0c63"}.mdi-diameter-outline:before{content:"\f0c64"}.mdi-diameter-variant:before{content:"\f0c65"}.mdi-diamond:before{content:"\f0b8a"}.mdi-diamond-outline:before{content:"\f0b8b"}.mdi-diamond-stone:before{content:"\f01c8"}.mdi-dice-1:before{content:"\f01ca"}.mdi-dice-1-outline:before{content:"\f114a"}.mdi-dice-2:before{content:"\f01cb"}.mdi-dice-2-outline:before{content:"\f114b"}.mdi-dice-3:before{content:"\f01cc"}.mdi-dice-3-outline:before{content:"\f114c"}.mdi-dice-4:before{content:"\f01cd"}.mdi-dice-4-outline:before{content:"\f114d"}.mdi-dice-5:before{content:"\f01ce"}.mdi-dice-5-outline:before{content:"\f114e"}.mdi-dice-6:before{content:"\f01cf"}.mdi-dice-6-outline:before{content:"\f114f"}.mdi-dice-d10:before{content:"\f1153"}.mdi-dice-d10-outline:before{content:"\f076f"}.mdi-dice-d12:before{content:"\f1154"}.mdi-dice-d12-outline:before{content:"\f0867"}.mdi-dice-d20:before{content:"\f1155"}.mdi-dice-d20-outline:before{content:"\f05ea"}.mdi-dice-d4:before{content:"\f1150"}.mdi-dice-d4-outline:before{content:"\f05eb"}.mdi-dice-d6:before{content:"\f1151"}.mdi-dice-d6-outline:before{content:"\f05ed"}.mdi-dice-d8:before{content:"\f1152"}.mdi-dice-d8-outline:before{content:"\f05ec"}.mdi-dice-multiple:before{content:"\f076e"}.mdi-dice-multiple-outline:before{content:"\f1156"}.mdi-digital-ocean:before{content:"\f1237"}.mdi-dip-switch:before{content:"\f07c1"}.mdi-directions:before{content:"\f01d0"}.mdi-directions-fork:before{content:"\f0641"}.mdi-disc:before{content:"\f05ee"}.mdi-disc-alert:before{content:"\f01d1"}.mdi-disc-player:before{content:"\f0960"}.mdi-dishwasher:before{content:"\f0aac"}.mdi-dishwasher-alert:before{content:"\f11b8"}.mdi-dishwasher-off:before{content:"\f11b9"}.mdi-disqus:before{content:"\f01d2"}.mdi-distribute-horizontal-center:before{content:"\f11c9"}.mdi-distribute-horizontal-left:before{content:"\f11c8"}.mdi-distribute-horizontal-right:before{content:"\f11ca"}.mdi-distribute-vertical-bottom:before{content:"\f11cb"}.mdi-distribute-vertical-center:before{content:"\f11cc"}.mdi-distribute-vertical-top:before{content:"\f11cd"}.mdi-diversify:before{content:"\f1877"}.mdi-diving:before{content:"\f1977"}.mdi-diving-flippers:before{content:"\f0dbf"}.mdi-diving-helmet:before{content:"\f0dc0"}.mdi-diving-scuba:before{content:"\f1b77"}.mdi-diving-scuba-flag:before{content:"\f0dc2"}.mdi-diving-scuba-mask:before{content:"\f0dc1"}.mdi-diving-scuba-tank:before{content:"\f0dc3"}.mdi-diving-scuba-tank-multiple:before{content:"\f0dc4"}.mdi-diving-snorkel:before{content:"\f0dc5"}.mdi-division:before{content:"\f01d4"}.mdi-division-box:before{content:"\f01d5"}.mdi-dlna:before{content:"\f0a41"}.mdi-dna:before{content:"\f0684"}.mdi-dns:before{content:"\f01d6"}.mdi-dns-outline:before{content:"\f0b8c"}.mdi-dock-bottom:before{content:"\f10a9"}.mdi-dock-left:before{content:"\f10aa"}.mdi-dock-right:before{content:"\f10ab"}.mdi-dock-top:before{content:"\f1513"}.mdi-dock-window:before{content:"\f10ac"}.mdi-docker:before{content:"\f0868"}.mdi-doctor:before{content:"\f0a42"}.mdi-dog:before{content:"\f0a43"}.mdi-dog-service:before{content:"\f0aad"}.mdi-dog-side:before{content:"\f0a44"}.mdi-dog-side-off:before{content:"\f16ee"}.mdi-dolby:before{content:"\f06b3"}.mdi-dolly:before{content:"\f0e9e"}.mdi-dolphin:before{content:"\f18b4"}.mdi-domain:before{content:"\f01d7"}.mdi-domain-off:before{content:"\f0d6f"}.mdi-domain-plus:before{content:"\f10ad"}.mdi-domain-remove:before{content:"\f10ae"}.mdi-dome-light:before{content:"\f141e"}.mdi-domino-mask:before{content:"\f1023"}.mdi-donkey:before{content:"\f07c2"}.mdi-door:before{content:"\f081a"}.mdi-door-closed:before{content:"\f081b"}.mdi-door-closed-lock:before{content:"\f10af"}.mdi-door-open:before{content:"\f081c"}.mdi-door-sliding:before{content:"\f181e"}.mdi-door-sliding-lock:before{content:"\f181f"}.mdi-door-sliding-open:before{content:"\f1820"}.mdi-doorbell:before{content:"\f12e6"}.mdi-doorbell-video:before{content:"\f0869"}.mdi-dot-net:before{content:"\f0aae"}.mdi-dots-circle:before{content:"\f1978"}.mdi-dots-grid:before{content:"\f15fc"}.mdi-dots-hexagon:before{content:"\f15ff"}.mdi-dots-horizontal:before{content:"\f01d8"}.mdi-dots-horizontal-circle:before{content:"\f07c3"}.mdi-dots-horizontal-circle-outline:before{content:"\f0b8d"}.mdi-dots-square:before{content:"\f15fd"}.mdi-dots-triangle:before{content:"\f15fe"}.mdi-dots-vertical:before{content:"\f01d9"}.mdi-dots-vertical-circle:before{content:"\f07c4"}.mdi-dots-vertical-circle-outline:before{content:"\f0b8e"}.mdi-download:before{content:"\f01da"}.mdi-download-box:before{content:"\f1462"}.mdi-download-box-outline:before{content:"\f1463"}.mdi-download-circle:before{content:"\f1464"}.mdi-download-circle-outline:before{content:"\f1465"}.mdi-download-lock:before{content:"\f1320"}.mdi-download-lock-outline:before{content:"\f1321"}.mdi-download-multiple:before{content:"\f09e9"}.mdi-download-network:before{content:"\f06f4"}.mdi-download-network-outline:before{content:"\f0c66"}.mdi-download-off:before{content:"\f10b0"}.mdi-download-off-outline:before{content:"\f10b1"}.mdi-download-outline:before{content:"\f0b8f"}.mdi-drag:before{content:"\f01db"}.mdi-drag-horizontal:before{content:"\f01dc"}.mdi-drag-horizontal-variant:before{content:"\f12f0"}.mdi-drag-variant:before{content:"\f0b90"}.mdi-drag-vertical:before{content:"\f01dd"}.mdi-drag-vertical-variant:before{content:"\f12f1"}.mdi-drama-masks:before{content:"\f0d02"}.mdi-draw:before{content:"\f0f49"}.mdi-draw-pen:before{content:"\f19b9"}.mdi-drawing:before{content:"\f01de"}.mdi-drawing-box:before{content:"\f01df"}.mdi-dresser:before{content:"\f0f4a"}.mdi-dresser-outline:before{content:"\f0f4b"}.mdi-drone:before{content:"\f01e2"}.mdi-dropbox:before{content:"\f01e3"}.mdi-drupal:before{content:"\f01e4"}.mdi-duck:before{content:"\f01e5"}.mdi-dumbbell:before{content:"\f01e6"}.mdi-dump-truck:before{content:"\f0c67"}.mdi-ear-hearing:before{content:"\f07c5"}.mdi-ear-hearing-loop:before{content:"\f1aee"}.mdi-ear-hearing-off:before{content:"\f0a45"}.mdi-earbuds:before{content:"\f184f"}.mdi-earbuds-off:before{content:"\f1850"}.mdi-earbuds-off-outline:before{content:"\f1851"}.mdi-earbuds-outline:before{content:"\f1852"}.mdi-earth:before{content:"\f01e7"}.mdi-earth-arrow-right:before{content:"\f1311"}.mdi-earth-box:before{content:"\f06cd"}.mdi-earth-box-minus:before{content:"\f1407"}.mdi-earth-box-off:before{content:"\f06ce"}.mdi-earth-box-plus:before{content:"\f1406"}.mdi-earth-box-remove:before{content:"\f1408"}.mdi-earth-minus:before{content:"\f1404"}.mdi-earth-off:before{content:"\f01e8"}.mdi-earth-plus:before{content:"\f1403"}.mdi-earth-remove:before{content:"\f1405"}.mdi-egg:before{content:"\f0aaf"}.mdi-egg-easter:before{content:"\f0ab0"}.mdi-egg-fried:before{content:"\f184a"}.mdi-egg-off:before{content:"\f13f0"}.mdi-egg-off-outline:before{content:"\f13f1"}.mdi-egg-outline:before{content:"\f13f2"}.mdi-eiffel-tower:before{content:"\f156b"}.mdi-eight-track:before{content:"\f09ea"}.mdi-eject:before{content:"\f01ea"}.mdi-eject-circle:before{content:"\f1b23"}.mdi-eject-circle-outline:before{content:"\f1b24"}.mdi-eject-outline:before{content:"\f0b91"}.mdi-electric-switch:before{content:"\f0e9f"}.mdi-electric-switch-closed:before{content:"\f10d9"}.mdi-electron-framework:before{content:"\f1024"}.mdi-elephant:before{content:"\f07c6"}.mdi-elevation-decline:before{content:"\f01eb"}.mdi-elevation-rise:before{content:"\f01ec"}.mdi-elevator:before{content:"\f01ed"}.mdi-elevator-down:before{content:"\f12c2"}.mdi-elevator-passenger:before{content:"\f1381"}.mdi-elevator-passenger-off:before{content:"\f1979"}.mdi-elevator-passenger-off-outline:before{content:"\f197a"}.mdi-elevator-passenger-outline:before{content:"\f197b"}.mdi-elevator-up:before{content:"\f12c1"}.mdi-ellipse:before{content:"\f0ea0"}.mdi-ellipse-outline:before{content:"\f0ea1"}.mdi-email:before{content:"\f01ee"}.mdi-email-alert:before{content:"\f06cf"}.mdi-email-alert-outline:before{content:"\f0d42"}.mdi-email-arrow-left:before{content:"\f10da"}.mdi-email-arrow-left-outline:before{content:"\f10db"}.mdi-email-arrow-right:before{content:"\f10dc"}.mdi-email-arrow-right-outline:before{content:"\f10dd"}.mdi-email-box:before{content:"\f0d03"}.mdi-email-check:before{content:"\f0ab1"}.mdi-email-check-outline:before{content:"\f0ab2"}.mdi-email-edit:before{content:"\f0ee3"}.mdi-email-edit-outline:before{content:"\f0ee4"}.mdi-email-fast:before{content:"\f186f"}.mdi-email-fast-outline:before{content:"\f1870"}.mdi-email-lock:before{content:"\f01f1"}.mdi-email-lock-outline:before{content:"\f1b61"}.mdi-email-mark-as-unread:before{content:"\f0b92"}.mdi-email-minus:before{content:"\f0ee5"}.mdi-email-minus-outline:before{content:"\f0ee6"}.mdi-email-multiple:before{content:"\f0ee7"}.mdi-email-multiple-outline:before{content:"\f0ee8"}.mdi-email-newsletter:before{content:"\f0fb1"}.mdi-email-off:before{content:"\f13e3"}.mdi-email-off-outline:before{content:"\f13e4"}.mdi-email-open:before{content:"\f01ef"}.mdi-email-open-multiple:before{content:"\f0ee9"}.mdi-email-open-multiple-outline:before{content:"\f0eea"}.mdi-email-open-outline:before{content:"\f05ef"}.mdi-email-outline:before{content:"\f01f0"}.mdi-email-plus:before{content:"\f09eb"}.mdi-email-plus-outline:before{content:"\f09ec"}.mdi-email-remove:before{content:"\f1661"}.mdi-email-remove-outline:before{content:"\f1662"}.mdi-email-seal:before{content:"\f195b"}.mdi-email-seal-outline:before{content:"\f195c"}.mdi-email-search:before{content:"\f0961"}.mdi-email-search-outline:before{content:"\f0962"}.mdi-email-sync:before{content:"\f12c7"}.mdi-email-sync-outline:before{content:"\f12c8"}.mdi-email-variant:before{content:"\f05f0"}.mdi-ember:before{content:"\f0b30"}.mdi-emby:before{content:"\f06b4"}.mdi-emoticon:before{content:"\f0c68"}.mdi-emoticon-angry:before{content:"\f0c69"}.mdi-emoticon-angry-outline:before{content:"\f0c6a"}.mdi-emoticon-confused:before{content:"\f10de"}.mdi-emoticon-confused-outline:before{content:"\f10df"}.mdi-emoticon-cool:before{content:"\f0c6b"}.mdi-emoticon-cool-outline:before{content:"\f01f3"}.mdi-emoticon-cry:before{content:"\f0c6c"}.mdi-emoticon-cry-outline:before{content:"\f0c6d"}.mdi-emoticon-dead:before{content:"\f0c6e"}.mdi-emoticon-dead-outline:before{content:"\f069b"}.mdi-emoticon-devil:before{content:"\f0c6f"}.mdi-emoticon-devil-outline:before{content:"\f01f4"}.mdi-emoticon-excited:before{content:"\f0c70"}.mdi-emoticon-excited-outline:before{content:"\f069c"}.mdi-emoticon-frown:before{content:"\f0f4c"}.mdi-emoticon-frown-outline:before{content:"\f0f4d"}.mdi-emoticon-happy:before{content:"\f0c71"}.mdi-emoticon-happy-outline:before{content:"\f01f5"}.mdi-emoticon-kiss:before{content:"\f0c72"}.mdi-emoticon-kiss-outline:before{content:"\f0c73"}.mdi-emoticon-lol:before{content:"\f1214"}.mdi-emoticon-lol-outline:before{content:"\f1215"}.mdi-emoticon-neutral:before{content:"\f0c74"}.mdi-emoticon-neutral-outline:before{content:"\f01f6"}.mdi-emoticon-outline:before{content:"\f01f2"}.mdi-emoticon-poop:before{content:"\f01f7"}.mdi-emoticon-poop-outline:before{content:"\f0c75"}.mdi-emoticon-sad:before{content:"\f0c76"}.mdi-emoticon-sad-outline:before{content:"\f01f8"}.mdi-emoticon-sick:before{content:"\f157c"}.mdi-emoticon-sick-outline:before{content:"\f157d"}.mdi-emoticon-tongue:before{content:"\f01f9"}.mdi-emoticon-tongue-outline:before{content:"\f0c77"}.mdi-emoticon-wink:before{content:"\f0c78"}.mdi-emoticon-wink-outline:before{content:"\f0c79"}.mdi-engine:before{content:"\f01fa"}.mdi-engine-off:before{content:"\f0a46"}.mdi-engine-off-outline:before{content:"\f0a47"}.mdi-engine-outline:before{content:"\f01fb"}.mdi-epsilon:before{content:"\f10e0"}.mdi-equal:before{content:"\f01fc"}.mdi-equal-box:before{content:"\f01fd"}.mdi-equalizer:before{content:"\f0ea2"}.mdi-equalizer-outline:before{content:"\f0ea3"}.mdi-eraser:before{content:"\f01fe"}.mdi-eraser-variant:before{content:"\f0642"}.mdi-escalator:before{content:"\f01ff"}.mdi-escalator-box:before{content:"\f1399"}.mdi-escalator-down:before{content:"\f12c0"}.mdi-escalator-up:before{content:"\f12bf"}.mdi-eslint:before{content:"\f0c7a"}.mdi-et:before{content:"\f0ab3"}.mdi-ethereum:before{content:"\f086a"}.mdi-ethernet:before{content:"\f0200"}.mdi-ethernet-cable:before{content:"\f0201"}.mdi-ethernet-cable-off:before{content:"\f0202"}.mdi-ev-plug-ccs1:before{content:"\f1519"}.mdi-ev-plug-ccs2:before{content:"\f151a"}.mdi-ev-plug-chademo:before{content:"\f151b"}.mdi-ev-plug-tesla:before{content:"\f151c"}.mdi-ev-plug-type1:before{content:"\f151d"}.mdi-ev-plug-type2:before{content:"\f151e"}.mdi-ev-station:before{content:"\f05f1"}.mdi-evernote:before{content:"\f0204"}.mdi-excavator:before{content:"\f1025"}.mdi-exclamation:before{content:"\f0205"}.mdi-exclamation-thick:before{content:"\f1238"}.mdi-exit-run:before{content:"\f0a48"}.mdi-exit-to-app:before{content:"\f0206"}.mdi-expand-all:before{content:"\f0ab4"}.mdi-expand-all-outline:before{content:"\f0ab5"}.mdi-expansion-card:before{content:"\f08ae"}.mdi-expansion-card-variant:before{content:"\f0fb2"}.mdi-exponent:before{content:"\f0963"}.mdi-exponent-box:before{content:"\f0964"}.mdi-export:before{content:"\f0207"}.mdi-export-variant:before{content:"\f0b93"}.mdi-eye:before{content:"\f0208"}.mdi-eye-arrow-left:before{content:"\f18fd"}.mdi-eye-arrow-left-outline:before{content:"\f18fe"}.mdi-eye-arrow-right:before{content:"\f18ff"}.mdi-eye-arrow-right-outline:before{content:"\f1900"}.mdi-eye-check:before{content:"\f0d04"}.mdi-eye-check-outline:before{content:"\f0d05"}.mdi-eye-circle:before{content:"\f0b94"}.mdi-eye-circle-outline:before{content:"\f0b95"}.mdi-eye-lock:before{content:"\f1c06"}.mdi-eye-lock-open:before{content:"\f1c07"}.mdi-eye-lock-open-outline:before{content:"\f1c08"}.mdi-eye-lock-outline:before{content:"\f1c09"}.mdi-eye-minus:before{content:"\f1026"}.mdi-eye-minus-outline:before{content:"\f1027"}.mdi-eye-off:before{content:"\f0209"}.mdi-eye-off-outline:before{content:"\f06d1"}.mdi-eye-outline:before{content:"\f06d0"}.mdi-eye-plus:before{content:"\f086b"}.mdi-eye-plus-outline:before{content:"\f086c"}.mdi-eye-refresh:before{content:"\f197c"}.mdi-eye-refresh-outline:before{content:"\f197d"}.mdi-eye-remove:before{content:"\f15e3"}.mdi-eye-remove-outline:before{content:"\f15e4"}.mdi-eye-settings:before{content:"\f086d"}.mdi-eye-settings-outline:before{content:"\f086e"}.mdi-eyedropper:before{content:"\f020a"}.mdi-eyedropper-minus:before{content:"\f13dd"}.mdi-eyedropper-off:before{content:"\f13df"}.mdi-eyedropper-plus:before{content:"\f13dc"}.mdi-eyedropper-remove:before{content:"\f13de"}.mdi-eyedropper-variant:before{content:"\f020b"}.mdi-face-agent:before{content:"\f0d70"}.mdi-face-man:before{content:"\f0643"}.mdi-face-man-outline:before{content:"\f0b96"}.mdi-face-man-profile:before{content:"\f0644"}.mdi-face-man-shimmer:before{content:"\f15cc"}.mdi-face-man-shimmer-outline:before{content:"\f15cd"}.mdi-face-mask:before{content:"\f1586"}.mdi-face-mask-outline:before{content:"\f1587"}.mdi-face-recognition:before{content:"\f0c7b"}.mdi-face-woman:before{content:"\f1077"}.mdi-face-woman-outline:before{content:"\f1078"}.mdi-face-woman-profile:before{content:"\f1076"}.mdi-face-woman-shimmer:before{content:"\f15ce"}.mdi-face-woman-shimmer-outline:before{content:"\f15cf"}.mdi-facebook:before{content:"\f020c"}.mdi-facebook-gaming:before{content:"\f07dd"}.mdi-facebook-messenger:before{content:"\f020e"}.mdi-facebook-workplace:before{content:"\f0b31"}.mdi-factory:before{content:"\f020f"}.mdi-family-tree:before{content:"\f160e"}.mdi-fan:before{content:"\f0210"}.mdi-fan-alert:before{content:"\f146c"}.mdi-fan-auto:before{content:"\f171d"}.mdi-fan-chevron-down:before{content:"\f146d"}.mdi-fan-chevron-up:before{content:"\f146e"}.mdi-fan-clock:before{content:"\f1a3a"}.mdi-fan-minus:before{content:"\f1470"}.mdi-fan-off:before{content:"\f081d"}.mdi-fan-plus:before{content:"\f146f"}.mdi-fan-remove:before{content:"\f1471"}.mdi-fan-speed-1:before{content:"\f1472"}.mdi-fan-speed-2:before{content:"\f1473"}.mdi-fan-speed-3:before{content:"\f1474"}.mdi-fast-forward:before{content:"\f0211"}.mdi-fast-forward-10:before{content:"\f0d71"}.mdi-fast-forward-15:before{content:"\f193a"}.mdi-fast-forward-30:before{content:"\f0d06"}.mdi-fast-forward-45:before{content:"\f1b12"}.mdi-fast-forward-5:before{content:"\f11f8"}.mdi-fast-forward-60:before{content:"\f160b"}.mdi-fast-forward-outline:before{content:"\f06d2"}.mdi-faucet:before{content:"\f1b29"}.mdi-faucet-variant:before{content:"\f1b2a"}.mdi-fax:before{content:"\f0212"}.mdi-feather:before{content:"\f06d3"}.mdi-feature-search:before{content:"\f0a49"}.mdi-feature-search-outline:before{content:"\f0a4a"}.mdi-fedora:before{content:"\f08db"}.mdi-fence:before{content:"\f179a"}.mdi-fence-electric:before{content:"\f17f6"}.mdi-fencing:before{content:"\f14c1"}.mdi-ferris-wheel:before{content:"\f0ea4"}.mdi-ferry:before{content:"\f0213"}.mdi-file:before{content:"\f0214"}.mdi-file-account:before{content:"\f073b"}.mdi-file-account-outline:before{content:"\f1028"}.mdi-file-alert:before{content:"\f0a4b"}.mdi-file-alert-outline:before{content:"\f0a4c"}.mdi-file-arrow-left-right:before{content:"\f1a93"}.mdi-file-arrow-left-right-outline:before{content:"\f1a94"}.mdi-file-arrow-up-down:before{content:"\f1a95"}.mdi-file-arrow-up-down-outline:before{content:"\f1a96"}.mdi-file-cabinet:before{content:"\f0ab6"}.mdi-file-cad:before{content:"\f0eeb"}.mdi-file-cad-box:before{content:"\f0eec"}.mdi-file-cancel:before{content:"\f0dc6"}.mdi-file-cancel-outline:before{content:"\f0dc7"}.mdi-file-certificate:before{content:"\f1186"}.mdi-file-certificate-outline:before{content:"\f1187"}.mdi-file-chart:before{content:"\f0215"}.mdi-file-chart-check:before{content:"\f19c6"}.mdi-file-chart-check-outline:before{content:"\f19c7"}.mdi-file-chart-outline:before{content:"\f1029"}.mdi-file-check:before{content:"\f0216"}.mdi-file-check-outline:before{content:"\f0e29"}.mdi-file-clock:before{content:"\f12e1"}.mdi-file-clock-outline:before{content:"\f12e2"}.mdi-file-cloud:before{content:"\f0217"}.mdi-file-cloud-outline:before{content:"\f102a"}.mdi-file-code:before{content:"\f022e"}.mdi-file-code-outline:before{content:"\f102b"}.mdi-file-cog:before{content:"\f107b"}.mdi-file-cog-outline:before{content:"\f107c"}.mdi-file-compare:before{content:"\f08aa"}.mdi-file-delimited:before{content:"\f0218"}.mdi-file-delimited-outline:before{content:"\f0ea5"}.mdi-file-document:before{content:"\f0219"}.mdi-file-document-alert:before{content:"\f1a97"}.mdi-file-document-alert-outline:before{content:"\f1a98"}.mdi-file-document-arrow-right:before{content:"\f1c0f"}.mdi-file-document-arrow-right-outline:before{content:"\f1c10"}.mdi-file-document-check:before{content:"\f1a99"}.mdi-file-document-check-outline:before{content:"\f1a9a"}.mdi-file-document-edit:before{content:"\f0dc8"}.mdi-file-document-edit-outline:before{content:"\f0dc9"}.mdi-file-document-minus:before{content:"\f1a9b"}.mdi-file-document-minus-outline:before{content:"\f1a9c"}.mdi-file-document-multiple:before{content:"\f1517"}.mdi-file-document-multiple-outline:before{content:"\f1518"}.mdi-file-document-outline:before{content:"\f09ee"}.mdi-file-document-plus:before{content:"\f1a9d"}.mdi-file-document-plus-outline:before{content:"\f1a9e"}.mdi-file-document-remove:before{content:"\f1a9f"}.mdi-file-document-remove-outline:before{content:"\f1aa0"}.mdi-file-download:before{content:"\f0965"}.mdi-file-download-outline:before{content:"\f0966"}.mdi-file-edit:before{content:"\f11e7"}.mdi-file-edit-outline:before{content:"\f11e8"}.mdi-file-excel:before{content:"\f021b"}.mdi-file-excel-box:before{content:"\f021c"}.mdi-file-excel-box-outline:before{content:"\f102c"}.mdi-file-excel-outline:before{content:"\f102d"}.mdi-file-export:before{content:"\f021d"}.mdi-file-export-outline:before{content:"\f102e"}.mdi-file-eye:before{content:"\f0dca"}.mdi-file-eye-outline:before{content:"\f0dcb"}.mdi-file-find:before{content:"\f021e"}.mdi-file-find-outline:before{content:"\f0b97"}.mdi-file-gif-box:before{content:"\f0d78"}.mdi-file-hidden:before{content:"\f0613"}.mdi-file-image:before{content:"\f021f"}.mdi-file-image-marker:before{content:"\f1772"}.mdi-file-image-marker-outline:before{content:"\f1773"}.mdi-file-image-minus:before{content:"\f193b"}.mdi-file-image-minus-outline:before{content:"\f193c"}.mdi-file-image-outline:before{content:"\f0eb0"}.mdi-file-image-plus:before{content:"\f193d"}.mdi-file-image-plus-outline:before{content:"\f193e"}.mdi-file-image-remove:before{content:"\f193f"}.mdi-file-image-remove-outline:before{content:"\f1940"}.mdi-file-import:before{content:"\f0220"}.mdi-file-import-outline:before{content:"\f102f"}.mdi-file-jpg-box:before{content:"\f0225"}.mdi-file-key:before{content:"\f1184"}.mdi-file-key-outline:before{content:"\f1185"}.mdi-file-link:before{content:"\f1177"}.mdi-file-link-outline:before{content:"\f1178"}.mdi-file-lock:before{content:"\f0221"}.mdi-file-lock-open:before{content:"\f19c8"}.mdi-file-lock-open-outline:before{content:"\f19c9"}.mdi-file-lock-outline:before{content:"\f1030"}.mdi-file-marker:before{content:"\f1774"}.mdi-file-marker-outline:before{content:"\f1775"}.mdi-file-minus:before{content:"\f1aa1"}.mdi-file-minus-outline:before{content:"\f1aa2"}.mdi-file-move:before{content:"\f0ab9"}.mdi-file-move-outline:before{content:"\f1031"}.mdi-file-multiple:before{content:"\f0222"}.mdi-file-multiple-outline:before{content:"\f1032"}.mdi-file-music:before{content:"\f0223"}.mdi-file-music-outline:before{content:"\f0e2a"}.mdi-file-outline:before{content:"\f0224"}.mdi-file-pdf-box:before{content:"\f0226"}.mdi-file-percent:before{content:"\f081e"}.mdi-file-percent-outline:before{content:"\f1033"}.mdi-file-phone:before{content:"\f1179"}.mdi-file-phone-outline:before{content:"\f117a"}.mdi-file-plus:before{content:"\f0752"}.mdi-file-plus-outline:before{content:"\f0eed"}.mdi-file-png-box:before{content:"\f0e2d"}.mdi-file-powerpoint:before{content:"\f0227"}.mdi-file-powerpoint-box:before{content:"\f0228"}.mdi-file-powerpoint-box-outline:before{content:"\f1034"}.mdi-file-powerpoint-outline:before{content:"\f1035"}.mdi-file-presentation-box:before{content:"\f0229"}.mdi-file-question:before{content:"\f086f"}.mdi-file-question-outline:before{content:"\f1036"}.mdi-file-refresh:before{content:"\f0918"}.mdi-file-refresh-outline:before{content:"\f0541"}.mdi-file-remove:before{content:"\f0b98"}.mdi-file-remove-outline:before{content:"\f1037"}.mdi-file-replace:before{content:"\f0b32"}.mdi-file-replace-outline:before{content:"\f0b33"}.mdi-file-restore:before{content:"\f0670"}.mdi-file-restore-outline:before{content:"\f1038"}.mdi-file-rotate-left:before{content:"\f1a3b"}.mdi-file-rotate-left-outline:before{content:"\f1a3c"}.mdi-file-rotate-right:before{content:"\f1a3d"}.mdi-file-rotate-right-outline:before{content:"\f1a3e"}.mdi-file-search:before{content:"\f0c7c"}.mdi-file-search-outline:before{content:"\f0c7d"}.mdi-file-send:before{content:"\f022a"}.mdi-file-send-outline:before{content:"\f1039"}.mdi-file-settings:before{content:"\f1079"}.mdi-file-settings-outline:before{content:"\f107a"}.mdi-file-sign:before{content:"\f19c3"}.mdi-file-star:before{content:"\f103a"}.mdi-file-star-outline:before{content:"\f103b"}.mdi-file-swap:before{content:"\f0fb4"}.mdi-file-swap-outline:before{content:"\f0fb5"}.mdi-file-sync:before{content:"\f1216"}.mdi-file-sync-outline:before{content:"\f1217"}.mdi-file-table:before{content:"\f0c7e"}.mdi-file-table-box:before{content:"\f10e1"}.mdi-file-table-box-multiple:before{content:"\f10e2"}.mdi-file-table-box-multiple-outline:before{content:"\f10e3"}.mdi-file-table-box-outline:before{content:"\f10e4"}.mdi-file-table-outline:before{content:"\f0c7f"}.mdi-file-tree:before{content:"\f0645"}.mdi-file-tree-outline:before{content:"\f13d2"}.mdi-file-undo:before{content:"\f08dc"}.mdi-file-undo-outline:before{content:"\f103c"}.mdi-file-upload:before{content:"\f0a4d"}.mdi-file-upload-outline:before{content:"\f0a4e"}.mdi-file-video:before{content:"\f022b"}.mdi-file-video-outline:before{content:"\f0e2c"}.mdi-file-word:before{content:"\f022c"}.mdi-file-word-box:before{content:"\f022d"}.mdi-file-word-box-outline:before{content:"\f103d"}.mdi-file-word-outline:before{content:"\f103e"}.mdi-file-xml-box:before{content:"\f1b4b"}.mdi-film:before{content:"\f022f"}.mdi-filmstrip:before{content:"\f0230"}.mdi-filmstrip-box:before{content:"\f0332"}.mdi-filmstrip-box-multiple:before{content:"\f0d18"}.mdi-filmstrip-off:before{content:"\f0231"}.mdi-filter:before{content:"\f0232"}.mdi-filter-check:before{content:"\f18ec"}.mdi-filter-check-outline:before{content:"\f18ed"}.mdi-filter-cog:before{content:"\f1aa3"}.mdi-filter-cog-outline:before{content:"\f1aa4"}.mdi-filter-menu:before{content:"\f10e5"}.mdi-filter-menu-outline:before{content:"\f10e6"}.mdi-filter-minus:before{content:"\f0eee"}.mdi-filter-minus-outline:before{content:"\f0eef"}.mdi-filter-multiple:before{content:"\f1a3f"}.mdi-filter-multiple-outline:before{content:"\f1a40"}.mdi-filter-off:before{content:"\f14ef"}.mdi-filter-off-outline:before{content:"\f14f0"}.mdi-filter-outline:before{content:"\f0233"}.mdi-filter-plus:before{content:"\f0ef0"}.mdi-filter-plus-outline:before{content:"\f0ef1"}.mdi-filter-remove:before{content:"\f0234"}.mdi-filter-remove-outline:before{content:"\f0235"}.mdi-filter-settings:before{content:"\f1aa5"}.mdi-filter-settings-outline:before{content:"\f1aa6"}.mdi-filter-variant:before{content:"\f0236"}.mdi-filter-variant-minus:before{content:"\f1112"}.mdi-filter-variant-plus:before{content:"\f1113"}.mdi-filter-variant-remove:before{content:"\f103f"}.mdi-finance:before{content:"\f081f"}.mdi-find-replace:before{content:"\f06d4"}.mdi-fingerprint:before{content:"\f0237"}.mdi-fingerprint-off:before{content:"\f0eb1"}.mdi-fire:before{content:"\f0238"}.mdi-fire-alert:before{content:"\f15d7"}.mdi-fire-circle:before{content:"\f1807"}.mdi-fire-extinguisher:before{content:"\f0ef2"}.mdi-fire-hydrant:before{content:"\f1137"}.mdi-fire-hydrant-alert:before{content:"\f1138"}.mdi-fire-hydrant-off:before{content:"\f1139"}.mdi-fire-off:before{content:"\f1722"}.mdi-fire-truck:before{content:"\f08ab"}.mdi-firebase:before{content:"\f0967"}.mdi-firefox:before{content:"\f0239"}.mdi-fireplace:before{content:"\f0e2e"}.mdi-fireplace-off:before{content:"\f0e2f"}.mdi-firewire:before{content:"\f05be"}.mdi-firework:before{content:"\f0e30"}.mdi-firework-off:before{content:"\f1723"}.mdi-fish:before{content:"\f023a"}.mdi-fish-off:before{content:"\f13f3"}.mdi-fishbowl:before{content:"\f0ef3"}.mdi-fishbowl-outline:before{content:"\f0ef4"}.mdi-fit-to-page:before{content:"\f0ef5"}.mdi-fit-to-page-outline:before{content:"\f0ef6"}.mdi-fit-to-screen:before{content:"\f18f4"}.mdi-fit-to-screen-outline:before{content:"\f18f5"}.mdi-flag:before{content:"\f023b"}.mdi-flag-checkered:before{content:"\f023c"}.mdi-flag-minus:before{content:"\f0b99"}.mdi-flag-minus-outline:before{content:"\f10b2"}.mdi-flag-off:before{content:"\f18ee"}.mdi-flag-off-outline:before{content:"\f18ef"}.mdi-flag-outline:before{content:"\f023d"}.mdi-flag-plus:before{content:"\f0b9a"}.mdi-flag-plus-outline:before{content:"\f10b3"}.mdi-flag-remove:before{content:"\f0b9b"}.mdi-flag-remove-outline:before{content:"\f10b4"}.mdi-flag-triangle:before{content:"\f023f"}.mdi-flag-variant:before{content:"\f0240"}.mdi-flag-variant-minus:before{content:"\f1bb4"}.mdi-flag-variant-minus-outline:before{content:"\f1bb5"}.mdi-flag-variant-off:before{content:"\f1bb0"}.mdi-flag-variant-off-outline:before{content:"\f1bb1"}.mdi-flag-variant-outline:before{content:"\f023e"}.mdi-flag-variant-plus:before{content:"\f1bb2"}.mdi-flag-variant-plus-outline:before{content:"\f1bb3"}.mdi-flag-variant-remove:before{content:"\f1bb6"}.mdi-flag-variant-remove-outline:before{content:"\f1bb7"}.mdi-flare:before{content:"\f0d72"}.mdi-flash:before{content:"\f0241"}.mdi-flash-alert:before{content:"\f0ef7"}.mdi-flash-alert-outline:before{content:"\f0ef8"}.mdi-flash-auto:before{content:"\f0242"}.mdi-flash-off:before{content:"\f0243"}.mdi-flash-off-outline:before{content:"\f1b45"}.mdi-flash-outline:before{content:"\f06d5"}.mdi-flash-red-eye:before{content:"\f067b"}.mdi-flash-triangle:before{content:"\f1b1d"}.mdi-flash-triangle-outline:before{content:"\f1b1e"}.mdi-flashlight:before{content:"\f0244"}.mdi-flashlight-off:before{content:"\f0245"}.mdi-flask:before{content:"\f0093"}.mdi-flask-empty:before{content:"\f0094"}.mdi-flask-empty-minus:before{content:"\f123a"}.mdi-flask-empty-minus-outline:before{content:"\f123b"}.mdi-flask-empty-off:before{content:"\f13f4"}.mdi-flask-empty-off-outline:before{content:"\f13f5"}.mdi-flask-empty-outline:before{content:"\f0095"}.mdi-flask-empty-plus:before{content:"\f123c"}.mdi-flask-empty-plus-outline:before{content:"\f123d"}.mdi-flask-empty-remove:before{content:"\f123e"}.mdi-flask-empty-remove-outline:before{content:"\f123f"}.mdi-flask-minus:before{content:"\f1240"}.mdi-flask-minus-outline:before{content:"\f1241"}.mdi-flask-off:before{content:"\f13f6"}.mdi-flask-off-outline:before{content:"\f13f7"}.mdi-flask-outline:before{content:"\f0096"}.mdi-flask-plus:before{content:"\f1242"}.mdi-flask-plus-outline:before{content:"\f1243"}.mdi-flask-remove:before{content:"\f1244"}.mdi-flask-remove-outline:before{content:"\f1245"}.mdi-flask-round-bottom:before{content:"\f124b"}.mdi-flask-round-bottom-empty:before{content:"\f124c"}.mdi-flask-round-bottom-empty-outline:before{content:"\f124d"}.mdi-flask-round-bottom-outline:before{content:"\f124e"}.mdi-fleur-de-lis:before{content:"\f1303"}.mdi-flip-horizontal:before{content:"\f10e7"}.mdi-flip-to-back:before{content:"\f0247"}.mdi-flip-to-front:before{content:"\f0248"}.mdi-flip-vertical:before{content:"\f10e8"}.mdi-floor-lamp:before{content:"\f08dd"}.mdi-floor-lamp-dual:before{content:"\f1040"}.mdi-floor-lamp-dual-outline:before{content:"\f17ce"}.mdi-floor-lamp-outline:before{content:"\f17c8"}.mdi-floor-lamp-torchiere:before{content:"\f1747"}.mdi-floor-lamp-torchiere-outline:before{content:"\f17d6"}.mdi-floor-lamp-torchiere-variant:before{content:"\f1041"}.mdi-floor-lamp-torchiere-variant-outline:before{content:"\f17cf"}.mdi-floor-plan:before{content:"\f0821"}.mdi-floppy:before{content:"\f0249"}.mdi-floppy-variant:before{content:"\f09ef"}.mdi-flower:before{content:"\f024a"}.mdi-flower-outline:before{content:"\f09f0"}.mdi-flower-pollen:before{content:"\f1885"}.mdi-flower-pollen-outline:before{content:"\f1886"}.mdi-flower-poppy:before{content:"\f0d08"}.mdi-flower-tulip:before{content:"\f09f1"}.mdi-flower-tulip-outline:before{content:"\f09f2"}.mdi-focus-auto:before{content:"\f0f4e"}.mdi-focus-field:before{content:"\f0f4f"}.mdi-focus-field-horizontal:before{content:"\f0f50"}.mdi-focus-field-vertical:before{content:"\f0f51"}.mdi-folder:before{content:"\f024b"}.mdi-folder-account:before{content:"\f024c"}.mdi-folder-account-outline:before{content:"\f0b9c"}.mdi-folder-alert:before{content:"\f0dcc"}.mdi-folder-alert-outline:before{content:"\f0dcd"}.mdi-folder-arrow-down:before{content:"\f19e8"}.mdi-folder-arrow-down-outline:before{content:"\f19e9"}.mdi-folder-arrow-left:before{content:"\f19ea"}.mdi-folder-arrow-left-outline:before{content:"\f19eb"}.mdi-folder-arrow-left-right:before{content:"\f19ec"}.mdi-folder-arrow-left-right-outline:before{content:"\f19ed"}.mdi-folder-arrow-right:before{content:"\f19ee"}.mdi-folder-arrow-right-outline:before{content:"\f19ef"}.mdi-folder-arrow-up:before{content:"\f19f0"}.mdi-folder-arrow-up-down:before{content:"\f19f1"}.mdi-folder-arrow-up-down-outline:before{content:"\f19f2"}.mdi-folder-arrow-up-outline:before{content:"\f19f3"}.mdi-folder-cancel:before{content:"\f19f4"}.mdi-folder-cancel-outline:before{content:"\f19f5"}.mdi-folder-check:before{content:"\f197e"}.mdi-folder-check-outline:before{content:"\f197f"}.mdi-folder-clock:before{content:"\f0aba"}.mdi-folder-clock-outline:before{content:"\f0abb"}.mdi-folder-cog:before{content:"\f107f"}.mdi-folder-cog-outline:before{content:"\f1080"}.mdi-folder-download:before{content:"\f024d"}.mdi-folder-download-outline:before{content:"\f10e9"}.mdi-folder-edit:before{content:"\f08de"}.mdi-folder-edit-outline:before{content:"\f0dce"}.mdi-folder-eye:before{content:"\f178a"}.mdi-folder-eye-outline:before{content:"\f178b"}.mdi-folder-file:before{content:"\f19f6"}.mdi-folder-file-outline:before{content:"\f19f7"}.mdi-folder-google-drive:before{content:"\f024e"}.mdi-folder-heart:before{content:"\f10ea"}.mdi-folder-heart-outline:before{content:"\f10eb"}.mdi-folder-hidden:before{content:"\f179e"}.mdi-folder-home:before{content:"\f10b5"}.mdi-folder-home-outline:before{content:"\f10b6"}.mdi-folder-image:before{content:"\f024f"}.mdi-folder-information:before{content:"\f10b7"}.mdi-folder-information-outline:before{content:"\f10b8"}.mdi-folder-key:before{content:"\f08ac"}.mdi-folder-key-network:before{content:"\f08ad"}.mdi-folder-key-network-outline:before{content:"\f0c80"}.mdi-folder-key-outline:before{content:"\f10ec"}.mdi-folder-lock:before{content:"\f0250"}.mdi-folder-lock-open:before{content:"\f0251"}.mdi-folder-lock-open-outline:before{content:"\f1aa7"}.mdi-folder-lock-outline:before{content:"\f1aa8"}.mdi-folder-marker:before{content:"\f126d"}.mdi-folder-marker-outline:before{content:"\f126e"}.mdi-folder-minus:before{content:"\f1b49"}.mdi-folder-minus-outline:before{content:"\f1b4a"}.mdi-folder-move:before{content:"\f0252"}.mdi-folder-move-outline:before{content:"\f1246"}.mdi-folder-multiple:before{content:"\f0253"}.mdi-folder-multiple-image:before{content:"\f0254"}.mdi-folder-multiple-outline:before{content:"\f0255"}.mdi-folder-multiple-plus:before{content:"\f147e"}.mdi-folder-multiple-plus-outline:before{content:"\f147f"}.mdi-folder-music:before{content:"\f1359"}.mdi-folder-music-outline:before{content:"\f135a"}.mdi-folder-network:before{content:"\f0870"}.mdi-folder-network-outline:before{content:"\f0c81"}.mdi-folder-off:before{content:"\f19f8"}.mdi-folder-off-outline:before{content:"\f19f9"}.mdi-folder-open:before{content:"\f0770"}.mdi-folder-open-outline:before{content:"\f0dcf"}.mdi-folder-outline:before{content:"\f0256"}.mdi-folder-play:before{content:"\f19fa"}.mdi-folder-play-outline:before{content:"\f19fb"}.mdi-folder-plus:before{content:"\f0257"}.mdi-folder-plus-outline:before{content:"\f0b9d"}.mdi-folder-pound:before{content:"\f0d09"}.mdi-folder-pound-outline:before{content:"\f0d0a"}.mdi-folder-question:before{content:"\f19ca"}.mdi-folder-question-outline:before{content:"\f19cb"}.mdi-folder-refresh:before{content:"\f0749"}.mdi-folder-refresh-outline:before{content:"\f0542"}.mdi-folder-remove:before{content:"\f0258"}.mdi-folder-remove-outline:before{content:"\f0b9e"}.mdi-folder-search:before{content:"\f0968"}.mdi-folder-search-outline:before{content:"\f0969"}.mdi-folder-settings:before{content:"\f107d"}.mdi-folder-settings-outline:before{content:"\f107e"}.mdi-folder-star:before{content:"\f069d"}.mdi-folder-star-multiple:before{content:"\f13d3"}.mdi-folder-star-multiple-outline:before{content:"\f13d4"}.mdi-folder-star-outline:before{content:"\f0b9f"}.mdi-folder-swap:before{content:"\f0fb6"}.mdi-folder-swap-outline:before{content:"\f0fb7"}.mdi-folder-sync:before{content:"\f0d0b"}.mdi-folder-sync-outline:before{content:"\f0d0c"}.mdi-folder-table:before{content:"\f12e3"}.mdi-folder-table-outline:before{content:"\f12e4"}.mdi-folder-text:before{content:"\f0c82"}.mdi-folder-text-outline:before{content:"\f0c83"}.mdi-folder-upload:before{content:"\f0259"}.mdi-folder-upload-outline:before{content:"\f10ed"}.mdi-folder-wrench:before{content:"\f19fc"}.mdi-folder-wrench-outline:before{content:"\f19fd"}.mdi-folder-zip:before{content:"\f06eb"}.mdi-folder-zip-outline:before{content:"\f07b9"}.mdi-font-awesome:before{content:"\f003a"}.mdi-food:before{content:"\f025a"}.mdi-food-apple:before{content:"\f025b"}.mdi-food-apple-outline:before{content:"\f0c84"}.mdi-food-croissant:before{content:"\f07c8"}.mdi-food-drumstick:before{content:"\f141f"}.mdi-food-drumstick-off:before{content:"\f1468"}.mdi-food-drumstick-off-outline:before{content:"\f1469"}.mdi-food-drumstick-outline:before{content:"\f1420"}.mdi-food-fork-drink:before{content:"\f05f2"}.mdi-food-halal:before{content:"\f1572"}.mdi-food-hot-dog:before{content:"\f184b"}.mdi-food-kosher:before{content:"\f1573"}.mdi-food-off:before{content:"\f05f3"}.mdi-food-off-outline:before{content:"\f1915"}.mdi-food-outline:before{content:"\f1916"}.mdi-food-steak:before{content:"\f146a"}.mdi-food-steak-off:before{content:"\f146b"}.mdi-food-takeout-box:before{content:"\f1836"}.mdi-food-takeout-box-outline:before{content:"\f1837"}.mdi-food-turkey:before{content:"\f171c"}.mdi-food-variant:before{content:"\f025c"}.mdi-food-variant-off:before{content:"\f13e5"}.mdi-foot-print:before{content:"\f0f52"}.mdi-football:before{content:"\f025d"}.mdi-football-australian:before{content:"\f025e"}.mdi-football-helmet:before{content:"\f025f"}.mdi-forest:before{content:"\f1897"}.mdi-forklift:before{content:"\f07c9"}.mdi-form-dropdown:before{content:"\f1400"}.mdi-form-select:before{content:"\f1401"}.mdi-form-textarea:before{content:"\f1095"}.mdi-form-textbox:before{content:"\f060e"}.mdi-form-textbox-lock:before{content:"\f135d"}.mdi-form-textbox-password:before{content:"\f07f5"}.mdi-format-align-bottom:before{content:"\f0753"}.mdi-format-align-center:before{content:"\f0260"}.mdi-format-align-justify:before{content:"\f0261"}.mdi-format-align-left:before{content:"\f0262"}.mdi-format-align-middle:before{content:"\f0754"}.mdi-format-align-right:before{content:"\f0263"}.mdi-format-align-top:before{content:"\f0755"}.mdi-format-annotation-minus:before{content:"\f0abc"}.mdi-format-annotation-plus:before{content:"\f0646"}.mdi-format-bold:before{content:"\f0264"}.mdi-format-clear:before{content:"\f0265"}.mdi-format-color-fill:before{content:"\f0266"}.mdi-format-color-highlight:before{content:"\f0e31"}.mdi-format-color-marker-cancel:before{content:"\f1313"}.mdi-format-color-text:before{content:"\f069e"}.mdi-format-columns:before{content:"\f08df"}.mdi-format-float-center:before{content:"\f0267"}.mdi-format-float-left:before{content:"\f0268"}.mdi-format-float-none:before{content:"\f0269"}.mdi-format-float-right:before{content:"\f026a"}.mdi-format-font:before{content:"\f06d6"}.mdi-format-font-size-decrease:before{content:"\f09f3"}.mdi-format-font-size-increase:before{content:"\f09f4"}.mdi-format-header-1:before{content:"\f026b"}.mdi-format-header-2:before{content:"\f026c"}.mdi-format-header-3:before{content:"\f026d"}.mdi-format-header-4:before{content:"\f026e"}.mdi-format-header-5:before{content:"\f026f"}.mdi-format-header-6:before{content:"\f0270"}.mdi-format-header-decrease:before{content:"\f0271"}.mdi-format-header-equal:before{content:"\f0272"}.mdi-format-header-increase:before{content:"\f0273"}.mdi-format-header-pound:before{content:"\f0274"}.mdi-format-horizontal-align-center:before{content:"\f061e"}.mdi-format-horizontal-align-left:before{content:"\f061f"}.mdi-format-horizontal-align-right:before{content:"\f0620"}.mdi-format-indent-decrease:before{content:"\f0275"}.mdi-format-indent-increase:before{content:"\f0276"}.mdi-format-italic:before{content:"\f0277"}.mdi-format-letter-case:before{content:"\f0b34"}.mdi-format-letter-case-lower:before{content:"\f0b35"}.mdi-format-letter-case-upper:before{content:"\f0b36"}.mdi-format-letter-ends-with:before{content:"\f0fb8"}.mdi-format-letter-matches:before{content:"\f0fb9"}.mdi-format-letter-spacing:before{content:"\f1956"}.mdi-format-letter-spacing-variant:before{content:"\f1afb"}.mdi-format-letter-starts-with:before{content:"\f0fba"}.mdi-format-line-height:before{content:"\f1afc"}.mdi-format-line-spacing:before{content:"\f0278"}.mdi-format-line-style:before{content:"\f05c8"}.mdi-format-line-weight:before{content:"\f05c9"}.mdi-format-list-bulleted:before{content:"\f0279"}.mdi-format-list-bulleted-square:before{content:"\f0dd0"}.mdi-format-list-bulleted-triangle:before{content:"\f0eb2"}.mdi-format-list-bulleted-type:before{content:"\f027a"}.mdi-format-list-checkbox:before{content:"\f096a"}.mdi-format-list-checks:before{content:"\f0756"}.mdi-format-list-group:before{content:"\f1860"}.mdi-format-list-group-plus:before{content:"\f1b56"}.mdi-format-list-numbered:before{content:"\f027b"}.mdi-format-list-numbered-rtl:before{content:"\f0d0d"}.mdi-format-list-text:before{content:"\f126f"}.mdi-format-overline:before{content:"\f0eb3"}.mdi-format-page-break:before{content:"\f06d7"}.mdi-format-page-split:before{content:"\f1917"}.mdi-format-paint:before{content:"\f027c"}.mdi-format-paragraph:before{content:"\f027d"}.mdi-format-paragraph-spacing:before{content:"\f1afd"}.mdi-format-pilcrow:before{content:"\f06d8"}.mdi-format-pilcrow-arrow-left:before{content:"\f0286"}.mdi-format-pilcrow-arrow-right:before{content:"\f0285"}.mdi-format-quote-close:before{content:"\f027e"}.mdi-format-quote-close-outline:before{content:"\f11a8"}.mdi-format-quote-open:before{content:"\f0757"}.mdi-format-quote-open-outline:before{content:"\f11a7"}.mdi-format-rotate-90:before{content:"\f06aa"}.mdi-format-section:before{content:"\f069f"}.mdi-format-size:before{content:"\f027f"}.mdi-format-strikethrough:before{content:"\f0280"}.mdi-format-strikethrough-variant:before{content:"\f0281"}.mdi-format-subscript:before{content:"\f0282"}.mdi-format-superscript:before{content:"\f0283"}.mdi-format-text:before{content:"\f0284"}.mdi-format-text-rotation-angle-down:before{content:"\f0fbb"}.mdi-format-text-rotation-angle-up:before{content:"\f0fbc"}.mdi-format-text-rotation-down:before{content:"\f0d73"}.mdi-format-text-rotation-down-vertical:before{content:"\f0fbd"}.mdi-format-text-rotation-none:before{content:"\f0d74"}.mdi-format-text-rotation-up:before{content:"\f0fbe"}.mdi-format-text-rotation-vertical:before{content:"\f0fbf"}.mdi-format-text-variant:before{content:"\f0e32"}.mdi-format-text-variant-outline:before{content:"\f150f"}.mdi-format-text-wrapping-clip:before{content:"\f0d0e"}.mdi-format-text-wrapping-overflow:before{content:"\f0d0f"}.mdi-format-text-wrapping-wrap:before{content:"\f0d10"}.mdi-format-textbox:before{content:"\f0d11"}.mdi-format-title:before{content:"\f05f4"}.mdi-format-underline:before{content:"\f0287"}.mdi-format-underline-wavy:before{content:"\f18e9"}.mdi-format-vertical-align-bottom:before{content:"\f0621"}.mdi-format-vertical-align-center:before{content:"\f0622"}.mdi-format-vertical-align-top:before{content:"\f0623"}.mdi-format-wrap-inline:before{content:"\f0288"}.mdi-format-wrap-square:before{content:"\f0289"}.mdi-format-wrap-tight:before{content:"\f028a"}.mdi-format-wrap-top-bottom:before{content:"\f028b"}.mdi-forum:before{content:"\f028c"}.mdi-forum-minus:before{content:"\f1aa9"}.mdi-forum-minus-outline:before{content:"\f1aaa"}.mdi-forum-outline:before{content:"\f0822"}.mdi-forum-plus:before{content:"\f1aab"}.mdi-forum-plus-outline:before{content:"\f1aac"}.mdi-forum-remove:before{content:"\f1aad"}.mdi-forum-remove-outline:before{content:"\f1aae"}.mdi-forward:before{content:"\f028d"}.mdi-forwardburger:before{content:"\f0d75"}.mdi-fountain:before{content:"\f096b"}.mdi-fountain-pen:before{content:"\f0d12"}.mdi-fountain-pen-tip:before{content:"\f0d13"}.mdi-fraction-one-half:before{content:"\f1992"}.mdi-freebsd:before{content:"\f08e0"}.mdi-french-fries:before{content:"\f1957"}.mdi-frequently-asked-questions:before{content:"\f0eb4"}.mdi-fridge:before{content:"\f0290"}.mdi-fridge-alert:before{content:"\f11b1"}.mdi-fridge-alert-outline:before{content:"\f11b2"}.mdi-fridge-bottom:before{content:"\f0292"}.mdi-fridge-industrial:before{content:"\f15ee"}.mdi-fridge-industrial-alert:before{content:"\f15ef"}.mdi-fridge-industrial-alert-outline:before{content:"\f15f0"}.mdi-fridge-industrial-off:before{content:"\f15f1"}.mdi-fridge-industrial-off-outline:before{content:"\f15f2"}.mdi-fridge-industrial-outline:before{content:"\f15f3"}.mdi-fridge-off:before{content:"\f11af"}.mdi-fridge-off-outline:before{content:"\f11b0"}.mdi-fridge-outline:before{content:"\f028f"}.mdi-fridge-top:before{content:"\f0291"}.mdi-fridge-variant:before{content:"\f15f4"}.mdi-fridge-variant-alert:before{content:"\f15f5"}.mdi-fridge-variant-alert-outline:before{content:"\f15f6"}.mdi-fridge-variant-off:before{content:"\f15f7"}.mdi-fridge-variant-off-outline:before{content:"\f15f8"}.mdi-fridge-variant-outline:before{content:"\f15f9"}.mdi-fruit-cherries:before{content:"\f1042"}.mdi-fruit-cherries-off:before{content:"\f13f8"}.mdi-fruit-citrus:before{content:"\f1043"}.mdi-fruit-citrus-off:before{content:"\f13f9"}.mdi-fruit-grapes:before{content:"\f1044"}.mdi-fruit-grapes-outline:before{content:"\f1045"}.mdi-fruit-pear:before{content:"\f1a0e"}.mdi-fruit-pineapple:before{content:"\f1046"}.mdi-fruit-watermelon:before{content:"\f1047"}.mdi-fuel:before{content:"\f07ca"}.mdi-fuel-cell:before{content:"\f18b5"}.mdi-fullscreen:before{content:"\f0293"}.mdi-fullscreen-exit:before{content:"\f0294"}.mdi-function:before{content:"\f0295"}.mdi-function-variant:before{content:"\f0871"}.mdi-furigana-horizontal:before{content:"\f1081"}.mdi-furigana-vertical:before{content:"\f1082"}.mdi-fuse:before{content:"\f0c85"}.mdi-fuse-alert:before{content:"\f142d"}.mdi-fuse-blade:before{content:"\f0c86"}.mdi-fuse-off:before{content:"\f142c"}.mdi-gamepad:before{content:"\f0296"}.mdi-gamepad-circle:before{content:"\f0e33"}.mdi-gamepad-circle-down:before{content:"\f0e34"}.mdi-gamepad-circle-left:before{content:"\f0e35"}.mdi-gamepad-circle-outline:before{content:"\f0e36"}.mdi-gamepad-circle-right:before{content:"\f0e37"}.mdi-gamepad-circle-up:before{content:"\f0e38"}.mdi-gamepad-down:before{content:"\f0e39"}.mdi-gamepad-left:before{content:"\f0e3a"}.mdi-gamepad-outline:before{content:"\f1919"}.mdi-gamepad-right:before{content:"\f0e3b"}.mdi-gamepad-round:before{content:"\f0e3c"}.mdi-gamepad-round-down:before{content:"\f0e3d"}.mdi-gamepad-round-left:before{content:"\f0e3e"}.mdi-gamepad-round-outline:before{content:"\f0e3f"}.mdi-gamepad-round-right:before{content:"\f0e40"}.mdi-gamepad-round-up:before{content:"\f0e41"}.mdi-gamepad-square:before{content:"\f0eb5"}.mdi-gamepad-square-outline:before{content:"\f0eb6"}.mdi-gamepad-up:before{content:"\f0e42"}.mdi-gamepad-variant:before{content:"\f0297"}.mdi-gamepad-variant-outline:before{content:"\f0eb7"}.mdi-gamma:before{content:"\f10ee"}.mdi-gantry-crane:before{content:"\f0dd1"}.mdi-garage:before{content:"\f06d9"}.mdi-garage-alert:before{content:"\f0872"}.mdi-garage-alert-variant:before{content:"\f12d5"}.mdi-garage-lock:before{content:"\f17fb"}.mdi-garage-open:before{content:"\f06da"}.mdi-garage-open-variant:before{content:"\f12d4"}.mdi-garage-variant:before{content:"\f12d3"}.mdi-garage-variant-lock:before{content:"\f17fc"}.mdi-gas-burner:before{content:"\f1a1b"}.mdi-gas-cylinder:before{content:"\f0647"}.mdi-gas-station:before{content:"\f0298"}.mdi-gas-station-off:before{content:"\f1409"}.mdi-gas-station-off-outline:before{content:"\f140a"}.mdi-gas-station-outline:before{content:"\f0eb8"}.mdi-gate:before{content:"\f0299"}.mdi-gate-alert:before{content:"\f17f8"}.mdi-gate-and:before{content:"\f08e1"}.mdi-gate-arrow-left:before{content:"\f17f7"}.mdi-gate-arrow-right:before{content:"\f1169"}.mdi-gate-buffer:before{content:"\f1afe"}.mdi-gate-nand:before{content:"\f08e2"}.mdi-gate-nor:before{content:"\f08e3"}.mdi-gate-not:before{content:"\f08e4"}.mdi-gate-open:before{content:"\f116a"}.mdi-gate-or:before{content:"\f08e5"}.mdi-gate-xnor:before{content:"\f08e6"}.mdi-gate-xor:before{content:"\f08e7"}.mdi-gatsby:before{content:"\f0e43"}.mdi-gauge:before{content:"\f029a"}.mdi-gauge-empty:before{content:"\f0873"}.mdi-gauge-full:before{content:"\f0874"}.mdi-gauge-low:before{content:"\f0875"}.mdi-gavel:before{content:"\f029b"}.mdi-gender-female:before{content:"\f029c"}.mdi-gender-male:before{content:"\f029d"}.mdi-gender-male-female:before{content:"\f029e"}.mdi-gender-male-female-variant:before{content:"\f113f"}.mdi-gender-non-binary:before{content:"\f1140"}.mdi-gender-transgender:before{content:"\f029f"}.mdi-gentoo:before{content:"\f08e8"}.mdi-gesture:before{content:"\f07cb"}.mdi-gesture-double-tap:before{content:"\f073c"}.mdi-gesture-pinch:before{content:"\f0abd"}.mdi-gesture-spread:before{content:"\f0abe"}.mdi-gesture-swipe:before{content:"\f0d76"}.mdi-gesture-swipe-down:before{content:"\f073d"}.mdi-gesture-swipe-horizontal:before{content:"\f0abf"}.mdi-gesture-swipe-left:before{content:"\f073e"}.mdi-gesture-swipe-right:before{content:"\f073f"}.mdi-gesture-swipe-up:before{content:"\f0740"}.mdi-gesture-swipe-vertical:before{content:"\f0ac0"}.mdi-gesture-tap:before{content:"\f0741"}.mdi-gesture-tap-box:before{content:"\f12a9"}.mdi-gesture-tap-button:before{content:"\f12a8"}.mdi-gesture-tap-hold:before{content:"\f0d77"}.mdi-gesture-two-double-tap:before{content:"\f0742"}.mdi-gesture-two-tap:before{content:"\f0743"}.mdi-ghost:before{content:"\f02a0"}.mdi-ghost-off:before{content:"\f09f5"}.mdi-ghost-off-outline:before{content:"\f165c"}.mdi-ghost-outline:before{content:"\f165d"}.mdi-gift:before{content:"\f0e44"}.mdi-gift-off:before{content:"\f16ef"}.mdi-gift-off-outline:before{content:"\f16f0"}.mdi-gift-open:before{content:"\f16f1"}.mdi-gift-open-outline:before{content:"\f16f2"}.mdi-gift-outline:before{content:"\f02a1"}.mdi-git:before{content:"\f02a2"}.mdi-github:before{content:"\f02a4"}.mdi-gitlab:before{content:"\f0ba0"}.mdi-glass-cocktail:before{content:"\f0356"}.mdi-glass-cocktail-off:before{content:"\f15e6"}.mdi-glass-flute:before{content:"\f02a5"}.mdi-glass-fragile:before{content:"\f1873"}.mdi-glass-mug:before{content:"\f02a6"}.mdi-glass-mug-off:before{content:"\f15e7"}.mdi-glass-mug-variant:before{content:"\f1116"}.mdi-glass-mug-variant-off:before{content:"\f15e8"}.mdi-glass-pint-outline:before{content:"\f130d"}.mdi-glass-stange:before{content:"\f02a7"}.mdi-glass-tulip:before{content:"\f02a8"}.mdi-glass-wine:before{content:"\f0876"}.mdi-glasses:before{content:"\f02aa"}.mdi-globe-light:before{content:"\f066f"}.mdi-globe-light-outline:before{content:"\f12d7"}.mdi-globe-model:before{content:"\f08e9"}.mdi-gmail:before{content:"\f02ab"}.mdi-gnome:before{content:"\f02ac"}.mdi-go-kart:before{content:"\f0d79"}.mdi-go-kart-track:before{content:"\f0d7a"}.mdi-gog:before{content:"\f0ba1"}.mdi-gold:before{content:"\f124f"}.mdi-golf:before{content:"\f0823"}.mdi-golf-cart:before{content:"\f11a4"}.mdi-golf-tee:before{content:"\f1083"}.mdi-gondola:before{content:"\f0686"}.mdi-goodreads:before{content:"\f0d7b"}.mdi-google:before{content:"\f02ad"}.mdi-google-ads:before{content:"\f0c87"}.mdi-google-analytics:before{content:"\f07cc"}.mdi-google-assistant:before{content:"\f07cd"}.mdi-google-cardboard:before{content:"\f02ae"}.mdi-google-chrome:before{content:"\f02af"}.mdi-google-circles:before{content:"\f02b0"}.mdi-google-circles-communities:before{content:"\f02b1"}.mdi-google-circles-extended:before{content:"\f02b2"}.mdi-google-circles-group:before{content:"\f02b3"}.mdi-google-classroom:before{content:"\f02c0"}.mdi-google-cloud:before{content:"\f11f6"}.mdi-google-downasaur:before{content:"\f1362"}.mdi-google-drive:before{content:"\f02b6"}.mdi-google-earth:before{content:"\f02b7"}.mdi-google-fit:before{content:"\f096c"}.mdi-google-glass:before{content:"\f02b8"}.mdi-google-hangouts:before{content:"\f02c9"}.mdi-google-keep:before{content:"\f06dc"}.mdi-google-lens:before{content:"\f09f6"}.mdi-google-maps:before{content:"\f05f5"}.mdi-google-my-business:before{content:"\f1048"}.mdi-google-nearby:before{content:"\f02b9"}.mdi-google-play:before{content:"\f02bc"}.mdi-google-plus:before{content:"\f02bd"}.mdi-google-podcast:before{content:"\f0eb9"}.mdi-google-spreadsheet:before{content:"\f09f7"}.mdi-google-street-view:before{content:"\f0c88"}.mdi-google-translate:before{content:"\f02bf"}.mdi-gradient-horizontal:before{content:"\f174a"}.mdi-gradient-vertical:before{content:"\f06a0"}.mdi-grain:before{content:"\f0d7c"}.mdi-graph:before{content:"\f1049"}.mdi-graph-outline:before{content:"\f104a"}.mdi-graphql:before{content:"\f0877"}.mdi-grass:before{content:"\f1510"}.mdi-grave-stone:before{content:"\f0ba2"}.mdi-grease-pencil:before{content:"\f0648"}.mdi-greater-than:before{content:"\f096d"}.mdi-greater-than-or-equal:before{content:"\f096e"}.mdi-greenhouse:before{content:"\f002d"}.mdi-grid:before{content:"\f02c1"}.mdi-grid-large:before{content:"\f0758"}.mdi-grid-off:before{content:"\f02c2"}.mdi-grill:before{content:"\f0e45"}.mdi-grill-outline:before{content:"\f118a"}.mdi-group:before{content:"\f02c3"}.mdi-guitar-acoustic:before{content:"\f0771"}.mdi-guitar-electric:before{content:"\f02c4"}.mdi-guitar-pick:before{content:"\f02c5"}.mdi-guitar-pick-outline:before{content:"\f02c6"}.mdi-guy-fawkes-mask:before{content:"\f0825"}.mdi-gymnastics:before{content:"\f1a41"}.mdi-hail:before{content:"\f0ac1"}.mdi-hair-dryer:before{content:"\f10ef"}.mdi-hair-dryer-outline:before{content:"\f10f0"}.mdi-halloween:before{content:"\f0ba3"}.mdi-hamburger:before{content:"\f0685"}.mdi-hamburger-check:before{content:"\f1776"}.mdi-hamburger-minus:before{content:"\f1777"}.mdi-hamburger-off:before{content:"\f1778"}.mdi-hamburger-plus:before{content:"\f1779"}.mdi-hamburger-remove:before{content:"\f177a"}.mdi-hammer:before{content:"\f08ea"}.mdi-hammer-screwdriver:before{content:"\f1322"}.mdi-hammer-sickle:before{content:"\f1887"}.mdi-hammer-wrench:before{content:"\f1323"}.mdi-hand-back-left:before{content:"\f0e46"}.mdi-hand-back-left-off:before{content:"\f1830"}.mdi-hand-back-left-off-outline:before{content:"\f1832"}.mdi-hand-back-left-outline:before{content:"\f182c"}.mdi-hand-back-right:before{content:"\f0e47"}.mdi-hand-back-right-off:before{content:"\f1831"}.mdi-hand-back-right-off-outline:before{content:"\f1833"}.mdi-hand-back-right-outline:before{content:"\f182d"}.mdi-hand-clap:before{content:"\f194b"}.mdi-hand-clap-off:before{content:"\f1a42"}.mdi-hand-coin:before{content:"\f188f"}.mdi-hand-coin-outline:before{content:"\f1890"}.mdi-hand-cycle:before{content:"\f1b9c"}.mdi-hand-extended:before{content:"\f18b6"}.mdi-hand-extended-outline:before{content:"\f18b7"}.mdi-hand-front-left:before{content:"\f182b"}.mdi-hand-front-left-outline:before{content:"\f182e"}.mdi-hand-front-right:before{content:"\f0a4f"}.mdi-hand-front-right-outline:before{content:"\f182f"}.mdi-hand-heart:before{content:"\f10f1"}.mdi-hand-heart-outline:before{content:"\f157e"}.mdi-hand-okay:before{content:"\f0a50"}.mdi-hand-peace:before{content:"\f0a51"}.mdi-hand-peace-variant:before{content:"\f0a52"}.mdi-hand-pointing-down:before{content:"\f0a53"}.mdi-hand-pointing-left:before{content:"\f0a54"}.mdi-hand-pointing-right:before{content:"\f02c7"}.mdi-hand-pointing-up:before{content:"\f0a55"}.mdi-hand-saw:before{content:"\f0e48"}.mdi-hand-wash:before{content:"\f157f"}.mdi-hand-wash-outline:before{content:"\f1580"}.mdi-hand-water:before{content:"\f139f"}.mdi-hand-wave:before{content:"\f1821"}.mdi-hand-wave-outline:before{content:"\f1822"}.mdi-handball:before{content:"\f0f53"}.mdi-handcuffs:before{content:"\f113e"}.mdi-hands-pray:before{content:"\f0579"}.mdi-handshake:before{content:"\f1218"}.mdi-handshake-outline:before{content:"\f15a1"}.mdi-hanger:before{content:"\f02c8"}.mdi-hard-hat:before{content:"\f096f"}.mdi-harddisk:before{content:"\f02ca"}.mdi-harddisk-plus:before{content:"\f104b"}.mdi-harddisk-remove:before{content:"\f104c"}.mdi-hat-fedora:before{content:"\f0ba4"}.mdi-hazard-lights:before{content:"\f0c89"}.mdi-hdmi-port:before{content:"\f1bb8"}.mdi-hdr:before{content:"\f0d7d"}.mdi-hdr-off:before{content:"\f0d7e"}.mdi-head:before{content:"\f135e"}.mdi-head-alert:before{content:"\f1338"}.mdi-head-alert-outline:before{content:"\f1339"}.mdi-head-check:before{content:"\f133a"}.mdi-head-check-outline:before{content:"\f133b"}.mdi-head-cog:before{content:"\f133c"}.mdi-head-cog-outline:before{content:"\f133d"}.mdi-head-dots-horizontal:before{content:"\f133e"}.mdi-head-dots-horizontal-outline:before{content:"\f133f"}.mdi-head-flash:before{content:"\f1340"}.mdi-head-flash-outline:before{content:"\f1341"}.mdi-head-heart:before{content:"\f1342"}.mdi-head-heart-outline:before{content:"\f1343"}.mdi-head-lightbulb:before{content:"\f1344"}.mdi-head-lightbulb-outline:before{content:"\f1345"}.mdi-head-minus:before{content:"\f1346"}.mdi-head-minus-outline:before{content:"\f1347"}.mdi-head-outline:before{content:"\f135f"}.mdi-head-plus:before{content:"\f1348"}.mdi-head-plus-outline:before{content:"\f1349"}.mdi-head-question:before{content:"\f134a"}.mdi-head-question-outline:before{content:"\f134b"}.mdi-head-remove:before{content:"\f134c"}.mdi-head-remove-outline:before{content:"\f134d"}.mdi-head-snowflake:before{content:"\f134e"}.mdi-head-snowflake-outline:before{content:"\f134f"}.mdi-head-sync:before{content:"\f1350"}.mdi-head-sync-outline:before{content:"\f1351"}.mdi-headphones:before{content:"\f02cb"}.mdi-headphones-bluetooth:before{content:"\f0970"}.mdi-headphones-box:before{content:"\f02cc"}.mdi-headphones-off:before{content:"\f07ce"}.mdi-headphones-settings:before{content:"\f02cd"}.mdi-headset:before{content:"\f02ce"}.mdi-headset-dock:before{content:"\f02cf"}.mdi-headset-off:before{content:"\f02d0"}.mdi-heart:before{content:"\f02d1"}.mdi-heart-box:before{content:"\f02d2"}.mdi-heart-box-outline:before{content:"\f02d3"}.mdi-heart-broken:before{content:"\f02d4"}.mdi-heart-broken-outline:before{content:"\f0d14"}.mdi-heart-circle:before{content:"\f0971"}.mdi-heart-circle-outline:before{content:"\f0972"}.mdi-heart-cog:before{content:"\f1663"}.mdi-heart-cog-outline:before{content:"\f1664"}.mdi-heart-flash:before{content:"\f0ef9"}.mdi-heart-half:before{content:"\f06df"}.mdi-heart-half-full:before{content:"\f06de"}.mdi-heart-half-outline:before{content:"\f06e0"}.mdi-heart-minus:before{content:"\f142f"}.mdi-heart-minus-outline:before{content:"\f1432"}.mdi-heart-multiple:before{content:"\f0a56"}.mdi-heart-multiple-outline:before{content:"\f0a57"}.mdi-heart-off:before{content:"\f0759"}.mdi-heart-off-outline:before{content:"\f1434"}.mdi-heart-outline:before{content:"\f02d5"}.mdi-heart-plus:before{content:"\f142e"}.mdi-heart-plus-outline:before{content:"\f1431"}.mdi-heart-pulse:before{content:"\f05f6"}.mdi-heart-remove:before{content:"\f1430"}.mdi-heart-remove-outline:before{content:"\f1433"}.mdi-heart-settings:before{content:"\f1665"}.mdi-heart-settings-outline:before{content:"\f1666"}.mdi-heat-pump:before{content:"\f1a43"}.mdi-heat-pump-outline:before{content:"\f1a44"}.mdi-heat-wave:before{content:"\f1a45"}.mdi-heating-coil:before{content:"\f1aaf"}.mdi-helicopter:before{content:"\f0ac2"}.mdi-help:before{content:"\f02d6"}.mdi-help-box:before{content:"\f078b"}.mdi-help-box-multiple:before{content:"\f1c0a"}.mdi-help-box-multiple-outline:before{content:"\f1c0b"}.mdi-help-box-outline:before{content:"\f1c0c"}.mdi-help-circle:before{content:"\f02d7"}.mdi-help-circle-outline:before{content:"\f0625"}.mdi-help-network:before{content:"\f06f5"}.mdi-help-network-outline:before{content:"\f0c8a"}.mdi-help-rhombus:before{content:"\f0ba5"}.mdi-help-rhombus-outline:before{content:"\f0ba6"}.mdi-hexadecimal:before{content:"\f12a7"}.mdi-hexagon:before{content:"\f02d8"}.mdi-hexagon-multiple:before{content:"\f06e1"}.mdi-hexagon-multiple-outline:before{content:"\f10f2"}.mdi-hexagon-outline:before{content:"\f02d9"}.mdi-hexagon-slice-1:before{content:"\f0ac3"}.mdi-hexagon-slice-2:before{content:"\f0ac4"}.mdi-hexagon-slice-3:before{content:"\f0ac5"}.mdi-hexagon-slice-4:before{content:"\f0ac6"}.mdi-hexagon-slice-5:before{content:"\f0ac7"}.mdi-hexagon-slice-6:before{content:"\f0ac8"}.mdi-hexagram:before{content:"\f0ac9"}.mdi-hexagram-outline:before{content:"\f0aca"}.mdi-high-definition:before{content:"\f07cf"}.mdi-high-definition-box:before{content:"\f0878"}.mdi-highway:before{content:"\f05f7"}.mdi-hiking:before{content:"\f0d7f"}.mdi-history:before{content:"\f02da"}.mdi-hockey-puck:before{content:"\f0879"}.mdi-hockey-sticks:before{content:"\f087a"}.mdi-hololens:before{content:"\f02db"}.mdi-home:before{content:"\f02dc"}.mdi-home-account:before{content:"\f0826"}.mdi-home-alert:before{content:"\f087b"}.mdi-home-alert-outline:before{content:"\f15d0"}.mdi-home-analytics:before{content:"\f0eba"}.mdi-home-assistant:before{content:"\f07d0"}.mdi-home-automation:before{content:"\f07d1"}.mdi-home-battery:before{content:"\f1901"}.mdi-home-battery-outline:before{content:"\f1902"}.mdi-home-circle:before{content:"\f07d2"}.mdi-home-circle-outline:before{content:"\f104d"}.mdi-home-city:before{content:"\f0d15"}.mdi-home-city-outline:before{content:"\f0d16"}.mdi-home-clock:before{content:"\f1a12"}.mdi-home-clock-outline:before{content:"\f1a13"}.mdi-home-edit:before{content:"\f1159"}.mdi-home-edit-outline:before{content:"\f115a"}.mdi-home-export-outline:before{content:"\f0f9b"}.mdi-home-flood:before{content:"\f0efa"}.mdi-home-floor-0:before{content:"\f0dd2"}.mdi-home-floor-1:before{content:"\f0d80"}.mdi-home-floor-2:before{content:"\f0d81"}.mdi-home-floor-3:before{content:"\f0d82"}.mdi-home-floor-a:before{content:"\f0d83"}.mdi-home-floor-b:before{content:"\f0d84"}.mdi-home-floor-g:before{content:"\f0d85"}.mdi-home-floor-l:before{content:"\f0d86"}.mdi-home-floor-negative-1:before{content:"\f0dd3"}.mdi-home-group:before{content:"\f0dd4"}.mdi-home-group-minus:before{content:"\f19c1"}.mdi-home-group-plus:before{content:"\f19c0"}.mdi-home-group-remove:before{content:"\f19c2"}.mdi-home-heart:before{content:"\f0827"}.mdi-home-import-outline:before{content:"\f0f9c"}.mdi-home-lightbulb:before{content:"\f1251"}.mdi-home-lightbulb-outline:before{content:"\f1252"}.mdi-home-lightning-bolt:before{content:"\f1903"}.mdi-home-lightning-bolt-outline:before{content:"\f1904"}.mdi-home-lock:before{content:"\f08eb"}.mdi-home-lock-open:before{content:"\f08ec"}.mdi-home-map-marker:before{content:"\f05f8"}.mdi-home-minus:before{content:"\f0974"}.mdi-home-minus-outline:before{content:"\f13d5"}.mdi-home-modern:before{content:"\f02dd"}.mdi-home-off:before{content:"\f1a46"}.mdi-home-off-outline:before{content:"\f1a47"}.mdi-home-outline:before{content:"\f06a1"}.mdi-home-plus:before{content:"\f0975"}.mdi-home-plus-outline:before{content:"\f13d6"}.mdi-home-remove:before{content:"\f1247"}.mdi-home-remove-outline:before{content:"\f13d7"}.mdi-home-roof:before{content:"\f112b"}.mdi-home-search:before{content:"\f13b0"}.mdi-home-search-outline:before{content:"\f13b1"}.mdi-home-silo:before{content:"\f1ba0"}.mdi-home-silo-outline:before{content:"\f1ba1"}.mdi-home-switch:before{content:"\f1794"}.mdi-home-switch-outline:before{content:"\f1795"}.mdi-home-thermometer:before{content:"\f0f54"}.mdi-home-thermometer-outline:before{content:"\f0f55"}.mdi-home-variant:before{content:"\f02de"}.mdi-home-variant-outline:before{content:"\f0ba7"}.mdi-hook:before{content:"\f06e2"}.mdi-hook-off:before{content:"\f06e3"}.mdi-hoop-house:before{content:"\f0e56"}.mdi-hops:before{content:"\f02df"}.mdi-horizontal-rotate-clockwise:before{content:"\f10f3"}.mdi-horizontal-rotate-counterclockwise:before{content:"\f10f4"}.mdi-horse:before{content:"\f15bf"}.mdi-horse-human:before{content:"\f15c0"}.mdi-horse-variant:before{content:"\f15c1"}.mdi-horse-variant-fast:before{content:"\f186e"}.mdi-horseshoe:before{content:"\f0a58"}.mdi-hospital:before{content:"\f0ff6"}.mdi-hospital-box:before{content:"\f02e0"}.mdi-hospital-box-outline:before{content:"\f0ff7"}.mdi-hospital-building:before{content:"\f02e1"}.mdi-hospital-marker:before{content:"\f02e2"}.mdi-hot-tub:before{content:"\f0828"}.mdi-hours-24:before{content:"\f1478"}.mdi-hubspot:before{content:"\f0d17"}.mdi-hulu:before{content:"\f0829"}.mdi-human:before{content:"\f02e6"}.mdi-human-baby-changing-table:before{content:"\f138b"}.mdi-human-cane:before{content:"\f1581"}.mdi-human-capacity-decrease:before{content:"\f159b"}.mdi-human-capacity-increase:before{content:"\f159c"}.mdi-human-child:before{content:"\f02e7"}.mdi-human-dolly:before{content:"\f1980"}.mdi-human-edit:before{content:"\f14e8"}.mdi-human-female:before{content:"\f0649"}.mdi-human-female-boy:before{content:"\f0a59"}.mdi-human-female-dance:before{content:"\f15c9"}.mdi-human-female-female:before{content:"\f0a5a"}.mdi-human-female-girl:before{content:"\f0a5b"}.mdi-human-greeting:before{content:"\f17c4"}.mdi-human-greeting-proximity:before{content:"\f159d"}.mdi-human-greeting-variant:before{content:"\f064a"}.mdi-human-handsdown:before{content:"\f064b"}.mdi-human-handsup:before{content:"\f064c"}.mdi-human-male:before{content:"\f064d"}.mdi-human-male-board:before{content:"\f0890"}.mdi-human-male-board-poll:before{content:"\f0846"}.mdi-human-male-boy:before{content:"\f0a5c"}.mdi-human-male-child:before{content:"\f138c"}.mdi-human-male-female:before{content:"\f02e8"}.mdi-human-male-female-child:before{content:"\f1823"}.mdi-human-male-girl:before{content:"\f0a5d"}.mdi-human-male-height:before{content:"\f0efb"}.mdi-human-male-height-variant:before{content:"\f0efc"}.mdi-human-male-male:before{content:"\f0a5e"}.mdi-human-non-binary:before{content:"\f1848"}.mdi-human-pregnant:before{content:"\f05cf"}.mdi-human-queue:before{content:"\f1571"}.mdi-human-scooter:before{content:"\f11e9"}.mdi-human-walker:before{content:"\f1b71"}.mdi-human-wheelchair:before{content:"\f138d"}.mdi-human-white-cane:before{content:"\f1981"}.mdi-humble-bundle:before{content:"\f0744"}.mdi-hvac:before{content:"\f1352"}.mdi-hvac-off:before{content:"\f159e"}.mdi-hydraulic-oil-level:before{content:"\f1324"}.mdi-hydraulic-oil-temperature:before{content:"\f1325"}.mdi-hydro-power:before{content:"\f12e5"}.mdi-hydrogen-station:before{content:"\f1894"}.mdi-ice-cream:before{content:"\f082a"}.mdi-ice-cream-off:before{content:"\f0e52"}.mdi-ice-pop:before{content:"\f0efd"}.mdi-id-card:before{content:"\f0fc0"}.mdi-identifier:before{content:"\f0efe"}.mdi-ideogram-cjk:before{content:"\f1331"}.mdi-ideogram-cjk-variant:before{content:"\f1332"}.mdi-image:before{content:"\f02e9"}.mdi-image-album:before{content:"\f02ea"}.mdi-image-area:before{content:"\f02eb"}.mdi-image-area-close:before{content:"\f02ec"}.mdi-image-auto-adjust:before{content:"\f0fc1"}.mdi-image-broken:before{content:"\f02ed"}.mdi-image-broken-variant:before{content:"\f02ee"}.mdi-image-check:before{content:"\f1b25"}.mdi-image-check-outline:before{content:"\f1b26"}.mdi-image-edit:before{content:"\f11e3"}.mdi-image-edit-outline:before{content:"\f11e4"}.mdi-image-filter-black-white:before{content:"\f02f0"}.mdi-image-filter-center-focus:before{content:"\f02f1"}.mdi-image-filter-center-focus-strong:before{content:"\f0eff"}.mdi-image-filter-center-focus-strong-outline:before{content:"\f0f00"}.mdi-image-filter-center-focus-weak:before{content:"\f02f2"}.mdi-image-filter-drama:before{content:"\f02f3"}.mdi-image-filter-drama-outline:before{content:"\f1bff"}.mdi-image-filter-frames:before{content:"\f02f4"}.mdi-image-filter-hdr:before{content:"\f02f5"}.mdi-image-filter-none:before{content:"\f02f6"}.mdi-image-filter-tilt-shift:before{content:"\f02f7"}.mdi-image-filter-vintage:before{content:"\f02f8"}.mdi-image-frame:before{content:"\f0e49"}.mdi-image-lock:before{content:"\f1ab0"}.mdi-image-lock-outline:before{content:"\f1ab1"}.mdi-image-marker:before{content:"\f177b"}.mdi-image-marker-outline:before{content:"\f177c"}.mdi-image-minus:before{content:"\f1419"}.mdi-image-minus-outline:before{content:"\f1b47"}.mdi-image-move:before{content:"\f09f8"}.mdi-image-multiple:before{content:"\f02f9"}.mdi-image-multiple-outline:before{content:"\f02ef"}.mdi-image-off:before{content:"\f082b"}.mdi-image-off-outline:before{content:"\f11d1"}.mdi-image-outline:before{content:"\f0976"}.mdi-image-plus:before{content:"\f087c"}.mdi-image-plus-outline:before{content:"\f1b46"}.mdi-image-refresh:before{content:"\f19fe"}.mdi-image-refresh-outline:before{content:"\f19ff"}.mdi-image-remove:before{content:"\f1418"}.mdi-image-remove-outline:before{content:"\f1b48"}.mdi-image-search:before{content:"\f0977"}.mdi-image-search-outline:before{content:"\f0978"}.mdi-image-size-select-actual:before{content:"\f0c8d"}.mdi-image-size-select-large:before{content:"\f0c8e"}.mdi-image-size-select-small:before{content:"\f0c8f"}.mdi-image-sync:before{content:"\f1a00"}.mdi-image-sync-outline:before{content:"\f1a01"}.mdi-image-text:before{content:"\f160d"}.mdi-import:before{content:"\f02fa"}.mdi-inbox:before{content:"\f0687"}.mdi-inbox-arrow-down:before{content:"\f02fb"}.mdi-inbox-arrow-down-outline:before{content:"\f1270"}.mdi-inbox-arrow-up:before{content:"\f03d1"}.mdi-inbox-arrow-up-outline:before{content:"\f1271"}.mdi-inbox-full:before{content:"\f1272"}.mdi-inbox-full-outline:before{content:"\f1273"}.mdi-inbox-multiple:before{content:"\f08b0"}.mdi-inbox-multiple-outline:before{content:"\f0ba8"}.mdi-inbox-outline:before{content:"\f1274"}.mdi-inbox-remove:before{content:"\f159f"}.mdi-inbox-remove-outline:before{content:"\f15a0"}.mdi-incognito:before{content:"\f05f9"}.mdi-incognito-circle:before{content:"\f1421"}.mdi-incognito-circle-off:before{content:"\f1422"}.mdi-incognito-off:before{content:"\f0075"}.mdi-induction:before{content:"\f184c"}.mdi-infinity:before{content:"\f06e4"}.mdi-information:before{content:"\f02fc"}.mdi-information-off:before{content:"\f178c"}.mdi-information-off-outline:before{content:"\f178d"}.mdi-information-outline:before{content:"\f02fd"}.mdi-information-variant:before{content:"\f064e"}.mdi-instagram:before{content:"\f02fe"}.mdi-instrument-triangle:before{content:"\f104e"}.mdi-integrated-circuit-chip:before{content:"\f1913"}.mdi-invert-colors:before{content:"\f0301"}.mdi-invert-colors-off:before{content:"\f0e4a"}.mdi-iobroker:before{content:"\f12e8"}.mdi-ip:before{content:"\f0a5f"}.mdi-ip-network:before{content:"\f0a60"}.mdi-ip-network-outline:before{content:"\f0c90"}.mdi-ip-outline:before{content:"\f1982"}.mdi-ipod:before{content:"\f0c91"}.mdi-iron:before{content:"\f1824"}.mdi-iron-board:before{content:"\f1838"}.mdi-iron-outline:before{content:"\f1825"}.mdi-island:before{content:"\f104f"}.mdi-iv-bag:before{content:"\f10b9"}.mdi-jabber:before{content:"\f0dd5"}.mdi-jeepney:before{content:"\f0302"}.mdi-jellyfish:before{content:"\f0f01"}.mdi-jellyfish-outline:before{content:"\f0f02"}.mdi-jira:before{content:"\f0303"}.mdi-jquery:before{content:"\f087d"}.mdi-jsfiddle:before{content:"\f0304"}.mdi-jump-rope:before{content:"\f12ff"}.mdi-kabaddi:before{content:"\f0d87"}.mdi-kangaroo:before{content:"\f1558"}.mdi-karate:before{content:"\f082c"}.mdi-kayaking:before{content:"\f08af"}.mdi-keg:before{content:"\f0305"}.mdi-kettle:before{content:"\f05fa"}.mdi-kettle-alert:before{content:"\f1317"}.mdi-kettle-alert-outline:before{content:"\f1318"}.mdi-kettle-off:before{content:"\f131b"}.mdi-kettle-off-outline:before{content:"\f131c"}.mdi-kettle-outline:before{content:"\f0f56"}.mdi-kettle-pour-over:before{content:"\f173c"}.mdi-kettle-steam:before{content:"\f1319"}.mdi-kettle-steam-outline:before{content:"\f131a"}.mdi-kettlebell:before{content:"\f1300"}.mdi-key:before{content:"\f0306"}.mdi-key-alert:before{content:"\f1983"}.mdi-key-alert-outline:before{content:"\f1984"}.mdi-key-arrow-right:before{content:"\f1312"}.mdi-key-chain:before{content:"\f1574"}.mdi-key-chain-variant:before{content:"\f1575"}.mdi-key-change:before{content:"\f0307"}.mdi-key-link:before{content:"\f119f"}.mdi-key-minus:before{content:"\f0308"}.mdi-key-outline:before{content:"\f0dd6"}.mdi-key-plus:before{content:"\f0309"}.mdi-key-remove:before{content:"\f030a"}.mdi-key-star:before{content:"\f119e"}.mdi-key-variant:before{content:"\f030b"}.mdi-key-wireless:before{content:"\f0fc2"}.mdi-keyboard:before{content:"\f030c"}.mdi-keyboard-backspace:before{content:"\f030d"}.mdi-keyboard-caps:before{content:"\f030e"}.mdi-keyboard-close:before{content:"\f030f"}.mdi-keyboard-close-outline:before{content:"\f1c00"}.mdi-keyboard-esc:before{content:"\f12b7"}.mdi-keyboard-f1:before{content:"\f12ab"}.mdi-keyboard-f10:before{content:"\f12b4"}.mdi-keyboard-f11:before{content:"\f12b5"}.mdi-keyboard-f12:before{content:"\f12b6"}.mdi-keyboard-f2:before{content:"\f12ac"}.mdi-keyboard-f3:before{content:"\f12ad"}.mdi-keyboard-f4:before{content:"\f12ae"}.mdi-keyboard-f5:before{content:"\f12af"}.mdi-keyboard-f6:before{content:"\f12b0"}.mdi-keyboard-f7:before{content:"\f12b1"}.mdi-keyboard-f8:before{content:"\f12b2"}.mdi-keyboard-f9:before{content:"\f12b3"}.mdi-keyboard-off:before{content:"\f0310"}.mdi-keyboard-off-outline:before{content:"\f0e4b"}.mdi-keyboard-outline:before{content:"\f097b"}.mdi-keyboard-return:before{content:"\f0311"}.mdi-keyboard-settings:before{content:"\f09f9"}.mdi-keyboard-settings-outline:before{content:"\f09fa"}.mdi-keyboard-space:before{content:"\f1050"}.mdi-keyboard-tab:before{content:"\f0312"}.mdi-keyboard-tab-reverse:before{content:"\f0325"}.mdi-keyboard-variant:before{content:"\f0313"}.mdi-khanda:before{content:"\f10fd"}.mdi-kickstarter:before{content:"\f0745"}.mdi-kite:before{content:"\f1985"}.mdi-kite-outline:before{content:"\f1986"}.mdi-kitesurfing:before{content:"\f1744"}.mdi-klingon:before{content:"\f135b"}.mdi-knife:before{content:"\f09fb"}.mdi-knife-military:before{content:"\f09fc"}.mdi-knob:before{content:"\f1b96"}.mdi-koala:before{content:"\f173f"}.mdi-kodi:before{content:"\f0314"}.mdi-kubernetes:before{content:"\f10fe"}.mdi-label:before{content:"\f0315"}.mdi-label-multiple:before{content:"\f1375"}.mdi-label-multiple-outline:before{content:"\f1376"}.mdi-label-off:before{content:"\f0acb"}.mdi-label-off-outline:before{content:"\f0acc"}.mdi-label-outline:before{content:"\f0316"}.mdi-label-percent:before{content:"\f12ea"}.mdi-label-percent-outline:before{content:"\f12eb"}.mdi-label-variant:before{content:"\f0acd"}.mdi-label-variant-outline:before{content:"\f0ace"}.mdi-ladder:before{content:"\f15a2"}.mdi-ladybug:before{content:"\f082d"}.mdi-lambda:before{content:"\f0627"}.mdi-lamp:before{content:"\f06b5"}.mdi-lamp-outline:before{content:"\f17d0"}.mdi-lamps:before{content:"\f1576"}.mdi-lamps-outline:before{content:"\f17d1"}.mdi-lan:before{content:"\f0317"}.mdi-lan-check:before{content:"\f12aa"}.mdi-lan-connect:before{content:"\f0318"}.mdi-lan-disconnect:before{content:"\f0319"}.mdi-lan-pending:before{content:"\f031a"}.mdi-land-fields:before{content:"\f1ab2"}.mdi-land-plots:before{content:"\f1ab3"}.mdi-land-plots-circle:before{content:"\f1ab4"}.mdi-land-plots-circle-variant:before{content:"\f1ab5"}.mdi-land-rows-horizontal:before{content:"\f1ab6"}.mdi-land-rows-vertical:before{content:"\f1ab7"}.mdi-landslide:before{content:"\f1a48"}.mdi-landslide-outline:before{content:"\f1a49"}.mdi-language-c:before{content:"\f0671"}.mdi-language-cpp:before{content:"\f0672"}.mdi-language-csharp:before{content:"\f031b"}.mdi-language-css3:before{content:"\f031c"}.mdi-language-fortran:before{content:"\f121a"}.mdi-language-go:before{content:"\f07d3"}.mdi-language-haskell:before{content:"\f0c92"}.mdi-language-html5:before{content:"\f031d"}.mdi-language-java:before{content:"\f0b37"}.mdi-language-javascript:before{content:"\f031e"}.mdi-language-kotlin:before{content:"\f1219"}.mdi-language-lua:before{content:"\f08b1"}.mdi-language-markdown:before{content:"\f0354"}.mdi-language-markdown-outline:before{content:"\f0f5b"}.mdi-language-php:before{content:"\f031f"}.mdi-language-python:before{content:"\f0320"}.mdi-language-r:before{content:"\f07d4"}.mdi-language-ruby:before{content:"\f0d2d"}.mdi-language-ruby-on-rails:before{content:"\f0acf"}.mdi-language-rust:before{content:"\f1617"}.mdi-language-swift:before{content:"\f06e5"}.mdi-language-typescript:before{content:"\f06e6"}.mdi-language-xaml:before{content:"\f0673"}.mdi-laptop:before{content:"\f0322"}.mdi-laptop-account:before{content:"\f1a4a"}.mdi-laptop-off:before{content:"\f06e7"}.mdi-laravel:before{content:"\f0ad0"}.mdi-laser-pointer:before{content:"\f1484"}.mdi-lasso:before{content:"\f0f03"}.mdi-lastpass:before{content:"\f0446"}.mdi-latitude:before{content:"\f0f57"}.mdi-launch:before{content:"\f0327"}.mdi-lava-lamp:before{content:"\f07d5"}.mdi-layers:before{content:"\f0328"}.mdi-layers-edit:before{content:"\f1892"}.mdi-layers-minus:before{content:"\f0e4c"}.mdi-layers-off:before{content:"\f0329"}.mdi-layers-off-outline:before{content:"\f09fd"}.mdi-layers-outline:before{content:"\f09fe"}.mdi-layers-plus:before{content:"\f0e4d"}.mdi-layers-remove:before{content:"\f0e4e"}.mdi-layers-search:before{content:"\f1206"}.mdi-layers-search-outline:before{content:"\f1207"}.mdi-layers-triple:before{content:"\f0f58"}.mdi-layers-triple-outline:before{content:"\f0f59"}.mdi-lead-pencil:before{content:"\f064f"}.mdi-leaf:before{content:"\f032a"}.mdi-leaf-circle:before{content:"\f1905"}.mdi-leaf-circle-outline:before{content:"\f1906"}.mdi-leaf-maple:before{content:"\f0c93"}.mdi-leaf-maple-off:before{content:"\f12da"}.mdi-leaf-off:before{content:"\f12d9"}.mdi-leak:before{content:"\f0dd7"}.mdi-leak-off:before{content:"\f0dd8"}.mdi-lectern:before{content:"\f1af0"}.mdi-led-off:before{content:"\f032b"}.mdi-led-on:before{content:"\f032c"}.mdi-led-outline:before{content:"\f032d"}.mdi-led-strip:before{content:"\f07d6"}.mdi-led-strip-variant:before{content:"\f1051"}.mdi-led-strip-variant-off:before{content:"\f1a4b"}.mdi-led-variant-off:before{content:"\f032e"}.mdi-led-variant-on:before{content:"\f032f"}.mdi-led-variant-outline:before{content:"\f0330"}.mdi-leek:before{content:"\f117d"}.mdi-less-than:before{content:"\f097c"}.mdi-less-than-or-equal:before{content:"\f097d"}.mdi-library:before{content:"\f0331"}.mdi-library-outline:before{content:"\f1a22"}.mdi-library-shelves:before{content:"\f0ba9"}.mdi-license:before{content:"\f0fc3"}.mdi-lifebuoy:before{content:"\f087e"}.mdi-light-flood-down:before{content:"\f1987"}.mdi-light-flood-up:before{content:"\f1988"}.mdi-light-recessed:before{content:"\f179b"}.mdi-light-switch:before{content:"\f097e"}.mdi-light-switch-off:before{content:"\f1a24"}.mdi-lightbulb:before{content:"\f0335"}.mdi-lightbulb-alert:before{content:"\f19e1"}.mdi-lightbulb-alert-outline:before{content:"\f19e2"}.mdi-lightbulb-auto:before{content:"\f1800"}.mdi-lightbulb-auto-outline:before{content:"\f1801"}.mdi-lightbulb-cfl:before{content:"\f1208"}.mdi-lightbulb-cfl-off:before{content:"\f1209"}.mdi-lightbulb-cfl-spiral:before{content:"\f1275"}.mdi-lightbulb-cfl-spiral-off:before{content:"\f12c3"}.mdi-lightbulb-fluorescent-tube:before{content:"\f1804"}.mdi-lightbulb-fluorescent-tube-outline:before{content:"\f1805"}.mdi-lightbulb-group:before{content:"\f1253"}.mdi-lightbulb-group-off:before{content:"\f12cd"}.mdi-lightbulb-group-off-outline:before{content:"\f12ce"}.mdi-lightbulb-group-outline:before{content:"\f1254"}.mdi-lightbulb-multiple:before{content:"\f1255"}.mdi-lightbulb-multiple-off:before{content:"\f12cf"}.mdi-lightbulb-multiple-off-outline:before{content:"\f12d0"}.mdi-lightbulb-multiple-outline:before{content:"\f1256"}.mdi-lightbulb-night:before{content:"\f1a4c"}.mdi-lightbulb-night-outline:before{content:"\f1a4d"}.mdi-lightbulb-off:before{content:"\f0e4f"}.mdi-lightbulb-off-outline:before{content:"\f0e50"}.mdi-lightbulb-on:before{content:"\f06e8"}.mdi-lightbulb-on-10:before{content:"\f1a4e"}.mdi-lightbulb-on-20:before{content:"\f1a4f"}.mdi-lightbulb-on-30:before{content:"\f1a50"}.mdi-lightbulb-on-40:before{content:"\f1a51"}.mdi-lightbulb-on-50:before{content:"\f1a52"}.mdi-lightbulb-on-60:before{content:"\f1a53"}.mdi-lightbulb-on-70:before{content:"\f1a54"}.mdi-lightbulb-on-80:before{content:"\f1a55"}.mdi-lightbulb-on-90:before{content:"\f1a56"}.mdi-lightbulb-on-outline:before{content:"\f06e9"}.mdi-lightbulb-outline:before{content:"\f0336"}.mdi-lightbulb-question:before{content:"\f19e3"}.mdi-lightbulb-question-outline:before{content:"\f19e4"}.mdi-lightbulb-spot:before{content:"\f17f4"}.mdi-lightbulb-spot-off:before{content:"\f17f5"}.mdi-lightbulb-variant:before{content:"\f1802"}.mdi-lightbulb-variant-outline:before{content:"\f1803"}.mdi-lighthouse:before{content:"\f09ff"}.mdi-lighthouse-on:before{content:"\f0a00"}.mdi-lightning-bolt:before{content:"\f140b"}.mdi-lightning-bolt-circle:before{content:"\f0820"}.mdi-lightning-bolt-outline:before{content:"\f140c"}.mdi-line-scan:before{content:"\f0624"}.mdi-lingerie:before{content:"\f1476"}.mdi-link:before{content:"\f0337"}.mdi-link-box:before{content:"\f0d1a"}.mdi-link-box-outline:before{content:"\f0d1b"}.mdi-link-box-variant:before{content:"\f0d1c"}.mdi-link-box-variant-outline:before{content:"\f0d1d"}.mdi-link-lock:before{content:"\f10ba"}.mdi-link-off:before{content:"\f0338"}.mdi-link-plus:before{content:"\f0c94"}.mdi-link-variant:before{content:"\f0339"}.mdi-link-variant-minus:before{content:"\f10ff"}.mdi-link-variant-off:before{content:"\f033a"}.mdi-link-variant-plus:before{content:"\f1100"}.mdi-link-variant-remove:before{content:"\f1101"}.mdi-linkedin:before{content:"\f033b"}.mdi-linux:before{content:"\f033d"}.mdi-linux-mint:before{content:"\f08ed"}.mdi-lipstick:before{content:"\f13b5"}.mdi-liquid-spot:before{content:"\f1826"}.mdi-liquor:before{content:"\f191e"}.mdi-list-box:before{content:"\f1b7b"}.mdi-list-box-outline:before{content:"\f1b7c"}.mdi-list-status:before{content:"\f15ab"}.mdi-litecoin:before{content:"\f0a61"}.mdi-loading:before{content:"\f0772"}.mdi-location-enter:before{content:"\f0fc4"}.mdi-location-exit:before{content:"\f0fc5"}.mdi-lock:before{content:"\f033e"}.mdi-lock-alert:before{content:"\f08ee"}.mdi-lock-alert-outline:before{content:"\f15d1"}.mdi-lock-check:before{content:"\f139a"}.mdi-lock-check-outline:before{content:"\f16a8"}.mdi-lock-clock:before{content:"\f097f"}.mdi-lock-minus:before{content:"\f16a9"}.mdi-lock-minus-outline:before{content:"\f16aa"}.mdi-lock-off:before{content:"\f1671"}.mdi-lock-off-outline:before{content:"\f1672"}.mdi-lock-open:before{content:"\f033f"}.mdi-lock-open-alert:before{content:"\f139b"}.mdi-lock-open-alert-outline:before{content:"\f15d2"}.mdi-lock-open-check:before{content:"\f139c"}.mdi-lock-open-check-outline:before{content:"\f16ab"}.mdi-lock-open-minus:before{content:"\f16ac"}.mdi-lock-open-minus-outline:before{content:"\f16ad"}.mdi-lock-open-outline:before{content:"\f0340"}.mdi-lock-open-plus:before{content:"\f16ae"}.mdi-lock-open-plus-outline:before{content:"\f16af"}.mdi-lock-open-remove:before{content:"\f16b0"}.mdi-lock-open-remove-outline:before{content:"\f16b1"}.mdi-lock-open-variant:before{content:"\f0fc6"}.mdi-lock-open-variant-outline:before{content:"\f0fc7"}.mdi-lock-outline:before{content:"\f0341"}.mdi-lock-pattern:before{content:"\f06ea"}.mdi-lock-percent:before{content:"\f1c12"}.mdi-lock-percent-open:before{content:"\f1c13"}.mdi-lock-percent-open-outline:before{content:"\f1c14"}.mdi-lock-percent-open-variant:before{content:"\f1c15"}.mdi-lock-percent-open-variant-outline:before{content:"\f1c16"}.mdi-lock-percent-outline:before{content:"\f1c17"}.mdi-lock-plus:before{content:"\f05fb"}.mdi-lock-plus-outline:before{content:"\f16b2"}.mdi-lock-question:before{content:"\f08ef"}.mdi-lock-remove:before{content:"\f16b3"}.mdi-lock-remove-outline:before{content:"\f16b4"}.mdi-lock-reset:before{content:"\f0773"}.mdi-lock-smart:before{content:"\f08b2"}.mdi-locker:before{content:"\f07d7"}.mdi-locker-multiple:before{content:"\f07d8"}.mdi-login:before{content:"\f0342"}.mdi-login-variant:before{content:"\f05fc"}.mdi-logout:before{content:"\f0343"}.mdi-logout-variant:before{content:"\f05fd"}.mdi-longitude:before{content:"\f0f5a"}.mdi-looks:before{content:"\f0344"}.mdi-lotion:before{content:"\f1582"}.mdi-lotion-outline:before{content:"\f1583"}.mdi-lotion-plus:before{content:"\f1584"}.mdi-lotion-plus-outline:before{content:"\f1585"}.mdi-loupe:before{content:"\f0345"}.mdi-lumx:before{content:"\f0346"}.mdi-lungs:before{content:"\f1084"}.mdi-mace:before{content:"\f1843"}.mdi-magazine-pistol:before{content:"\f0324"}.mdi-magazine-rifle:before{content:"\f0323"}.mdi-magic-staff:before{content:"\f1844"}.mdi-magnet:before{content:"\f0347"}.mdi-magnet-on:before{content:"\f0348"}.mdi-magnify:before{content:"\f0349"}.mdi-magnify-close:before{content:"\f0980"}.mdi-magnify-expand:before{content:"\f1874"}.mdi-magnify-minus:before{content:"\f034a"}.mdi-magnify-minus-cursor:before{content:"\f0a62"}.mdi-magnify-minus-outline:before{content:"\f06ec"}.mdi-magnify-plus:before{content:"\f034b"}.mdi-magnify-plus-cursor:before{content:"\f0a63"}.mdi-magnify-plus-outline:before{content:"\f06ed"}.mdi-magnify-remove-cursor:before{content:"\f120c"}.mdi-magnify-remove-outline:before{content:"\f120d"}.mdi-magnify-scan:before{content:"\f1276"}.mdi-mail:before{content:"\f0ebb"}.mdi-mailbox:before{content:"\f06ee"}.mdi-mailbox-open:before{content:"\f0d88"}.mdi-mailbox-open-outline:before{content:"\f0d89"}.mdi-mailbox-open-up:before{content:"\f0d8a"}.mdi-mailbox-open-up-outline:before{content:"\f0d8b"}.mdi-mailbox-outline:before{content:"\f0d8c"}.mdi-mailbox-up:before{content:"\f0d8d"}.mdi-mailbox-up-outline:before{content:"\f0d8e"}.mdi-manjaro:before{content:"\f160a"}.mdi-map:before{content:"\f034d"}.mdi-map-check:before{content:"\f0ebc"}.mdi-map-check-outline:before{content:"\f0ebd"}.mdi-map-clock:before{content:"\f0d1e"}.mdi-map-clock-outline:before{content:"\f0d1f"}.mdi-map-legend:before{content:"\f0a01"}.mdi-map-marker:before{content:"\f034e"}.mdi-map-marker-account:before{content:"\f18e3"}.mdi-map-marker-account-outline:before{content:"\f18e4"}.mdi-map-marker-alert:before{content:"\f0f05"}.mdi-map-marker-alert-outline:before{content:"\f0f06"}.mdi-map-marker-check:before{content:"\f0c95"}.mdi-map-marker-check-outline:before{content:"\f12fb"}.mdi-map-marker-circle:before{content:"\f034f"}.mdi-map-marker-distance:before{content:"\f08f0"}.mdi-map-marker-down:before{content:"\f1102"}.mdi-map-marker-left:before{content:"\f12db"}.mdi-map-marker-left-outline:before{content:"\f12dd"}.mdi-map-marker-minus:before{content:"\f0650"}.mdi-map-marker-minus-outline:before{content:"\f12f9"}.mdi-map-marker-multiple:before{content:"\f0350"}.mdi-map-marker-multiple-outline:before{content:"\f1277"}.mdi-map-marker-off:before{content:"\f0351"}.mdi-map-marker-off-outline:before{content:"\f12fd"}.mdi-map-marker-outline:before{content:"\f07d9"}.mdi-map-marker-path:before{content:"\f0d20"}.mdi-map-marker-plus:before{content:"\f0651"}.mdi-map-marker-plus-outline:before{content:"\f12f8"}.mdi-map-marker-question:before{content:"\f0f07"}.mdi-map-marker-question-outline:before{content:"\f0f08"}.mdi-map-marker-radius:before{content:"\f0352"}.mdi-map-marker-radius-outline:before{content:"\f12fc"}.mdi-map-marker-remove:before{content:"\f0f09"}.mdi-map-marker-remove-outline:before{content:"\f12fa"}.mdi-map-marker-remove-variant:before{content:"\f0f0a"}.mdi-map-marker-right:before{content:"\f12dc"}.mdi-map-marker-right-outline:before{content:"\f12de"}.mdi-map-marker-star:before{content:"\f1608"}.mdi-map-marker-star-outline:before{content:"\f1609"}.mdi-map-marker-up:before{content:"\f1103"}.mdi-map-minus:before{content:"\f0981"}.mdi-map-outline:before{content:"\f0982"}.mdi-map-plus:before{content:"\f0983"}.mdi-map-search:before{content:"\f0984"}.mdi-map-search-outline:before{content:"\f0985"}.mdi-mapbox:before{content:"\f0baa"}.mdi-margin:before{content:"\f0353"}.mdi-marker:before{content:"\f0652"}.mdi-marker-cancel:before{content:"\f0dd9"}.mdi-marker-check:before{content:"\f0355"}.mdi-mastodon:before{content:"\f0ad1"}.mdi-material-design:before{content:"\f0986"}.mdi-material-ui:before{content:"\f0357"}.mdi-math-compass:before{content:"\f0358"}.mdi-math-cos:before{content:"\f0c96"}.mdi-math-integral:before{content:"\f0fc8"}.mdi-math-integral-box:before{content:"\f0fc9"}.mdi-math-log:before{content:"\f1085"}.mdi-math-norm:before{content:"\f0fca"}.mdi-math-norm-box:before{content:"\f0fcb"}.mdi-math-sin:before{content:"\f0c97"}.mdi-math-tan:before{content:"\f0c98"}.mdi-matrix:before{content:"\f0628"}.mdi-medal:before{content:"\f0987"}.mdi-medal-outline:before{content:"\f1326"}.mdi-medical-bag:before{content:"\f06ef"}.mdi-medical-cotton-swab:before{content:"\f1ab8"}.mdi-medication:before{content:"\f1b14"}.mdi-medication-outline:before{content:"\f1b15"}.mdi-meditation:before{content:"\f117b"}.mdi-memory:before{content:"\f035b"}.mdi-menorah:before{content:"\f17d4"}.mdi-menorah-fire:before{content:"\f17d5"}.mdi-menu:before{content:"\f035c"}.mdi-menu-down:before{content:"\f035d"}.mdi-menu-down-outline:before{content:"\f06b6"}.mdi-menu-left:before{content:"\f035e"}.mdi-menu-left-outline:before{content:"\f0a02"}.mdi-menu-open:before{content:"\f0bab"}.mdi-menu-right:before{content:"\f035f"}.mdi-menu-right-outline:before{content:"\f0a03"}.mdi-menu-swap:before{content:"\f0a64"}.mdi-menu-swap-outline:before{content:"\f0a65"}.mdi-menu-up:before{content:"\f0360"}.mdi-menu-up-outline:before{content:"\f06b7"}.mdi-merge:before{content:"\f0f5c"}.mdi-message:before{content:"\f0361"}.mdi-message-alert:before{content:"\f0362"}.mdi-message-alert-outline:before{content:"\f0a04"}.mdi-message-arrow-left:before{content:"\f12f2"}.mdi-message-arrow-left-outline:before{content:"\f12f3"}.mdi-message-arrow-right:before{content:"\f12f4"}.mdi-message-arrow-right-outline:before{content:"\f12f5"}.mdi-message-badge:before{content:"\f1941"}.mdi-message-badge-outline:before{content:"\f1942"}.mdi-message-bookmark:before{content:"\f15ac"}.mdi-message-bookmark-outline:before{content:"\f15ad"}.mdi-message-bulleted:before{content:"\f06a2"}.mdi-message-bulleted-off:before{content:"\f06a3"}.mdi-message-check:before{content:"\f1b8a"}.mdi-message-check-outline:before{content:"\f1b8b"}.mdi-message-cog:before{content:"\f06f1"}.mdi-message-cog-outline:before{content:"\f1172"}.mdi-message-draw:before{content:"\f0363"}.mdi-message-fast:before{content:"\f19cc"}.mdi-message-fast-outline:before{content:"\f19cd"}.mdi-message-flash:before{content:"\f15a9"}.mdi-message-flash-outline:before{content:"\f15aa"}.mdi-message-image:before{content:"\f0364"}.mdi-message-image-outline:before{content:"\f116c"}.mdi-message-lock:before{content:"\f0fcc"}.mdi-message-lock-outline:before{content:"\f116d"}.mdi-message-minus:before{content:"\f116e"}.mdi-message-minus-outline:before{content:"\f116f"}.mdi-message-off:before{content:"\f164d"}.mdi-message-off-outline:before{content:"\f164e"}.mdi-message-outline:before{content:"\f0365"}.mdi-message-plus:before{content:"\f0653"}.mdi-message-plus-outline:before{content:"\f10bb"}.mdi-message-processing:before{content:"\f0366"}.mdi-message-processing-outline:before{content:"\f1170"}.mdi-message-question:before{content:"\f173a"}.mdi-message-question-outline:before{content:"\f173b"}.mdi-message-reply:before{content:"\f0367"}.mdi-message-reply-outline:before{content:"\f173d"}.mdi-message-reply-text:before{content:"\f0368"}.mdi-message-reply-text-outline:before{content:"\f173e"}.mdi-message-settings:before{content:"\f06f0"}.mdi-message-settings-outline:before{content:"\f1171"}.mdi-message-star:before{content:"\f069a"}.mdi-message-star-outline:before{content:"\f1250"}.mdi-message-text:before{content:"\f0369"}.mdi-message-text-clock:before{content:"\f1173"}.mdi-message-text-clock-outline:before{content:"\f1174"}.mdi-message-text-fast:before{content:"\f19ce"}.mdi-message-text-fast-outline:before{content:"\f19cf"}.mdi-message-text-lock:before{content:"\f0fcd"}.mdi-message-text-lock-outline:before{content:"\f1175"}.mdi-message-text-outline:before{content:"\f036a"}.mdi-message-video:before{content:"\f036b"}.mdi-meteor:before{content:"\f0629"}.mdi-meter-electric:before{content:"\f1a57"}.mdi-meter-electric-outline:before{content:"\f1a58"}.mdi-meter-gas:before{content:"\f1a59"}.mdi-meter-gas-outline:before{content:"\f1a5a"}.mdi-metronome:before{content:"\f07da"}.mdi-metronome-tick:before{content:"\f07db"}.mdi-micro-sd:before{content:"\f07dc"}.mdi-microphone:before{content:"\f036c"}.mdi-microphone-message:before{content:"\f050a"}.mdi-microphone-message-off:before{content:"\f050b"}.mdi-microphone-minus:before{content:"\f08b3"}.mdi-microphone-off:before{content:"\f036d"}.mdi-microphone-outline:before{content:"\f036e"}.mdi-microphone-plus:before{content:"\f08b4"}.mdi-microphone-question:before{content:"\f1989"}.mdi-microphone-question-outline:before{content:"\f198a"}.mdi-microphone-settings:before{content:"\f036f"}.mdi-microphone-variant:before{content:"\f0370"}.mdi-microphone-variant-off:before{content:"\f0371"}.mdi-microscope:before{content:"\f0654"}.mdi-microsoft:before{content:"\f0372"}.mdi-microsoft-access:before{content:"\f138e"}.mdi-microsoft-azure:before{content:"\f0805"}.mdi-microsoft-azure-devops:before{content:"\f0fd5"}.mdi-microsoft-bing:before{content:"\f00a4"}.mdi-microsoft-dynamics-365:before{content:"\f0988"}.mdi-microsoft-edge:before{content:"\f01e9"}.mdi-microsoft-excel:before{content:"\f138f"}.mdi-microsoft-internet-explorer:before{content:"\f0300"}.mdi-microsoft-office:before{content:"\f03c6"}.mdi-microsoft-onedrive:before{content:"\f03ca"}.mdi-microsoft-onenote:before{content:"\f0747"}.mdi-microsoft-outlook:before{content:"\f0d22"}.mdi-microsoft-powerpoint:before{content:"\f1390"}.mdi-microsoft-sharepoint:before{content:"\f1391"}.mdi-microsoft-teams:before{content:"\f02bb"}.mdi-microsoft-visual-studio:before{content:"\f0610"}.mdi-microsoft-visual-studio-code:before{content:"\f0a1e"}.mdi-microsoft-windows:before{content:"\f05b3"}.mdi-microsoft-windows-classic:before{content:"\f0a21"}.mdi-microsoft-word:before{content:"\f1392"}.mdi-microsoft-xbox:before{content:"\f05b9"}.mdi-microsoft-xbox-controller:before{content:"\f05ba"}.mdi-microsoft-xbox-controller-battery-alert:before{content:"\f074b"}.mdi-microsoft-xbox-controller-battery-charging:before{content:"\f0a22"}.mdi-microsoft-xbox-controller-battery-empty:before{content:"\f074c"}.mdi-microsoft-xbox-controller-battery-full:before{content:"\f074d"}.mdi-microsoft-xbox-controller-battery-low:before{content:"\f074e"}.mdi-microsoft-xbox-controller-battery-medium:before{content:"\f074f"}.mdi-microsoft-xbox-controller-battery-unknown:before{content:"\f0750"}.mdi-microsoft-xbox-controller-menu:before{content:"\f0e6f"}.mdi-microsoft-xbox-controller-off:before{content:"\f05bb"}.mdi-microsoft-xbox-controller-view:before{content:"\f0e70"}.mdi-microwave:before{content:"\f0c99"}.mdi-microwave-off:before{content:"\f1423"}.mdi-middleware:before{content:"\f0f5d"}.mdi-middleware-outline:before{content:"\f0f5e"}.mdi-midi:before{content:"\f08f1"}.mdi-midi-port:before{content:"\f08f2"}.mdi-mine:before{content:"\f0dda"}.mdi-minecraft:before{content:"\f0373"}.mdi-mini-sd:before{content:"\f0a05"}.mdi-minidisc:before{content:"\f0a06"}.mdi-minus:before{content:"\f0374"}.mdi-minus-box:before{content:"\f0375"}.mdi-minus-box-multiple:before{content:"\f1141"}.mdi-minus-box-multiple-outline:before{content:"\f1142"}.mdi-minus-box-outline:before{content:"\f06f2"}.mdi-minus-circle:before{content:"\f0376"}.mdi-minus-circle-multiple:before{content:"\f035a"}.mdi-minus-circle-multiple-outline:before{content:"\f0ad3"}.mdi-minus-circle-off:before{content:"\f1459"}.mdi-minus-circle-off-outline:before{content:"\f145a"}.mdi-minus-circle-outline:before{content:"\f0377"}.mdi-minus-network:before{content:"\f0378"}.mdi-minus-network-outline:before{content:"\f0c9a"}.mdi-minus-thick:before{content:"\f1639"}.mdi-mirror:before{content:"\f11fd"}.mdi-mirror-rectangle:before{content:"\f179f"}.mdi-mirror-variant:before{content:"\f17a0"}.mdi-mixed-martial-arts:before{content:"\f0d8f"}.mdi-mixed-reality:before{content:"\f087f"}.mdi-molecule:before{content:"\f0bac"}.mdi-molecule-co:before{content:"\f12fe"}.mdi-molecule-co2:before{content:"\f07e4"}.mdi-monitor:before{content:"\f0379"}.mdi-monitor-account:before{content:"\f1a5b"}.mdi-monitor-arrow-down:before{content:"\f19d0"}.mdi-monitor-arrow-down-variant:before{content:"\f19d1"}.mdi-monitor-cellphone:before{content:"\f0989"}.mdi-monitor-cellphone-star:before{content:"\f098a"}.mdi-monitor-dashboard:before{content:"\f0a07"}.mdi-monitor-edit:before{content:"\f12c6"}.mdi-monitor-eye:before{content:"\f13b4"}.mdi-monitor-lock:before{content:"\f0ddb"}.mdi-monitor-multiple:before{content:"\f037a"}.mdi-monitor-off:before{content:"\f0d90"}.mdi-monitor-screenshot:before{content:"\f0e51"}.mdi-monitor-share:before{content:"\f1483"}.mdi-monitor-shimmer:before{content:"\f1104"}.mdi-monitor-small:before{content:"\f1876"}.mdi-monitor-speaker:before{content:"\f0f5f"}.mdi-monitor-speaker-off:before{content:"\f0f60"}.mdi-monitor-star:before{content:"\f0ddc"}.mdi-moon-first-quarter:before{content:"\f0f61"}.mdi-moon-full:before{content:"\f0f62"}.mdi-moon-last-quarter:before{content:"\f0f63"}.mdi-moon-new:before{content:"\f0f64"}.mdi-moon-waning-crescent:before{content:"\f0f65"}.mdi-moon-waning-gibbous:before{content:"\f0f66"}.mdi-moon-waxing-crescent:before{content:"\f0f67"}.mdi-moon-waxing-gibbous:before{content:"\f0f68"}.mdi-moped:before{content:"\f1086"}.mdi-moped-electric:before{content:"\f15b7"}.mdi-moped-electric-outline:before{content:"\f15b8"}.mdi-moped-outline:before{content:"\f15b9"}.mdi-more:before{content:"\f037b"}.mdi-mortar-pestle:before{content:"\f1748"}.mdi-mortar-pestle-plus:before{content:"\f03f1"}.mdi-mosque:before{content:"\f0d45"}.mdi-mosque-outline:before{content:"\f1827"}.mdi-mother-heart:before{content:"\f1314"}.mdi-mother-nurse:before{content:"\f0d21"}.mdi-motion:before{content:"\f15b2"}.mdi-motion-outline:before{content:"\f15b3"}.mdi-motion-pause:before{content:"\f1590"}.mdi-motion-pause-outline:before{content:"\f1592"}.mdi-motion-play:before{content:"\f158f"}.mdi-motion-play-outline:before{content:"\f1591"}.mdi-motion-sensor:before{content:"\f0d91"}.mdi-motion-sensor-off:before{content:"\f1435"}.mdi-motorbike:before{content:"\f037c"}.mdi-motorbike-electric:before{content:"\f15ba"}.mdi-motorbike-off:before{content:"\f1b16"}.mdi-mouse:before{content:"\f037d"}.mdi-mouse-bluetooth:before{content:"\f098b"}.mdi-mouse-move-down:before{content:"\f1550"}.mdi-mouse-move-up:before{content:"\f1551"}.mdi-mouse-move-vertical:before{content:"\f1552"}.mdi-mouse-off:before{content:"\f037e"}.mdi-mouse-variant:before{content:"\f037f"}.mdi-mouse-variant-off:before{content:"\f0380"}.mdi-move-resize:before{content:"\f0655"}.mdi-move-resize-variant:before{content:"\f0656"}.mdi-movie:before{content:"\f0381"}.mdi-movie-check:before{content:"\f16f3"}.mdi-movie-check-outline:before{content:"\f16f4"}.mdi-movie-cog:before{content:"\f16f5"}.mdi-movie-cog-outline:before{content:"\f16f6"}.mdi-movie-edit:before{content:"\f1122"}.mdi-movie-edit-outline:before{content:"\f1123"}.mdi-movie-filter:before{content:"\f1124"}.mdi-movie-filter-outline:before{content:"\f1125"}.mdi-movie-minus:before{content:"\f16f7"}.mdi-movie-minus-outline:before{content:"\f16f8"}.mdi-movie-off:before{content:"\f16f9"}.mdi-movie-off-outline:before{content:"\f16fa"}.mdi-movie-open:before{content:"\f0fce"}.mdi-movie-open-check:before{content:"\f16fb"}.mdi-movie-open-check-outline:before{content:"\f16fc"}.mdi-movie-open-cog:before{content:"\f16fd"}.mdi-movie-open-cog-outline:before{content:"\f16fe"}.mdi-movie-open-edit:before{content:"\f16ff"}.mdi-movie-open-edit-outline:before{content:"\f1700"}.mdi-movie-open-minus:before{content:"\f1701"}.mdi-movie-open-minus-outline:before{content:"\f1702"}.mdi-movie-open-off:before{content:"\f1703"}.mdi-movie-open-off-outline:before{content:"\f1704"}.mdi-movie-open-outline:before{content:"\f0fcf"}.mdi-movie-open-play:before{content:"\f1705"}.mdi-movie-open-play-outline:before{content:"\f1706"}.mdi-movie-open-plus:before{content:"\f1707"}.mdi-movie-open-plus-outline:before{content:"\f1708"}.mdi-movie-open-remove:before{content:"\f1709"}.mdi-movie-open-remove-outline:before{content:"\f170a"}.mdi-movie-open-settings:before{content:"\f170b"}.mdi-movie-open-settings-outline:before{content:"\f170c"}.mdi-movie-open-star:before{content:"\f170d"}.mdi-movie-open-star-outline:before{content:"\f170e"}.mdi-movie-outline:before{content:"\f0ddd"}.mdi-movie-play:before{content:"\f170f"}.mdi-movie-play-outline:before{content:"\f1710"}.mdi-movie-plus:before{content:"\f1711"}.mdi-movie-plus-outline:before{content:"\f1712"}.mdi-movie-remove:before{content:"\f1713"}.mdi-movie-remove-outline:before{content:"\f1714"}.mdi-movie-roll:before{content:"\f07de"}.mdi-movie-search:before{content:"\f11d2"}.mdi-movie-search-outline:before{content:"\f11d3"}.mdi-movie-settings:before{content:"\f1715"}.mdi-movie-settings-outline:before{content:"\f1716"}.mdi-movie-star:before{content:"\f1717"}.mdi-movie-star-outline:before{content:"\f1718"}.mdi-mower:before{content:"\f166f"}.mdi-mower-bag:before{content:"\f1670"}.mdi-mower-bag-on:before{content:"\f1b60"}.mdi-mower-on:before{content:"\f1b5f"}.mdi-muffin:before{content:"\f098c"}.mdi-multicast:before{content:"\f1893"}.mdi-multimedia:before{content:"\f1b97"}.mdi-multiplication:before{content:"\f0382"}.mdi-multiplication-box:before{content:"\f0383"}.mdi-mushroom:before{content:"\f07df"}.mdi-mushroom-off:before{content:"\f13fa"}.mdi-mushroom-off-outline:before{content:"\f13fb"}.mdi-mushroom-outline:before{content:"\f07e0"}.mdi-music:before{content:"\f075a"}.mdi-music-accidental-double-flat:before{content:"\f0f69"}.mdi-music-accidental-double-sharp:before{content:"\f0f6a"}.mdi-music-accidental-flat:before{content:"\f0f6b"}.mdi-music-accidental-natural:before{content:"\f0f6c"}.mdi-music-accidental-sharp:before{content:"\f0f6d"}.mdi-music-box:before{content:"\f0384"}.mdi-music-box-multiple:before{content:"\f0333"}.mdi-music-box-multiple-outline:before{content:"\f0f04"}.mdi-music-box-outline:before{content:"\f0385"}.mdi-music-circle:before{content:"\f0386"}.mdi-music-circle-outline:before{content:"\f0ad4"}.mdi-music-clef-alto:before{content:"\f0f6e"}.mdi-music-clef-bass:before{content:"\f0f6f"}.mdi-music-clef-treble:before{content:"\f0f70"}.mdi-music-note:before{content:"\f0387"}.mdi-music-note-bluetooth:before{content:"\f05fe"}.mdi-music-note-bluetooth-off:before{content:"\f05ff"}.mdi-music-note-eighth:before{content:"\f0388"}.mdi-music-note-eighth-dotted:before{content:"\f0f71"}.mdi-music-note-half:before{content:"\f0389"}.mdi-music-note-half-dotted:before{content:"\f0f72"}.mdi-music-note-minus:before{content:"\f1b89"}.mdi-music-note-off:before{content:"\f038a"}.mdi-music-note-off-outline:before{content:"\f0f73"}.mdi-music-note-outline:before{content:"\f0f74"}.mdi-music-note-plus:before{content:"\f0dde"}.mdi-music-note-quarter:before{content:"\f038b"}.mdi-music-note-quarter-dotted:before{content:"\f0f75"}.mdi-music-note-sixteenth:before{content:"\f038c"}.mdi-music-note-sixteenth-dotted:before{content:"\f0f76"}.mdi-music-note-whole:before{content:"\f038d"}.mdi-music-note-whole-dotted:before{content:"\f0f77"}.mdi-music-off:before{content:"\f075b"}.mdi-music-rest-eighth:before{content:"\f0f78"}.mdi-music-rest-half:before{content:"\f0f79"}.mdi-music-rest-quarter:before{content:"\f0f7a"}.mdi-music-rest-sixteenth:before{content:"\f0f7b"}.mdi-music-rest-whole:before{content:"\f0f7c"}.mdi-mustache:before{content:"\f15de"}.mdi-nail:before{content:"\f0ddf"}.mdi-nas:before{content:"\f08f3"}.mdi-nativescript:before{content:"\f0880"}.mdi-nature:before{content:"\f038e"}.mdi-nature-people:before{content:"\f038f"}.mdi-navigation:before{content:"\f0390"}.mdi-navigation-outline:before{content:"\f1607"}.mdi-navigation-variant:before{content:"\f18f0"}.mdi-navigation-variant-outline:before{content:"\f18f1"}.mdi-near-me:before{content:"\f05cd"}.mdi-necklace:before{content:"\f0f0b"}.mdi-needle:before{content:"\f0391"}.mdi-needle-off:before{content:"\f19d2"}.mdi-netflix:before{content:"\f0746"}.mdi-network:before{content:"\f06f3"}.mdi-network-off:before{content:"\f0c9b"}.mdi-network-off-outline:before{content:"\f0c9c"}.mdi-network-outline:before{content:"\f0c9d"}.mdi-network-pos:before{content:"\f1acb"}.mdi-network-strength-1:before{content:"\f08f4"}.mdi-network-strength-1-alert:before{content:"\f08f5"}.mdi-network-strength-2:before{content:"\f08f6"}.mdi-network-strength-2-alert:before{content:"\f08f7"}.mdi-network-strength-3:before{content:"\f08f8"}.mdi-network-strength-3-alert:before{content:"\f08f9"}.mdi-network-strength-4:before{content:"\f08fa"}.mdi-network-strength-4-alert:before{content:"\f08fb"}.mdi-network-strength-4-cog:before{content:"\f191a"}.mdi-network-strength-off:before{content:"\f08fc"}.mdi-network-strength-off-outline:before{content:"\f08fd"}.mdi-network-strength-outline:before{content:"\f08fe"}.mdi-new-box:before{content:"\f0394"}.mdi-newspaper:before{content:"\f0395"}.mdi-newspaper-check:before{content:"\f1943"}.mdi-newspaper-minus:before{content:"\f0f0c"}.mdi-newspaper-plus:before{content:"\f0f0d"}.mdi-newspaper-remove:before{content:"\f1944"}.mdi-newspaper-variant:before{content:"\f1001"}.mdi-newspaper-variant-multiple:before{content:"\f1002"}.mdi-newspaper-variant-multiple-outline:before{content:"\f1003"}.mdi-newspaper-variant-outline:before{content:"\f1004"}.mdi-nfc:before{content:"\f0396"}.mdi-nfc-search-variant:before{content:"\f0e53"}.mdi-nfc-tap:before{content:"\f0397"}.mdi-nfc-variant:before{content:"\f0398"}.mdi-nfc-variant-off:before{content:"\f0e54"}.mdi-ninja:before{content:"\f0774"}.mdi-nintendo-game-boy:before{content:"\f1393"}.mdi-nintendo-switch:before{content:"\f07e1"}.mdi-nintendo-wii:before{content:"\f05ab"}.mdi-nintendo-wiiu:before{content:"\f072d"}.mdi-nix:before{content:"\f1105"}.mdi-nodejs:before{content:"\f0399"}.mdi-noodles:before{content:"\f117e"}.mdi-not-equal:before{content:"\f098d"}.mdi-not-equal-variant:before{content:"\f098e"}.mdi-note:before{content:"\f039a"}.mdi-note-alert:before{content:"\f177d"}.mdi-note-alert-outline:before{content:"\f177e"}.mdi-note-check:before{content:"\f177f"}.mdi-note-check-outline:before{content:"\f1780"}.mdi-note-edit:before{content:"\f1781"}.mdi-note-edit-outline:before{content:"\f1782"}.mdi-note-minus:before{content:"\f164f"}.mdi-note-minus-outline:before{content:"\f1650"}.mdi-note-multiple:before{content:"\f06b8"}.mdi-note-multiple-outline:before{content:"\f06b9"}.mdi-note-off:before{content:"\f1783"}.mdi-note-off-outline:before{content:"\f1784"}.mdi-note-outline:before{content:"\f039b"}.mdi-note-plus:before{content:"\f039c"}.mdi-note-plus-outline:before{content:"\f039d"}.mdi-note-remove:before{content:"\f1651"}.mdi-note-remove-outline:before{content:"\f1652"}.mdi-note-search:before{content:"\f1653"}.mdi-note-search-outline:before{content:"\f1654"}.mdi-note-text:before{content:"\f039e"}.mdi-note-text-outline:before{content:"\f11d7"}.mdi-notebook:before{content:"\f082e"}.mdi-notebook-check:before{content:"\f14f5"}.mdi-notebook-check-outline:before{content:"\f14f6"}.mdi-notebook-edit:before{content:"\f14e7"}.mdi-notebook-edit-outline:before{content:"\f14e9"}.mdi-notebook-heart:before{content:"\f1a0b"}.mdi-notebook-heart-outline:before{content:"\f1a0c"}.mdi-notebook-minus:before{content:"\f1610"}.mdi-notebook-minus-outline:before{content:"\f1611"}.mdi-notebook-multiple:before{content:"\f0e55"}.mdi-notebook-outline:before{content:"\f0ebf"}.mdi-notebook-plus:before{content:"\f1612"}.mdi-notebook-plus-outline:before{content:"\f1613"}.mdi-notebook-remove:before{content:"\f1614"}.mdi-notebook-remove-outline:before{content:"\f1615"}.mdi-notification-clear-all:before{content:"\f039f"}.mdi-npm:before{content:"\f06f7"}.mdi-nuke:before{content:"\f06a4"}.mdi-null:before{content:"\f07e2"}.mdi-numeric:before{content:"\f03a0"}.mdi-numeric-0:before{content:"\f0b39"}.mdi-numeric-0-box:before{content:"\f03a1"}.mdi-numeric-0-box-multiple:before{content:"\f0f0e"}.mdi-numeric-0-box-multiple-outline:before{content:"\f03a2"}.mdi-numeric-0-box-outline:before{content:"\f03a3"}.mdi-numeric-0-circle:before{content:"\f0c9e"}.mdi-numeric-0-circle-outline:before{content:"\f0c9f"}.mdi-numeric-1:before{content:"\f0b3a"}.mdi-numeric-1-box:before{content:"\f03a4"}.mdi-numeric-1-box-multiple:before{content:"\f0f0f"}.mdi-numeric-1-box-multiple-outline:before{content:"\f03a5"}.mdi-numeric-1-box-outline:before{content:"\f03a6"}.mdi-numeric-1-circle:before{content:"\f0ca0"}.mdi-numeric-1-circle-outline:before{content:"\f0ca1"}.mdi-numeric-10:before{content:"\f0fe9"}.mdi-numeric-10-box:before{content:"\f0f7d"}.mdi-numeric-10-box-multiple:before{content:"\f0fea"}.mdi-numeric-10-box-multiple-outline:before{content:"\f0feb"}.mdi-numeric-10-box-outline:before{content:"\f0f7e"}.mdi-numeric-10-circle:before{content:"\f0fec"}.mdi-numeric-10-circle-outline:before{content:"\f0fed"}.mdi-numeric-2:before{content:"\f0b3b"}.mdi-numeric-2-box:before{content:"\f03a7"}.mdi-numeric-2-box-multiple:before{content:"\f0f10"}.mdi-numeric-2-box-multiple-outline:before{content:"\f03a8"}.mdi-numeric-2-box-outline:before{content:"\f03a9"}.mdi-numeric-2-circle:before{content:"\f0ca2"}.mdi-numeric-2-circle-outline:before{content:"\f0ca3"}.mdi-numeric-3:before{content:"\f0b3c"}.mdi-numeric-3-box:before{content:"\f03aa"}.mdi-numeric-3-box-multiple:before{content:"\f0f11"}.mdi-numeric-3-box-multiple-outline:before{content:"\f03ab"}.mdi-numeric-3-box-outline:before{content:"\f03ac"}.mdi-numeric-3-circle:before{content:"\f0ca4"}.mdi-numeric-3-circle-outline:before{content:"\f0ca5"}.mdi-numeric-4:before{content:"\f0b3d"}.mdi-numeric-4-box:before{content:"\f03ad"}.mdi-numeric-4-box-multiple:before{content:"\f0f12"}.mdi-numeric-4-box-multiple-outline:before{content:"\f03b2"}.mdi-numeric-4-box-outline:before{content:"\f03ae"}.mdi-numeric-4-circle:before{content:"\f0ca6"}.mdi-numeric-4-circle-outline:before{content:"\f0ca7"}.mdi-numeric-5:before{content:"\f0b3e"}.mdi-numeric-5-box:before{content:"\f03b1"}.mdi-numeric-5-box-multiple:before{content:"\f0f13"}.mdi-numeric-5-box-multiple-outline:before{content:"\f03af"}.mdi-numeric-5-box-outline:before{content:"\f03b0"}.mdi-numeric-5-circle:before{content:"\f0ca8"}.mdi-numeric-5-circle-outline:before{content:"\f0ca9"}.mdi-numeric-6:before{content:"\f0b3f"}.mdi-numeric-6-box:before{content:"\f03b3"}.mdi-numeric-6-box-multiple:before{content:"\f0f14"}.mdi-numeric-6-box-multiple-outline:before{content:"\f03b4"}.mdi-numeric-6-box-outline:before{content:"\f03b5"}.mdi-numeric-6-circle:before{content:"\f0caa"}.mdi-numeric-6-circle-outline:before{content:"\f0cab"}.mdi-numeric-7:before{content:"\f0b40"}.mdi-numeric-7-box:before{content:"\f03b6"}.mdi-numeric-7-box-multiple:before{content:"\f0f15"}.mdi-numeric-7-box-multiple-outline:before{content:"\f03b7"}.mdi-numeric-7-box-outline:before{content:"\f03b8"}.mdi-numeric-7-circle:before{content:"\f0cac"}.mdi-numeric-7-circle-outline:before{content:"\f0cad"}.mdi-numeric-8:before{content:"\f0b41"}.mdi-numeric-8-box:before{content:"\f03b9"}.mdi-numeric-8-box-multiple:before{content:"\f0f16"}.mdi-numeric-8-box-multiple-outline:before{content:"\f03ba"}.mdi-numeric-8-box-outline:before{content:"\f03bb"}.mdi-numeric-8-circle:before{content:"\f0cae"}.mdi-numeric-8-circle-outline:before{content:"\f0caf"}.mdi-numeric-9:before{content:"\f0b42"}.mdi-numeric-9-box:before{content:"\f03bc"}.mdi-numeric-9-box-multiple:before{content:"\f0f17"}.mdi-numeric-9-box-multiple-outline:before{content:"\f03bd"}.mdi-numeric-9-box-outline:before{content:"\f03be"}.mdi-numeric-9-circle:before{content:"\f0cb0"}.mdi-numeric-9-circle-outline:before{content:"\f0cb1"}.mdi-numeric-9-plus:before{content:"\f0fee"}.mdi-numeric-9-plus-box:before{content:"\f03bf"}.mdi-numeric-9-plus-box-multiple:before{content:"\f0f18"}.mdi-numeric-9-plus-box-multiple-outline:before{content:"\f03c0"}.mdi-numeric-9-plus-box-outline:before{content:"\f03c1"}.mdi-numeric-9-plus-circle:before{content:"\f0cb2"}.mdi-numeric-9-plus-circle-outline:before{content:"\f0cb3"}.mdi-numeric-negative-1:before{content:"\f1052"}.mdi-numeric-off:before{content:"\f19d3"}.mdi-numeric-positive-1:before{content:"\f15cb"}.mdi-nut:before{content:"\f06f8"}.mdi-nutrition:before{content:"\f03c2"}.mdi-nuxt:before{content:"\f1106"}.mdi-oar:before{content:"\f067c"}.mdi-ocarina:before{content:"\f0de0"}.mdi-oci:before{content:"\f12e9"}.mdi-ocr:before{content:"\f113a"}.mdi-octagon:before{content:"\f03c3"}.mdi-octagon-outline:before{content:"\f03c4"}.mdi-octagram:before{content:"\f06f9"}.mdi-octagram-outline:before{content:"\f0775"}.mdi-octahedron:before{content:"\f1950"}.mdi-octahedron-off:before{content:"\f1951"}.mdi-odnoklassniki:before{content:"\f03c5"}.mdi-offer:before{content:"\f121b"}.mdi-office-building:before{content:"\f0991"}.mdi-office-building-cog:before{content:"\f1949"}.mdi-office-building-cog-outline:before{content:"\f194a"}.mdi-office-building-marker:before{content:"\f1520"}.mdi-office-building-marker-outline:before{content:"\f1521"}.mdi-office-building-minus:before{content:"\f1baa"}.mdi-office-building-minus-outline:before{content:"\f1bab"}.mdi-office-building-outline:before{content:"\f151f"}.mdi-office-building-plus:before{content:"\f1ba8"}.mdi-office-building-plus-outline:before{content:"\f1ba9"}.mdi-office-building-remove:before{content:"\f1bac"}.mdi-office-building-remove-outline:before{content:"\f1bad"}.mdi-oil:before{content:"\f03c7"}.mdi-oil-lamp:before{content:"\f0f19"}.mdi-oil-level:before{content:"\f1053"}.mdi-oil-temperature:before{content:"\f0ff8"}.mdi-om:before{content:"\f0973"}.mdi-omega:before{content:"\f03c9"}.mdi-one-up:before{content:"\f0bad"}.mdi-onepassword:before{content:"\f0881"}.mdi-opacity:before{content:"\f05cc"}.mdi-open-in-app:before{content:"\f03cb"}.mdi-open-in-new:before{content:"\f03cc"}.mdi-open-source-initiative:before{content:"\f0bae"}.mdi-openid:before{content:"\f03cd"}.mdi-opera:before{content:"\f03ce"}.mdi-orbit:before{content:"\f0018"}.mdi-orbit-variant:before{content:"\f15db"}.mdi-order-alphabetical-ascending:before{content:"\f020d"}.mdi-order-alphabetical-descending:before{content:"\f0d07"}.mdi-order-bool-ascending:before{content:"\f02be"}.mdi-order-bool-ascending-variant:before{content:"\f098f"}.mdi-order-bool-descending:before{content:"\f1384"}.mdi-order-bool-descending-variant:before{content:"\f0990"}.mdi-order-numeric-ascending:before{content:"\f0545"}.mdi-order-numeric-descending:before{content:"\f0546"}.mdi-origin:before{content:"\f0b43"}.mdi-ornament:before{content:"\f03cf"}.mdi-ornament-variant:before{content:"\f03d0"}.mdi-outdoor-lamp:before{content:"\f1054"}.mdi-overscan:before{content:"\f1005"}.mdi-owl:before{content:"\f03d2"}.mdi-pac-man:before{content:"\f0baf"}.mdi-package:before{content:"\f03d3"}.mdi-package-check:before{content:"\f1b51"}.mdi-package-down:before{content:"\f03d4"}.mdi-package-up:before{content:"\f03d5"}.mdi-package-variant:before{content:"\f03d6"}.mdi-package-variant-closed:before{content:"\f03d7"}.mdi-package-variant-closed-check:before{content:"\f1b52"}.mdi-package-variant-closed-minus:before{content:"\f19d4"}.mdi-package-variant-closed-plus:before{content:"\f19d5"}.mdi-package-variant-closed-remove:before{content:"\f19d6"}.mdi-package-variant-minus:before{content:"\f19d7"}.mdi-package-variant-plus:before{content:"\f19d8"}.mdi-package-variant-remove:before{content:"\f19d9"}.mdi-page-first:before{content:"\f0600"}.mdi-page-last:before{content:"\f0601"}.mdi-page-layout-body:before{content:"\f06fa"}.mdi-page-layout-footer:before{content:"\f06fb"}.mdi-page-layout-header:before{content:"\f06fc"}.mdi-page-layout-header-footer:before{content:"\f0f7f"}.mdi-page-layout-sidebar-left:before{content:"\f06fd"}.mdi-page-layout-sidebar-right:before{content:"\f06fe"}.mdi-page-next:before{content:"\f0bb0"}.mdi-page-next-outline:before{content:"\f0bb1"}.mdi-page-previous:before{content:"\f0bb2"}.mdi-page-previous-outline:before{content:"\f0bb3"}.mdi-pail:before{content:"\f1417"}.mdi-pail-minus:before{content:"\f1437"}.mdi-pail-minus-outline:before{content:"\f143c"}.mdi-pail-off:before{content:"\f1439"}.mdi-pail-off-outline:before{content:"\f143e"}.mdi-pail-outline:before{content:"\f143a"}.mdi-pail-plus:before{content:"\f1436"}.mdi-pail-plus-outline:before{content:"\f143b"}.mdi-pail-remove:before{content:"\f1438"}.mdi-pail-remove-outline:before{content:"\f143d"}.mdi-palette:before{content:"\f03d8"}.mdi-palette-advanced:before{content:"\f03d9"}.mdi-palette-outline:before{content:"\f0e0c"}.mdi-palette-swatch:before{content:"\f08b5"}.mdi-palette-swatch-outline:before{content:"\f135c"}.mdi-palette-swatch-variant:before{content:"\f195a"}.mdi-palm-tree:before{content:"\f1055"}.mdi-pan:before{content:"\f0bb4"}.mdi-pan-bottom-left:before{content:"\f0bb5"}.mdi-pan-bottom-right:before{content:"\f0bb6"}.mdi-pan-down:before{content:"\f0bb7"}.mdi-pan-horizontal:before{content:"\f0bb8"}.mdi-pan-left:before{content:"\f0bb9"}.mdi-pan-right:before{content:"\f0bba"}.mdi-pan-top-left:before{content:"\f0bbb"}.mdi-pan-top-right:before{content:"\f0bbc"}.mdi-pan-up:before{content:"\f0bbd"}.mdi-pan-vertical:before{content:"\f0bbe"}.mdi-panda:before{content:"\f03da"}.mdi-pandora:before{content:"\f03db"}.mdi-panorama:before{content:"\f03dc"}.mdi-panorama-fisheye:before{content:"\f03dd"}.mdi-panorama-horizontal:before{content:"\f1928"}.mdi-panorama-horizontal-outline:before{content:"\f03de"}.mdi-panorama-outline:before{content:"\f198c"}.mdi-panorama-sphere:before{content:"\f198d"}.mdi-panorama-sphere-outline:before{content:"\f198e"}.mdi-panorama-variant:before{content:"\f198f"}.mdi-panorama-variant-outline:before{content:"\f1990"}.mdi-panorama-vertical:before{content:"\f1929"}.mdi-panorama-vertical-outline:before{content:"\f03df"}.mdi-panorama-wide-angle:before{content:"\f195f"}.mdi-panorama-wide-angle-outline:before{content:"\f03e0"}.mdi-paper-cut-vertical:before{content:"\f03e1"}.mdi-paper-roll:before{content:"\f1157"}.mdi-paper-roll-outline:before{content:"\f1158"}.mdi-paperclip:before{content:"\f03e2"}.mdi-paperclip-check:before{content:"\f1ac6"}.mdi-paperclip-lock:before{content:"\f19da"}.mdi-paperclip-minus:before{content:"\f1ac7"}.mdi-paperclip-off:before{content:"\f1ac8"}.mdi-paperclip-plus:before{content:"\f1ac9"}.mdi-paperclip-remove:before{content:"\f1aca"}.mdi-parachute:before{content:"\f0cb4"}.mdi-parachute-outline:before{content:"\f0cb5"}.mdi-paragliding:before{content:"\f1745"}.mdi-parking:before{content:"\f03e3"}.mdi-party-popper:before{content:"\f1056"}.mdi-passport:before{content:"\f07e3"}.mdi-passport-biometric:before{content:"\f0de1"}.mdi-pasta:before{content:"\f1160"}.mdi-patio-heater:before{content:"\f0f80"}.mdi-patreon:before{content:"\f0882"}.mdi-pause:before{content:"\f03e4"}.mdi-pause-box:before{content:"\f00bc"}.mdi-pause-box-outline:before{content:"\f1b7a"}.mdi-pause-circle:before{content:"\f03e5"}.mdi-pause-circle-outline:before{content:"\f03e6"}.mdi-pause-octagon:before{content:"\f03e7"}.mdi-pause-octagon-outline:before{content:"\f03e8"}.mdi-paw:before{content:"\f03e9"}.mdi-paw-off:before{content:"\f0657"}.mdi-paw-off-outline:before{content:"\f1676"}.mdi-paw-outline:before{content:"\f1675"}.mdi-peace:before{content:"\f0884"}.mdi-peanut:before{content:"\f0ffc"}.mdi-peanut-off:before{content:"\f0ffd"}.mdi-peanut-off-outline:before{content:"\f0fff"}.mdi-peanut-outline:before{content:"\f0ffe"}.mdi-pen:before{content:"\f03ea"}.mdi-pen-lock:before{content:"\f0de2"}.mdi-pen-minus:before{content:"\f0de3"}.mdi-pen-off:before{content:"\f0de4"}.mdi-pen-plus:before{content:"\f0de5"}.mdi-pen-remove:before{content:"\f0de6"}.mdi-pencil:before{content:"\f03eb"}.mdi-pencil-box:before{content:"\f03ec"}.mdi-pencil-box-multiple:before{content:"\f1144"}.mdi-pencil-box-multiple-outline:before{content:"\f1145"}.mdi-pencil-box-outline:before{content:"\f03ed"}.mdi-pencil-circle:before{content:"\f06ff"}.mdi-pencil-circle-outline:before{content:"\f0776"}.mdi-pencil-lock:before{content:"\f03ee"}.mdi-pencil-lock-outline:before{content:"\f0de7"}.mdi-pencil-minus:before{content:"\f0de8"}.mdi-pencil-minus-outline:before{content:"\f0de9"}.mdi-pencil-off:before{content:"\f03ef"}.mdi-pencil-off-outline:before{content:"\f0dea"}.mdi-pencil-outline:before{content:"\f0cb6"}.mdi-pencil-plus:before{content:"\f0deb"}.mdi-pencil-plus-outline:before{content:"\f0dec"}.mdi-pencil-remove:before{content:"\f0ded"}.mdi-pencil-remove-outline:before{content:"\f0dee"}.mdi-pencil-ruler:before{content:"\f1353"}.mdi-pencil-ruler-outline:before{content:"\f1c11"}.mdi-penguin:before{content:"\f0ec0"}.mdi-pentagon:before{content:"\f0701"}.mdi-pentagon-outline:before{content:"\f0700"}.mdi-pentagram:before{content:"\f1667"}.mdi-percent:before{content:"\f03f0"}.mdi-percent-box:before{content:"\f1a02"}.mdi-percent-box-outline:before{content:"\f1a03"}.mdi-percent-circle:before{content:"\f1a04"}.mdi-percent-circle-outline:before{content:"\f1a05"}.mdi-percent-outline:before{content:"\f1278"}.mdi-periodic-table:before{content:"\f08b6"}.mdi-perspective-less:before{content:"\f0d23"}.mdi-perspective-more:before{content:"\f0d24"}.mdi-ph:before{content:"\f17c5"}.mdi-phone:before{content:"\f03f2"}.mdi-phone-alert:before{content:"\f0f1a"}.mdi-phone-alert-outline:before{content:"\f118e"}.mdi-phone-bluetooth:before{content:"\f03f3"}.mdi-phone-bluetooth-outline:before{content:"\f118f"}.mdi-phone-cancel:before{content:"\f10bc"}.mdi-phone-cancel-outline:before{content:"\f1190"}.mdi-phone-check:before{content:"\f11a9"}.mdi-phone-check-outline:before{content:"\f11aa"}.mdi-phone-classic:before{content:"\f0602"}.mdi-phone-classic-off:before{content:"\f1279"}.mdi-phone-clock:before{content:"\f19db"}.mdi-phone-dial:before{content:"\f1559"}.mdi-phone-dial-outline:before{content:"\f155a"}.mdi-phone-forward:before{content:"\f03f4"}.mdi-phone-forward-outline:before{content:"\f1191"}.mdi-phone-hangup:before{content:"\f03f5"}.mdi-phone-hangup-outline:before{content:"\f1192"}.mdi-phone-in-talk:before{content:"\f03f6"}.mdi-phone-in-talk-outline:before{content:"\f1182"}.mdi-phone-incoming:before{content:"\f03f7"}.mdi-phone-incoming-outgoing:before{content:"\f1b3f"}.mdi-phone-incoming-outgoing-outline:before{content:"\f1b40"}.mdi-phone-incoming-outline:before{content:"\f1193"}.mdi-phone-lock:before{content:"\f03f8"}.mdi-phone-lock-outline:before{content:"\f1194"}.mdi-phone-log:before{content:"\f03f9"}.mdi-phone-log-outline:before{content:"\f1195"}.mdi-phone-message:before{content:"\f1196"}.mdi-phone-message-outline:before{content:"\f1197"}.mdi-phone-minus:before{content:"\f0658"}.mdi-phone-minus-outline:before{content:"\f1198"}.mdi-phone-missed:before{content:"\f03fa"}.mdi-phone-missed-outline:before{content:"\f11a5"}.mdi-phone-off:before{content:"\f0def"}.mdi-phone-off-outline:before{content:"\f11a6"}.mdi-phone-outgoing:before{content:"\f03fb"}.mdi-phone-outgoing-outline:before{content:"\f1199"}.mdi-phone-outline:before{content:"\f0df0"}.mdi-phone-paused:before{content:"\f03fc"}.mdi-phone-paused-outline:before{content:"\f119a"}.mdi-phone-plus:before{content:"\f0659"}.mdi-phone-plus-outline:before{content:"\f119b"}.mdi-phone-refresh:before{content:"\f1993"}.mdi-phone-refresh-outline:before{content:"\f1994"}.mdi-phone-remove:before{content:"\f152f"}.mdi-phone-remove-outline:before{content:"\f1530"}.mdi-phone-return:before{content:"\f082f"}.mdi-phone-return-outline:before{content:"\f119c"}.mdi-phone-ring:before{content:"\f11ab"}.mdi-phone-ring-outline:before{content:"\f11ac"}.mdi-phone-rotate-landscape:before{content:"\f0885"}.mdi-phone-rotate-portrait:before{content:"\f0886"}.mdi-phone-settings:before{content:"\f03fd"}.mdi-phone-settings-outline:before{content:"\f119d"}.mdi-phone-sync:before{content:"\f1995"}.mdi-phone-sync-outline:before{content:"\f1996"}.mdi-phone-voip:before{content:"\f03fe"}.mdi-pi:before{content:"\f03ff"}.mdi-pi-box:before{content:"\f0400"}.mdi-pi-hole:before{content:"\f0df1"}.mdi-piano:before{content:"\f067d"}.mdi-piano-off:before{content:"\f0698"}.mdi-pickaxe:before{content:"\f08b7"}.mdi-picture-in-picture-bottom-right:before{content:"\f0e57"}.mdi-picture-in-picture-bottom-right-outline:before{content:"\f0e58"}.mdi-picture-in-picture-top-right:before{content:"\f0e59"}.mdi-picture-in-picture-top-right-outline:before{content:"\f0e5a"}.mdi-pier:before{content:"\f0887"}.mdi-pier-crane:before{content:"\f0888"}.mdi-pig:before{content:"\f0401"}.mdi-pig-variant:before{content:"\f1006"}.mdi-pig-variant-outline:before{content:"\f1678"}.mdi-piggy-bank:before{content:"\f1007"}.mdi-piggy-bank-outline:before{content:"\f1679"}.mdi-pill:before{content:"\f0402"}.mdi-pill-multiple:before{content:"\f1b4c"}.mdi-pill-off:before{content:"\f1a5c"}.mdi-pillar:before{content:"\f0702"}.mdi-pin:before{content:"\f0403"}.mdi-pin-off:before{content:"\f0404"}.mdi-pin-off-outline:before{content:"\f0930"}.mdi-pin-outline:before{content:"\f0931"}.mdi-pine-tree:before{content:"\f0405"}.mdi-pine-tree-box:before{content:"\f0406"}.mdi-pine-tree-fire:before{content:"\f141a"}.mdi-pinterest:before{content:"\f0407"}.mdi-pinwheel:before{content:"\f0ad5"}.mdi-pinwheel-outline:before{content:"\f0ad6"}.mdi-pipe:before{content:"\f07e5"}.mdi-pipe-disconnected:before{content:"\f07e6"}.mdi-pipe-leak:before{content:"\f0889"}.mdi-pipe-valve:before{content:"\f184d"}.mdi-pipe-wrench:before{content:"\f1354"}.mdi-pirate:before{content:"\f0a08"}.mdi-pistol:before{content:"\f0703"}.mdi-piston:before{content:"\f088a"}.mdi-pitchfork:before{content:"\f1553"}.mdi-pizza:before{content:"\f0409"}.mdi-plane-car:before{content:"\f1aff"}.mdi-plane-train:before{content:"\f1b00"}.mdi-play:before{content:"\f040a"}.mdi-play-box:before{content:"\f127a"}.mdi-play-box-lock:before{content:"\f1a16"}.mdi-play-box-lock-open:before{content:"\f1a17"}.mdi-play-box-lock-open-outline:before{content:"\f1a18"}.mdi-play-box-lock-outline:before{content:"\f1a19"}.mdi-play-box-multiple:before{content:"\f0d19"}.mdi-play-box-multiple-outline:before{content:"\f13e6"}.mdi-play-box-outline:before{content:"\f040b"}.mdi-play-circle:before{content:"\f040c"}.mdi-play-circle-outline:before{content:"\f040d"}.mdi-play-network:before{content:"\f088b"}.mdi-play-network-outline:before{content:"\f0cb7"}.mdi-play-outline:before{content:"\f0f1b"}.mdi-play-pause:before{content:"\f040e"}.mdi-play-protected-content:before{content:"\f040f"}.mdi-play-speed:before{content:"\f08ff"}.mdi-playlist-check:before{content:"\f05c7"}.mdi-playlist-edit:before{content:"\f0900"}.mdi-playlist-minus:before{content:"\f0410"}.mdi-playlist-music:before{content:"\f0cb8"}.mdi-playlist-music-outline:before{content:"\f0cb9"}.mdi-playlist-play:before{content:"\f0411"}.mdi-playlist-plus:before{content:"\f0412"}.mdi-playlist-remove:before{content:"\f0413"}.mdi-playlist-star:before{content:"\f0df2"}.mdi-plex:before{content:"\f06ba"}.mdi-pliers:before{content:"\f19a4"}.mdi-plus:before{content:"\f0415"}.mdi-plus-box:before{content:"\f0416"}.mdi-plus-box-multiple:before{content:"\f0334"}.mdi-plus-box-multiple-outline:before{content:"\f1143"}.mdi-plus-box-outline:before{content:"\f0704"}.mdi-plus-circle:before{content:"\f0417"}.mdi-plus-circle-multiple:before{content:"\f034c"}.mdi-plus-circle-multiple-outline:before{content:"\f0418"}.mdi-plus-circle-outline:before{content:"\f0419"}.mdi-plus-lock:before{content:"\f1a5d"}.mdi-plus-lock-open:before{content:"\f1a5e"}.mdi-plus-minus:before{content:"\f0992"}.mdi-plus-minus-box:before{content:"\f0993"}.mdi-plus-minus-variant:before{content:"\f14c9"}.mdi-plus-network:before{content:"\f041a"}.mdi-plus-network-outline:before{content:"\f0cba"}.mdi-plus-outline:before{content:"\f0705"}.mdi-plus-thick:before{content:"\f11ec"}.mdi-podcast:before{content:"\f0994"}.mdi-podium:before{content:"\f0d25"}.mdi-podium-bronze:before{content:"\f0d26"}.mdi-podium-gold:before{content:"\f0d27"}.mdi-podium-silver:before{content:"\f0d28"}.mdi-point-of-sale:before{content:"\f0d92"}.mdi-pokeball:before{content:"\f041d"}.mdi-pokemon-go:before{content:"\f0a09"}.mdi-poker-chip:before{content:"\f0830"}.mdi-polaroid:before{content:"\f041e"}.mdi-police-badge:before{content:"\f1167"}.mdi-police-badge-outline:before{content:"\f1168"}.mdi-police-station:before{content:"\f1839"}.mdi-poll:before{content:"\f041f"}.mdi-polo:before{content:"\f14c3"}.mdi-polymer:before{content:"\f0421"}.mdi-pool:before{content:"\f0606"}.mdi-pool-thermometer:before{content:"\f1a5f"}.mdi-popcorn:before{content:"\f0422"}.mdi-post:before{content:"\f1008"}.mdi-post-lamp:before{content:"\f1a60"}.mdi-post-outline:before{content:"\f1009"}.mdi-postage-stamp:before{content:"\f0cbb"}.mdi-pot:before{content:"\f02e5"}.mdi-pot-mix:before{content:"\f065b"}.mdi-pot-mix-outline:before{content:"\f0677"}.mdi-pot-outline:before{content:"\f02ff"}.mdi-pot-steam:before{content:"\f065a"}.mdi-pot-steam-outline:before{content:"\f0326"}.mdi-pound:before{content:"\f0423"}.mdi-pound-box:before{content:"\f0424"}.mdi-pound-box-outline:before{content:"\f117f"}.mdi-power:before{content:"\f0425"}.mdi-power-cycle:before{content:"\f0901"}.mdi-power-off:before{content:"\f0902"}.mdi-power-on:before{content:"\f0903"}.mdi-power-plug:before{content:"\f06a5"}.mdi-power-plug-off:before{content:"\f06a6"}.mdi-power-plug-off-outline:before{content:"\f1424"}.mdi-power-plug-outline:before{content:"\f1425"}.mdi-power-settings:before{content:"\f0426"}.mdi-power-sleep:before{content:"\f0904"}.mdi-power-socket:before{content:"\f0427"}.mdi-power-socket-au:before{content:"\f0905"}.mdi-power-socket-ch:before{content:"\f0fb3"}.mdi-power-socket-de:before{content:"\f1107"}.mdi-power-socket-eu:before{content:"\f07e7"}.mdi-power-socket-fr:before{content:"\f1108"}.mdi-power-socket-it:before{content:"\f14ff"}.mdi-power-socket-jp:before{content:"\f1109"}.mdi-power-socket-uk:before{content:"\f07e8"}.mdi-power-socket-us:before{content:"\f07e9"}.mdi-power-standby:before{content:"\f0906"}.mdi-powershell:before{content:"\f0a0a"}.mdi-prescription:before{content:"\f0706"}.mdi-presentation:before{content:"\f0428"}.mdi-presentation-play:before{content:"\f0429"}.mdi-pretzel:before{content:"\f1562"}.mdi-printer:before{content:"\f042a"}.mdi-printer-3d:before{content:"\f042b"}.mdi-printer-3d-nozzle:before{content:"\f0e5b"}.mdi-printer-3d-nozzle-alert:before{content:"\f11c0"}.mdi-printer-3d-nozzle-alert-outline:before{content:"\f11c1"}.mdi-printer-3d-nozzle-heat:before{content:"\f18b8"}.mdi-printer-3d-nozzle-heat-outline:before{content:"\f18b9"}.mdi-printer-3d-nozzle-off:before{content:"\f1b19"}.mdi-printer-3d-nozzle-off-outline:before{content:"\f1b1a"}.mdi-printer-3d-nozzle-outline:before{content:"\f0e5c"}.mdi-printer-3d-off:before{content:"\f1b0e"}.mdi-printer-alert:before{content:"\f042c"}.mdi-printer-check:before{content:"\f1146"}.mdi-printer-eye:before{content:"\f1458"}.mdi-printer-off:before{content:"\f0e5d"}.mdi-printer-off-outline:before{content:"\f1785"}.mdi-printer-outline:before{content:"\f1786"}.mdi-printer-pos:before{content:"\f1057"}.mdi-printer-pos-alert:before{content:"\f1bbc"}.mdi-printer-pos-alert-outline:before{content:"\f1bbd"}.mdi-printer-pos-cancel:before{content:"\f1bbe"}.mdi-printer-pos-cancel-outline:before{content:"\f1bbf"}.mdi-printer-pos-check:before{content:"\f1bc0"}.mdi-printer-pos-check-outline:before{content:"\f1bc1"}.mdi-printer-pos-cog:before{content:"\f1bc2"}.mdi-printer-pos-cog-outline:before{content:"\f1bc3"}.mdi-printer-pos-edit:before{content:"\f1bc4"}.mdi-printer-pos-edit-outline:before{content:"\f1bc5"}.mdi-printer-pos-minus:before{content:"\f1bc6"}.mdi-printer-pos-minus-outline:before{content:"\f1bc7"}.mdi-printer-pos-network:before{content:"\f1bc8"}.mdi-printer-pos-network-outline:before{content:"\f1bc9"}.mdi-printer-pos-off:before{content:"\f1bca"}.mdi-printer-pos-off-outline:before{content:"\f1bcb"}.mdi-printer-pos-outline:before{content:"\f1bcc"}.mdi-printer-pos-pause:before{content:"\f1bcd"}.mdi-printer-pos-pause-outline:before{content:"\f1bce"}.mdi-printer-pos-play:before{content:"\f1bcf"}.mdi-printer-pos-play-outline:before{content:"\f1bd0"}.mdi-printer-pos-plus:before{content:"\f1bd1"}.mdi-printer-pos-plus-outline:before{content:"\f1bd2"}.mdi-printer-pos-refresh:before{content:"\f1bd3"}.mdi-printer-pos-refresh-outline:before{content:"\f1bd4"}.mdi-printer-pos-remove:before{content:"\f1bd5"}.mdi-printer-pos-remove-outline:before{content:"\f1bd6"}.mdi-printer-pos-star:before{content:"\f1bd7"}.mdi-printer-pos-star-outline:before{content:"\f1bd8"}.mdi-printer-pos-stop:before{content:"\f1bd9"}.mdi-printer-pos-stop-outline:before{content:"\f1bda"}.mdi-printer-pos-sync:before{content:"\f1bdb"}.mdi-printer-pos-sync-outline:before{content:"\f1bdc"}.mdi-printer-pos-wrench:before{content:"\f1bdd"}.mdi-printer-pos-wrench-outline:before{content:"\f1bde"}.mdi-printer-search:before{content:"\f1457"}.mdi-printer-settings:before{content:"\f0707"}.mdi-printer-wireless:before{content:"\f0a0b"}.mdi-priority-high:before{content:"\f0603"}.mdi-priority-low:before{content:"\f0604"}.mdi-professional-hexagon:before{content:"\f042d"}.mdi-progress-alert:before{content:"\f0cbc"}.mdi-progress-check:before{content:"\f0995"}.mdi-progress-clock:before{content:"\f0996"}.mdi-progress-close:before{content:"\f110a"}.mdi-progress-download:before{content:"\f0997"}.mdi-progress-helper:before{content:"\f1ba2"}.mdi-progress-pencil:before{content:"\f1787"}.mdi-progress-question:before{content:"\f1522"}.mdi-progress-star:before{content:"\f1788"}.mdi-progress-upload:before{content:"\f0998"}.mdi-progress-wrench:before{content:"\f0cbd"}.mdi-projector:before{content:"\f042e"}.mdi-projector-off:before{content:"\f1a23"}.mdi-projector-screen:before{content:"\f042f"}.mdi-projector-screen-off:before{content:"\f180d"}.mdi-projector-screen-off-outline:before{content:"\f180e"}.mdi-projector-screen-outline:before{content:"\f1724"}.mdi-projector-screen-variant:before{content:"\f180f"}.mdi-projector-screen-variant-off:before{content:"\f1810"}.mdi-projector-screen-variant-off-outline:before{content:"\f1811"}.mdi-projector-screen-variant-outline:before{content:"\f1812"}.mdi-propane-tank:before{content:"\f1357"}.mdi-propane-tank-outline:before{content:"\f1358"}.mdi-protocol:before{content:"\f0fd8"}.mdi-publish:before{content:"\f06a7"}.mdi-publish-off:before{content:"\f1945"}.mdi-pulse:before{content:"\f0430"}.mdi-pump:before{content:"\f1402"}.mdi-pump-off:before{content:"\f1b22"}.mdi-pumpkin:before{content:"\f0bbf"}.mdi-purse:before{content:"\f0f1c"}.mdi-purse-outline:before{content:"\f0f1d"}.mdi-puzzle:before{content:"\f0431"}.mdi-puzzle-check:before{content:"\f1426"}.mdi-puzzle-check-outline:before{content:"\f1427"}.mdi-puzzle-edit:before{content:"\f14d3"}.mdi-puzzle-edit-outline:before{content:"\f14d9"}.mdi-puzzle-heart:before{content:"\f14d4"}.mdi-puzzle-heart-outline:before{content:"\f14da"}.mdi-puzzle-minus:before{content:"\f14d1"}.mdi-puzzle-minus-outline:before{content:"\f14d7"}.mdi-puzzle-outline:before{content:"\f0a66"}.mdi-puzzle-plus:before{content:"\f14d0"}.mdi-puzzle-plus-outline:before{content:"\f14d6"}.mdi-puzzle-remove:before{content:"\f14d2"}.mdi-puzzle-remove-outline:before{content:"\f14d8"}.mdi-puzzle-star:before{content:"\f14d5"}.mdi-puzzle-star-outline:before{content:"\f14db"}.mdi-pyramid:before{content:"\f1952"}.mdi-pyramid-off:before{content:"\f1953"}.mdi-qi:before{content:"\f0999"}.mdi-qqchat:before{content:"\f0605"}.mdi-qrcode:before{content:"\f0432"}.mdi-qrcode-edit:before{content:"\f08b8"}.mdi-qrcode-minus:before{content:"\f118c"}.mdi-qrcode-plus:before{content:"\f118b"}.mdi-qrcode-remove:before{content:"\f118d"}.mdi-qrcode-scan:before{content:"\f0433"}.mdi-quadcopter:before{content:"\f0434"}.mdi-quality-high:before{content:"\f0435"}.mdi-quality-low:before{content:"\f0a0c"}.mdi-quality-medium:before{content:"\f0a0d"}.mdi-quora:before{content:"\f0d29"}.mdi-rabbit:before{content:"\f0907"}.mdi-rabbit-variant:before{content:"\f1a61"}.mdi-rabbit-variant-outline:before{content:"\f1a62"}.mdi-racing-helmet:before{content:"\f0d93"}.mdi-racquetball:before{content:"\f0d94"}.mdi-radar:before{content:"\f0437"}.mdi-radiator:before{content:"\f0438"}.mdi-radiator-disabled:before{content:"\f0ad7"}.mdi-radiator-off:before{content:"\f0ad8"}.mdi-radio:before{content:"\f0439"}.mdi-radio-am:before{content:"\f0cbe"}.mdi-radio-fm:before{content:"\f0cbf"}.mdi-radio-handheld:before{content:"\f043a"}.mdi-radio-off:before{content:"\f121c"}.mdi-radio-tower:before{content:"\f043b"}.mdi-radioactive:before{content:"\f043c"}.mdi-radioactive-circle:before{content:"\f185d"}.mdi-radioactive-circle-outline:before{content:"\f185e"}.mdi-radioactive-off:before{content:"\f0ec1"}.mdi-radiobox-blank:before{content:"\f043d"}.mdi-radiobox-marked:before{content:"\f043e"}.mdi-radiology-box:before{content:"\f14c5"}.mdi-radiology-box-outline:before{content:"\f14c6"}.mdi-radius:before{content:"\f0cc0"}.mdi-radius-outline:before{content:"\f0cc1"}.mdi-railroad-light:before{content:"\f0f1e"}.mdi-rake:before{content:"\f1544"}.mdi-raspberry-pi:before{content:"\f043f"}.mdi-raw:before{content:"\f1a0f"}.mdi-raw-off:before{content:"\f1a10"}.mdi-ray-end:before{content:"\f0440"}.mdi-ray-end-arrow:before{content:"\f0441"}.mdi-ray-start:before{content:"\f0442"}.mdi-ray-start-arrow:before{content:"\f0443"}.mdi-ray-start-end:before{content:"\f0444"}.mdi-ray-start-vertex-end:before{content:"\f15d8"}.mdi-ray-vertex:before{content:"\f0445"}.mdi-razor-double-edge:before{content:"\f1997"}.mdi-razor-single-edge:before{content:"\f1998"}.mdi-react:before{content:"\f0708"}.mdi-read:before{content:"\f0447"}.mdi-receipt:before{content:"\f0824"}.mdi-receipt-outline:before{content:"\f04f7"}.mdi-receipt-text:before{content:"\f0449"}.mdi-receipt-text-check:before{content:"\f1a63"}.mdi-receipt-text-check-outline:before{content:"\f1a64"}.mdi-receipt-text-minus:before{content:"\f1a65"}.mdi-receipt-text-minus-outline:before{content:"\f1a66"}.mdi-receipt-text-outline:before{content:"\f19dc"}.mdi-receipt-text-plus:before{content:"\f1a67"}.mdi-receipt-text-plus-outline:before{content:"\f1a68"}.mdi-receipt-text-remove:before{content:"\f1a69"}.mdi-receipt-text-remove-outline:before{content:"\f1a6a"}.mdi-record:before{content:"\f044a"}.mdi-record-circle:before{content:"\f0ec2"}.mdi-record-circle-outline:before{content:"\f0ec3"}.mdi-record-player:before{content:"\f099a"}.mdi-record-rec:before{content:"\f044b"}.mdi-rectangle:before{content:"\f0e5e"}.mdi-rectangle-outline:before{content:"\f0e5f"}.mdi-recycle:before{content:"\f044c"}.mdi-recycle-variant:before{content:"\f139d"}.mdi-reddit:before{content:"\f044d"}.mdi-redhat:before{content:"\f111b"}.mdi-redo:before{content:"\f044e"}.mdi-redo-variant:before{content:"\f044f"}.mdi-reflect-horizontal:before{content:"\f0a0e"}.mdi-reflect-vertical:before{content:"\f0a0f"}.mdi-refresh:before{content:"\f0450"}.mdi-refresh-auto:before{content:"\f18f2"}.mdi-refresh-circle:before{content:"\f1377"}.mdi-regex:before{content:"\f0451"}.mdi-registered-trademark:before{content:"\f0a67"}.mdi-reiterate:before{content:"\f1588"}.mdi-relation-many-to-many:before{content:"\f1496"}.mdi-relation-many-to-one:before{content:"\f1497"}.mdi-relation-many-to-one-or-many:before{content:"\f1498"}.mdi-relation-many-to-only-one:before{content:"\f1499"}.mdi-relation-many-to-zero-or-many:before{content:"\f149a"}.mdi-relation-many-to-zero-or-one:before{content:"\f149b"}.mdi-relation-one-or-many-to-many:before{content:"\f149c"}.mdi-relation-one-or-many-to-one:before{content:"\f149d"}.mdi-relation-one-or-many-to-one-or-many:before{content:"\f149e"}.mdi-relation-one-or-many-to-only-one:before{content:"\f149f"}.mdi-relation-one-or-many-to-zero-or-many:before{content:"\f14a0"}.mdi-relation-one-or-many-to-zero-or-one:before{content:"\f14a1"}.mdi-relation-one-to-many:before{content:"\f14a2"}.mdi-relation-one-to-one:before{content:"\f14a3"}.mdi-relation-one-to-one-or-many:before{content:"\f14a4"}.mdi-relation-one-to-only-one:before{content:"\f14a5"}.mdi-relation-one-to-zero-or-many:before{content:"\f14a6"}.mdi-relation-one-to-zero-or-one:before{content:"\f14a7"}.mdi-relation-only-one-to-many:before{content:"\f14a8"}.mdi-relation-only-one-to-one:before{content:"\f14a9"}.mdi-relation-only-one-to-one-or-many:before{content:"\f14aa"}.mdi-relation-only-one-to-only-one:before{content:"\f14ab"}.mdi-relation-only-one-to-zero-or-many:before{content:"\f14ac"}.mdi-relation-only-one-to-zero-or-one:before{content:"\f14ad"}.mdi-relation-zero-or-many-to-many:before{content:"\f14ae"}.mdi-relation-zero-or-many-to-one:before{content:"\f14af"}.mdi-relation-zero-or-many-to-one-or-many:before{content:"\f14b0"}.mdi-relation-zero-or-many-to-only-one:before{content:"\f14b1"}.mdi-relation-zero-or-many-to-zero-or-many:before{content:"\f14b2"}.mdi-relation-zero-or-many-to-zero-or-one:before{content:"\f14b3"}.mdi-relation-zero-or-one-to-many:before{content:"\f14b4"}.mdi-relation-zero-or-one-to-one:before{content:"\f14b5"}.mdi-relation-zero-or-one-to-one-or-many:before{content:"\f14b6"}.mdi-relation-zero-or-one-to-only-one:before{content:"\f14b7"}.mdi-relation-zero-or-one-to-zero-or-many:before{content:"\f14b8"}.mdi-relation-zero-or-one-to-zero-or-one:before{content:"\f14b9"}.mdi-relative-scale:before{content:"\f0452"}.mdi-reload:before{content:"\f0453"}.mdi-reload-alert:before{content:"\f110b"}.mdi-reminder:before{content:"\f088c"}.mdi-remote:before{content:"\f0454"}.mdi-remote-desktop:before{content:"\f08b9"}.mdi-remote-off:before{content:"\f0ec4"}.mdi-remote-tv:before{content:"\f0ec5"}.mdi-remote-tv-off:before{content:"\f0ec6"}.mdi-rename:before{content:"\f1c18"}.mdi-rename-box:before{content:"\f0455"}.mdi-rename-box-outline:before{content:"\f1c19"}.mdi-rename-outline:before{content:"\f1c1a"}.mdi-reorder-horizontal:before{content:"\f0688"}.mdi-reorder-vertical:before{content:"\f0689"}.mdi-repeat:before{content:"\f0456"}.mdi-repeat-off:before{content:"\f0457"}.mdi-repeat-once:before{content:"\f0458"}.mdi-repeat-variant:before{content:"\f0547"}.mdi-replay:before{content:"\f0459"}.mdi-reply:before{content:"\f045a"}.mdi-reply-all:before{content:"\f045b"}.mdi-reply-all-outline:before{content:"\f0f1f"}.mdi-reply-circle:before{content:"\f11ae"}.mdi-reply-outline:before{content:"\f0f20"}.mdi-reproduction:before{content:"\f045c"}.mdi-resistor:before{content:"\f0b44"}.mdi-resistor-nodes:before{content:"\f0b45"}.mdi-resize:before{content:"\f0a68"}.mdi-resize-bottom-right:before{content:"\f045d"}.mdi-responsive:before{content:"\f045e"}.mdi-restart:before{content:"\f0709"}.mdi-restart-alert:before{content:"\f110c"}.mdi-restart-off:before{content:"\f0d95"}.mdi-restore:before{content:"\f099b"}.mdi-restore-alert:before{content:"\f110d"}.mdi-rewind:before{content:"\f045f"}.mdi-rewind-10:before{content:"\f0d2a"}.mdi-rewind-15:before{content:"\f1946"}.mdi-rewind-30:before{content:"\f0d96"}.mdi-rewind-45:before{content:"\f1b13"}.mdi-rewind-5:before{content:"\f11f9"}.mdi-rewind-60:before{content:"\f160c"}.mdi-rewind-outline:before{content:"\f070a"}.mdi-rhombus:before{content:"\f070b"}.mdi-rhombus-medium:before{content:"\f0a10"}.mdi-rhombus-medium-outline:before{content:"\f14dc"}.mdi-rhombus-outline:before{content:"\f070c"}.mdi-rhombus-split:before{content:"\f0a11"}.mdi-rhombus-split-outline:before{content:"\f14dd"}.mdi-ribbon:before{content:"\f0460"}.mdi-rice:before{content:"\f07ea"}.mdi-rickshaw:before{content:"\f15bb"}.mdi-rickshaw-electric:before{content:"\f15bc"}.mdi-ring:before{content:"\f07eb"}.mdi-rivet:before{content:"\f0e60"}.mdi-road:before{content:"\f0461"}.mdi-road-variant:before{content:"\f0462"}.mdi-robber:before{content:"\f1058"}.mdi-robot:before{content:"\f06a9"}.mdi-robot-angry:before{content:"\f169d"}.mdi-robot-angry-outline:before{content:"\f169e"}.mdi-robot-confused:before{content:"\f169f"}.mdi-robot-confused-outline:before{content:"\f16a0"}.mdi-robot-dead:before{content:"\f16a1"}.mdi-robot-dead-outline:before{content:"\f16a2"}.mdi-robot-excited:before{content:"\f16a3"}.mdi-robot-excited-outline:before{content:"\f16a4"}.mdi-robot-happy:before{content:"\f1719"}.mdi-robot-happy-outline:before{content:"\f171a"}.mdi-robot-industrial:before{content:"\f0b46"}.mdi-robot-industrial-outline:before{content:"\f1a1a"}.mdi-robot-love:before{content:"\f16a5"}.mdi-robot-love-outline:before{content:"\f16a6"}.mdi-robot-mower:before{content:"\f11f7"}.mdi-robot-mower-outline:before{content:"\f11f3"}.mdi-robot-off:before{content:"\f16a7"}.mdi-robot-off-outline:before{content:"\f167b"}.mdi-robot-outline:before{content:"\f167a"}.mdi-robot-vacuum:before{content:"\f070d"}.mdi-robot-vacuum-alert:before{content:"\f1b5d"}.mdi-robot-vacuum-off:before{content:"\f1c01"}.mdi-robot-vacuum-variant:before{content:"\f0908"}.mdi-robot-vacuum-variant-alert:before{content:"\f1b5e"}.mdi-robot-vacuum-variant-off:before{content:"\f1c02"}.mdi-rocket:before{content:"\f0463"}.mdi-rocket-launch:before{content:"\f14de"}.mdi-rocket-launch-outline:before{content:"\f14df"}.mdi-rocket-outline:before{content:"\f13af"}.mdi-rodent:before{content:"\f1327"}.mdi-roller-shade:before{content:"\f1a6b"}.mdi-roller-shade-closed:before{content:"\f1a6c"}.mdi-roller-skate:before{content:"\f0d2b"}.mdi-roller-skate-off:before{content:"\f0145"}.mdi-rollerblade:before{content:"\f0d2c"}.mdi-rollerblade-off:before{content:"\f002e"}.mdi-rollupjs:before{content:"\f0bc0"}.mdi-rolodex:before{content:"\f1ab9"}.mdi-rolodex-outline:before{content:"\f1aba"}.mdi-roman-numeral-1:before{content:"\f1088"}.mdi-roman-numeral-10:before{content:"\f1091"}.mdi-roman-numeral-2:before{content:"\f1089"}.mdi-roman-numeral-3:before{content:"\f108a"}.mdi-roman-numeral-4:before{content:"\f108b"}.mdi-roman-numeral-5:before{content:"\f108c"}.mdi-roman-numeral-6:before{content:"\f108d"}.mdi-roman-numeral-7:before{content:"\f108e"}.mdi-roman-numeral-8:before{content:"\f108f"}.mdi-roman-numeral-9:before{content:"\f1090"}.mdi-room-service:before{content:"\f088d"}.mdi-room-service-outline:before{content:"\f0d97"}.mdi-rotate-360:before{content:"\f1999"}.mdi-rotate-3d:before{content:"\f0ec7"}.mdi-rotate-3d-variant:before{content:"\f0464"}.mdi-rotate-left:before{content:"\f0465"}.mdi-rotate-left-variant:before{content:"\f0466"}.mdi-rotate-orbit:before{content:"\f0d98"}.mdi-rotate-right:before{content:"\f0467"}.mdi-rotate-right-variant:before{content:"\f0468"}.mdi-rounded-corner:before{content:"\f0607"}.mdi-router:before{content:"\f11e2"}.mdi-router-network:before{content:"\f1087"}.mdi-router-wireless:before{content:"\f0469"}.mdi-router-wireless-off:before{content:"\f15a3"}.mdi-router-wireless-settings:before{content:"\f0a69"}.mdi-routes:before{content:"\f046a"}.mdi-routes-clock:before{content:"\f1059"}.mdi-rowing:before{content:"\f0608"}.mdi-rss:before{content:"\f046b"}.mdi-rss-box:before{content:"\f046c"}.mdi-rss-off:before{content:"\f0f21"}.mdi-rug:before{content:"\f1475"}.mdi-rugby:before{content:"\f0d99"}.mdi-ruler:before{content:"\f046d"}.mdi-ruler-square:before{content:"\f0cc2"}.mdi-ruler-square-compass:before{content:"\f0ebe"}.mdi-run:before{content:"\f070e"}.mdi-run-fast:before{content:"\f046e"}.mdi-rv-truck:before{content:"\f11d4"}.mdi-sack:before{content:"\f0d2e"}.mdi-sack-percent:before{content:"\f0d2f"}.mdi-safe:before{content:"\f0a6a"}.mdi-safe-square:before{content:"\f127c"}.mdi-safe-square-outline:before{content:"\f127d"}.mdi-safety-goggles:before{content:"\f0d30"}.mdi-sail-boat:before{content:"\f0ec8"}.mdi-sail-boat-sink:before{content:"\f1aef"}.mdi-sale:before{content:"\f046f"}.mdi-sale-outline:before{content:"\f1a06"}.mdi-salesforce:before{content:"\f088e"}.mdi-sass:before{content:"\f07ec"}.mdi-satellite:before{content:"\f0470"}.mdi-satellite-uplink:before{content:"\f0909"}.mdi-satellite-variant:before{content:"\f0471"}.mdi-sausage:before{content:"\f08ba"}.mdi-sausage-off:before{content:"\f1789"}.mdi-saw-blade:before{content:"\f0e61"}.mdi-sawtooth-wave:before{content:"\f147a"}.mdi-saxophone:before{content:"\f0609"}.mdi-scale:before{content:"\f0472"}.mdi-scale-balance:before{content:"\f05d1"}.mdi-scale-bathroom:before{content:"\f0473"}.mdi-scale-off:before{content:"\f105a"}.mdi-scale-unbalanced:before{content:"\f19b8"}.mdi-scan-helper:before{content:"\f13d8"}.mdi-scanner:before{content:"\f06ab"}.mdi-scanner-off:before{content:"\f090a"}.mdi-scatter-plot:before{content:"\f0ec9"}.mdi-scatter-plot-outline:before{content:"\f0eca"}.mdi-scent:before{content:"\f1958"}.mdi-scent-off:before{content:"\f1959"}.mdi-school:before{content:"\f0474"}.mdi-school-outline:before{content:"\f1180"}.mdi-scissors-cutting:before{content:"\f0a6b"}.mdi-scooter:before{content:"\f15bd"}.mdi-scooter-electric:before{content:"\f15be"}.mdi-scoreboard:before{content:"\f127e"}.mdi-scoreboard-outline:before{content:"\f127f"}.mdi-screen-rotation:before{content:"\f0475"}.mdi-screen-rotation-lock:before{content:"\f0478"}.mdi-screw-flat-top:before{content:"\f0df3"}.mdi-screw-lag:before{content:"\f0df4"}.mdi-screw-machine-flat-top:before{content:"\f0df5"}.mdi-screw-machine-round-top:before{content:"\f0df6"}.mdi-screw-round-top:before{content:"\f0df7"}.mdi-screwdriver:before{content:"\f0476"}.mdi-script:before{content:"\f0bc1"}.mdi-script-outline:before{content:"\f0477"}.mdi-script-text:before{content:"\f0bc2"}.mdi-script-text-key:before{content:"\f1725"}.mdi-script-text-key-outline:before{content:"\f1726"}.mdi-script-text-outline:before{content:"\f0bc3"}.mdi-script-text-play:before{content:"\f1727"}.mdi-script-text-play-outline:before{content:"\f1728"}.mdi-sd:before{content:"\f0479"}.mdi-seal:before{content:"\f047a"}.mdi-seal-variant:before{content:"\f0fd9"}.mdi-search-web:before{content:"\f070f"}.mdi-seat:before{content:"\f0cc3"}.mdi-seat-flat:before{content:"\f047b"}.mdi-seat-flat-angled:before{content:"\f047c"}.mdi-seat-individual-suite:before{content:"\f047d"}.mdi-seat-legroom-extra:before{content:"\f047e"}.mdi-seat-legroom-normal:before{content:"\f047f"}.mdi-seat-legroom-reduced:before{content:"\f0480"}.mdi-seat-outline:before{content:"\f0cc4"}.mdi-seat-passenger:before{content:"\f1249"}.mdi-seat-recline-extra:before{content:"\f0481"}.mdi-seat-recline-normal:before{content:"\f0482"}.mdi-seatbelt:before{content:"\f0cc5"}.mdi-security:before{content:"\f0483"}.mdi-security-network:before{content:"\f0484"}.mdi-seed:before{content:"\f0e62"}.mdi-seed-off:before{content:"\f13fd"}.mdi-seed-off-outline:before{content:"\f13fe"}.mdi-seed-outline:before{content:"\f0e63"}.mdi-seed-plus:before{content:"\f1a6d"}.mdi-seed-plus-outline:before{content:"\f1a6e"}.mdi-seesaw:before{content:"\f15a4"}.mdi-segment:before{content:"\f0ecb"}.mdi-select:before{content:"\f0485"}.mdi-select-all:before{content:"\f0486"}.mdi-select-arrow-down:before{content:"\f1b59"}.mdi-select-arrow-up:before{content:"\f1b58"}.mdi-select-color:before{content:"\f0d31"}.mdi-select-compare:before{content:"\f0ad9"}.mdi-select-drag:before{content:"\f0a6c"}.mdi-select-group:before{content:"\f0f82"}.mdi-select-inverse:before{content:"\f0487"}.mdi-select-marker:before{content:"\f1280"}.mdi-select-multiple:before{content:"\f1281"}.mdi-select-multiple-marker:before{content:"\f1282"}.mdi-select-off:before{content:"\f0488"}.mdi-select-place:before{content:"\f0fda"}.mdi-select-remove:before{content:"\f17c1"}.mdi-select-search:before{content:"\f1204"}.mdi-selection:before{content:"\f0489"}.mdi-selection-drag:before{content:"\f0a6d"}.mdi-selection-ellipse:before{content:"\f0d32"}.mdi-selection-ellipse-arrow-inside:before{content:"\f0f22"}.mdi-selection-ellipse-remove:before{content:"\f17c2"}.mdi-selection-marker:before{content:"\f1283"}.mdi-selection-multiple:before{content:"\f1285"}.mdi-selection-multiple-marker:before{content:"\f1284"}.mdi-selection-off:before{content:"\f0777"}.mdi-selection-remove:before{content:"\f17c3"}.mdi-selection-search:before{content:"\f1205"}.mdi-semantic-web:before{content:"\f1316"}.mdi-send:before{content:"\f048a"}.mdi-send-check:before{content:"\f1161"}.mdi-send-check-outline:before{content:"\f1162"}.mdi-send-circle:before{content:"\f0df8"}.mdi-send-circle-outline:before{content:"\f0df9"}.mdi-send-clock:before{content:"\f1163"}.mdi-send-clock-outline:before{content:"\f1164"}.mdi-send-lock:before{content:"\f07ed"}.mdi-send-lock-outline:before{content:"\f1166"}.mdi-send-outline:before{content:"\f1165"}.mdi-serial-port:before{content:"\f065c"}.mdi-server:before{content:"\f048b"}.mdi-server-minus:before{content:"\f048c"}.mdi-server-network:before{content:"\f048d"}.mdi-server-network-off:before{content:"\f048e"}.mdi-server-off:before{content:"\f048f"}.mdi-server-plus:before{content:"\f0490"}.mdi-server-remove:before{content:"\f0491"}.mdi-server-security:before{content:"\f0492"}.mdi-set-all:before{content:"\f0778"}.mdi-set-center:before{content:"\f0779"}.mdi-set-center-right:before{content:"\f077a"}.mdi-set-left:before{content:"\f077b"}.mdi-set-left-center:before{content:"\f077c"}.mdi-set-left-right:before{content:"\f077d"}.mdi-set-merge:before{content:"\f14e0"}.mdi-set-none:before{content:"\f077e"}.mdi-set-right:before{content:"\f077f"}.mdi-set-split:before{content:"\f14e1"}.mdi-set-square:before{content:"\f145d"}.mdi-set-top-box:before{content:"\f099f"}.mdi-settings-helper:before{content:"\f0a6e"}.mdi-shaker:before{content:"\f110e"}.mdi-shaker-outline:before{content:"\f110f"}.mdi-shape:before{content:"\f0831"}.mdi-shape-circle-plus:before{content:"\f065d"}.mdi-shape-outline:before{content:"\f0832"}.mdi-shape-oval-plus:before{content:"\f11fa"}.mdi-shape-plus:before{content:"\f0495"}.mdi-shape-polygon-plus:before{content:"\f065e"}.mdi-shape-rectangle-plus:before{content:"\f065f"}.mdi-shape-square-plus:before{content:"\f0660"}.mdi-shape-square-rounded-plus:before{content:"\f14fa"}.mdi-share:before{content:"\f0496"}.mdi-share-all:before{content:"\f11f4"}.mdi-share-all-outline:before{content:"\f11f5"}.mdi-share-circle:before{content:"\f11ad"}.mdi-share-off:before{content:"\f0f23"}.mdi-share-off-outline:before{content:"\f0f24"}.mdi-share-outline:before{content:"\f0932"}.mdi-share-variant:before{content:"\f0497"}.mdi-share-variant-outline:before{content:"\f1514"}.mdi-shark:before{content:"\f18ba"}.mdi-shark-fin:before{content:"\f1673"}.mdi-shark-fin-outline:before{content:"\f1674"}.mdi-shark-off:before{content:"\f18bb"}.mdi-sheep:before{content:"\f0cc6"}.mdi-shield:before{content:"\f0498"}.mdi-shield-account:before{content:"\f088f"}.mdi-shield-account-outline:before{content:"\f0a12"}.mdi-shield-account-variant:before{content:"\f15a7"}.mdi-shield-account-variant-outline:before{content:"\f15a8"}.mdi-shield-airplane:before{content:"\f06bb"}.mdi-shield-airplane-outline:before{content:"\f0cc7"}.mdi-shield-alert:before{content:"\f0ecc"}.mdi-shield-alert-outline:before{content:"\f0ecd"}.mdi-shield-bug:before{content:"\f13da"}.mdi-shield-bug-outline:before{content:"\f13db"}.mdi-shield-car:before{content:"\f0f83"}.mdi-shield-check:before{content:"\f0565"}.mdi-shield-check-outline:before{content:"\f0cc8"}.mdi-shield-cross:before{content:"\f0cc9"}.mdi-shield-cross-outline:before{content:"\f0cca"}.mdi-shield-crown:before{content:"\f18bc"}.mdi-shield-crown-outline:before{content:"\f18bd"}.mdi-shield-edit:before{content:"\f11a0"}.mdi-shield-edit-outline:before{content:"\f11a1"}.mdi-shield-half:before{content:"\f1360"}.mdi-shield-half-full:before{content:"\f0780"}.mdi-shield-home:before{content:"\f068a"}.mdi-shield-home-outline:before{content:"\f0ccb"}.mdi-shield-key:before{content:"\f0bc4"}.mdi-shield-key-outline:before{content:"\f0bc5"}.mdi-shield-link-variant:before{content:"\f0d33"}.mdi-shield-link-variant-outline:before{content:"\f0d34"}.mdi-shield-lock:before{content:"\f099d"}.mdi-shield-lock-open:before{content:"\f199a"}.mdi-shield-lock-open-outline:before{content:"\f199b"}.mdi-shield-lock-outline:before{content:"\f0ccc"}.mdi-shield-moon:before{content:"\f1828"}.mdi-shield-moon-outline:before{content:"\f1829"}.mdi-shield-off:before{content:"\f099e"}.mdi-shield-off-outline:before{content:"\f099c"}.mdi-shield-outline:before{content:"\f0499"}.mdi-shield-plus:before{content:"\f0ada"}.mdi-shield-plus-outline:before{content:"\f0adb"}.mdi-shield-refresh:before{content:"\f00aa"}.mdi-shield-refresh-outline:before{content:"\f01e0"}.mdi-shield-remove:before{content:"\f0adc"}.mdi-shield-remove-outline:before{content:"\f0add"}.mdi-shield-search:before{content:"\f0d9a"}.mdi-shield-star:before{content:"\f113b"}.mdi-shield-star-outline:before{content:"\f113c"}.mdi-shield-sun:before{content:"\f105d"}.mdi-shield-sun-outline:before{content:"\f105e"}.mdi-shield-sword:before{content:"\f18be"}.mdi-shield-sword-outline:before{content:"\f18bf"}.mdi-shield-sync:before{content:"\f11a2"}.mdi-shield-sync-outline:before{content:"\f11a3"}.mdi-shimmer:before{content:"\f1545"}.mdi-ship-wheel:before{content:"\f0833"}.mdi-shipping-pallet:before{content:"\f184e"}.mdi-shoe-ballet:before{content:"\f15ca"}.mdi-shoe-cleat:before{content:"\f15c7"}.mdi-shoe-formal:before{content:"\f0b47"}.mdi-shoe-heel:before{content:"\f0b48"}.mdi-shoe-print:before{content:"\f0dfa"}.mdi-shoe-sneaker:before{content:"\f15c8"}.mdi-shopping:before{content:"\f049a"}.mdi-shopping-music:before{content:"\f049b"}.mdi-shopping-outline:before{content:"\f11d5"}.mdi-shopping-search:before{content:"\f0f84"}.mdi-shopping-search-outline:before{content:"\f1a6f"}.mdi-shore:before{content:"\f14f9"}.mdi-shovel:before{content:"\f0710"}.mdi-shovel-off:before{content:"\f0711"}.mdi-shower:before{content:"\f09a0"}.mdi-shower-head:before{content:"\f09a1"}.mdi-shredder:before{content:"\f049c"}.mdi-shuffle:before{content:"\f049d"}.mdi-shuffle-disabled:before{content:"\f049e"}.mdi-shuffle-variant:before{content:"\f049f"}.mdi-shuriken:before{content:"\f137f"}.mdi-sickle:before{content:"\f18c0"}.mdi-sigma:before{content:"\f04a0"}.mdi-sigma-lower:before{content:"\f062b"}.mdi-sign-caution:before{content:"\f04a1"}.mdi-sign-direction:before{content:"\f0781"}.mdi-sign-direction-minus:before{content:"\f1000"}.mdi-sign-direction-plus:before{content:"\f0fdc"}.mdi-sign-direction-remove:before{content:"\f0fdd"}.mdi-sign-language:before{content:"\f1b4d"}.mdi-sign-language-outline:before{content:"\f1b4e"}.mdi-sign-pole:before{content:"\f14f8"}.mdi-sign-real-estate:before{content:"\f1118"}.mdi-sign-text:before{content:"\f0782"}.mdi-sign-yield:before{content:"\f1baf"}.mdi-signal:before{content:"\f04a2"}.mdi-signal-2g:before{content:"\f0712"}.mdi-signal-3g:before{content:"\f0713"}.mdi-signal-4g:before{content:"\f0714"}.mdi-signal-5g:before{content:"\f0a6f"}.mdi-signal-cellular-1:before{content:"\f08bc"}.mdi-signal-cellular-2:before{content:"\f08bd"}.mdi-signal-cellular-3:before{content:"\f08be"}.mdi-signal-cellular-outline:before{content:"\f08bf"}.mdi-signal-distance-variant:before{content:"\f0e64"}.mdi-signal-hspa:before{content:"\f0715"}.mdi-signal-hspa-plus:before{content:"\f0716"}.mdi-signal-off:before{content:"\f0783"}.mdi-signal-variant:before{content:"\f060a"}.mdi-signature:before{content:"\f0dfb"}.mdi-signature-freehand:before{content:"\f0dfc"}.mdi-signature-image:before{content:"\f0dfd"}.mdi-signature-text:before{content:"\f0dfe"}.mdi-silo:before{content:"\f1b9f"}.mdi-silo-outline:before{content:"\f0b49"}.mdi-silverware:before{content:"\f04a3"}.mdi-silverware-clean:before{content:"\f0fde"}.mdi-silverware-fork:before{content:"\f04a4"}.mdi-silverware-fork-knife:before{content:"\f0a70"}.mdi-silverware-spoon:before{content:"\f04a5"}.mdi-silverware-variant:before{content:"\f04a6"}.mdi-sim:before{content:"\f04a7"}.mdi-sim-alert:before{content:"\f04a8"}.mdi-sim-alert-outline:before{content:"\f15d3"}.mdi-sim-off:before{content:"\f04a9"}.mdi-sim-off-outline:before{content:"\f15d4"}.mdi-sim-outline:before{content:"\f15d5"}.mdi-simple-icons:before{content:"\f131d"}.mdi-sina-weibo:before{content:"\f0adf"}.mdi-sine-wave:before{content:"\f095b"}.mdi-sitemap:before{content:"\f04aa"}.mdi-sitemap-outline:before{content:"\f199c"}.mdi-size-l:before{content:"\f13a6"}.mdi-size-m:before{content:"\f13a5"}.mdi-size-s:before{content:"\f13a4"}.mdi-size-xl:before{content:"\f13a7"}.mdi-size-xs:before{content:"\f13a3"}.mdi-size-xxl:before{content:"\f13a8"}.mdi-size-xxs:before{content:"\f13a2"}.mdi-size-xxxl:before{content:"\f13a9"}.mdi-skate:before{content:"\f0d35"}.mdi-skate-off:before{content:"\f0699"}.mdi-skateboard:before{content:"\f14c2"}.mdi-skateboarding:before{content:"\f0501"}.mdi-skew-less:before{content:"\f0d36"}.mdi-skew-more:before{content:"\f0d37"}.mdi-ski:before{content:"\f1304"}.mdi-ski-cross-country:before{content:"\f1305"}.mdi-ski-water:before{content:"\f1306"}.mdi-skip-backward:before{content:"\f04ab"}.mdi-skip-backward-outline:before{content:"\f0f25"}.mdi-skip-forward:before{content:"\f04ac"}.mdi-skip-forward-outline:before{content:"\f0f26"}.mdi-skip-next:before{content:"\f04ad"}.mdi-skip-next-circle:before{content:"\f0661"}.mdi-skip-next-circle-outline:before{content:"\f0662"}.mdi-skip-next-outline:before{content:"\f0f27"}.mdi-skip-previous:before{content:"\f04ae"}.mdi-skip-previous-circle:before{content:"\f0663"}.mdi-skip-previous-circle-outline:before{content:"\f0664"}.mdi-skip-previous-outline:before{content:"\f0f28"}.mdi-skull:before{content:"\f068c"}.mdi-skull-crossbones:before{content:"\f0bc6"}.mdi-skull-crossbones-outline:before{content:"\f0bc7"}.mdi-skull-outline:before{content:"\f0bc8"}.mdi-skull-scan:before{content:"\f14c7"}.mdi-skull-scan-outline:before{content:"\f14c8"}.mdi-skype:before{content:"\f04af"}.mdi-skype-business:before{content:"\f04b0"}.mdi-slack:before{content:"\f04b1"}.mdi-slash-forward:before{content:"\f0fdf"}.mdi-slash-forward-box:before{content:"\f0fe0"}.mdi-sledding:before{content:"\f041b"}.mdi-sleep:before{content:"\f04b2"}.mdi-sleep-off:before{content:"\f04b3"}.mdi-slide:before{content:"\f15a5"}.mdi-slope-downhill:before{content:"\f0dff"}.mdi-slope-uphill:before{content:"\f0e00"}.mdi-slot-machine:before{content:"\f1114"}.mdi-slot-machine-outline:before{content:"\f1115"}.mdi-smart-card:before{content:"\f10bd"}.mdi-smart-card-off:before{content:"\f18f7"}.mdi-smart-card-off-outline:before{content:"\f18f8"}.mdi-smart-card-outline:before{content:"\f10be"}.mdi-smart-card-reader:before{content:"\f10bf"}.mdi-smart-card-reader-outline:before{content:"\f10c0"}.mdi-smog:before{content:"\f0a71"}.mdi-smoke:before{content:"\f1799"}.mdi-smoke-detector:before{content:"\f0392"}.mdi-smoke-detector-alert:before{content:"\f192e"}.mdi-smoke-detector-alert-outline:before{content:"\f192f"}.mdi-smoke-detector-off:before{content:"\f1809"}.mdi-smoke-detector-off-outline:before{content:"\f180a"}.mdi-smoke-detector-outline:before{content:"\f1808"}.mdi-smoke-detector-variant:before{content:"\f180b"}.mdi-smoke-detector-variant-alert:before{content:"\f1930"}.mdi-smoke-detector-variant-off:before{content:"\f180c"}.mdi-smoking:before{content:"\f04b4"}.mdi-smoking-off:before{content:"\f04b5"}.mdi-smoking-pipe:before{content:"\f140d"}.mdi-smoking-pipe-off:before{content:"\f1428"}.mdi-snail:before{content:"\f1677"}.mdi-snake:before{content:"\f150e"}.mdi-snapchat:before{content:"\f04b6"}.mdi-snowboard:before{content:"\f1307"}.mdi-snowflake:before{content:"\f0717"}.mdi-snowflake-alert:before{content:"\f0f29"}.mdi-snowflake-check:before{content:"\f1a70"}.mdi-snowflake-melt:before{content:"\f12cb"}.mdi-snowflake-off:before{content:"\f14e3"}.mdi-snowflake-thermometer:before{content:"\f1a71"}.mdi-snowflake-variant:before{content:"\f0f2a"}.mdi-snowman:before{content:"\f04b7"}.mdi-snowmobile:before{content:"\f06dd"}.mdi-snowshoeing:before{content:"\f1a72"}.mdi-soccer:before{content:"\f04b8"}.mdi-soccer-field:before{content:"\f0834"}.mdi-social-distance-2-meters:before{content:"\f1579"}.mdi-social-distance-6-feet:before{content:"\f157a"}.mdi-sofa:before{content:"\f04b9"}.mdi-sofa-outline:before{content:"\f156d"}.mdi-sofa-single:before{content:"\f156e"}.mdi-sofa-single-outline:before{content:"\f156f"}.mdi-solar-panel:before{content:"\f0d9b"}.mdi-solar-panel-large:before{content:"\f0d9c"}.mdi-solar-power:before{content:"\f0a72"}.mdi-solar-power-variant:before{content:"\f1a73"}.mdi-solar-power-variant-outline:before{content:"\f1a74"}.mdi-soldering-iron:before{content:"\f1092"}.mdi-solid:before{content:"\f068d"}.mdi-sony-playstation:before{content:"\f0414"}.mdi-sort:before{content:"\f04ba"}.mdi-sort-alphabetical-ascending:before{content:"\f05bd"}.mdi-sort-alphabetical-ascending-variant:before{content:"\f1148"}.mdi-sort-alphabetical-descending:before{content:"\f05bf"}.mdi-sort-alphabetical-descending-variant:before{content:"\f1149"}.mdi-sort-alphabetical-variant:before{content:"\f04bb"}.mdi-sort-ascending:before{content:"\f04bc"}.mdi-sort-bool-ascending:before{content:"\f1385"}.mdi-sort-bool-ascending-variant:before{content:"\f1386"}.mdi-sort-bool-descending:before{content:"\f1387"}.mdi-sort-bool-descending-variant:before{content:"\f1388"}.mdi-sort-calendar-ascending:before{content:"\f1547"}.mdi-sort-calendar-descending:before{content:"\f1548"}.mdi-sort-clock-ascending:before{content:"\f1549"}.mdi-sort-clock-ascending-outline:before{content:"\f154a"}.mdi-sort-clock-descending:before{content:"\f154b"}.mdi-sort-clock-descending-outline:before{content:"\f154c"}.mdi-sort-descending:before{content:"\f04bd"}.mdi-sort-numeric-ascending:before{content:"\f1389"}.mdi-sort-numeric-ascending-variant:before{content:"\f090d"}.mdi-sort-numeric-descending:before{content:"\f138a"}.mdi-sort-numeric-descending-variant:before{content:"\f0ad2"}.mdi-sort-numeric-variant:before{content:"\f04be"}.mdi-sort-reverse-variant:before{content:"\f033c"}.mdi-sort-variant:before{content:"\f04bf"}.mdi-sort-variant-lock:before{content:"\f0ccd"}.mdi-sort-variant-lock-open:before{content:"\f0cce"}.mdi-sort-variant-off:before{content:"\f1abb"}.mdi-sort-variant-remove:before{content:"\f1147"}.mdi-soundbar:before{content:"\f17db"}.mdi-soundcloud:before{content:"\f04c0"}.mdi-source-branch:before{content:"\f062c"}.mdi-source-branch-check:before{content:"\f14cf"}.mdi-source-branch-minus:before{content:"\f14cb"}.mdi-source-branch-plus:before{content:"\f14ca"}.mdi-source-branch-refresh:before{content:"\f14cd"}.mdi-source-branch-remove:before{content:"\f14cc"}.mdi-source-branch-sync:before{content:"\f14ce"}.mdi-source-commit:before{content:"\f0718"}.mdi-source-commit-end:before{content:"\f0719"}.mdi-source-commit-end-local:before{content:"\f071a"}.mdi-source-commit-local:before{content:"\f071b"}.mdi-source-commit-next-local:before{content:"\f071c"}.mdi-source-commit-start:before{content:"\f071d"}.mdi-source-commit-start-next-local:before{content:"\f071e"}.mdi-source-fork:before{content:"\f04c1"}.mdi-source-merge:before{content:"\f062d"}.mdi-source-pull:before{content:"\f04c2"}.mdi-source-repository:before{content:"\f0ccf"}.mdi-source-repository-multiple:before{content:"\f0cd0"}.mdi-soy-sauce:before{content:"\f07ee"}.mdi-soy-sauce-off:before{content:"\f13fc"}.mdi-spa:before{content:"\f0cd1"}.mdi-spa-outline:before{content:"\f0cd2"}.mdi-space-invaders:before{content:"\f0bc9"}.mdi-space-station:before{content:"\f1383"}.mdi-spade:before{content:"\f0e65"}.mdi-speaker:before{content:"\f04c3"}.mdi-speaker-bluetooth:before{content:"\f09a2"}.mdi-speaker-message:before{content:"\f1b11"}.mdi-speaker-multiple:before{content:"\f0d38"}.mdi-speaker-off:before{content:"\f04c4"}.mdi-speaker-pause:before{content:"\f1b73"}.mdi-speaker-play:before{content:"\f1b72"}.mdi-speaker-stop:before{content:"\f1b74"}.mdi-speaker-wireless:before{content:"\f071f"}.mdi-spear:before{content:"\f1845"}.mdi-speedometer:before{content:"\f04c5"}.mdi-speedometer-medium:before{content:"\f0f85"}.mdi-speedometer-slow:before{content:"\f0f86"}.mdi-spellcheck:before{content:"\f04c6"}.mdi-sphere:before{content:"\f1954"}.mdi-sphere-off:before{content:"\f1955"}.mdi-spider:before{content:"\f11ea"}.mdi-spider-thread:before{content:"\f11eb"}.mdi-spider-web:before{content:"\f0bca"}.mdi-spirit-level:before{content:"\f14f1"}.mdi-spoon-sugar:before{content:"\f1429"}.mdi-spotify:before{content:"\f04c7"}.mdi-spotlight:before{content:"\f04c8"}.mdi-spotlight-beam:before{content:"\f04c9"}.mdi-spray:before{content:"\f0665"}.mdi-spray-bottle:before{content:"\f0ae0"}.mdi-sprinkler:before{content:"\f105f"}.mdi-sprinkler-fire:before{content:"\f199d"}.mdi-sprinkler-variant:before{content:"\f1060"}.mdi-sprout:before{content:"\f0e66"}.mdi-sprout-outline:before{content:"\f0e67"}.mdi-square:before{content:"\f0764"}.mdi-square-circle:before{content:"\f1500"}.mdi-square-edit-outline:before{content:"\f090c"}.mdi-square-medium:before{content:"\f0a13"}.mdi-square-medium-outline:before{content:"\f0a14"}.mdi-square-off:before{content:"\f12ee"}.mdi-square-off-outline:before{content:"\f12ef"}.mdi-square-opacity:before{content:"\f1854"}.mdi-square-outline:before{content:"\f0763"}.mdi-square-root:before{content:"\f0784"}.mdi-square-root-box:before{content:"\f09a3"}.mdi-square-rounded:before{content:"\f14fb"}.mdi-square-rounded-badge:before{content:"\f1a07"}.mdi-square-rounded-badge-outline:before{content:"\f1a08"}.mdi-square-rounded-outline:before{content:"\f14fc"}.mdi-square-small:before{content:"\f0a15"}.mdi-square-wave:before{content:"\f147b"}.mdi-squeegee:before{content:"\f0ae1"}.mdi-ssh:before{content:"\f08c0"}.mdi-stack-exchange:before{content:"\f060b"}.mdi-stack-overflow:before{content:"\f04cc"}.mdi-stackpath:before{content:"\f0359"}.mdi-stadium:before{content:"\f0ff9"}.mdi-stadium-outline:before{content:"\f1b03"}.mdi-stadium-variant:before{content:"\f0720"}.mdi-stairs:before{content:"\f04cd"}.mdi-stairs-box:before{content:"\f139e"}.mdi-stairs-down:before{content:"\f12be"}.mdi-stairs-up:before{content:"\f12bd"}.mdi-stamper:before{content:"\f0d39"}.mdi-standard-definition:before{content:"\f07ef"}.mdi-star:before{content:"\f04ce"}.mdi-star-box:before{content:"\f0a73"}.mdi-star-box-multiple:before{content:"\f1286"}.mdi-star-box-multiple-outline:before{content:"\f1287"}.mdi-star-box-outline:before{content:"\f0a74"}.mdi-star-check:before{content:"\f1566"}.mdi-star-check-outline:before{content:"\f156a"}.mdi-star-circle:before{content:"\f04cf"}.mdi-star-circle-outline:before{content:"\f09a4"}.mdi-star-cog:before{content:"\f1668"}.mdi-star-cog-outline:before{content:"\f1669"}.mdi-star-crescent:before{content:"\f0979"}.mdi-star-david:before{content:"\f097a"}.mdi-star-face:before{content:"\f09a5"}.mdi-star-four-points:before{content:"\f0ae2"}.mdi-star-four-points-outline:before{content:"\f0ae3"}.mdi-star-half:before{content:"\f0246"}.mdi-star-half-full:before{content:"\f04d0"}.mdi-star-minus:before{content:"\f1564"}.mdi-star-minus-outline:before{content:"\f1568"}.mdi-star-off:before{content:"\f04d1"}.mdi-star-off-outline:before{content:"\f155b"}.mdi-star-outline:before{content:"\f04d2"}.mdi-star-plus:before{content:"\f1563"}.mdi-star-plus-outline:before{content:"\f1567"}.mdi-star-remove:before{content:"\f1565"}.mdi-star-remove-outline:before{content:"\f1569"}.mdi-star-settings:before{content:"\f166a"}.mdi-star-settings-outline:before{content:"\f166b"}.mdi-star-shooting:before{content:"\f1741"}.mdi-star-shooting-outline:before{content:"\f1742"}.mdi-star-three-points:before{content:"\f0ae4"}.mdi-star-three-points-outline:before{content:"\f0ae5"}.mdi-state-machine:before{content:"\f11ef"}.mdi-steam:before{content:"\f04d3"}.mdi-steering:before{content:"\f04d4"}.mdi-steering-off:before{content:"\f090e"}.mdi-step-backward:before{content:"\f04d5"}.mdi-step-backward-2:before{content:"\f04d6"}.mdi-step-forward:before{content:"\f04d7"}.mdi-step-forward-2:before{content:"\f04d8"}.mdi-stethoscope:before{content:"\f04d9"}.mdi-sticker:before{content:"\f1364"}.mdi-sticker-alert:before{content:"\f1365"}.mdi-sticker-alert-outline:before{content:"\f1366"}.mdi-sticker-check:before{content:"\f1367"}.mdi-sticker-check-outline:before{content:"\f1368"}.mdi-sticker-circle-outline:before{content:"\f05d0"}.mdi-sticker-emoji:before{content:"\f0785"}.mdi-sticker-minus:before{content:"\f1369"}.mdi-sticker-minus-outline:before{content:"\f136a"}.mdi-sticker-outline:before{content:"\f136b"}.mdi-sticker-plus:before{content:"\f136c"}.mdi-sticker-plus-outline:before{content:"\f136d"}.mdi-sticker-remove:before{content:"\f136e"}.mdi-sticker-remove-outline:before{content:"\f136f"}.mdi-sticker-text:before{content:"\f178e"}.mdi-sticker-text-outline:before{content:"\f178f"}.mdi-stocking:before{content:"\f04da"}.mdi-stomach:before{content:"\f1093"}.mdi-stool:before{content:"\f195d"}.mdi-stool-outline:before{content:"\f195e"}.mdi-stop:before{content:"\f04db"}.mdi-stop-circle:before{content:"\f0666"}.mdi-stop-circle-outline:before{content:"\f0667"}.mdi-storage-tank:before{content:"\f1a75"}.mdi-storage-tank-outline:before{content:"\f1a76"}.mdi-store:before{content:"\f04dc"}.mdi-store-24-hour:before{content:"\f04dd"}.mdi-store-alert:before{content:"\f18c1"}.mdi-store-alert-outline:before{content:"\f18c2"}.mdi-store-check:before{content:"\f18c3"}.mdi-store-check-outline:before{content:"\f18c4"}.mdi-store-clock:before{content:"\f18c5"}.mdi-store-clock-outline:before{content:"\f18c6"}.mdi-store-cog:before{content:"\f18c7"}.mdi-store-cog-outline:before{content:"\f18c8"}.mdi-store-edit:before{content:"\f18c9"}.mdi-store-edit-outline:before{content:"\f18ca"}.mdi-store-marker:before{content:"\f18cb"}.mdi-store-marker-outline:before{content:"\f18cc"}.mdi-store-minus:before{content:"\f165e"}.mdi-store-minus-outline:before{content:"\f18cd"}.mdi-store-off:before{content:"\f18ce"}.mdi-store-off-outline:before{content:"\f18cf"}.mdi-store-outline:before{content:"\f1361"}.mdi-store-plus:before{content:"\f165f"}.mdi-store-plus-outline:before{content:"\f18d0"}.mdi-store-remove:before{content:"\f1660"}.mdi-store-remove-outline:before{content:"\f18d1"}.mdi-store-search:before{content:"\f18d2"}.mdi-store-search-outline:before{content:"\f18d3"}.mdi-store-settings:before{content:"\f18d4"}.mdi-store-settings-outline:before{content:"\f18d5"}.mdi-storefront:before{content:"\f07c7"}.mdi-storefront-check:before{content:"\f1b7d"}.mdi-storefront-check-outline:before{content:"\f1b7e"}.mdi-storefront-edit:before{content:"\f1b7f"}.mdi-storefront-edit-outline:before{content:"\f1b80"}.mdi-storefront-minus:before{content:"\f1b83"}.mdi-storefront-minus-outline:before{content:"\f1b84"}.mdi-storefront-outline:before{content:"\f10c1"}.mdi-storefront-plus:before{content:"\f1b81"}.mdi-storefront-plus-outline:before{content:"\f1b82"}.mdi-storefront-remove:before{content:"\f1b85"}.mdi-storefront-remove-outline:before{content:"\f1b86"}.mdi-stove:before{content:"\f04de"}.mdi-strategy:before{content:"\f11d6"}.mdi-stretch-to-page:before{content:"\f0f2b"}.mdi-stretch-to-page-outline:before{content:"\f0f2c"}.mdi-string-lights:before{content:"\f12ba"}.mdi-string-lights-off:before{content:"\f12bb"}.mdi-subdirectory-arrow-left:before{content:"\f060c"}.mdi-subdirectory-arrow-right:before{content:"\f060d"}.mdi-submarine:before{content:"\f156c"}.mdi-subtitles:before{content:"\f0a16"}.mdi-subtitles-outline:before{content:"\f0a17"}.mdi-subway:before{content:"\f06ac"}.mdi-subway-alert-variant:before{content:"\f0d9d"}.mdi-subway-variant:before{content:"\f04df"}.mdi-summit:before{content:"\f0786"}.mdi-sun-angle:before{content:"\f1b27"}.mdi-sun-angle-outline:before{content:"\f1b28"}.mdi-sun-clock:before{content:"\f1a77"}.mdi-sun-clock-outline:before{content:"\f1a78"}.mdi-sun-compass:before{content:"\f19a5"}.mdi-sun-snowflake:before{content:"\f1796"}.mdi-sun-snowflake-variant:before{content:"\f1a79"}.mdi-sun-thermometer:before{content:"\f18d6"}.mdi-sun-thermometer-outline:before{content:"\f18d7"}.mdi-sun-wireless:before{content:"\f17fe"}.mdi-sun-wireless-outline:before{content:"\f17ff"}.mdi-sunglasses:before{content:"\f04e0"}.mdi-surfing:before{content:"\f1746"}.mdi-surround-sound:before{content:"\f05c5"}.mdi-surround-sound-2-0:before{content:"\f07f0"}.mdi-surround-sound-2-1:before{content:"\f1729"}.mdi-surround-sound-3-1:before{content:"\f07f1"}.mdi-surround-sound-5-1:before{content:"\f07f2"}.mdi-surround-sound-5-1-2:before{content:"\f172a"}.mdi-surround-sound-7-1:before{content:"\f07f3"}.mdi-svg:before{content:"\f0721"}.mdi-swap-horizontal:before{content:"\f04e1"}.mdi-swap-horizontal-bold:before{content:"\f0bcd"}.mdi-swap-horizontal-circle:before{content:"\f0fe1"}.mdi-swap-horizontal-circle-outline:before{content:"\f0fe2"}.mdi-swap-horizontal-variant:before{content:"\f08c1"}.mdi-swap-vertical:before{content:"\f04e2"}.mdi-swap-vertical-bold:before{content:"\f0bce"}.mdi-swap-vertical-circle:before{content:"\f0fe3"}.mdi-swap-vertical-circle-outline:before{content:"\f0fe4"}.mdi-swap-vertical-variant:before{content:"\f08c2"}.mdi-swim:before{content:"\f04e3"}.mdi-switch:before{content:"\f04e4"}.mdi-sword:before{content:"\f04e5"}.mdi-sword-cross:before{content:"\f0787"}.mdi-syllabary-hangul:before{content:"\f1333"}.mdi-syllabary-hiragana:before{content:"\f1334"}.mdi-syllabary-katakana:before{content:"\f1335"}.mdi-syllabary-katakana-halfwidth:before{content:"\f1336"}.mdi-symbol:before{content:"\f1501"}.mdi-symfony:before{content:"\f0ae6"}.mdi-synagogue:before{content:"\f1b04"}.mdi-synagogue-outline:before{content:"\f1b05"}.mdi-sync:before{content:"\f04e6"}.mdi-sync-alert:before{content:"\f04e7"}.mdi-sync-circle:before{content:"\f1378"}.mdi-sync-off:before{content:"\f04e8"}.mdi-tab:before{content:"\f04e9"}.mdi-tab-minus:before{content:"\f0b4b"}.mdi-tab-plus:before{content:"\f075c"}.mdi-tab-remove:before{content:"\f0b4c"}.mdi-tab-search:before{content:"\f199e"}.mdi-tab-unselected:before{content:"\f04ea"}.mdi-table:before{content:"\f04eb"}.mdi-table-account:before{content:"\f13b9"}.mdi-table-alert:before{content:"\f13ba"}.mdi-table-arrow-down:before{content:"\f13bb"}.mdi-table-arrow-left:before{content:"\f13bc"}.mdi-table-arrow-right:before{content:"\f13bd"}.mdi-table-arrow-up:before{content:"\f13be"}.mdi-table-border:before{content:"\f0a18"}.mdi-table-cancel:before{content:"\f13bf"}.mdi-table-chair:before{content:"\f1061"}.mdi-table-check:before{content:"\f13c0"}.mdi-table-clock:before{content:"\f13c1"}.mdi-table-cog:before{content:"\f13c2"}.mdi-table-column:before{content:"\f0835"}.mdi-table-column-plus-after:before{content:"\f04ec"}.mdi-table-column-plus-before:before{content:"\f04ed"}.mdi-table-column-remove:before{content:"\f04ee"}.mdi-table-column-width:before{content:"\f04ef"}.mdi-table-edit:before{content:"\f04f0"}.mdi-table-eye:before{content:"\f1094"}.mdi-table-eye-off:before{content:"\f13c3"}.mdi-table-filter:before{content:"\f1b8c"}.mdi-table-furniture:before{content:"\f05bc"}.mdi-table-headers-eye:before{content:"\f121d"}.mdi-table-headers-eye-off:before{content:"\f121e"}.mdi-table-heart:before{content:"\f13c4"}.mdi-table-key:before{content:"\f13c5"}.mdi-table-large:before{content:"\f04f1"}.mdi-table-large-plus:before{content:"\f0f87"}.mdi-table-large-remove:before{content:"\f0f88"}.mdi-table-lock:before{content:"\f13c6"}.mdi-table-merge-cells:before{content:"\f09a6"}.mdi-table-minus:before{content:"\f13c7"}.mdi-table-multiple:before{content:"\f13c8"}.mdi-table-network:before{content:"\f13c9"}.mdi-table-of-contents:before{content:"\f0836"}.mdi-table-off:before{content:"\f13ca"}.mdi-table-picnic:before{content:"\f1743"}.mdi-table-pivot:before{content:"\f183c"}.mdi-table-plus:before{content:"\f0a75"}.mdi-table-question:before{content:"\f1b21"}.mdi-table-refresh:before{content:"\f13a0"}.mdi-table-remove:before{content:"\f0a76"}.mdi-table-row:before{content:"\f0837"}.mdi-table-row-height:before{content:"\f04f2"}.mdi-table-row-plus-after:before{content:"\f04f3"}.mdi-table-row-plus-before:before{content:"\f04f4"}.mdi-table-row-remove:before{content:"\f04f5"}.mdi-table-search:before{content:"\f090f"}.mdi-table-settings:before{content:"\f0838"}.mdi-table-split-cell:before{content:"\f142a"}.mdi-table-star:before{content:"\f13cb"}.mdi-table-sync:before{content:"\f13a1"}.mdi-table-tennis:before{content:"\f0e68"}.mdi-tablet:before{content:"\f04f6"}.mdi-tablet-cellphone:before{content:"\f09a7"}.mdi-tablet-dashboard:before{content:"\f0ece"}.mdi-taco:before{content:"\f0762"}.mdi-tag:before{content:"\f04f9"}.mdi-tag-arrow-down:before{content:"\f172b"}.mdi-tag-arrow-down-outline:before{content:"\f172c"}.mdi-tag-arrow-left:before{content:"\f172d"}.mdi-tag-arrow-left-outline:before{content:"\f172e"}.mdi-tag-arrow-right:before{content:"\f172f"}.mdi-tag-arrow-right-outline:before{content:"\f1730"}.mdi-tag-arrow-up:before{content:"\f1731"}.mdi-tag-arrow-up-outline:before{content:"\f1732"}.mdi-tag-check:before{content:"\f1a7a"}.mdi-tag-check-outline:before{content:"\f1a7b"}.mdi-tag-faces:before{content:"\f04fa"}.mdi-tag-heart:before{content:"\f068b"}.mdi-tag-heart-outline:before{content:"\f0bcf"}.mdi-tag-minus:before{content:"\f0910"}.mdi-tag-minus-outline:before{content:"\f121f"}.mdi-tag-multiple:before{content:"\f04fb"}.mdi-tag-multiple-outline:before{content:"\f12f7"}.mdi-tag-off:before{content:"\f1220"}.mdi-tag-off-outline:before{content:"\f1221"}.mdi-tag-outline:before{content:"\f04fc"}.mdi-tag-plus:before{content:"\f0722"}.mdi-tag-plus-outline:before{content:"\f1222"}.mdi-tag-remove:before{content:"\f0723"}.mdi-tag-remove-outline:before{content:"\f1223"}.mdi-tag-search:before{content:"\f1907"}.mdi-tag-search-outline:before{content:"\f1908"}.mdi-tag-text:before{content:"\f1224"}.mdi-tag-text-outline:before{content:"\f04fd"}.mdi-tailwind:before{content:"\f13ff"}.mdi-tally-mark-1:before{content:"\f1abc"}.mdi-tally-mark-2:before{content:"\f1abd"}.mdi-tally-mark-3:before{content:"\f1abe"}.mdi-tally-mark-4:before{content:"\f1abf"}.mdi-tally-mark-5:before{content:"\f1ac0"}.mdi-tangram:before{content:"\f04f8"}.mdi-tank:before{content:"\f0d3a"}.mdi-tanker-truck:before{content:"\f0fe5"}.mdi-tape-drive:before{content:"\f16df"}.mdi-tape-measure:before{content:"\f0b4d"}.mdi-target:before{content:"\f04fe"}.mdi-target-account:before{content:"\f0bd0"}.mdi-target-variant:before{content:"\f0a77"}.mdi-taxi:before{content:"\f04ff"}.mdi-tea:before{content:"\f0d9e"}.mdi-tea-outline:before{content:"\f0d9f"}.mdi-teamviewer:before{content:"\f0500"}.mdi-teddy-bear:before{content:"\f18fb"}.mdi-telescope:before{content:"\f0b4e"}.mdi-television:before{content:"\f0502"}.mdi-television-ambient-light:before{content:"\f1356"}.mdi-television-box:before{content:"\f0839"}.mdi-television-classic:before{content:"\f07f4"}.mdi-television-classic-off:before{content:"\f083a"}.mdi-television-guide:before{content:"\f0503"}.mdi-television-off:before{content:"\f083b"}.mdi-television-pause:before{content:"\f0f89"}.mdi-television-play:before{content:"\f0ecf"}.mdi-television-shimmer:before{content:"\f1110"}.mdi-television-speaker:before{content:"\f1b1b"}.mdi-television-speaker-off:before{content:"\f1b1c"}.mdi-television-stop:before{content:"\f0f8a"}.mdi-temperature-celsius:before{content:"\f0504"}.mdi-temperature-fahrenheit:before{content:"\f0505"}.mdi-temperature-kelvin:before{content:"\f0506"}.mdi-temple-buddhist:before{content:"\f1b06"}.mdi-temple-buddhist-outline:before{content:"\f1b07"}.mdi-temple-hindu:before{content:"\f1b08"}.mdi-temple-hindu-outline:before{content:"\f1b09"}.mdi-tennis:before{content:"\f0da0"}.mdi-tennis-ball:before{content:"\f0507"}.mdi-tent:before{content:"\f0508"}.mdi-terraform:before{content:"\f1062"}.mdi-terrain:before{content:"\f0509"}.mdi-test-tube:before{content:"\f0668"}.mdi-test-tube-empty:before{content:"\f0911"}.mdi-test-tube-off:before{content:"\f0912"}.mdi-text:before{content:"\f09a8"}.mdi-text-account:before{content:"\f1570"}.mdi-text-box:before{content:"\f021a"}.mdi-text-box-check:before{content:"\f0ea6"}.mdi-text-box-check-outline:before{content:"\f0ea7"}.mdi-text-box-edit:before{content:"\f1a7c"}.mdi-text-box-edit-outline:before{content:"\f1a7d"}.mdi-text-box-minus:before{content:"\f0ea8"}.mdi-text-box-minus-outline:before{content:"\f0ea9"}.mdi-text-box-multiple:before{content:"\f0ab7"}.mdi-text-box-multiple-outline:before{content:"\f0ab8"}.mdi-text-box-outline:before{content:"\f09ed"}.mdi-text-box-plus:before{content:"\f0eaa"}.mdi-text-box-plus-outline:before{content:"\f0eab"}.mdi-text-box-remove:before{content:"\f0eac"}.mdi-text-box-remove-outline:before{content:"\f0ead"}.mdi-text-box-search:before{content:"\f0eae"}.mdi-text-box-search-outline:before{content:"\f0eaf"}.mdi-text-long:before{content:"\f09aa"}.mdi-text-recognition:before{content:"\f113d"}.mdi-text-search:before{content:"\f13b8"}.mdi-text-search-variant:before{content:"\f1a7e"}.mdi-text-shadow:before{content:"\f0669"}.mdi-text-short:before{content:"\f09a9"}.mdi-texture:before{content:"\f050c"}.mdi-texture-box:before{content:"\f0fe6"}.mdi-theater:before{content:"\f050d"}.mdi-theme-light-dark:before{content:"\f050e"}.mdi-thermometer:before{content:"\f050f"}.mdi-thermometer-alert:before{content:"\f0e01"}.mdi-thermometer-auto:before{content:"\f1b0f"}.mdi-thermometer-bluetooth:before{content:"\f1895"}.mdi-thermometer-check:before{content:"\f1a7f"}.mdi-thermometer-chevron-down:before{content:"\f0e02"}.mdi-thermometer-chevron-up:before{content:"\f0e03"}.mdi-thermometer-high:before{content:"\f10c2"}.mdi-thermometer-lines:before{content:"\f0510"}.mdi-thermometer-low:before{content:"\f10c3"}.mdi-thermometer-minus:before{content:"\f0e04"}.mdi-thermometer-off:before{content:"\f1531"}.mdi-thermometer-plus:before{content:"\f0e05"}.mdi-thermometer-probe:before{content:"\f1b2b"}.mdi-thermometer-probe-off:before{content:"\f1b2c"}.mdi-thermometer-water:before{content:"\f1a80"}.mdi-thermostat:before{content:"\f0393"}.mdi-thermostat-auto:before{content:"\f1b17"}.mdi-thermostat-box:before{content:"\f0891"}.mdi-thermostat-box-auto:before{content:"\f1b18"}.mdi-thought-bubble:before{content:"\f07f6"}.mdi-thought-bubble-outline:before{content:"\f07f7"}.mdi-thumb-down:before{content:"\f0511"}.mdi-thumb-down-outline:before{content:"\f0512"}.mdi-thumb-up:before{content:"\f0513"}.mdi-thumb-up-outline:before{content:"\f0514"}.mdi-thumbs-up-down:before{content:"\f0515"}.mdi-thumbs-up-down-outline:before{content:"\f1914"}.mdi-ticket:before{content:"\f0516"}.mdi-ticket-account:before{content:"\f0517"}.mdi-ticket-confirmation:before{content:"\f0518"}.mdi-ticket-confirmation-outline:before{content:"\f13aa"}.mdi-ticket-outline:before{content:"\f0913"}.mdi-ticket-percent:before{content:"\f0724"}.mdi-ticket-percent-outline:before{content:"\f142b"}.mdi-tie:before{content:"\f0519"}.mdi-tilde:before{content:"\f0725"}.mdi-tilde-off:before{content:"\f18f3"}.mdi-timelapse:before{content:"\f051a"}.mdi-timeline:before{content:"\f0bd1"}.mdi-timeline-alert:before{content:"\f0f95"}.mdi-timeline-alert-outline:before{content:"\f0f98"}.mdi-timeline-check:before{content:"\f1532"}.mdi-timeline-check-outline:before{content:"\f1533"}.mdi-timeline-clock:before{content:"\f11fb"}.mdi-timeline-clock-outline:before{content:"\f11fc"}.mdi-timeline-minus:before{content:"\f1534"}.mdi-timeline-minus-outline:before{content:"\f1535"}.mdi-timeline-outline:before{content:"\f0bd2"}.mdi-timeline-plus:before{content:"\f0f96"}.mdi-timeline-plus-outline:before{content:"\f0f97"}.mdi-timeline-question:before{content:"\f0f99"}.mdi-timeline-question-outline:before{content:"\f0f9a"}.mdi-timeline-remove:before{content:"\f1536"}.mdi-timeline-remove-outline:before{content:"\f1537"}.mdi-timeline-text:before{content:"\f0bd3"}.mdi-timeline-text-outline:before{content:"\f0bd4"}.mdi-timer:before{content:"\f13ab"}.mdi-timer-10:before{content:"\f051c"}.mdi-timer-3:before{content:"\f051d"}.mdi-timer-alert:before{content:"\f1acc"}.mdi-timer-alert-outline:before{content:"\f1acd"}.mdi-timer-cancel:before{content:"\f1ace"}.mdi-timer-cancel-outline:before{content:"\f1acf"}.mdi-timer-check:before{content:"\f1ad0"}.mdi-timer-check-outline:before{content:"\f1ad1"}.mdi-timer-cog:before{content:"\f1925"}.mdi-timer-cog-outline:before{content:"\f1926"}.mdi-timer-edit:before{content:"\f1ad2"}.mdi-timer-edit-outline:before{content:"\f1ad3"}.mdi-timer-lock:before{content:"\f1ad4"}.mdi-timer-lock-open:before{content:"\f1ad5"}.mdi-timer-lock-open-outline:before{content:"\f1ad6"}.mdi-timer-lock-outline:before{content:"\f1ad7"}.mdi-timer-marker:before{content:"\f1ad8"}.mdi-timer-marker-outline:before{content:"\f1ad9"}.mdi-timer-minus:before{content:"\f1ada"}.mdi-timer-minus-outline:before{content:"\f1adb"}.mdi-timer-music:before{content:"\f1adc"}.mdi-timer-music-outline:before{content:"\f1add"}.mdi-timer-off:before{content:"\f13ac"}.mdi-timer-off-outline:before{content:"\f051e"}.mdi-timer-outline:before{content:"\f051b"}.mdi-timer-pause:before{content:"\f1ade"}.mdi-timer-pause-outline:before{content:"\f1adf"}.mdi-timer-play:before{content:"\f1ae0"}.mdi-timer-play-outline:before{content:"\f1ae1"}.mdi-timer-plus:before{content:"\f1ae2"}.mdi-timer-plus-outline:before{content:"\f1ae3"}.mdi-timer-refresh:before{content:"\f1ae4"}.mdi-timer-refresh-outline:before{content:"\f1ae5"}.mdi-timer-remove:before{content:"\f1ae6"}.mdi-timer-remove-outline:before{content:"\f1ae7"}.mdi-timer-sand:before{content:"\f051f"}.mdi-timer-sand-complete:before{content:"\f199f"}.mdi-timer-sand-empty:before{content:"\f06ad"}.mdi-timer-sand-full:before{content:"\f078c"}.mdi-timer-sand-paused:before{content:"\f19a0"}.mdi-timer-settings:before{content:"\f1923"}.mdi-timer-settings-outline:before{content:"\f1924"}.mdi-timer-star:before{content:"\f1ae8"}.mdi-timer-star-outline:before{content:"\f1ae9"}.mdi-timer-stop:before{content:"\f1aea"}.mdi-timer-stop-outline:before{content:"\f1aeb"}.mdi-timer-sync:before{content:"\f1aec"}.mdi-timer-sync-outline:before{content:"\f1aed"}.mdi-timetable:before{content:"\f0520"}.mdi-tire:before{content:"\f1896"}.mdi-toaster:before{content:"\f1063"}.mdi-toaster-off:before{content:"\f11b7"}.mdi-toaster-oven:before{content:"\f0cd3"}.mdi-toggle-switch:before{content:"\f0521"}.mdi-toggle-switch-off:before{content:"\f0522"}.mdi-toggle-switch-off-outline:before{content:"\f0a19"}.mdi-toggle-switch-outline:before{content:"\f0a1a"}.mdi-toggle-switch-variant:before{content:"\f1a25"}.mdi-toggle-switch-variant-off:before{content:"\f1a26"}.mdi-toilet:before{content:"\f09ab"}.mdi-toolbox:before{content:"\f09ac"}.mdi-toolbox-outline:before{content:"\f09ad"}.mdi-tools:before{content:"\f1064"}.mdi-tooltip:before{content:"\f0523"}.mdi-tooltip-account:before{content:"\f000c"}.mdi-tooltip-cellphone:before{content:"\f183b"}.mdi-tooltip-check:before{content:"\f155c"}.mdi-tooltip-check-outline:before{content:"\f155d"}.mdi-tooltip-edit:before{content:"\f0524"}.mdi-tooltip-edit-outline:before{content:"\f12c5"}.mdi-tooltip-image:before{content:"\f0525"}.mdi-tooltip-image-outline:before{content:"\f0bd5"}.mdi-tooltip-minus:before{content:"\f155e"}.mdi-tooltip-minus-outline:before{content:"\f155f"}.mdi-tooltip-outline:before{content:"\f0526"}.mdi-tooltip-plus:before{content:"\f0bd6"}.mdi-tooltip-plus-outline:before{content:"\f0527"}.mdi-tooltip-question:before{content:"\f1bba"}.mdi-tooltip-question-outline:before{content:"\f1bbb"}.mdi-tooltip-remove:before{content:"\f1560"}.mdi-tooltip-remove-outline:before{content:"\f1561"}.mdi-tooltip-text:before{content:"\f0528"}.mdi-tooltip-text-outline:before{content:"\f0bd7"}.mdi-tooth:before{content:"\f08c3"}.mdi-tooth-outline:before{content:"\f0529"}.mdi-toothbrush:before{content:"\f1129"}.mdi-toothbrush-electric:before{content:"\f112c"}.mdi-toothbrush-paste:before{content:"\f112a"}.mdi-torch:before{content:"\f1606"}.mdi-tortoise:before{content:"\f0d3b"}.mdi-toslink:before{content:"\f12b8"}.mdi-tournament:before{content:"\f09ae"}.mdi-tow-truck:before{content:"\f083c"}.mdi-tower-beach:before{content:"\f0681"}.mdi-tower-fire:before{content:"\f0682"}.mdi-town-hall:before{content:"\f1875"}.mdi-toy-brick:before{content:"\f1288"}.mdi-toy-brick-marker:before{content:"\f1289"}.mdi-toy-brick-marker-outline:before{content:"\f128a"}.mdi-toy-brick-minus:before{content:"\f128b"}.mdi-toy-brick-minus-outline:before{content:"\f128c"}.mdi-toy-brick-outline:before{content:"\f128d"}.mdi-toy-brick-plus:before{content:"\f128e"}.mdi-toy-brick-plus-outline:before{content:"\f128f"}.mdi-toy-brick-remove:before{content:"\f1290"}.mdi-toy-brick-remove-outline:before{content:"\f1291"}.mdi-toy-brick-search:before{content:"\f1292"}.mdi-toy-brick-search-outline:before{content:"\f1293"}.mdi-track-light:before{content:"\f0914"}.mdi-track-light-off:before{content:"\f1b01"}.mdi-trackpad:before{content:"\f07f8"}.mdi-trackpad-lock:before{content:"\f0933"}.mdi-tractor:before{content:"\f0892"}.mdi-tractor-variant:before{content:"\f14c4"}.mdi-trademark:before{content:"\f0a78"}.mdi-traffic-cone:before{content:"\f137c"}.mdi-traffic-light:before{content:"\f052b"}.mdi-traffic-light-outline:before{content:"\f182a"}.mdi-train:before{content:"\f052c"}.mdi-train-car:before{content:"\f0bd8"}.mdi-train-car-autorack:before{content:"\f1b2d"}.mdi-train-car-box:before{content:"\f1b2e"}.mdi-train-car-box-full:before{content:"\f1b2f"}.mdi-train-car-box-open:before{content:"\f1b30"}.mdi-train-car-caboose:before{content:"\f1b31"}.mdi-train-car-centerbeam:before{content:"\f1b32"}.mdi-train-car-centerbeam-full:before{content:"\f1b33"}.mdi-train-car-container:before{content:"\f1b34"}.mdi-train-car-flatbed:before{content:"\f1b35"}.mdi-train-car-flatbed-car:before{content:"\f1b36"}.mdi-train-car-flatbed-tank:before{content:"\f1b37"}.mdi-train-car-gondola:before{content:"\f1b38"}.mdi-train-car-gondola-full:before{content:"\f1b39"}.mdi-train-car-hopper:before{content:"\f1b3a"}.mdi-train-car-hopper-covered:before{content:"\f1b3b"}.mdi-train-car-hopper-full:before{content:"\f1b3c"}.mdi-train-car-intermodal:before{content:"\f1b3d"}.mdi-train-car-passenger:before{content:"\f1733"}.mdi-train-car-passenger-door:before{content:"\f1734"}.mdi-train-car-passenger-door-open:before{content:"\f1735"}.mdi-train-car-passenger-variant:before{content:"\f1736"}.mdi-train-car-tank:before{content:"\f1b3e"}.mdi-train-variant:before{content:"\f08c4"}.mdi-tram:before{content:"\f052d"}.mdi-tram-side:before{content:"\f0fe7"}.mdi-transcribe:before{content:"\f052e"}.mdi-transcribe-close:before{content:"\f052f"}.mdi-transfer:before{content:"\f1065"}.mdi-transfer-down:before{content:"\f0da1"}.mdi-transfer-left:before{content:"\f0da2"}.mdi-transfer-right:before{content:"\f0530"}.mdi-transfer-up:before{content:"\f0da3"}.mdi-transit-connection:before{content:"\f0d3c"}.mdi-transit-connection-horizontal:before{content:"\f1546"}.mdi-transit-connection-variant:before{content:"\f0d3d"}.mdi-transit-detour:before{content:"\f0f8b"}.mdi-transit-skip:before{content:"\f1515"}.mdi-transit-transfer:before{content:"\f06ae"}.mdi-transition:before{content:"\f0915"}.mdi-transition-masked:before{content:"\f0916"}.mdi-translate:before{content:"\f05ca"}.mdi-translate-off:before{content:"\f0e06"}.mdi-translate-variant:before{content:"\f1b99"}.mdi-transmission-tower:before{content:"\f0d3e"}.mdi-transmission-tower-export:before{content:"\f192c"}.mdi-transmission-tower-import:before{content:"\f192d"}.mdi-transmission-tower-off:before{content:"\f19dd"}.mdi-trash-can:before{content:"\f0a79"}.mdi-trash-can-outline:before{content:"\f0a7a"}.mdi-tray:before{content:"\f1294"}.mdi-tray-alert:before{content:"\f1295"}.mdi-tray-arrow-down:before{content:"\f0120"}.mdi-tray-arrow-up:before{content:"\f011d"}.mdi-tray-full:before{content:"\f1296"}.mdi-tray-minus:before{content:"\f1297"}.mdi-tray-plus:before{content:"\f1298"}.mdi-tray-remove:before{content:"\f1299"}.mdi-treasure-chest:before{content:"\f0726"}.mdi-tree:before{content:"\f0531"}.mdi-tree-outline:before{content:"\f0e69"}.mdi-trello:before{content:"\f0532"}.mdi-trending-down:before{content:"\f0533"}.mdi-trending-neutral:before{content:"\f0534"}.mdi-trending-up:before{content:"\f0535"}.mdi-triangle:before{content:"\f0536"}.mdi-triangle-outline:before{content:"\f0537"}.mdi-triangle-small-down:before{content:"\f1a09"}.mdi-triangle-small-up:before{content:"\f1a0a"}.mdi-triangle-wave:before{content:"\f147c"}.mdi-triforce:before{content:"\f0bd9"}.mdi-trophy:before{content:"\f0538"}.mdi-trophy-award:before{content:"\f0539"}.mdi-trophy-broken:before{content:"\f0da4"}.mdi-trophy-outline:before{content:"\f053a"}.mdi-trophy-variant:before{content:"\f053b"}.mdi-trophy-variant-outline:before{content:"\f053c"}.mdi-truck:before{content:"\f053d"}.mdi-truck-alert:before{content:"\f19de"}.mdi-truck-alert-outline:before{content:"\f19df"}.mdi-truck-cargo-container:before{content:"\f18d8"}.mdi-truck-check:before{content:"\f0cd4"}.mdi-truck-check-outline:before{content:"\f129a"}.mdi-truck-delivery:before{content:"\f053e"}.mdi-truck-delivery-outline:before{content:"\f129b"}.mdi-truck-fast:before{content:"\f0788"}.mdi-truck-fast-outline:before{content:"\f129c"}.mdi-truck-flatbed:before{content:"\f1891"}.mdi-truck-minus:before{content:"\f19ae"}.mdi-truck-minus-outline:before{content:"\f19bd"}.mdi-truck-outline:before{content:"\f129d"}.mdi-truck-plus:before{content:"\f19ad"}.mdi-truck-plus-outline:before{content:"\f19bc"}.mdi-truck-remove:before{content:"\f19af"}.mdi-truck-remove-outline:before{content:"\f19be"}.mdi-truck-snowflake:before{content:"\f19a6"}.mdi-truck-trailer:before{content:"\f0727"}.mdi-trumpet:before{content:"\f1096"}.mdi-tshirt-crew:before{content:"\f0a7b"}.mdi-tshirt-crew-outline:before{content:"\f053f"}.mdi-tshirt-v:before{content:"\f0a7c"}.mdi-tshirt-v-outline:before{content:"\f0540"}.mdi-tsunami:before{content:"\f1a81"}.mdi-tumble-dryer:before{content:"\f0917"}.mdi-tumble-dryer-alert:before{content:"\f11ba"}.mdi-tumble-dryer-off:before{content:"\f11bb"}.mdi-tune:before{content:"\f062e"}.mdi-tune-variant:before{content:"\f1542"}.mdi-tune-vertical:before{content:"\f066a"}.mdi-tune-vertical-variant:before{content:"\f1543"}.mdi-tunnel:before{content:"\f183d"}.mdi-tunnel-outline:before{content:"\f183e"}.mdi-turbine:before{content:"\f1a82"}.mdi-turkey:before{content:"\f171b"}.mdi-turnstile:before{content:"\f0cd5"}.mdi-turnstile-outline:before{content:"\f0cd6"}.mdi-turtle:before{content:"\f0cd7"}.mdi-twitch:before{content:"\f0543"}.mdi-twitter:before{content:"\f0544"}.mdi-two-factor-authentication:before{content:"\f09af"}.mdi-typewriter:before{content:"\f0f2d"}.mdi-ubisoft:before{content:"\f0bda"}.mdi-ubuntu:before{content:"\f0548"}.mdi-ufo:before{content:"\f10c4"}.mdi-ufo-outline:before{content:"\f10c5"}.mdi-ultra-high-definition:before{content:"\f07f9"}.mdi-umbraco:before{content:"\f0549"}.mdi-umbrella:before{content:"\f054a"}.mdi-umbrella-beach:before{content:"\f188a"}.mdi-umbrella-beach-outline:before{content:"\f188b"}.mdi-umbrella-closed:before{content:"\f09b0"}.mdi-umbrella-closed-outline:before{content:"\f13e2"}.mdi-umbrella-closed-variant:before{content:"\f13e1"}.mdi-umbrella-outline:before{content:"\f054b"}.mdi-undo:before{content:"\f054c"}.mdi-undo-variant:before{content:"\f054d"}.mdi-unfold-less-horizontal:before{content:"\f054e"}.mdi-unfold-less-vertical:before{content:"\f0760"}.mdi-unfold-more-horizontal:before{content:"\f054f"}.mdi-unfold-more-vertical:before{content:"\f0761"}.mdi-ungroup:before{content:"\f0550"}.mdi-unicode:before{content:"\f0ed0"}.mdi-unicorn:before{content:"\f15c2"}.mdi-unicorn-variant:before{content:"\f15c3"}.mdi-unicycle:before{content:"\f15e5"}.mdi-unity:before{content:"\f06af"}.mdi-unreal:before{content:"\f09b1"}.mdi-update:before{content:"\f06b0"}.mdi-upload:before{content:"\f0552"}.mdi-upload-lock:before{content:"\f1373"}.mdi-upload-lock-outline:before{content:"\f1374"}.mdi-upload-multiple:before{content:"\f083d"}.mdi-upload-network:before{content:"\f06f6"}.mdi-upload-network-outline:before{content:"\f0cd8"}.mdi-upload-off:before{content:"\f10c6"}.mdi-upload-off-outline:before{content:"\f10c7"}.mdi-upload-outline:before{content:"\f0e07"}.mdi-usb:before{content:"\f0553"}.mdi-usb-flash-drive:before{content:"\f129e"}.mdi-usb-flash-drive-outline:before{content:"\f129f"}.mdi-usb-port:before{content:"\f11f0"}.mdi-vacuum:before{content:"\f19a1"}.mdi-vacuum-outline:before{content:"\f19a2"}.mdi-valve:before{content:"\f1066"}.mdi-valve-closed:before{content:"\f1067"}.mdi-valve-open:before{content:"\f1068"}.mdi-van-passenger:before{content:"\f07fa"}.mdi-van-utility:before{content:"\f07fb"}.mdi-vanish:before{content:"\f07fc"}.mdi-vanish-quarter:before{content:"\f1554"}.mdi-vanity-light:before{content:"\f11e1"}.mdi-variable:before{content:"\f0ae7"}.mdi-variable-box:before{content:"\f1111"}.mdi-vector-arrange-above:before{content:"\f0554"}.mdi-vector-arrange-below:before{content:"\f0555"}.mdi-vector-bezier:before{content:"\f0ae8"}.mdi-vector-circle:before{content:"\f0556"}.mdi-vector-circle-variant:before{content:"\f0557"}.mdi-vector-combine:before{content:"\f0558"}.mdi-vector-curve:before{content:"\f0559"}.mdi-vector-difference:before{content:"\f055a"}.mdi-vector-difference-ab:before{content:"\f055b"}.mdi-vector-difference-ba:before{content:"\f055c"}.mdi-vector-ellipse:before{content:"\f0893"}.mdi-vector-intersection:before{content:"\f055d"}.mdi-vector-line:before{content:"\f055e"}.mdi-vector-link:before{content:"\f0fe8"}.mdi-vector-point:before{content:"\f01c4"}.mdi-vector-point-edit:before{content:"\f09e8"}.mdi-vector-point-minus:before{content:"\f1b78"}.mdi-vector-point-plus:before{content:"\f1b79"}.mdi-vector-point-select:before{content:"\f055f"}.mdi-vector-polygon:before{content:"\f0560"}.mdi-vector-polygon-variant:before{content:"\f1856"}.mdi-vector-polyline:before{content:"\f0561"}.mdi-vector-polyline-edit:before{content:"\f1225"}.mdi-vector-polyline-minus:before{content:"\f1226"}.mdi-vector-polyline-plus:before{content:"\f1227"}.mdi-vector-polyline-remove:before{content:"\f1228"}.mdi-vector-radius:before{content:"\f074a"}.mdi-vector-rectangle:before{content:"\f05c6"}.mdi-vector-selection:before{content:"\f0562"}.mdi-vector-square:before{content:"\f0001"}.mdi-vector-square-close:before{content:"\f1857"}.mdi-vector-square-edit:before{content:"\f18d9"}.mdi-vector-square-minus:before{content:"\f18da"}.mdi-vector-square-open:before{content:"\f1858"}.mdi-vector-square-plus:before{content:"\f18db"}.mdi-vector-square-remove:before{content:"\f18dc"}.mdi-vector-triangle:before{content:"\f0563"}.mdi-vector-union:before{content:"\f0564"}.mdi-vhs:before{content:"\f0a1b"}.mdi-vibrate:before{content:"\f0566"}.mdi-vibrate-off:before{content:"\f0cd9"}.mdi-video:before{content:"\f0567"}.mdi-video-2d:before{content:"\f1a1c"}.mdi-video-3d:before{content:"\f07fd"}.mdi-video-3d-off:before{content:"\f13d9"}.mdi-video-3d-variant:before{content:"\f0ed1"}.mdi-video-4k-box:before{content:"\f083e"}.mdi-video-account:before{content:"\f0919"}.mdi-video-box:before{content:"\f00fd"}.mdi-video-box-off:before{content:"\f00fe"}.mdi-video-check:before{content:"\f1069"}.mdi-video-check-outline:before{content:"\f106a"}.mdi-video-high-definition:before{content:"\f152e"}.mdi-video-image:before{content:"\f091a"}.mdi-video-input-antenna:before{content:"\f083f"}.mdi-video-input-component:before{content:"\f0840"}.mdi-video-input-hdmi:before{content:"\f0841"}.mdi-video-input-scart:before{content:"\f0f8c"}.mdi-video-input-svideo:before{content:"\f0842"}.mdi-video-marker:before{content:"\f19a9"}.mdi-video-marker-outline:before{content:"\f19aa"}.mdi-video-minus:before{content:"\f09b2"}.mdi-video-minus-outline:before{content:"\f02ba"}.mdi-video-off:before{content:"\f0568"}.mdi-video-off-outline:before{content:"\f0bdb"}.mdi-video-outline:before{content:"\f0bdc"}.mdi-video-plus:before{content:"\f09b3"}.mdi-video-plus-outline:before{content:"\f01d3"}.mdi-video-stabilization:before{content:"\f091b"}.mdi-video-switch:before{content:"\f0569"}.mdi-video-switch-outline:before{content:"\f0790"}.mdi-video-vintage:before{content:"\f0a1c"}.mdi-video-wireless:before{content:"\f0ed2"}.mdi-video-wireless-outline:before{content:"\f0ed3"}.mdi-view-agenda:before{content:"\f056a"}.mdi-view-agenda-outline:before{content:"\f11d8"}.mdi-view-array:before{content:"\f056b"}.mdi-view-array-outline:before{content:"\f1485"}.mdi-view-carousel:before{content:"\f056c"}.mdi-view-carousel-outline:before{content:"\f1486"}.mdi-view-column:before{content:"\f056d"}.mdi-view-column-outline:before{content:"\f1487"}.mdi-view-comfy:before{content:"\f0e6a"}.mdi-view-comfy-outline:before{content:"\f1488"}.mdi-view-compact:before{content:"\f0e6b"}.mdi-view-compact-outline:before{content:"\f0e6c"}.mdi-view-dashboard:before{content:"\f056e"}.mdi-view-dashboard-edit:before{content:"\f1947"}.mdi-view-dashboard-edit-outline:before{content:"\f1948"}.mdi-view-dashboard-outline:before{content:"\f0a1d"}.mdi-view-dashboard-variant:before{content:"\f0843"}.mdi-view-dashboard-variant-outline:before{content:"\f1489"}.mdi-view-day:before{content:"\f056f"}.mdi-view-day-outline:before{content:"\f148a"}.mdi-view-gallery:before{content:"\f1888"}.mdi-view-gallery-outline:before{content:"\f1889"}.mdi-view-grid:before{content:"\f0570"}.mdi-view-grid-outline:before{content:"\f11d9"}.mdi-view-grid-plus:before{content:"\f0f8d"}.mdi-view-grid-plus-outline:before{content:"\f11da"}.mdi-view-headline:before{content:"\f0571"}.mdi-view-list:before{content:"\f0572"}.mdi-view-list-outline:before{content:"\f148b"}.mdi-view-module:before{content:"\f0573"}.mdi-view-module-outline:before{content:"\f148c"}.mdi-view-parallel:before{content:"\f0728"}.mdi-view-parallel-outline:before{content:"\f148d"}.mdi-view-quilt:before{content:"\f0574"}.mdi-view-quilt-outline:before{content:"\f148e"}.mdi-view-sequential:before{content:"\f0729"}.mdi-view-sequential-outline:before{content:"\f148f"}.mdi-view-split-horizontal:before{content:"\f0bcb"}.mdi-view-split-vertical:before{content:"\f0bcc"}.mdi-view-stream:before{content:"\f0575"}.mdi-view-stream-outline:before{content:"\f1490"}.mdi-view-week:before{content:"\f0576"}.mdi-view-week-outline:before{content:"\f1491"}.mdi-vimeo:before{content:"\f0577"}.mdi-violin:before{content:"\f060f"}.mdi-virtual-reality:before{content:"\f0894"}.mdi-virus:before{content:"\f13b6"}.mdi-virus-off:before{content:"\f18e1"}.mdi-virus-off-outline:before{content:"\f18e2"}.mdi-virus-outline:before{content:"\f13b7"}.mdi-vlc:before{content:"\f057c"}.mdi-voicemail:before{content:"\f057d"}.mdi-volcano:before{content:"\f1a83"}.mdi-volcano-outline:before{content:"\f1a84"}.mdi-volleyball:before{content:"\f09b4"}.mdi-volume-equal:before{content:"\f1b10"}.mdi-volume-high:before{content:"\f057e"}.mdi-volume-low:before{content:"\f057f"}.mdi-volume-medium:before{content:"\f0580"}.mdi-volume-minus:before{content:"\f075e"}.mdi-volume-mute:before{content:"\f075f"}.mdi-volume-off:before{content:"\f0581"}.mdi-volume-plus:before{content:"\f075d"}.mdi-volume-source:before{content:"\f1120"}.mdi-volume-variant-off:before{content:"\f0e08"}.mdi-volume-vibrate:before{content:"\f1121"}.mdi-vote:before{content:"\f0a1f"}.mdi-vote-outline:before{content:"\f0a20"}.mdi-vpn:before{content:"\f0582"}.mdi-vuejs:before{content:"\f0844"}.mdi-vuetify:before{content:"\f0e6d"}.mdi-walk:before{content:"\f0583"}.mdi-wall:before{content:"\f07fe"}.mdi-wall-fire:before{content:"\f1a11"}.mdi-wall-sconce:before{content:"\f091c"}.mdi-wall-sconce-flat:before{content:"\f091d"}.mdi-wall-sconce-flat-outline:before{content:"\f17c9"}.mdi-wall-sconce-flat-variant:before{content:"\f041c"}.mdi-wall-sconce-flat-variant-outline:before{content:"\f17ca"}.mdi-wall-sconce-outline:before{content:"\f17cb"}.mdi-wall-sconce-round:before{content:"\f0748"}.mdi-wall-sconce-round-outline:before{content:"\f17cc"}.mdi-wall-sconce-round-variant:before{content:"\f091e"}.mdi-wall-sconce-round-variant-outline:before{content:"\f17cd"}.mdi-wallet:before{content:"\f0584"}.mdi-wallet-giftcard:before{content:"\f0585"}.mdi-wallet-membership:before{content:"\f0586"}.mdi-wallet-outline:before{content:"\f0bdd"}.mdi-wallet-plus:before{content:"\f0f8e"}.mdi-wallet-plus-outline:before{content:"\f0f8f"}.mdi-wallet-travel:before{content:"\f0587"}.mdi-wallpaper:before{content:"\f0e09"}.mdi-wan:before{content:"\f0588"}.mdi-wardrobe:before{content:"\f0f90"}.mdi-wardrobe-outline:before{content:"\f0f91"}.mdi-warehouse:before{content:"\f0f81"}.mdi-washing-machine:before{content:"\f072a"}.mdi-washing-machine-alert:before{content:"\f11bc"}.mdi-washing-machine-off:before{content:"\f11bd"}.mdi-watch:before{content:"\f0589"}.mdi-watch-export:before{content:"\f058a"}.mdi-watch-export-variant:before{content:"\f0895"}.mdi-watch-import:before{content:"\f058b"}.mdi-watch-import-variant:before{content:"\f0896"}.mdi-watch-variant:before{content:"\f0897"}.mdi-watch-vibrate:before{content:"\f06b1"}.mdi-watch-vibrate-off:before{content:"\f0cda"}.mdi-water:before{content:"\f058c"}.mdi-water-alert:before{content:"\f1502"}.mdi-water-alert-outline:before{content:"\f1503"}.mdi-water-boiler:before{content:"\f0f92"}.mdi-water-boiler-alert:before{content:"\f11b3"}.mdi-water-boiler-auto:before{content:"\f1b98"}.mdi-water-boiler-off:before{content:"\f11b4"}.mdi-water-check:before{content:"\f1504"}.mdi-water-check-outline:before{content:"\f1505"}.mdi-water-circle:before{content:"\f1806"}.mdi-water-minus:before{content:"\f1506"}.mdi-water-minus-outline:before{content:"\f1507"}.mdi-water-off:before{content:"\f058d"}.mdi-water-off-outline:before{content:"\f1508"}.mdi-water-opacity:before{content:"\f1855"}.mdi-water-outline:before{content:"\f0e0a"}.mdi-water-percent:before{content:"\f058e"}.mdi-water-percent-alert:before{content:"\f1509"}.mdi-water-plus:before{content:"\f150a"}.mdi-water-plus-outline:before{content:"\f150b"}.mdi-water-polo:before{content:"\f12a0"}.mdi-water-pump:before{content:"\f058f"}.mdi-water-pump-off:before{content:"\f0f93"}.mdi-water-remove:before{content:"\f150c"}.mdi-water-remove-outline:before{content:"\f150d"}.mdi-water-sync:before{content:"\f17c6"}.mdi-water-thermometer:before{content:"\f1a85"}.mdi-water-thermometer-outline:before{content:"\f1a86"}.mdi-water-well:before{content:"\f106b"}.mdi-water-well-outline:before{content:"\f106c"}.mdi-waterfall:before{content:"\f1849"}.mdi-watering-can:before{content:"\f1481"}.mdi-watering-can-outline:before{content:"\f1482"}.mdi-watermark:before{content:"\f0612"}.mdi-wave:before{content:"\f0f2e"}.mdi-waveform:before{content:"\f147d"}.mdi-waves:before{content:"\f078d"}.mdi-waves-arrow-left:before{content:"\f1859"}.mdi-waves-arrow-right:before{content:"\f185a"}.mdi-waves-arrow-up:before{content:"\f185b"}.mdi-waze:before{content:"\f0bde"}.mdi-weather-cloudy:before{content:"\f0590"}.mdi-weather-cloudy-alert:before{content:"\f0f2f"}.mdi-weather-cloudy-arrow-right:before{content:"\f0e6e"}.mdi-weather-cloudy-clock:before{content:"\f18f6"}.mdi-weather-dust:before{content:"\f1b5a"}.mdi-weather-fog:before{content:"\f0591"}.mdi-weather-hail:before{content:"\f0592"}.mdi-weather-hazy:before{content:"\f0f30"}.mdi-weather-hurricane:before{content:"\f0898"}.mdi-weather-lightning:before{content:"\f0593"}.mdi-weather-lightning-rainy:before{content:"\f067e"}.mdi-weather-night:before{content:"\f0594"}.mdi-weather-night-partly-cloudy:before{content:"\f0f31"}.mdi-weather-partly-cloudy:before{content:"\f0595"}.mdi-weather-partly-lightning:before{content:"\f0f32"}.mdi-weather-partly-rainy:before{content:"\f0f33"}.mdi-weather-partly-snowy:before{content:"\f0f34"}.mdi-weather-partly-snowy-rainy:before{content:"\f0f35"}.mdi-weather-pouring:before{content:"\f0596"}.mdi-weather-rainy:before{content:"\f0597"}.mdi-weather-snowy:before{content:"\f0598"}.mdi-weather-snowy-heavy:before{content:"\f0f36"}.mdi-weather-snowy-rainy:before{content:"\f067f"}.mdi-weather-sunny:before{content:"\f0599"}.mdi-weather-sunny-alert:before{content:"\f0f37"}.mdi-weather-sunny-off:before{content:"\f14e4"}.mdi-weather-sunset:before{content:"\f059a"}.mdi-weather-sunset-down:before{content:"\f059b"}.mdi-weather-sunset-up:before{content:"\f059c"}.mdi-weather-tornado:before{content:"\f0f38"}.mdi-weather-windy:before{content:"\f059d"}.mdi-weather-windy-variant:before{content:"\f059e"}.mdi-web:before{content:"\f059f"}.mdi-web-box:before{content:"\f0f94"}.mdi-web-cancel:before{content:"\f1790"}.mdi-web-check:before{content:"\f0789"}.mdi-web-clock:before{content:"\f124a"}.mdi-web-minus:before{content:"\f10a0"}.mdi-web-off:before{content:"\f0a8e"}.mdi-web-plus:before{content:"\f0033"}.mdi-web-refresh:before{content:"\f1791"}.mdi-web-remove:before{content:"\f0551"}.mdi-web-sync:before{content:"\f1792"}.mdi-webcam:before{content:"\f05a0"}.mdi-webcam-off:before{content:"\f1737"}.mdi-webhook:before{content:"\f062f"}.mdi-webpack:before{content:"\f072b"}.mdi-webrtc:before{content:"\f1248"}.mdi-wechat:before{content:"\f0611"}.mdi-weight:before{content:"\f05a1"}.mdi-weight-gram:before{content:"\f0d3f"}.mdi-weight-kilogram:before{content:"\f05a2"}.mdi-weight-lifter:before{content:"\f115d"}.mdi-weight-pound:before{content:"\f09b5"}.mdi-whatsapp:before{content:"\f05a3"}.mdi-wheel-barrow:before{content:"\f14f2"}.mdi-wheelchair:before{content:"\f1a87"}.mdi-wheelchair-accessibility:before{content:"\f05a4"}.mdi-whistle:before{content:"\f09b6"}.mdi-whistle-outline:before{content:"\f12bc"}.mdi-white-balance-auto:before{content:"\f05a5"}.mdi-white-balance-incandescent:before{content:"\f05a6"}.mdi-white-balance-iridescent:before{content:"\f05a7"}.mdi-white-balance-sunny:before{content:"\f05a8"}.mdi-widgets:before{content:"\f072c"}.mdi-widgets-outline:before{content:"\f1355"}.mdi-wifi:before{content:"\f05a9"}.mdi-wifi-alert:before{content:"\f16b5"}.mdi-wifi-arrow-down:before{content:"\f16b6"}.mdi-wifi-arrow-left:before{content:"\f16b7"}.mdi-wifi-arrow-left-right:before{content:"\f16b8"}.mdi-wifi-arrow-right:before{content:"\f16b9"}.mdi-wifi-arrow-up:before{content:"\f16ba"}.mdi-wifi-arrow-up-down:before{content:"\f16bb"}.mdi-wifi-cancel:before{content:"\f16bc"}.mdi-wifi-check:before{content:"\f16bd"}.mdi-wifi-cog:before{content:"\f16be"}.mdi-wifi-lock:before{content:"\f16bf"}.mdi-wifi-lock-open:before{content:"\f16c0"}.mdi-wifi-marker:before{content:"\f16c1"}.mdi-wifi-minus:before{content:"\f16c2"}.mdi-wifi-off:before{content:"\f05aa"}.mdi-wifi-plus:before{content:"\f16c3"}.mdi-wifi-refresh:before{content:"\f16c4"}.mdi-wifi-remove:before{content:"\f16c5"}.mdi-wifi-settings:before{content:"\f16c6"}.mdi-wifi-star:before{content:"\f0e0b"}.mdi-wifi-strength-1:before{content:"\f091f"}.mdi-wifi-strength-1-alert:before{content:"\f0920"}.mdi-wifi-strength-1-lock:before{content:"\f0921"}.mdi-wifi-strength-1-lock-open:before{content:"\f16cb"}.mdi-wifi-strength-2:before{content:"\f0922"}.mdi-wifi-strength-2-alert:before{content:"\f0923"}.mdi-wifi-strength-2-lock:before{content:"\f0924"}.mdi-wifi-strength-2-lock-open:before{content:"\f16cc"}.mdi-wifi-strength-3:before{content:"\f0925"}.mdi-wifi-strength-3-alert:before{content:"\f0926"}.mdi-wifi-strength-3-lock:before{content:"\f0927"}.mdi-wifi-strength-3-lock-open:before{content:"\f16cd"}.mdi-wifi-strength-4:before{content:"\f0928"}.mdi-wifi-strength-4-alert:before{content:"\f0929"}.mdi-wifi-strength-4-lock:before{content:"\f092a"}.mdi-wifi-strength-4-lock-open:before{content:"\f16ce"}.mdi-wifi-strength-alert-outline:before{content:"\f092b"}.mdi-wifi-strength-lock-open-outline:before{content:"\f16cf"}.mdi-wifi-strength-lock-outline:before{content:"\f092c"}.mdi-wifi-strength-off:before{content:"\f092d"}.mdi-wifi-strength-off-outline:before{content:"\f092e"}.mdi-wifi-strength-outline:before{content:"\f092f"}.mdi-wifi-sync:before{content:"\f16c7"}.mdi-wikipedia:before{content:"\f05ac"}.mdi-wind-power:before{content:"\f1a88"}.mdi-wind-power-outline:before{content:"\f1a89"}.mdi-wind-turbine:before{content:"\f0da5"}.mdi-wind-turbine-alert:before{content:"\f19ab"}.mdi-wind-turbine-check:before{content:"\f19ac"}.mdi-window-close:before{content:"\f05ad"}.mdi-window-closed:before{content:"\f05ae"}.mdi-window-closed-variant:before{content:"\f11db"}.mdi-window-maximize:before{content:"\f05af"}.mdi-window-minimize:before{content:"\f05b0"}.mdi-window-open:before{content:"\f05b1"}.mdi-window-open-variant:before{content:"\f11dc"}.mdi-window-restore:before{content:"\f05b2"}.mdi-window-shutter:before{content:"\f111c"}.mdi-window-shutter-alert:before{content:"\f111d"}.mdi-window-shutter-auto:before{content:"\f1ba3"}.mdi-window-shutter-cog:before{content:"\f1a8a"}.mdi-window-shutter-open:before{content:"\f111e"}.mdi-window-shutter-settings:before{content:"\f1a8b"}.mdi-windsock:before{content:"\f15fa"}.mdi-wiper:before{content:"\f0ae9"}.mdi-wiper-wash:before{content:"\f0da6"}.mdi-wiper-wash-alert:before{content:"\f18df"}.mdi-wizard-hat:before{content:"\f1477"}.mdi-wordpress:before{content:"\f05b4"}.mdi-wrap:before{content:"\f05b6"}.mdi-wrap-disabled:before{content:"\f0bdf"}.mdi-wrench:before{content:"\f05b7"}.mdi-wrench-check:before{content:"\f1b8f"}.mdi-wrench-check-outline:before{content:"\f1b90"}.mdi-wrench-clock:before{content:"\f19a3"}.mdi-wrench-clock-outline:before{content:"\f1b93"}.mdi-wrench-cog:before{content:"\f1b91"}.mdi-wrench-cog-outline:before{content:"\f1b92"}.mdi-wrench-outline:before{content:"\f0be0"}.mdi-xamarin:before{content:"\f0845"}.mdi-xml:before{content:"\f05c0"}.mdi-xmpp:before{content:"\f07ff"}.mdi-yahoo:before{content:"\f0b4f"}.mdi-yeast:before{content:"\f05c1"}.mdi-yin-yang:before{content:"\f0680"}.mdi-yoga:before{content:"\f117c"}.mdi-youtube:before{content:"\f05c3"}.mdi-youtube-gaming:before{content:"\f0848"}.mdi-youtube-studio:before{content:"\f0847"}.mdi-youtube-subscription:before{content:"\f0d40"}.mdi-youtube-tv:before{content:"\f0448"}.mdi-yurt:before{content:"\f1516"}.mdi-z-wave:before{content:"\f0aea"}.mdi-zend:before{content:"\f0aeb"}.mdi-zigbee:before{content:"\f0d41"}.mdi-zip-box:before{content:"\f05c4"}.mdi-zip-box-outline:before{content:"\f0ffa"}.mdi-zip-disk:before{content:"\f0a23"}.mdi-zodiac-aquarius:before{content:"\f0a7d"}.mdi-zodiac-aries:before{content:"\f0a7e"}.mdi-zodiac-cancer:before{content:"\f0a7f"}.mdi-zodiac-capricorn:before{content:"\f0a80"}.mdi-zodiac-gemini:before{content:"\f0a81"}.mdi-zodiac-leo:before{content:"\f0a82"}.mdi-zodiac-libra:before{content:"\f0a83"}.mdi-zodiac-pisces:before{content:"\f0a84"}.mdi-zodiac-sagittarius:before{content:"\f0a85"}.mdi-zodiac-scorpio:before{content:"\f0a86"}.mdi-zodiac-taurus:before{content:"\f0a87"}.mdi-zodiac-virgo:before{content:"\f0a88"}.mdi-blank:before{content:"\f68c";visibility:hidden}.mdi-18px.mdi-set,.mdi-18px.mdi:before{font-size:18px}.mdi-24px.mdi-set,.mdi-24px.mdi:before{font-size:24px}.mdi-36px.mdi-set,.mdi-36px.mdi:before{font-size:36px}.mdi-48px.mdi-set,.mdi-48px.mdi:before{font-size:48px}.mdi-dark:before{color:#0000008a}.mdi-dark.mdi-inactive:before{color:#00000042}.mdi-light:before{color:#fff}.mdi-light.mdi-inactive:before{color:#ffffff4d}.mdi-rotate-45:before{-webkit-transform:rotate(45deg);-ms-transform:rotate(45deg);transform:rotate(45deg)}.mdi-rotate-90:before{-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.mdi-rotate-135:before{-webkit-transform:rotate(135deg);-ms-transform:rotate(135deg);transform:rotate(135deg)}.mdi-rotate-180:before{-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.mdi-rotate-225:before{-webkit-transform:rotate(225deg);-ms-transform:rotate(225deg);transform:rotate(225deg)}.mdi-rotate-270:before{-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.mdi-rotate-315:before{-webkit-transform:rotate(315deg);-ms-transform:rotate(315deg);transform:rotate(315deg)}.mdi-flip-h:before{-webkit-transform:scaleX(-1);transform:scaleX(-1);filter:FlipH;-ms-filter:"FlipH"}.mdi-flip-v:before{-webkit-transform:scaleY(-1);transform:scaleY(-1);filter:FlipV;-ms-filter:"FlipV"}.mdi-spin:before{-webkit-animation:mdi-spin 2s infinite linear;animation:mdi-spin 2s infinite linear}@-webkit-keyframes mdi-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes mdi-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}} diff --git a/spaces/Iceclear/StableSR/StableSR/basicsr/ops/fused_act/__init__.py b/spaces/Iceclear/StableSR/StableSR/basicsr/ops/fused_act/__init__.py deleted file mode 100644 index 241dc0754fae7d88dbbd9a02e665ca30a73c7422..0000000000000000000000000000000000000000 --- a/spaces/Iceclear/StableSR/StableSR/basicsr/ops/fused_act/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from .fused_act import FusedLeakyReLU, fused_leaky_relu - -__all__ = ['FusedLeakyReLU', 'fused_leaky_relu'] diff --git a/spaces/Ilean/pdfGPTv2/app.py b/spaces/Ilean/pdfGPTv2/app.py deleted file mode 100644 index a7e7588853e42a96f7e609bd0a7a851f6c69732f..0000000000000000000000000000000000000000 --- a/spaces/Ilean/pdfGPTv2/app.py +++ /dev/null @@ -1,238 +0,0 @@ -import urllib.request -import fitz -import re -import numpy as np -import tensorflow_hub as hub -import openai -import gradio as gr -import os -from sklearn.neighbors import NearestNeighbors - -def download_pdf(url, output_path): - urllib.request.urlretrieve(url, output_path) - - -def preprocess(text): - text = text.replace('\n', ' ') - text = re.sub('\s+', ' ', text) - return text - - -def pdf_to_text(path, start_page=1, end_page=None): - doc = fitz.open(path) - total_pages = doc.page_count - - if end_page is None: - end_page = total_pages - - text_list = [] - - for i in range(start_page-1, end_page): - text = doc.load_page(i).get_text("text") - text = preprocess(text) - text_list.append(text) - - doc.close() - return text_list - - -def text_to_chunks(texts, word_length=150, start_page=1): - text_toks = [t.split(' ') for t in texts] - page_nums = [] - chunks = [] - - for idx, words in enumerate(text_toks): - for i in range(0, len(words), word_length): - chunk = words[i:i+word_length] - if (i+word_length) > len(words) and (len(chunk) < word_length) and ( - len(text_toks) != (idx+1)): - text_toks[idx+1] = chunk + text_toks[idx+1] - continue - chunk = ' '.join(chunk).strip() - chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"' - chunks.append(chunk) - return chunks - - -class SemanticSearch: - - def __init__(self): - self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4') - self.fitted = False - - - def fit(self, data, batch=1000, n_neighbors=5): - self.data = data - self.embeddings = self.get_text_embedding(data, batch=batch) - n_neighbors = min(n_neighbors, len(self.embeddings)) - self.nn = NearestNeighbors(n_neighbors=n_neighbors) - self.nn.fit(self.embeddings) - self.fitted = True - - - def __call__(self, text, return_data=True): - inp_emb = self.use([text]) - neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0] - - if return_data: - return [self.data[i] for i in neighbors] - else: - return neighbors - - - def get_text_embedding(self, texts, batch=1000): - embeddings = [] - for i in range(0, len(texts), batch): - text_batch = texts[i:(i+batch)] - emb_batch = self.use(text_batch) - embeddings.append(emb_batch) - embeddings = np.vstack(embeddings) - return embeddings - - - -#def load_recommender(path, start_page=1): -# global recommender -# texts = pdf_to_text(path, start_page=start_page) -# chunks = text_to_chunks(texts, start_page=start_page) -# recommender.fit(chunks) -# return 'Corpus Loaded.' - -# The modified function generates embeddings based on PDF file name and page number and checks if the embeddings file exists before loading or generating it. -def load_recommender(path, start_page=1): - global recommender - pdf_file = os.path.basename(path) - embeddings_file = f"{pdf_file}_{start_page}.npy" - - if os.path.isfile(embeddings_file): - embeddings = np.load(embeddings_file) - recommender.embeddings = embeddings - recommender.fitted = True - return "Embeddings loaded from file" - - texts = pdf_to_text(path, start_page=start_page) - chunks = text_to_chunks(texts, start_page=start_page) - recommender.fit(chunks) - np.save(embeddings_file, recommender.embeddings) - return 'Corpus Loaded.' - - - -def generate_text(openAI_key,prompt, engine="text-davinci-003"): - openai.api_key = openAI_key - completions = openai.Completion.create( - engine=engine, - prompt=prompt, - max_tokens=512, - n=1, - stop=None, - temperature=0.7, - ) - message = completions.choices[0].text - return message - - -def generate_answer(question,openAI_key): - topn_chunks = recommender(question) - prompt = "" - prompt += 'search results:\n\n' - for c in topn_chunks: - prompt += c + '\n\n' - - prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\ - "Cite each reference using [number] notation (every result has this number at the beginning). "\ - "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\ - "with the same name, create separate answers for each. Only include information found in the results and "\ - "don't add any additional information. Make sure the answer is correct and don't output false content. "\ - "If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier "\ - "search results which has nothing to do with the question. Only answer what is asked. The "\ - "answer should be short and concise.\n\nQuery: {question}\nAnswer: " - - prompt += f"Query: {question}\nAnswer:" - answer = generate_text(openAI_key, prompt,"text-davinci-003") - return answer - - -def question_answer(url, file, question,openAI_key): - if openAI_key.strip()=='': - return '[ERROR]: Please enter you Open AI Key. Get your key here : https://platform.openai.com/account/api-keys' - if url.strip() == '' and file == None: - return '[ERROR]: Both URL and PDF is empty. Provide atleast one.' - - if url.strip() != '' and file != None: - return '[ERROR]: Both URL and PDF is provided. Please provide only one (eiter URL or PDF).' - - if url.strip() != '': - glob_url = url - download_pdf(glob_url, 'corpus.pdf') - load_recommender('corpus.pdf') - - else: - old_file_name = file.name - file_name = file.name - file_name = file_name[:-12] + file_name[-4:] - os.rename(old_file_name, file_name) - load_recommender(file_name) - - if question.strip() == '': - return '[ERROR]: Question field is empty' - - return generate_answer(question,openAI_key) - - -recommender = SemanticSearch() - -title = 'PDF GPT' -description = """ What is PDF GPT ? -1. The problem is that Open AI has a 4K token limit and cannot take an entire PDF file as input. Additionally, it sometimes returns irrelevant responses due to poor embeddings. ChatGPT cannot directly talk to external data. The solution is PDF GPT, which allows you to chat with an uploaded PDF file using GPT functionalities. The application breaks the document into smaller chunks and generates embeddings using a powerful Deep Averaging Network Encoder. A semantic search is performed on your query, and the top relevant chunks are used to generate a response. -2. The returned response can even cite the page number in square brackets([]) where the information is located, adding credibility to the responses and helping to locate pertinent information quickly. The Responses are much better than the naive responses by Open AI.""" - -with gr.Blocks() as demo: - - gr.Markdown(f'

    {title}

    ') - gr.Markdown(description) - - with gr.Row(): - - with gr.Group(): - gr.Markdown(f'

    Get your Open AI API key here

    ') - openAI_key=gr.Textbox(label='Enter your OpenAI API key here') - url = gr.Textbox(label='Enter PDF URL here') - gr.Markdown("

    OR

    ") - file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf']) - question = gr.Textbox(label='Enter your question here') - btn = gr.Button(value='Submit') - btn.style(full_width=True) - - with gr.Group(): - answer = gr.Textbox(label='The answer to your question is :') - - btn.click(question_answer, inputs=[url, file, question,openAI_key], outputs=[answer]) -#openai.api_key = os.getenv('Your_Key_Here') -demo.launch() - - -# import streamlit as st - -# #Define the app layout -# st.markdown(f'

    {title}

    ', unsafe_allow_html=True) -# st.markdown(description) - -# col1, col2 = st.columns(2) - -# # Define the inputs in the first column -# with col1: -# url = st.text_input('URL') -# st.markdown("
    or
    ", unsafe_allow_html=True) -# file = st.file_uploader('PDF', type='pdf') -# question = st.text_input('question') -# btn = st.button('Submit') - -# # Define the output in the second column -# with col2: -# answer = st.text_input('answer') - -# # Define the button action -# if btn: -# answer_value = question_answer(url, file, question) -# answer.value = answer_value \ No newline at end of file diff --git a/spaces/Ilzhabimantara/rvc-Blue-archives/lib/infer_pack/transforms.py b/spaces/Ilzhabimantara/rvc-Blue-archives/lib/infer_pack/transforms.py deleted file mode 100644 index a11f799e023864ff7082c1f49c0cc18351a13b47..0000000000000000000000000000000000000000 --- a/spaces/Ilzhabimantara/rvc-Blue-archives/lib/infer_pack/transforms.py +++ /dev/null @@ -1,209 +0,0 @@ -import torch -from torch.nn import functional as F - -import numpy as np - - -DEFAULT_MIN_BIN_WIDTH = 1e-3 -DEFAULT_MIN_BIN_HEIGHT = 1e-3 -DEFAULT_MIN_DERIVATIVE = 1e-3 - - -def piecewise_rational_quadratic_transform( - inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails=None, - tail_bound=1.0, - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE, -): - if tails is None: - spline_fn = rational_quadratic_spline - spline_kwargs = {} - else: - spline_fn = unconstrained_rational_quadratic_spline - spline_kwargs = {"tails": tails, "tail_bound": tail_bound} - - outputs, logabsdet = spline_fn( - inputs=inputs, - unnormalized_widths=unnormalized_widths, - unnormalized_heights=unnormalized_heights, - unnormalized_derivatives=unnormalized_derivatives, - inverse=inverse, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative, - **spline_kwargs - ) - return outputs, logabsdet - - -def searchsorted(bin_locations, inputs, eps=1e-6): - bin_locations[..., -1] += eps - return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 - - -def unconstrained_rational_quadratic_spline( - inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails="linear", - tail_bound=1.0, - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE, -): - inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) - outside_interval_mask = ~inside_interval_mask - - outputs = torch.zeros_like(inputs) - logabsdet = torch.zeros_like(inputs) - - if tails == "linear": - unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) - constant = np.log(np.exp(1 - min_derivative) - 1) - unnormalized_derivatives[..., 0] = constant - unnormalized_derivatives[..., -1] = constant - - outputs[outside_interval_mask] = inputs[outside_interval_mask] - logabsdet[outside_interval_mask] = 0 - else: - raise RuntimeError("{} tails are not implemented.".format(tails)) - - ( - outputs[inside_interval_mask], - logabsdet[inside_interval_mask], - ) = rational_quadratic_spline( - inputs=inputs[inside_interval_mask], - unnormalized_widths=unnormalized_widths[inside_interval_mask, :], - unnormalized_heights=unnormalized_heights[inside_interval_mask, :], - unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], - inverse=inverse, - left=-tail_bound, - right=tail_bound, - bottom=-tail_bound, - top=tail_bound, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative, - ) - - return outputs, logabsdet - - -def rational_quadratic_spline( - inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - left=0.0, - right=1.0, - bottom=0.0, - top=1.0, - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE, -): - if torch.min(inputs) < left or torch.max(inputs) > right: - raise ValueError("Input to a transform is not within its domain") - - num_bins = unnormalized_widths.shape[-1] - - if min_bin_width * num_bins > 1.0: - raise ValueError("Minimal bin width too large for the number of bins") - if min_bin_height * num_bins > 1.0: - raise ValueError("Minimal bin height too large for the number of bins") - - widths = F.softmax(unnormalized_widths, dim=-1) - widths = min_bin_width + (1 - min_bin_width * num_bins) * widths - cumwidths = torch.cumsum(widths, dim=-1) - cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0) - cumwidths = (right - left) * cumwidths + left - cumwidths[..., 0] = left - cumwidths[..., -1] = right - widths = cumwidths[..., 1:] - cumwidths[..., :-1] - - derivatives = min_derivative + F.softplus(unnormalized_derivatives) - - heights = F.softmax(unnormalized_heights, dim=-1) - heights = min_bin_height + (1 - min_bin_height * num_bins) * heights - cumheights = torch.cumsum(heights, dim=-1) - cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0) - cumheights = (top - bottom) * cumheights + bottom - cumheights[..., 0] = bottom - cumheights[..., -1] = top - heights = cumheights[..., 1:] - cumheights[..., :-1] - - if inverse: - bin_idx = searchsorted(cumheights, inputs)[..., None] - else: - bin_idx = searchsorted(cumwidths, inputs)[..., None] - - input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] - input_bin_widths = widths.gather(-1, bin_idx)[..., 0] - - input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] - delta = heights / widths - input_delta = delta.gather(-1, bin_idx)[..., 0] - - input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] - input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] - - input_heights = heights.gather(-1, bin_idx)[..., 0] - - if inverse: - a = (inputs - input_cumheights) * ( - input_derivatives + input_derivatives_plus_one - 2 * input_delta - ) + input_heights * (input_delta - input_derivatives) - b = input_heights * input_derivatives - (inputs - input_cumheights) * ( - input_derivatives + input_derivatives_plus_one - 2 * input_delta - ) - c = -input_delta * (inputs - input_cumheights) - - discriminant = b.pow(2) - 4 * a * c - assert (discriminant >= 0).all() - - root = (2 * c) / (-b - torch.sqrt(discriminant)) - outputs = root * input_bin_widths + input_cumwidths - - theta_one_minus_theta = root * (1 - root) - denominator = input_delta + ( - (input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta - ) - derivative_numerator = input_delta.pow(2) * ( - input_derivatives_plus_one * root.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - root).pow(2) - ) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, -logabsdet - else: - theta = (inputs - input_cumwidths) / input_bin_widths - theta_one_minus_theta = theta * (1 - theta) - - numerator = input_heights * ( - input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta - ) - denominator = input_delta + ( - (input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta - ) - outputs = input_cumheights + numerator / denominator - - derivative_numerator = input_delta.pow(2) * ( - input_derivatives_plus_one * theta.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - theta).pow(2) - ) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, logabsdet diff --git a/spaces/Intoval/privateChatGPT/readme/README_en.md b/spaces/Intoval/privateChatGPT/readme/README_en.md deleted file mode 100644 index 21da560da4b60399d26b1780ec686b35f5b88e9b..0000000000000000000000000000000000000000 --- a/spaces/Intoval/privateChatGPT/readme/README_en.md +++ /dev/null @@ -1,127 +0,0 @@ -
    - - 简体中文 | English | 日本語 -
    - -

    川虎 Chat 🐯 Chuanhu Chat

    -
    - - Logo - - -

    -

    Lightweight and User-friendly Web-UI for LLMs including ChatGPT/ChatGLM/LLaMA

    -

    - - Tests Passing - - - GitHub Contributors - - - GitHub pull requests - -

    - Streaming / Unlimited conversations / Save history / Preset prompts / Chat with files / Web search
    - LaTeX rendering / Table rendering / Code highlighting
    - Auto dark mode / Adaptive web interface / WeChat-like theme
    - Multi-parameters tuning / Multi-API-Key support / Multi-user support
    - Compatible with GPT-4 / Local deployment for LLMs -

    - Video Tutorial - · - 2.0 Introduction - · - 3.0 Introduction & Tutorial - || - Online trial - · - One-Click deployment -

    -

    - Animation Demo -

    -

    -
    - -## Usage Tips - -- To better control the ChatGPT, use System Prompt. -- To use a Prompt Template, select the Prompt Template Collection file first, and then choose certain prompt from the drop-down menu. -- To try again if the response is unsatisfactory, use `🔄 Regenerate` button. -- To start a new line in the input box, press Shift + Enter keys. -- To quickly switch between input history, press and key in the input box. -- To deploy the program onto a server, change the last line of the program to `demo.launch(server_name="0.0.0.0", server_port=)`. -- To get a public shared link, change the last line of the program to `demo.launch(share=True)`. Please be noted that the program must be running in order to be accessed via a public link. -- To use it in Hugging Face Spaces: It is recommended to **Duplicate Space** and run the program in your own Space for a faster and more secure experience. - -## Installation - -```shell -git clone https://github.com/GaiZhenbiao/ChuanhuChatGPT.git -cd ChuanhuChatGPT -pip install -r requirements.txt -``` - -Then make a copy of `config_example.json`, rename it to `config.json`, and then fill in your API-Key and other settings in the file. - -```shell -python ChuanhuChatbot.py -``` - -A browser window will open and you will be able to chat with ChatGPT. - -> **Note** -> -> Please check our [wiki page](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/使用教程) for detailed instructions. - -## Troubleshooting - -When you encounter problems, you should try manually pulling the latest changes of this project first. The steps are as follows: - -1. Download the latest code archive by clicking on `Download ZIP` on the webpage, or - ```shell - git pull https://github.com/GaiZhenbiao/ChuanhuChatGPT.git main -f - ``` -2. Try installing the dependencies again (as this project may have introduced new dependencies) - ``` - pip install -r requirements.txt - ``` -3. Update Gradio - ``` - pip install gradio --upgrade --force-reinstall - ``` - -Generally, you can solve most problems by following these steps. - -If the problem still exists, please refer to this page: [Frequently Asked Questions (FAQ)](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/常见问题) - -This page lists almost all the possible problems and solutions. Please read it carefully. - -## More Information - -More information could be found in our [wiki](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki): - -- [How to contribute a translation](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/Localization) -- [How to make a contribution](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/贡献指南) -- [How to cite the project](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/使用许可#如何引用该项目) -- [Project changelog](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/更新日志) -- [Project license](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/使用许可) - -## Starchart - -[![Star History Chart](https://api.star-history.com/svg?repos=GaiZhenbiao/ChuanhuChatGPT&type=Date)](https://star-history.com/#GaiZhenbiao/ChuanhuChatGPT&Date) - -## Contributors - - - - - -## Sponsor - -🐯 If you find this project helpful, feel free to buy me a coke or a cup of coffee~ - -Buy Me A Coffee - -image diff --git a/spaces/JLD/docker-hello-world/main.py b/spaces/JLD/docker-hello-world/main.py deleted file mode 100644 index 563beac73e4a34e98ab6e60c07bcb2a4862b3174..0000000000000000000000000000000000000000 --- a/spaces/JLD/docker-hello-world/main.py +++ /dev/null @@ -1,7 +0,0 @@ -from fastapi import FastAPI - -app = FastAPI() - -@app.get("/") -def read_root(): - return {"Hello": "World!"} \ No newline at end of file diff --git a/spaces/JohnSmith9982/ChuanhuChatGPT_Beta/readme/README_ja.md b/spaces/JohnSmith9982/ChuanhuChatGPT_Beta/readme/README_ja.md deleted file mode 100644 index 1e0771070e0c9852f02a1024c65176f5a1ac46ba..0000000000000000000000000000000000000000 --- a/spaces/JohnSmith9982/ChuanhuChatGPT_Beta/readme/README_ja.md +++ /dev/null @@ -1,139 +0,0 @@ -
    - - 简体中文 | English | 日本語 -
    - -

    川虎 Chat 🐯 Chuanhu Chat

    -
    - - Logo - - -

    -

    ChatGPT/ChatGLM/LLaMAなどのLLMのための軽量でユーザーフレンドリーなWeb-UI

    -

    - - Tests Passing - - - GitHub Contributors - - - GitHub pull requests - -

    - ストリーム出力/会話回数無制限/履歴保存/プリセットプロンプト/ファイルへの質問チャット
    - ウェブ検索/LaTeXレンダリング/表レンダリング/コードハイライト
    - オートダークモード/アダプティブ・ウェブ・インターフェイス/WeChatライク・テーマ
    - マルチパラメーターチューニング/マルチAPI-Key対応/マルチユーザー対応
    - GPT-4対応/LLMのローカルデプロイ可能。 -

    - 動画チュートリアル - · - 2.0 イントロダクション - · - 3.0 イントロダクション & チュートリアル - || - オンライントライアル - · - ワンクリックデプロイ -

    -

    - Animation Demo -

    -

    -
    - -## サポートされている大規模言語モデル - -**APIを通じてアクセス可能な大規模言語モデル**: - -- [ChatGPT](https://chat.openai.com) ([GPT-4](https://openai.com/product/gpt-4)) -- [Google PaLM](https://developers.generativeai.google/products/palm) -- [Inspur Yuan 1.0](https://air.inspur.com/home) -- [MiniMax](https://api.minimax.chat/) -- [XMChat](https://github.com/MILVLG/xmchat) - -**ローカルに展開された大規模言語モデル**: - -- [ChatGLM](https://github.com/THUDM/ChatGLM-6B) ([ChatGLM2](https://github.com/THUDM/ChatGLM2-6B)) -- [LLaMA](https://github.com/facebookresearch/llama) -- [StableLM](https://github.com/Stability-AI/StableLM) -- [MOSS](https://github.com/OpenLMLab/MOSS) - -## 使う上でのTips - -- ChatGPTをより適切に制御するために、システムプロンプトを使用できます。 -- プロンプトテンプレートを使用するには、プロンプトテンプレートコレクションを選択し、ドロップダウンメニューから特定のプロンプトを選択。回答が不十分な場合は、`🔄再生成`ボタンを使って再試行します。 -- 入力ボックスで改行するには、Shift + Enterキーを押してください。 -- 入力履歴を素早く切り替えるには、入力ボックスで キーを押す。 -- プログラムをサーバーに展開するには、`config.json` 内の `"server_name": "0.0.0.0", "server_port": <ポート番号>`を設定してください。 -- 共有リンクを取得するには、 `config.json` 内の `"share": true` を設定してください。なお、公開リンクでアクセスするためには、プログラムが実行されている必要があることに注意してください。 -- Hugging Face Spacesで使用する場合: より速く、より安全に利用するために、**Duplicate Space**を使用し、自分のスペースでプログラムを実行することをお勧めします。 - -## クイックスタート - -```shell -git clone https://github.com/GaiZhenbiao/ChuanhuChatGPT.git -cd ChuanhuChatGPT -pip install -r requirements.txt -``` - -次に `config_example.json`をコピーして `config.json`にリネームし、そのファイルにAPI-Keyなどの設定を記入する。 - -```shell -python ChuanhuChatbot.py -``` - -ブラウザのウィンドウが開き、ChatGPTとチャットできるようになります。 - -> **Note** -> -> 詳しい手順は[wikiページ](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/使用教程)をご確認ください。 - -## トラブルシューティング - -問題が発生した場合は、まずこのプロジェクトの最新の変更点を手動で引っ張ってみるのがよいでしょう。その手順は以下の通りです: - -1. ウェブページの `Download ZIP` をクリックして最新のコードアーカイブをダウンロードするか、または - ```shell - git pull https://github.com/GaiZhenbiao/ChuanhuChatGPT.git main -f - ``` -2. 新しい依存関係が導入されている可能性があるため、依存関係を再度インストールしてみてください。 - ``` - pip install -r requirements.txt - ``` - -一般的に、以下の手順でほとんどの問題を解決することができます。 - -それでも問題が解決しない場合は、こちらのページをご参照ください: [よくある質問(FAQ)](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/常见问题) - -このページでは、考えられるほぼすべての問題点と解決策を掲載しています。よくお読みください。 - -## More Information - -より詳細な情報は、[wiki](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki) をご覧ください。: - -- [How to contribute a translation](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/Localization) -- [How to make a contribution](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/贡献指南) -- [How to cite the project](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/使用许可#如何引用该项目) -- [Project changelog](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/更新日志) -- [Project license](https://github.com/GaiZhenbiao/ChuanhuChatGPT/wiki/使用许可) - -## Starchart - -[![Star History Chart](https://api.star-history.com/svg?repos=GaiZhenbiao/ChuanhuChatGPT&type=Date)](https://star-history.com/#GaiZhenbiao/ChuanhuChatGPT&Date) - -## Contributors - - - - - -## Sponsor - -🐯 この企画が役に立ったら、遠慮なくコーラかコーヒーでもおごってください〜。 - -Buy Me A Coffee - -image diff --git a/spaces/JosePezantes/Violencia-politica-genero/style.css b/spaces/JosePezantes/Violencia-politica-genero/style.css deleted file mode 100644 index b4cfaad1ccba34b4029d6ac325b692f9f2e19cc6..0000000000000000000000000000000000000000 --- a/spaces/JosePezantes/Violencia-politica-genero/style.css +++ /dev/null @@ -1,64 +0,0 @@ -.stButton > button{ - color: #FFFFFF; - background-color: #C60C35; - font-size: 18px; - height: 35px; - width: 40%; - margin: 0%; - position: relative; - top: 50%; - left: 50%; - -ms-transform: translate(-50%, -50%); - transform: translate(-50%, -50%); -} - -.stButton> button:hover{ - color: #FFFFFF; - background-color: #920000; - border-color: #920000; - font-size: 20px; - height: 35px; - width: 40%; - -} -thead tr { - background-color: #009879; - text-align: left; -} -thead tr th { - color:#FFFFFF !important; -} -th, td { - padding: 12px 15px; -} - -table { - border-collapse: collapse; - margin: 25px 0; - font-size: 0.9em; - font-family: sans-serif; - min-width: 400px; - box-shadow: 0 0 20px rgba(0, 0, 0, 0.15); -} - -tbody tr { - border-bottom: 1px solid #dddddd; -} - -tbody tr:nth-of-type(even) { - background-color: #f3f3f3; -} - -tbody tr:last-of-type { - border-bottom: 2px solid #009879; -} - -tbody tr.active-row { - font-weight: bold; - color: #009879; -} - -.stAlert { - justify-content:baseline; - display: flex; -} \ No newline at end of file diff --git a/spaces/KANATA980122/bingo/README.md b/spaces/KANATA980122/bingo/README.md deleted file mode 100644 index 5d6936218874c647b5d22e13ad4be7edb8936f92..0000000000000000000000000000000000000000 --- a/spaces/KANATA980122/bingo/README.md +++ /dev/null @@ -1,28 +0,0 @@ ---- -title: bingo -emoji: 😊 -colorFrom: red -colorTo: red -sdk: docker -license: mit -duplicated_from: hf4all/bingo ---- - -
    - -# Bingo - -Bingo,一个让你呼吸顺畅 New Bing。 - -高度还原 New Bing 网页版的主要操作,国内可用,兼容绝大多数微软 Bing AI 的功能,可自行部署使用。 - -![Github stars](https://badgen.net/github/stars/weaigc/bingo?icon=github&label=stars) -![Gthub issues](https://img.shields.io/github/issues/weaigc/bingo) -[![docker build](https://github.com/weaigc/bingo/actions/workflows/docker.yml/badge.svg)](https://hub.docker.com/repository/docker/weaigc/bingo/) -[![docker hub](https://badgen.net/docker/size/weaigc/bingo?icon=docker&label=image%20size)](https://hub.docker.com/repository/docker/weaigc/bingo/) -[![MIT License](https://img.shields.io/badge/license-MIT-97c50f)](https://github.com/weaigc/bingo/blob/main/license) - -问题反馈请前往 https://github.com/weaigc/bingo/issues -
    - - diff --git a/spaces/KPCGD/bingo/src/components/chat-attachments.tsx b/spaces/KPCGD/bingo/src/components/chat-attachments.tsx deleted file mode 100644 index ef43d4e262935d263b6099138c56f7daade5299d..0000000000000000000000000000000000000000 --- a/spaces/KPCGD/bingo/src/components/chat-attachments.tsx +++ /dev/null @@ -1,37 +0,0 @@ -import Image from 'next/image' -import ClearIcon from '@/assets/images/clear.svg' -import RefreshIcon from '@/assets/images/refresh.svg' -import { FileItem } from '@/lib/bots/bing/types' -import { cn } from '@/lib/utils' -import { useBing } from '@/lib/hooks/use-bing' - -type ChatAttachmentsProps = Pick, 'attachmentList' | 'setAttachmentList' | 'uploadImage'> - -export function ChatAttachments({ attachmentList = [], setAttachmentList, uploadImage }: ChatAttachmentsProps) { - return attachmentList.length ? ( -
    - {attachmentList.map(file => ( -
    - {file.status === 'loading' && ( -
    -
    -
    ) - } - {file.status !== 'error' && ( -
    - -
    ) - } - {file.status === 'error' && ( -
    - refresh uploadImage(file.url)} /> -
    - )} - -
    - ))} -
    - ) : null -} diff --git a/spaces/Kangarroar/ApplioRVC-Inference/infer/lib/infer_pack/attentions.py b/spaces/Kangarroar/ApplioRVC-Inference/infer/lib/infer_pack/attentions.py deleted file mode 100644 index 19a0a670021aacb9ae1c7f8f54ca1bff8e065375..0000000000000000000000000000000000000000 --- a/spaces/Kangarroar/ApplioRVC-Inference/infer/lib/infer_pack/attentions.py +++ /dev/null @@ -1,417 +0,0 @@ -import copy -import math - -import numpy as np -import torch -from torch import nn -from torch.nn import functional as F - -from infer.lib.infer_pack import commons, modules -from infer.lib.infer_pack.modules import LayerNorm - - -class Encoder(nn.Module): - def __init__( - self, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size=1, - p_dropout=0.0, - window_size=10, - **kwargs - ): - super().__init__() - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.window_size = window_size - - self.drop = nn.Dropout(p_dropout) - self.attn_layers = nn.ModuleList() - self.norm_layers_1 = nn.ModuleList() - self.ffn_layers = nn.ModuleList() - self.norm_layers_2 = nn.ModuleList() - for i in range(self.n_layers): - self.attn_layers.append( - MultiHeadAttention( - hidden_channels, - hidden_channels, - n_heads, - p_dropout=p_dropout, - window_size=window_size, - ) - ) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append( - FFN( - hidden_channels, - hidden_channels, - filter_channels, - kernel_size, - p_dropout=p_dropout, - ) - ) - self.norm_layers_2.append(LayerNorm(hidden_channels)) - - def forward(self, x, x_mask): - attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) - x = x * x_mask - for i in range(self.n_layers): - y = self.attn_layers[i](x, x, attn_mask) - y = self.drop(y) - x = self.norm_layers_1[i](x + y) - - y = self.ffn_layers[i](x, x_mask) - y = self.drop(y) - x = self.norm_layers_2[i](x + y) - x = x * x_mask - return x - - -class Decoder(nn.Module): - def __init__( - self, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size=1, - p_dropout=0.0, - proximal_bias=False, - proximal_init=True, - **kwargs - ): - super().__init__() - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.proximal_bias = proximal_bias - self.proximal_init = proximal_init - - self.drop = nn.Dropout(p_dropout) - self.self_attn_layers = nn.ModuleList() - self.norm_layers_0 = nn.ModuleList() - self.encdec_attn_layers = nn.ModuleList() - self.norm_layers_1 = nn.ModuleList() - self.ffn_layers = nn.ModuleList() - self.norm_layers_2 = nn.ModuleList() - for i in range(self.n_layers): - self.self_attn_layers.append( - MultiHeadAttention( - hidden_channels, - hidden_channels, - n_heads, - p_dropout=p_dropout, - proximal_bias=proximal_bias, - proximal_init=proximal_init, - ) - ) - self.norm_layers_0.append(LayerNorm(hidden_channels)) - self.encdec_attn_layers.append( - MultiHeadAttention( - hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout - ) - ) - self.norm_layers_1.append(LayerNorm(hidden_channels)) - self.ffn_layers.append( - FFN( - hidden_channels, - hidden_channels, - filter_channels, - kernel_size, - p_dropout=p_dropout, - causal=True, - ) - ) - self.norm_layers_2.append(LayerNorm(hidden_channels)) - - def forward(self, x, x_mask, h, h_mask): - """ - x: decoder input - h: encoder output - """ - self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to( - device=x.device, dtype=x.dtype - ) - encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) - x = x * x_mask - for i in range(self.n_layers): - y = self.self_attn_layers[i](x, x, self_attn_mask) - y = self.drop(y) - x = self.norm_layers_0[i](x + y) - - y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) - y = self.drop(y) - x = self.norm_layers_1[i](x + y) - - y = self.ffn_layers[i](x, x_mask) - y = self.drop(y) - x = self.norm_layers_2[i](x + y) - x = x * x_mask - return x - - -class MultiHeadAttention(nn.Module): - def __init__( - self, - channels, - out_channels, - n_heads, - p_dropout=0.0, - window_size=None, - heads_share=True, - block_length=None, - proximal_bias=False, - proximal_init=False, - ): - super().__init__() - assert channels % n_heads == 0 - - self.channels = channels - self.out_channels = out_channels - self.n_heads = n_heads - self.p_dropout = p_dropout - self.window_size = window_size - self.heads_share = heads_share - self.block_length = block_length - self.proximal_bias = proximal_bias - self.proximal_init = proximal_init - self.attn = None - - self.k_channels = channels // n_heads - self.conv_q = nn.Conv1d(channels, channels, 1) - self.conv_k = nn.Conv1d(channels, channels, 1) - self.conv_v = nn.Conv1d(channels, channels, 1) - self.conv_o = nn.Conv1d(channels, out_channels, 1) - self.drop = nn.Dropout(p_dropout) - - if window_size is not None: - n_heads_rel = 1 if heads_share else n_heads - rel_stddev = self.k_channels**-0.5 - self.emb_rel_k = nn.Parameter( - torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) - * rel_stddev - ) - self.emb_rel_v = nn.Parameter( - torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) - * rel_stddev - ) - - nn.init.xavier_uniform_(self.conv_q.weight) - nn.init.xavier_uniform_(self.conv_k.weight) - nn.init.xavier_uniform_(self.conv_v.weight) - if proximal_init: - with torch.no_grad(): - self.conv_k.weight.copy_(self.conv_q.weight) - self.conv_k.bias.copy_(self.conv_q.bias) - - def forward(self, x, c, attn_mask=None): - q = self.conv_q(x) - k = self.conv_k(c) - v = self.conv_v(c) - - x, self.attn = self.attention(q, k, v, mask=attn_mask) - - x = self.conv_o(x) - return x - - def attention(self, query, key, value, mask=None): - # reshape [b, d, t] -> [b, n_h, t, d_k] - b, d, t_s, t_t = (*key.size(), query.size(2)) - query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) - key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) - value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) - - scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) - if self.window_size is not None: - assert ( - t_s == t_t - ), "Relative attention is only available for self-attention." - key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) - rel_logits = self._matmul_with_relative_keys( - query / math.sqrt(self.k_channels), key_relative_embeddings - ) - scores_local = self._relative_position_to_absolute_position(rel_logits) - scores = scores + scores_local - if self.proximal_bias: - assert t_s == t_t, "Proximal bias is only available for self-attention." - scores = scores + self._attention_bias_proximal(t_s).to( - device=scores.device, dtype=scores.dtype - ) - if mask is not None: - scores = scores.masked_fill(mask == 0, -1e4) - if self.block_length is not None: - assert ( - t_s == t_t - ), "Local attention is only available for self-attention." - block_mask = ( - torch.ones_like(scores) - .triu(-self.block_length) - .tril(self.block_length) - ) - scores = scores.masked_fill(block_mask == 0, -1e4) - p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] - p_attn = self.drop(p_attn) - output = torch.matmul(p_attn, value) - if self.window_size is not None: - relative_weights = self._absolute_position_to_relative_position(p_attn) - value_relative_embeddings = self._get_relative_embeddings( - self.emb_rel_v, t_s - ) - output = output + self._matmul_with_relative_values( - relative_weights, value_relative_embeddings - ) - output = ( - output.transpose(2, 3).contiguous().view(b, d, t_t) - ) # [b, n_h, t_t, d_k] -> [b, d, t_t] - return output, p_attn - - def _matmul_with_relative_values(self, x, y): - """ - x: [b, h, l, m] - y: [h or 1, m, d] - ret: [b, h, l, d] - """ - ret = torch.matmul(x, y.unsqueeze(0)) - return ret - - def _matmul_with_relative_keys(self, x, y): - """ - x: [b, h, l, d] - y: [h or 1, m, d] - ret: [b, h, l, m] - """ - ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) - return ret - - def _get_relative_embeddings(self, relative_embeddings, length): - max_relative_position = 2 * self.window_size + 1 - # Pad first before slice to avoid using cond ops. - pad_length = max(length - (self.window_size + 1), 0) - slice_start_position = max((self.window_size + 1) - length, 0) - slice_end_position = slice_start_position + 2 * length - 1 - if pad_length > 0: - padded_relative_embeddings = F.pad( - relative_embeddings, - commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]), - ) - else: - padded_relative_embeddings = relative_embeddings - used_relative_embeddings = padded_relative_embeddings[ - :, slice_start_position:slice_end_position - ] - return used_relative_embeddings - - def _relative_position_to_absolute_position(self, x): - """ - x: [b, h, l, 2*l-1] - ret: [b, h, l, l] - """ - batch, heads, length, _ = x.size() - # Concat columns of pad to shift from relative to absolute indexing. - x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])) - - # Concat extra elements so to add up to shape (len+1, 2*len-1). - x_flat = x.view([batch, heads, length * 2 * length]) - x_flat = F.pad( - x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]) - ) - - # Reshape and slice out the padded elements. - x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[ - :, :, :length, length - 1 : - ] - return x_final - - def _absolute_position_to_relative_position(self, x): - """ - x: [b, h, l, l] - ret: [b, h, l, 2*l-1] - """ - batch, heads, length, _ = x.size() - # padd along column - x = F.pad( - x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]) - ) - x_flat = x.view([batch, heads, length**2 + length * (length - 1)]) - # add 0's in the beginning that will skew the elements after reshape - x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) - x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] - return x_final - - def _attention_bias_proximal(self, length): - """Bias for self-attention to encourage attention to close positions. - Args: - length: an integer scalar. - Returns: - a Tensor with shape [1, 1, length, length] - """ - r = torch.arange(length, dtype=torch.float32) - diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) - return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) - - -class FFN(nn.Module): - def __init__( - self, - in_channels, - out_channels, - filter_channels, - kernel_size, - p_dropout=0.0, - activation=None, - causal=False, - ): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.activation = activation - self.causal = causal - - if causal: - self.padding = self._causal_padding - else: - self.padding = self._same_padding - - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) - self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) - self.drop = nn.Dropout(p_dropout) - - def forward(self, x, x_mask): - x = self.conv_1(self.padding(x * x_mask)) - if self.activation == "gelu": - x = x * torch.sigmoid(1.702 * x) - else: - x = torch.relu(x) - x = self.drop(x) - x = self.conv_2(self.padding(x * x_mask)) - return x * x_mask - - def _causal_padding(self, x): - if self.kernel_size == 1: - return x - pad_l = self.kernel_size - 1 - pad_r = 0 - padding = [[0, 0], [0, 0], [pad_l, pad_r]] - x = F.pad(x, commons.convert_pad_shape(padding)) - return x - - def _same_padding(self, x): - if self.kernel_size == 1: - return x - pad_l = (self.kernel_size - 1) // 2 - pad_r = self.kernel_size // 2 - padding = [[0, 0], [0, 0], [pad_l, pad_r]] - x = F.pad(x, commons.convert_pad_shape(padding)) - return x diff --git a/spaces/Kevin676/Real-Time-Voice-Cloning/encoder/data_objects/__init__.py b/spaces/Kevin676/Real-Time-Voice-Cloning/encoder/data_objects/__init__.py deleted file mode 100644 index ef04ade68544d0477a7f6deb4e7d51e97f592910..0000000000000000000000000000000000000000 --- a/spaces/Kevin676/Real-Time-Voice-Cloning/encoder/data_objects/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from encoder.data_objects.speaker_verification_dataset import SpeakerVerificationDataset -from encoder.data_objects.speaker_verification_dataset import SpeakerVerificationDataLoader diff --git a/spaces/Kreaols/ChuanhuChatGPT/run_Windows.bat b/spaces/Kreaols/ChuanhuChatGPT/run_Windows.bat deleted file mode 100644 index 4c18f9ccaeea0af972301ffdf48778641221f76d..0000000000000000000000000000000000000000 --- a/spaces/Kreaols/ChuanhuChatGPT/run_Windows.bat +++ /dev/null @@ -1,5 +0,0 @@ -@echo off -echo Opening ChuanhuChatGPT... - -REM Open powershell via bat -start powershell.exe -NoExit -Command "python ./ChuanhuChatbot.py" diff --git a/spaces/KyanChen/FunSR/models/mlp.py b/spaces/KyanChen/FunSR/models/mlp.py deleted file mode 100644 index 94415e26b57219c7e7e41d9c02a45ac9c5dd2874..0000000000000000000000000000000000000000 --- a/spaces/KyanChen/FunSR/models/mlp.py +++ /dev/null @@ -1,80 +0,0 @@ -import torch -import torch.nn as nn - -from models import register - - -@register('mlp_pw') -class MLP(nn.Module): - - def __init__(self, in_dim, out_dim, hidden_list): - super().__init__() - self.relu_0 = nn.ReLU(inplace=True) - self.relu_1 = nn.ReLU(inplace=True) - self.relu_2 = nn.ReLU(inplace=True) - self.relu_3 = nn.ReLU(inplace=True) - self.hidden=hidden_list[0] - - def forward(self, x,Coeff,basis,bias): - # x(b*h*w,580) - # Coeff(b*h*w,10) - # basis[0](10,16*580) - # basis[1](10,16*16) - # basis[2](10,16*16) - # basis[3](10,16*16) - # basis[4](10,3*16) - # bias[0](10,16) - # bias[1](10,16) - # bias[2](10,16) - # bias[3](10,16) - # bias[4](10,3) - device=x.device - # Applies a linear transformation to the incoming data: :math:`y = xA^T + b - # Layer0 - x = x.unsqueeze(1) - # sum( (b*h*w,1,580)*(b*h*w,16,580) , dim=2 ) -> (b*h*w,16) - x = torch.sum(x*torch.matmul(Coeff.to(device),basis[0].to(device)).view(-1,self.hidden,580),dim=2) - # (b*h*w,16) + (b*h*w,16) -> (b*h*w,16) - x = x + torch.matmul(Coeff.to(device),bias[0].to(device)) - x = self.relu_0(x) - # Layer1 - x = x.unsqueeze(1) - x = torch.sum(x*torch.matmul(Coeff.to(device),basis[1].to(device)).view(-1,self.hidden,self.hidden),dim=2) - x = x + torch.matmul(Coeff.to(device),bias[1].to(device)) - x = self.relu_1(x) - # Layer2 - x = x.unsqueeze(1) - x = torch.sum(x*torch.matmul(Coeff.to(device),basis[2].to(device)).view(-1,self.hidden,self.hidden),dim=2) - x = x + torch.matmul(Coeff.to(device),bias[2].to(device)) - x = self.relu_2(x) - # Layer3 - x = x.unsqueeze(1) - x = torch.sum(x*torch.matmul(Coeff.to(device),basis[3].to(device)).view(-1,self.hidden,self.hidden),dim=2) - x = x + torch.matmul(Coeff.to(device),bias[3].to(device)) - x = self.relu_3(x) - # Layer4 - x = x.unsqueeze(1) - x = torch.sum(x*torch.matmul(Coeff.to(device),basis[4].to(device)).view(-1,3,self.hidden),dim=2) - x = x + torch.matmul(Coeff.to(device),bias[4].to(device)) - - return x - - -@register('mlp') -class MLP(nn.Module): - - def __init__(self, in_dim, out_dim, hidden_list): - super().__init__() - layers = [] - lastv = in_dim - for hidden in hidden_list: - layers.append(nn.Linear(lastv, hidden)) - layers.append(nn.ReLU()) - lastv = hidden - layers.append(nn.Linear(lastv, out_dim)) - self.layers = nn.Sequential(*layers) - - def forward(self, x): - shape = x.shape[:-1] - x = self.layers(x.view(-1, x.shape[-1])) - return x.view(*shape, -1) diff --git a/spaces/KyanChen/RSPrompter/configs/rsprompter/predict_rsprompter_anchor_nwpu.py b/spaces/KyanChen/RSPrompter/configs/rsprompter/predict_rsprompter_anchor_nwpu.py deleted file mode 100644 index fe7b5b1934aa577d255dfae374c2e7e9c9c7159c..0000000000000000000000000000000000000000 --- a/spaces/KyanChen/RSPrompter/configs/rsprompter/predict_rsprompter_anchor_nwpu.py +++ /dev/null @@ -1,277 +0,0 @@ -custom_imports = dict( - imports=['mmseg.datasets', 'mmseg.models', 'mmdet.models'], - allow_failed_imports=False) - -sub_model_train = [ - 'panoptic_head', - 'data_preprocessor' -] - -sub_model_optim = { - 'panoptic_head': {'lr_mult': 1}, -} - - -max_epochs = 1200 -optimizer = dict(type='AdamW', lr=0.0005, weight_decay=0.0001) -param_scheduler = [ - dict( - type='LinearLR', - start_factor=0.0005, - by_epoch=True, - begin=0, - end=1, - convert_to_iter_based=True), - dict(type='CosineAnnealingLR', T_max=120, by_epoch=True, begin=1, end=120) -] - -param_scheduler_callback = dict(type='ParamSchedulerHook') -evaluator_ = dict(type='MeanAveragePrecision', iou_type='segm') -evaluator = dict( - val_evaluator=dict(type='MeanAveragePrecision', iou_type='segm')) - -image_size = (1024, 1024) - -data_preprocessor = dict( - type='mmdet.DetDataPreprocessor', - mean=[123.675, 116.28, 103.53], - std=[58.395, 57.12, 57.375], - bgr_to_rgb=True, - pad_size_divisor=32, - pad_mask=True, - mask_pad_value=0, -) - -num_things_classes = 10 -num_stuff_classes = 0 -num_classes = num_things_classes + num_stuff_classes -prompt_shape = (60, 4) - - -model_cfg = dict( - type='SegSAMAnchorPLer', - hyperparameters=dict( - optimizer=optimizer, - param_scheduler=param_scheduler, - evaluator=evaluator, - ), - need_train_names=sub_model_train, - data_preprocessor=data_preprocessor, - backbone=dict( - type='vit_h', - checkpoint='pretrain/sam/sam_vit_h_4b8939.pth', - # type='vit_b', - # checkpoint='pretrain/sam/sam_vit_b_01ec64.pth', - ), - panoptic_head=dict( - type='SAMAnchorInstanceHead', - neck=dict( - type='SAMAggregatorNeck', - in_channels=[1280] * 32, - # in_channels=[768] * 12, - inner_channels=32, - selected_channels=range(4, 32, 2), - # selected_channels=range(4, 12, 2), - out_channels=256, - up_sample_scale=4, - ), - rpn_head=dict( - type='mmdet.RPNHead', - in_channels=256, - feat_channels=256, - anchor_generator=dict( - type='mmdet.AnchorGenerator', - scales=[2, 4, 8, 16, 32, 64], - ratios=[0.5, 1.0, 2.0], - strides=[8, 16, 32]), - bbox_coder=dict( - type='mmdet.DeltaXYWHBBoxCoder', - target_means=[.0, .0, .0, .0], - target_stds=[1.0, 1.0, 1.0, 1.0]), - loss_cls=dict( - type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), - loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)), - roi_head=dict( - type='SAMAnchorPromptRoIHead', - bbox_roi_extractor=dict( - type='mmdet.SingleRoIExtractor', - roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), - out_channels=256, - featmap_strides=[8, 16, 32]), - bbox_head=dict( - type='mmdet.Shared2FCBBoxHead', - in_channels=256, - fc_out_channels=1024, - roi_feat_size=7, - num_classes=num_classes, - bbox_coder=dict( - type='mmdet.DeltaXYWHBBoxCoder', - target_means=[0., 0., 0., 0.], - target_stds=[0.1, 0.1, 0.2, 0.2]), - reg_class_agnostic=False, - loss_cls=dict( - type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), - loss_bbox=dict(type='mmdet.SmoothL1Loss', loss_weight=1.0)), - mask_roi_extractor=dict( - type='mmdet.SingleRoIExtractor', - roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), - out_channels=256, - featmap_strides=[8, 16, 32]), - mask_head=dict( - type='SAMPromptMaskHead', - per_query_point=prompt_shape[1], - with_sincos=True, - class_agnostic=True, - loss_mask=dict( - type='mmdet.CrossEntropyLoss', use_mask=True, loss_weight=1.0))), - # model training and testing settings - train_cfg=dict( - rpn=dict( - assigner=dict( - type='mmdet.MaxIoUAssigner', - pos_iou_thr=0.7, - neg_iou_thr=0.3, - min_pos_iou=0.3, - match_low_quality=True, - ignore_iof_thr=-1), - sampler=dict( - type='mmdet.RandomSampler', - num=512, - pos_fraction=0.5, - neg_pos_ub=-1, - add_gt_as_proposals=False), - allowed_border=-1, - pos_weight=-1, - debug=False), - rpn_proposal=dict( - nms_pre=2000, - max_per_img=1000, - nms=dict(type='nms', iou_threshold=0.7), - min_bbox_size=0), - rcnn=dict( - assigner=dict( - type='mmdet.MaxIoUAssigner', - pos_iou_thr=0.5, - neg_iou_thr=0.5, - min_pos_iou=0.5, - match_low_quality=True, - ignore_iof_thr=-1), - sampler=dict( - type='mmdet.RandomSampler', - num=256, - pos_fraction=0.25, - neg_pos_ub=-1, - add_gt_as_proposals=True), - mask_size=1024, - pos_weight=-1, - debug=False)), - test_cfg=dict( - rpn=dict( - nms_pre=1000, - max_per_img=1000, - nms=dict(type='nms', iou_threshold=0.7), - min_bbox_size=0), - rcnn=dict( - score_thr=0.05, - nms=dict(type='nms', iou_threshold=0.5), - max_per_img=100, - mask_thr_binary=0.5) - ) - ) -) - - -task_name = 'nwpu_ins' -exp_name = 'rsprompter_anchor_E20230601_0' -callbacks = [ - dict( - type='DetVisualizationHook', - draw=True, - interval=1, - score_thr=0.1, - show=False, - wait_time=1., - test_out_dir='visualization', - ) -] - - -vis_backends = [dict(type='mmdet.LocalVisBackend')] -visualizer = dict( - type='mmdet.DetLocalVisualizer', - vis_backends=vis_backends, - name='visualizer', - fig_save_cfg=dict( - frameon=False, - figsize=(40, 20), - # dpi=300, - ), - line_width=2, - alpha=0.8 -) - - -trainer_cfg = dict( - compiled_model=False, - accelerator='auto', - strategy='auto', - devices=[0], - default_root_dir=f'results/{task_name}/{exp_name}', - max_epochs=120, - logger=None, - callbacks=callbacks, - log_every_n_steps=20, - check_val_every_n_epoch=10, - benchmark=True, - use_distributed_sampler=True) - -backend_args = None -train_pipeline = [ - dict(type='mmdet.LoadImageFromFile'), - dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True), - dict(type='mmdet.Resize', scale=image_size), - dict(type='mmdet.RandomFlip', prob=0.5), - dict(type='mmdet.PackDetInputs') -] - -test_pipeline = [ - dict(type='mmdet.LoadImageFromFile', backend_args=backend_args), - dict(type='mmdet.Resize', scale=image_size), - # If you don't have a gt annotation, delete the pipeline - dict(type='mmdet.LoadAnnotations', with_bbox=True, with_mask=True), - dict( - type='mmdet.PackDetInputs', - meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', - 'scale_factor')) -] - -train_batch_size_per_gpu = 8 -train_num_workers = 4 -test_batch_size_per_gpu = 2 -test_num_workers = 0 -persistent_workers = False - -data_parent = '/mnt/search01/dataset/cky_data/NWPU10' -train_data_prefix = '' -val_data_prefix = '' - -dataset_type = 'NWPUInsSegDataset' -val_loader = dict( - batch_size=test_batch_size_per_gpu, - num_workers=test_num_workers, - persistent_workers=persistent_workers, - pin_memory=True, - dataset=dict( - type=dataset_type, - data_root=data_parent, - ann_file='NWPU_instances_val.json', - data_prefix=dict(img_path='positive image set'), - test_mode=True, - filter_cfg=dict(filter_empty_gt=True, min_size=32), - pipeline=test_pipeline, - backend_args=backend_args)) - -datamodule_cfg = dict( - type='PLDataModule', - predict_loader=val_loader, -) diff --git a/spaces/KyanChen/RSPrompter/mmdet/models/detectors/yolox.py b/spaces/KyanChen/RSPrompter/mmdet/models/detectors/yolox.py deleted file mode 100644 index df9190c93f7b043910fbce3bd5ee8dc0ef7b5f68..0000000000000000000000000000000000000000 --- a/spaces/KyanChen/RSPrompter/mmdet/models/detectors/yolox.py +++ /dev/null @@ -1,43 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from mmdet.registry import MODELS -from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig -from .single_stage import SingleStageDetector - - -@MODELS.register_module() -class YOLOX(SingleStageDetector): - r"""Implementation of `YOLOX: Exceeding YOLO Series in 2021 - `_ - - Args: - backbone (:obj:`ConfigDict` or dict): The backbone config. - neck (:obj:`ConfigDict` or dict): The neck config. - bbox_head (:obj:`ConfigDict` or dict): The bbox head config. - train_cfg (:obj:`ConfigDict` or dict, optional): The training config - of YOLOX. Defaults to None. - test_cfg (:obj:`ConfigDict` or dict, optional): The testing config - of YOLOX. Defaults to None. - data_preprocessor (:obj:`ConfigDict` or dict, optional): Config of - :class:`DetDataPreprocessor` to process the input data. - Defaults to None. - init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or - list[dict], optional): Initialization config dict. - Defaults to None. - """ - - def __init__(self, - backbone: ConfigType, - neck: ConfigType, - bbox_head: ConfigType, - train_cfg: OptConfigType = None, - test_cfg: OptConfigType = None, - data_preprocessor: OptConfigType = None, - init_cfg: OptMultiConfig = None) -> None: - super().__init__( - backbone=backbone, - neck=neck, - bbox_head=bbox_head, - train_cfg=train_cfg, - test_cfg=test_cfg, - data_preprocessor=data_preprocessor, - init_cfg=init_cfg) diff --git a/spaces/Lee008/PixelDayReal/examples/pixelArt/combine.py b/spaces/Lee008/PixelDayReal/examples/pixelArt/combine.py deleted file mode 100644 index 669a3752045c556f3bcd7aaa2c8b35bc536be136..0000000000000000000000000000000000000000 --- a/spaces/Lee008/PixelDayReal/examples/pixelArt/combine.py +++ /dev/null @@ -1,29 +0,0 @@ -import cv2 -import numpy as np - -class combine: - #Author: Alican Akca - def __init__(self, size = (400,300),images = [],background_image = None): - self.size = size - self.images = images - self.background_image = background_image - - def combiner(self,images,background_image): - original = images[0] - masked = images[1] - background = cv2.resize(background_image,(images[0].shape[1],images[0].shape[0])) - result = blend_images_using_mask(original, background, masked) - return result - -def mix_pixel(pix_1, pix_2, perc): - - return (perc/255 * pix_1) + ((255 - perc)/255 * pix_2) - -def blend_images_using_mask(img_orig, img_for_overlay, img_mask): - - if len(img_mask.shape) != 3: - img_mask = cv2.cvtColor(img_mask, cv2.COLOR_GRAY2BGR) - - img_res = mix_pixel(img_orig, img_for_overlay, img_mask) - - return cv2.cvtColor(img_res.astype(np.uint8), cv2.COLOR_BGR2RGB) \ No newline at end of file diff --git a/spaces/LobsterQQQ/text2img/app.py b/spaces/LobsterQQQ/text2img/app.py deleted file mode 100644 index fb2b21831a404ed649cd42553a2b7a35818e30d8..0000000000000000000000000000000000000000 --- a/spaces/LobsterQQQ/text2img/app.py +++ /dev/null @@ -1,246 +0,0 @@ -import os -from PIL import Image -import torch - -from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config -from point_e.diffusion.sampler import PointCloudSampler -from point_e.models.download import load_checkpoint -from point_e.models.configs import MODEL_CONFIGS, model_from_config -from point_e.util.plotting import plot_point_cloud -from point_e.util.pc_to_mesh import marching_cubes_mesh - -import skimage.measure - -from pyntcloud import PyntCloud -import matplotlib.colors -import plotly.graph_objs as go - -import trimesh - -import gradio as gr - - -state = "" -device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') - -def set_state(s): - print(s) - global state - state = s - -def get_state(): - return state - -set_state('Creating txt2mesh model...') -t2m_name = 'base40M-textvec' -t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device) -t2m_model.eval() -base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name]) - -set_state('Downloading txt2mesh checkpoint...') -t2m_model.load_state_dict(load_checkpoint(t2m_name, device)) - - -def load_img2mesh_model(model_name): - set_state(f'Creating img2mesh model {model_name}...') - i2m_name = model_name - i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device) - i2m_model.eval() - base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name]) - - set_state(f'Downloading img2mesh checkpoint {model_name}...') - i2m_model.load_state_dict(load_checkpoint(i2m_name, device)) - - return i2m_model, base_diffusion_i2m - -img2mesh_model_name = 'base40M' #'base300M' #'base1B' -i2m_model, base_diffusion_i2m = load_img2mesh_model(img2mesh_model_name) - - -set_state('Creating upsample model...') -upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) -upsampler_model.eval() -upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) - -set_state('Downloading upsampler checkpoint...') -upsampler_model.load_state_dict(load_checkpoint('upsample', device)) - -set_state('Creating SDF model...') -sdf_name = 'sdf' -sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device) -sdf_model.eval() - -set_state('Loading SDF model...') -sdf_model.load_state_dict(load_checkpoint(sdf_name, device)) - -stable_diffusion = gr.Blocks.load(name="spaces/runwayml/stable-diffusion-v1-5") - - -set_state('') - -def get_sampler(model_name, txt2obj, guidance_scale): - - global img2mesh_model_name - global base_diffusion_i2m - global i2m_model - if model_name != img2mesh_model_name: - img2mesh_model_name = model_name - i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name) - - return PointCloudSampler( - device=device, - models=[t2m_model if txt2obj else i2m_model, upsampler_model], - diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion], - num_points=[1024, 4096 - 1024], - aux_channels=['R', 'G', 'B'], - guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale], - model_kwargs_key_filter=('texts', '') if txt2obj else ("*",) - ) - -def generate_txt2img(prompt): - - prompt = f"“a 3d rendering of {prompt}, full view, white background" - gallery_dir = stable_diffusion(prompt, fn_index=2) - imgs = [os.path.join(gallery_dir, img) for img in os.listdir(gallery_dir) if os.path.splitext(img)[1] == '.jpg'] - - return imgs[0], gr.update(visible=True) - -def generate_3D(input, model_name='base40M', guidance_scale=3.0, grid_size=32): - - set_state('Entered generate function...') - - if isinstance(input, Image.Image): - input = prepare_img(input) - - # if input is a string, it's a text prompt - sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale) - - # Produce a sample from the model. - set_state('Sampling...') - samples = None - kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input]) - for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args): - samples = x - - set_state('Converting to point cloud...') - pc = sampler.output_to_point_clouds(samples)[0] - - set_state('Saving point cloud...') - with open("point_cloud.ply", "wb") as f: - pc.write_ply(f) - - set_state('Converting to mesh...') - save_ply(pc, 'mesh.ply', grid_size) - - set_state('') - - return pc_to_plot(pc), ply_to_obj('mesh.ply', '3d_model.obj'), gr.update(value=['3d_model.obj', 'mesh.ply', 'point_cloud.ply'], visible=True) - -def prepare_img(img): - - w, h = img.size - if w > h: - img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h) - else: - img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2)) - - # resize to 256x256 - img = img.resize((256, 256)) - - return img - -def pc_to_plot(pc): - - return go.Figure( - data=[ - go.Scatter3d( - x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2], - mode='markers', - marker=dict( - size=2, - color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])], - ) - ) - ], - layout=dict( - scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False)) - ), - ) - -def ply_to_obj(ply_file, obj_file): - mesh = trimesh.load(ply_file) - mesh.export(obj_file) - - return obj_file - -def save_ply(pc, file_name, grid_size): - - # Produce a mesh (with vertex colors) - mesh = marching_cubes_mesh( - pc=pc, - model=sdf_model, - batch_size=4096, - grid_size=grid_size, # increase to 128 for resolution used in evals - fill_vertex_channels=True, - progress=True, - ) - - # Write the mesh to a PLY file to import into some other program. - with open(file_name, 'wb') as f: - mesh.write_ply(f) - - -with gr.Blocks() as app: - - - with gr.Row(): - with gr.Column(): - with gr.Tab("Text to 3D"): - prompt = gr.Textbox(label="Prompt", placeholder="A cactus in a pot") - btn_generate_txt2obj = gr.Button(value="Generate") - - with gr.Tab("Image to 3D"): - img = gr.Image(label="Image") - gr.Markdown("Best results with images of 3D objects with no shadows on a white background.") - btn_generate_img2obj = gr.Button(value="Generate") - - with gr.Tab("Text to Image to 3D"): - gr.Markdown("Generate an image with Stable Diffusion, then convert it to 3D. Just enter the object you want to generate.") - prompt_sd = gr.Textbox(label="Prompt", placeholder="a 3d rendering of [your prompt], full view, white background") - btn_generate_txt2sd = gr.Button(value="Generate image") - img_sd = gr.Image(label="Image") - btn_generate_sd2obj = gr.Button(value="Convert to 3D", visible=False) - - with gr.Accordion("Advanced settings", open=False): - dropdown_models = gr.Dropdown(label="Model", value="base40M", choices=["base40M", "base300M"]) #, "base1B"]) - guidance_scale = gr.Slider(label="Guidance scale", value=3.0, minimum=3.0, maximum=10.0, step=0.1) - grid_size = gr.Slider(label="Grid size (for .obj 3D model)", value=32, minimum=16, maximum=128, step=16) - - with gr.Column(): - plot = gr.Plot(label="Point cloud") - # btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False) - model_3d = gr.Model3D(value=None) - file_out = gr.File(label="Files", visible=False) - - # state_info = state_info = gr.Textbox(label="State", show_label=False).style(container=False) - - - # inputs = [dropdown_models, prompt, img, guidance_scale, grid_size] - outputs = [plot, model_3d, file_out] - - prompt.submit(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs) - btn_generate_txt2obj.click(generate_3D, inputs=[prompt, dropdown_models, guidance_scale, grid_size], outputs=outputs) - - btn_generate_img2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs) - - prompt_sd.submit(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj]) - btn_generate_txt2sd.click(generate_txt2img, inputs=prompt_sd, outputs=[img_sd, btn_generate_sd2obj], queue=False) - btn_generate_sd2obj.click(generate_3D, inputs=[img, dropdown_models, guidance_scale, grid_size], outputs=outputs) - - # btn_pc_to_obj.click(ply_to_obj, inputs=plot, outputs=[model_3d, file_out]) - - - # app.load(get_state, inputs=[], outputs=state_info, every=0.5, show_progress=False) - - -app.queue(max_size=250, concurrency_count=6).launch() \ No newline at end of file diff --git a/spaces/Loren/Streamlit_OCR_comparator/configs/_base_/det_models/ocr_mask_rcnn_r50_fpn_ohem_poly.py b/spaces/Loren/Streamlit_OCR_comparator/configs/_base_/det_models/ocr_mask_rcnn_r50_fpn_ohem_poly.py deleted file mode 100644 index abbac26851d4eeef04fa904c8e69c50a58c2b54d..0000000000000000000000000000000000000000 --- a/spaces/Loren/Streamlit_OCR_comparator/configs/_base_/det_models/ocr_mask_rcnn_r50_fpn_ohem_poly.py +++ /dev/null @@ -1,126 +0,0 @@ -# model settings -model = dict( - type='OCRMaskRCNN', - text_repr_type='poly', - backbone=dict( - type='mmdet.ResNet', - depth=50, - num_stages=4, - out_indices=(0, 1, 2, 3), - frozen_stages=1, - norm_cfg=dict(type='BN', requires_grad=True), - norm_eval=True, - init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), - style='pytorch'), - neck=dict( - type='mmdet.FPN', - in_channels=[256, 512, 1024, 2048], - out_channels=256, - num_outs=5), - rpn_head=dict( - type='RPNHead', - in_channels=256, - feat_channels=256, - anchor_generator=dict( - type='AnchorGenerator', - scales=[4], - ratios=[0.17, 0.44, 1.13, 2.90, 7.46], - strides=[4, 8, 16, 32, 64]), - bbox_coder=dict( - type='DeltaXYWHBBoxCoder', - target_means=[.0, .0, .0, .0], - target_stds=[1.0, 1.0, 1.0, 1.0]), - loss_cls=dict( - type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), - loss_bbox=dict(type='L1Loss', loss_weight=1.0)), - roi_head=dict( - type='StandardRoIHead', - bbox_roi_extractor=dict( - type='SingleRoIExtractor', - roi_layer=dict(type='RoIAlign', output_size=7, sample_num=0), - out_channels=256, - featmap_strides=[4, 8, 16, 32]), - bbox_head=dict( - type='Shared2FCBBoxHead', - in_channels=256, - fc_out_channels=1024, - roi_feat_size=7, - num_classes=80, - bbox_coder=dict( - type='DeltaXYWHBBoxCoder', - target_means=[0., 0., 0., 0.], - target_stds=[0.1, 0.1, 0.2, 0.2]), - reg_class_agnostic=False, - loss_cls=dict( - type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), - loss_bbox=dict(type='L1Loss', loss_weight=1.0)), - mask_roi_extractor=dict( - type='SingleRoIExtractor', - roi_layer=dict(type='RoIAlign', output_size=14, sample_num=0), - out_channels=256, - featmap_strides=[4, 8, 16, 32]), - mask_head=dict( - type='FCNMaskHead', - num_convs=4, - in_channels=256, - conv_out_channels=256, - num_classes=80, - loss_mask=dict( - type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))), - # model training and testing settings - train_cfg=dict( - rpn=dict( - assigner=dict( - type='MaxIoUAssigner', - pos_iou_thr=0.7, - neg_iou_thr=0.3, - min_pos_iou=0.3, - match_low_quality=True, - ignore_iof_thr=-1), - sampler=dict( - type='RandomSampler', - num=256, - pos_fraction=0.5, - neg_pos_ub=-1, - add_gt_as_proposals=False), - allowed_border=-1, - pos_weight=-1, - debug=False), - rpn_proposal=dict( - nms_across_levels=False, - nms_pre=2000, - nms_post=1000, - max_per_img=1000, - nms=dict(type='nms', iou_threshold=0.7), - min_bbox_size=0), - rcnn=dict( - assigner=dict( - type='MaxIoUAssigner', - pos_iou_thr=0.5, - neg_iou_thr=0.5, - min_pos_iou=0.5, - match_low_quality=True, - ignore_iof_thr=-1, - gpu_assign_thr=50), - sampler=dict( - type='OHEMSampler', - num=512, - pos_fraction=0.25, - neg_pos_ub=-1, - add_gt_as_proposals=True), - mask_size=28, - pos_weight=-1, - debug=False)), - test_cfg=dict( - rpn=dict( - nms_across_levels=False, - nms_pre=1000, - nms_post=1000, - max_per_img=1000, - nms=dict(type='nms', iou_threshold=0.7), - min_bbox_size=0), - rcnn=dict( - score_thr=0.05, - nms=dict(type='nms', iou_threshold=0.5), - max_per_img=100, - mask_thr_binary=0.5))) diff --git a/spaces/MarcusSu1216/XingTong/utils.py b/spaces/MarcusSu1216/XingTong/utils.py deleted file mode 100644 index eceed38ff619a72886423dfc64c6b919cd03a2fc..0000000000000000000000000000000000000000 --- a/spaces/MarcusSu1216/XingTong/utils.py +++ /dev/null @@ -1,533 +0,0 @@ -import os -import glob -import re -import sys -import argparse -import logging -import json -import subprocess -import warnings -import random -import functools - -import librosa -import numpy as np -from scipy.io.wavfile import read -import torch -from torch.nn import functional as F -from modules.commons import sequence_mask -from hubert import hubert_model -from modules.crepe import CrepePitchExtractor - -MATPLOTLIB_FLAG = False - -logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) -logger = logging - -f0_bin = 256 -f0_max = 1100.0 -f0_min = 50.0 -f0_mel_min = 1127 * np.log(1 + f0_min / 700) -f0_mel_max = 1127 * np.log(1 + f0_max / 700) - - -# def normalize_f0(f0, random_scale=True): -# f0_norm = f0.clone() # create a copy of the input Tensor -# batch_size, _, frame_length = f0_norm.shape -# for i in range(batch_size): -# means = torch.mean(f0_norm[i, 0, :]) -# if random_scale: -# factor = random.uniform(0.8, 1.2) -# else: -# factor = 1 -# f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor -# return f0_norm -# def normalize_f0(f0, random_scale=True): -# means = torch.mean(f0[:, 0, :], dim=1, keepdim=True) -# if random_scale: -# factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device) -# else: -# factor = torch.ones(f0.shape[0], 1, 1).to(f0.device) -# f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1) -# return f0_norm - -def deprecated(func): - """This is a decorator which can be used to mark functions - as deprecated. It will result in a warning being emitted - when the function is used.""" - @functools.wraps(func) - def new_func(*args, **kwargs): - warnings.simplefilter('always', DeprecationWarning) # turn off filter - warnings.warn("Call to deprecated function {}.".format(func.__name__), - category=DeprecationWarning, - stacklevel=2) - warnings.simplefilter('default', DeprecationWarning) # reset filter - return func(*args, **kwargs) - return new_func - -def normalize_f0(f0, x_mask, uv, random_scale=True): - # calculate means based on x_mask - uv_sum = torch.sum(uv, dim=1, keepdim=True) - uv_sum[uv_sum == 0] = 9999 - means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum - - if random_scale: - factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device) - else: - factor = torch.ones(f0.shape[0], 1).to(f0.device) - # normalize f0 based on means and factor - f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1) - if torch.isnan(f0_norm).any(): - exit(0) - return f0_norm * x_mask - -def compute_f0_uv_torchcrepe(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512,device=None): - x = wav_numpy - if p_len is None: - p_len = x.shape[0]//hop_length - else: - assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error" - - f0_min = 50 - f0_max = 1100 - F0Creper = CrepePitchExtractor(hop_length=hop_length,f0_min=f0_min,f0_max=f0_max,device=device) - f0,uv = F0Creper(x[None,:].float(),sampling_rate,pad_to=p_len) - return f0,uv - -def plot_data_to_numpy(x, y): - global MATPLOTLIB_FLAG - if not MATPLOTLIB_FLAG: - import matplotlib - matplotlib.use("Agg") - MATPLOTLIB_FLAG = True - mpl_logger = logging.getLogger('matplotlib') - mpl_logger.setLevel(logging.WARNING) - import matplotlib.pylab as plt - import numpy as np - - fig, ax = plt.subplots(figsize=(10, 2)) - plt.plot(x) - plt.plot(y) - plt.tight_layout() - - fig.canvas.draw() - data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') - data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) - plt.close() - return data - - - -def interpolate_f0(f0): - ''' - 对F0进行插值处理 - ''' - - data = np.reshape(f0, (f0.size, 1)) - - vuv_vector = np.zeros((data.size, 1), dtype=np.float32) - vuv_vector[data > 0.0] = 1.0 - vuv_vector[data <= 0.0] = 0.0 - - ip_data = data - - frame_number = data.size - last_value = 0.0 - for i in range(frame_number): - if data[i] <= 0.0: - j = i + 1 - for j in range(i + 1, frame_number): - if data[j] > 0.0: - break - if j < frame_number - 1: - if last_value > 0.0: - step = (data[j] - data[i - 1]) / float(j - i) - for k in range(i, j): - ip_data[k] = data[i - 1] + step * (k - i + 1) - else: - for k in range(i, j): - ip_data[k] = data[j] - else: - for k in range(i, frame_number): - ip_data[k] = last_value - else: - ip_data[i] = data[i] - last_value = data[i] - - return ip_data[:,0], vuv_vector[:,0] - - -def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512): - import parselmouth - x = wav_numpy - if p_len is None: - p_len = x.shape[0]//hop_length - else: - assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error" - time_step = hop_length / sampling_rate * 1000 - f0_min = 50 - f0_max = 1100 - f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac( - time_step=time_step / 1000, voicing_threshold=0.6, - pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] - - pad_size=(p_len - len(f0) + 1) // 2 - if(pad_size>0 or p_len - len(f0) - pad_size>0): - f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant') - return f0 - -def resize_f0(x, target_len): - source = np.array(x) - source[source<0.001] = np.nan - target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source) - res = np.nan_to_num(target) - return res - -def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512): - import pyworld - if p_len is None: - p_len = wav_numpy.shape[0]//hop_length - f0, t = pyworld.dio( - wav_numpy.astype(np.double), - fs=sampling_rate, - f0_ceil=800, - frame_period=1000 * hop_length / sampling_rate, - ) - f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate) - for index, pitch in enumerate(f0): - f0[index] = round(pitch, 1) - return resize_f0(f0, p_len) - -def f0_to_coarse(f0): - is_torch = isinstance(f0, torch.Tensor) - f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) - f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 - - f0_mel[f0_mel <= 1] = 1 - f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 - f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) - assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) - return f0_coarse - - -def get_hubert_model(): - vec_path = "hubert/checkpoint_best_legacy_500.pt" - print("load model(s) from {}".format(vec_path)) - from fairseq import checkpoint_utils - models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task( - [vec_path], - suffix="", - ) - model = models[0] - model.eval() - return model - -def get_hubert_content(hmodel, wav_16k_tensor): - feats = wav_16k_tensor - if feats.dim() == 2: # double channels - feats = feats.mean(-1) - assert feats.dim() == 1, feats.dim() - feats = feats.view(1, -1) - padding_mask = torch.BoolTensor(feats.shape).fill_(False) - inputs = { - "source": feats.to(wav_16k_tensor.device), - "padding_mask": padding_mask.to(wav_16k_tensor.device), - "output_layer": 9, # layer 9 - } - with torch.no_grad(): - logits = hmodel.extract_features(**inputs) - feats = hmodel.final_proj(logits[0]) - return feats.transpose(1, 2) - - -def get_content(cmodel, y): - with torch.no_grad(): - c = cmodel.extract_features(y.squeeze(1))[0] - c = c.transpose(1, 2) - return c - - - -def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False): - assert os.path.isfile(checkpoint_path) - checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') - iteration = checkpoint_dict['iteration'] - learning_rate = checkpoint_dict['learning_rate'] - if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None: - optimizer.load_state_dict(checkpoint_dict['optimizer']) - saved_state_dict = checkpoint_dict['model'] - if hasattr(model, 'module'): - state_dict = model.module.state_dict() - else: - state_dict = model.state_dict() - new_state_dict = {} - for k, v in state_dict.items(): - try: - # assert "dec" in k or "disc" in k - # print("load", k) - new_state_dict[k] = saved_state_dict[k] - assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape) - except: - print("error, %s is not in the checkpoint" % k) - logger.info("%s is not in the checkpoint" % k) - new_state_dict[k] = v - if hasattr(model, 'module'): - model.module.load_state_dict(new_state_dict) - else: - model.load_state_dict(new_state_dict) - print("load ") - logger.info("Loaded checkpoint '{}' (iteration {})".format( - checkpoint_path, iteration)) - return model, optimizer, learning_rate, iteration - - -def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): - logger.info("Saving model and optimizer state at iteration {} to {}".format( - iteration, checkpoint_path)) - if hasattr(model, 'module'): - state_dict = model.module.state_dict() - else: - state_dict = model.state_dict() - torch.save({'model': state_dict, - 'iteration': iteration, - 'optimizer': optimizer.state_dict(), - 'learning_rate': learning_rate}, checkpoint_path) - -def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True): - """Freeing up space by deleting saved ckpts - - Arguments: - path_to_models -- Path to the model directory - n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth - sort_by_time -- True -> chronologically delete ckpts - False -> lexicographically delete ckpts - """ - ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))] - name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1))) - time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))) - sort_key = time_key if sort_by_time else name_key - x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key) - to_del = [os.path.join(path_to_models, fn) for fn in - (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])] - del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}") - del_routine = lambda x: [os.remove(x), del_info(x)] - rs = [del_routine(fn) for fn in to_del] - -def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): - for k, v in scalars.items(): - writer.add_scalar(k, v, global_step) - for k, v in histograms.items(): - writer.add_histogram(k, v, global_step) - for k, v in images.items(): - writer.add_image(k, v, global_step, dataformats='HWC') - for k, v in audios.items(): - writer.add_audio(k, v, global_step, audio_sampling_rate) - - -def latest_checkpoint_path(dir_path, regex="G_*.pth"): - f_list = glob.glob(os.path.join(dir_path, regex)) - f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) - x = f_list[-1] - print(x) - return x - - -def plot_spectrogram_to_numpy(spectrogram): - global MATPLOTLIB_FLAG - if not MATPLOTLIB_FLAG: - import matplotlib - matplotlib.use("Agg") - MATPLOTLIB_FLAG = True - mpl_logger = logging.getLogger('matplotlib') - mpl_logger.setLevel(logging.WARNING) - import matplotlib.pylab as plt - import numpy as np - - fig, ax = plt.subplots(figsize=(10,2)) - im = ax.imshow(spectrogram, aspect="auto", origin="lower", - interpolation='none') - plt.colorbar(im, ax=ax) - plt.xlabel("Frames") - plt.ylabel("Channels") - plt.tight_layout() - - fig.canvas.draw() - data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') - data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) - plt.close() - return data - - -def plot_alignment_to_numpy(alignment, info=None): - global MATPLOTLIB_FLAG - if not MATPLOTLIB_FLAG: - import matplotlib - matplotlib.use("Agg") - MATPLOTLIB_FLAG = True - mpl_logger = logging.getLogger('matplotlib') - mpl_logger.setLevel(logging.WARNING) - import matplotlib.pylab as plt - import numpy as np - - fig, ax = plt.subplots(figsize=(6, 4)) - im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', - interpolation='none') - fig.colorbar(im, ax=ax) - xlabel = 'Decoder timestep' - if info is not None: - xlabel += '\n\n' + info - plt.xlabel(xlabel) - plt.ylabel('Encoder timestep') - plt.tight_layout() - - fig.canvas.draw() - data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') - data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) - plt.close() - return data - - -def load_wav_to_torch(full_path): - sampling_rate, data = read(full_path) - return torch.FloatTensor(data.astype(np.float32)), sampling_rate - - -def load_filepaths_and_text(filename, split="|"): - with open(filename, encoding='utf-8') as f: - filepaths_and_text = [line.strip().split(split) for line in f] - return filepaths_and_text - - -def get_hparams(init=True): - parser = argparse.ArgumentParser() - parser.add_argument('-c', '--config', type=str, default="./configs/base.json", - help='JSON file for configuration') - parser.add_argument('-m', '--model', type=str, required=True, - help='Model name') - - args = parser.parse_args() - model_dir = os.path.join("./logs", args.model) - - if not os.path.exists(model_dir): - os.makedirs(model_dir) - - config_path = args.config - config_save_path = os.path.join(model_dir, "config.json") - if init: - with open(config_path, "r") as f: - data = f.read() - with open(config_save_path, "w") as f: - f.write(data) - else: - with open(config_save_path, "r") as f: - data = f.read() - config = json.loads(data) - - hparams = HParams(**config) - hparams.model_dir = model_dir - return hparams - - -def get_hparams_from_dir(model_dir): - config_save_path = os.path.join(model_dir, "config.json") - with open(config_save_path, "r") as f: - data = f.read() - config = json.loads(data) - - hparams =HParams(**config) - hparams.model_dir = model_dir - return hparams - - -def get_hparams_from_file(config_path): - with open(config_path, "r") as f: - data = f.read() - config = json.loads(data) - - hparams =HParams(**config) - return hparams - - -def check_git_hash(model_dir): - source_dir = os.path.dirname(os.path.realpath(__file__)) - if not os.path.exists(os.path.join(source_dir, ".git")): - logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( - source_dir - )) - return - - cur_hash = subprocess.getoutput("git rev-parse HEAD") - - path = os.path.join(model_dir, "githash") - if os.path.exists(path): - saved_hash = open(path).read() - if saved_hash != cur_hash: - logger.warn("git hash values are different. {}(saved) != {}(current)".format( - saved_hash[:8], cur_hash[:8])) - else: - open(path, "w").write(cur_hash) - - -def get_logger(model_dir, filename="train.log"): - global logger - logger = logging.getLogger(os.path.basename(model_dir)) - logger.setLevel(logging.DEBUG) - - formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") - if not os.path.exists(model_dir): - os.makedirs(model_dir) - h = logging.FileHandler(os.path.join(model_dir, filename)) - h.setLevel(logging.DEBUG) - h.setFormatter(formatter) - logger.addHandler(h) - return logger - - -def repeat_expand_2d(content, target_len): - # content : [h, t] - - src_len = content.shape[-1] - target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device) - temp = torch.arange(src_len+1) * target_len / src_len - current_pos = 0 - for i in range(target_len): - if i < temp[current_pos+1]: - target[:, i] = content[:, current_pos] - else: - current_pos += 1 - target[:, i] = content[:, current_pos] - - return target - - -class HParams(): - def __init__(self, **kwargs): - for k, v in kwargs.items(): - if type(v) == dict: - v = HParams(**v) - self[k] = v - - def keys(self): - return self.__dict__.keys() - - def items(self): - return self.__dict__.items() - - def values(self): - return self.__dict__.values() - - def __len__(self): - return len(self.__dict__) - - def __getitem__(self, key): - return getattr(self, key) - - def __setitem__(self, key, value): - return setattr(self, key, value) - - def __contains__(self, key): - return key in self.__dict__ - - def __repr__(self): - return self.__dict__.__repr__() - diff --git a/spaces/MisterZee/PIFu-Clothed-Human-Digitization/PIFu/apps/prt_util.py b/spaces/MisterZee/PIFu-Clothed-Human-Digitization/PIFu/apps/prt_util.py deleted file mode 100644 index 7eba32fa0b396f420b2e332abbb67135dbc14d6b..0000000000000000000000000000000000000000 --- a/spaces/MisterZee/PIFu-Clothed-Human-Digitization/PIFu/apps/prt_util.py +++ /dev/null @@ -1,142 +0,0 @@ -import os -import trimesh -import numpy as np -import math -from scipy.special import sph_harm -import argparse -from tqdm import tqdm - -def factratio(N, D): - if N >= D: - prod = 1.0 - for i in range(D+1, N+1): - prod *= i - return prod - else: - prod = 1.0 - for i in range(N+1, D+1): - prod *= i - return 1.0 / prod - -def KVal(M, L): - return math.sqrt(((2 * L + 1) / (4 * math.pi)) * (factratio(L - M, L + M))) - -def AssociatedLegendre(M, L, x): - if M < 0 or M > L or np.max(np.abs(x)) > 1.0: - return np.zeros_like(x) - - pmm = np.ones_like(x) - if M > 0: - somx2 = np.sqrt((1.0 + x) * (1.0 - x)) - fact = 1.0 - for i in range(1, M+1): - pmm = -pmm * fact * somx2 - fact = fact + 2 - - if L == M: - return pmm - else: - pmmp1 = x * (2 * M + 1) * pmm - if L == M+1: - return pmmp1 - else: - pll = np.zeros_like(x) - for i in range(M+2, L+1): - pll = (x * (2 * i - 1) * pmmp1 - (i + M - 1) * pmm) / (i - M) - pmm = pmmp1 - pmmp1 = pll - return pll - -def SphericalHarmonic(M, L, theta, phi): - if M > 0: - return math.sqrt(2.0) * KVal(M, L) * np.cos(M * phi) * AssociatedLegendre(M, L, np.cos(theta)) - elif M < 0: - return math.sqrt(2.0) * KVal(-M, L) * np.sin(-M * phi) * AssociatedLegendre(-M, L, np.cos(theta)) - else: - return KVal(0, L) * AssociatedLegendre(0, L, np.cos(theta)) - -def save_obj(mesh_path, verts): - file = open(mesh_path, 'w') - for v in verts: - file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2])) - file.close() - -def sampleSphericalDirections(n): - xv = np.random.rand(n,n) - yv = np.random.rand(n,n) - theta = np.arccos(1-2 * xv) - phi = 2.0 * math.pi * yv - - phi = phi.reshape(-1) - theta = theta.reshape(-1) - - vx = -np.sin(theta) * np.cos(phi) - vy = -np.sin(theta) * np.sin(phi) - vz = np.cos(theta) - return np.stack([vx, vy, vz], 1), phi, theta - -def getSHCoeffs(order, phi, theta): - shs = [] - for n in range(0, order+1): - for m in range(-n,n+1): - s = SphericalHarmonic(m, n, theta, phi) - shs.append(s) - - return np.stack(shs, 1) - -def computePRT(mesh_path, n, order): - mesh = trimesh.load(mesh_path, process=False) - vectors_orig, phi, theta = sampleSphericalDirections(n) - SH_orig = getSHCoeffs(order, phi, theta) - - w = 4.0 * math.pi / (n*n) - - origins = mesh.vertices - normals = mesh.vertex_normals - n_v = origins.shape[0] - - origins = np.repeat(origins[:,None], n, axis=1).reshape(-1,3) - normals = np.repeat(normals[:,None], n, axis=1).reshape(-1,3) - PRT_all = None - for i in tqdm(range(n)): - SH = np.repeat(SH_orig[None,(i*n):((i+1)*n)], n_v, axis=0).reshape(-1,SH_orig.shape[1]) - vectors = np.repeat(vectors_orig[None,(i*n):((i+1)*n)], n_v, axis=0).reshape(-1,3) - - dots = (vectors * normals).sum(1) - front = (dots > 0.0) - - delta = 1e-3*min(mesh.bounding_box.extents) - hits = mesh.ray.intersects_any(origins + delta * normals, vectors) - nohits = np.logical_and(front, np.logical_not(hits)) - - PRT = (nohits.astype(np.float) * dots)[:,None] * SH - - if PRT_all is not None: - PRT_all += (PRT.reshape(-1, n, SH.shape[1]).sum(1)) - else: - PRT_all = (PRT.reshape(-1, n, SH.shape[1]).sum(1)) - - PRT = w * PRT_all - - # NOTE: trimesh sometimes break the original vertex order, but topology will not change. - # when loading PRT in other program, use the triangle list from trimesh. - return PRT, mesh.faces - -def testPRT(dir_path, n=40): - if dir_path[-1] == '/': - dir_path = dir_path[:-1] - sub_name = dir_path.split('/')[-1][:-4] - obj_path = os.path.join(dir_path, sub_name + '_100k.obj') - os.makedirs(os.path.join(dir_path, 'bounce'), exist_ok=True) - - PRT, F = computePRT(obj_path, n, 2) - np.savetxt(os.path.join(dir_path, 'bounce', 'bounce0.txt'), PRT, fmt='%.8f') - np.save(os.path.join(dir_path, 'bounce', 'face.npy'), F) - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument('-i', '--input', type=str, default='/home/shunsuke/Downloads/rp_dennis_posed_004_OBJ') - parser.add_argument('-n', '--n_sample', type=int, default=40, help='squared root of number of sampling. the higher, the more accurate, but slower') - args = parser.parse_args() - - testPRT(args.input) diff --git a/spaces/Mountchicken/MAERec-Gradio/mmocr/datasets/preparers/dumpers/wild_receipt_openset_dumper.py b/spaces/Mountchicken/MAERec-Gradio/mmocr/datasets/preparers/dumpers/wild_receipt_openset_dumper.py deleted file mode 100644 index df6a462c8e29b04a877698ca96c9739579484874..0000000000000000000000000000000000000000 --- a/spaces/Mountchicken/MAERec-Gradio/mmocr/datasets/preparers/dumpers/wild_receipt_openset_dumper.py +++ /dev/null @@ -1,22 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import os.path as osp -from typing import List - -from mmocr.registry import DATA_DUMPERS -from mmocr.utils import list_to_file -from .base import BaseDumper - - -@DATA_DUMPERS.register_module() -class WildreceiptOpensetDumper(BaseDumper): - - def dump(self, data: List): - """Dump data to txt file. - - Args: - data (List): Data to be dumped. - """ - - filename = f'openset_{self.split}.txt' - dst_file = osp.join(self.data_root, filename) - list_to_file(dst_file, data) diff --git a/spaces/Mountchicken/MAERec-Gradio/mmocr/testing/__init__.py b/spaces/Mountchicken/MAERec-Gradio/mmocr/testing/__init__.py deleted file mode 100644 index 3000419b8fd971c4b05d87893e4d23df7459caf8..0000000000000000000000000000000000000000 --- a/spaces/Mountchicken/MAERec-Gradio/mmocr/testing/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from .data import create_dummy_dict_file, create_dummy_textdet_inputs - -__all__ = ['create_dummy_dict_file', 'create_dummy_textdet_inputs'] diff --git a/spaces/MrVicente/RA-BART/__init__.py b/spaces/MrVicente/RA-BART/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/NAACL2022/CLIP-Caption-Reward/retrieval/pth_loader.py b/spaces/NAACL2022/CLIP-Caption-Reward/retrieval/pth_loader.py deleted file mode 100644 index 388301edd763d54d95675ca2ed6eb502f77e1eb1..0000000000000000000000000000000000000000 --- a/spaces/NAACL2022/CLIP-Caption-Reward/retrieval/pth_loader.py +++ /dev/null @@ -1,334 +0,0 @@ -from __future__ import absolute_import -from __future__ import division -from __future__ import print_function - -import json -import h5py -from lmdbdict import lmdbdict -from lmdbdict.methods import DUMPS_FUNC, LOADS_FUNC -import os -import numpy as np -import numpy.random as npr -import random - -import torch -import torch.utils.data as data - -import multiprocessing -import six - -verbose = True -# import torch -# if torch.cuda.current_device() in [0, -1]: -if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] != '0': - verbose = False - -class HybridLoader: - """ - If db_path is a director, then use normal file loading - If lmdb, then load from lmdb - The loading method depend on extention. - - in_memory: if in_memory is True, we save all the features in memory - For individual np(y|z)s, we don't need to do that because the system will do this for us. - Should be useful for lmdb or h5. - (Copied this idea from vilbert) - """ - def __init__(self, db_path, ext, in_memory=False): - self.db_path = db_path - self.ext = ext - if self.ext == '.npy': - self.loader = lambda x: np.load(six.BytesIO(x)) - else: - self.loader = lambda x: np.load(six.BytesIO(x))['feat'] - if db_path.endswith('.lmdb'): - self.db_type = 'lmdb' - self.lmdb = lmdbdict(db_path, unsafe=True) - self.lmdb._key_dumps = DUMPS_FUNC['ascii'] - self.lmdb._value_loads = LOADS_FUNC['identity'] - elif db_path.endswith('.pth'): # Assume a key,value dictionary - self.db_type = 'pth' - self.feat_file = torch.load(db_path) - self.loader = lambda x: x - print('HybridLoader: ext is ignored') - elif db_path.endswith('h5'): - self.db_type = 'h5' - self.loader = lambda x: np.array(x).astype('float32') - else: - self.db_type = 'dir' - - self.in_memory = in_memory - if self.in_memory: - self.features = {} - - def get(self, key): - - if self.in_memory and key in self.features: - # We save f_input because we want to save the - # compressed bytes to save memory - f_input = self.features[key] - elif self.db_type == 'lmdb': - f_input = self.lmdb[key] - elif self.db_type == 'pth': - f_input = self.feat_file[key] - elif self.db_type == 'h5': - f_input = h5py.File(self.db_path, 'r')[key] - else: - f_input = open(os.path.join(self.db_path, key + self.ext), 'rb').read() - - if self.in_memory and key not in self.features: - self.features[key] = f_input - - # load image - feat = self.loader(f_input) - - return feat - -class CaptionDataset(data.Dataset): - - def get_vocab_size(self): - return self.vocab_size - - def get_vocab(self): - return self.ix_to_word - - def get_seq_length(self): - return self.seq_length - - def __init__(self, opt): - self.opt = opt - self.seq_per_img = opt.seq_per_img - - # feature related options - self.use_fc = getattr(opt, 'use_fc', True) - self.use_att = getattr(opt, 'use_att', True) - self.use_box = getattr(opt, 'use_box', 0) - self.norm_att_feat = getattr(opt, 'norm_att_feat', 0) - self.norm_box_feat = getattr(opt, 'norm_box_feat', 0) - - # load the json file which contains additional information about the dataset - if verbose: - print('DataLoader loading json file: ', opt.input_json) - self.info = json.load(open(self.opt.input_json)) - if 'ix_to_word' in self.info: - self.ix_to_word = self.info['ix_to_word'] - self.vocab_size = len(self.ix_to_word) - if verbose: - print('vocab size is ', self.vocab_size) - - # open the hdf5 file - if verbose: - print('DataLoader loading h5 file: ', opt.input_fc_dir, opt.input_att_dir, opt.input_box_dir, opt.input_label_h5) - """ - Setting input_label_h5 to none is used when only doing generation. - For example, when you need to test on coco test set. - """ - if self.opt.input_label_h5 != 'none': - self.h5_label_file = h5py.File(self.opt.input_label_h5, 'r', driver='core') - # load in the sequence data - seq_size = self.h5_label_file['labels'].shape - self.label = self.h5_label_file['labels'][:] - self.seq_length = seq_size[1] - if verbose: - print('max sequence length in data is', self.seq_length) - # load the pointers in full to RAM (should be small enough) - self.label_start_ix = self.h5_label_file['label_start_ix'][:] - self.label_end_ix = self.h5_label_file['label_end_ix'][:] - else: - self.seq_length = 1 - - self.data_in_memory = getattr(opt, 'data_in_memory', False) - self.fc_loader = HybridLoader(self.opt.input_fc_dir, '.npy', in_memory=self.data_in_memory) - self.att_loader = HybridLoader(self.opt.input_att_dir, '.npz', in_memory=self.data_in_memory) - self.box_loader = HybridLoader(self.opt.input_box_dir, '.npy', in_memory=self.data_in_memory) - - self.use_clipscore = getattr(opt, 'use_clipscore', False) - if self.use_clipscore: - self.clipscore_loader = HybridLoader(self.opt.input_clipscore_vis_dir, '.npy', in_memory=self.data_in_memory) - - - self.num_images = len(self.info['images']) # self.label_start_ix.shape[0] - if verbose: - print('read %d image features' %(self.num_images)) - - # separate out indexes for each of the provided splits - self.split_ix = {'train': [], 'val': [], 'test': []} - for ix in range(len(self.info['images'])): - img = self.info['images'][ix] - if not 'split' in img: - self.split_ix['train'].append(ix) - self.split_ix['val'].append(ix) - self.split_ix['test'].append(ix) - elif img['split'] == 'train': - self.split_ix['train'].append(ix) - elif img['split'] == 'val': - self.split_ix['val'].append(ix) - elif img['split'] == 'test': - self.split_ix['test'].append(ix) - elif opt.train_only == 0: # restval - self.split_ix['train'].append(ix) - - if verbose: - print('assigned %d images to split train' %len(self.split_ix['train'])) - print('assigned %d images to split val' %len(self.split_ix['val'])) - print('assigned %d images to split test' %len(self.split_ix['test'])) - - def get_captions(self, ix, seq_per_img): - # fetch the sequence labels - ix1 = self.label_start_ix[ix] - 1 #label_start_ix starts from 1 - ix2 = self.label_end_ix[ix] - 1 - ncap = ix2 - ix1 + 1 # number of captions available for this image - assert ncap > 0, 'an image does not have any label. this can be handled but right now isn\'t' - - if ncap < seq_per_img: - # we need to subsample (with replacement) - seq = np.zeros([seq_per_img, self.seq_length], dtype = 'int') - for q in range(seq_per_img): - ixl = random.randint(ix1,ix2) - seq[q, :] = self.label[ixl, :self.seq_length] - else: - ixl = random.randint(ix1, ix2 - seq_per_img + 1) - seq = self.label[ixl: ixl + seq_per_img, :self.seq_length] - - return seq - - def collate_func(self, batch): - seq_per_img = self.seq_per_img - - fc_batch = [] - att_batch = [] - label_batch = [] - - clip_vis_feat_batch = [] - - wrapped = False - - infos = [] - gts = [] - - for sample in batch: - # fetch image - if self.use_clipscore: - tmp_fc, tmp_att, tmp_seq, \ - ix, tmp_clip_vis_feat = sample - - clip_vis_feat_batch.append(tmp_clip_vis_feat) - else: - tmp_fc, tmp_att, tmp_seq, \ - ix = sample - - fc_batch.append(tmp_fc) - att_batch.append(tmp_att) - - tmp_label = np.zeros([seq_per_img, self.seq_length + 2], dtype = 'int') - if hasattr(self, 'h5_label_file'): - # if there is ground truth - tmp_label[:, 1 : self.seq_length + 1] = tmp_seq - label_batch.append(tmp_label) - - # Used for reward evaluation - if hasattr(self, 'h5_label_file'): - # if there is ground truth - gts.append(self.label[self.label_start_ix[ix] - 1: self.label_end_ix[ix]]) - else: - gts.append([]) - - # record associated info as well - info_dict = {} - info_dict['ix'] = ix - info_dict['id'] = self.info['images'][ix]['id'] - info_dict['file_path'] = self.info['images'][ix].get('file_path', '') - infos.append(info_dict) - - # #sort by att_feat length - # fc_batch, att_batch, label_batch, gts, infos = \ - # zip(*sorted(zip(fc_batch, att_batch, np.vsplit(label_batch, batch_size), gts, infos), key=lambda x: len(x[1]), reverse=True)) - if self.use_clipscore: - fc_batch, att_batch, label_batch, clip_vis_feat_batch, gts, infos = \ - zip(*sorted(zip(fc_batch, att_batch, label_batch, clip_vis_feat_batch, gts, infos), key=lambda x: 0, reverse=True)) - else: - fc_batch, att_batch, label_batch, gts, infos = \ - zip(*sorted(zip(fc_batch, att_batch, label_batch, gts, infos), key=lambda x: 0, reverse=True)) - data = {} - data['fc_feats'] = np.stack(fc_batch) - # merge att_feats - max_att_len = max([_.shape[0] for _ in att_batch]) - data['att_feats'] = np.zeros([len(att_batch), max_att_len, att_batch[0].shape[1]], dtype = 'float32') - for i in range(len(att_batch)): - data['att_feats'][i, :att_batch[i].shape[0]] = att_batch[i] - data['att_masks'] = np.zeros(data['att_feats'].shape[:2], dtype='float32') - for i in range(len(att_batch)): - data['att_masks'][i, :att_batch[i].shape[0]] = 1 - # set att_masks to None if attention features have same length - if data['att_masks'].sum() == data['att_masks'].size: - data['att_masks'] = None - - if self.use_clipscore: - data['clip_vis_feats'] = np.stack(clip_vis_feat_batch) - - data['labels'] = np.vstack(label_batch) - # generate mask - nonzeros = np.array(list(map(lambda x: (x != 0).sum()+2, data['labels']))) - mask_batch = np.zeros([data['labels'].shape[0], self.seq_length + 2], dtype = 'float32') - for ix, row in enumerate(mask_batch): - row[:nonzeros[ix]] = 1 - data['masks'] = mask_batch - data['labels'] = data['labels'].reshape(len(batch), seq_per_img, -1) - data['masks'] = data['masks'].reshape(len(batch), seq_per_img, -1) - - data['gts'] = gts # all ground truth captions of each images - data['infos'] = infos - - data = {k:torch.from_numpy(v) if type(v) is np.ndarray else v for k,v in data.items()} # Turn all ndarray to torch tensor - - return data - - def __getitem__(self, ix): - """This function returns a tuple that is further passed to collate_fn - """ - if self.use_att: - att_feat = self.att_loader.get(str(self.info['images'][ix]['id'])) - # Reshape to K x C - att_feat = att_feat.reshape(-1, att_feat.shape[-1]) - if self.norm_att_feat: - att_feat = att_feat / np.linalg.norm(att_feat, 2, 1, keepdims=True) - if self.use_box: - box_feat = self.box_loader.get(str(self.info['images'][ix]['id'])) - # devided by image width and height - x1,y1,x2,y2 = np.hsplit(box_feat, 4) - h,w = self.info['images'][ix]['height'], self.info['images'][ix]['width'] - box_feat = np.hstack((x1/w, y1/h, x2/w, y2/h, (x2-x1)*(y2-y1)/(w*h))) # question? x2-x1+1?? - if self.norm_box_feat: - box_feat = box_feat / np.linalg.norm(box_feat, 2, 1, keepdims=True) - att_feat = np.hstack([att_feat, box_feat]) - # sort the features by the size of boxes - att_feat = np.stack(sorted(att_feat, key=lambda x:x[-1], reverse=True)) - else: - att_feat = np.zeros((0,0), dtype='float32') - if self.use_fc: - try: - fc_feat = self.fc_loader.get(str(self.info['images'][ix]['id'])) - except: - # Use average of attention when there is no fc provided (For bottomup feature) - fc_feat = att_feat.mean(0) - else: - fc_feat = np.zeros((0), dtype='float32') - if hasattr(self, 'h5_label_file'): - seq = self.get_captions(ix, self.seq_per_img) - else: - seq = None - - if self.use_clipscore: - clip_vis_feat = self.clipscore_loader.get( - str(self.info['images'][ix]['id'])) - - return (fc_feat, - att_feat, seq, - ix, clip_vis_feat) - - return (fc_feat, - att_feat, seq, - ix) - - def __len__(self): - return len(self.info['images']) diff --git a/spaces/NATSpeech/PortaSpeech/docs/prepare_data.md b/spaces/NATSpeech/PortaSpeech/docs/prepare_data.md deleted file mode 100644 index cd46cb5b57083372fb1c85228bc5cef9019c4fde..0000000000000000000000000000000000000000 --- a/spaces/NATSpeech/PortaSpeech/docs/prepare_data.md +++ /dev/null @@ -1,25 +0,0 @@ -# Prepare Dataset - -## LJSpeech - -### Download Dataset -```bash -mkdir -p data/raw/ljspeech -cd data/raw -wget https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2 -bzip2 -d LJSpeech-1.1.tar.bz2 -tar -xvf LJSpeech-1.1.tar -cd ../../ -``` - -### Forced Align and Preprocess Dataset -```bash -# Preprocess step: text and unify the file structure. -python data_gen/tts/runs/preprocess.py --config $CONFIG_NAME -# Align step: MFA alignment. -python data_gen/tts/runs/train_mfa_align.py --config $CONFIG_NAME -# Binarization step: Binarize data for fast IO. You only need to rerun this line when running different task if you have `preprocess`ed and `align`ed the dataset before. -python data_gen/tts/runs/binarize.py --config $CONFIG_NAME -``` - -## More datasets will be supported soon... \ No newline at end of file diff --git a/spaces/NATSpeech/PortaSpeech/modules/tts/diffspeech/shallow_diffusion_tts.py b/spaces/NATSpeech/PortaSpeech/modules/tts/diffspeech/shallow_diffusion_tts.py deleted file mode 100644 index dcfbf2f62dc072eab69bd04bd2ae28b09e41fde0..0000000000000000000000000000000000000000 --- a/spaces/NATSpeech/PortaSpeech/modules/tts/diffspeech/shallow_diffusion_tts.py +++ /dev/null @@ -1,281 +0,0 @@ -import math -import random -from functools import partial -from inspect import isfunction -import numpy as np -import torch -import torch.nn.functional as F -from torch import nn -from tqdm import tqdm - -from modules.tts.fs2_orig import FastSpeech2Orig -from modules.tts.diffspeech.net import DiffNet -from modules.tts.commons.align_ops import expand_states - - -def exists(x): - return x is not None - - -def default(val, d): - if exists(val): - return val - return d() if isfunction(d) else d - - -# gaussian diffusion trainer class - -def extract(a, t, x_shape): - b, *_ = t.shape - out = a.gather(-1, t) - return out.reshape(b, *((1,) * (len(x_shape) - 1))) - - -def noise_like(shape, device, repeat=False): - repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) - noise = lambda: torch.randn(shape, device=device) - return repeat_noise() if repeat else noise() - - -def linear_beta_schedule(timesteps, max_beta=0.01): - """ - linear schedule - """ - betas = np.linspace(1e-4, max_beta, timesteps) - return betas - - -def cosine_beta_schedule(timesteps, s=0.008): - """ - cosine schedule - as proposed in https://openreview.net/forum?id=-NEXDKk8gZ - """ - steps = timesteps + 1 - x = np.linspace(0, steps, steps) - alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 - alphas_cumprod = alphas_cumprod / alphas_cumprod[0] - betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) - return np.clip(betas, a_min=0, a_max=0.999) - - -beta_schedule = { - "cosine": cosine_beta_schedule, - "linear": linear_beta_schedule, -} - - -DIFF_DECODERS = { - 'wavenet': lambda hp: DiffNet(hp), -} - - -class AuxModel(FastSpeech2Orig): - def forward(self, txt_tokens, mel2ph=None, spk_embed=None, spk_id=None, - f0=None, uv=None, energy=None, infer=False, **kwargs): - ret = {} - encoder_out = self.encoder(txt_tokens) # [B, T, C] - src_nonpadding = (txt_tokens > 0).float()[:, :, None] - style_embed = self.forward_style_embed(spk_embed, spk_id) - - # add dur - dur_inp = (encoder_out + style_embed) * src_nonpadding - mel2ph = self.forward_dur(dur_inp, mel2ph, txt_tokens, ret) - tgt_nonpadding = (mel2ph > 0).float()[:, :, None] - decoder_inp = decoder_inp_ = expand_states(encoder_out, mel2ph) - - # add pitch and energy embed - if self.hparams['use_pitch_embed']: - pitch_inp = (decoder_inp_ + style_embed) * tgt_nonpadding - decoder_inp = decoder_inp + self.forward_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out) - - # add pitch and energy embed - if self.hparams['use_energy_embed']: - energy_inp = (decoder_inp_ + style_embed) * tgt_nonpadding - decoder_inp = decoder_inp + self.forward_energy(energy_inp, energy, ret) - - # decoder input - ret['decoder_inp'] = decoder_inp = (decoder_inp + style_embed) * tgt_nonpadding - if self.hparams['dec_inp_add_noise']: - B, T, _ = decoder_inp.shape - z = kwargs.get('adv_z', torch.randn([B, T, self.z_channels])).to(decoder_inp.device) - ret['adv_z'] = z - decoder_inp = torch.cat([decoder_inp, z], -1) - decoder_inp = self.dec_inp_noise_proj(decoder_inp) * tgt_nonpadding - if kwargs['skip_decoder']: - return ret - ret['mel_out'] = self.forward_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs) - return ret - - -class GaussianDiffusion(nn.Module): - def __init__(self, dict_size, hparams, out_dims=None): - super().__init__() - self.hparams = hparams - out_dims = hparams['audio_num_mel_bins'] - denoise_fn = DIFF_DECODERS[hparams['diff_decoder_type']](hparams) - timesteps = hparams['timesteps'] - K_step = hparams['K_step'] - loss_type = hparams['diff_loss_type'] - spec_min = hparams['spec_min'] - spec_max = hparams['spec_max'] - - self.denoise_fn = denoise_fn - self.fs2 = AuxModel(dict_size, hparams) - self.mel_bins = out_dims - - if hparams['schedule_type'] == 'linear': - betas = linear_beta_schedule(timesteps, hparams['max_beta']) - else: - betas = cosine_beta_schedule(timesteps) - - alphas = 1. - betas - alphas_cumprod = np.cumprod(alphas, axis=0) - alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) - - timesteps, = betas.shape - self.num_timesteps = int(timesteps) - self.K_step = K_step - self.loss_type = loss_type - - to_torch = partial(torch.tensor, dtype=torch.float32) - - self.register_buffer('betas', to_torch(betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) - - # calculations for posterior q(x_{t-1} | x_t, x_0) - posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) - # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) - self.register_buffer('posterior_variance', to_torch(posterior_variance)) - # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain - self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) - self.register_buffer('posterior_mean_coef1', to_torch( - betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) - self.register_buffer('posterior_mean_coef2', to_torch( - (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) - - self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']]) - self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']]) - - def q_mean_variance(self, x_start, t): - mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start - variance = extract(1. - self.alphas_cumprod, t, x_start.shape) - log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) - return mean, variance, log_variance - - def predict_start_from_noise(self, x_t, t, noise): - return ( - extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - - extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise - ) - - def q_posterior(self, x_start, x_t, t): - posterior_mean = ( - extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + - extract(self.posterior_mean_coef2, t, x_t.shape) * x_t - ) - posterior_variance = extract(self.posterior_variance, t, x_t.shape) - posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) - return posterior_mean, posterior_variance, posterior_log_variance_clipped - - def p_mean_variance(self, x, t, cond, clip_denoised: bool): - noise_pred = self.denoise_fn(x, t, cond=cond) - x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) - - if clip_denoised: - x_recon.clamp_(-1., 1.) - - model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) - return model_mean, posterior_variance, posterior_log_variance - - @torch.no_grad() - def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): - b, *_, device = *x.shape, x.device - model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised) - noise = noise_like(x.shape, device, repeat_noise) - # no noise when t == 0 - nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) - return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise - - def q_sample(self, x_start, t, noise=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - return ( - extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + - extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise - ) - - def p_losses(self, x_start, t, cond, noise=None, nonpadding=None): - noise = default(noise, lambda: torch.randn_like(x_start)) - - x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) - x_recon = self.denoise_fn(x_noisy, t, cond) - - if self.loss_type == 'l1': - if nonpadding is not None: - loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean() - else: - # print('are you sure w/o nonpadding?') - loss = (noise - x_recon).abs().mean() - - elif self.loss_type == 'l2': - loss = F.mse_loss(noise, x_recon) - else: - raise NotImplementedError() - - return loss - - def forward(self, txt_tokens, mel2ph=None, spk_embed=None, spk_id=None, - ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs): - b, *_, device = *txt_tokens.shape, txt_tokens.device - ret = self.fs2(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id, - f0=f0, uv=uv, energy=energy, infer=infer, skip_decoder=(not infer), **kwargs) - # (txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy, - # skip_decoder=(not infer), infer=infer, **kwargs) - cond = ret['decoder_inp'].transpose(1, 2) - - if not infer: - t = torch.randint(0, self.K_step, (b,), device=device).long() - x = ref_mels - x = self.norm_spec(x) - x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T] - ret['diff_loss'] = self.p_losses(x, t, cond) - # nonpadding = (mel2ph != 0).float() - # ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding) - ret['mel_out'] = None - else: - ret['fs2_mel'] = ret['mel_out'] - fs2_mels = ret['mel_out'] - t = self.K_step - fs2_mels = self.norm_spec(fs2_mels) - fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :] - - x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long()) - if self.hparams.get('gaussian_start') is not None and self.hparams['gaussian_start']: - print('===> gaussian start.') - shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2]) - x = torch.randn(shape, device=device) - for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): - x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) - x = x[:, 0].transpose(1, 2) - ret['mel_out'] = self.denorm_spec(x) - - return ret - - def norm_spec(self, x): - return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 - - def denorm_spec(self, x): - return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min - - def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph): - return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph) - - def out2mel(self, x): - return x \ No newline at end of file diff --git a/spaces/NCTCMumbai/NCTC/models/official/nlp/modeling/networks/albert_transformer_encoder.py b/spaces/NCTCMumbai/NCTC/models/official/nlp/modeling/networks/albert_transformer_encoder.py deleted file mode 100644 index 398fb00c18c7341765beec50e9b0e6ecaee46e5c..0000000000000000000000000000000000000000 --- a/spaces/NCTCMumbai/NCTC/models/official/nlp/modeling/networks/albert_transformer_encoder.py +++ /dev/null @@ -1,192 +0,0 @@ -# Copyright 2019 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== -"""ALBERT (https://arxiv.org/abs/1810.04805) text encoder network.""" -# pylint: disable=g-classes-have-attributes -from __future__ import absolute_import -from __future__ import division -# from __future__ import google_type_annotations -from __future__ import print_function - -import tensorflow as tf - -from official.modeling import activations -from official.nlp.modeling import layers - - -@tf.keras.utils.register_keras_serializable(package='Text') -class AlbertTransformerEncoder(tf.keras.Model): - """ALBERT (https://arxiv.org/abs/1810.04805) text encoder network. - - This network implements the encoder described in the paper "ALBERT: A Lite - BERT for Self-supervised Learning of Language Representations" - (https://arxiv.org/abs/1909.11942). - - Compared with BERT (https://arxiv.org/abs/1810.04805), ALBERT refactorizes - embedding parameters into two smaller matrices and shares parameters - across layers. - - The default values for this object are taken from the ALBERT-Base - implementation described in the paper. - - Arguments: - vocab_size: The size of the token vocabulary. - embedding_width: The width of the word embeddings. If the embedding width is - not equal to hidden size, embedding parameters will be factorized into two - matrices in the shape of ['vocab_size', 'embedding_width'] and - ['embedding_width', 'hidden_size'] ('embedding_width' is usually much - smaller than 'hidden_size'). - hidden_size: The size of the transformer hidden layers. - num_layers: The number of transformer layers. - num_attention_heads: The number of attention heads for each transformer. The - hidden size must be divisible by the number of attention heads. - sequence_length: The sequence length that this encoder expects. If None, the - sequence length is dynamic; if an integer, the encoder will require - sequences padded to this length. - max_sequence_length: The maximum sequence length that this encoder can - consume. If None, max_sequence_length uses the value from sequence length. - This determines the variable shape for positional embeddings. - type_vocab_size: The number of types that the 'type_ids' input can take. - intermediate_size: The intermediate size for the transformer layers. - activation: The activation to use for the transformer layers. - dropout_rate: The dropout rate to use for the transformer layers. - attention_dropout_rate: The dropout rate to use for the attention layers - within the transformer layers. - initializer: The initialzer to use for all weights in this encoder. - """ - - def __init__(self, - vocab_size, - embedding_width=128, - hidden_size=768, - num_layers=12, - num_attention_heads=12, - sequence_length=512, - max_sequence_length=None, - type_vocab_size=16, - intermediate_size=3072, - activation=activations.gelu, - dropout_rate=0.1, - attention_dropout_rate=0.1, - initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02), - **kwargs): - activation = tf.keras.activations.get(activation) - initializer = tf.keras.initializers.get(initializer) - - if not max_sequence_length: - max_sequence_length = sequence_length - self._self_setattr_tracking = False - self._config_dict = { - 'vocab_size': vocab_size, - 'embedding_width': embedding_width, - 'hidden_size': hidden_size, - 'num_layers': num_layers, - 'num_attention_heads': num_attention_heads, - 'sequence_length': sequence_length, - 'max_sequence_length': max_sequence_length, - 'type_vocab_size': type_vocab_size, - 'intermediate_size': intermediate_size, - 'activation': tf.keras.activations.serialize(activation), - 'dropout_rate': dropout_rate, - 'attention_dropout_rate': attention_dropout_rate, - 'initializer': tf.keras.initializers.serialize(initializer), - } - - word_ids = tf.keras.layers.Input( - shape=(sequence_length,), dtype=tf.int32, name='input_word_ids') - mask = tf.keras.layers.Input( - shape=(sequence_length,), dtype=tf.int32, name='input_mask') - type_ids = tf.keras.layers.Input( - shape=(sequence_length,), dtype=tf.int32, name='input_type_ids') - - if embedding_width is None: - embedding_width = hidden_size - self._embedding_layer = layers.OnDeviceEmbedding( - vocab_size=vocab_size, - embedding_width=embedding_width, - initializer=initializer, - name='word_embeddings') - word_embeddings = self._embedding_layer(word_ids) - - # Always uses dynamic slicing for simplicity. - self._position_embedding_layer = layers.PositionEmbedding( - initializer=initializer, - use_dynamic_slicing=True, - max_sequence_length=max_sequence_length, - name='position_embedding') - position_embeddings = self._position_embedding_layer(word_embeddings) - - type_embeddings = ( - layers.OnDeviceEmbedding( - vocab_size=type_vocab_size, - embedding_width=embedding_width, - initializer=initializer, - use_one_hot=True, - name='type_embeddings')(type_ids)) - - embeddings = tf.keras.layers.Add()( - [word_embeddings, position_embeddings, type_embeddings]) - embeddings = ( - tf.keras.layers.LayerNormalization( - name='embeddings/layer_norm', - axis=-1, - epsilon=1e-12, - dtype=tf.float32)(embeddings)) - embeddings = (tf.keras.layers.Dropout(rate=dropout_rate)(embeddings)) - # We project the 'embedding' output to 'hidden_size' if it is not already - # 'hidden_size'. - if embedding_width != hidden_size: - embeddings = tf.keras.layers.experimental.EinsumDense( - '...x,xy->...y', - output_shape=hidden_size, - bias_axes='y', - kernel_initializer=initializer, - name='embedding_projection')( - embeddings) - - data = embeddings - attention_mask = layers.SelfAttentionMask()([data, mask]) - shared_layer = layers.Transformer( - num_attention_heads=num_attention_heads, - intermediate_size=intermediate_size, - intermediate_activation=activation, - dropout_rate=dropout_rate, - attention_dropout_rate=attention_dropout_rate, - kernel_initializer=initializer, - name='transformer') - for _ in range(num_layers): - data = shared_layer([data, attention_mask]) - - first_token_tensor = ( - tf.keras.layers.Lambda(lambda x: tf.squeeze(x[:, 0:1, :], axis=1))(data) - ) - cls_output = tf.keras.layers.Dense( - units=hidden_size, - activation='tanh', - kernel_initializer=initializer, - name='pooler_transform')( - first_token_tensor) - - super(AlbertTransformerEncoder, self).__init__( - inputs=[word_ids, mask, type_ids], outputs=[data, cls_output], **kwargs) - - def get_embedding_table(self): - return self._embedding_layer.embeddings - - def get_config(self): - return self._config_dict - - @classmethod - def from_config(cls, config): - return cls(**config) diff --git a/spaces/NCTCMumbai/NCTC/models/research/attention_ocr/python/data_provider_test.py b/spaces/NCTCMumbai/NCTC/models/research/attention_ocr/python/data_provider_test.py deleted file mode 100644 index 551bc75e02cc470c40aad8a4066b6bba7ceeb62c..0000000000000000000000000000000000000000 --- a/spaces/NCTCMumbai/NCTC/models/research/attention_ocr/python/data_provider_test.py +++ /dev/null @@ -1,72 +0,0 @@ -# Copyright 2017 The TensorFlow Authors All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================== - -"""Tests for data_provider.""" - -import numpy as np -import tensorflow as tf -from tensorflow.contrib.slim import queues - -import datasets -import data_provider - - -class DataProviderTest(tf.test.TestCase): - def setUp(self): - tf.test.TestCase.setUp(self) - - def test_preprocessed_image_values_are_in_range(self): - image_shape = (5, 4, 3) - fake_image = np.random.randint(low=0, high=255, size=image_shape) - image_tf = data_provider.preprocess_image(fake_image) - - with self.test_session() as sess: - image_np = sess.run(image_tf) - - self.assertEqual(image_np.shape, image_shape) - min_value, max_value = np.min(image_np), np.max(image_np) - self.assertTrue((-1.28 < min_value) and (min_value < 1.27)) - self.assertTrue((-1.28 < max_value) and (max_value < 1.27)) - - def test_provided_data_has_correct_shape(self): - batch_size = 4 - data = data_provider.get_data( - dataset=datasets.fsns_test.get_test_split(), - batch_size=batch_size, - augment=True, - central_crop_size=None) - - with self.test_session() as sess, queues.QueueRunners(sess): - images_np, labels_np = sess.run([data.images, data.labels_one_hot]) - - self.assertEqual(images_np.shape, (batch_size, 150, 600, 3)) - self.assertEqual(labels_np.shape, (batch_size, 37, 134)) - - def test_optionally_applies_central_crop(self): - batch_size = 4 - data = data_provider.get_data( - dataset=datasets.fsns_test.get_test_split(), - batch_size=batch_size, - augment=True, - central_crop_size=(500, 100)) - - with self.test_session() as sess, queues.QueueRunners(sess): - images_np = sess.run(data.images) - - self.assertEqual(images_np.shape, (batch_size, 100, 500, 3)) - - -if __name__ == '__main__': - tf.test.main() diff --git a/spaces/NNDM/img-to-music/README.md b/spaces/NNDM/img-to-music/README.md deleted file mode 100644 index ff1948d1b95ee1f8d7a3396aefb285c729d18687..0000000000000000000000000000000000000000 --- a/spaces/NNDM/img-to-music/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Img To Music -emoji: 🌅🎶 -colorFrom: green -colorTo: purple -sdk: gradio -sdk_version: 3.16.0 -app_file: app.py -pinned: true -duplicated_from: fffiloni/img-to-music ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference \ No newline at end of file diff --git a/spaces/Nick1/rvc-models/lib/infer_pack/modules/F0Predictor/__init__.py b/spaces/Nick1/rvc-models/lib/infer_pack/modules/F0Predictor/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/Nultx/VITS-TTS/ONNXVITS_transforms.py b/spaces/Nultx/VITS-TTS/ONNXVITS_transforms.py deleted file mode 100644 index 69b6d1c4b5724a3ef61f8bc3d64fc45c5e51e270..0000000000000000000000000000000000000000 --- a/spaces/Nultx/VITS-TTS/ONNXVITS_transforms.py +++ /dev/null @@ -1,196 +0,0 @@ -import torch -from torch.nn import functional as F - -import numpy as np - - -DEFAULT_MIN_BIN_WIDTH = 1e-3 -DEFAULT_MIN_BIN_HEIGHT = 1e-3 -DEFAULT_MIN_DERIVATIVE = 1e-3 - - -def piecewise_rational_quadratic_transform(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails=None, - tail_bound=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - - if tails is None: - spline_fn = rational_quadratic_spline - spline_kwargs = {} - else: - spline_fn = unconstrained_rational_quadratic_spline - spline_kwargs = { - 'tails': tails, - 'tail_bound': tail_bound - } - - outputs, logabsdet = spline_fn( - inputs=inputs, - unnormalized_widths=unnormalized_widths, - unnormalized_heights=unnormalized_heights, - unnormalized_derivatives=unnormalized_derivatives, - inverse=inverse, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative, - **spline_kwargs - ) - return outputs, logabsdet - - -def searchsorted(bin_locations, inputs, eps=1e-6): - bin_locations[..., -1] += eps - return torch.sum( - inputs[..., None] >= bin_locations, - dim=-1 - ) - 1 - - -def unconstrained_rational_quadratic_spline(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails='linear', - tail_bound=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) - outside_interval_mask = ~inside_interval_mask - - outputs = torch.zeros_like(inputs) - logabsdet = torch.zeros_like(inputs) - - if tails == 'linear': - #unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) - unnormalized_derivatives_ = torch.zeros((1, 1, unnormalized_derivatives.size(2), unnormalized_derivatives.size(3)+2)) - unnormalized_derivatives_[...,1:-1] = unnormalized_derivatives - unnormalized_derivatives = unnormalized_derivatives_ - constant = np.log(np.exp(1 - min_derivative) - 1) - unnormalized_derivatives[..., 0] = constant - unnormalized_derivatives[..., -1] = constant - - outputs[outside_interval_mask] = inputs[outside_interval_mask] - logabsdet[outside_interval_mask] = 0 - else: - raise RuntimeError('{} tails are not implemented.'.format(tails)) - - outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline( - inputs=inputs[inside_interval_mask], - unnormalized_widths=unnormalized_widths[inside_interval_mask, :], - unnormalized_heights=unnormalized_heights[inside_interval_mask, :], - unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], - inverse=inverse, - left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative - ) - - return outputs, logabsdet - -def rational_quadratic_spline(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - left=0., right=1., bottom=0., top=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - if torch.min(inputs) < left or torch.max(inputs) > right: - raise ValueError('Input to a transform is not within its domain') - - num_bins = unnormalized_widths.shape[-1] - - if min_bin_width * num_bins > 1.0: - raise ValueError('Minimal bin width too large for the number of bins') - if min_bin_height * num_bins > 1.0: - raise ValueError('Minimal bin height too large for the number of bins') - - widths = F.softmax(unnormalized_widths, dim=-1) - widths = min_bin_width + (1 - min_bin_width * num_bins) * widths - cumwidths = torch.cumsum(widths, dim=-1) - cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0) - cumwidths = (right - left) * cumwidths + left - cumwidths[..., 0] = left - cumwidths[..., -1] = right - widths = cumwidths[..., 1:] - cumwidths[..., :-1] - - derivatives = min_derivative + F.softplus(unnormalized_derivatives) - - heights = F.softmax(unnormalized_heights, dim=-1) - heights = min_bin_height + (1 - min_bin_height * num_bins) * heights - cumheights = torch.cumsum(heights, dim=-1) - cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0) - cumheights = (top - bottom) * cumheights + bottom - cumheights[..., 0] = bottom - cumheights[..., -1] = top - heights = cumheights[..., 1:] - cumheights[..., :-1] - - if inverse: - bin_idx = searchsorted(cumheights, inputs)[..., None] - else: - bin_idx = searchsorted(cumwidths, inputs)[..., None] - - input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] - input_bin_widths = widths.gather(-1, bin_idx)[..., 0] - - input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] - delta = heights / widths - input_delta = delta.gather(-1, bin_idx)[..., 0] - - input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] - input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] - - input_heights = heights.gather(-1, bin_idx)[..., 0] - - if inverse: - a = (((inputs - input_cumheights) * (input_derivatives - + input_derivatives_plus_one - - 2 * input_delta) - + input_heights * (input_delta - input_derivatives))) - b = (input_heights * input_derivatives - - (inputs - input_cumheights) * (input_derivatives - + input_derivatives_plus_one - - 2 * input_delta)) - c = - input_delta * (inputs - input_cumheights) - - discriminant = b.pow(2) - 4 * a * c - assert (discriminant >= 0).all() - - root = (2 * c) / (-b - torch.sqrt(discriminant)) - outputs = root * input_bin_widths + input_cumwidths - - theta_one_minus_theta = root * (1 - root) - denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta) - derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - root).pow(2)) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, -logabsdet - else: - theta = (inputs - input_cumwidths) / input_bin_widths - theta_one_minus_theta = theta * (1 - theta) - - numerator = input_heights * (input_delta * theta.pow(2) - + input_derivatives * theta_one_minus_theta) - denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta) - outputs = input_cumheights + numerator / denominator - - derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - theta).pow(2)) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, logabsdet diff --git a/spaces/Nultx/VITS-TTS/hubert_model.py b/spaces/Nultx/VITS-TTS/hubert_model.py deleted file mode 100644 index 6c7f8716c268d0f371f5a9f7995f59bd4b9082d1..0000000000000000000000000000000000000000 --- a/spaces/Nultx/VITS-TTS/hubert_model.py +++ /dev/null @@ -1,221 +0,0 @@ -import copy -from typing import Optional, Tuple -import random - -import torch -import torch.nn as nn -import torch.nn.functional as F -from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present - -class Hubert(nn.Module): - def __init__(self, num_label_embeddings: int = 100, mask: bool = True): - super().__init__() - self._mask = mask - self.feature_extractor = FeatureExtractor() - self.feature_projection = FeatureProjection() - self.positional_embedding = PositionalConvEmbedding() - self.norm = nn.LayerNorm(768) - self.dropout = nn.Dropout(0.1) - self.encoder = TransformerEncoder( - nn.TransformerEncoderLayer( - 768, 12, 3072, activation="gelu", batch_first=True - ), - 12, - ) - self.proj = nn.Linear(768, 256) - - self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_()) - self.label_embedding = nn.Embedding(num_label_embeddings, 256) - - def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: - mask = None - if self.training and self._mask: - mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2) - x[mask] = self.masked_spec_embed.to(x.dtype) - return x, mask - - def encode( - self, x: torch.Tensor, layer: Optional[int] = None - ) -> Tuple[torch.Tensor, torch.Tensor]: - x = self.feature_extractor(x) - x = self.feature_projection(x.transpose(1, 2)) - x, mask = self.mask(x) - x = x + self.positional_embedding(x) - x = self.dropout(self.norm(x)) - x = self.encoder(x, output_layer=layer) - return x, mask - - def logits(self, x: torch.Tensor) -> torch.Tensor: - logits = torch.cosine_similarity( - x.unsqueeze(2), - self.label_embedding.weight.unsqueeze(0).unsqueeze(0), - dim=-1, - ) - return logits / 0.1 - - def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: - x, mask = self.encode(x) - x = self.proj(x) - logits = self.logits(x) - return logits, mask - - -class HubertSoft(Hubert): - def __init__(self): - super().__init__() - - @torch.inference_mode() - def units(self, wav: torch.Tensor) -> torch.Tensor: - wav = F.pad(wav, ((400 - 320) // 2, (400 - 320) // 2)) - x, _ = self.encode(wav) - return self.proj(x) - - -class FeatureExtractor(nn.Module): - def __init__(self): - super().__init__() - self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False) - self.norm0 = nn.GroupNorm(512, 512) - self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False) - self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False) - self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False) - self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False) - self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False) - self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = F.gelu(self.norm0(self.conv0(x))) - x = F.gelu(self.conv1(x)) - x = F.gelu(self.conv2(x)) - x = F.gelu(self.conv3(x)) - x = F.gelu(self.conv4(x)) - x = F.gelu(self.conv5(x)) - x = F.gelu(self.conv6(x)) - return x - - -class FeatureProjection(nn.Module): - def __init__(self): - super().__init__() - self.norm = nn.LayerNorm(512) - self.projection = nn.Linear(512, 768) - self.dropout = nn.Dropout(0.1) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = self.norm(x) - x = self.projection(x) - x = self.dropout(x) - return x - - -class PositionalConvEmbedding(nn.Module): - def __init__(self): - super().__init__() - self.conv = nn.Conv1d( - 768, - 768, - kernel_size=128, - padding=128 // 2, - groups=16, - ) - self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x = self.conv(x.transpose(1, 2)) - x = F.gelu(x[:, :, :-1]) - return x.transpose(1, 2) - - -class TransformerEncoder(nn.Module): - def __init__( - self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int - ) -> None: - super(TransformerEncoder, self).__init__() - self.layers = nn.ModuleList( - [copy.deepcopy(encoder_layer) for _ in range(num_layers)] - ) - self.num_layers = num_layers - - def forward( - self, - src: torch.Tensor, - mask: torch.Tensor = None, - src_key_padding_mask: torch.Tensor = None, - output_layer: Optional[int] = None, - ) -> torch.Tensor: - output = src - for layer in self.layers[:output_layer]: - output = layer( - output, src_mask=mask, src_key_padding_mask=src_key_padding_mask - ) - return output - - -def _compute_mask( - shape: Tuple[int, int], - mask_prob: float, - mask_length: int, - device: torch.device, - min_masks: int = 0, -) -> torch.Tensor: - batch_size, sequence_length = shape - - if mask_length < 1: - raise ValueError("`mask_length` has to be bigger than 0.") - - if mask_length > sequence_length: - raise ValueError( - f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`" - ) - - # compute number of masked spans in batch - num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random()) - num_masked_spans = max(num_masked_spans, min_masks) - - # make sure num masked indices <= sequence_length - if num_masked_spans * mask_length > sequence_length: - num_masked_spans = sequence_length // mask_length - - # SpecAugment mask to fill - mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool) - - # uniform distribution to sample from, make sure that offset samples are < sequence_length - uniform_dist = torch.ones( - (batch_size, sequence_length - (mask_length - 1)), device=device - ) - - # get random indices to mask - mask_indices = torch.multinomial(uniform_dist, num_masked_spans) - - # expand masked indices to masked spans - mask_indices = ( - mask_indices.unsqueeze(dim=-1) - .expand((batch_size, num_masked_spans, mask_length)) - .reshape(batch_size, num_masked_spans * mask_length) - ) - offsets = ( - torch.arange(mask_length, device=device)[None, None, :] - .expand((batch_size, num_masked_spans, mask_length)) - .reshape(batch_size, num_masked_spans * mask_length) - ) - mask_idxs = mask_indices + offsets - - # scatter indices to mask - mask = mask.scatter(1, mask_idxs, True) - - return mask - - -def hubert_soft( - path: str -) -> HubertSoft: - r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`. - Args: - path (str): path of a pretrained model - """ - hubert = HubertSoft() - checkpoint = torch.load(path) - consume_prefix_in_state_dict_if_present(checkpoint, "module.") - hubert.load_state_dict(checkpoint) - hubert.eval() - return hubert diff --git a/spaces/Nyari/Super-Resolution-Anime-Diffusion/Waifu2x/Img_to_Sqlite.py b/spaces/Nyari/Super-Resolution-Anime-Diffusion/Waifu2x/Img_to_Sqlite.py deleted file mode 100644 index 6f761e681e84433f4060bd2ec9abedddbc261381..0000000000000000000000000000000000000000 --- a/spaces/Nyari/Super-Resolution-Anime-Diffusion/Waifu2x/Img_to_Sqlite.py +++ /dev/null @@ -1,123 +0,0 @@ -""" -Split images into small patches and insert them into sqlite db. Reading and Inserting speeds are much better than -Ubuntu's (18.04) file system when the number of patches is larger than 20k. And it has smaller size than using h5 format - -Recommend to check or filter out small size patches as their content vary little. 128x128 seems better than 64x64. - - -""" -import sqlite3 -from torch.utils.data import DataLoader -from tqdm import trange -from Dataloader import Image2Sqlite - -conn = sqlite3.connect("dataset/image_yandere.db") -cursor = conn.cursor() - -with conn: - cursor.execute("PRAGMA SYNCHRONOUS = OFF") - -table_name = "train_images_size_128_noise_1_rgb" -lr_col = "lr_img" -hr_col = "hr_img" - -with conn: - conn.execute( - f"CREATE TABLE IF NOT EXISTS {table_name} ({lr_col} BLOB, {hr_col} BLOB)" - ) - -dat = Image2Sqlite( - img_folder="./dataset/yande.re_test_shrink", - patch_size=256, - shrink_size=2, - noise_level=1, - down_sample_method=None, - color_mod="RGB", - dummy_len=None, -) -print(f"Total images {len(dat)}") - -img_dat = DataLoader(dat, num_workers=6, batch_size=6, shuffle=True) - -num_batches = 20 -for i in trange(num_batches): - bulk = [] - for lrs, hrs in img_dat: - patches = [(lrs[i], hrs[i]) for i in range(len(lrs))] - # patches = [(lrs[i], hrs[i]) for i in range(len(lrs)) if len(lrs[i]) > 14000] - - bulk.extend(patches) - - bulk = [ - i for i in bulk if len(i[0]) > 15000 - ] # for 128x128, 14000 is fair. Around 20% of patches are filtered out - cursor.executemany( - f"INSERT INTO {table_name}({lr_col}, {hr_col}) VALUES (?,?)", bulk - ) - conn.commit() - -cursor.execute(f"select max(rowid) from {table_name}") -print(cursor.fetchall()) -conn.commit() -# +++++++++++++++++++++++++++++++++++++ -# Used for Create Test Database -# ------------------------------------- - -# cursor.execute(f"SELECT ROWID FROM {table_name} ORDER BY LENGTH({lr_col}) DESC LIMIT 400") -# rowdis = cursor.fetchall() -# rowdis = ",".join([str(i[0]) for i in rowdis]) -# -# cursor.execute(f"DELETE FROM {table_name} WHERE ROWID NOT IN ({rowdis})") -# conn.commit() -# cursor.execute("vacuum") -# -# cursor.execute(""" -# CREATE TABLE IF NOT EXISTS train_images_size_128_noise_1_rgb_small AS -# SELECT * -# FROM train_images_size_128_noise_1_rgb -# WHERE length(lr_img) < 14000; -# """) -# -# cursor.execute(""" -# DELETE -# FROM train_images_size_128_noise_1_rgb -# WHERE length(lr_img) < 14000; -# """) - -# reset index -cursor.execute("VACUUM") -conn.commit() - -# +++++++++++++++++++++++++++++++++++++ -# check image size -# ------------------------------------- -# - -from PIL import Image -import io - -cursor.execute( - f""" - select {hr_col} from {table_name} - ORDER BY LENGTH({hr_col}) desc - limit 100 -""" -) -# WHERE LENGTH({lr_col}) BETWEEN 14000 AND 16000 - -# small = cursor.fetchall() -# print(len(small)) -for idx, i in enumerate(cursor): - img = Image.open(io.BytesIO(i[0])) - img.save(f"dataset/check/{idx}.png") - -# +++++++++++++++++++++++++++++++++++++ -# Check Image Variance -# ------------------------------------- - -import pandas as pd -import matplotlib.pyplot as plt - -dat = pd.read_sql(f"SELECT length({lr_col}) from {table_name}", conn) -dat.hist(bins=20) -plt.show() diff --git a/spaces/OAOA/DifFace/basicsr/data/single_image_dataset.py b/spaces/OAOA/DifFace/basicsr/data/single_image_dataset.py deleted file mode 100644 index acbc7d921777f455e1b0c434f88807c15d81d924..0000000000000000000000000000000000000000 --- a/spaces/OAOA/DifFace/basicsr/data/single_image_dataset.py +++ /dev/null @@ -1,68 +0,0 @@ -from os import path as osp -from torch.utils import data as data -from torchvision.transforms.functional import normalize - -from basicsr.data.data_util import paths_from_lmdb -from basicsr.utils import FileClient, imfrombytes, img2tensor, rgb2ycbcr, scandir -from basicsr.utils.registry import DATASET_REGISTRY - - -@DATASET_REGISTRY.register() -class SingleImageDataset(data.Dataset): - """Read only lq images in the test phase. - - Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc). - - There are two modes: - 1. 'meta_info_file': Use meta information file to generate paths. - 2. 'folder': Scan folders to generate paths. - - Args: - opt (dict): Config for train datasets. It contains the following keys: - dataroot_lq (str): Data root path for lq. - meta_info_file (str): Path for meta information file. - io_backend (dict): IO backend type and other kwarg. - """ - - def __init__(self, opt): - super(SingleImageDataset, self).__init__() - self.opt = opt - # file client (io backend) - self.file_client = None - self.io_backend_opt = opt['io_backend'] - self.mean = opt['mean'] if 'mean' in opt else None - self.std = opt['std'] if 'std' in opt else None - self.lq_folder = opt['dataroot_lq'] - - if self.io_backend_opt['type'] == 'lmdb': - self.io_backend_opt['db_paths'] = [self.lq_folder] - self.io_backend_opt['client_keys'] = ['lq'] - self.paths = paths_from_lmdb(self.lq_folder) - elif 'meta_info_file' in self.opt: - with open(self.opt['meta_info_file'], 'r') as fin: - self.paths = [osp.join(self.lq_folder, line.rstrip().split(' ')[0]) for line in fin] - else: - self.paths = sorted(list(scandir(self.lq_folder, full_path=True))) - - def __getitem__(self, index): - if self.file_client is None: - self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) - - # load lq image - lq_path = self.paths[index] - img_bytes = self.file_client.get(lq_path, 'lq') - img_lq = imfrombytes(img_bytes, float32=True) - - # color space transform - if 'color' in self.opt and self.opt['color'] == 'y': - img_lq = rgb2ycbcr(img_lq, y_only=True)[..., None] - - # BGR to RGB, HWC to CHW, numpy to tensor - img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True) - # normalize - if self.mean is not None or self.std is not None: - normalize(img_lq, self.mean, self.std, inplace=True) - return {'lq': img_lq, 'lq_path': lq_path} - - def __len__(self): - return len(self.paths) diff --git a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/clib/libbase/balanced_assignment.cpp b/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/clib/libbase/balanced_assignment.cpp deleted file mode 100644 index 1a5a1061f3892be5a17e49192f744c39e0d395e8..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/clib/libbase/balanced_assignment.cpp +++ /dev/null @@ -1,109 +0,0 @@ -/** - * Copyright 2017-present, Facebook, Inc. - * All rights reserved. - * - * This source code is licensed under the license found in the - * LICENSE file in the root directory of this source tree. - */ - -/* -C++ code for solving the linear assignment problem. -Based on the Auction Algorithm from -https://dspace.mit.edu/bitstream/handle/1721.1/3265/P-2108-26912652.pdf and the -implementation from: https://github.com/bkj/auction-lap Adapted to be more -efficient when each worker is looking for k jobs instead of 1. -*/ -#include -#include -using namespace torch::indexing; -torch::Tensor balanced_assignment(torch::Tensor job_and_worker_to_score) { - int max_iterations = 100; - torch::Tensor epsilon = - (job_and_worker_to_score.max() - job_and_worker_to_score.min()) / 50; - epsilon.clamp_min_(1e-04); - torch::Tensor worker_and_job_to_score = - job_and_worker_to_score.detach().transpose(0, 1).contiguous(); - int num_workers = worker_and_job_to_score.size(0); - int num_jobs = worker_and_job_to_score.size(1); - auto device = worker_and_job_to_score.device(); - int jobs_per_worker = num_jobs / num_workers; - torch::Tensor value = worker_and_job_to_score.clone(); - int counter = 0; - torch::Tensor max_value = worker_and_job_to_score.max(); - - torch::Tensor bid_indices; - torch::Tensor cost = worker_and_job_to_score.new_zeros({1, num_jobs}); - torch::Tensor bids = - worker_and_job_to_score.new_empty({num_workers, num_jobs}); - torch::Tensor bid_increments = - worker_and_job_to_score.new_empty({num_workers, jobs_per_worker}); - torch::Tensor top_values = - worker_and_job_to_score.new_empty({num_workers, jobs_per_worker + 1}); - torch::Tensor high_bids = worker_and_job_to_score.new_empty({num_jobs}); - - torch::Tensor top_index = top_values.to(torch::kLong); - torch::Tensor high_bidders = top_index.new_empty({num_jobs}); - torch::Tensor have_bids = high_bidders.to(torch::kBool); - torch::Tensor jobs_indices = - torch::arange({num_jobs}, torch::dtype(torch::kLong).device(device)); - torch::Tensor true_tensor = - torch::ones({1}, torch::dtype(torch::kBool).device(device)); - - while (true) { - bids.zero_(); - torch::topk_out(top_values, top_index, value, jobs_per_worker + 1, 1); - - // Each worker bids the difference in value between that job and the k+1th - // job - torch::sub_out( - bid_increments, - top_values.index({Slice(None, None), Slice(0, jobs_per_worker)}), - top_values.index({Slice(None, None), jobs_per_worker}).unsqueeze(1)); - - bid_increments.add_(epsilon); - bids.scatter_( - 1, - top_index.index({Slice(None, None), Slice(0, jobs_per_worker)}), - bid_increments); - - if (counter < max_iterations && counter > 0) { - // Put in a minimal bid to retain items from the last round if no-one else - // bids for them this round - bids.view(-1).index_put_({bid_indices}, epsilon); - } - - // Find the highest bidding worker per job - torch::max_out(high_bids, high_bidders, bids, 0); - torch::gt_out(have_bids, high_bids, 0); - - if (have_bids.all().item()) { - // All jobs were bid for - break; - } - - // Make popular items more expensive - cost.add_(high_bids); - torch::sub_out(value, worker_and_job_to_score, cost); - - bid_indices = ((high_bidders * num_jobs) + jobs_indices).index({have_bids}); - - if (counter < max_iterations) { - // Make sure that this item will be in the winning worker's top-k next - // time. - value.view(-1).index_put_({bid_indices}, max_value); - } else { - // Suboptimal approximation that converges quickly from current solution - value.view(-1).index_put_( - {bid_indices}, worker_and_job_to_score.view(-1).index({bid_indices})); - } - - counter += 1; - } - - return top_index.index({Slice(None, None), Slice(0, jobs_per_worker)}) - .reshape(-1); -} - -PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { - m.def("balanced_assignment", &balanced_assignment, "Balanced Assignment"); -} diff --git a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/data/numel_dataset.py b/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/data/numel_dataset.py deleted file mode 100644 index ac86dfd2f1d89055de909656d61d6aca85523f00..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Generic_Interface/fairseq/fairseq/data/numel_dataset.py +++ /dev/null @@ -1,31 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import numpy as np -import torch - -from . import BaseWrapperDataset - - -class NumelDataset(BaseWrapperDataset): - def __init__(self, dataset, reduce=False): - super().__init__(dataset) - self.reduce = reduce - - def __getitem__(self, index): - item = self.dataset[index] - if torch.is_tensor(item): - return torch.numel(item) - else: - return np.size(item) - - def __len__(self): - return len(self.dataset) - - def collater(self, samples): - if self.reduce: - return sum(samples) - else: - return torch.tensor(samples) diff --git a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/fairseq/optim/cpu_adam.py b/spaces/OFA-Sys/OFA-Image_Caption/fairseq/fairseq/optim/cpu_adam.py deleted file mode 100644 index b2f893aeda69ee1741e5e3af406ff4182b6f2416..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-Image_Caption/fairseq/fairseq/optim/cpu_adam.py +++ /dev/null @@ -1,206 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import importlib -from collections.abc import Collection -from dataclasses import dataclass, field -from typing import List - -import torch -from fairseq.dataclass import FairseqDataclass -from fairseq.optim import FairseqOptimizer, register_optimizer -from omegaconf import II, DictConfig - - -try: - import deepspeed - has_deepspeed = True -except ImportError as e: - has_deepspeed = False - - -def _get_cpu_adam(): - try: - from deepspeed.ops.op_builder import CPUAdamBuilder - return CPUAdamBuilder().load() - except ImportError: - # fbcode - from deepspeed.ops.adam import DeepSpeedCPUAdam as ds_opt_adam - return ds_opt_adam - -@dataclass -class FairseqCPUAdamConfig(FairseqDataclass): - adam_betas: str = field( - default="(0.9, 0.999)", metadata={"help": "betas for Adam optimizer"} - ) - adam_eps: float = field( - default=1e-8, metadata={"help": "epsilon for Adam optimizer"} - ) - weight_decay: float = field(default=0.0, metadata={"help": "weight decay"}) - fp16_adam_stats: bool = field( - default=False, metadata={"help": "use FP16 stats (with automatic scaling)"} - ) - # TODO common vars below in parent - lr: List[float] = II("optimization.lr") - - -@register_optimizer("cpu_adam", dataclass=FairseqCPUAdamConfig) -class FairseqCPUAdam(FairseqOptimizer): - """Adam optimizer for fairseq, optimized for CPU tensors. - - Important note: this optimizer corresponds to the "AdamW" variant of - Adam in its weight decay behavior. As such, it is most closely - analogous to torch.optim.AdamW from PyTorch. - """ - - def __init__(self, cfg: DictConfig, params): - super().__init__(cfg) - self._optimizer = CPUAdam(params, **self.optimizer_config) - - @property - def optimizer_config(self): - """ - Return a kwarg dictionary that will be used to override optimizer - args stored in checkpoints. This allows us to load a checkpoint and - resume training using a different set of optimizer args, e.g., with a - different learning rate. - """ - return { - "lr": self.cfg.lr[0] - if isinstance(self.cfg.lr, Collection) - else self.cfg.lr, - "betas": eval(self.cfg.adam_betas), - "eps": self.cfg.adam_eps, - "weight_decay": self.cfg.weight_decay, - "use_fp16_stats": self.cfg.fp16_adam_stats, - } - - -class CPUAdam(torch.optim.Optimizer): - - optimizer_id = 0 - - def __init__( - self, - params, - lr=1e-3, - bias_correction=True, - betas=(0.9, 0.999), - eps=1e-8, - weight_decay=0, - use_fp16_stats=False, - ): - defaults = { - "lr": lr, - "bias_correction": bias_correction, - "betas": betas, - "eps": eps, - "weight_decay": weight_decay, - } - super().__init__(params, defaults) - - self.use_fp16_stats = use_fp16_stats - self.FLOAT16_MAX = 65504.0 - - if not has_deepspeed: - raise ImportError("Please install DeepSpeed: pip install deepspeed") - - self.opt_id = CPUAdam.optimizer_id - CPUAdam.optimizer_id = CPUAdam.optimizer_id + 1 - - self.ds_opt_adam = _get_cpu_adam() - adamw_mode = True - self.ds_opt_adam.create_adam( - self.opt_id, lr, betas[0], betas[1], eps, weight_decay, adamw_mode - ) - - @property - def supports_memory_efficient_fp16(self): - return True - - @property - def supports_flat_params(self): - return True - - @torch.no_grad() - def step(self, closure=None): - loss = None - if closure is not None: - with torch.enable_grad(): - loss = closure() - - torch.cuda.synchronize() - - for group_id, group in enumerate(self.param_groups): - for param_id, p in enumerate(group["params"]): - if p.grad is None: - continue - - state = self.state[p] - if len(state) == 0: - state["step"] = 0 - dtype = torch.float16 if self.use_fp16_stats else p.data.dtype - # gradient momentums - state["exp_avg"] = torch.zeros_like( - p.data, dtype=dtype, device="cpu" - ) - # gradient variances - state["exp_avg_sq"] = torch.zeros_like( - p.data, dtype=dtype, device="cpu" - ) - if self.use_fp16_stats: - assert torch.is_floating_point(p.data) - state["exp_avg_scale"] = 1.0 - state["exp_avg_sq_scale"] = 1.0 - - exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] - - p_data_bak = p.data # backup of the original data pointer - - p.data = p.data.to(dtype=torch.float32, device="cpu") - p.grad.data = p.grad.data.to(dtype=torch.float32, device="cpu") - - if self.use_fp16_stats: - exp_avg = exp_avg.float() * state["exp_avg_scale"] - exp_avg_sq = exp_avg_sq.float() * state["exp_avg_sq_scale"] - - state["step"] += 1 - beta1, beta2 = group["betas"] - - self.ds_opt_adam.adam_update( - self.opt_id, - state["step"], - group["lr"], - beta1, - beta2, - group["eps"], - group["weight_decay"], - group["bias_correction"], - p.data, - p.grad.data, - exp_avg, - exp_avg_sq, - ) - - if p_data_bak.data_ptr() != p.data.data_ptr(): - p_data_bak.copy_(p.data) - p.data = p_data_bak - - if self.use_fp16_stats: - - def inf_norm(t): - return torch.norm(t, float("inf")) - - # from github.com/openai/jukebox/blob/master/jukebox/utils/fp16.py - state["exp_avg_scale"], state["exp_avg_sq_scale"] = ( - 1e-8 + inf_norm(exp_avg) / self.FLOAT16_MAX, - 1e-8 + inf_norm(exp_avg_sq) / self.FLOAT16_MAX, - ) - state["exp_avg"], state["exp_avg_sq"] = ( - (exp_avg / state["exp_avg_scale"]).half(), - (exp_avg_sq / state["exp_avg_sq_scale"]).half(), - ) - - return loss diff --git a/spaces/OFA-Sys/OFA-vqa/fairseq/examples/textless_nlp/gslm/README.md b/spaces/OFA-Sys/OFA-vqa/fairseq/examples/textless_nlp/gslm/README.md deleted file mode 100644 index 7a76ffd57c066c20af94aa3fca24c18e2ba4c3dd..0000000000000000000000000000000000000000 --- a/spaces/OFA-Sys/OFA-vqa/fairseq/examples/textless_nlp/gslm/README.md +++ /dev/null @@ -1,21 +0,0 @@ -# Generative Spoken Language Modeling - -* [Paper](https://arxiv.org/abs/2102.01192) -* [Demo](https://speechbot.github.io/gslm/index.html) - -We build and evaluate generative speech2speech systems using [Log Mel Filtebank](https://pytorch.org/audio/stable/compliance.kaldi.html#fbank), [Modified CPC](https://github.com/facebookresearch/CPC_audio), [HuBERT Base](https://github.com/pytorch/fairseq/tree/main/examples/hubert) and [Wav2Vec 2.0 Large](https://github.com/pytorch/fairseq/tree/main/examples/wav2vec). Our system is composed of three components, namely, *speech2unit*, *ulm* and *unit2speech*. We explain about models and usage of these components in their respective sub-directories. See the links below. - -## Speech to Unit Model (speech2unit) -Speech to unit model is used for quantizing raw speech into learned discrete speech units. [More details](speech2unit) - -## Unit Language Model (ulm) -Unit Language Model is a generative language model trained on discrete speech units. [More details](ulm) - -## Unit to Speech Model (unit2speech) -Unit to speech model is used for synthesizing speech from discrete speech units. [More details](unit2speech) - -## Metrics -We show how to compute ASR based metrics as well as zero-shot metrics proposed in our paper [here](metrics). - -## Tools -We share two tools to resynthesize a given spoken utterance, and generate novel spoken language given a spoken prompt. [More detail](tools) diff --git a/spaces/Omnibus/idefics_playground_mod/prompts.py b/spaces/Omnibus/idefics_playground_mod/prompts.py deleted file mode 100644 index 787cad91f68634882d1ce5b9da252d2b1f79d446..0000000000000000000000000000000000000000 --- a/spaces/Omnibus/idefics_playground_mod/prompts.py +++ /dev/null @@ -1,118 +0,0 @@ -PREFIX = """You are a humerous Meme Creator -You are working on the code base outlined here -{module_summary} -Code Purpose: -{purpose} -""" - -ACTION_PROMPT = """ -You only have access to the following tools: -- action: UPDATE-TASK action_input=NEW_TASK -- action: READ-FILE action_input=FILE_PATH -- action: MODIFY-FILE action_input=FILE_PATH -- action: ADD-FILE action_input=FILE_PATH -- action: TEST -- action: COMPLETE -Instructions -- Write code to satisfy the code purpose -- Complete the current task as best you can -- When the task is complete, update the task -- Test the app after making changes -- When writing tests, avoid exact numeric comparisons -Use the following format: -task: the input task you must complete -thought: you should always think about what to do -action: the action to take (should be one of [UPDATE-TASK, READ-FILE, MODIFY-FILE, ADD-FILE, TEST, COMPLETE]) action_input=XXX -observation: the result of the action -thought: you should always think after an observation -action: READ-FILE action_input='./app/main.py' -... (thought/action/observation/thought can repeat N times) -You are attempting to complete the task -task: {task} -{history}""" - -TASK_PROMPT = """ -You are attempting to complete the task -task: {task} -Progress: -{history} -Tasks should be small, isolated, and independent -What should the task be for us to achieve the code purpose? -task: """ - -READ_PROMPT = """ -You are attempting to complete the task -task: {task} -Progress: -{history} -{file_path} ---- -{file_contents} ---- -Return your thoughts about the file relevant to completing the task (in a paragraph) -Mention any specific functions, arguments, or details needed -""" - -ADD_PROMPT = """ -You are attempting to complete the task -task: {task} -Progress: -{history} -Write a new file called {file_path} with contents between --- -After the contents write a paragraph on what was inserted with details -""" - -MODIFY_PROMPT = """ -You are attempting to complete the task -task: {task} -Progress: -{history} -{file_path} ---- -{file_contents} ---- -Return the complete modified {file_path} contents between --- -After the contents write a paragraph on what was changed with details -""" - - -UNDERSTAND_TEST_RESULTS_PROMPT = """ -You are attempting to complete the task -task: {task} -Progress: -{history} -Test results: -STDOUT ---- -{stdout} ---- -STDERR ---- -{stderr} ---- -Describe why the tests failed and how to fix them (in a paragraph) -""" - - -COMPRESS_HISTORY_PROMPT = """ -You are attempting to complete the task -task: {task} -Progress: -{history} -Compress the timeline of progress above into a single summary (as a paragraph) -Include all important milestones, the current challenges, and implementation details necessary to proceed -""" - -LOG_PROMPT = """ -PROMPT -************************************** -{} -************************************** -""" - -LOG_RESPONSE = """ -RESPONSE -************************************** -{} -************************************** -""" \ No newline at end of file diff --git a/spaces/OpenGVLab/InternGPT/iGPT/models/husky_src/load_ckpt.py b/spaces/OpenGVLab/InternGPT/iGPT/models/husky_src/load_ckpt.py deleted file mode 100644 index 977f27ce5f4212f594b3f8366773855f2feda40f..0000000000000000000000000000000000000000 --- a/spaces/OpenGVLab/InternGPT/iGPT/models/husky_src/load_ckpt.py +++ /dev/null @@ -1,43 +0,0 @@ -import argparse - -import torch -from tqdm import tqdm -from transformers import AutoTokenizer, AutoModelForCausalLM -from iGPT.models.husky_src.husky_chat import Blip2LlaMAForConditionalGeneration - - -def apply_delta(base_model_path, target_model_path, delta_path): - print("Loading base model") - base = AutoModelForCausalLM.from_pretrained(base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) - - print("Loading delta") - delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False) - delta = Blip2LlaMAForConditionalGeneration.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) - - print("Applying delta") - for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"): - if name.startswith('language_model'): - name = name[len('language_model.'):] - if param.data.shape == base.state_dict()[name].shape: - param.data += base.state_dict()[name] - else: - bparam = base.state_dict()[name] - param.data[:bparam.shape[0], :bparam.shape[1]] += bparam - else: - pass - - print("Saving target model") - delta.save_pretrained(target_model_path) - delta_tokenizer.save_pretrained(target_model_path) - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--base-model-path", type=str, required=True) - parser.add_argument("--target-model-path", type=str, required=True) - parser.add_argument("--delta-path", type=str, required=True) - - args = parser.parse_args() - - apply_delta(args.base_model_path, args.target_model_path, args.delta_path) - # srun -p INTERN2 --gres=gpu:0 python apply_delta.py --base-model-path "/mnt/petrelfs/share_data/wangweiyun/share_hf/llama-7b-hf" --target-model-path "/mnt/petrelfs/share_data/wangweiyun/share_hf/husky-7b-demo-v0_01" --delta-path "/mnt/petrelfs/share_data/wangweiyun/share_hf/husky-7b-delta-v0_01" \ No newline at end of file diff --git a/spaces/OpenMotionLab/MotionGPT/pyrender/pyrender/constants.py b/spaces/OpenMotionLab/MotionGPT/pyrender/pyrender/constants.py deleted file mode 100644 index 8a5785b6fdb21910a174252c5af2f05b40ece4a5..0000000000000000000000000000000000000000 --- a/spaces/OpenMotionLab/MotionGPT/pyrender/pyrender/constants.py +++ /dev/null @@ -1,149 +0,0 @@ -DEFAULT_Z_NEAR = 0.05 # Near clipping plane, in meters -DEFAULT_Z_FAR = 100.0 # Far clipping plane, in meters -DEFAULT_SCENE_SCALE = 2.0 # Default scene scale -MAX_N_LIGHTS = 4 # Maximum number of lights of each type allowed -TARGET_OPEN_GL_MAJOR = 4 # Target OpenGL Major Version -TARGET_OPEN_GL_MINOR = 1 # Target OpenGL Minor Version -MIN_OPEN_GL_MAJOR = 3 # Minimum OpenGL Major Version -MIN_OPEN_GL_MINOR = 3 # Minimum OpenGL Minor Version -FLOAT_SZ = 4 # Byte size of GL float32 -UINT_SZ = 4 # Byte size of GL uint32 -SHADOW_TEX_SZ = 2048 # Width and Height of Shadow Textures -TEXT_PADDING = 20 # Width of padding for rendering text (px) - - -# Flags for render type -class RenderFlags(object): - """Flags for rendering in the scene. - - Combine them with the bitwise or. For example, - - >>> flags = OFFSCREEN | SHADOWS_DIRECTIONAL | VERTEX_NORMALS - - would result in an offscreen render with directional shadows and - vertex normals enabled. - """ - NONE = 0 - """Normal PBR Render.""" - DEPTH_ONLY = 1 - """Only render the depth buffer.""" - OFFSCREEN = 2 - """Render offscreen and return the depth and (optionally) color buffers.""" - FLIP_WIREFRAME = 4 - """Invert the status of wireframe rendering for each mesh.""" - ALL_WIREFRAME = 8 - """Render all meshes as wireframes.""" - ALL_SOLID = 16 - """Render all meshes as solids.""" - SHADOWS_DIRECTIONAL = 32 - """Render shadows for directional lights.""" - SHADOWS_POINT = 64 - """Render shadows for point lights.""" - SHADOWS_SPOT = 128 - """Render shadows for spot lights.""" - SHADOWS_ALL = 32 | 64 | 128 - """Render shadows for all lights.""" - VERTEX_NORMALS = 256 - """Render vertex normals.""" - FACE_NORMALS = 512 - """Render face normals.""" - SKIP_CULL_FACES = 1024 - """Do not cull back faces.""" - RGBA = 2048 - """Render the color buffer with the alpha channel enabled.""" - FLAT = 4096 - """Render the color buffer flat, with no lighting computations.""" - SEG = 8192 - - -class TextAlign: - """Text alignment options for captions. - - Only use one at a time. - """ - CENTER = 0 - """Center the text by width and height.""" - CENTER_LEFT = 1 - """Center the text by height and left-align it.""" - CENTER_RIGHT = 2 - """Center the text by height and right-align it.""" - BOTTOM_LEFT = 3 - """Put the text in the bottom-left corner.""" - BOTTOM_RIGHT = 4 - """Put the text in the bottom-right corner.""" - BOTTOM_CENTER = 5 - """Center the text by width and fix it to the bottom.""" - TOP_LEFT = 6 - """Put the text in the top-left corner.""" - TOP_RIGHT = 7 - """Put the text in the top-right corner.""" - TOP_CENTER = 8 - """Center the text by width and fix it to the top.""" - - -class GLTF(object): - """Options for GL objects.""" - NEAREST = 9728 - """Nearest neighbor interpolation.""" - LINEAR = 9729 - """Linear interpolation.""" - NEAREST_MIPMAP_NEAREST = 9984 - """Nearest mipmapping.""" - LINEAR_MIPMAP_NEAREST = 9985 - """Linear mipmapping.""" - NEAREST_MIPMAP_LINEAR = 9986 - """Nearest mipmapping.""" - LINEAR_MIPMAP_LINEAR = 9987 - """Linear mipmapping.""" - CLAMP_TO_EDGE = 33071 - """Clamp to the edge of the texture.""" - MIRRORED_REPEAT = 33648 - """Mirror the texture.""" - REPEAT = 10497 - """Repeat the texture.""" - POINTS = 0 - """Render as points.""" - LINES = 1 - """Render as lines.""" - LINE_LOOP = 2 - """Render as a line loop.""" - LINE_STRIP = 3 - """Render as a line strip.""" - TRIANGLES = 4 - """Render as triangles.""" - TRIANGLE_STRIP = 5 - """Render as a triangle strip.""" - TRIANGLE_FAN = 6 - """Render as a triangle fan.""" - - -class BufFlags(object): - POSITION = 0 - NORMAL = 1 - TANGENT = 2 - TEXCOORD_0 = 4 - TEXCOORD_1 = 8 - COLOR_0 = 16 - JOINTS_0 = 32 - WEIGHTS_0 = 64 - - -class TexFlags(object): - NONE = 0 - NORMAL = 1 - OCCLUSION = 2 - EMISSIVE = 4 - BASE_COLOR = 8 - METALLIC_ROUGHNESS = 16 - DIFFUSE = 32 - SPECULAR_GLOSSINESS = 64 - - -class ProgramFlags: - NONE = 0 - USE_MATERIAL = 1 - VERTEX_NORMALS = 2 - FACE_NORMALS = 4 - - -__all__ = ['RenderFlags', 'TextAlign', 'GLTF'] diff --git a/spaces/PAIR/PAIR-Diffusion/cldm/model.py b/spaces/PAIR/PAIR-Diffusion/cldm/model.py deleted file mode 100644 index 63a3c5e79b5e88d7590e369e7303fd9804673e5b..0000000000000000000000000000000000000000 --- a/spaces/PAIR/PAIR-Diffusion/cldm/model.py +++ /dev/null @@ -1,33 +0,0 @@ -import os -import torch - -from omegaconf import OmegaConf -from ldm.util import instantiate_from_config - - -def get_state_dict(d): - return d.get('state_dict', d) - - -def load_state_dict(ckpt_path, location='cpu'): - _, extension = os.path.splitext(ckpt_path) - if extension.lower() == ".safetensors": - import safetensors.torch - state_dict = safetensors.torch.load_file(ckpt_path, device=location) - else: - state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location))) - state_dict = get_state_dict(state_dict) - print(f'Loaded state_dict from [{ckpt_path}]') - return state_dict - - -def create_model(config): - if isinstance(config, str): - config = OmegaConf.load(config) - model = instantiate_from_config(config.model).cpu() - print(f'Loaded model config from [{config}]') - return model - else: - model = instantiate_from_config(config.model).cpu() - return model - diff --git a/spaces/PAIR/Text2Video-Zero/annotator/uniformer/mmseg/datasets/__init__.py b/spaces/PAIR/Text2Video-Zero/annotator/uniformer/mmseg/datasets/__init__.py deleted file mode 100644 index ebeaef4a28ef655e43578552a8aef6b77f13a636..0000000000000000000000000000000000000000 --- a/spaces/PAIR/Text2Video-Zero/annotator/uniformer/mmseg/datasets/__init__.py +++ /dev/null @@ -1,19 +0,0 @@ -from .ade import ADE20KDataset -from .builder import DATASETS, PIPELINES, build_dataloader, build_dataset -from .chase_db1 import ChaseDB1Dataset -from .cityscapes import CityscapesDataset -from .custom import CustomDataset -from .dataset_wrappers import ConcatDataset, RepeatDataset -from .drive import DRIVEDataset -from .hrf import HRFDataset -from .pascal_context import PascalContextDataset, PascalContextDataset59 -from .stare import STAREDataset -from .voc import PascalVOCDataset - -__all__ = [ - 'CustomDataset', 'build_dataloader', 'ConcatDataset', 'RepeatDataset', - 'DATASETS', 'build_dataset', 'PIPELINES', 'CityscapesDataset', - 'PascalVOCDataset', 'ADE20KDataset', 'PascalContextDataset', - 'PascalContextDataset59', 'ChaseDB1Dataset', 'DRIVEDataset', 'HRFDataset', - 'STAREDataset' -] diff --git a/spaces/Pattr/DrumClassification/lilypond-2.24.2/lib/guile/2.2/ccache/language/cps/handle-interrupts.go b/spaces/Pattr/DrumClassification/lilypond-2.24.2/lib/guile/2.2/ccache/language/cps/handle-interrupts.go deleted file mode 100644 index a7ffee0c08b6186edd053b13a3aa99b3eff06c07..0000000000000000000000000000000000000000 Binary files a/spaces/Pattr/DrumClassification/lilypond-2.24.2/lib/guile/2.2/ccache/language/cps/handle-interrupts.go and /dev/null differ diff --git a/spaces/Pie31415/control-animation/annotator/uniformer/mmcv/runner/hooks/profiler.py b/spaces/Pie31415/control-animation/annotator/uniformer/mmcv/runner/hooks/profiler.py deleted file mode 100644 index b70236997eec59c2209ef351ae38863b4112d0ec..0000000000000000000000000000000000000000 --- a/spaces/Pie31415/control-animation/annotator/uniformer/mmcv/runner/hooks/profiler.py +++ /dev/null @@ -1,180 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import warnings -from typing import Callable, List, Optional, Union - -import torch - -from ..dist_utils import master_only -from .hook import HOOKS, Hook - - -@HOOKS.register_module() -class ProfilerHook(Hook): - """Profiler to analyze performance during training. - - PyTorch Profiler is a tool that allows the collection of the performance - metrics during the training. More details on Profiler can be found at - https://pytorch.org/docs/1.8.1/profiler.html#torch.profiler.profile - - Args: - by_epoch (bool): Profile performance by epoch or by iteration. - Default: True. - profile_iters (int): Number of iterations for profiling. - If ``by_epoch=True``, profile_iters indicates that they are the - first profile_iters epochs at the beginning of the - training, otherwise it indicates the first profile_iters - iterations. Default: 1. - activities (list[str]): List of activity groups (CPU, CUDA) to use in - profiling. Default: ['cpu', 'cuda']. - schedule (dict, optional): Config of generating the callable schedule. - if schedule is None, profiler will not add step markers into the - trace and table view. Default: None. - on_trace_ready (callable, dict): Either a handler or a dict of generate - handler. Default: None. - record_shapes (bool): Save information about operator's input shapes. - Default: False. - profile_memory (bool): Track tensor memory allocation/deallocation. - Default: False. - with_stack (bool): Record source information (file and line number) - for the ops. Default: False. - with_flops (bool): Use formula to estimate the FLOPS of specific - operators (matrix multiplication and 2D convolution). - Default: False. - json_trace_path (str, optional): Exports the collected trace in Chrome - JSON format. Default: None. - - Example: - >>> runner = ... # instantiate a Runner - >>> # tensorboard trace - >>> trace_config = dict(type='tb_trace', dir_name='work_dir') - >>> profiler_config = dict(on_trace_ready=trace_config) - >>> runner.register_profiler_hook(profiler_config) - >>> runner.run(data_loaders=[trainloader], workflow=[('train', 1)]) - """ - - def __init__(self, - by_epoch: bool = True, - profile_iters: int = 1, - activities: List[str] = ['cpu', 'cuda'], - schedule: Optional[dict] = None, - on_trace_ready: Optional[Union[Callable, dict]] = None, - record_shapes: bool = False, - profile_memory: bool = False, - with_stack: bool = False, - with_flops: bool = False, - json_trace_path: Optional[str] = None) -> None: - try: - from torch import profiler # torch version >= 1.8.1 - except ImportError: - raise ImportError('profiler is the new feature of torch1.8.1, ' - f'but your version is {torch.__version__}') - - assert isinstance(by_epoch, bool), '``by_epoch`` should be a boolean.' - self.by_epoch = by_epoch - - if profile_iters < 1: - raise ValueError('profile_iters should be greater than 0, but got ' - f'{profile_iters}') - self.profile_iters = profile_iters - - if not isinstance(activities, list): - raise ValueError( - f'activities should be list, but got {type(activities)}') - self.activities = [] - for activity in activities: - activity = activity.lower() - if activity == 'cpu': - self.activities.append(profiler.ProfilerActivity.CPU) - elif activity == 'cuda': - self.activities.append(profiler.ProfilerActivity.CUDA) - else: - raise ValueError( - f'activity should be "cpu" or "cuda", but got {activity}') - - if schedule is not None: - self.schedule = profiler.schedule(**schedule) - else: - self.schedule = None - - self.on_trace_ready = on_trace_ready - self.record_shapes = record_shapes - self.profile_memory = profile_memory - self.with_stack = with_stack - self.with_flops = with_flops - self.json_trace_path = json_trace_path - - @master_only - def before_run(self, runner): - if self.by_epoch and runner.max_epochs < self.profile_iters: - raise ValueError('self.profile_iters should not be greater than ' - f'{runner.max_epochs}') - - if not self.by_epoch and runner.max_iters < self.profile_iters: - raise ValueError('self.profile_iters should not be greater than ' - f'{runner.max_iters}') - - if callable(self.on_trace_ready): # handler - _on_trace_ready = self.on_trace_ready - elif isinstance(self.on_trace_ready, dict): # config of handler - trace_cfg = self.on_trace_ready.copy() - trace_type = trace_cfg.pop('type') # log_trace handler - if trace_type == 'log_trace': - - def _log_handler(prof): - print(prof.key_averages().table(**trace_cfg)) - - _on_trace_ready = _log_handler - elif trace_type == 'tb_trace': # tensorboard_trace handler - try: - import torch_tb_profiler # noqa: F401 - except ImportError: - raise ImportError('please run "pip install ' - 'torch-tb-profiler" to install ' - 'torch_tb_profiler') - _on_trace_ready = torch.profiler.tensorboard_trace_handler( - **trace_cfg) - else: - raise ValueError('trace_type should be "log_trace" or ' - f'"tb_trace", but got {trace_type}') - elif self.on_trace_ready is None: - _on_trace_ready = None # type: ignore - else: - raise ValueError('on_trace_ready should be handler, dict or None, ' - f'but got {type(self.on_trace_ready)}') - - if runner.max_epochs > 1: - warnings.warn(f'profiler will profile {runner.max_epochs} epochs ' - 'instead of 1 epoch. Since profiler will slow down ' - 'the training, it is recommended to train 1 epoch ' - 'with ProfilerHook and adjust your setting according' - ' to the profiler summary. During normal training ' - '(epoch > 1), you may disable the ProfilerHook.') - - self.profiler = torch.profiler.profile( - activities=self.activities, - schedule=self.schedule, - on_trace_ready=_on_trace_ready, - record_shapes=self.record_shapes, - profile_memory=self.profile_memory, - with_stack=self.with_stack, - with_flops=self.with_flops) - - self.profiler.__enter__() - runner.logger.info('profiler is profiling...') - - @master_only - def after_train_epoch(self, runner): - if self.by_epoch and runner.epoch == self.profile_iters - 1: - runner.logger.info('profiler may take a few minutes...') - self.profiler.__exit__(None, None, None) - if self.json_trace_path is not None: - self.profiler.export_chrome_trace(self.json_trace_path) - - @master_only - def after_train_iter(self, runner): - self.profiler.step() - if not self.by_epoch and runner.iter == self.profile_iters - 1: - runner.logger.info('profiler may take a few minutes...') - self.profiler.__exit__(None, None, None) - if self.json_trace_path is not None: - self.profiler.export_chrome_trace(self.json_trace_path) diff --git a/spaces/Pinwheel/GLIP-BLIP-Object-Detection-VQA/maskrcnn_benchmark/modeling/backbone/efficientdet.py b/spaces/Pinwheel/GLIP-BLIP-Object-Detection-VQA/maskrcnn_benchmark/modeling/backbone/efficientdet.py deleted file mode 100644 index c168d05bac5f3c580238909ef568d05cac4363ba..0000000000000000000000000000000000000000 --- a/spaces/Pinwheel/GLIP-BLIP-Object-Detection-VQA/maskrcnn_benchmark/modeling/backbone/efficientdet.py +++ /dev/null @@ -1,1882 +0,0 @@ -import torch -import re -import numpy as np -import torch.nn as nn -import torch.nn.functional as F -import logging -import cv2 -import math -import itertools -import collections -from torchvision.ops import nms - - -GlobalParams = collections.namedtuple('GlobalParams', [ - 'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', - 'num_classes', 'width_coefficient', 'depth_coefficient', - 'depth_divisor', 'min_depth', 'drop_connect_rate', 'image_size']) - -# Parameters for an individual model block -BlockArgs = collections.namedtuple('BlockArgs', [ - 'kernel_size', 'num_repeat', 'input_filters', 'output_filters', - 'expand_ratio', 'id_skip', 'stride', 'se_ratio']) - -# https://stackoverflow.com/a/18348004 -# Change namedtuple defaults -GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields) -BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields) - -# in the old version, g_simple_padding = False, which tries to align -# tensorflow's implementation, which is not required here. -g_simple_padding = True -class MaxPool2dStaticSamePadding(nn.Module): - """ - created by Zylo117 - The real keras/tensorflow MaxPool2d with same padding - """ - - def __init__(self, kernel_size, stride): - super().__init__() - if g_simple_padding: - self.pool = nn.MaxPool2d(kernel_size, stride, - padding=(kernel_size-1)//2) - else: - assert ValueError() - self.pool = nn.MaxPool2d(kernel_size, stride) - self.stride = self.pool.stride - self.kernel_size = self.pool.kernel_size - - if isinstance(self.stride, int): - self.stride = [self.stride] * 2 - elif len(self.stride) == 1: - self.stride = [self.stride[0]] * 2 - - if isinstance(self.kernel_size, int): - self.kernel_size = [self.kernel_size] * 2 - elif len(self.kernel_size) == 1: - self.kernel_size = [self.kernel_size[0]] * 2 - - def forward(self, x): - if g_simple_padding: - return self.pool(x) - else: - assert ValueError() - h, w = x.shape[-2:] - - h_step = math.ceil(w / self.stride[1]) - v_step = math.ceil(h / self.stride[0]) - h_cover_len = self.stride[1] * (h_step - 1) + 1 + (self.kernel_size[1] - 1) - v_cover_len = self.stride[0] * (v_step - 1) + 1 + (self.kernel_size[0] - 1) - - extra_h = h_cover_len - w - extra_v = v_cover_len - h - - left = extra_h // 2 - right = extra_h - left - top = extra_v // 2 - bottom = extra_v - top - - x = F.pad(x, [left, right, top, bottom]) - - x = self.pool(x) - return x - -class Conv2dStaticSamePadding(nn.Module): - """ - created by Zylo117 - The real keras/tensorflow conv2d with same padding - """ - - def __init__(self, in_channels, out_channels, kernel_size, stride=1, bias=True, groups=1, dilation=1, **kwargs): - super().__init__() - if g_simple_padding: - assert kernel_size % 2 == 1 - assert dilation == 1 - self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, - bias=bias, - groups=groups, - padding=(kernel_size - 1) // 2) - self.stride = self.conv.stride - if isinstance(self.stride, int): - self.stride = [self.stride] * 2 - elif len(self.stride) == 1: - self.stride = [self.stride[0]] * 2 - else: - self.stride = list(self.stride) - else: - assert ValueError() - self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, - bias=bias, groups=groups) - self.stride = self.conv.stride - self.kernel_size = self.conv.kernel_size - self.dilation = self.conv.dilation - - if isinstance(self.stride, int): - self.stride = [self.stride] * 2 - elif len(self.stride) == 1: - self.stride = [self.stride[0]] * 2 - - if isinstance(self.kernel_size, int): - self.kernel_size = [self.kernel_size] * 2 - elif len(self.kernel_size) == 1: - self.kernel_size = [self.kernel_size[0]] * 2 - - def forward(self, x): - if g_simple_padding: - return self.conv(x) - else: - assert ValueError() - h, w = x.shape[-2:] - - h_step = math.ceil(w / self.stride[1]) - v_step = math.ceil(h / self.stride[0]) - h_cover_len = self.stride[1] * (h_step - 1) + 1 + (self.kernel_size[1] - 1) - v_cover_len = self.stride[0] * (v_step - 1) + 1 + (self.kernel_size[0] - 1) - - extra_h = h_cover_len - w - extra_v = v_cover_len - h - - left = extra_h // 2 - right = extra_h - left - top = extra_v // 2 - bottom = extra_v - top - - x = F.pad(x, [left, right, top, bottom]) - - x = self.conv(x) - return x - -class SeparableConvBlock(nn.Module): - """ - created by Zylo117 - """ - - def __init__(self, in_channels, out_channels=None, norm=True, activation=False, onnx_export=False): - super(SeparableConvBlock, self).__init__() - if out_channels is None: - out_channels = in_channels - - # Q: whether separate conv - # share bias between depthwise_conv and pointwise_conv - # or just pointwise_conv apply bias. - # A: Confirmed, just pointwise_conv applies bias, depthwise_conv has no bias. - - self.depthwise_conv = Conv2dStaticSamePadding(in_channels, in_channels, - kernel_size=3, stride=1, groups=in_channels, bias=False) - self.pointwise_conv = Conv2dStaticSamePadding(in_channels, out_channels, kernel_size=1, stride=1) - - self.norm = norm - if self.norm: - # Warning: pytorch momentum is different from tensorflow's, momentum_pytorch = 1 - momentum_tensorflow - self.bn = nn.BatchNorm2d(num_features=out_channels, momentum=0.01, eps=1e-3) - - self.activation = activation - if self.activation: - self.swish = MemoryEfficientSwish() if not onnx_export else Swish() - - def forward(self, x): - x = self.depthwise_conv(x) - x = self.pointwise_conv(x) - - if self.norm: - x = self.bn(x) - - if self.activation: - x = self.swish(x) - - return x - - -class BiFPN(nn.Module): - """ - modified by Zylo117 - """ - - def __init__(self, num_channels, conv_channels, first_time=False, - epsilon=1e-4, onnx_export=False, attention=True, - adaptive_up=False): - """ - - Args: - num_channels: - conv_channels: - first_time: whether the input comes directly from the efficientnet, - if True, downchannel it first, and downsample P5 to generate P6 then P7 - epsilon: epsilon of fast weighted attention sum of BiFPN, not the BN's epsilon - onnx_export: if True, use Swish instead of MemoryEfficientSwish - """ - super(BiFPN, self).__init__() - self.epsilon = epsilon - # Conv layers - self.conv6_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) - self.conv5_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) - self.conv4_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) - self.conv3_up = SeparableConvBlock(num_channels, onnx_export=onnx_export) - self.conv4_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) - self.conv5_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) - self.conv6_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) - self.conv7_down = SeparableConvBlock(num_channels, onnx_export=onnx_export) - - # Feature scaling layers - self.p6_upsample = nn.Upsample(scale_factor=2, mode='nearest') - self.p5_upsample = nn.Upsample(scale_factor=2, mode='nearest') - self.p4_upsample = nn.Upsample(scale_factor=2, mode='nearest') - self.p3_upsample = nn.Upsample(scale_factor=2, mode='nearest') - - self.adaptive_up = adaptive_up - - self.p4_downsample = MaxPool2dStaticSamePadding(3, 2) - self.p5_downsample = MaxPool2dStaticSamePadding(3, 2) - self.p6_downsample = MaxPool2dStaticSamePadding(3, 2) - self.p7_downsample = MaxPool2dStaticSamePadding(3, 2) - - self.swish = MemoryEfficientSwish() if not onnx_export else Swish() - - self.first_time = first_time - if self.first_time: - self.p5_down_channel = nn.Sequential( - Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), - nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), - ) - self.p4_down_channel = nn.Sequential( - Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), - nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), - ) - self.p3_down_channel = nn.Sequential( - Conv2dStaticSamePadding(conv_channels[0], num_channels, 1), - nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), - ) - - if len(conv_channels) == 3: - self.p5_to_p6 = nn.Sequential( - Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), - nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), - MaxPool2dStaticSamePadding(3, 2) - ) - else: - assert len(conv_channels) == 4 - self.p6_down_channel = nn.Sequential( - Conv2dStaticSamePadding(conv_channels[3], num_channels, 1), - nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), - ) - - self.p6_to_p7 = nn.Sequential( - MaxPool2dStaticSamePadding(3, 2) - ) - - self.p4_down_channel_2 = nn.Sequential( - Conv2dStaticSamePadding(conv_channels[1], num_channels, 1), - nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), - ) - self.p5_down_channel_2 = nn.Sequential( - Conv2dStaticSamePadding(conv_channels[2], num_channels, 1), - nn.BatchNorm2d(num_channels, momentum=0.01, eps=1e-3), - ) - - # Weight - self.p6_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) - self.p6_w1_relu = nn.ReLU() - self.p5_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) - self.p5_w1_relu = nn.ReLU() - self.p4_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) - self.p4_w1_relu = nn.ReLU() - self.p3_w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) - self.p3_w1_relu = nn.ReLU() - - self.p4_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) - self.p4_w2_relu = nn.ReLU() - self.p5_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) - self.p5_w2_relu = nn.ReLU() - self.p6_w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True) - self.p6_w2_relu = nn.ReLU() - self.p7_w2 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True) - self.p7_w2_relu = nn.ReLU() - - self.attention = attention - - def forward(self, inputs): - """ - illustration of a minimal bifpn unit - P7_0 -------------------------> P7_2 --------> - |-------------| ↑ - ↓ | - P6_0 ---------> P6_1 ---------> P6_2 --------> - |-------------|--------------↑ ↑ - ↓ | - P5_0 ---------> P5_1 ---------> P5_2 --------> - |-------------|--------------↑ ↑ - ↓ | - P4_0 ---------> P4_1 ---------> P4_2 --------> - |-------------|--------------↑ ↑ - |--------------↓ | - P3_0 -------------------------> P3_2 --------> - """ - - # downsample channels using same-padding conv2d to target phase's if not the same - # judge: same phase as target, - # if same, pass; - # elif earlier phase, downsample to target phase's by pooling - # elif later phase, upsample to target phase's by nearest interpolation - if self.attention: - p3_out, p4_out, p5_out, p6_out, p7_out = self._forward_fast_attention(inputs) - else: - p3_out, p4_out, p5_out, p6_out, p7_out = self._forward(inputs) - - return p3_out, p4_out, p5_out, p6_out, p7_out - - def _forward_fast_attention(self, inputs): - if self.first_time: - if len(inputs) == 3: - p3, p4, p5 = inputs - p6_in = self.p5_to_p6(p5) - else: - p3, p4, p5, p6 = inputs - p6_in = self.p6_down_channel(p6) - - p7_in = self.p6_to_p7(p6_in) - - p3_in = self.p3_down_channel(p3) - p4_in = self.p4_down_channel(p4) - p5_in = self.p5_down_channel(p5) - else: - # P3_0, P4_0, P5_0, P6_0 and P7_0 - p3_in, p4_in, p5_in, p6_in, p7_in = inputs - - # P7_0 to P7_2 - - if not self.adaptive_up: - # Weights for P6_0 and P7_0 to P6_1 - p6_w1 = self.p6_w1_relu(self.p6_w1) - weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon) - # Connections for P6_0 and P7_0 to P6_1 respectively - p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * self.p6_upsample(p7_in))) - - # Weights for P5_0 and P6_0 to P5_1 - p5_w1 = self.p5_w1_relu(self.p5_w1) - weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon) - # Connections for P5_0 and P6_0 to P5_1 respectively - p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * self.p5_upsample(p6_up))) - - # Weights for P4_0 and P5_0 to P4_1 - p4_w1 = self.p4_w1_relu(self.p4_w1) - weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon) - # Connections for P4_0 and P5_0 to P4_1 respectively - p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * self.p4_upsample(p5_up))) - - # Weights for P3_0 and P4_1 to P3_2 - p3_w1 = self.p3_w1_relu(self.p3_w1) - weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon) - # Connections for P3_0 and P4_1 to P3_2 respectively - p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * self.p3_upsample(p4_up))) - else: - # Weights for P6_0 and P7_0 to P6_1 - p6_w1 = self.p6_w1_relu(self.p6_w1) - weight = p6_w1 / (torch.sum(p6_w1, dim=0) + self.epsilon) - # Connections for P6_0 and P7_0 to P6_1 respectively - p6_upsample = nn.Upsample(size=p6_in.shape[-2:]) - p6_up = self.conv6_up(self.swish(weight[0] * p6_in + weight[1] * p6_upsample(p7_in))) - - # Weights for P5_0 and P6_0 to P5_1 - p5_w1 = self.p5_w1_relu(self.p5_w1) - weight = p5_w1 / (torch.sum(p5_w1, dim=0) + self.epsilon) - # Connections for P5_0 and P6_0 to P5_1 respectively - p5_upsample = nn.Upsample(size=p5_in.shape[-2:]) - p5_up = self.conv5_up(self.swish(weight[0] * p5_in + weight[1] * p5_upsample(p6_up))) - - # Weights for P4_0 and P5_0 to P4_1 - p4_w1 = self.p4_w1_relu(self.p4_w1) - weight = p4_w1 / (torch.sum(p4_w1, dim=0) + self.epsilon) - # Connections for P4_0 and P5_0 to P4_1 respectively - p4_upsample = nn.Upsample(size=p4_in.shape[-2:]) - p4_up = self.conv4_up(self.swish(weight[0] * p4_in + weight[1] * p4_upsample(p5_up))) - - # Weights for P3_0 and P4_1 to P3_2 - p3_w1 = self.p3_w1_relu(self.p3_w1) - weight = p3_w1 / (torch.sum(p3_w1, dim=0) + self.epsilon) - p3_upsample = nn.Upsample(size=p3_in.shape[-2:]) - # Connections for P3_0 and P4_1 to P3_2 respectively - p3_out = self.conv3_up(self.swish(weight[0] * p3_in + weight[1] * p3_upsample(p4_up))) - - if self.first_time: - p4_in = self.p4_down_channel_2(p4) - p5_in = self.p5_down_channel_2(p5) - - # Weights for P4_0, P4_1 and P3_2 to P4_2 - p4_w2 = self.p4_w2_relu(self.p4_w2) - weight = p4_w2 / (torch.sum(p4_w2, dim=0) + self.epsilon) - # Connections for P4_0, P4_1 and P3_2 to P4_2 respectively - p4_out = self.conv4_down( - self.swish(weight[0] * p4_in + weight[1] * p4_up + weight[2] * self.p4_downsample(p3_out))) - - # Weights for P5_0, P5_1 and P4_2 to P5_2 - p5_w2 = self.p5_w2_relu(self.p5_w2) - weight = p5_w2 / (torch.sum(p5_w2, dim=0) + self.epsilon) - # Connections for P5_0, P5_1 and P4_2 to P5_2 respectively - p5_out = self.conv5_down( - self.swish(weight[0] * p5_in + weight[1] * p5_up + weight[2] * self.p5_downsample(p4_out))) - - # Weights for P6_0, P6_1 and P5_2 to P6_2 - p6_w2 = self.p6_w2_relu(self.p6_w2) - weight = p6_w2 / (torch.sum(p6_w2, dim=0) + self.epsilon) - # Connections for P6_0, P6_1 and P5_2 to P6_2 respectively - p6_out = self.conv6_down( - self.swish(weight[0] * p6_in + weight[1] * p6_up + weight[2] * self.p6_downsample(p5_out))) - - # Weights for P7_0 and P6_2 to P7_2 - p7_w2 = self.p7_w2_relu(self.p7_w2) - weight = p7_w2 / (torch.sum(p7_w2, dim=0) + self.epsilon) - # Connections for P7_0 and P6_2 to P7_2 - p7_out = self.conv7_down(self.swish(weight[0] * p7_in + weight[1] * self.p7_downsample(p6_out))) - - return p3_out, p4_out, p5_out, p6_out, p7_out - - def _forward(self, inputs): - if self.first_time: - p3, p4, p5 = inputs - - p6_in = self.p5_to_p6(p5) - p7_in = self.p6_to_p7(p6_in) - - p3_in = self.p3_down_channel(p3) - p4_in = self.p4_down_channel(p4) - p5_in = self.p5_down_channel(p5) - - else: - # P3_0, P4_0, P5_0, P6_0 and P7_0 - p3_in, p4_in, p5_in, p6_in, p7_in = inputs - - # P7_0 to P7_2 - - # Connections for P6_0 and P7_0 to P6_1 respectively - p6_up = self.conv6_up(self.swish(p6_in + self.p6_upsample(p7_in))) - - # Connections for P5_0 and P6_0 to P5_1 respectively - p5_up = self.conv5_up(self.swish(p5_in + self.p5_upsample(p6_up))) - - # Connections for P4_0 and P5_0 to P4_1 respectively - p4_up = self.conv4_up(self.swish(p4_in + self.p4_upsample(p5_up))) - - # Connections for P3_0 and P4_1 to P3_2 respectively - p3_out = self.conv3_up(self.swish(p3_in + self.p3_upsample(p4_up))) - - if self.first_time: - p4_in = self.p4_down_channel_2(p4) - p5_in = self.p5_down_channel_2(p5) - - # Connections for P4_0, P4_1 and P3_2 to P4_2 respectively - p4_out = self.conv4_down( - self.swish(p4_in + p4_up + self.p4_downsample(p3_out))) - - # Connections for P5_0, P5_1 and P4_2 to P5_2 respectively - p5_out = self.conv5_down( - self.swish(p5_in + p5_up + self.p5_downsample(p4_out))) - - # Connections for P6_0, P6_1 and P5_2 to P6_2 respectively - p6_out = self.conv6_down( - self.swish(p6_in + p6_up + self.p6_downsample(p5_out))) - - # Connections for P7_0 and P6_2 to P7_2 - p7_out = self.conv7_down(self.swish(p7_in + self.p7_downsample(p6_out))) - - return p3_out, p4_out, p5_out, p6_out, p7_out - - -class Regressor(nn.Module): - """ - modified by Zylo117 - """ - - def __init__(self, in_channels, num_anchors, num_layers, onnx_export=False): - super(Regressor, self).__init__() - self.num_layers = num_layers - self.num_layers = num_layers - - self.conv_list = nn.ModuleList( - [SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)]) - self.bn_list = nn.ModuleList( - [nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in - range(5)]) - self.header = SeparableConvBlock(in_channels, num_anchors * 4, norm=False, activation=False) - self.swish = MemoryEfficientSwish() if not onnx_export else Swish() - - def forward(self, inputs): - feats = [] - for feat, bn_list in zip(inputs, self.bn_list): - for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list): - feat = conv(feat) - feat = bn(feat) - feat = self.swish(feat) - feat = self.header(feat) - feat = feat.permute(0, 2, 3, 1) - feat = feat.contiguous().view(feat.shape[0], -1, 4) - - feats.append(feat) - - feats = torch.cat(feats, dim=1) - - return feats - -class SwishImplementation(torch.autograd.Function): - @staticmethod - def forward(ctx, i): - result = i * torch.sigmoid(i) - ctx.save_for_backward(i) - return result - - @staticmethod - def backward(ctx, grad_output): - i = ctx.saved_variables[0] - sigmoid_i = torch.sigmoid(i) - return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) - -class MemoryEfficientSwish(nn.Module): - def forward(self, x): - if torch._C._get_tracing_state(): - return x * torch.sigmoid(x) - return SwishImplementation.apply(x) - -class Swish(nn.Module): - def forward(self, x): - return x * torch.sigmoid(x) - -class Classifier(nn.Module): - """ - modified by Zylo117 - """ - - def __init__(self, in_channels, num_anchors, num_classes, num_layers, - onnx_export=False, prior_prob=0.01): - super(Classifier, self).__init__() - self.num_anchors = num_anchors - self.num_classes = num_classes - self.num_layers = num_layers - self.conv_list = nn.ModuleList( - [SeparableConvBlock(in_channels, in_channels, norm=False, activation=False) for i in range(num_layers)]) - self.bn_list = nn.ModuleList( - [nn.ModuleList([nn.BatchNorm2d(in_channels, momentum=0.01, eps=1e-3) for i in range(num_layers)]) for j in - range(5)]) - self.header = SeparableConvBlock(in_channels, num_anchors * num_classes, norm=False, activation=False) - - prior_prob = prior_prob - bias_value = -math.log((1 - prior_prob) / prior_prob) - torch.nn.init.normal_(self.header.pointwise_conv.conv.weight, std=0.01) - torch.nn.init.constant_(self.header.pointwise_conv.conv.bias, bias_value) - - self.swish = MemoryEfficientSwish() if not onnx_export else Swish() - - def forward(self, inputs): - feats = [] - for feat, bn_list in zip(inputs, self.bn_list): - for i, bn, conv in zip(range(self.num_layers), bn_list, self.conv_list): - feat = conv(feat) - feat = bn(feat) - feat = self.swish(feat) - feat = self.header(feat) - - feat = feat.permute(0, 2, 3, 1) - feat = feat.contiguous().view(feat.shape[0], feat.shape[1], feat.shape[2], self.num_anchors, - self.num_classes) - feat = feat.contiguous().view(feat.shape[0], -1, self.num_classes) - - feats.append(feat) - - feats = torch.cat(feats, dim=1) - #feats = feats.sigmoid() - - return feats - -class Conv2dDynamicSamePadding(nn.Conv2d): - """ 2D Convolutions like TensorFlow, for a dynamic image size """ - - def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): - super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) - raise ValueError('tend to be deprecated') - self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 - - def forward(self, x): - ih, iw = x.size()[-2:] - kh, kw = self.weight.size()[-2:] - sh, sw = self.stride - oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) - pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) - pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) - if pad_h > 0 or pad_w > 0: - x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) - return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) - -#TODO: it seems like the standard conv layer is good enough with proper padding -# parameters. -def get_same_padding_conv2d(image_size=None): - """ Chooses static padding if you have specified an image size, and dynamic padding otherwise. - Static padding is necessary for ONNX exporting of models. """ - if image_size is None: - raise ValueError('not validated') - return Conv2dDynamicSamePadding - else: - from functools import partial - return partial(Conv2dStaticSamePadding, image_size=image_size) - -def round_filters(filters, global_params): - """ Calculate and round number of filters based on depth multiplier. """ - multiplier = global_params.width_coefficient - if not multiplier: - return filters - divisor = global_params.depth_divisor - min_depth = global_params.min_depth - filters *= multiplier - min_depth = min_depth or divisor - new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) - if new_filters < 0.9 * filters: # prevent rounding by more than 10% - new_filters += divisor - return int(new_filters) - -def round_repeats(repeats, global_params): - """ Round number of filters based on depth multiplier. """ - multiplier = global_params.depth_coefficient - if not multiplier: - return repeats - return int(math.ceil(multiplier * repeats)) - -def drop_connect(inputs, p, training): - """ Drop connect. """ - if not training: return inputs - batch_size = inputs.shape[0] - keep_prob = 1 - p - random_tensor = keep_prob - random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device) - binary_tensor = torch.floor(random_tensor) - output = inputs / keep_prob * binary_tensor - return output - -class MBConvBlock(nn.Module): - """ - Mobile Inverted Residual Bottleneck Block - - Args: - block_args (namedtuple): BlockArgs, see above - global_params (namedtuple): GlobalParam, see above - - Attributes: - has_se (bool): Whether the block contains a Squeeze and Excitation layer. - """ - - def __init__(self, block_args, global_params): - super().__init__() - self._block_args = block_args - self._bn_mom = 1 - global_params.batch_norm_momentum - self._bn_eps = global_params.batch_norm_epsilon - self.has_se = (self._block_args.se_ratio is not None) and (0 < self._block_args.se_ratio <= 1) - self.id_skip = block_args.id_skip # skip connection and drop connect - - # Get static or dynamic convolution depending on image size - Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) - - # Expansion phase - inp = self._block_args.input_filters # number of input channels - oup = self._block_args.input_filters * self._block_args.expand_ratio # number of output channels - if self._block_args.expand_ratio != 1: - self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) - self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) - - # Depthwise convolution phase - k = self._block_args.kernel_size - s = self._block_args.stride - if isinstance(s, (tuple, list)) and all([s0 == s[0] for s0 in s]): - s = s[0] - self._depthwise_conv = Conv2d( - in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise - kernel_size=k, stride=s, bias=False) - self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) - - # Squeeze and Excitation layer, if desired - if self.has_se: - num_squeezed_channels = max(1, int(self._block_args.input_filters * self._block_args.se_ratio)) - self._se_reduce = Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1) - self._se_expand = Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1) - - # Output phase - final_oup = self._block_args.output_filters - self._project_conv = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) - self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._bn_mom, eps=self._bn_eps) - self._swish = MemoryEfficientSwish() - - def forward(self, inputs, drop_connect_rate=None): - """ - :param inputs: input tensor - :param drop_connect_rate: drop connect rate (float, between 0 and 1) - :return: output of block - """ - - # Expansion and Depthwise Convolution - x = inputs - if self._block_args.expand_ratio != 1: - x = self._expand_conv(inputs) - x = self._bn0(x) - x = self._swish(x) - - x = self._depthwise_conv(x) - x = self._bn1(x) - x = self._swish(x) - - # Squeeze and Excitation - if self.has_se: - x_squeezed = F.adaptive_avg_pool2d(x, 1) - x_squeezed = self._se_reduce(x_squeezed) - x_squeezed = self._swish(x_squeezed) - x_squeezed = self._se_expand(x_squeezed) - x = torch.sigmoid(x_squeezed) * x - - x = self._project_conv(x) - x = self._bn2(x) - - # Skip connection and drop connect - input_filters, output_filters = self._block_args.input_filters, self._block_args.output_filters - if self.id_skip and self._block_args.stride == 1 and input_filters == output_filters: - if drop_connect_rate: - x = drop_connect(x, p=drop_connect_rate, training=self.training) - x = x + inputs # skip connection - return x - - def set_swish(self, memory_efficient=True): - """Sets swish function as memory efficient (for training) or standard (for export)""" - self._swish = MemoryEfficientSwish() if memory_efficient else Swish() - -class BlockDecoder(object): - """ Block Decoder for readability, straight from the official TensorFlow repository """ - - @staticmethod - def _decode_block_string(block_string): - """ Gets a block through a string notation of arguments. """ - assert isinstance(block_string, str) - - ops = block_string.split('_') - options = {} - for op in ops: - splits = re.split(r'(\d.*)', op) - if len(splits) >= 2: - key, value = splits[:2] - options[key] = value - - # Check stride - assert (('s' in options and len(options['s']) == 1) or - (len(options['s']) == 2 and options['s'][0] == options['s'][1])) - - return BlockArgs( - kernel_size=int(options['k']), - num_repeat=int(options['r']), - input_filters=int(options['i']), - output_filters=int(options['o']), - expand_ratio=int(options['e']), - id_skip=('noskip' not in block_string), - se_ratio=float(options['se']) if 'se' in options else None, - stride=[int(options['s'][0])]) - - @staticmethod - def _encode_block_string(block): - """Encodes a block to a string.""" - args = [ - 'r%d' % block.num_repeat, - 'k%d' % block.kernel_size, - 's%d%d' % (block.strides[0], block.strides[1]), - 'e%s' % block.expand_ratio, - 'i%d' % block.input_filters, - 'o%d' % block.output_filters - ] - if 0 < block.se_ratio <= 1: - args.append('se%s' % block.se_ratio) - if block.id_skip is False: - args.append('noskip') - return '_'.join(args) - - @staticmethod - def decode(string_list): - """ - Decodes a list of string notations to specify blocks inside the network. - - :param string_list: a list of strings, each string is a notation of block - :return: a list of BlockArgs namedtuples of block args - """ - assert isinstance(string_list, list) - blocks_args = [] - for block_string in string_list: - blocks_args.append(BlockDecoder._decode_block_string(block_string)) - return blocks_args - - @staticmethod - def encode(blocks_args): - """ - Encodes a list of BlockArgs to a list of strings. - - :param blocks_args: a list of BlockArgs namedtuples of block args - :return: a list of strings, each string is a notation of block - """ - block_strings = [] - for block in blocks_args: - block_strings.append(BlockDecoder._encode_block_string(block)) - return block_strings - -def efficientnet(width_coefficient=None, depth_coefficient=None, dropout_rate=0.2, - drop_connect_rate=0.2, image_size=None, num_classes=1000): - """ Creates a efficientnet model. """ - - blocks_args = [ - 'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25', - 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25', - 'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25', - 'r1_k3_s11_e6_i192_o320_se0.25', - ] - blocks_args = BlockDecoder.decode(blocks_args) - - global_params = GlobalParams( - batch_norm_momentum=0.99, - batch_norm_epsilon=1e-3, - dropout_rate=dropout_rate, - drop_connect_rate=drop_connect_rate, - # data_format='channels_last', # removed, this is always true in PyTorch - num_classes=num_classes, - width_coefficient=width_coefficient, - depth_coefficient=depth_coefficient, - depth_divisor=8, - min_depth=None, - image_size=image_size, - ) - - return blocks_args, global_params - - -def efficientnet_params(model_name): - """ Map EfficientNet model name to parameter coefficients. """ - params_dict = { - # Coefficients: width,depth,res,dropout - 'efficientnet-b0': (1.0, 1.0, 224, 0.2), - 'efficientnet-b1': (1.0, 1.1, 240, 0.2), - 'efficientnet-b2': (1.1, 1.2, 260, 0.3), - 'efficientnet-b3': (1.2, 1.4, 300, 0.3), - 'efficientnet-b4': (1.4, 1.8, 380, 0.4), - 'efficientnet-b5': (1.6, 2.2, 456, 0.4), - 'efficientnet-b6': (1.8, 2.6, 528, 0.5), - 'efficientnet-b7': (2.0, 3.1, 600, 0.5), - 'efficientnet-b8': (2.2, 3.6, 672, 0.5), - 'efficientnet-l2': (4.3, 5.3, 800, 0.5), - } - return params_dict[model_name] - - -def get_model_params(model_name, override_params): - """ Get the block args and global params for a given model """ - if model_name.startswith('efficientnet'): - w, d, s, p = efficientnet_params(model_name) - # note: all models have drop connect rate = 0.2 - blocks_args, global_params = efficientnet( - width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s) - else: - raise NotImplementedError('model name is not pre-defined: %s' % model_name) - if override_params: - # ValueError will be raised here if override_params has fields not included in global_params. - global_params = global_params._replace(**override_params) - return blocks_args, global_params - -url_map = { - 'efficientnet-b0': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b0-355c32eb.pth', - 'efficientnet-b1': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b1-f1951068.pth', - 'efficientnet-b2': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b2-8bb594d6.pth', - 'efficientnet-b3': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b3-5fb5a3c3.pth', - 'efficientnet-b4': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b4-6ed6700e.pth', - 'efficientnet-b5': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b5-b6417697.pth', - 'efficientnet-b6': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b6-c76e70fd.pth', - 'efficientnet-b7': 'https://publicmodels.blob.core.windows.net/container/aa/efficientnet-b7-dcc49843.pth', -} - -url_map_advprop = { - 'efficientnet-b0': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b0-b64d5a18.pth', - 'efficientnet-b1': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b1-0f3ce85a.pth', - 'efficientnet-b2': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b2-6e9d97e5.pth', - 'efficientnet-b3': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b3-cdd7c0f4.pth', - 'efficientnet-b4': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b4-44fb3a87.pth', - 'efficientnet-b5': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b5-86493f6b.pth', - 'efficientnet-b6': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b6-ac80338e.pth', - 'efficientnet-b7': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b7-4652b6dd.pth', - 'efficientnet-b8': 'https://publicmodels.blob.core.windows.net/container/advprop/efficientnet-b8-22a8fe65.pth', -} - -def load_pretrained_weights(model, model_name, load_fc=True, advprop=False): - """ Loads pretrained weights, and downloads if loading for the first time. """ - # AutoAugment or Advprop (different preprocessing) - url_map_ = url_map_advprop if advprop else url_map - from torch.utils import model_zoo - state_dict = model_zoo.load_url(url_map_[model_name], map_location=torch.device('cpu')) - # state_dict = torch.load('../../weights/backbone_efficientnetb0.pth') - if load_fc: - ret = model.load_state_dict(state_dict, strict=False) - print(ret) - else: - state_dict.pop('_fc.weight') - state_dict.pop('_fc.bias') - res = model.load_state_dict(state_dict, strict=False) - assert set(res.missing_keys) == set(['_fc.weight', '_fc.bias']), 'issue loading pretrained weights' - print('Loaded pretrained weights for {}'.format(model_name)) - -class EfficientNet(nn.Module): - """ - An EfficientNet model. Most easily loaded with the .from_name or .from_pretrained methods - - Args: - blocks_args (list): A list of BlockArgs to construct blocks - global_params (namedtuple): A set of GlobalParams shared between blocks - - Example: - model = EfficientNet.from_pretrained('efficientnet-b0') - - """ - - def __init__(self, blocks_args=None, global_params=None): - super().__init__() - assert isinstance(blocks_args, list), 'blocks_args should be a list' - assert len(blocks_args) > 0, 'block args must be greater than 0' - self._global_params = global_params - self._blocks_args = blocks_args - - # Get static or dynamic convolution depending on image size - Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) - - # Batch norm parameters - bn_mom = 1 - self._global_params.batch_norm_momentum - bn_eps = self._global_params.batch_norm_epsilon - - # Stem - in_channels = 3 # rgb - out_channels = round_filters(32, self._global_params) # number of output channels - self._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) - self._bn0 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) - - # Build blocks - self._blocks = nn.ModuleList([]) - for block_args in self._blocks_args: - - # Update block input and output filters based on depth multiplier. - block_args = block_args._replace( - input_filters=round_filters(block_args.input_filters, self._global_params), - output_filters=round_filters(block_args.output_filters, self._global_params), - num_repeat=round_repeats(block_args.num_repeat, self._global_params) - ) - - # The first block needs to take care of stride and filter size increase. - self._blocks.append(MBConvBlock(block_args, self._global_params)) - if block_args.num_repeat > 1: - block_args = block_args._replace(input_filters=block_args.output_filters, stride=1) - for _ in range(block_args.num_repeat - 1): - self._blocks.append(MBConvBlock(block_args, self._global_params)) - - # Head - in_channels = block_args.output_filters # output of final block - out_channels = round_filters(1280, self._global_params) - self._conv_head = Conv2d(in_channels, out_channels, kernel_size=1, bias=False) - self._bn1 = nn.BatchNorm2d(num_features=out_channels, momentum=bn_mom, eps=bn_eps) - - # Final linear layer - self._avg_pooling = nn.AdaptiveAvgPool2d(1) - self._dropout = nn.Dropout(self._global_params.dropout_rate) - self._fc = nn.Linear(out_channels, self._global_params.num_classes) - self._swish = MemoryEfficientSwish() - - def set_swish(self, memory_efficient=True): - """Sets swish function as memory efficient (for training) or standard (for export)""" - self._swish = MemoryEfficientSwish() if memory_efficient else Swish() - for block in self._blocks: - block.set_swish(memory_efficient) - - def extract_features(self, inputs): - """ Returns output of the final convolution layer """ - - # Stem - x = self._swish(self._bn0(self._conv_stem(inputs))) - - # Blocks - for idx, block in enumerate(self._blocks): - drop_connect_rate = self._global_params.drop_connect_rate - if drop_connect_rate: - drop_connect_rate *= float(idx) / len(self._blocks) - x = block(x, drop_connect_rate=drop_connect_rate) - # Head - x = self._swish(self._bn1(self._conv_head(x))) - - return x - - def forward(self, inputs): - """ Calls extract_features to extract features, applies final linear layer, and returns logits. """ - bs = inputs.size(0) - # Convolution layers - x = self.extract_features(inputs) - - # Pooling and final linear layer - x = self._avg_pooling(x) - x = x.view(bs, -1) - x = self._dropout(x) - x = self._fc(x) - return x - - @classmethod - def from_name(cls, model_name, override_params=None): - cls._check_model_name_is_valid(model_name) - blocks_args, global_params = get_model_params(model_name, override_params) - return cls(blocks_args, global_params) - - @classmethod - def from_pretrained(cls, model_name, load_weights=True, advprop=True, num_classes=1000, in_channels=3): - model = cls.from_name(model_name, override_params={'num_classes': num_classes}) - if load_weights: - load_pretrained_weights(model, model_name, load_fc=(num_classes == 1000), advprop=advprop) - if in_channels != 3: - Conv2d = get_same_padding_conv2d(image_size = model._global_params.image_size) - out_channels = round_filters(32, model._global_params) - model._conv_stem = Conv2d(in_channels, out_channels, kernel_size=3, stride=2, bias=False) - return model - - @classmethod - def get_image_size(cls, model_name): - cls._check_model_name_is_valid(model_name) - _, _, res, _ = efficientnet_params(model_name) - return res - - @classmethod - def _check_model_name_is_valid(cls, model_name): - """ Validates model name. """ - valid_models = ['efficientnet-b'+str(i) for i in range(9)] - if model_name not in valid_models: - raise ValueError('model_name should be one of: ' + ', '.join(valid_models)) - -class EfficientNetD(nn.Module): - """ - modified by Zylo117 - """ - - def __init__(self, compound_coef, load_weights=False): - super().__init__() - model = EfficientNet.from_pretrained(f'efficientnet-b{compound_coef}', load_weights) - del model._conv_head - del model._bn1 - del model._avg_pooling - del model._dropout - del model._fc - self.model = model - - def forward(self, x): - x = self.model._conv_stem(x) - x = self.model._bn0(x) - x = self.model._swish(x) - feature_maps = [] - - # TODO: temporarily storing extra tensor last_x and del it later might not be a good idea, - # try recording stride changing when creating efficientnet, - # and then apply it here. - last_x = None - for idx, block in enumerate(self.model._blocks): - drop_connect_rate = self.model._global_params.drop_connect_rate - if drop_connect_rate: - drop_connect_rate *= float(idx) / len(self.model._blocks) - x = block(x, drop_connect_rate=drop_connect_rate) - - if tuple(block._depthwise_conv.stride) == (2, 2): - feature_maps.append(last_x) - elif idx == len(self.model._blocks) - 1: - feature_maps.append(x) - last_x = x - del last_x - return feature_maps[1:] - -class Anchors(nn.Module): - """ - adapted and modified from https://github.com/google/automl/blob/master/efficientdet/anchors.py by Zylo117 - """ - - def __init__(self, anchor_scale=4., pyramid_levels=None, **kwargs): - super().__init__() - from qd.qd_common import print_frame_info - print_frame_info() - self.anchor_scale = anchor_scale - - if pyramid_levels is None: - self.pyramid_levels = [3, 4, 5, 6, 7] - - self.strides = kwargs.get('strides', [2 ** x for x in self.pyramid_levels]) - self.scales = np.array(kwargs.get('scales', [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])) - self.ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]) - - self.buffer = {} - - @torch.no_grad() - def forward(self, image, dtype=torch.float32, features=None): - """Generates multiscale anchor boxes. - - Args: - image_size: integer number of input image size. The input image has the - same dimension for width and height. The image_size should be divided by - the largest feature stride 2^max_level. - anchor_scale: float number representing the scale of size of the base - anchor to the feature stride 2^level. - anchor_configs: a dictionary with keys as the levels of anchors and - values as a list of anchor configuration. - - Returns: - anchor_boxes: a numpy array with shape [N, 4], which stacks anchors on all - feature levels. - Raises: - ValueError: input size must be the multiple of largest feature stride. - """ - image_shape = image.shape[2:] - anchor_key = self.get_key('anchor', image_shape) - stride_idx_key = self.get_key('anchor_stride_index', image_shape) - - if anchor_key in self.buffer: - return {'stride_idx': self.buffer[stride_idx_key].detach(), - 'anchor': self.buffer[anchor_key].detach()} - - if dtype == torch.float16: - dtype = np.float16 - else: - dtype = np.float32 - - boxes_all = [] - all_idx_strides = [] - for idx_stride, stride in enumerate(self.strides): - boxes_level = [] - for scale, ratio in itertools.product(self.scales, self.ratios): - if features is not None: - f_h, f_w = features[idx_stride].shape[-2:] - x = np.arange(stride / 2, stride * f_w, stride) - y = np.arange(stride / 2, stride * f_h, stride) - else: - if image_shape[1] % stride != 0: - x_max = stride * ((image_shape[1] + stride - 1) // stride) - y_max = stride * ((image_shape[0] + stride - 1) // stride) - else: - x_max = image_shape[1] - y_max = image_shape[0] - x = np.arange(stride / 2, x_max, stride) - y = np.arange(stride / 2, y_max, stride) - xv, yv = np.meshgrid(x, y) - xv = xv.reshape(-1) - yv = yv.reshape(-1) - - base_anchor_size = self.anchor_scale * stride * scale - anchor_size_x_2 = base_anchor_size * ratio[0] / 2.0 - anchor_size_y_2 = base_anchor_size * ratio[1] / 2.0 - # y1,x1,y2,x2 - boxes = np.vstack((yv - anchor_size_y_2, xv - anchor_size_x_2, - yv + anchor_size_y_2, xv + anchor_size_x_2)) - boxes = np.swapaxes(boxes, 0, 1) - boxes_level.append(np.expand_dims(boxes, axis=1)) - # concat anchors on the same level to the reshape NxAx4 - boxes_level = np.concatenate(boxes_level, axis=1) - boxes_level = boxes_level.reshape([-1, 4]) - idx_strides = torch.tensor([idx_stride] * len(boxes_level)) - all_idx_strides.append(idx_strides) - boxes_all.append(boxes_level) - - anchor_boxes = np.vstack(boxes_all) - anchor_stride_indices = torch.cat(all_idx_strides).to(image.device) - - self.buffer[stride_idx_key] = anchor_stride_indices - - anchor_boxes = torch.from_numpy(anchor_boxes.astype(dtype)).to(image.device) - anchor_boxes = anchor_boxes.unsqueeze(0) - - # save it for later use to reduce overhead - self.buffer[anchor_key] = anchor_boxes - - return {'stride_idx': self.buffer[stride_idx_key], - 'anchor': self.buffer[anchor_key]} - - def get_key(self, hint, image_shape): - return '{}_{}'.format(hint, '_'.join(map(str, image_shape))) - -class EffNetFPN(nn.Module): - def __init__(self, compound_coef=0, start_from=3): - super().__init__() - - self.backbone_net = EfficientNetD(EfficientDetBackbone.backbone_compound_coef[compound_coef], - load_weights=False) - if start_from == 3: - conv_channel_coef = EfficientDetBackbone.conv_channel_coef[compound_coef] - else: - conv_channel_coef = EfficientDetBackbone.conv_channel_coef2345[compound_coef] - self.bifpn = nn.Sequential( - *[BiFPN(EfficientDetBackbone.fpn_num_filters[compound_coef], - conv_channel_coef, - True if _ == 0 else False, - attention=True if compound_coef < 6 else False, - adaptive_up=True) - for _ in range(EfficientDetBackbone.fpn_cell_repeats[compound_coef])]) - - self.out_channels = EfficientDetBackbone.fpn_num_filters[compound_coef] - - self.start_from = start_from - assert self.start_from in [2, 3] - - def forward(self, inputs): - if self.start_from == 3: - _, p3, p4, p5 = self.backbone_net(inputs) - - features = (p3, p4, p5) - features = self.bifpn(features) - return features - else: - p2, p3, p4, p5 = self.backbone_net(inputs) - features = (p2, p3, p4, p5) - features = self.bifpn(features) - return features - -class EfficientDetBackbone(nn.Module): - backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6] - fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384] - conv_channel_coef = { - # the channels of P3/P4/P5. - 0: [40, 112, 320], - 1: [40, 112, 320], - 2: [48, 120, 352], - 3: [48, 136, 384], - 4: [56, 160, 448], - 5: [64, 176, 512], - 6: [72, 200, 576], - 7: [72, 200, 576], - } - conv_channel_coef2345 = { - # the channels of P2/P3/P4/P5. - 0: [24, 40, 112, 320], - # to be determined for the following - 1: [24, 40, 112, 320], - 2: [24, 48, 120, 352], - 3: [32, 48, 136, 384], - 4: [32, 56, 160, 448], - 5: [40, 64, 176, 512], - 6: [72, 200], - 7: [72, 200], - } - fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8] - def __init__(self, num_classes=80, compound_coef=0, load_weights=False, - prior_prob=0.01, **kwargs): - super(EfficientDetBackbone, self).__init__() - self.compound_coef = compound_coef - - self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536] - self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5] - self.anchor_scale = [4., 4., 4., 4., 4., 4., 4., 5.] - self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)]) - self.num_scales = len(kwargs.get('scales', [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)])) - - num_anchors = len(self.aspect_ratios) * self.num_scales - - self.bifpn = nn.Sequential( - *[BiFPN(self.fpn_num_filters[self.compound_coef], - self.conv_channel_coef[compound_coef], - True if _ == 0 else False, - attention=True if compound_coef < 6 else False, - adaptive_up=kwargs.get('adaptive_up')) - for _ in range(self.fpn_cell_repeats[compound_coef])]) - - self.num_classes = num_classes - self.regressor = Regressor(in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, - num_layers=self.box_class_repeats[self.compound_coef]) - self.classifier = Classifier(in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors, - num_classes=num_classes, - num_layers=self.box_class_repeats[self.compound_coef], - prior_prob=prior_prob) - anchor_scale = self.anchor_scale[compound_coef] - if kwargs.get('anchor_scale'): - anchor_scale = kwargs.pop('anchor_scale') - if 'anchor_scale' in kwargs: - del kwargs['anchor_scale'] - self.anchors = Anchors(anchor_scale=anchor_scale, **kwargs) - - self.backbone_net = EfficientNetD(self.backbone_compound_coef[compound_coef], load_weights) - - def freeze_bn(self): - for m in self.modules(): - if isinstance(m, nn.BatchNorm2d): - m.eval() - - def forward(self, inputs): - _, p3, p4, p5 = self.backbone_net(inputs) - - features = (p3, p4, p5) - features = self.bifpn(features) - - regression = self.regressor(features) - classification = self.classifier(features) - anchors = self.anchors(inputs, inputs.dtype, features=features) - - return features, regression, classification, anchors - - def init_backbone(self, path): - state_dict = torch.load(path) - try: - ret = self.load_state_dict(state_dict, strict=False) - print(ret) - except RuntimeError as e: - print('Ignoring ' + str(e) + '"') - -def init_weights(model): - for name, module in model.named_modules(): - is_conv_layer = isinstance(module, nn.Conv2d) - - if is_conv_layer: - nn.init.kaiming_uniform_(module.weight.data) - - if module.bias is not None: - module.bias.data.zero_() - -def calc_iou(a, b): - # a(anchor) [boxes, (y1, x1, y2, x2)] - # b(gt, coco-style) [boxes, (x1, y1, x2, y2)] - - area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1]) - iw = torch.min(torch.unsqueeze(a[:, 3], dim=1), b[:, 2]) - torch.max(torch.unsqueeze(a[:, 1], 1), b[:, 0]) - ih = torch.min(torch.unsqueeze(a[:, 2], dim=1), b[:, 3]) - torch.max(torch.unsqueeze(a[:, 0], 1), b[:, 1]) - iw = torch.clamp(iw, min=0) - ih = torch.clamp(ih, min=0) - ua = torch.unsqueeze((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), dim=1) + area - iw * ih - ua = torch.clamp(ua, min=1e-8) - intersection = iw * ih - IoU = intersection / ua - - return IoU - -class BBoxTransform(nn.Module): - def forward(self, anchors, regression): - """ - decode_box_outputs adapted from https://github.com/google/automl/blob/master/efficientdet/anchors.py - - Args: - anchors: [batchsize, boxes, (y1, x1, y2, x2)] - regression: [batchsize, boxes, (dy, dx, dh, dw)] - - Returns: - - """ - y_centers_a = (anchors[..., 0] + anchors[..., 2]) / 2 - x_centers_a = (anchors[..., 1] + anchors[..., 3]) / 2 - ha = anchors[..., 2] - anchors[..., 0] - wa = anchors[..., 3] - anchors[..., 1] - - w = regression[..., 3].exp() * wa - h = regression[..., 2].exp() * ha - - y_centers = regression[..., 0] * ha + y_centers_a - x_centers = regression[..., 1] * wa + x_centers_a - - ymin = y_centers - h / 2. - xmin = x_centers - w / 2. - ymax = y_centers + h / 2. - xmax = x_centers + w / 2. - if len(anchors.shape) == 3: - return torch.stack([xmin, ymin, xmax, ymax], dim=2) - else: - return torch.stack([xmin, ymin, xmax, ymax], dim=1) - - -class ClipBoxes(nn.Module): - - def __init__(self): - super(ClipBoxes, self).__init__() - - def forward(self, boxes, img): - batch_size, num_channels, height, width = img.shape - - boxes[:, :, 0] = torch.clamp(boxes[:, :, 0], min=0) - boxes[:, :, 1] = torch.clamp(boxes[:, :, 1], min=0) - - boxes[:, :, 2] = torch.clamp(boxes[:, :, 2], max=width - 1) - boxes[:, :, 3] = torch.clamp(boxes[:, :, 3], max=height - 1) - - return boxes - -def postprocess2(x, anchors, regression, classification, - transformed_anchors, threshold, iou_threshold, max_box): - anchors = anchors['anchor'] - all_above_th = classification > threshold - out = [] - num_image = x.shape[0] - num_class = classification.shape[-1] - - #classification = classification.cpu() - #transformed_anchors = transformed_anchors.cpu() - #all_above_th = all_above_th.cpu() - max_box_pre_nms = 1000 - for i in range(num_image): - all_rois = [] - all_class_ids = [] - all_scores = [] - for c in range(num_class): - above_th = all_above_th[i, :, c].nonzero() - if len(above_th) == 0: - continue - above_prob = classification[i, above_th, c].squeeze(1) - if len(above_th) > max_box_pre_nms: - _, idx = above_prob.topk(max_box_pre_nms) - above_th = above_th[idx] - above_prob = above_prob[idx] - transformed_anchors_per = transformed_anchors[i,above_th,:].squeeze(dim=1) - from torchvision.ops import nms - nms_idx = nms(transformed_anchors_per, above_prob, iou_threshold=iou_threshold) - if len(nms_idx) > 0: - all_rois.append(transformed_anchors_per[nms_idx]) - ids = torch.tensor([c] * len(nms_idx)) - all_class_ids.append(ids) - all_scores.append(above_prob[nms_idx]) - - if len(all_rois) > 0: - rois = torch.cat(all_rois) - class_ids = torch.cat(all_class_ids) - scores = torch.cat(all_scores) - if len(scores) > max_box: - _, idx = torch.topk(scores, max_box) - rois = rois[idx, :] - class_ids = class_ids[idx] - scores = scores[idx] - out.append({ - 'rois': rois, - 'class_ids': class_ids, - 'scores': scores, - }) - else: - out.append({ - 'rois': [], - 'class_ids': [], - 'scores': [], - }) - - return out - -def postprocess(x, anchors, regression, classification, regressBoxes, clipBoxes, threshold, iou_threshold): - anchors = anchors['anchor'] - transformed_anchors = regressBoxes(anchors, regression) - transformed_anchors = clipBoxes(transformed_anchors, x) - scores = torch.max(classification, dim=2, keepdim=True)[0] - scores_over_thresh = (scores > threshold)[:, :, 0] - out = [] - for i in range(x.shape[0]): - if scores_over_thresh.sum() == 0: - out.append({ - 'rois': [], - 'class_ids': [], - 'scores': [], - }) - continue - - classification_per = classification[i, scores_over_thresh[i, :], ...].permute(1, 0) - transformed_anchors_per = transformed_anchors[i, scores_over_thresh[i, :], ...] - scores_per = scores[i, scores_over_thresh[i, :], ...] - from torchvision.ops import nms - anchors_nms_idx = nms(transformed_anchors_per, scores_per[:, 0], iou_threshold=iou_threshold) - - if anchors_nms_idx.shape[0] != 0: - scores_, classes_ = classification_per[:, anchors_nms_idx].max(dim=0) - boxes_ = transformed_anchors_per[anchors_nms_idx, :] - - out.append({ - 'rois': boxes_, - 'class_ids': classes_, - 'scores': scores_, - }) - else: - out.append({ - 'rois': [], - 'class_ids': [], - 'scores': [], - }) - - return out - -def display(preds, imgs, obj_list, imshow=True, imwrite=False): - for i in range(len(imgs)): - if len(preds[i]['rois']) == 0: - continue - - for j in range(len(preds[i]['rois'])): - (x1, y1, x2, y2) = preds[i]['rois'][j].detach().cpu().numpy().astype(np.int) - logging.info((x1, y1, x2, y2)) - cv2.rectangle(imgs[i], (x1, y1), (x2, y2), (255, 255, 0), 2) - #obj = obj_list[preds[i]['class_ids'][j]] - #score = float(preds[i]['scores'][j]) - - #cv2.putText(imgs[i], '{}, {:.3f}'.format(obj, score), - #(x1, y1 + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, - #(255, 255, 0), 1) - #break - if imshow: - cv2.imshow('image', imgs[i]) - cv2.waitKey(0) - -def calculate_focal_loss2(classification, target_list, alpha, gamma): - from maskrcnn_benchmark.layers.sigmoid_focal_loss import sigmoid_focal_loss_cuda - cls_loss = sigmoid_focal_loss_cuda(classification, target_list.int(), gamma, alpha) - return cls_loss - -def calculate_focal_loss(classification, targets, alpha, gamma): - classification = classification.sigmoid() - device = classification.device - alpha_factor = torch.ones_like(targets) * alpha - alpha_factor = alpha_factor.to(device) - - alpha_factor = torch.where(torch.eq(targets, 1.), alpha_factor, 1. - alpha_factor) - focal_weight = torch.where(torch.eq(targets, 1.), 1. - classification, classification) - focal_weight = alpha_factor * torch.pow(focal_weight, gamma) - - bce = -(targets * torch.log(classification) + (1.0 - targets) * torch.log(1.0 - classification)) - - cls_loss = focal_weight * bce - - zeros = torch.zeros_like(cls_loss) - zeros = zeros.to(device) - cls_loss = torch.where(torch.ne(targets, -1.0), cls_loss, zeros) - return cls_loss.mean() - -def calculate_giou(pred, gt): - ax1, ay1, ax2, ay2 = pred[:, 0], pred[:, 1], pred[:, 2], pred[:, 3] - bx1, by1, bx2, by2 = gt[:, 0], gt[:, 1], gt[:, 2], gt[:, 3] - a = (ax2 - ax1) * (ay2 - ay1) - b = (bx2 - bx1) * (by2 - by1) - max_x1, _ = torch.max(torch.stack([ax1, bx1], dim=1), dim=1) - max_y1, _ = torch.max(torch.stack([ay1, by1], dim=1), dim=1) - min_x2, _ = torch.min(torch.stack([ax2, bx2], dim=1), dim=1) - min_y2, _ = torch.min(torch.stack([ay2, by2], dim=1), dim=1) - inter = (min_x2 > max_x1) * (min_y2 > max_y1) - inter = inter * (min_x2 - max_x1) * (min_y2 - max_y1) - - min_x1, _ = torch.min(torch.stack([ax1, bx1], dim=1), dim=1) - min_y1, _ = torch.min(torch.stack([ay1, by1], dim=1), dim=1) - max_x2, _ = torch.max(torch.stack([ax2, bx2], dim=1), dim=1) - max_y2, _ = torch.max(torch.stack([ay2, by2], dim=1), dim=1) - cover = (max_x2 - min_x1) * (max_y2 - min_y1) - union = a + b - inter - iou = inter / (union + 1e-5) - giou = iou - (cover - union) / (cover + 1e-5) - return giou - -class FocalLoss(nn.Module): - def __init__(self, alpha=0.25, gamma=2., cls_loss_type='FL', smooth_bce_pos=0.99, - smooth_bce_neg=0.01, - reg_loss_type='L1', - at_least_1_assgin=False, - neg_iou_th=0.4, - pos_iou_th=0.5, - cls_weight=1., - reg_weight=1., - ): - super(FocalLoss, self).__init__() - from qd.qd_common import print_frame_info - print_frame_info() - self.iter = 0 - self.reg_loss_type = reg_loss_type - self.regressBoxes = BBoxTransform() - if cls_loss_type == 'FL': - from qd.layers.loss import FocalLossWithLogitsNegLoss - self.cls_loss = FocalLossWithLogitsNegLoss(alpha, gamma) - elif cls_loss_type == 'BCE': - from qd.qd_pytorch import BCEWithLogitsNegLoss - self.cls_loss = BCEWithLogitsNegLoss(reduction='sum') - elif cls_loss_type == 'SmoothBCE': - from qd.layers.loss import SmoothBCEWithLogitsNegLoss - self.cls_loss = SmoothBCEWithLogitsNegLoss( - pos=smooth_bce_pos, neg=smooth_bce_neg) - elif cls_loss_type == 'SmoothFL': - from qd.layers.loss import FocalSmoothBCEWithLogitsNegLoss - self.cls_loss = FocalSmoothBCEWithLogitsNegLoss( - alpha=alpha, gamma=2., - pos=smooth_bce_pos, neg=smooth_bce_neg) - else: - raise NotImplementedError(cls_loss_type) - self.at_least_1_assgin = at_least_1_assgin - - self.gt_total = 0 - self.gt_saved_by_at_least = 0 - - self.neg_iou_th = neg_iou_th - self.pos_iou_th = pos_iou_th - - self.cls_weight = cls_weight - self.reg_weight = reg_weight - - self.buf = {} - - def forward(self, classifications, regressions, anchor_info, annotations, **kwargs): - debug = (self.iter % 100) == 0 - self.iter += 1 - if debug: - from collections import defaultdict - debug_info = defaultdict(list) - - batch_size = classifications.shape[0] - classification_losses = [] - regression_losses = [] - anchors = anchor_info['anchor'] - anchor = anchors[0, :, :] # assuming all image sizes are the same, which it is - dtype = anchors.dtype - - anchor_widths = anchor[:, 3] - anchor[:, 1] - anchor_heights = anchor[:, 2] - anchor[:, 0] - anchor_ctr_x = anchor[:, 1] + 0.5 * anchor_widths - anchor_ctr_y = anchor[:, 0] + 0.5 * anchor_heights - - #anchor_widths = anchor[:, 2] - anchor[:, 0] - #anchor_heights = anchor[:, 3] - anchor[:, 1] - #anchor_ctr_x = anchor[:, 0] + 0.5 * anchor_widths - #anchor_ctr_y = anchor[:, 1] + 0.5 * anchor_heights - device = classifications.device - - for j in range(batch_size): - - classification = classifications[j, :, :] - regression = regressions[j, :, :] - - bbox_annotation = annotations[j] - bbox_annotation = bbox_annotation[bbox_annotation[:, 4] != -1] - - #classification = torch.clamp(classification, 1e-4, 1.0 - 1e-4) - - if bbox_annotation.shape[0] == 0: - #cls_loss = calculate_focal_loss2(classification, - #torch.zeros(len(classification)), alpha, - #gamma) - #cls_loss = cls_loss.mean() - cls_loss = torch.tensor(0).to(dtype).to(device) - regression_losses.append(torch.tensor(0).to(dtype).to(device)) - classification_losses.append(cls_loss) - continue - - IoU = calc_iou(anchor[:, :], bbox_annotation[:, :4]) - - IoU_max, IoU_argmax = torch.max(IoU, dim=1) - if self.at_least_1_assgin: - iou_max_gt, iou_argmax_gt = torch.max(IoU, dim=0) - curr_saved = (iou_max_gt < self.pos_iou_th).sum() - self.gt_saved_by_at_least += curr_saved - self.gt_total += len(iou_argmax_gt) - IoU_max[iou_argmax_gt] = 1. - IoU_argmax[iou_argmax_gt] = torch.arange(len(iou_argmax_gt)).to(device) - - # compute the loss for classification - targets = torch.ones_like(classification) * -1 - targets = targets.to(device) - - targets[torch.lt(IoU_max, self.neg_iou_th), :] = 0 - - positive_indices = torch.ge(IoU_max, self.pos_iou_th) - - num_positive_anchors = positive_indices.sum() - - assigned_annotations = bbox_annotation[IoU_argmax, :] - - targets[positive_indices, :] = 0 - targets[positive_indices, assigned_annotations[positive_indices, 4].long()] = 1 - - if debug: - if num_positive_anchors > 0: - debug_info['pos_conf'].append(classification[ - positive_indices, - assigned_annotations[positive_indices, 4].long()].mean()) - debug_info['neg_conf'].append(classification[targets == 0].mean()) - stride_idx = anchor_info['stride_idx'] - positive_stride_idx = stride_idx[positive_indices] - pos_count_each_stride = torch.tensor( - [(positive_stride_idx == i).sum() for i in range(5)]) - if 'cum_pos_count_each_stride' not in self.buf: - self.buf['cum_pos_count_each_stride'] = pos_count_each_stride - else: - cum_pos_count_each_stride = self.buf['cum_pos_count_each_stride'] - cum_pos_count_each_stride += pos_count_each_stride - self.buf['cum_pos_count_each_stride'] = cum_pos_count_each_stride - - #cls_loss = calculate_focal_loss(classification, targets, alpha, - #gamma) - cls_loss = self.cls_loss(classification, targets) - - cls_loss = cls_loss.sum() / torch.clamp(num_positive_anchors.to(dtype), min=1.0) - assert cls_loss == cls_loss - classification_losses.append(cls_loss) - - if positive_indices.sum() > 0: - assigned_annotations = assigned_annotations[positive_indices, :] - if self.reg_loss_type == 'L1': - anchor_widths_pi = anchor_widths[positive_indices] - anchor_heights_pi = anchor_heights[positive_indices] - anchor_ctr_x_pi = anchor_ctr_x[positive_indices] - anchor_ctr_y_pi = anchor_ctr_y[positive_indices] - - gt_widths = assigned_annotations[:, 2] - assigned_annotations[:, 0] - gt_heights = assigned_annotations[:, 3] - assigned_annotations[:, 1] - gt_ctr_x = assigned_annotations[:, 0] + 0.5 * gt_widths - gt_ctr_y = assigned_annotations[:, 1] + 0.5 * gt_heights - - # efficientdet style - gt_widths = torch.clamp(gt_widths, min=1) - gt_heights = torch.clamp(gt_heights, min=1) - - targets_dx = (gt_ctr_x - anchor_ctr_x_pi) / anchor_widths_pi - targets_dy = (gt_ctr_y - anchor_ctr_y_pi) / anchor_heights_pi - targets_dw = torch.log(gt_widths / anchor_widths_pi) - targets_dh = torch.log(gt_heights / anchor_heights_pi) - - targets = torch.stack((targets_dy, targets_dx, targets_dh, targets_dw)) - targets = targets.t() - - regression_diff = torch.abs(targets - regression[positive_indices, :]) - - regression_loss = torch.where( - torch.le(regression_diff, 1.0 / 9.0), - 0.5 * 9.0 * torch.pow(regression_diff, 2), - regression_diff - 0.5 / 9.0 - ).mean() - elif self.reg_loss_type == 'GIOU': - curr_regression = regression[positive_indices, :] - curr_anchors = anchor[positive_indices] - curr_pred_xyxy = self.regressBoxes(curr_anchors, - curr_regression) - regression_loss = 1.- calculate_giou(curr_pred_xyxy, assigned_annotations) - regression_loss = regression_loss.mean() - assert regression_loss == regression_loss - else: - raise NotImplementedError - regression_losses.append(regression_loss) - else: - if torch.cuda.is_available(): - regression_losses.append(torch.tensor(0).to(dtype).cuda()) - else: - regression_losses.append(torch.tensor(0).to(dtype)) - if debug: - if len(debug_info) > 0: - logging.info('pos = {}; neg = {}, saved_ratio = {}/{}={:.1f}, ' - 'stride_info = {}' - .format( - torch.tensor(debug_info['pos_conf']).mean(), - torch.tensor(debug_info['neg_conf']).mean(), - self.gt_saved_by_at_least, - self.gt_total, - 1. * self.gt_saved_by_at_least / self.gt_total, - self.buf['cum_pos_count_each_stride'], - )) - return self.cls_weight * torch.stack(classification_losses).mean(dim=0, keepdim=True), \ - self.reg_weight * torch.stack(regression_losses).mean(dim=0, keepdim=True) - -class ModelWithLoss(nn.Module): - def __init__(self, model, criterion): - super().__init__() - self.criterion = criterion - self.module = model - - def forward(self, *args): - if len(args) == 2: - imgs, annotations = args - elif len(args) == 1: - imgs, annotations = args[0][:2] - _, regression, classification, anchors = self.module(imgs) - cls_loss, reg_loss = self.criterion(classification, regression, anchors, annotations) - return {'cls_loss': cls_loss, 'reg_loss': reg_loss} - -class TorchVisionNMS(nn.Module): - def __init__(self, iou_threshold): - super().__init__() - self.iou_threshold = iou_threshold - - def forward(self, box, prob): - nms_idx = nms(box, prob, iou_threshold=self.iou_threshold) - return nms_idx - -class PostProcess(nn.Module): - def __init__(self, iou_threshold): - super().__init__() - self.nms = TorchVisionNMS(iou_threshold) - - def forward(self, x, anchors, regression, - classification, - transformed_anchors, threshold, max_box): - all_above_th = classification > threshold - out = [] - num_image = x.shape[0] - num_class = classification.shape[-1] - - #classification = classification.cpu() - #transformed_anchors = transformed_anchors.cpu() - #all_above_th = all_above_th.cpu() - max_box_pre_nms = 1000 - for i in range(num_image): - all_rois = [] - all_class_ids = [] - all_scores = [] - for c in range(num_class): - above_th = all_above_th[i, :, c].nonzero() - if len(above_th) == 0: - continue - above_prob = classification[i, above_th, c].squeeze(1) - if len(above_th) > max_box_pre_nms: - _, idx = above_prob.topk(max_box_pre_nms) - above_th = above_th[idx] - above_prob = above_prob[idx] - transformed_anchors_per = transformed_anchors[i,above_th,:].squeeze(dim=1) - nms_idx = self.nms(transformed_anchors_per, above_prob) - if len(nms_idx) > 0: - all_rois.append(transformed_anchors_per[nms_idx]) - ids = torch.tensor([c] * len(nms_idx)) - all_class_ids.append(ids) - all_scores.append(above_prob[nms_idx]) - - if len(all_rois) > 0: - rois = torch.cat(all_rois) - class_ids = torch.cat(all_class_ids) - scores = torch.cat(all_scores) - if len(scores) > max_box: - _, idx = torch.topk(scores, max_box) - rois = rois[idx, :] - class_ids = class_ids[idx] - scores = scores[idx] - out.append({ - 'rois': rois, - 'class_ids': class_ids, - 'scores': scores, - }) - else: - out.append({ - 'rois': [], - 'class_ids': [], - 'scores': [], - }) - - return out - -class InferenceModel(nn.Module): - def __init__(self, model): - super().__init__() - self.module = model - - self.regressBoxes = BBoxTransform() - self.clipBoxes = ClipBoxes() - self.threshold = 0.01 - self.nms_threshold = 0.5 - self.max_box = 100 - self.debug = False - self.post_process = PostProcess(self.nms_threshold) - - def forward(self, sample): - features, regression, classification, anchor_info = self.module(sample['image']) - anchors = anchor_info['anchor'] - classification = classification.sigmoid() - transformed_anchors = self.regressBoxes(anchors, regression) - transformed_anchors = self.clipBoxes(transformed_anchors, sample['image']) - - preds = self.post_process(sample['image'], anchors, regression, - classification, transformed_anchors, - self.threshold, self.max_box) - - if self.debug: - logging.info('debugging') - imgs = sample['image'] - imgs = imgs.permute(0, 2, 3, 1).cpu().numpy() - imgs = ((imgs * [0.229, 0.224, 0.225] + [0.485, 0.456, 0.406]) * 255).astype(np.uint8) - imgs = [cv2.cvtColor(img, cv2.COLOR_RGB2BGR) for img in imgs] - display(preds, imgs, list(map(str, range(80)))) - - for p, s in zip(preds, sample['scale']): - if len(p['rois']) > 0: - p['rois'] /= s - return preds - diff --git a/spaces/RamAnanth1/Pix2Struct/README.md b/spaces/RamAnanth1/Pix2Struct/README.md deleted file mode 100644 index e04cd7278afaebf1d8b81e0c83e373e0c346d9d0..0000000000000000000000000000000000000000 --- a/spaces/RamAnanth1/Pix2Struct/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Pix2Struct -emoji: 🏢 -colorFrom: red -colorTo: gray -sdk: gradio -sdk_version: 3.23.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/Raspberry-ai/main/.env/lib/python3.11/site-packages/pip/_internal/operations/install/editable_legacy.py b/spaces/Raspberry-ai/main/.env/lib/python3.11/site-packages/pip/_internal/operations/install/editable_legacy.py deleted file mode 100644 index bb548cdca75a924bf090f2be29779e2be1951a2c..0000000000000000000000000000000000000000 --- a/spaces/Raspberry-ai/main/.env/lib/python3.11/site-packages/pip/_internal/operations/install/editable_legacy.py +++ /dev/null @@ -1,47 +0,0 @@ -"""Legacy editable installation process, i.e. `setup.py develop`. -""" -import logging -from typing import List, Optional, Sequence - -from pip._internal.build_env import BuildEnvironment -from pip._internal.utils.logging import indent_log -from pip._internal.utils.setuptools_build import make_setuptools_develop_args -from pip._internal.utils.subprocess import call_subprocess - -logger = logging.getLogger(__name__) - - -def install_editable( - install_options: List[str], - global_options: Sequence[str], - prefix: Optional[str], - home: Optional[str], - use_user_site: bool, - name: str, - setup_py_path: str, - isolated: bool, - build_env: BuildEnvironment, - unpacked_source_directory: str, -) -> None: - """Install a package in editable mode. Most arguments are pass-through - to setuptools. - """ - logger.info("Running setup.py develop for %s", name) - - args = make_setuptools_develop_args( - setup_py_path, - global_options=global_options, - install_options=install_options, - no_user_config=isolated, - prefix=prefix, - home=home, - use_user_site=use_user_site, - ) - - with indent_log(): - with build_env: - call_subprocess( - args, - command_desc="python setup.py develop", - cwd=unpacked_source_directory, - ) diff --git a/spaces/Raspberry-ai/main/.env/lib/python3.11/site-packages/pkg_resources/_vendor/packaging/utils.py b/spaces/Raspberry-ai/main/.env/lib/python3.11/site-packages/pkg_resources/_vendor/packaging/utils.py deleted file mode 100644 index bab11b80c60f10a4f3bccb12eb5b17c48a449767..0000000000000000000000000000000000000000 --- a/spaces/Raspberry-ai/main/.env/lib/python3.11/site-packages/pkg_resources/_vendor/packaging/utils.py +++ /dev/null @@ -1,136 +0,0 @@ -# This file is dual licensed under the terms of the Apache License, Version -# 2.0, and the BSD License. See the LICENSE file in the root of this repository -# for complete details. - -import re -from typing import FrozenSet, NewType, Tuple, Union, cast - -from .tags import Tag, parse_tag -from .version import InvalidVersion, Version - -BuildTag = Union[Tuple[()], Tuple[int, str]] -NormalizedName = NewType("NormalizedName", str) - - -class InvalidWheelFilename(ValueError): - """ - An invalid wheel filename was found, users should refer to PEP 427. - """ - - -class InvalidSdistFilename(ValueError): - """ - An invalid sdist filename was found, users should refer to the packaging user guide. - """ - - -_canonicalize_regex = re.compile(r"[-_.]+") -# PEP 427: The build number must start with a digit. -_build_tag_regex = re.compile(r"(\d+)(.*)") - - -def canonicalize_name(name: str) -> NormalizedName: - # This is taken from PEP 503. - value = _canonicalize_regex.sub("-", name).lower() - return cast(NormalizedName, value) - - -def canonicalize_version(version: Union[Version, str]) -> str: - """ - This is very similar to Version.__str__, but has one subtle difference - with the way it handles the release segment. - """ - if isinstance(version, str): - try: - parsed = Version(version) - except InvalidVersion: - # Legacy versions cannot be normalized - return version - else: - parsed = version - - parts = [] - - # Epoch - if parsed.epoch != 0: - parts.append(f"{parsed.epoch}!") - - # Release segment - # NB: This strips trailing '.0's to normalize - parts.append(re.sub(r"(\.0)+$", "", ".".join(str(x) for x in parsed.release))) - - # Pre-release - if parsed.pre is not None: - parts.append("".join(str(x) for x in parsed.pre)) - - # Post-release - if parsed.post is not None: - parts.append(f".post{parsed.post}") - - # Development release - if parsed.dev is not None: - parts.append(f".dev{parsed.dev}") - - # Local version segment - if parsed.local is not None: - parts.append(f"+{parsed.local}") - - return "".join(parts) - - -def parse_wheel_filename( - filename: str, -) -> Tuple[NormalizedName, Version, BuildTag, FrozenSet[Tag]]: - if not filename.endswith(".whl"): - raise InvalidWheelFilename( - f"Invalid wheel filename (extension must be '.whl'): {filename}" - ) - - filename = filename[:-4] - dashes = filename.count("-") - if dashes not in (4, 5): - raise InvalidWheelFilename( - f"Invalid wheel filename (wrong number of parts): {filename}" - ) - - parts = filename.split("-", dashes - 2) - name_part = parts[0] - # See PEP 427 for the rules on escaping the project name - if "__" in name_part or re.match(r"^[\w\d._]*$", name_part, re.UNICODE) is None: - raise InvalidWheelFilename(f"Invalid project name: {filename}") - name = canonicalize_name(name_part) - version = Version(parts[1]) - if dashes == 5: - build_part = parts[2] - build_match = _build_tag_regex.match(build_part) - if build_match is None: - raise InvalidWheelFilename( - f"Invalid build number: {build_part} in '{filename}'" - ) - build = cast(BuildTag, (int(build_match.group(1)), build_match.group(2))) - else: - build = () - tags = parse_tag(parts[-1]) - return (name, version, build, tags) - - -def parse_sdist_filename(filename: str) -> Tuple[NormalizedName, Version]: - if filename.endswith(".tar.gz"): - file_stem = filename[: -len(".tar.gz")] - elif filename.endswith(".zip"): - file_stem = filename[: -len(".zip")] - else: - raise InvalidSdistFilename( - f"Invalid sdist filename (extension must be '.tar.gz' or '.zip'):" - f" {filename}" - ) - - # We are requiring a PEP 440 version, which cannot contain dashes, - # so we split on the last dash. - name_part, sep, version_part = file_stem.rpartition("-") - if not sep: - raise InvalidSdistFilename(f"Invalid sdist filename: {filename}") - - name = canonicalize_name(name_part) - version = Version(version_part) - return (name, version) diff --git a/spaces/Rayzggz/illi-Bert-VITS2/text/symbols.py b/spaces/Rayzggz/illi-Bert-VITS2/text/symbols.py deleted file mode 100644 index 161ae9f71275856a168cca1b8963a2aee875bb78..0000000000000000000000000000000000000000 --- a/spaces/Rayzggz/illi-Bert-VITS2/text/symbols.py +++ /dev/null @@ -1,187 +0,0 @@ -punctuation = ["!", "?", "…", ",", ".", "'", "-"] -pu_symbols = punctuation + ["SP", "UNK"] -pad = "_" - -# chinese -zh_symbols = [ - "E", - "En", - "a", - "ai", - "an", - "ang", - "ao", - "b", - "c", - "ch", - "d", - "e", - "ei", - "en", - "eng", - "er", - "f", - "g", - "h", - "i", - "i0", - "ia", - "ian", - "iang", - "iao", - "ie", - "in", - "ing", - "iong", - "ir", - "iu", - "j", - "k", - "l", - "m", - "n", - "o", - "ong", - "ou", - "p", - "q", - "r", - "s", - "sh", - "t", - "u", - "ua", - "uai", - "uan", - "uang", - "ui", - "un", - "uo", - "v", - "van", - "ve", - "vn", - "w", - "x", - "y", - "z", - "zh", - "AA", - "EE", - "OO", -] -num_zh_tones = 6 - -# japanese -ja_symbols = [ - "N", - "a", - "a:", - "b", - "by", - "ch", - "d", - "dy", - "e", - "e:", - "f", - "g", - "gy", - "h", - "hy", - "i", - "i:", - "j", - "k", - "ky", - "m", - "my", - "n", - "ny", - "o", - "o:", - "p", - "py", - "q", - "r", - "ry", - "s", - "sh", - "t", - "ts", - "ty", - "u", - "u:", - "w", - "y", - "z", - "zy", -] -num_ja_tones = 1 - -# English -en_symbols = [ - "aa", - "ae", - "ah", - "ao", - "aw", - "ay", - "b", - "ch", - "d", - "dh", - "eh", - "er", - "ey", - "f", - "g", - "hh", - "ih", - "iy", - "jh", - "k", - "l", - "m", - "n", - "ng", - "ow", - "oy", - "p", - "r", - "s", - "sh", - "t", - "th", - "uh", - "uw", - "V", - "w", - "y", - "z", - "zh", -] -num_en_tones = 4 - -# combine all symbols -normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols)) -symbols = [pad] + normal_symbols + pu_symbols -sil_phonemes_ids = [symbols.index(i) for i in pu_symbols] - -# combine all tones -num_tones = num_zh_tones + num_ja_tones + num_en_tones - -# language maps -language_id_map = {"ZH": 0, "JP": 1, "EN": 2} -num_languages = len(language_id_map.keys()) - -language_tone_start_map = { - "ZH": 0, - "JP": num_zh_tones, - "EN": num_zh_tones + num_ja_tones, -} - -if __name__ == "__main__": - a = set(zh_symbols) - b = set(en_symbols) - print(sorted(a & b)) diff --git a/spaces/Robert001/UniControl-Demo/annotator/uniformer/mmdet_null/core/bbox/samplers/combined_sampler.py b/spaces/Robert001/UniControl-Demo/annotator/uniformer/mmdet_null/core/bbox/samplers/combined_sampler.py deleted file mode 100644 index 564729f0895b1863d94c479a67202438af45f996..0000000000000000000000000000000000000000 --- a/spaces/Robert001/UniControl-Demo/annotator/uniformer/mmdet_null/core/bbox/samplers/combined_sampler.py +++ /dev/null @@ -1,20 +0,0 @@ -from ..builder import BBOX_SAMPLERS, build_sampler -from .base_sampler import BaseSampler - - -@BBOX_SAMPLERS.register_module() -class CombinedSampler(BaseSampler): - """A sampler that combines positive sampler and negative sampler.""" - - def __init__(self, pos_sampler, neg_sampler, **kwargs): - super(CombinedSampler, self).__init__(**kwargs) - self.pos_sampler = build_sampler(pos_sampler, **kwargs) - self.neg_sampler = build_sampler(neg_sampler, **kwargs) - - def _sample_pos(self, **kwargs): - """Sample positive samples.""" - raise NotImplementedError - - def _sample_neg(self, **kwargs): - """Sample negative samples.""" - raise NotImplementedError diff --git a/spaces/Robert001/UniControl-Demo/annotator/uniformer_base/mmcv/cnn/utils/sync_bn.py b/spaces/Robert001/UniControl-Demo/annotator/uniformer_base/mmcv/cnn/utils/sync_bn.py deleted file mode 100644 index f78f39181d75bb85c53e8c7c8eaf45690e9f0bee..0000000000000000000000000000000000000000 --- a/spaces/Robert001/UniControl-Demo/annotator/uniformer_base/mmcv/cnn/utils/sync_bn.py +++ /dev/null @@ -1,59 +0,0 @@ -import torch - -import annotator.uniformer.mmcv as mmcv - - -class _BatchNormXd(torch.nn.modules.batchnorm._BatchNorm): - """A general BatchNorm layer without input dimension check. - - Reproduced from @kapily's work: - (https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547) - The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc - is `_check_input_dim` that is designed for tensor sanity checks. - The check has been bypassed in this class for the convenience of converting - SyncBatchNorm. - """ - - def _check_input_dim(self, input): - return - - -def revert_sync_batchnorm(module): - """Helper function to convert all `SyncBatchNorm` (SyncBN) and - `mmcv.ops.sync_bn.SyncBatchNorm`(MMSyncBN) layers in the model to - `BatchNormXd` layers. - - Adapted from @kapily's work: - (https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547) - - Args: - module (nn.Module): The module containing `SyncBatchNorm` layers. - - Returns: - module_output: The converted module with `BatchNormXd` layers. - """ - module_output = module - module_checklist = [torch.nn.modules.batchnorm.SyncBatchNorm] - if hasattr(mmcv, 'ops'): - module_checklist.append(mmcv.ops.SyncBatchNorm) - if isinstance(module, tuple(module_checklist)): - module_output = _BatchNormXd(module.num_features, module.eps, - module.momentum, module.affine, - module.track_running_stats) - if module.affine: - # no_grad() may not be needed here but - # just to be consistent with `convert_sync_batchnorm()` - with torch.no_grad(): - module_output.weight = module.weight - module_output.bias = module.bias - module_output.running_mean = module.running_mean - module_output.running_var = module.running_var - module_output.num_batches_tracked = module.num_batches_tracked - module_output.training = module.training - # qconfig exists in quantized models - if hasattr(module, 'qconfig'): - module_output.qconfig = module.qconfig - for name, child in module.named_children(): - module_output.add_module(name, revert_sync_batchnorm(child)) - del module - return module_output diff --git a/spaces/Robo2000/DatasetAnalyzer-GR/README.md b/spaces/Robo2000/DatasetAnalyzer-GR/README.md deleted file mode 100644 index 83a618275ec512ebcd2cf5278b10d456c911ad39..0000000000000000000000000000000000000000 --- a/spaces/Robo2000/DatasetAnalyzer-GR/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: DatasetAnalyzer GR -emoji: 💻 -colorFrom: red -colorTo: blue -sdk: gradio -sdk_version: 3.13.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/SameerR007/ImageCaptioning_streamlit/README.md b/spaces/SameerR007/ImageCaptioning_streamlit/README.md deleted file mode 100644 index 4a9c514901d742adc4958283bfdd2a589360ef98..0000000000000000000000000000000000000000 --- a/spaces/SameerR007/ImageCaptioning_streamlit/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: ImageCaptioning Streamlit -emoji: 📉 -colorFrom: green -colorTo: red -sdk: streamlit -sdk_version: 1.19.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/SriniJalasuthram/SJ-01-H5-Play-Canvas-Sim-Physics/style.css b/spaces/SriniJalasuthram/SJ-01-H5-Play-Canvas-Sim-Physics/style.css deleted file mode 100644 index 114adf441e9032febb46bc056b2a8bb651075f0d..0000000000000000000000000000000000000000 --- a/spaces/SriniJalasuthram/SJ-01-H5-Play-Canvas-Sim-Physics/style.css +++ /dev/null @@ -1,28 +0,0 @@ -body { - padding: 2rem; - font-family: -apple-system, BlinkMacSystemFont, "Arial", sans-serif; -} - -h1 { - font-size: 16px; - margin-top: 0; -} - -p { - color: rgb(107, 114, 128); - font-size: 15px; - margin-bottom: 10px; - margin-top: 5px; -} - -.card { - max-width: 620px; - margin: 0 auto; - padding: 16px; - border: 1px solid lightgray; - border-radius: 16px; -} - -.card p:last-child { - margin-bottom: 0; -} diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/asttokens/__init__.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/asttokens/__init__.py deleted file mode 100644 index eeda0ed4fccc5c629a3bcb907b479683206eec92..0000000000000000000000000000000000000000 --- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/asttokens/__init__.py +++ /dev/null @@ -1,24 +0,0 @@ -# Copyright 2016 Grist Labs, Inc. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -""" -This module enhances the Python AST tree with token and source code information, sufficent to -detect the source text of each AST node. This is helpful for tools that make source code -transformations. -""" - -from .line_numbers import LineNumbers -from .asttokens import ASTText, ASTTokens, supports_tokenless - -__all__ = ['ASTText', 'ASTTokens', 'LineNumbers', 'supports_tokenless'] diff --git a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydevd_attach_to_process/winappdbg/textio.py b/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydevd_attach_to_process/winappdbg/textio.py deleted file mode 100644 index 402f631d5740c3cf60072a9200127a5a46617b63..0000000000000000000000000000000000000000 --- a/spaces/SungBeom/chatwine-korean/.venv/Lib/site-packages/debugpy/_vendored/pydevd/pydevd_attach_to_process/winappdbg/textio.py +++ /dev/null @@ -1,1879 +0,0 @@ -#!~/.wine/drive_c/Python25/python.exe -# -*- coding: utf-8 -*- - -# Copyright (c) 2009-2014, Mario Vilas -# All rights reserved. -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions are met: -# -# * Redistributions of source code must retain the above copyright notice, -# this list of conditions and the following disclaimer. -# * Redistributions in binary form must reproduce the above copyright -# notice,this list of conditions and the following disclaimer in the -# documentation and/or other materials provided with the distribution. -# * Neither the name of the copyright holder nor the names of its -# contributors may be used to endorse or promote products derived from -# this software without specific prior written permission. -# -# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE -# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR -# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF -# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS -# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN -# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) -# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE -# POSSIBILITY OF SUCH DAMAGE. - -""" -Functions for text input, logging or text output. - -@group Helpers: - HexDump, - HexInput, - HexOutput, - Color, - Table, - Logger - DebugLog - CrashDump -""" - -__revision__ = "$Id$" - -__all__ = [ - 'HexDump', - 'HexInput', - 'HexOutput', - 'Color', - 'Table', - 'CrashDump', - 'DebugLog', - 'Logger', - ] - -import sys -from winappdbg import win32 -from winappdbg import compat -from winappdbg.util import StaticClass - -import re -import time -import struct -import traceback - -#------------------------------------------------------------------------------ - -class HexInput (StaticClass): - """ - Static functions for user input parsing. - The counterparts for each method are in the L{HexOutput} class. - """ - - @staticmethod - def integer(token): - """ - Convert numeric strings into integers. - - @type token: str - @param token: String to parse. - - @rtype: int - @return: Parsed integer value. - """ - token = token.strip() - neg = False - if token.startswith(compat.b('-')): - token = token[1:] - neg = True - if token.startswith(compat.b('0x')): - result = int(token, 16) # hexadecimal - elif token.startswith(compat.b('0b')): - result = int(token[2:], 2) # binary - elif token.startswith(compat.b('0o')): - result = int(token, 8) # octal - else: - try: - result = int(token) # decimal - except ValueError: - result = int(token, 16) # hexadecimal (no "0x" prefix) - if neg: - result = -result - return result - - @staticmethod - def address(token): - """ - Convert numeric strings into memory addresses. - - @type token: str - @param token: String to parse. - - @rtype: int - @return: Parsed integer value. - """ - return int(token, 16) - - @staticmethod - def hexadecimal(token): - """ - Convert a strip of hexadecimal numbers into binary data. - - @type token: str - @param token: String to parse. - - @rtype: str - @return: Parsed string value. - """ - token = ''.join([ c for c in token if c.isalnum() ]) - if len(token) % 2 != 0: - raise ValueError("Missing characters in hex data") - data = '' - for i in compat.xrange(0, len(token), 2): - x = token[i:i+2] - d = int(x, 16) - s = struct.pack('= 0: - return ('0x%%.%dx' % (integer_size - 2)) % integer - return ('-0x%%.%dx' % (integer_size - 2)) % -integer - - @classmethod - def address(cls, address, bits = None): - """ - @type address: int - @param address: Memory address. - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexOutput.address_size} - - @rtype: str - @return: Text output. - """ - if bits is None: - address_size = cls.address_size - bits = win32.bits - else: - address_size = (bits / 4) + 2 - if address < 0: - address = ((2 ** bits) - 1) ^ ~address - return ('0x%%.%dx' % (address_size - 2)) % address - - @staticmethod - def hexadecimal(data): - """ - Convert binary data to a string of hexadecimal numbers. - - @type data: str - @param data: Binary data. - - @rtype: str - @return: Hexadecimal representation. - """ - return HexDump.hexadecimal(data, separator = '') - - @classmethod - def integer_list_file(cls, filename, values, bits = None): - """ - Write a list of integers to a file. - If a file of the same name exists, it's contents are replaced. - - See L{HexInput.integer_list_file} for a description of the file format. - - @type filename: str - @param filename: Name of the file to write. - - @type values: list( int ) - @param values: List of integers to write to the file. - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexOutput.integer_size} - """ - fd = open(filename, 'w') - for integer in values: - print >> fd, cls.integer(integer, bits) - fd.close() - - @classmethod - def string_list_file(cls, filename, values): - """ - Write a list of strings to a file. - If a file of the same name exists, it's contents are replaced. - - See L{HexInput.string_list_file} for a description of the file format. - - @type filename: str - @param filename: Name of the file to write. - - @type values: list( int ) - @param values: List of strings to write to the file. - """ - fd = open(filename, 'w') - for string in values: - print >> fd, string - fd.close() - - @classmethod - def mixed_list_file(cls, filename, values, bits): - """ - Write a list of mixed values to a file. - If a file of the same name exists, it's contents are replaced. - - See L{HexInput.mixed_list_file} for a description of the file format. - - @type filename: str - @param filename: Name of the file to write. - - @type values: list( int ) - @param values: List of mixed values to write to the file. - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexOutput.integer_size} - """ - fd = open(filename, 'w') - for original in values: - try: - parsed = cls.integer(original, bits) - except TypeError: - parsed = repr(original) - print >> fd, parsed - fd.close() - -#------------------------------------------------------------------------------ - -class HexDump (StaticClass): - """ - Static functions for hexadecimal dumps. - - @type integer_size: int - @cvar integer_size: Size in characters of an outputted integer. - This value is platform dependent. - - @type address_size: int - @cvar address_size: Size in characters of an outputted address. - This value is platform dependent. - """ - - integer_size = (win32.SIZEOF(win32.DWORD) * 2) - address_size = (win32.SIZEOF(win32.SIZE_T) * 2) - - @classmethod - def integer(cls, integer, bits = None): - """ - @type integer: int - @param integer: Integer. - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexDump.integer_size} - - @rtype: str - @return: Text output. - """ - if bits is None: - integer_size = cls.integer_size - else: - integer_size = bits / 4 - return ('%%.%dX' % integer_size) % integer - - @classmethod - def address(cls, address, bits = None): - """ - @type address: int - @param address: Memory address. - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexDump.address_size} - - @rtype: str - @return: Text output. - """ - if bits is None: - address_size = cls.address_size - bits = win32.bits - else: - address_size = bits / 4 - if address < 0: - address = ((2 ** bits) - 1) ^ ~address - return ('%%.%dX' % address_size) % address - - @staticmethod - def printable(data): - """ - Replace unprintable characters with dots. - - @type data: str - @param data: Binary data. - - @rtype: str - @return: Printable text. - """ - result = '' - for c in data: - if 32 < ord(c) < 128: - result += c - else: - result += '.' - return result - - @staticmethod - def hexadecimal(data, separator = ''): - """ - Convert binary data to a string of hexadecimal numbers. - - @type data: str - @param data: Binary data. - - @type separator: str - @param separator: - Separator between the hexadecimal representation of each character. - - @rtype: str - @return: Hexadecimal representation. - """ - return separator.join( [ '%.2x' % ord(c) for c in data ] ) - - @staticmethod - def hexa_word(data, separator = ' '): - """ - Convert binary data to a string of hexadecimal WORDs. - - @type data: str - @param data: Binary data. - - @type separator: str - @param separator: - Separator between the hexadecimal representation of each WORD. - - @rtype: str - @return: Hexadecimal representation. - """ - if len(data) & 1 != 0: - data += '\0' - return separator.join( [ '%.4x' % struct.unpack(' 0: - width.extend( len_row[ -missing : ] ) - elif missing < 0: - len_row.extend( [0] * (-missing) ) - self.__width = [ max( width[i], len_row[i] ) for i in compat.xrange(len(len_row)) ] - self.__cols.append(row) - - def justify(self, column, direction): - """ - Make the text in a column left or right justified. - - @type column: int - @param column: Index of the column. - - @type direction: int - @param direction: - C{-1} to justify left, - C{1} to justify right. - - @raise IndexError: Bad column index. - @raise ValueError: Bad direction value. - """ - if direction == -1: - self.__width[column] = abs(self.__width[column]) - elif direction == 1: - self.__width[column] = - abs(self.__width[column]) - else: - raise ValueError("Bad direction value.") - - def getWidth(self): - """ - Get the width of the text output for the table. - - @rtype: int - @return: Width in characters for the text output, - including the newline character. - """ - width = 0 - if self.__width: - width = sum( abs(x) for x in self.__width ) - width = width + len(self.__width) * len(self.__sep) + 1 - return width - - def getOutput(self): - """ - Get the text output for the table. - - @rtype: str - @return: Text output. - """ - return '%s\n' % '\n'.join( self.yieldOutput() ) - - def yieldOutput(self): - """ - Generate the text output for the table. - - @rtype: generator of str - @return: Text output. - """ - width = self.__width - if width: - num_cols = len(width) - fmt = ['%%%ds' % -w for w in width] - if width[-1] > 0: - fmt[-1] = '%s' - fmt = self.__sep.join(fmt) - for row in self.__cols: - row.extend( [''] * (num_cols - len(row)) ) - yield fmt % tuple(row) - - def show(self): - """ - Print the text output for the table. - """ - print(self.getOutput()) - -#------------------------------------------------------------------------------ - -class CrashDump (StaticClass): - """ - Static functions for crash dumps. - - @type reg_template: str - @cvar reg_template: Template for the L{dump_registers} method. - """ - - # Templates for the dump_registers method. - reg_template = { - win32.ARCH_I386 : ( - 'eax=%(Eax).8x ebx=%(Ebx).8x ecx=%(Ecx).8x edx=%(Edx).8x esi=%(Esi).8x edi=%(Edi).8x\n' - 'eip=%(Eip).8x esp=%(Esp).8x ebp=%(Ebp).8x %(efl_dump)s\n' - 'cs=%(SegCs).4x ss=%(SegSs).4x ds=%(SegDs).4x es=%(SegEs).4x fs=%(SegFs).4x gs=%(SegGs).4x efl=%(EFlags).8x\n' - ), - win32.ARCH_AMD64 : ( - 'rax=%(Rax).16x rbx=%(Rbx).16x rcx=%(Rcx).16x\n' - 'rdx=%(Rdx).16x rsi=%(Rsi).16x rdi=%(Rdi).16x\n' - 'rip=%(Rip).16x rsp=%(Rsp).16x rbp=%(Rbp).16x\n' - ' r8=%(R8).16x r9=%(R9).16x r10=%(R10).16x\n' - 'r11=%(R11).16x r12=%(R12).16x r13=%(R13).16x\n' - 'r14=%(R14).16x r15=%(R15).16x\n' - '%(efl_dump)s\n' - 'cs=%(SegCs).4x ss=%(SegSs).4x ds=%(SegDs).4x es=%(SegEs).4x fs=%(SegFs).4x gs=%(SegGs).4x efl=%(EFlags).8x\n' - ), - } - - @staticmethod - def dump_flags(efl): - """ - Dump the x86 processor flags. - The output mimics that of the WinDBG debugger. - Used by L{dump_registers}. - - @type efl: int - @param efl: Value of the eFlags register. - - @rtype: str - @return: Text suitable for logging. - """ - if efl is None: - return '' - efl_dump = 'iopl=%1d' % ((efl & 0x3000) >> 12) - if efl & 0x100000: - efl_dump += ' vip' - else: - efl_dump += ' ' - if efl & 0x80000: - efl_dump += ' vif' - else: - efl_dump += ' ' - # 0x20000 ??? - if efl & 0x800: - efl_dump += ' ov' # Overflow - else: - efl_dump += ' no' # No overflow - if efl & 0x400: - efl_dump += ' dn' # Downwards - else: - efl_dump += ' up' # Upwards - if efl & 0x200: - efl_dump += ' ei' # Enable interrupts - else: - efl_dump += ' di' # Disable interrupts - # 0x100 trap flag - if efl & 0x80: - efl_dump += ' ng' # Negative - else: - efl_dump += ' pl' # Positive - if efl & 0x40: - efl_dump += ' zr' # Zero - else: - efl_dump += ' nz' # Nonzero - if efl & 0x10: - efl_dump += ' ac' # Auxiliary carry - else: - efl_dump += ' na' # No auxiliary carry - # 0x8 ??? - if efl & 0x4: - efl_dump += ' pe' # Parity odd - else: - efl_dump += ' po' # Parity even - # 0x2 ??? - if efl & 0x1: - efl_dump += ' cy' # Carry - else: - efl_dump += ' nc' # No carry - return efl_dump - - @classmethod - def dump_registers(cls, registers, arch = None): - """ - Dump the x86/x64 processor register values. - The output mimics that of the WinDBG debugger. - - @type registers: dict( str S{->} int ) - @param registers: Dictionary mapping register names to their values. - - @type arch: str - @param arch: Architecture of the machine whose registers were dumped. - Defaults to the current architecture. - Currently only the following architectures are supported: - - L{win32.ARCH_I386} - - L{win32.ARCH_AMD64} - - @rtype: str - @return: Text suitable for logging. - """ - if registers is None: - return '' - if arch is None: - if 'Eax' in registers: - arch = win32.ARCH_I386 - elif 'Rax' in registers: - arch = win32.ARCH_AMD64 - else: - arch = 'Unknown' - if arch not in cls.reg_template: - msg = "Don't know how to dump the registers for architecture: %s" - raise NotImplementedError(msg % arch) - registers = registers.copy() - registers['efl_dump'] = cls.dump_flags( registers['EFlags'] ) - return cls.reg_template[arch] % registers - - @staticmethod - def dump_registers_peek(registers, data, separator = ' ', width = 16): - """ - Dump data pointed to by the given registers, if any. - - @type registers: dict( str S{->} int ) - @param registers: Dictionary mapping register names to their values. - This value is returned by L{Thread.get_context}. - - @type data: dict( str S{->} str ) - @param data: Dictionary mapping register names to the data they point to. - This value is returned by L{Thread.peek_pointers_in_registers}. - - @rtype: str - @return: Text suitable for logging. - """ - if None in (registers, data): - return '' - names = compat.keys(data) - names.sort() - result = '' - for reg_name in names: - tag = reg_name.lower() - dumped = HexDump.hexline(data[reg_name], separator, width) - result += '%s -> %s\n' % (tag, dumped) - return result - - @staticmethod - def dump_data_peek(data, base = 0, - separator = ' ', - width = 16, - bits = None): - """ - Dump data from pointers guessed within the given binary data. - - @type data: str - @param data: Dictionary mapping offsets to the data they point to. - - @type base: int - @param base: Base offset. - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexDump.address_size} - - @rtype: str - @return: Text suitable for logging. - """ - if data is None: - return '' - pointers = compat.keys(data) - pointers.sort() - result = '' - for offset in pointers: - dumped = HexDump.hexline(data[offset], separator, width) - address = HexDump.address(base + offset, bits) - result += '%s -> %s\n' % (address, dumped) - return result - - @staticmethod - def dump_stack_peek(data, separator = ' ', width = 16, arch = None): - """ - Dump data from pointers guessed within the given stack dump. - - @type data: str - @param data: Dictionary mapping stack offsets to the data they point to. - - @type separator: str - @param separator: - Separator between the hexadecimal representation of each character. - - @type width: int - @param width: - (Optional) Maximum number of characters to convert per text line. - This value is also used for padding. - - @type arch: str - @param arch: Architecture of the machine whose registers were dumped. - Defaults to the current architecture. - - @rtype: str - @return: Text suitable for logging. - """ - if data is None: - return '' - if arch is None: - arch = win32.arch - pointers = compat.keys(data) - pointers.sort() - result = '' - if pointers: - if arch == win32.ARCH_I386: - spreg = 'esp' - elif arch == win32.ARCH_AMD64: - spreg = 'rsp' - else: - spreg = 'STACK' # just a generic tag - tag_fmt = '[%s+0x%%.%dx]' % (spreg, len( '%x' % pointers[-1] ) ) - for offset in pointers: - dumped = HexDump.hexline(data[offset], separator, width) - tag = tag_fmt % offset - result += '%s -> %s\n' % (tag, dumped) - return result - - @staticmethod - def dump_stack_trace(stack_trace, bits = None): - """ - Dump a stack trace, as returned by L{Thread.get_stack_trace} with the - C{bUseLabels} parameter set to C{False}. - - @type stack_trace: list( int, int, str ) - @param stack_trace: Stack trace as a list of tuples of - ( return address, frame pointer, module filename ) - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexDump.address_size} - - @rtype: str - @return: Text suitable for logging. - """ - if not stack_trace: - return '' - table = Table() - table.addRow('Frame', 'Origin', 'Module') - for (fp, ra, mod) in stack_trace: - fp_d = HexDump.address(fp, bits) - ra_d = HexDump.address(ra, bits) - table.addRow(fp_d, ra_d, mod) - return table.getOutput() - - @staticmethod - def dump_stack_trace_with_labels(stack_trace, bits = None): - """ - Dump a stack trace, - as returned by L{Thread.get_stack_trace_with_labels}. - - @type stack_trace: list( int, int, str ) - @param stack_trace: Stack trace as a list of tuples of - ( return address, frame pointer, module filename ) - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexDump.address_size} - - @rtype: str - @return: Text suitable for logging. - """ - if not stack_trace: - return '' - table = Table() - table.addRow('Frame', 'Origin') - for (fp, label) in stack_trace: - table.addRow( HexDump.address(fp, bits), label ) - return table.getOutput() - - # TODO - # + Instead of a star when EIP points to, it would be better to show - # any register value (or other values like the exception address) that - # points to a location in the dissassembled code. - # + It'd be very useful to show some labels here. - # + It'd be very useful to show register contents for code at EIP - @staticmethod - def dump_code(disassembly, pc = None, - bLowercase = True, - bits = None): - """ - Dump a disassembly. Optionally mark where the program counter is. - - @type disassembly: list of tuple( int, int, str, str ) - @param disassembly: Disassembly dump as returned by - L{Process.disassemble} or L{Thread.disassemble_around_pc}. - - @type pc: int - @param pc: (Optional) Program counter. - - @type bLowercase: bool - @param bLowercase: (Optional) If C{True} convert the code to lowercase. - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexDump.address_size} - - @rtype: str - @return: Text suitable for logging. - """ - if not disassembly: - return '' - table = Table(sep = ' | ') - for (addr, size, code, dump) in disassembly: - if bLowercase: - code = code.lower() - if addr == pc: - addr = ' * %s' % HexDump.address(addr, bits) - else: - addr = ' %s' % HexDump.address(addr, bits) - table.addRow(addr, dump, code) - table.justify(1, 1) - return table.getOutput() - - @staticmethod - def dump_code_line(disassembly_line, bShowAddress = True, - bShowDump = True, - bLowercase = True, - dwDumpWidth = None, - dwCodeWidth = None, - bits = None): - """ - Dump a single line of code. To dump a block of code use L{dump_code}. - - @type disassembly_line: tuple( int, int, str, str ) - @param disassembly_line: Single item of the list returned by - L{Process.disassemble} or L{Thread.disassemble_around_pc}. - - @type bShowAddress: bool - @param bShowAddress: (Optional) If C{True} show the memory address. - - @type bShowDump: bool - @param bShowDump: (Optional) If C{True} show the hexadecimal dump. - - @type bLowercase: bool - @param bLowercase: (Optional) If C{True} convert the code to lowercase. - - @type dwDumpWidth: int or None - @param dwDumpWidth: (Optional) Width in characters of the hex dump. - - @type dwCodeWidth: int or None - @param dwCodeWidth: (Optional) Width in characters of the code. - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexDump.address_size} - - @rtype: str - @return: Text suitable for logging. - """ - if bits is None: - address_size = HexDump.address_size - else: - address_size = bits / 4 - (addr, size, code, dump) = disassembly_line - dump = dump.replace(' ', '') - result = list() - fmt = '' - if bShowAddress: - result.append( HexDump.address(addr, bits) ) - fmt += '%%%ds:' % address_size - if bShowDump: - result.append(dump) - if dwDumpWidth: - fmt += ' %%-%ds' % dwDumpWidth - else: - fmt += ' %s' - if bLowercase: - code = code.lower() - result.append(code) - if dwCodeWidth: - fmt += ' %%-%ds' % dwCodeWidth - else: - fmt += ' %s' - return fmt % tuple(result) - - @staticmethod - def dump_memory_map(memoryMap, mappedFilenames = None, bits = None): - """ - Dump the memory map of a process. Optionally show the filenames for - memory mapped files as well. - - @type memoryMap: list( L{win32.MemoryBasicInformation} ) - @param memoryMap: Memory map returned by L{Process.get_memory_map}. - - @type mappedFilenames: dict( int S{->} str ) - @param mappedFilenames: (Optional) Memory mapped filenames - returned by L{Process.get_mapped_filenames}. - - @type bits: int - @param bits: - (Optional) Number of bits of the target architecture. - The default is platform dependent. See: L{HexDump.address_size} - - @rtype: str - @return: Text suitable for logging. - """ - if not memoryMap: - return '' - - table = Table() - if mappedFilenames: - table.addRow("Address", "Size", "State", "Access", "Type", "File") - else: - table.addRow("Address", "Size", "State", "Access", "Type") - - # For each memory block in the map... - for mbi in memoryMap: - - # Address and size of memory block. - BaseAddress = HexDump.address(mbi.BaseAddress, bits) - RegionSize = HexDump.address(mbi.RegionSize, bits) - - # State (free or allocated). - mbiState = mbi.State - if mbiState == win32.MEM_RESERVE: - State = "Reserved" - elif mbiState == win32.MEM_COMMIT: - State = "Commited" - elif mbiState == win32.MEM_FREE: - State = "Free" - else: - State = "Unknown" - - # Page protection bits (R/W/X/G). - if mbiState != win32.MEM_COMMIT: - Protect = "" - else: - mbiProtect = mbi.Protect - if mbiProtect & win32.PAGE_NOACCESS: - Protect = "--- " - elif mbiProtect & win32.PAGE_READONLY: - Protect = "R-- " - elif mbiProtect & win32.PAGE_READWRITE: - Protect = "RW- " - elif mbiProtect & win32.PAGE_WRITECOPY: - Protect = "RC- " - elif mbiProtect & win32.PAGE_EXECUTE: - Protect = "--X " - elif mbiProtect & win32.PAGE_EXECUTE_READ: - Protect = "R-X " - elif mbiProtect & win32.PAGE_EXECUTE_READWRITE: - Protect = "RWX " - elif mbiProtect & win32.PAGE_EXECUTE_WRITECOPY: - Protect = "RCX " - else: - Protect = "??? " - if mbiProtect & win32.PAGE_GUARD: - Protect += "G" - else: - Protect += "-" - if mbiProtect & win32.PAGE_NOCACHE: - Protect += "N" - else: - Protect += "-" - if mbiProtect & win32.PAGE_WRITECOMBINE: - Protect += "W" - else: - Protect += "-" - - # Type (file mapping, executable image, or private memory). - mbiType = mbi.Type - if mbiType == win32.MEM_IMAGE: - Type = "Image" - elif mbiType == win32.MEM_MAPPED: - Type = "Mapped" - elif mbiType == win32.MEM_PRIVATE: - Type = "Private" - elif mbiType == 0: - Type = "" - else: - Type = "Unknown" - - # Output a row in the table. - if mappedFilenames: - FileName = mappedFilenames.get(mbi.BaseAddress, '') - table.addRow( BaseAddress, RegionSize, State, Protect, Type, FileName ) - else: - table.addRow( BaseAddress, RegionSize, State, Protect, Type ) - - # Return the table output. - return table.getOutput() - -#------------------------------------------------------------------------------ - -class DebugLog (StaticClass): - 'Static functions for debug logging.' - - @staticmethod - def log_text(text): - """ - Log lines of text, inserting a timestamp. - - @type text: str - @param text: Text to log. - - @rtype: str - @return: Log line. - """ - if text.endswith('\n'): - text = text[:-len('\n')] - #text = text.replace('\n', '\n\t\t') # text CSV - ltime = time.strftime("%X") - msecs = (time.time() % 1) * 1000 - return '[%s.%04d] %s' % (ltime, msecs, text) - #return '[%s.%04d]\t%s' % (ltime, msecs, text) # text CSV - - @classmethod - def log_event(cls, event, text = None): - """ - Log lines of text associated with a debug event. - - @type event: L{Event} - @param event: Event object. - - @type text: str - @param text: (Optional) Text to log. If no text is provided the default - is to show a description of the event itself. - - @rtype: str - @return: Log line. - """ - if not text: - if event.get_event_code() == win32.EXCEPTION_DEBUG_EVENT: - what = event.get_exception_description() - if event.is_first_chance(): - what = '%s (first chance)' % what - else: - what = '%s (second chance)' % what - try: - address = event.get_fault_address() - except NotImplementedError: - address = event.get_exception_address() - else: - what = event.get_event_name() - address = event.get_thread().get_pc() - process = event.get_process() - label = process.get_label_at_address(address) - address = HexDump.address(address, process.get_bits()) - if label: - where = '%s (%s)' % (address, label) - else: - where = address - text = '%s at %s' % (what, where) - text = 'pid %d tid %d: %s' % (event.get_pid(), event.get_tid(), text) - #text = 'pid %d tid %d:\t%s' % (event.get_pid(), event.get_tid(), text) # text CSV - return cls.log_text(text) - -#------------------------------------------------------------------------------ - -class Logger(object): - """ - Logs text to standard output and/or a text file. - - @type logfile: str or None - @ivar logfile: Append messages to this text file. - - @type verbose: bool - @ivar verbose: C{True} to print messages to standard output. - - @type fd: file - @ivar fd: File object where log messages are printed to. - C{None} if no log file is used. - """ - - def __init__(self, logfile = None, verbose = True): - """ - @type logfile: str or None - @param logfile: Append messages to this text file. - - @type verbose: bool - @param verbose: C{True} to print messages to standard output. - """ - self.verbose = verbose - self.logfile = logfile - if self.logfile: - self.fd = open(self.logfile, 'a+') - - def __logfile_error(self, e): - """ - Shows an error message to standard error - if the log file can't be written to. - - Used internally. - - @type e: Exception - @param e: Exception raised when trying to write to the log file. - """ - from sys import stderr - msg = "Warning, error writing log file %s: %s\n" - msg = msg % (self.logfile, str(e)) - stderr.write(DebugLog.log_text(msg)) - self.logfile = None - self.fd = None - - def __do_log(self, text): - """ - Writes the given text verbatim into the log file (if any) - and/or standard input (if the verbose flag is turned on). - - Used internally. - - @type text: str - @param text: Text to print. - """ - if isinstance(text, compat.unicode): - text = text.encode('cp1252') - if self.verbose: - print(text) - if self.logfile: - try: - self.fd.writelines('%s\n' % text) - except IOError: - e = sys.exc_info()[1] - self.__logfile_error(e) - - def log_text(self, text): - """ - Log lines of text, inserting a timestamp. - - @type text: str - @param text: Text to log. - """ - self.__do_log( DebugLog.log_text(text) ) - - def log_event(self, event, text = None): - """ - Log lines of text associated with a debug event. - - @type event: L{Event} - @param event: Event object. - - @type text: str - @param text: (Optional) Text to log. If no text is provided the default - is to show a description of the event itself. - """ - self.__do_log( DebugLog.log_event(event, text) ) - - def log_exc(self): - """ - Log lines of text associated with the last Python exception. - """ - self.__do_log( 'Exception raised: %s' % traceback.format_exc() ) - - def is_enabled(self): - """ - Determines if the logger will actually print anything when the log_* - methods are called. - - This may save some processing if the log text requires a lengthy - calculation to prepare. If no log file is set and stdout logging - is disabled, there's no point in preparing a log text that won't - be shown to anyone. - - @rtype: bool - @return: C{True} if a log file was set and/or standard output logging - is enabled, or C{False} otherwise. - """ - return self.verbose or self.logfile diff --git a/spaces/Superlang/ImageProcessor/annotator/leres/pix2pix/util/get_data.py b/spaces/Superlang/ImageProcessor/annotator/leres/pix2pix/util/get_data.py deleted file mode 100644 index 97edc3ce3c3ab6d6080dca34e73a5fb77bb715fb..0000000000000000000000000000000000000000 --- a/spaces/Superlang/ImageProcessor/annotator/leres/pix2pix/util/get_data.py +++ /dev/null @@ -1,110 +0,0 @@ -from __future__ import print_function -import os -import tarfile -import requests -from warnings import warn -from zipfile import ZipFile -from bs4 import BeautifulSoup -from os.path import abspath, isdir, join, basename - - -class GetData(object): - """A Python script for downloading CycleGAN or pix2pix datasets. - - Parameters: - technique (str) -- One of: 'cyclegan' or 'pix2pix'. - verbose (bool) -- If True, print additional information. - - Examples: - >>> from util.get_data import GetData - >>> gd = GetData(technique='cyclegan') - >>> new_data_path = gd.get(save_path='./datasets') # options will be displayed. - - Alternatively, You can use bash scripts: 'scripts/download_pix2pix_model.sh' - and 'scripts/download_cyclegan_model.sh'. - """ - - def __init__(self, technique='cyclegan', verbose=True): - url_dict = { - 'pix2pix': 'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/', - 'cyclegan': 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets' - } - self.url = url_dict.get(technique.lower()) - self._verbose = verbose - - def _print(self, text): - if self._verbose: - print(text) - - @staticmethod - def _get_options(r): - soup = BeautifulSoup(r.text, 'lxml') - options = [h.text for h in soup.find_all('a', href=True) - if h.text.endswith(('.zip', 'tar.gz'))] - return options - - def _present_options(self): - r = requests.get(self.url) - options = self._get_options(r) - print('Options:\n') - for i, o in enumerate(options): - print("{0}: {1}".format(i, o)) - choice = input("\nPlease enter the number of the " - "dataset above you wish to download:") - return options[int(choice)] - - def _download_data(self, dataset_url, save_path): - if not isdir(save_path): - os.makedirs(save_path) - - base = basename(dataset_url) - temp_save_path = join(save_path, base) - - with open(temp_save_path, "wb") as f: - r = requests.get(dataset_url) - f.write(r.content) - - if base.endswith('.tar.gz'): - obj = tarfile.open(temp_save_path) - elif base.endswith('.zip'): - obj = ZipFile(temp_save_path, 'r') - else: - raise ValueError("Unknown File Type: {0}.".format(base)) - - self._print("Unpacking Data...") - obj.extractall(save_path) - obj.close() - os.remove(temp_save_path) - - def get(self, save_path, dataset=None): - """ - - Download a dataset. - - Parameters: - save_path (str) -- A directory to save the data to. - dataset (str) -- (optional). A specific dataset to download. - Note: this must include the file extension. - If None, options will be presented for you - to choose from. - - Returns: - save_path_full (str) -- the absolute path to the downloaded data. - - """ - if dataset is None: - selected_dataset = self._present_options() - else: - selected_dataset = dataset - - save_path_full = join(save_path, selected_dataset.split('.')[0]) - - if isdir(save_path_full): - warn("\n'{0}' already exists. Voiding Download.".format( - save_path_full)) - else: - self._print('Downloading Data...') - url = "{0}/{1}".format(self.url, selected_dataset) - self._download_data(url, save_path=save_path) - - return abspath(save_path_full) diff --git a/spaces/Superlang/ImageProcessor/annotator/uniformer/configs/_base_/datasets/drive.py b/spaces/Superlang/ImageProcessor/annotator/uniformer/configs/_base_/datasets/drive.py deleted file mode 100644 index 06e8ff606e0d2a4514ec8b7d2c6c436a32efcbf4..0000000000000000000000000000000000000000 --- a/spaces/Superlang/ImageProcessor/annotator/uniformer/configs/_base_/datasets/drive.py +++ /dev/null @@ -1,59 +0,0 @@ -# dataset settings -dataset_type = 'DRIVEDataset' -data_root = 'data/DRIVE' -img_norm_cfg = dict( - mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) -img_scale = (584, 565) -crop_size = (64, 64) -train_pipeline = [ - dict(type='LoadImageFromFile'), - dict(type='LoadAnnotations'), - dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)), - dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75), - dict(type='RandomFlip', prob=0.5), - dict(type='PhotoMetricDistortion'), - dict(type='Normalize', **img_norm_cfg), - dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255), - dict(type='DefaultFormatBundle'), - dict(type='Collect', keys=['img', 'gt_semantic_seg']) -] -test_pipeline = [ - dict(type='LoadImageFromFile'), - dict( - type='MultiScaleFlipAug', - img_scale=img_scale, - # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0], - flip=False, - transforms=[ - dict(type='Resize', keep_ratio=True), - dict(type='RandomFlip'), - dict(type='Normalize', **img_norm_cfg), - dict(type='ImageToTensor', keys=['img']), - dict(type='Collect', keys=['img']) - ]) -] - -data = dict( - samples_per_gpu=4, - workers_per_gpu=4, - train=dict( - type='RepeatDataset', - times=40000, - dataset=dict( - type=dataset_type, - data_root=data_root, - img_dir='images/training', - ann_dir='annotations/training', - pipeline=train_pipeline)), - val=dict( - type=dataset_type, - data_root=data_root, - img_dir='images/validation', - ann_dir='annotations/validation', - pipeline=test_pipeline), - test=dict( - type=dataset_type, - data_root=data_root, - img_dir='images/validation', - ann_dir='annotations/validation', - pipeline=test_pipeline)) diff --git a/spaces/Superlang/ImageProcessor/annotator/uniformer/mmcv/cnn/bricks/conv_module.py b/spaces/Superlang/ImageProcessor/annotator/uniformer/mmcv/cnn/bricks/conv_module.py deleted file mode 100644 index e60e7e62245071c77b652093fddebff3948d7c3e..0000000000000000000000000000000000000000 --- a/spaces/Superlang/ImageProcessor/annotator/uniformer/mmcv/cnn/bricks/conv_module.py +++ /dev/null @@ -1,206 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -import warnings - -import torch.nn as nn - -from annotator.uniformer.mmcv.utils import _BatchNorm, _InstanceNorm -from ..utils import constant_init, kaiming_init -from .activation import build_activation_layer -from .conv import build_conv_layer -from .norm import build_norm_layer -from .padding import build_padding_layer -from .registry import PLUGIN_LAYERS - - -@PLUGIN_LAYERS.register_module() -class ConvModule(nn.Module): - """A conv block that bundles conv/norm/activation layers. - - This block simplifies the usage of convolution layers, which are commonly - used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). - It is based upon three build methods: `build_conv_layer()`, - `build_norm_layer()` and `build_activation_layer()`. - - Besides, we add some additional features in this module. - 1. Automatically set `bias` of the conv layer. - 2. Spectral norm is supported. - 3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only - supports zero and circular padding, and we add "reflect" padding mode. - - Args: - in_channels (int): Number of channels in the input feature map. - Same as that in ``nn._ConvNd``. - out_channels (int): Number of channels produced by the convolution. - Same as that in ``nn._ConvNd``. - kernel_size (int | tuple[int]): Size of the convolving kernel. - Same as that in ``nn._ConvNd``. - stride (int | tuple[int]): Stride of the convolution. - Same as that in ``nn._ConvNd``. - padding (int | tuple[int]): Zero-padding added to both sides of - the input. Same as that in ``nn._ConvNd``. - dilation (int | tuple[int]): Spacing between kernel elements. - Same as that in ``nn._ConvNd``. - groups (int): Number of blocked connections from input channels to - output channels. Same as that in ``nn._ConvNd``. - bias (bool | str): If specified as `auto`, it will be decided by the - norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise - False. Default: "auto". - conv_cfg (dict): Config dict for convolution layer. Default: None, - which means using conv2d. - norm_cfg (dict): Config dict for normalization layer. Default: None. - act_cfg (dict): Config dict for activation layer. - Default: dict(type='ReLU'). - inplace (bool): Whether to use inplace mode for activation. - Default: True. - with_spectral_norm (bool): Whether use spectral norm in conv module. - Default: False. - padding_mode (str): If the `padding_mode` has not been supported by - current `Conv2d` in PyTorch, we will use our own padding layer - instead. Currently, we support ['zeros', 'circular'] with official - implementation and ['reflect'] with our own implementation. - Default: 'zeros'. - order (tuple[str]): The order of conv/norm/activation layers. It is a - sequence of "conv", "norm" and "act". Common examples are - ("conv", "norm", "act") and ("act", "conv", "norm"). - Default: ('conv', 'norm', 'act'). - """ - - _abbr_ = 'conv_block' - - def __init__(self, - in_channels, - out_channels, - kernel_size, - stride=1, - padding=0, - dilation=1, - groups=1, - bias='auto', - conv_cfg=None, - norm_cfg=None, - act_cfg=dict(type='ReLU'), - inplace=True, - with_spectral_norm=False, - padding_mode='zeros', - order=('conv', 'norm', 'act')): - super(ConvModule, self).__init__() - assert conv_cfg is None or isinstance(conv_cfg, dict) - assert norm_cfg is None or isinstance(norm_cfg, dict) - assert act_cfg is None or isinstance(act_cfg, dict) - official_padding_mode = ['zeros', 'circular'] - self.conv_cfg = conv_cfg - self.norm_cfg = norm_cfg - self.act_cfg = act_cfg - self.inplace = inplace - self.with_spectral_norm = with_spectral_norm - self.with_explicit_padding = padding_mode not in official_padding_mode - self.order = order - assert isinstance(self.order, tuple) and len(self.order) == 3 - assert set(order) == set(['conv', 'norm', 'act']) - - self.with_norm = norm_cfg is not None - self.with_activation = act_cfg is not None - # if the conv layer is before a norm layer, bias is unnecessary. - if bias == 'auto': - bias = not self.with_norm - self.with_bias = bias - - if self.with_explicit_padding: - pad_cfg = dict(type=padding_mode) - self.padding_layer = build_padding_layer(pad_cfg, padding) - - # reset padding to 0 for conv module - conv_padding = 0 if self.with_explicit_padding else padding - # build convolution layer - self.conv = build_conv_layer( - conv_cfg, - in_channels, - out_channels, - kernel_size, - stride=stride, - padding=conv_padding, - dilation=dilation, - groups=groups, - bias=bias) - # export the attributes of self.conv to a higher level for convenience - self.in_channels = self.conv.in_channels - self.out_channels = self.conv.out_channels - self.kernel_size = self.conv.kernel_size - self.stride = self.conv.stride - self.padding = padding - self.dilation = self.conv.dilation - self.transposed = self.conv.transposed - self.output_padding = self.conv.output_padding - self.groups = self.conv.groups - - if self.with_spectral_norm: - self.conv = nn.utils.spectral_norm(self.conv) - - # build normalization layers - if self.with_norm: - # norm layer is after conv layer - if order.index('norm') > order.index('conv'): - norm_channels = out_channels - else: - norm_channels = in_channels - self.norm_name, norm = build_norm_layer(norm_cfg, norm_channels) - self.add_module(self.norm_name, norm) - if self.with_bias: - if isinstance(norm, (_BatchNorm, _InstanceNorm)): - warnings.warn( - 'Unnecessary conv bias before batch/instance norm') - else: - self.norm_name = None - - # build activation layer - if self.with_activation: - act_cfg_ = act_cfg.copy() - # nn.Tanh has no 'inplace' argument - if act_cfg_['type'] not in [ - 'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish' - ]: - act_cfg_.setdefault('inplace', inplace) - self.activate = build_activation_layer(act_cfg_) - - # Use msra init by default - self.init_weights() - - @property - def norm(self): - if self.norm_name: - return getattr(self, self.norm_name) - else: - return None - - def init_weights(self): - # 1. It is mainly for customized conv layers with their own - # initialization manners by calling their own ``init_weights()``, - # and we do not want ConvModule to override the initialization. - # 2. For customized conv layers without their own initialization - # manners (that is, they don't have their own ``init_weights()``) - # and PyTorch's conv layers, they will be initialized by - # this method with default ``kaiming_init``. - # Note: For PyTorch's conv layers, they will be overwritten by our - # initialization implementation using default ``kaiming_init``. - if not hasattr(self.conv, 'init_weights'): - if self.with_activation and self.act_cfg['type'] == 'LeakyReLU': - nonlinearity = 'leaky_relu' - a = self.act_cfg.get('negative_slope', 0.01) - else: - nonlinearity = 'relu' - a = 0 - kaiming_init(self.conv, a=a, nonlinearity=nonlinearity) - if self.with_norm: - constant_init(self.norm, 1, bias=0) - - def forward(self, x, activate=True, norm=True): - for layer in self.order: - if layer == 'conv': - if self.with_explicit_padding: - x = self.padding_layer(x) - x = self.conv(x) - elif layer == 'norm' and norm and self.with_norm: - x = self.norm(x) - elif layer == 'act' and activate and self.with_activation: - x = self.activate(x) - return x diff --git a/spaces/TH5314/newbing/src/components/ui/input.tsx b/spaces/TH5314/newbing/src/components/ui/input.tsx deleted file mode 100644 index 684a857f3d769b78818fb13de1abaebfb09ca79c..0000000000000000000000000000000000000000 --- a/spaces/TH5314/newbing/src/components/ui/input.tsx +++ /dev/null @@ -1,25 +0,0 @@ -import * as React from 'react' - -import { cn } from '@/lib/utils' - -export interface InputProps - extends React.InputHTMLAttributes {} - -const Input = React.forwardRef( - ({ className, type, ...props }, ref) => { - return ( - - ) - } -) -Input.displayName = 'Input' - -export { Input } diff --git a/spaces/TandCAcceptMe/face-swap-docker/mynewshinyroop/Lib/site-packages/pip/_vendor/chardet/mbcsgroupprober.py b/spaces/TandCAcceptMe/face-swap-docker/mynewshinyroop/Lib/site-packages/pip/_vendor/chardet/mbcsgroupprober.py deleted file mode 100644 index 6cb9cc7b3bc751fbb5a54ba06eaaf953bf14ed8d..0000000000000000000000000000000000000000 --- a/spaces/TandCAcceptMe/face-swap-docker/mynewshinyroop/Lib/site-packages/pip/_vendor/chardet/mbcsgroupprober.py +++ /dev/null @@ -1,57 +0,0 @@ -######################## BEGIN LICENSE BLOCK ######################## -# The Original Code is Mozilla Universal charset detector code. -# -# The Initial Developer of the Original Code is -# Netscape Communications Corporation. -# Portions created by the Initial Developer are Copyright (C) 2001 -# the Initial Developer. All Rights Reserved. -# -# Contributor(s): -# Mark Pilgrim - port to Python -# Shy Shalom - original C code -# Proofpoint, Inc. -# -# This library is free software; you can redistribute it and/or -# modify it under the terms of the GNU Lesser General Public -# License as published by the Free Software Foundation; either -# version 2.1 of the License, or (at your option) any later version. -# -# This library is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -# Lesser General Public License for more details. -# -# You should have received a copy of the GNU Lesser General Public -# License along with this library; if not, write to the Free Software -# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA -# 02110-1301 USA -######################### END LICENSE BLOCK ######################### - -from .big5prober import Big5Prober -from .charsetgroupprober import CharSetGroupProber -from .cp949prober import CP949Prober -from .enums import LanguageFilter -from .eucjpprober import EUCJPProber -from .euckrprober import EUCKRProber -from .euctwprober import EUCTWProber -from .gb2312prober import GB2312Prober -from .johabprober import JOHABProber -from .sjisprober import SJISProber -from .utf8prober import UTF8Prober - - -class MBCSGroupProber(CharSetGroupProber): - def __init__(self, lang_filter: LanguageFilter = LanguageFilter.NONE) -> None: - super().__init__(lang_filter=lang_filter) - self.probers = [ - UTF8Prober(), - SJISProber(), - EUCJPProber(), - GB2312Prober(), - EUCKRProber(), - CP949Prober(), - Big5Prober(), - EUCTWProber(), - JOHABProber(), - ] - self.reset() diff --git a/spaces/Th3BossC/TranscriptApi/TranscriptApi/templates/home.html b/spaces/Th3BossC/TranscriptApi/TranscriptApi/templates/home.html deleted file mode 100644 index dae3b6041570aef27b734ea2b3a00a7831269a68..0000000000000000000000000000000000000000 --- a/spaces/Th3BossC/TranscriptApi/TranscriptApi/templates/home.html +++ /dev/null @@ -1,66 +0,0 @@ - - - - - - - Document - - - - - - - - - - - - - - - - -
    -

    - This page is redundant, Please visit here for the actual site -

    - - - - - -
    - - \ No newline at end of file diff --git a/spaces/Woodsja2023/Basketball/info.md b/spaces/Woodsja2023/Basketball/info.md deleted file mode 100644 index 7ec3f3af6b44c914fa8189cff02cd9ab75900f98..0000000000000000000000000000000000000000 --- a/spaces/Woodsja2023/Basketball/info.md +++ /dev/null @@ -1,16 +0,0 @@ -# 😌 [Edit info.md - Your app's title here] - -### 🧐 Problem Statement and Research Summary -[add info about your problem statement and your research here!] - -### 🎣 Data Collection Plan -[Edit info.md - add info about what data you collected and why here!] - -### 💥 Ethical Considerations (Data Privacy and Bias) -* Data privacy: [Edit info.md - add info about you considered users' privacy here!] -* Bias: [Edit info.md - add info about you considered bias here!] - -### 👻 Our Team -[Edit info.md - add info about your team members here!] - -![aiEDU logo](https://images.squarespace-cdn.com/content/v1/5e4efdef6d10420691f02bc1/5db5a8a3-1761-4fce-a096-bd5f2515162f/aiEDU+_black+logo+stacked.png?format=100w) diff --git a/spaces/Wootang01/image_classifier/README.md b/spaces/Wootang01/image_classifier/README.md deleted file mode 100644 index aa1d8f38a65d984a52fde55e80d9f11cfb7cb076..0000000000000000000000000000000000000000 --- a/spaces/Wootang01/image_classifier/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Image_classifier -emoji: 🏢 -colorFrom: blue -colorTo: pink -sdk: gradio -sdk_version: 2.8.10 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference diff --git a/spaces/XS-1/BW_IMAGE_VIDEO_COLORIZER/image.py b/spaces/XS-1/BW_IMAGE_VIDEO_COLORIZER/image.py deleted file mode 100644 index c5a976630c9ac5d59e99dd900155b9ce9fa0f564..0000000000000000000000000000000000000000 --- a/spaces/XS-1/BW_IMAGE_VIDEO_COLORIZER/image.py +++ /dev/null @@ -1,40 +0,0 @@ -# please follow first the install settings before coding , like creating the conda enviroment -# important - the Python vscode home directory shold be the Deoldify directory - -from deoldify import device -from deoldify.device_id import DeviceId - -# checking for Cuda (GPU) - -device.set(device=DeviceId.GPU0) - -import torch -if not torch.cuda.is_available(): - print('GPU is not avaiable') - -import fastai -from deoldify.visualize import * -import warnings -warnings.filterwarnings("ignore",category=UserWarning,message=".*?Your .*? set is empty.*?") - -import cv2 - -# this is the main object for colorizing image -colorizer = get_image_colorizer(artistic=True) - -# this parameter is very memory consume, So if you have memory issues running this Python script -# try to reduce it to the minimum and raise as trail and error process -# to reduce the running time , I changed it for this demo to the minimum : 7 - -render_factor = 7 # 35 # this input parameter is minimum 7 and maximum 40 -watermakred = False # this paramter coltrols watermark in the result image - -image_path = colorizer.plot_transformed_image(path='media/folklore.jpeg',render_factor=render_factor, compare=True, watermarked=watermakred) - -print('this is the result image path :') -print(image_path) - -#lets show the image -# image = cv2.imread(str(image_path)) -# cv2.imshow('image',image) -# cv2.waitKey(0) diff --git a/spaces/Xhaheen/ChatGPT_HF/app.py b/spaces/Xhaheen/ChatGPT_HF/app.py deleted file mode 100644 index 9e9bd174b3816b406ab05a2045c50ee80fee5cd9..0000000000000000000000000000000000000000 --- a/spaces/Xhaheen/ChatGPT_HF/app.py +++ /dev/null @@ -1,48 +0,0 @@ -from pyChatGPT import ChatGPT -import os -# os.environ["SessionToken"] = SessionToken -# refresh the authorization token -session_token = os.environ.get('SessionToken') - -def chat_hf(text,session_tokenz): - - - try: - - - api = ChatGPT(session_token) - resp = api.send_message(text) - - - api.refresh_auth() # refresh the authorization token - api.reset_conversation() # reset the conversation - xyz = resp['message'] - except: - - - api = ChatGPT(session_tokenz) - resp = api.send_message(text) - - - api.refresh_auth() # refresh the authorization token - api.reset_conversation() # reset the conversation - xyz = resp['message'] - - return xyz - - - - -#@title GRadio for SDK api - -import gradio as gr -gr.Interface( - chat_hf, - [gr.Textbox(label = ' Input custom text for ChatGPT! '), - gr.Textbox(label = ' If it fails enter custom session key ')], - outputs = gr.outputs.Textbox(type="text",label="chatGPT response"), - examples =[['Write poem on crypto','xyz'],['Write a sales pitch for social media app','xyz'],['Reverse string in python','xyz'] ] - , title = "" +' ChatGpt 🤖💬💻 on 🤗 huggingface. '+ "", - description="""ChatGPT 🤖💬💻 is a conversational AI app that allows users to engage in natural language conversations with a virtual assistant. The app uses advanced machine learning algorithms to understand and respond to user queries in a human-like manner. With its ability to answer follow-up questions, admit mistakes, and reject inappropriate requests, ChatGPT offers a highly interactive and engaging experience. Try ChatGPT now and experience the power of language modeling in dialogue built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/) \n\nIf it fails enter cusom session key see video for reference refer @[Bhavesh bhat video](https://youtu.be/TdNSj_qgdFk) -

    You can duplicating this space and use your own session token: Duplicate Space

    -""").launch(debug = True) \ No newline at end of file diff --git a/spaces/XlalalaX/VITS-Umamusume-voice-synthesizer/app.py b/spaces/XlalalaX/VITS-Umamusume-voice-synthesizer/app.py deleted file mode 100644 index f40b1b122e3f944c879096dce6f000fc7e70eb63..0000000000000000000000000000000000000000 --- a/spaces/XlalalaX/VITS-Umamusume-voice-synthesizer/app.py +++ /dev/null @@ -1,139 +0,0 @@ -import os -import numpy as np -import torch -from torch import no_grad, LongTensor -import argparse -import commons -from mel_processing import spectrogram_torch -import utils -from models_infer import SynthesizerTrn -import gradio as gr -import librosa -import webbrowser - -from text import text_to_sequence, _clean_text -device = "cuda:0" if torch.cuda.is_available() else "cpu" -language_marks = { - "Japanese": "", - "日本語": "[JA]", - "简体中文": "[ZH]", - "English": "[EN]", - "Mix": "", -} -lang = ['日本語', '简体中文', 'English', 'Mix'] -def get_text(text, hps, is_symbol): - text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) - if hps.data.add_blank: - text_norm = commons.intersperse(text_norm, 0) - text_norm = LongTensor(text_norm) - return text_norm - -def create_tts_fn(model, hps, speaker_ids): - def tts_fn(text, speaker, language, speed): - if language is not None: - text = language_marks[language] + text + language_marks[language] - speaker_id = speaker_ids[speaker] - stn_tst = get_text(text, hps, False) - with no_grad(): - x_tst = stn_tst.unsqueeze(0).to(device) - x_tst_lengths = LongTensor([stn_tst.size(0)]).to(device) - sid = LongTensor([speaker_id]).to(device) - audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, - length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() - del stn_tst, x_tst, x_tst_lengths, sid - return "Success", (hps.data.sampling_rate, audio) - - return tts_fn - -def create_vc_fn(model, hps, speaker_ids): - def vc_fn(original_speaker, target_speaker, record_audio, upload_audio): - input_audio = record_audio if record_audio is not None else upload_audio - if input_audio is None: - return "You need to record or upload an audio", None - sampling_rate, audio = input_audio - original_speaker_id = speaker_ids[original_speaker] - target_speaker_id = speaker_ids[target_speaker] - - audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) - if len(audio.shape) > 1: - audio = librosa.to_mono(audio.transpose(1, 0)) - if sampling_rate != hps.data.sampling_rate: - audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate) - with no_grad(): - y = torch.FloatTensor(audio) - y = y / max(-y.min(), y.max()) / 0.99 - y = y.to(device) - y = y.unsqueeze(0) - spec = spectrogram_torch(y, hps.data.filter_length, - hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, - center=False).to(device) - spec_lengths = LongTensor([spec.size(-1)]).to(device) - sid_src = LongTensor([original_speaker_id]).to(device) - sid_tgt = LongTensor([target_speaker_id]).to(device) - audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][ - 0, 0].data.cpu().float().numpy() - del y, spec, spec_lengths, sid_src, sid_tgt - return "Success", (hps.data.sampling_rate, audio) - - return vc_fn -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--model_dir", default="./pretrained_models/G_add_1.pth", help="directory to your fine-tuned model") - parser.add_argument("--config_dir", default="./configs/modified_finetune_speaker.json", help="directory to your model config file") - parser.add_argument("--share", default=False, help="make link public (used in colab)") - - args = parser.parse_args() - hps = utils.get_hparams_from_file(args.config_dir) - - - net_g = SynthesizerTrn( - len(hps.symbols), - hps.data.filter_length // 2 + 1, - hps.train.segment_size // hps.data.hop_length, - n_speakers=hps.data.n_speakers, - **hps.model).to(device) - _ = net_g.eval() - - _ = utils.load_checkpoint(args.model_dir, net_g, None) - speaker_ids = hps.speakers - speakers = list(hps.speakers.keys()) - tts_fn = create_tts_fn(net_g, hps, speaker_ids) - vc_fn = create_vc_fn(net_g, hps, speaker_ids) - app = gr.Blocks() - with app: - with gr.Tab("Text-to-Speech"): - with gr.Row(): - with gr.Column(): - textbox = gr.TextArea(label="Text", - placeholder="Type your sentence here", - value="こんにちわ。", elem_id=f"tts-input") - # select character - char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character') - language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language') - duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, - label='速度 Speed') - with gr.Column(): - text_output = gr.Textbox(label="Message") - audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") - btn = gr.Button("Generate!") - btn.click(tts_fn, - inputs=[textbox, char_dropdown, language_dropdown, duration_slider,], - outputs=[text_output, audio_output]) - with gr.Tab("Voice Conversion"): - gr.Markdown(""" - 录制或上传声音,并选择要转换的音色。User代表的音色是你自己。 - """) - with gr.Column(): - record_audio = gr.Audio(label="record your voice", source="microphone") - upload_audio = gr.Audio(label="or upload audio here", source="upload") - source_speaker = gr.Dropdown(choices=speakers, value="User", label="source speaker") - target_speaker = gr.Dropdown(choices=speakers, value=speakers[0], label="target speaker") - with gr.Column(): - message_box = gr.Textbox(label="Message") - converted_audio = gr.Audio(label='converted audio') - btn = gr.Button("Convert!") - btn.click(vc_fn, inputs=[source_speaker, target_speaker, record_audio, upload_audio], - outputs=[message_box, converted_audio]) - webbrowser.open("http://127.0.0.1:7860") - app.launch(share=args.share) - diff --git a/spaces/XzJosh/Aatrox-Bert-VITS2/text/tone_sandhi.py b/spaces/XzJosh/Aatrox-Bert-VITS2/text/tone_sandhi.py deleted file mode 100644 index 0f45b7a72c5d858bcaab19ac85cfa686bf9a74da..0000000000000000000000000000000000000000 --- a/spaces/XzJosh/Aatrox-Bert-VITS2/text/tone_sandhi.py +++ /dev/null @@ -1,351 +0,0 @@ -# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -from typing import List -from typing import Tuple - -import jieba -from pypinyin import lazy_pinyin -from pypinyin import Style - - -class ToneSandhi(): - def __init__(self): - self.must_neural_tone_words = { - '麻烦', '麻利', '鸳鸯', '高粱', '骨头', '骆驼', '马虎', '首饰', '馒头', '馄饨', '风筝', - '难为', '队伍', '阔气', '闺女', '门道', '锄头', '铺盖', '铃铛', '铁匠', '钥匙', '里脊', - '里头', '部分', '那么', '道士', '造化', '迷糊', '连累', '这么', '这个', '运气', '过去', - '软和', '转悠', '踏实', '跳蚤', '跟头', '趔趄', '财主', '豆腐', '讲究', '记性', '记号', - '认识', '规矩', '见识', '裁缝', '补丁', '衣裳', '衣服', '衙门', '街坊', '行李', '行当', - '蛤蟆', '蘑菇', '薄荷', '葫芦', '葡萄', '萝卜', '荸荠', '苗条', '苗头', '苍蝇', '芝麻', - '舒服', '舒坦', '舌头', '自在', '膏药', '脾气', '脑袋', '脊梁', '能耐', '胳膊', '胭脂', - '胡萝', '胡琴', '胡同', '聪明', '耽误', '耽搁', '耷拉', '耳朵', '老爷', '老实', '老婆', - '老头', '老太', '翻腾', '罗嗦', '罐头', '编辑', '结实', '红火', '累赘', '糨糊', '糊涂', - '精神', '粮食', '簸箕', '篱笆', '算计', '算盘', '答应', '笤帚', '笑语', '笑话', '窟窿', - '窝囊', '窗户', '稳当', '稀罕', '称呼', '秧歌', '秀气', '秀才', '福气', '祖宗', '砚台', - '码头', '石榴', '石头', '石匠', '知识', '眼睛', '眯缝', '眨巴', '眉毛', '相声', '盘算', - '白净', '痢疾', '痛快', '疟疾', '疙瘩', '疏忽', '畜生', '生意', '甘蔗', '琵琶', '琢磨', - '琉璃', '玻璃', '玫瑰', '玄乎', '狐狸', '状元', '特务', '牲口', '牙碜', '牌楼', '爽快', - '爱人', '热闹', '烧饼', '烟筒', '烂糊', '点心', '炊帚', '灯笼', '火候', '漂亮', '滑溜', - '溜达', '温和', '清楚', '消息', '浪头', '活泼', '比方', '正经', '欺负', '模糊', '槟榔', - '棺材', '棒槌', '棉花', '核桃', '栅栏', '柴火', '架势', '枕头', '枇杷', '机灵', '本事', - '木头', '木匠', '朋友', '月饼', '月亮', '暖和', '明白', '时候', '新鲜', '故事', '收拾', - '收成', '提防', '挖苦', '挑剔', '指甲', '指头', '拾掇', '拳头', '拨弄', '招牌', '招呼', - '抬举', '护士', '折腾', '扫帚', '打量', '打算', '打点', '打扮', '打听', '打发', '扎实', - '扁担', '戒指', '懒得', '意识', '意思', '情形', '悟性', '怪物', '思量', '怎么', '念头', - '念叨', '快活', '忙活', '志气', '心思', '得罪', '张罗', '弟兄', '开通', '应酬', '庄稼', - '干事', '帮手', '帐篷', '希罕', '师父', '师傅', '巴结', '巴掌', '差事', '工夫', '岁数', - '屁股', '尾巴', '少爷', '小气', '小伙', '将就', '对头', '对付', '寡妇', '家伙', '客气', - '实在', '官司', '学问', '学生', '字号', '嫁妆', '媳妇', '媒人', '婆家', '娘家', '委屈', - '姑娘', '姐夫', '妯娌', '妥当', '妖精', '奴才', '女婿', '头发', '太阳', '大爷', '大方', - '大意', '大夫', '多少', '多么', '外甥', '壮实', '地道', '地方', '在乎', '困难', '嘴巴', - '嘱咐', '嘟囔', '嘀咕', '喜欢', '喇嘛', '喇叭', '商量', '唾沫', '哑巴', '哈欠', '哆嗦', - '咳嗽', '和尚', '告诉', '告示', '含糊', '吓唬', '后头', '名字', '名堂', '合同', '吆喝', - '叫唤', '口袋', '厚道', '厉害', '千斤', '包袱', '包涵', '匀称', '勤快', '动静', '动弹', - '功夫', '力气', '前头', '刺猬', '刺激', '别扭', '利落', '利索', '利害', '分析', '出息', - '凑合', '凉快', '冷战', '冤枉', '冒失', '养活', '关系', '先生', '兄弟', '便宜', '使唤', - '佩服', '作坊', '体面', '位置', '似的', '伙计', '休息', '什么', '人家', '亲戚', '亲家', - '交情', '云彩', '事情', '买卖', '主意', '丫头', '丧气', '两口', '东西', '东家', '世故', - '不由', '不在', '下水', '下巴', '上头', '上司', '丈夫', '丈人', '一辈', '那个', '菩萨', - '父亲', '母亲', '咕噜', '邋遢', '费用', '冤家', '甜头', '介绍', '荒唐', '大人', '泥鳅', - '幸福', '熟悉', '计划', '扑腾', '蜡烛', '姥爷', '照顾', '喉咙', '吉他', '弄堂', '蚂蚱', - '凤凰', '拖沓', '寒碜', '糟蹋', '倒腾', '报复', '逻辑', '盘缠', '喽啰', '牢骚', '咖喱', - '扫把', '惦记' - } - self.must_not_neural_tone_words = { - "男子", "女子", "分子", "原子", "量子", "莲子", "石子", "瓜子", "电子", "人人", "虎虎" - } - self.punc = ":,;。?!“”‘’':,;.?!" - - # the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041 - # e.g. - # word: "家里" - # pos: "s" - # finals: ['ia1', 'i3'] - def _neural_sandhi(self, word: str, pos: str, - finals: List[str]) -> List[str]: - - # reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺 - for j, item in enumerate(word): - if j - 1 >= 0 and item == word[j - 1] and pos[0] in { - "n", "v", "a" - } and word not in self.must_not_neural_tone_words: - finals[j] = finals[j][:-1] + "5" - ge_idx = word.find("个") - if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶": - finals[-1] = finals[-1][:-1] + "5" - elif len(word) >= 1 and word[-1] in "的地得": - finals[-1] = finals[-1][:-1] + "5" - # e.g. 走了, 看着, 去过 - # elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}: - # finals[-1] = finals[-1][:-1] + "5" - elif len(word) > 1 and word[-1] in "们子" and pos in { - "r", "n" - } and word not in self.must_not_neural_tone_words: - finals[-1] = finals[-1][:-1] + "5" - # e.g. 桌上, 地下, 家里 - elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}: - finals[-1] = finals[-1][:-1] + "5" - # e.g. 上来, 下去 - elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开": - finals[-1] = finals[-1][:-1] + "5" - # 个做量词 - elif (ge_idx >= 1 and - (word[ge_idx - 1].isnumeric() or - word[ge_idx - 1] in "几有两半多各整每做是")) or word == '个': - finals[ge_idx] = finals[ge_idx][:-1] + "5" - else: - if word in self.must_neural_tone_words or word[ - -2:] in self.must_neural_tone_words: - finals[-1] = finals[-1][:-1] + "5" - - word_list = self._split_word(word) - finals_list = [finals[:len(word_list[0])], finals[len(word_list[0]):]] - for i, word in enumerate(word_list): - # conventional neural in Chinese - if word in self.must_neural_tone_words or word[ - -2:] in self.must_neural_tone_words: - finals_list[i][-1] = finals_list[i][-1][:-1] + "5" - finals = sum(finals_list, []) - return finals - - def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]: - # e.g. 看不懂 - if len(word) == 3 and word[1] == "不": - finals[1] = finals[1][:-1] + "5" - else: - for i, char in enumerate(word): - # "不" before tone4 should be bu2, e.g. 不怕 - if char == "不" and i + 1 < len(word) and finals[i + - 1][-1] == "4": - finals[i] = finals[i][:-1] + "2" - return finals - - def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]: - # "一" in number sequences, e.g. 一零零, 二一零 - if word.find("一") != -1 and all( - [item.isnumeric() for item in word if item != "一"]): - return finals - # "一" between reduplication words shold be yi5, e.g. 看一看 - elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]: - finals[1] = finals[1][:-1] + "5" - # when "一" is ordinal word, it should be yi1 - elif word.startswith("第一"): - finals[1] = finals[1][:-1] + "1" - else: - for i, char in enumerate(word): - if char == "一" and i + 1 < len(word): - # "一" before tone4 should be yi2, e.g. 一段 - if finals[i + 1][-1] == "4": - finals[i] = finals[i][:-1] + "2" - # "一" before non-tone4 should be yi4, e.g. 一天 - else: - # "一" 后面如果是标点,还读一声 - if word[i + 1] not in self.punc: - finals[i] = finals[i][:-1] + "4" - return finals - - def _split_word(self, word: str) -> List[str]: - word_list = jieba.cut_for_search(word) - word_list = sorted(word_list, key=lambda i: len(i), reverse=False) - first_subword = word_list[0] - first_begin_idx = word.find(first_subword) - if first_begin_idx == 0: - second_subword = word[len(first_subword):] - new_word_list = [first_subword, second_subword] - else: - second_subword = word[:-len(first_subword)] - new_word_list = [second_subword, first_subword] - return new_word_list - - def _three_sandhi(self, word: str, finals: List[str]) -> List[str]: - if len(word) == 2 and self._all_tone_three(finals): - finals[0] = finals[0][:-1] + "2" - elif len(word) == 3: - word_list = self._split_word(word) - if self._all_tone_three(finals): - # disyllabic + monosyllabic, e.g. 蒙古/包 - if len(word_list[0]) == 2: - finals[0] = finals[0][:-1] + "2" - finals[1] = finals[1][:-1] + "2" - # monosyllabic + disyllabic, e.g. 纸/老虎 - elif len(word_list[0]) == 1: - finals[1] = finals[1][:-1] + "2" - else: - finals_list = [ - finals[:len(word_list[0])], finals[len(word_list[0]):] - ] - if len(finals_list) == 2: - for i, sub in enumerate(finals_list): - # e.g. 所有/人 - if self._all_tone_three(sub) and len(sub) == 2: - finals_list[i][0] = finals_list[i][0][:-1] + "2" - # e.g. 好/喜欢 - elif i == 1 and not self._all_tone_three(sub) and finals_list[i][0][-1] == "3" and \ - finals_list[0][-1][-1] == "3": - - finals_list[0][-1] = finals_list[0][-1][:-1] + "2" - finals = sum(finals_list, []) - # split idiom into two words who's length is 2 - elif len(word) == 4: - finals_list = [finals[:2], finals[2:]] - finals = [] - for sub in finals_list: - if self._all_tone_three(sub): - sub[0] = sub[0][:-1] + "2" - finals += sub - - return finals - - def _all_tone_three(self, finals: List[str]) -> bool: - return all(x[-1] == "3" for x in finals) - - # merge "不" and the word behind it - # if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error - def _merge_bu(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]: - new_seg = [] - last_word = "" - for word, pos in seg: - if last_word == "不": - word = last_word + word - if word != "不": - new_seg.append((word, pos)) - last_word = word[:] - if last_word == "不": - new_seg.append((last_word, 'd')) - last_word = "" - return new_seg - - # function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听" - # function 2: merge single "一" and the word behind it - # if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error - # e.g. - # input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')] - # output seg: [['听一听', 'v']] - def _merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]: - new_seg = [] - # function 1 - for i, (word, pos) in enumerate(seg): - if i - 1 >= 0 and word == "一" and i + 1 < len(seg) and seg[i - 1][ - 0] == seg[i + 1][0] and seg[i - 1][1] == "v": - new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0] - else: - if i - 2 >= 0 and seg[i - 1][0] == "一" and seg[i - 2][ - 0] == word and pos == "v": - continue - else: - new_seg.append([word, pos]) - seg = new_seg - new_seg = [] - # function 2 - for i, (word, pos) in enumerate(seg): - if new_seg and new_seg[-1][0] == "一": - new_seg[-1][0] = new_seg[-1][0] + word - else: - new_seg.append([word, pos]) - return new_seg - - # the first and the second words are all_tone_three - def _merge_continuous_three_tones( - self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]: - new_seg = [] - sub_finals_list = [ - lazy_pinyin( - word, neutral_tone_with_five=True, style=Style.FINALS_TONE3) - for (word, pos) in seg - ] - assert len(sub_finals_list) == len(seg) - merge_last = [False] * len(seg) - for i, (word, pos) in enumerate(seg): - if i - 1 >= 0 and self._all_tone_three( - sub_finals_list[i - 1]) and self._all_tone_three( - sub_finals_list[i]) and not merge_last[i - 1]: - # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi - if not self._is_reduplication(seg[i - 1][0]) and len( - seg[i - 1][0]) + len(seg[i][0]) <= 3: - new_seg[-1][0] = new_seg[-1][0] + seg[i][0] - merge_last[i] = True - else: - new_seg.append([word, pos]) - else: - new_seg.append([word, pos]) - - return new_seg - - def _is_reduplication(self, word: str) -> bool: - return len(word) == 2 and word[0] == word[1] - - # the last char of first word and the first char of second word is tone_three - def _merge_continuous_three_tones_2( - self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]: - new_seg = [] - sub_finals_list = [ - lazy_pinyin( - word, neutral_tone_with_five=True, style=Style.FINALS_TONE3) - for (word, pos) in seg - ] - assert len(sub_finals_list) == len(seg) - merge_last = [False] * len(seg) - for i, (word, pos) in enumerate(seg): - if i - 1 >= 0 and sub_finals_list[i - 1][-1][-1] == "3" and sub_finals_list[i][0][-1] == "3" and not \ - merge_last[i - 1]: - # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi - if not self._is_reduplication(seg[i - 1][0]) and len( - seg[i - 1][0]) + len(seg[i][0]) <= 3: - new_seg[-1][0] = new_seg[-1][0] + seg[i][0] - merge_last[i] = True - else: - new_seg.append([word, pos]) - else: - new_seg.append([word, pos]) - return new_seg - - def _merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]: - new_seg = [] - for i, (word, pos) in enumerate(seg): - if i - 1 >= 0 and word == "儿" and seg[i-1][0] != "#": - new_seg[-1][0] = new_seg[-1][0] + seg[i][0] - else: - new_seg.append([word, pos]) - return new_seg - - def _merge_reduplication( - self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]: - new_seg = [] - for i, (word, pos) in enumerate(seg): - if new_seg and word == new_seg[-1][0]: - new_seg[-1][0] = new_seg[-1][0] + seg[i][0] - else: - new_seg.append([word, pos]) - return new_seg - - def pre_merge_for_modify( - self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]: - seg = self._merge_bu(seg) - try: - seg = self._merge_yi(seg) - except: - print("_merge_yi failed") - seg = self._merge_reduplication(seg) - seg = self._merge_continuous_three_tones(seg) - seg = self._merge_continuous_three_tones_2(seg) - seg = self._merge_er(seg) - return seg - - def modified_tone(self, word: str, pos: str, - finals: List[str]) -> List[str]: - finals = self._bu_sandhi(word, finals) - finals = self._yi_sandhi(word, finals) - finals = self._neural_sandhi(word, pos, finals) - finals = self._three_sandhi(word, finals) - return finals diff --git a/spaces/XzJosh/Carol-Bert-VITS2/bert_gen.py b/spaces/XzJosh/Carol-Bert-VITS2/bert_gen.py deleted file mode 100644 index 44814715396ffc3abe84a12c74d66293c356eb4f..0000000000000000000000000000000000000000 --- a/spaces/XzJosh/Carol-Bert-VITS2/bert_gen.py +++ /dev/null @@ -1,53 +0,0 @@ -import torch -from torch.utils.data import DataLoader -from multiprocessing import Pool -import commons -import utils -from data_utils import TextAudioSpeakerLoader, TextAudioSpeakerCollate -from tqdm import tqdm -import warnings - -from text import cleaned_text_to_sequence, get_bert - -config_path = 'configs/config.json' -hps = utils.get_hparams_from_file(config_path) - -def process_line(line): - _id, spk, language_str, text, phones, tone, word2ph = line.strip().split("|") - phone = phones.split(" ") - tone = [int(i) for i in tone.split(" ")] - word2ph = [int(i) for i in word2ph.split(" ")] - w2pho = [i for i in word2ph] - word2ph = [i for i in word2ph] - phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) - - if hps.data.add_blank: - phone = commons.intersperse(phone, 0) - tone = commons.intersperse(tone, 0) - language = commons.intersperse(language, 0) - for i in range(len(word2ph)): - word2ph[i] = word2ph[i] * 2 - word2ph[0] += 1 - wav_path = f'{_id}' - - bert_path = wav_path.replace(".wav", ".bert.pt") - try: - bert = torch.load(bert_path) - assert bert.shape[-1] == len(phone) - except: - bert = get_bert(text, word2ph, language_str) - assert bert.shape[-1] == len(phone) - torch.save(bert, bert_path) - - -if __name__ == '__main__': - lines = [] - with open(hps.data.training_files, encoding='utf-8' ) as f: - lines.extend(f.readlines()) - - with open(hps.data.validation_files, encoding='utf-8' ) as f: - lines.extend(f.readlines()) - - with Pool(processes=12) as pool: #A100 40GB suitable config,if coom,please decrease the processess number. - for _ in tqdm(pool.imap_unordered(process_line, lines)): - pass diff --git a/spaces/XzJosh/Echo-Bert-VITS2/models.py b/spaces/XzJosh/Echo-Bert-VITS2/models.py deleted file mode 100644 index d4afe44d883691610c5903e602a3ca245fcb3a5c..0000000000000000000000000000000000000000 --- a/spaces/XzJosh/Echo-Bert-VITS2/models.py +++ /dev/null @@ -1,707 +0,0 @@ -import copy -import math -import torch -from torch import nn -from torch.nn import functional as F - -import commons -import modules -import attentions -import monotonic_align - -from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d -from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm - -from commons import init_weights, get_padding -from text import symbols, num_tones, num_languages -class DurationDiscriminator(nn.Module): #vits2 - def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0): - super().__init__() - - self.in_channels = in_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.gin_channels = gin_channels - - self.drop = nn.Dropout(p_dropout) - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.norm_1 = modules.LayerNorm(filter_channels) - self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.norm_2 = modules.LayerNorm(filter_channels) - self.dur_proj = nn.Conv1d(1, filter_channels, 1) - - self.pre_out_conv_1 = nn.Conv1d(2*filter_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.pre_out_norm_1 = modules.LayerNorm(filter_channels) - self.pre_out_conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.pre_out_norm_2 = modules.LayerNorm(filter_channels) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, in_channels, 1) - - self.output_layer = nn.Sequential( - nn.Linear(filter_channels, 1), - nn.Sigmoid() - ) - - def forward_probability(self, x, x_mask, dur, g=None): - dur = self.dur_proj(dur) - x = torch.cat([x, dur], dim=1) - x = self.pre_out_conv_1(x * x_mask) - x = torch.relu(x) - x = self.pre_out_norm_1(x) - x = self.drop(x) - x = self.pre_out_conv_2(x * x_mask) - x = torch.relu(x) - x = self.pre_out_norm_2(x) - x = self.drop(x) - x = x * x_mask - x = x.transpose(1, 2) - output_prob = self.output_layer(x) - return output_prob - - def forward(self, x, x_mask, dur_r, dur_hat, g=None): - x = torch.detach(x) - if g is not None: - g = torch.detach(g) - x = x + self.cond(g) - x = self.conv_1(x * x_mask) - x = torch.relu(x) - x = self.norm_1(x) - x = self.drop(x) - x = self.conv_2(x * x_mask) - x = torch.relu(x) - x = self.norm_2(x) - x = self.drop(x) - - output_probs = [] - for dur in [dur_r, dur_hat]: - output_prob = self.forward_probability(x, x_mask, dur, g) - output_probs.append(output_prob) - - return output_probs - -class TransformerCouplingBlock(nn.Module): - def __init__(self, - channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - n_flows=4, - gin_channels=0, - share_parameter=False - ): - - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.n_layers = n_layers - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.flows = nn.ModuleList() - - self.wn = attentions.FFT(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = self.gin_channels) if share_parameter else None - - for i in range(n_flows): - self.flows.append( - modules.TransformerCouplingLayer(channels, hidden_channels, kernel_size, n_layers, n_heads, p_dropout, filter_channels, mean_only=True, wn_sharing_parameter=self.wn, gin_channels = self.gin_channels)) - self.flows.append(modules.Flip()) - - def forward(self, x, x_mask, g=None, reverse=False): - if not reverse: - for flow in self.flows: - x, _ = flow(x, x_mask, g=g, reverse=reverse) - else: - for flow in reversed(self.flows): - x = flow(x, x_mask, g=g, reverse=reverse) - return x - -class StochasticDurationPredictor(nn.Module): - def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0): - super().__init__() - filter_channels = in_channels # it needs to be removed from future version. - self.in_channels = in_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.log_flow = modules.Log() - self.flows = nn.ModuleList() - self.flows.append(modules.ElementwiseAffine(2)) - for i in range(n_flows): - self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) - self.flows.append(modules.Flip()) - - self.post_pre = nn.Conv1d(1, filter_channels, 1) - self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) - self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) - self.post_flows = nn.ModuleList() - self.post_flows.append(modules.ElementwiseAffine(2)) - for i in range(4): - self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) - self.post_flows.append(modules.Flip()) - - self.pre = nn.Conv1d(in_channels, filter_channels, 1) - self.proj = nn.Conv1d(filter_channels, filter_channels, 1) - self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, filter_channels, 1) - - def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): - x = torch.detach(x) - x = self.pre(x) - if g is not None: - g = torch.detach(g) - x = x + self.cond(g) - x = self.convs(x, x_mask) - x = self.proj(x) * x_mask - - if not reverse: - flows = self.flows - assert w is not None - - logdet_tot_q = 0 - h_w = self.post_pre(w) - h_w = self.post_convs(h_w, x_mask) - h_w = self.post_proj(h_w) * x_mask - e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask - z_q = e_q - for flow in self.post_flows: - z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) - logdet_tot_q += logdet_q - z_u, z1 = torch.split(z_q, [1, 1], 1) - u = torch.sigmoid(z_u) * x_mask - z0 = (w - u) * x_mask - logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) - logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q - - logdet_tot = 0 - z0, logdet = self.log_flow(z0, x_mask) - logdet_tot += logdet - z = torch.cat([z0, z1], 1) - for flow in flows: - z, logdet = flow(z, x_mask, g=x, reverse=reverse) - logdet_tot = logdet_tot + logdet - nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot - return nll + logq # [b] - else: - flows = list(reversed(self.flows)) - flows = flows[:-2] + [flows[-1]] # remove a useless vflow - z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale - for flow in flows: - z = flow(z, x_mask, g=x, reverse=reverse) - z0, z1 = torch.split(z, [1, 1], 1) - logw = z0 - return logw - - -class DurationPredictor(nn.Module): - def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0): - super().__init__() - - self.in_channels = in_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.gin_channels = gin_channels - - self.drop = nn.Dropout(p_dropout) - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) - self.norm_1 = modules.LayerNorm(filter_channels) - self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) - self.norm_2 = modules.LayerNorm(filter_channels) - self.proj = nn.Conv1d(filter_channels, 1, 1) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, in_channels, 1) - - def forward(self, x, x_mask, g=None): - x = torch.detach(x) - if g is not None: - g = torch.detach(g) - x = x + self.cond(g) - x = self.conv_1(x * x_mask) - x = torch.relu(x) - x = self.norm_1(x) - x = self.drop(x) - x = self.conv_2(x * x_mask) - x = torch.relu(x) - x = self.norm_2(x) - x = self.drop(x) - x = self.proj(x * x_mask) - return x * x_mask - - -class TextEncoder(nn.Module): - def __init__(self, - n_vocab, - out_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - gin_channels=0): - super().__init__() - self.n_vocab = n_vocab - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.gin_channels = gin_channels - self.emb = nn.Embedding(len(symbols), hidden_channels) - nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5) - self.tone_emb = nn.Embedding(num_tones, hidden_channels) - nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels ** -0.5) - self.language_emb = nn.Embedding(num_languages, hidden_channels) - nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels ** -0.5) - self.bert_proj = nn.Conv1d(1024, hidden_channels, 1) - - self.encoder = attentions.Encoder( - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - gin_channels=self.gin_channels) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, x, x_lengths, tone, language, bert, g=None): - x = (self.emb(x)+ self.tone_emb(tone)+ self.language_emb(language)+self.bert_proj(bert).transpose(1,2)) * math.sqrt(self.hidden_channels) # [b, t, h] - x = torch.transpose(x, 1, -1) # [b, h, t] - x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) - - x = self.encoder(x * x_mask, x_mask, g=g) - stats = self.proj(x) * x_mask - - m, logs = torch.split(stats, self.out_channels, dim=1) - return x, m, logs, x_mask - - -class ResidualCouplingBlock(nn.Module): - def __init__(self, - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - n_flows=4, - gin_channels=0): - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.flows = nn.ModuleList() - for i in range(n_flows): - self.flows.append( - modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, - gin_channels=gin_channels, mean_only=True)) - self.flows.append(modules.Flip()) - - def forward(self, x, x_mask, g=None, reverse=False): - if not reverse: - for flow in self.flows: - x, _ = flow(x, x_mask, g=g, reverse=reverse) - else: - for flow in reversed(self.flows): - x = flow(x, x_mask, g=g, reverse=reverse) - return x - - -class PosteriorEncoder(nn.Module): - def __init__(self, - in_channels, - out_channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=0): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.gin_channels = gin_channels - - self.pre = nn.Conv1d(in_channels, hidden_channels, 1) - self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, x, x_lengths, g=None): - x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) - x = self.pre(x) * x_mask - x = self.enc(x, x_mask, g=g) - stats = self.proj(x) * x_mask - m, logs = torch.split(stats, self.out_channels, dim=1) - z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask - return z, m, logs, x_mask - - -class Generator(torch.nn.Module): - def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, - upsample_initial_channel, upsample_kernel_sizes, gin_channels=0): - super(Generator, self).__init__() - self.num_kernels = len(resblock_kernel_sizes) - self.num_upsamples = len(upsample_rates) - self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) - resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2 - - self.ups = nn.ModuleList() - for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): - self.ups.append(weight_norm( - ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)), - k, u, padding=(k - u) // 2))) - - self.resblocks = nn.ModuleList() - for i in range(len(self.ups)): - ch = upsample_initial_channel // (2 ** (i + 1)) - for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): - self.resblocks.append(resblock(ch, k, d)) - - self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) - self.ups.apply(init_weights) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) - - def forward(self, x, g=None): - x = self.conv_pre(x) - if g is not None: - x = x + self.cond(g) - - for i in range(self.num_upsamples): - x = F.leaky_relu(x, modules.LRELU_SLOPE) - x = self.ups[i](x) - xs = None - for j in range(self.num_kernels): - if xs is None: - xs = self.resblocks[i * self.num_kernels + j](x) - else: - xs += self.resblocks[i * self.num_kernels + j](x) - x = xs / self.num_kernels - x = F.leaky_relu(x) - x = self.conv_post(x) - x = torch.tanh(x) - - return x - - def remove_weight_norm(self): - print('Removing weight norm...') - for l in self.ups: - remove_weight_norm(l) - for l in self.resblocks: - l.remove_weight_norm() - - -class DiscriminatorP(torch.nn.Module): - def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): - super(DiscriminatorP, self).__init__() - self.period = period - self.use_spectral_norm = use_spectral_norm - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList([ - norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), - ]) - self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) - - def forward(self, x): - fmap = [] - - # 1d to 2d - b, c, t = x.shape - if t % self.period != 0: # pad first - n_pad = self.period - (t % self.period) - x = F.pad(x, (0, n_pad), "reflect") - t = t + n_pad - x = x.view(b, c, t // self.period, self.period) - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap - - -class DiscriminatorS(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(DiscriminatorS, self).__init__() - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList([ - norm_f(Conv1d(1, 16, 15, 1, padding=7)), - norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), - norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), - norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), - norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), - norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), - ]) - self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) - - def forward(self, x): - fmap = [] - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap - - -class MultiPeriodDiscriminator(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(MultiPeriodDiscriminator, self).__init__() - periods = [2, 3, 5, 7, 11] - - discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] - discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] - self.discriminators = nn.ModuleList(discs) - - def forward(self, y, y_hat): - y_d_rs = [] - y_d_gs = [] - fmap_rs = [] - fmap_gs = [] - for i, d in enumerate(self.discriminators): - y_d_r, fmap_r = d(y) - y_d_g, fmap_g = d(y_hat) - y_d_rs.append(y_d_r) - y_d_gs.append(y_d_g) - fmap_rs.append(fmap_r) - fmap_gs.append(fmap_g) - - return y_d_rs, y_d_gs, fmap_rs, fmap_gs - -class ReferenceEncoder(nn.Module): - ''' - inputs --- [N, Ty/r, n_mels*r] mels - outputs --- [N, ref_enc_gru_size] - ''' - - def __init__(self, spec_channels, gin_channels=0): - - super().__init__() - self.spec_channels = spec_channels - ref_enc_filters = [32, 32, 64, 64, 128, 128] - K = len(ref_enc_filters) - filters = [1] + ref_enc_filters - convs = [weight_norm(nn.Conv2d(in_channels=filters[i], - out_channels=filters[i + 1], - kernel_size=(3, 3), - stride=(2, 2), - padding=(1, 1))) for i in range(K)] - self.convs = nn.ModuleList(convs) - # self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) - - out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K) - self.gru = nn.GRU(input_size=ref_enc_filters[-1] * out_channels, - hidden_size=256 // 2, - batch_first=True) - self.proj = nn.Linear(128, gin_channels) - - def forward(self, inputs, mask=None): - N = inputs.size(0) - out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs] - for conv in self.convs: - out = conv(out) - # out = wn(out) - out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K] - - out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] - T = out.size(1) - N = out.size(0) - out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] - - self.gru.flatten_parameters() - memory, out = self.gru(out) # out --- [1, N, 128] - - return self.proj(out.squeeze(0)) - - def calculate_channels(self, L, kernel_size, stride, pad, n_convs): - for i in range(n_convs): - L = (L - kernel_size + 2 * pad) // stride + 1 - return L - - -class SynthesizerTrn(nn.Module): - """ - Synthesizer for Training - """ - - def __init__(self, - n_vocab, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - n_speakers=256, - gin_channels=256, - use_sdp=True, - n_flow_layer = 4, - n_layers_trans_flow = 3, - flow_share_parameter = False, - use_transformer_flow = True, - **kwargs): - - super().__init__() - self.n_vocab = n_vocab - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.n_speakers = n_speakers - self.gin_channels = gin_channels - self.n_layers_trans_flow = n_layers_trans_flow - self.use_spk_conditioned_encoder = kwargs.get("use_spk_conditioned_encoder", True) - self.use_sdp = use_sdp - self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False) - self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01) - self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6) - self.current_mas_noise_scale = self.mas_noise_scale_initial - if self.use_spk_conditioned_encoder and gin_channels > 0: - self.enc_gin_channels = gin_channels - self.enc_p = TextEncoder(n_vocab, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - gin_channels=self.enc_gin_channels) - self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, - upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels) - self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, - gin_channels=gin_channels) - if use_transformer_flow: - self.flow = TransformerCouplingBlock(inter_channels, hidden_channels, filter_channels, n_heads, n_layers_trans_flow, 5, p_dropout, n_flow_layer, gin_channels=gin_channels,share_parameter= flow_share_parameter) - else: - self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, n_flow_layer, gin_channels=gin_channels) - self.sdp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels) - self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels) - - if n_speakers >= 1: - self.emb_g = nn.Embedding(n_speakers, gin_channels) - else: - self.ref_enc = ReferenceEncoder(spec_channels, gin_channels) - - def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert): - if self.n_speakers > 0: - g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] - else: - g = self.ref_enc(y.transpose(1,2)).unsqueeze(-1) - x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert,g=g) - z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) - z_p = self.flow(z, y_mask, g=g) - - with torch.no_grad(): - # negative cross-entropy - s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t] - neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s] - neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), - s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] - neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] - neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s] - neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 - if self.use_noise_scaled_mas: - epsilon = torch.std(neg_cent) * torch.randn_like(neg_cent) * self.current_mas_noise_scale - neg_cent = neg_cent + epsilon - - attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) - attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() - - w = attn.sum(2) - - l_length_sdp = self.sdp(x, x_mask, w, g=g) - l_length_sdp = l_length_sdp / torch.sum(x_mask) - - logw_ = torch.log(w + 1e-6) * x_mask - logw = self.dp(x, x_mask, g=g) - l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging - - l_length = l_length_dp + l_length_sdp - - # expand prior - m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) - logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) - - z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size) - o = self.dec(z_slice, g=g) - return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), (x, logw, logw_) - - def infer(self, x, x_lengths, sid, tone, language, bert, noise_scale=.667, length_scale=1, noise_scale_w=0.8, max_len=None, sdp_ratio=0,y=None): - #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert) - # g = self.gst(y) - if self.n_speakers > 0: - g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] - else: - g = self.ref_enc(y.transpose(1,2)).unsqueeze(-1) - x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert,g=g) - logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (sdp_ratio) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio) - w = torch.exp(logw) * x_mask * length_scale - w_ceil = torch.ceil(w) - y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() - y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) - attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) - attn = commons.generate_path(w_ceil, attn_mask) - - m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] - logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, - 2) # [b, t', t], [b, t, d] -> [b, d, t'] - - z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale - z = self.flow(z_p, y_mask, g=g, reverse=True) - o = self.dec((z * y_mask)[:, :, :max_len], g=g) - return o, attn, y_mask, (z, z_p, m_p, logs_p) diff --git a/spaces/YE01/saya-vits/README.md b/spaces/YE01/saya-vits/README.md deleted file mode 100644 index 59a6dac29139f9b6c22b8b8fd687d88f6564a6ef..0000000000000000000000000000000000000000 --- a/spaces/YE01/saya-vits/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Saya -emoji: 🦀 -colorFrom: green -colorTo: purple -sdk: gradio -sdk_version: 3.15.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/YE01/saya-vits/transforms.py b/spaces/YE01/saya-vits/transforms.py deleted file mode 100644 index 4793d67ca5a5630e0ffe0f9fb29445c949e64dae..0000000000000000000000000000000000000000 --- a/spaces/YE01/saya-vits/transforms.py +++ /dev/null @@ -1,193 +0,0 @@ -import torch -from torch.nn import functional as F - -import numpy as np - - -DEFAULT_MIN_BIN_WIDTH = 1e-3 -DEFAULT_MIN_BIN_HEIGHT = 1e-3 -DEFAULT_MIN_DERIVATIVE = 1e-3 - - -def piecewise_rational_quadratic_transform(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails=None, - tail_bound=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - - if tails is None: - spline_fn = rational_quadratic_spline - spline_kwargs = {} - else: - spline_fn = unconstrained_rational_quadratic_spline - spline_kwargs = { - 'tails': tails, - 'tail_bound': tail_bound - } - - outputs, logabsdet = spline_fn( - inputs=inputs, - unnormalized_widths=unnormalized_widths, - unnormalized_heights=unnormalized_heights, - unnormalized_derivatives=unnormalized_derivatives, - inverse=inverse, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative, - **spline_kwargs - ) - return outputs, logabsdet - - -def searchsorted(bin_locations, inputs, eps=1e-6): - bin_locations[..., -1] += eps - return torch.sum( - inputs[..., None] >= bin_locations, - dim=-1 - ) - 1 - - -def unconstrained_rational_quadratic_spline(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - tails='linear', - tail_bound=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) - outside_interval_mask = ~inside_interval_mask - - outputs = torch.zeros_like(inputs) - logabsdet = torch.zeros_like(inputs) - - if tails == 'linear': - unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) - constant = np.log(np.exp(1 - min_derivative) - 1) - unnormalized_derivatives[..., 0] = constant - unnormalized_derivatives[..., -1] = constant - - outputs[outside_interval_mask] = inputs[outside_interval_mask] - logabsdet[outside_interval_mask] = 0 - else: - raise RuntimeError('{} tails are not implemented.'.format(tails)) - - outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline( - inputs=inputs[inside_interval_mask], - unnormalized_widths=unnormalized_widths[inside_interval_mask, :], - unnormalized_heights=unnormalized_heights[inside_interval_mask, :], - unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], - inverse=inverse, - left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, - min_bin_width=min_bin_width, - min_bin_height=min_bin_height, - min_derivative=min_derivative - ) - - return outputs, logabsdet - -def rational_quadratic_spline(inputs, - unnormalized_widths, - unnormalized_heights, - unnormalized_derivatives, - inverse=False, - left=0., right=1., bottom=0., top=1., - min_bin_width=DEFAULT_MIN_BIN_WIDTH, - min_bin_height=DEFAULT_MIN_BIN_HEIGHT, - min_derivative=DEFAULT_MIN_DERIVATIVE): - if torch.min(inputs) < left or torch.max(inputs) > right: - raise ValueError('Input to a transform is not within its domain') - - num_bins = unnormalized_widths.shape[-1] - - if min_bin_width * num_bins > 1.0: - raise ValueError('Minimal bin width too large for the number of bins') - if min_bin_height * num_bins > 1.0: - raise ValueError('Minimal bin height too large for the number of bins') - - widths = F.softmax(unnormalized_widths, dim=-1) - widths = min_bin_width + (1 - min_bin_width * num_bins) * widths - cumwidths = torch.cumsum(widths, dim=-1) - cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0) - cumwidths = (right - left) * cumwidths + left - cumwidths[..., 0] = left - cumwidths[..., -1] = right - widths = cumwidths[..., 1:] - cumwidths[..., :-1] - - derivatives = min_derivative + F.softplus(unnormalized_derivatives) - - heights = F.softmax(unnormalized_heights, dim=-1) - heights = min_bin_height + (1 - min_bin_height * num_bins) * heights - cumheights = torch.cumsum(heights, dim=-1) - cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0) - cumheights = (top - bottom) * cumheights + bottom - cumheights[..., 0] = bottom - cumheights[..., -1] = top - heights = cumheights[..., 1:] - cumheights[..., :-1] - - if inverse: - bin_idx = searchsorted(cumheights, inputs)[..., None] - else: - bin_idx = searchsorted(cumwidths, inputs)[..., None] - - input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] - input_bin_widths = widths.gather(-1, bin_idx)[..., 0] - - input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] - delta = heights / widths - input_delta = delta.gather(-1, bin_idx)[..., 0] - - input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] - input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] - - input_heights = heights.gather(-1, bin_idx)[..., 0] - - if inverse: - a = (((inputs - input_cumheights) * (input_derivatives - + input_derivatives_plus_one - - 2 * input_delta) - + input_heights * (input_delta - input_derivatives))) - b = (input_heights * input_derivatives - - (inputs - input_cumheights) * (input_derivatives - + input_derivatives_plus_one - - 2 * input_delta)) - c = - input_delta * (inputs - input_cumheights) - - discriminant = b.pow(2) - 4 * a * c - assert (discriminant >= 0).all() - - root = (2 * c) / (-b - torch.sqrt(discriminant)) - outputs = root * input_bin_widths + input_cumwidths - - theta_one_minus_theta = root * (1 - root) - denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta) - derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - root).pow(2)) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, -logabsdet - else: - theta = (inputs - input_cumwidths) / input_bin_widths - theta_one_minus_theta = theta * (1 - theta) - - numerator = input_heights * (input_delta * theta.pow(2) - + input_derivatives * theta_one_minus_theta) - denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) - * theta_one_minus_theta) - outputs = input_cumheights + numerator / denominator - - derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) - + 2 * input_delta * theta_one_minus_theta - + input_derivatives * (1 - theta).pow(2)) - logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) - - return outputs, logabsdet diff --git a/spaces/YanzBotz/YanzBotz-Models/lib/infer_pack/models_dml.py b/spaces/YanzBotz/YanzBotz-Models/lib/infer_pack/models_dml.py deleted file mode 100644 index 958d7b29259763d2fea94caf8ba7e314c4a77d05..0000000000000000000000000000000000000000 --- a/spaces/YanzBotz/YanzBotz-Models/lib/infer_pack/models_dml.py +++ /dev/null @@ -1,1124 +0,0 @@ -import math, pdb, os -from time import time as ttime -import torch -from torch import nn -from torch.nn import functional as F -from lib.infer_pack import modules -from lib.infer_pack import attentions -from lib.infer_pack import commons -from lib.infer_pack.commons import init_weights, get_padding -from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d -from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm -from lib.infer_pack.commons import init_weights -import numpy as np -from lib.infer_pack import commons - - -class TextEncoder256(nn.Module): - def __init__( - self, - out_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - f0=True, - ): - super().__init__() - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.emb_phone = nn.Linear(256, hidden_channels) - self.lrelu = nn.LeakyReLU(0.1, inplace=True) - if f0 == True: - self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 - self.encoder = attentions.Encoder( - hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout - ) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, phone, pitch, lengths): - if pitch == None: - x = self.emb_phone(phone) - else: - x = self.emb_phone(phone) + self.emb_pitch(pitch) - x = x * math.sqrt(self.hidden_channels) # [b, t, h] - x = self.lrelu(x) - x = torch.transpose(x, 1, -1) # [b, h, t] - x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( - x.dtype - ) - x = self.encoder(x * x_mask, x_mask) - stats = self.proj(x) * x_mask - - m, logs = torch.split(stats, self.out_channels, dim=1) - return m, logs, x_mask - - -class TextEncoder768(nn.Module): - def __init__( - self, - out_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - f0=True, - ): - super().__init__() - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.emb_phone = nn.Linear(768, hidden_channels) - self.lrelu = nn.LeakyReLU(0.1, inplace=True) - if f0 == True: - self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256 - self.encoder = attentions.Encoder( - hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout - ) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, phone, pitch, lengths): - if pitch == None: - x = self.emb_phone(phone) - else: - x = self.emb_phone(phone) + self.emb_pitch(pitch) - x = x * math.sqrt(self.hidden_channels) # [b, t, h] - x = self.lrelu(x) - x = torch.transpose(x, 1, -1) # [b, h, t] - x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to( - x.dtype - ) - x = self.encoder(x * x_mask, x_mask) - stats = self.proj(x) * x_mask - - m, logs = torch.split(stats, self.out_channels, dim=1) - return m, logs, x_mask - - -class ResidualCouplingBlock(nn.Module): - def __init__( - self, - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - n_flows=4, - gin_channels=0, - ): - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.flows = nn.ModuleList() - for i in range(n_flows): - self.flows.append( - modules.ResidualCouplingLayer( - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=gin_channels, - mean_only=True, - ) - ) - self.flows.append(modules.Flip()) - - def forward(self, x, x_mask, g=None, reverse=False): - if not reverse: - for flow in self.flows: - x, _ = flow(x, x_mask, g=g, reverse=reverse) - else: - for flow in reversed(self.flows): - x = flow(x, x_mask, g=g, reverse=reverse) - return x - - def remove_weight_norm(self): - for i in range(self.n_flows): - self.flows[i * 2].remove_weight_norm() - - -class PosteriorEncoder(nn.Module): - def __init__( - self, - in_channels, - out_channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=0, - ): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.gin_channels = gin_channels - - self.pre = nn.Conv1d(in_channels, hidden_channels, 1) - self.enc = modules.WN( - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=gin_channels, - ) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, x, x_lengths, g=None): - x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( - x.dtype - ) - x = self.pre(x) * x_mask - x = self.enc(x, x_mask, g=g) - stats = self.proj(x) * x_mask - m, logs = torch.split(stats, self.out_channels, dim=1) - z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask - return z, m, logs, x_mask - - def remove_weight_norm(self): - self.enc.remove_weight_norm() - - -class Generator(torch.nn.Module): - def __init__( - self, - initial_channel, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=0, - ): - super(Generator, self).__init__() - self.num_kernels = len(resblock_kernel_sizes) - self.num_upsamples = len(upsample_rates) - self.conv_pre = Conv1d( - initial_channel, upsample_initial_channel, 7, 1, padding=3 - ) - resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 - - self.ups = nn.ModuleList() - for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): - self.ups.append( - weight_norm( - ConvTranspose1d( - upsample_initial_channel // (2**i), - upsample_initial_channel // (2 ** (i + 1)), - k, - u, - padding=(k - u) // 2, - ) - ) - ) - - self.resblocks = nn.ModuleList() - for i in range(len(self.ups)): - ch = upsample_initial_channel // (2 ** (i + 1)) - for j, (k, d) in enumerate( - zip(resblock_kernel_sizes, resblock_dilation_sizes) - ): - self.resblocks.append(resblock(ch, k, d)) - - self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) - self.ups.apply(init_weights) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) - - def forward(self, x, g=None): - x = self.conv_pre(x) - if g is not None: - x = x + self.cond(g) - - for i in range(self.num_upsamples): - x = F.leaky_relu(x, modules.LRELU_SLOPE) - x = self.ups[i](x) - xs = None - for j in range(self.num_kernels): - if xs is None: - xs = self.resblocks[i * self.num_kernels + j](x) - else: - xs += self.resblocks[i * self.num_kernels + j](x) - x = xs / self.num_kernels - x = F.leaky_relu(x) - x = self.conv_post(x) - x = torch.tanh(x) - - return x - - def remove_weight_norm(self): - for l in self.ups: - remove_weight_norm(l) - for l in self.resblocks: - l.remove_weight_norm() - - -class SineGen(torch.nn.Module): - """Definition of sine generator - SineGen(samp_rate, harmonic_num = 0, - sine_amp = 0.1, noise_std = 0.003, - voiced_threshold = 0, - flag_for_pulse=False) - samp_rate: sampling rate in Hz - harmonic_num: number of harmonic overtones (default 0) - sine_amp: amplitude of sine-wavefrom (default 0.1) - noise_std: std of Gaussian noise (default 0.003) - voiced_thoreshold: F0 threshold for U/V classification (default 0) - flag_for_pulse: this SinGen is used inside PulseGen (default False) - Note: when flag_for_pulse is True, the first time step of a voiced - segment is always sin(np.pi) or cos(0) - """ - - def __init__( - self, - samp_rate, - harmonic_num=0, - sine_amp=0.1, - noise_std=0.003, - voiced_threshold=0, - flag_for_pulse=False, - ): - super(SineGen, self).__init__() - self.sine_amp = sine_amp - self.noise_std = noise_std - self.harmonic_num = harmonic_num - self.dim = self.harmonic_num + 1 - self.sampling_rate = samp_rate - self.voiced_threshold = voiced_threshold - - def _f02uv(self, f0): - # generate uv signal - uv = torch.ones_like(f0) - uv = uv * (f0 > self.voiced_threshold) - return uv.float() - - def forward(self, f0, upp): - """sine_tensor, uv = forward(f0) - input F0: tensor(batchsize=1, length, dim=1) - f0 for unvoiced steps should be 0 - output sine_tensor: tensor(batchsize=1, length, dim) - output uv: tensor(batchsize=1, length, 1) - """ - with torch.no_grad(): - f0 = f0[:, None].transpose(1, 2) - f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device) - # fundamental component - f0_buf[:, :, 0] = f0[:, :, 0] - for idx in np.arange(self.harmonic_num): - f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * ( - idx + 2 - ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic - rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化 - rand_ini = torch.rand( - f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device - ) - rand_ini[:, 0] = 0 - rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini - tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化 - tmp_over_one *= upp - tmp_over_one = F.interpolate( - tmp_over_one.transpose(2, 1), - scale_factor=upp, - mode="linear", - align_corners=True, - ).transpose(2, 1) - rad_values = F.interpolate( - rad_values.transpose(2, 1), scale_factor=upp, mode="nearest" - ).transpose( - 2, 1 - ) ####### - tmp_over_one %= 1 - tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0 - cumsum_shift = torch.zeros_like(rad_values) - cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0 - sine_waves = torch.sin( - torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi - ) - sine_waves = sine_waves * self.sine_amp - uv = self._f02uv(f0) - uv = F.interpolate( - uv.transpose(2, 1), scale_factor=upp, mode="nearest" - ).transpose(2, 1) - noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 - noise = noise_amp * torch.randn_like(sine_waves) - sine_waves = sine_waves * uv + noise - return sine_waves, uv, noise - - -class SourceModuleHnNSF(torch.nn.Module): - """SourceModule for hn-nsf - SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, - add_noise_std=0.003, voiced_threshod=0) - sampling_rate: sampling_rate in Hz - harmonic_num: number of harmonic above F0 (default: 0) - sine_amp: amplitude of sine source signal (default: 0.1) - add_noise_std: std of additive Gaussian noise (default: 0.003) - note that amplitude of noise in unvoiced is decided - by sine_amp - voiced_threshold: threhold to set U/V given F0 (default: 0) - Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) - F0_sampled (batchsize, length, 1) - Sine_source (batchsize, length, 1) - noise_source (batchsize, length 1) - uv (batchsize, length, 1) - """ - - def __init__( - self, - sampling_rate, - harmonic_num=0, - sine_amp=0.1, - add_noise_std=0.003, - voiced_threshod=0, - is_half=True, - ): - super(SourceModuleHnNSF, self).__init__() - - self.sine_amp = sine_amp - self.noise_std = add_noise_std - self.is_half = is_half - # to produce sine waveforms - self.l_sin_gen = SineGen( - sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod - ) - - # to merge source harmonics into a single excitation - self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) - self.l_tanh = torch.nn.Tanh() - - def forward(self, x, upp=None): - sine_wavs, uv, _ = self.l_sin_gen(x, upp) - if self.is_half: - sine_wavs = sine_wavs.half() - sine_merge = self.l_tanh(self.l_linear(sine_wavs)) - return sine_merge, None, None # noise, uv - - -class GeneratorNSF(torch.nn.Module): - def __init__( - self, - initial_channel, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels, - sr, - is_half=False, - ): - super(GeneratorNSF, self).__init__() - self.num_kernels = len(resblock_kernel_sizes) - self.num_upsamples = len(upsample_rates) - - self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates)) - self.m_source = SourceModuleHnNSF( - sampling_rate=sr, harmonic_num=0, is_half=is_half - ) - self.noise_convs = nn.ModuleList() - self.conv_pre = Conv1d( - initial_channel, upsample_initial_channel, 7, 1, padding=3 - ) - resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 - - self.ups = nn.ModuleList() - for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): - c_cur = upsample_initial_channel // (2 ** (i + 1)) - self.ups.append( - weight_norm( - ConvTranspose1d( - upsample_initial_channel // (2**i), - upsample_initial_channel // (2 ** (i + 1)), - k, - u, - padding=(k - u) // 2, - ) - ) - ) - if i + 1 < len(upsample_rates): - stride_f0 = np.prod(upsample_rates[i + 1 :]) - self.noise_convs.append( - Conv1d( - 1, - c_cur, - kernel_size=stride_f0 * 2, - stride=stride_f0, - padding=stride_f0 // 2, - ) - ) - else: - self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1)) - - self.resblocks = nn.ModuleList() - for i in range(len(self.ups)): - ch = upsample_initial_channel // (2 ** (i + 1)) - for j, (k, d) in enumerate( - zip(resblock_kernel_sizes, resblock_dilation_sizes) - ): - self.resblocks.append(resblock(ch, k, d)) - - self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) - self.ups.apply(init_weights) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) - - self.upp = np.prod(upsample_rates) - - def forward(self, x, f0, g=None): - har_source, noi_source, uv = self.m_source(f0, self.upp) - har_source = har_source.transpose(1, 2) - x = self.conv_pre(x) - if g is not None: - x = x + self.cond(g) - - for i in range(self.num_upsamples): - x = F.leaky_relu(x, modules.LRELU_SLOPE) - x = self.ups[i](x) - x_source = self.noise_convs[i](har_source) - x = x + x_source - xs = None - for j in range(self.num_kernels): - if xs is None: - xs = self.resblocks[i * self.num_kernels + j](x) - else: - xs += self.resblocks[i * self.num_kernels + j](x) - x = xs / self.num_kernels - x = F.leaky_relu(x) - x = self.conv_post(x) - x = torch.tanh(x) - return x - - def remove_weight_norm(self): - for l in self.ups: - remove_weight_norm(l) - for l in self.resblocks: - l.remove_weight_norm() - - -sr2sr = { - "32k": 32000, - "40k": 40000, - "48k": 48000, -} - - -class SynthesizerTrnMs256NSFsid(nn.Module): - def __init__( - self, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - spk_embed_dim, - gin_channels, - sr, - **kwargs - ): - super().__init__() - if type(sr) == type("strr"): - sr = sr2sr[sr] - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.gin_channels = gin_channels - # self.hop_length = hop_length# - self.spk_embed_dim = spk_embed_dim - self.enc_p = TextEncoder256( - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - ) - self.dec = GeneratorNSF( - inter_channels, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=gin_channels, - sr=sr, - is_half=kwargs["is_half"], - ) - self.enc_q = PosteriorEncoder( - spec_channels, - inter_channels, - hidden_channels, - 5, - 1, - 16, - gin_channels=gin_channels, - ) - self.flow = ResidualCouplingBlock( - inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels - ) - self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) - print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) - - def remove_weight_norm(self): - self.dec.remove_weight_norm() - self.flow.remove_weight_norm() - self.enc_q.remove_weight_norm() - - def forward( - self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds - ): # 这里ds是id,[bs,1] - # print(1,pitch.shape)#[bs,t] - g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 - m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) - z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) - z_p = self.flow(z, y_mask, g=g) - z_slice, ids_slice = commons.rand_slice_segments( - z, y_lengths, self.segment_size - ) - # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) - pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) - # print(-2,pitchf.shape,z_slice.shape) - o = self.dec(z_slice, pitchf, g=g) - return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) - - def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None): - g = self.emb_g(sid).unsqueeze(-1) - m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) - z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask - z = self.flow(z_p, x_mask, g=g, reverse=True) - o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) - return o, x_mask, (z, z_p, m_p, logs_p) - - -class SynthesizerTrnMs768NSFsid(nn.Module): - def __init__( - self, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - spk_embed_dim, - gin_channels, - sr, - **kwargs - ): - super().__init__() - if type(sr) == type("strr"): - sr = sr2sr[sr] - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.gin_channels = gin_channels - # self.hop_length = hop_length# - self.spk_embed_dim = spk_embed_dim - self.enc_p = TextEncoder768( - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - ) - self.dec = GeneratorNSF( - inter_channels, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=gin_channels, - sr=sr, - is_half=kwargs["is_half"], - ) - self.enc_q = PosteriorEncoder( - spec_channels, - inter_channels, - hidden_channels, - 5, - 1, - 16, - gin_channels=gin_channels, - ) - self.flow = ResidualCouplingBlock( - inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels - ) - self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) - print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) - - def remove_weight_norm(self): - self.dec.remove_weight_norm() - self.flow.remove_weight_norm() - self.enc_q.remove_weight_norm() - - def forward( - self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds - ): # 这里ds是id,[bs,1] - # print(1,pitch.shape)#[bs,t] - g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 - m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) - z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) - z_p = self.flow(z, y_mask, g=g) - z_slice, ids_slice = commons.rand_slice_segments( - z, y_lengths, self.segment_size - ) - # print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length) - pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size) - # print(-2,pitchf.shape,z_slice.shape) - o = self.dec(z_slice, pitchf, g=g) - return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) - - def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None): - g = self.emb_g(sid).unsqueeze(-1) - m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths) - z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask - z = self.flow(z_p, x_mask, g=g, reverse=True) - o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g) - return o, x_mask, (z, z_p, m_p, logs_p) - - -class SynthesizerTrnMs256NSFsid_nono(nn.Module): - def __init__( - self, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - spk_embed_dim, - gin_channels, - sr=None, - **kwargs - ): - super().__init__() - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.gin_channels = gin_channels - # self.hop_length = hop_length# - self.spk_embed_dim = spk_embed_dim - self.enc_p = TextEncoder256( - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - f0=False, - ) - self.dec = Generator( - inter_channels, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=gin_channels, - ) - self.enc_q = PosteriorEncoder( - spec_channels, - inter_channels, - hidden_channels, - 5, - 1, - 16, - gin_channels=gin_channels, - ) - self.flow = ResidualCouplingBlock( - inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels - ) - self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) - print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) - - def remove_weight_norm(self): - self.dec.remove_weight_norm() - self.flow.remove_weight_norm() - self.enc_q.remove_weight_norm() - - def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1] - g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 - m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) - z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) - z_p = self.flow(z, y_mask, g=g) - z_slice, ids_slice = commons.rand_slice_segments( - z, y_lengths, self.segment_size - ) - o = self.dec(z_slice, g=g) - return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) - - def infer(self, phone, phone_lengths, sid, max_len=None): - g = self.emb_g(sid).unsqueeze(-1) - m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) - z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask - z = self.flow(z_p, x_mask, g=g, reverse=True) - o = self.dec((z * x_mask)[:, :, :max_len], g=g) - return o, x_mask, (z, z_p, m_p, logs_p) - - -class SynthesizerTrnMs768NSFsid_nono(nn.Module): - def __init__( - self, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - spk_embed_dim, - gin_channels, - sr=None, - **kwargs - ): - super().__init__() - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.gin_channels = gin_channels - # self.hop_length = hop_length# - self.spk_embed_dim = spk_embed_dim - self.enc_p = TextEncoder768( - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - f0=False, - ) - self.dec = Generator( - inter_channels, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - gin_channels=gin_channels, - ) - self.enc_q = PosteriorEncoder( - spec_channels, - inter_channels, - hidden_channels, - 5, - 1, - 16, - gin_channels=gin_channels, - ) - self.flow = ResidualCouplingBlock( - inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels - ) - self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels) - print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim) - - def remove_weight_norm(self): - self.dec.remove_weight_norm() - self.flow.remove_weight_norm() - self.enc_q.remove_weight_norm() - - def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1] - g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的 - m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) - z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) - z_p = self.flow(z, y_mask, g=g) - z_slice, ids_slice = commons.rand_slice_segments( - z, y_lengths, self.segment_size - ) - o = self.dec(z_slice, g=g) - return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q) - - def infer(self, phone, phone_lengths, sid, max_len=None): - g = self.emb_g(sid).unsqueeze(-1) - m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths) - z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask - z = self.flow(z_p, x_mask, g=g, reverse=True) - o = self.dec((z * x_mask)[:, :, :max_len], g=g) - return o, x_mask, (z, z_p, m_p, logs_p) - - -class MultiPeriodDiscriminator(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(MultiPeriodDiscriminator, self).__init__() - periods = [2, 3, 5, 7, 11, 17] - # periods = [3, 5, 7, 11, 17, 23, 37] - - discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] - discs = discs + [ - DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods - ] - self.discriminators = nn.ModuleList(discs) - - def forward(self, y, y_hat): - y_d_rs = [] # - y_d_gs = [] - fmap_rs = [] - fmap_gs = [] - for i, d in enumerate(self.discriminators): - y_d_r, fmap_r = d(y) - y_d_g, fmap_g = d(y_hat) - # for j in range(len(fmap_r)): - # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) - y_d_rs.append(y_d_r) - y_d_gs.append(y_d_g) - fmap_rs.append(fmap_r) - fmap_gs.append(fmap_g) - - return y_d_rs, y_d_gs, fmap_rs, fmap_gs - - -class MultiPeriodDiscriminatorV2(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(MultiPeriodDiscriminatorV2, self).__init__() - # periods = [2, 3, 5, 7, 11, 17] - periods = [2, 3, 5, 7, 11, 17, 23, 37] - - discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] - discs = discs + [ - DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods - ] - self.discriminators = nn.ModuleList(discs) - - def forward(self, y, y_hat): - y_d_rs = [] # - y_d_gs = [] - fmap_rs = [] - fmap_gs = [] - for i, d in enumerate(self.discriminators): - y_d_r, fmap_r = d(y) - y_d_g, fmap_g = d(y_hat) - # for j in range(len(fmap_r)): - # print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape) - y_d_rs.append(y_d_r) - y_d_gs.append(y_d_g) - fmap_rs.append(fmap_r) - fmap_gs.append(fmap_g) - - return y_d_rs, y_d_gs, fmap_rs, fmap_gs - - -class DiscriminatorS(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(DiscriminatorS, self).__init__() - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList( - [ - norm_f(Conv1d(1, 16, 15, 1, padding=7)), - norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), - norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), - norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), - norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), - norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), - ] - ) - self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) - - def forward(self, x): - fmap = [] - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap - - -class DiscriminatorP(torch.nn.Module): - def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): - super(DiscriminatorP, self).__init__() - self.period = period - self.use_spectral_norm = use_spectral_norm - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList( - [ - norm_f( - Conv2d( - 1, - 32, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 32, - 128, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 128, - 512, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 512, - 1024, - (kernel_size, 1), - (stride, 1), - padding=(get_padding(kernel_size, 1), 0), - ) - ), - norm_f( - Conv2d( - 1024, - 1024, - (kernel_size, 1), - 1, - padding=(get_padding(kernel_size, 1), 0), - ) - ), - ] - ) - self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) - - def forward(self, x): - fmap = [] - - # 1d to 2d - b, c, t = x.shape - if t % self.period != 0: # pad first - n_pad = self.period - (t % self.period) - x = F.pad(x, (0, n_pad), "reflect") - t = t + n_pad - x = x.view(b, c, t // self.period, self.period) - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap diff --git a/spaces/Yntec/photoMovieX/README.md b/spaces/Yntec/photoMovieX/README.md deleted file mode 100644 index 51ffccb2bcc8bd6796d8c252c698691c6ca843ad..0000000000000000000000000000000000000000 --- a/spaces/Yntec/photoMovieX/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: PhotoMovieX6 Diffusion 36K -emoji: 🎎 -colorFrom: red -colorTo: yellow -sdk: gradio -sdk_version: 3.16.1 -app_file: app.py -pinned: false -duplicated_from: Yntec/DreamAnything ---- \ No newline at end of file diff --git a/spaces/Yudha515/Rvc-Models/audiocraft/models/musicgen.py b/spaces/Yudha515/Rvc-Models/audiocraft/models/musicgen.py deleted file mode 100644 index 007dd9e0ed1cfd359fb4889e7f4108248e189941..0000000000000000000000000000000000000000 --- a/spaces/Yudha515/Rvc-Models/audiocraft/models/musicgen.py +++ /dev/null @@ -1,362 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -""" -Main model for using MusicGen. This will combine all the required components -and provide easy access to the generation API. -""" - -import os -import typing as tp - -import torch - -from .encodec import CompressionModel -from .lm import LMModel -from .builders import get_debug_compression_model, get_debug_lm_model -from .loaders import load_compression_model, load_lm_model, HF_MODEL_CHECKPOINTS_MAP -from ..data.audio_utils import convert_audio -from ..modules.conditioners import ConditioningAttributes, WavCondition -from ..utils.autocast import TorchAutocast - - -MelodyList = tp.List[tp.Optional[torch.Tensor]] -MelodyType = tp.Union[torch.Tensor, MelodyList] - - -class MusicGen: - """MusicGen main model with convenient generation API. - - Args: - name (str): name of the model. - compression_model (CompressionModel): Compression model - used to map audio to invertible discrete representations. - lm (LMModel): Language model over discrete representations. - """ - def __init__(self, name: str, compression_model: CompressionModel, lm: LMModel, - max_duration: float = 30): - self.name = name - self.compression_model = compression_model - self.lm = lm - self.max_duration = max_duration - self.device = next(iter(lm.parameters())).device - self.generation_params: dict = {} - self.set_generation_params(duration=15) # 15 seconds by default - self._progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None - if self.device.type == 'cpu': - self.autocast = TorchAutocast(enabled=False) - else: - self.autocast = TorchAutocast( - enabled=True, device_type=self.device.type, dtype=torch.float16) - - @property - def frame_rate(self) -> int: - """Roughly the number of AR steps per seconds.""" - return self.compression_model.frame_rate - - @property - def sample_rate(self) -> int: - """Sample rate of the generated audio.""" - return self.compression_model.sample_rate - - @property - def audio_channels(self) -> int: - """Audio channels of the generated audio.""" - return self.compression_model.channels - - @staticmethod - def get_pretrained(name: str = 'melody', device=None): - """Return pretrained model, we provide four models: - - small (300M), text to music, # see: https://huggingface.co/facebook/musicgen-small - - medium (1.5B), text to music, # see: https://huggingface.co/facebook/musicgen-medium - - melody (1.5B) text to music and text+melody to music, # see: https://huggingface.co/facebook/musicgen-melody - - large (3.3B), text to music, # see: https://huggingface.co/facebook/musicgen-large - """ - - if device is None: - if torch.cuda.device_count(): - device = 'cuda' - else: - device = 'cpu' - - if name == 'debug': - # used only for unit tests - compression_model = get_debug_compression_model(device) - lm = get_debug_lm_model(device) - return MusicGen(name, compression_model, lm) - - if name not in HF_MODEL_CHECKPOINTS_MAP: - if not os.path.isfile(name) and not os.path.isdir(name): - raise ValueError( - f"{name} is not a valid checkpoint name. " - f"Choose one of {', '.join(HF_MODEL_CHECKPOINTS_MAP.keys())}" - ) - - cache_dir = os.environ.get('MUSICGEN_ROOT', None) - compression_model = load_compression_model(name, device=device, cache_dir=cache_dir) - lm = load_lm_model(name, device=device, cache_dir=cache_dir) - if name == 'melody': - lm.condition_provider.conditioners['self_wav'].match_len_on_eval = True - - return MusicGen(name, compression_model, lm) - - def set_generation_params(self, use_sampling: bool = True, top_k: int = 250, - top_p: float = 0.0, temperature: float = 1.0, - duration: float = 30.0, cfg_coef: float = 3.0, - two_step_cfg: bool = False, extend_stride: float = 18): - """Set the generation parameters for MusicGen. - - Args: - use_sampling (bool, optional): Use sampling if True, else do argmax decoding. Defaults to True. - top_k (int, optional): top_k used for sampling. Defaults to 250. - top_p (float, optional): top_p used for sampling, when set to 0 top_k is used. Defaults to 0.0. - temperature (float, optional): Softmax temperature parameter. Defaults to 1.0. - duration (float, optional): Duration of the generated waveform. Defaults to 30.0. - cfg_coef (float, optional): Coefficient used for classifier free guidance. Defaults to 3.0. - two_step_cfg (bool, optional): If True, performs 2 forward for Classifier Free Guidance, - instead of batching together the two. This has some impact on how things - are padded but seems to have little impact in practice. - extend_stride: when doing extended generation (i.e. more than 30 seconds), by how much - should we extend the audio each time. Larger values will mean less context is - preserved, and shorter value will require extra computations. - """ - assert extend_stride < self.max_duration, "Cannot stride by more than max generation duration." - self.extend_stride = extend_stride - self.duration = duration - self.generation_params = { - 'use_sampling': use_sampling, - 'temp': temperature, - 'top_k': top_k, - 'top_p': top_p, - 'cfg_coef': cfg_coef, - 'two_step_cfg': two_step_cfg, - } - - def set_custom_progress_callback(self, progress_callback: tp.Optional[tp.Callable[[int, int], None]] = None): - """Override the default progress callback.""" - self._progress_callback = progress_callback - - def generate_unconditional(self, num_samples: int, progress: bool = False) -> torch.Tensor: - """Generate samples in an unconditional manner. - - Args: - num_samples (int): Number of samples to be generated. - progress (bool, optional): Flag to display progress of the generation process. Defaults to False. - """ - descriptions: tp.List[tp.Optional[str]] = [None] * num_samples - attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, None) - return self._generate_tokens(attributes, prompt_tokens, progress) - - def generate(self, descriptions: tp.List[str], progress: bool = False) -> torch.Tensor: - """Generate samples conditioned on text. - - Args: - descriptions (tp.List[str]): A list of strings used as text conditioning. - progress (bool, optional): Flag to display progress of the generation process. Defaults to False. - """ - attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, None) - assert prompt_tokens is None - return self._generate_tokens(attributes, prompt_tokens, progress) - - def generate_with_chroma(self, descriptions: tp.List[str], melody_wavs: MelodyType, - melody_sample_rate: int, progress: bool = False) -> torch.Tensor: - """Generate samples conditioned on text and melody. - - Args: - descriptions (tp.List[str]): A list of strings used as text conditioning. - melody_wavs: (torch.Tensor or list of Tensor): A batch of waveforms used as - melody conditioning. Should have shape [B, C, T] with B matching the description length, - C=1 or 2. It can be [C, T] if there is a single description. It can also be - a list of [C, T] tensors. - melody_sample_rate: (int): Sample rate of the melody waveforms. - progress (bool, optional): Flag to display progress of the generation process. Defaults to False. - """ - if isinstance(melody_wavs, torch.Tensor): - if melody_wavs.dim() == 2: - melody_wavs = melody_wavs[None] - if melody_wavs.dim() != 3: - raise ValueError("Melody wavs should have a shape [B, C, T].") - melody_wavs = list(melody_wavs) - else: - for melody in melody_wavs: - if melody is not None: - assert melody.dim() == 2, "One melody in the list has the wrong number of dims." - - melody_wavs = [ - convert_audio(wav, melody_sample_rate, self.sample_rate, self.audio_channels) - if wav is not None else None - for wav in melody_wavs] - attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions=descriptions, prompt=None, - melody_wavs=melody_wavs) - assert prompt_tokens is None - return self._generate_tokens(attributes, prompt_tokens, progress) - - def generate_continuation(self, prompt: torch.Tensor, prompt_sample_rate: int, - descriptions: tp.Optional[tp.List[tp.Optional[str]]] = None, - progress: bool = False) -> torch.Tensor: - """Generate samples conditioned on audio prompts. - - Args: - prompt (torch.Tensor): A batch of waveforms used for continuation. - Prompt should be [B, C, T], or [C, T] if only one sample is generated. - prompt_sample_rate (int): Sampling rate of the given audio waveforms. - descriptions (tp.List[str], optional): A list of strings used as text conditioning. Defaults to None. - progress (bool, optional): Flag to display progress of the generation process. Defaults to False. - """ - if prompt.dim() == 2: - prompt = prompt[None] - if prompt.dim() != 3: - raise ValueError("prompt should have 3 dimensions: [B, C, T] (C = 1).") - prompt = convert_audio(prompt, prompt_sample_rate, self.sample_rate, self.audio_channels) - if descriptions is None: - descriptions = [None] * len(prompt) - attributes, prompt_tokens = self._prepare_tokens_and_attributes(descriptions, prompt) - assert prompt_tokens is not None - return self._generate_tokens(attributes, prompt_tokens, progress) - - @torch.no_grad() - def _prepare_tokens_and_attributes( - self, - descriptions: tp.Sequence[tp.Optional[str]], - prompt: tp.Optional[torch.Tensor], - melody_wavs: tp.Optional[MelodyList] = None, - ) -> tp.Tuple[tp.List[ConditioningAttributes], tp.Optional[torch.Tensor]]: - """Prepare model inputs. - - Args: - descriptions (tp.List[str]): A list of strings used as text conditioning. - prompt (torch.Tensor): A batch of waveforms used for continuation. - melody_wavs (tp.Optional[torch.Tensor], optional): A batch of waveforms - used as melody conditioning. Defaults to None. - """ - attributes = [ - ConditioningAttributes(text={'description': description}) - for description in descriptions] - - if melody_wavs is None: - for attr in attributes: - attr.wav['self_wav'] = WavCondition( - torch.zeros((1, 1), device=self.device), - torch.tensor([0], device=self.device), - path='null_wav') # type: ignore - else: - if self.name != "melody": - raise RuntimeError("This model doesn't support melody conditioning. " - "Use the `melody` model.") - assert len(melody_wavs) == len(descriptions), \ - f"number of melody wavs must match number of descriptions! " \ - f"got melody len={len(melody_wavs)}, and descriptions len={len(descriptions)}" - for attr, melody in zip(attributes, melody_wavs): - if melody is None: - attr.wav['self_wav'] = WavCondition( - torch.zeros((1, 1), device=self.device), - torch.tensor([0], device=self.device), - path='null_wav') # type: ignore - else: - attr.wav['self_wav'] = WavCondition( - melody.to(device=self.device), - torch.tensor([melody.shape[-1]], device=self.device)) - - if prompt is not None: - if descriptions is not None: - assert len(descriptions) == len(prompt), "Prompt and nb. descriptions doesn't match" - prompt = prompt.to(self.device) - prompt_tokens, scale = self.compression_model.encode(prompt) - assert scale is None - else: - prompt_tokens = None - return attributes, prompt_tokens - - def _generate_tokens(self, attributes: tp.List[ConditioningAttributes], - prompt_tokens: tp.Optional[torch.Tensor], progress: bool = False) -> torch.Tensor: - """Generate discrete audio tokens given audio prompt and/or conditions. - - Args: - attributes (tp.List[ConditioningAttributes]): Conditions used for generation (text/melody). - prompt_tokens (tp.Optional[torch.Tensor]): Audio prompt used for continuation. - progress (bool, optional): Flag to display progress of the generation process. Defaults to False. - Returns: - torch.Tensor: Generated audio, of shape [B, C, T], T is defined by the generation params. - """ - total_gen_len = int(self.duration * self.frame_rate) - max_prompt_len = int(min(self.duration, self.max_duration) * self.frame_rate) - current_gen_offset: int = 0 - - def _progress_callback(generated_tokens: int, tokens_to_generate: int): - generated_tokens += current_gen_offset - if self._progress_callback is not None: - # Note that total_gen_len might be quite wrong depending on the - # codebook pattern used, but with delay it is almost accurate. - self._progress_callback(generated_tokens, total_gen_len) - else: - print(f'{generated_tokens: 6d} / {total_gen_len: 6d}', end='\r') - - if prompt_tokens is not None: - assert max_prompt_len >= prompt_tokens.shape[-1], \ - "Prompt is longer than audio to generate" - - callback = None - if progress: - callback = _progress_callback - - if self.duration <= self.max_duration: - # generate by sampling from LM, simple case. - with self.autocast: - gen_tokens = self.lm.generate( - prompt_tokens, attributes, - callback=callback, max_gen_len=total_gen_len, **self.generation_params) - - else: - # now this gets a bit messier, we need to handle prompts, - # melody conditioning etc. - ref_wavs = [attr.wav['self_wav'] for attr in attributes] - all_tokens = [] - if prompt_tokens is None: - prompt_length = 0 - else: - all_tokens.append(prompt_tokens) - prompt_length = prompt_tokens.shape[-1] - - stride_tokens = int(self.frame_rate * self.extend_stride) - - while current_gen_offset + prompt_length < total_gen_len: - time_offset = current_gen_offset / self.frame_rate - chunk_duration = min(self.duration - time_offset, self.max_duration) - max_gen_len = int(chunk_duration * self.frame_rate) - for attr, ref_wav in zip(attributes, ref_wavs): - wav_length = ref_wav.length.item() - if wav_length == 0: - continue - # We will extend the wav periodically if it not long enough. - # we have to do it here rather than in conditioners.py as otherwise - # we wouldn't have the full wav. - initial_position = int(time_offset * self.sample_rate) - wav_target_length = int(self.max_duration * self.sample_rate) - print(initial_position / self.sample_rate, wav_target_length / self.sample_rate) - positions = torch.arange(initial_position, - initial_position + wav_target_length, device=self.device) - attr.wav['self_wav'] = WavCondition( - ref_wav[0][:, positions % wav_length], - torch.full_like(ref_wav[1], wav_target_length)) - with self.autocast: - gen_tokens = self.lm.generate( - prompt_tokens, attributes, - callback=callback, max_gen_len=max_gen_len, **self.generation_params) - if prompt_tokens is None: - all_tokens.append(gen_tokens) - else: - all_tokens.append(gen_tokens[:, :, prompt_tokens.shape[-1]:]) - prompt_tokens = gen_tokens[:, :, stride_tokens:] - prompt_length = prompt_tokens.shape[-1] - current_gen_offset += stride_tokens - - gen_tokens = torch.cat(all_tokens, dim=-1) - - # generate audio - assert gen_tokens.dim() == 3 - with torch.no_grad(): - gen_audio = self.compression_model.decode(gen_tokens, None) - return gen_audio diff --git a/spaces/Yuliang/ECON/lib/common/local_affine.py b/spaces/Yuliang/ECON/lib/common/local_affine.py deleted file mode 100644 index ca23bd61e7c90de4a8ac19a4554c46417c5be87d..0000000000000000000000000000000000000000 --- a/spaces/Yuliang/ECON/lib/common/local_affine.py +++ /dev/null @@ -1,149 +0,0 @@ -# Copyright 2021 by Haozhe Wu, Tsinghua University, Department of Computer Science and Technology. -# All rights reserved. -# This file is part of the pytorch-nicp, -# and is released under the "MIT License Agreement". Please see the LICENSE -# file that should have been included as part of this package. - -import torch -import torch.nn as nn -import trimesh -from pytorch3d.loss import chamfer_distance -from pytorch3d.structures import Meshes -from tqdm import tqdm - -from lib.common.train_util import init_loss -from lib.dataset.mesh_util import update_mesh_shape_prior_losses - - -# reference: https://github.com/wuhaozhe/pytorch-nicp -class LocalAffine(nn.Module): - def __init__(self, num_points, batch_size=1, edges=None): - ''' - specify the number of points, the number of points should be constant across the batch - and the edges torch.Longtensor() with shape N * 2 - the local affine operator supports batch operation - batch size must be constant - add additional pooling on top of w matrix - ''' - super(LocalAffine, self).__init__() - self.A = nn.Parameter( - torch.eye(3).unsqueeze(0).unsqueeze(0).repeat(batch_size, num_points, 1, 1) - ) - self.b = nn.Parameter( - torch.zeros(3).unsqueeze(0).unsqueeze(0).unsqueeze(3).repeat( - batch_size, num_points, 1, 1 - ) - ) - self.edges = edges - self.num_points = num_points - - def stiffness(self): - ''' - calculate the stiffness of local affine transformation - f norm get infinity gradient when w is zero matrix, - ''' - if self.edges is None: - raise Exception("edges cannot be none when calculate stiff") - affine_weight = torch.cat((self.A, self.b), dim=3) - w1 = torch.index_select(affine_weight, dim=1, index=self.edges[:, 0]) - w2 = torch.index_select(affine_weight, dim=1, index=self.edges[:, 1]) - w_diff = (w1 - w2)**2 - w_rigid = (torch.linalg.det(self.A) - 1.0)**2 - return w_diff, w_rigid - - def forward(self, x): - ''' - x should have shape of B * N * 3 * 1 - ''' - x = x.unsqueeze(3) - out_x = torch.matmul(self.A, x) - out_x = out_x + self.b - out_x.squeeze_(3) - stiffness, rigid = self.stiffness() - - return out_x, stiffness, rigid - - -def trimesh2meshes(mesh): - ''' - convert trimesh mesh to pytorch3d mesh - ''' - verts = torch.from_numpy(mesh.vertices).float() - faces = torch.from_numpy(mesh.faces).long() - mesh = Meshes(verts.unsqueeze(0), faces.unsqueeze(0)) - return mesh - - -def register(target_mesh, src_mesh, device, verbose=True): - - # define local_affine deform verts - tgt_mesh = trimesh2meshes(target_mesh).to(device) - src_verts = src_mesh.verts_padded().clone() - - local_affine_model = LocalAffine( - src_mesh.verts_padded().shape[1], - src_mesh.verts_padded().shape[0], src_mesh.edges_packed() - ).to(device) - - optimizer_cloth = torch.optim.Adam([{'params': local_affine_model.parameters()}], - lr=1e-2, - amsgrad=True) - scheduler_cloth = torch.optim.lr_scheduler.ReduceLROnPlateau( - optimizer_cloth, - mode="min", - factor=0.1, - verbose=0, - min_lr=1e-5, - patience=5, - ) - - losses = init_loss() - - if verbose: - loop_cloth = tqdm(range(100)) - else: - loop_cloth = range(100) - - for i in loop_cloth: - - optimizer_cloth.zero_grad() - - deformed_verts, stiffness, rigid = local_affine_model(x=src_verts) - src_mesh = src_mesh.update_padded(deformed_verts) - - # losses for laplacian, edge, normal consistency - update_mesh_shape_prior_losses(src_mesh, losses) - - losses["cloth"]["value"] = chamfer_distance( - x=src_mesh.verts_padded(), y=tgt_mesh.verts_padded() - )[0] - losses["stiff"]["value"] = torch.mean(stiffness) - losses["rigid"]["value"] = torch.mean(rigid) - - # Weighted sum of the losses - cloth_loss = torch.tensor(0.0, requires_grad=True).to(device) - pbar_desc = "Register SMPL-X -> d-BiNI -- " - - for k in losses.keys(): - if losses[k]["weight"] > 0.0 and losses[k]["value"] != 0.0: - cloth_loss = cloth_loss + \ - losses[k]["value"] * losses[k]["weight"] - pbar_desc += f"{k}:{losses[k]['value']* losses[k]['weight']:.3f} | " - - if verbose: - pbar_desc += f"TOTAL: {cloth_loss:.3f}" - loop_cloth.set_description(pbar_desc) - - # update params - cloth_loss.backward(retain_graph=True) - optimizer_cloth.step() - scheduler_cloth.step(cloth_loss) - - final = trimesh.Trimesh( - src_mesh.verts_packed().detach().squeeze(0).cpu(), - src_mesh.faces_packed().detach().squeeze(0).cpu(), - process=False, - maintains_order=True - ) - - return final diff --git a/spaces/Yuliang/ICON/lib/dataset/mesh_util.py b/spaces/Yuliang/ICON/lib/dataset/mesh_util.py deleted file mode 100644 index 31e78f3a286469d054ebecd697f31307e1eb841f..0000000000000000000000000000000000000000 --- a/spaces/Yuliang/ICON/lib/dataset/mesh_util.py +++ /dev/null @@ -1,911 +0,0 @@ - -# -*- coding: utf-8 -*- - -# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is -# holder of all proprietary rights on this computer program. -# You can only use this computer program if you have closed -# a license agreement with MPG or you get the right to use the computer -# program from someone who is authorized to grant you that right. -# Any use of the computer program without a valid license is prohibited and -# liable to prosecution. -# -# Copyright©2019 Max-Planck-Gesellschaft zur Förderung -# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute -# for Intelligent Systems. All rights reserved. -# -# Contact: ps-license@tuebingen.mpg.de - -import numpy as np -import cv2 -import pymeshlab -import torch -import torchvision -import trimesh -from pytorch3d.io import load_obj -from termcolor import colored -from scipy.spatial import cKDTree - -from pytorch3d.structures import Meshes -import torch.nn.functional as F - -import os -from lib.pymaf.utils.imutils import uncrop -from lib.common.render_utils import Pytorch3dRasterizer, face_vertices - -from pytorch3d.renderer.mesh import rasterize_meshes -from PIL import Image, ImageFont, ImageDraw -from kaolin.ops.mesh import check_sign -from kaolin.metrics.trianglemesh import point_to_mesh_distance - -from pytorch3d.loss import ( - mesh_laplacian_smoothing, - mesh_normal_consistency -) - -from huggingface_hub import hf_hub_download, hf_hub_url, cached_download - -def rot6d_to_rotmat(x): - """Convert 6D rotation representation to 3x3 rotation matrix. - Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 - Input: - (B,6) Batch of 6-D rotation representations - Output: - (B,3,3) Batch of corresponding rotation matrices - """ - x = x.view(-1, 3, 2) - a1 = x[:, :, 0] - a2 = x[:, :, 1] - b1 = F.normalize(a1) - b2 = F.normalize(a2 - torch.einsum("bi,bi->b", b1, a2).unsqueeze(-1) * b1) - b3 = torch.cross(b1, b2) - return torch.stack((b1, b2, b3), dim=-1) - - -def tensor2variable(tensor, device): - # [1,23,3,3] - return torch.tensor(tensor, device=device, requires_grad=True) - - -def normal_loss(vec1, vec2): - - # vec1_mask = vec1.sum(dim=1) != 0.0 - # vec2_mask = vec2.sum(dim=1) != 0.0 - # union_mask = vec1_mask * vec2_mask - vec_sim = torch.nn.CosineSimilarity(dim=1, eps=1e-6)(vec1, vec2) - # vec_diff = ((vec_sim-1.0)**2)[union_mask].mean() - vec_diff = ((vec_sim-1.0)**2).mean() - - return vec_diff - - -class GMoF(torch.nn.Module): - def __init__(self, rho=1): - super(GMoF, self).__init__() - self.rho = rho - - def extra_repr(self): - return 'rho = {}'.format(self.rho) - - def forward(self, residual): - dist = torch.div(residual, residual + self.rho ** 2) - return self.rho ** 2 * dist - - -def mesh_edge_loss(meshes, target_length: float = 0.0): - """ - Computes mesh edge length regularization loss averaged across all meshes - in a batch. Each mesh contributes equally to the final loss, regardless of - the number of edges per mesh in the batch by weighting each mesh with the - inverse number of edges. For example, if mesh 3 (out of N) has only E=4 - edges, then the loss for each edge in mesh 3 should be multiplied by 1/E to - contribute to the final loss. - - Args: - meshes: Meshes object with a batch of meshes. - target_length: Resting value for the edge length. - - Returns: - loss: Average loss across the batch. Returns 0 if meshes contains - no meshes or all empty meshes. - """ - if meshes.isempty(): - return torch.tensor( - [0.0], dtype=torch.float32, device=meshes.device, requires_grad=True - ) - - N = len(meshes) - edges_packed = meshes.edges_packed() # (sum(E_n), 3) - verts_packed = meshes.verts_packed() # (sum(V_n), 3) - edge_to_mesh_idx = meshes.edges_packed_to_mesh_idx() # (sum(E_n), ) - num_edges_per_mesh = meshes.num_edges_per_mesh() # N - - # Determine the weight for each edge based on the number of edges in the - # mesh it corresponds to. - # TODO (nikhilar) Find a faster way of computing the weights for each edge - # as this is currently a bottleneck for meshes with a large number of faces. - weights = num_edges_per_mesh.gather(0, edge_to_mesh_idx) - weights = 1.0 / weights.float() - - verts_edges = verts_packed[edges_packed] - v0, v1 = verts_edges.unbind(1) - loss = ((v0 - v1).norm(dim=1, p=2) - target_length) ** 2.0 - loss_vertex = loss * weights - # loss_outlier = torch.topk(loss, 100)[0].mean() - # loss_all = (loss_vertex.sum() + loss_outlier.mean()) / N - loss_all = loss_vertex.sum() / N - - return loss_all - - -def remesh(obj_path, perc, device): - - ms = pymeshlab.MeshSet() - ms.load_new_mesh(obj_path) - ms.laplacian_smooth() - ms.remeshing_isotropic_explicit_remeshing( - targetlen=pymeshlab.Percentage(perc), adaptive=True) - ms.save_current_mesh(obj_path.replace("recon", "remesh")) - polished_mesh = trimesh.load_mesh(obj_path.replace("recon", "remesh")) - verts_pr = torch.tensor(polished_mesh.vertices).float().unsqueeze(0).to(device) - faces_pr = torch.tensor(polished_mesh.faces).long().unsqueeze(0).to(device) - - return verts_pr, faces_pr - - -def possion(mesh, obj_path): - - mesh.export(obj_path) - ms = pymeshlab.MeshSet() - ms.load_new_mesh(obj_path) - ms.surface_reconstruction_screened_poisson(depth=10) - ms.set_current_mesh(1) - ms.save_current_mesh(obj_path) - - return trimesh.load(obj_path) - - -def get_mask(tensor, dim): - - mask = torch.abs(tensor).sum(dim=dim, keepdims=True) > 0.0 - mask = mask.type_as(tensor) - - return mask - - -def blend_rgb_norm(rgb, norm, mask): - - # [0,0,0] or [127,127,127] should be marked as mask - final = rgb * (1-mask) + norm * (mask) - - return final.astype(np.uint8) - - -def unwrap(image, data): - - img_uncrop = uncrop(np.array(Image.fromarray(image).resize(data['uncrop_param']['box_shape'][:2])), - data['uncrop_param']['center'], - data['uncrop_param']['scale'], - data['uncrop_param']['crop_shape']) - - img_orig = cv2.warpAffine(img_uncrop, - np.linalg.inv(data['uncrop_param']['M'])[:2, :], - data['uncrop_param']['ori_shape'][::-1][1:], - flags=cv2.INTER_CUBIC) - - return img_orig - - -# Losses to smooth / regularize the mesh shape -def update_mesh_shape_prior_losses(mesh, losses): - - # and (b) the edge length of the predicted mesh - losses["edge"]['value'] = mesh_edge_loss(mesh) - # mesh normal consistency - losses["nc"]['value'] = mesh_normal_consistency(mesh) - # mesh laplacian smoothing - losses["laplacian"]['value'] = mesh_laplacian_smoothing( - mesh, method="uniform") - - -def rename(old_dict, old_name, new_name): - new_dict = {} - for key, value in zip(old_dict.keys(), old_dict.values()): - new_key = key if key != old_name else new_name - new_dict[new_key] = old_dict[key] - return new_dict - - -def load_checkpoint(model, cfg): - - model_dict = model.state_dict() - main_dict = {} - normal_dict = {} - - device = torch.device(f"cuda:{cfg['test_gpus'][0]}") - - main_dict = torch.load(cached_download(cfg.resume_path, use_auth_token=os.environ['ICON']), - map_location=device)['state_dict'] - - main_dict = { - k: v - for k, v in main_dict.items() - if k in model_dict and v.shape == model_dict[k].shape and ( - 'reconEngine' not in k) and ("normal_filter" not in k) and ( - 'voxelization' not in k) - } - print(colored(f"Resume MLP weights from {cfg.resume_path}", 'green')) - - normal_dict = torch.load(cached_download(cfg.normal_path, use_auth_token=os.environ['ICON']), - map_location=device)['state_dict'] - - for key in normal_dict.keys(): - normal_dict = rename(normal_dict, key, - key.replace("netG", "netG.normal_filter")) - - normal_dict = { - k: v - for k, v in normal_dict.items() - if k in model_dict and v.shape == model_dict[k].shape - } - print(colored(f"Resume normal model from {cfg.normal_path}", 'green')) - - model_dict.update(main_dict) - model_dict.update(normal_dict) - model.load_state_dict(model_dict) - - model.netG = model.netG.to(device) - model.reconEngine = model.reconEngine.to(device) - - model.netG.training = False - model.netG.eval() - - del main_dict - del normal_dict - del model_dict - - return model - - -def read_smpl_constants(folder): - """Load smpl vertex code""" - smpl_vtx_std = np.loadtxt(cached_download(os.path.join(folder, 'vertices.txt'), use_auth_token=os.environ['ICON'])) - min_x = np.min(smpl_vtx_std[:, 0]) - max_x = np.max(smpl_vtx_std[:, 0]) - min_y = np.min(smpl_vtx_std[:, 1]) - max_y = np.max(smpl_vtx_std[:, 1]) - min_z = np.min(smpl_vtx_std[:, 2]) - max_z = np.max(smpl_vtx_std[:, 2]) - - smpl_vtx_std[:, 0] = (smpl_vtx_std[:, 0] - min_x) / (max_x - min_x) - smpl_vtx_std[:, 1] = (smpl_vtx_std[:, 1] - min_y) / (max_y - min_y) - smpl_vtx_std[:, 2] = (smpl_vtx_std[:, 2] - min_z) / (max_z - min_z) - smpl_vertex_code = np.float32(np.copy(smpl_vtx_std)) - """Load smpl faces & tetrahedrons""" - smpl_faces = np.loadtxt(cached_download(os.path.join(folder, 'faces.txt'), use_auth_token=os.environ['ICON']), - dtype=np.int32) - 1 - smpl_face_code = (smpl_vertex_code[smpl_faces[:, 0]] + - smpl_vertex_code[smpl_faces[:, 1]] + - smpl_vertex_code[smpl_faces[:, 2]]) / 3.0 - smpl_tetras = np.loadtxt(cached_download(os.path.join(folder, 'tetrahedrons.txt'), use_auth_token=os.environ['ICON']), - dtype=np.int32) - 1 - - return smpl_vertex_code, smpl_face_code, smpl_faces, smpl_tetras - - -def feat_select(feat, select): - - # feat [B, featx2, N] - # select [B, 1, N] - # return [B, feat, N] - - dim = feat.shape[1] // 2 - idx = torch.tile((1-select), (1, dim, 1))*dim + \ - torch.arange(0, dim).unsqueeze(0).unsqueeze(2).type_as(select) - feat_select = torch.gather(feat, 1, idx.long()) - - return feat_select - - -def get_visibility(xy, z, faces): - """get the visibility of vertices - - Args: - xy (torch.tensor): [N,2] - z (torch.tensor): [N,1] - faces (torch.tensor): [N,3] - size (int): resolution of rendered image - """ - - xyz = torch.cat((xy, -z), dim=1) - xyz = (xyz + 1.0) / 2.0 - faces = faces.long() - - rasterizer = Pytorch3dRasterizer(image_size=2**12) - meshes_screen = Meshes(verts=xyz[None, ...], faces=faces[None, ...]) - raster_settings = rasterizer.raster_settings - - pix_to_face, zbuf, bary_coords, dists = rasterize_meshes( - meshes_screen, - image_size=raster_settings.image_size, - blur_radius=raster_settings.blur_radius, - faces_per_pixel=raster_settings.faces_per_pixel, - bin_size=raster_settings.bin_size, - max_faces_per_bin=raster_settings.max_faces_per_bin, - perspective_correct=raster_settings.perspective_correct, - cull_backfaces=raster_settings.cull_backfaces, - ) - - vis_vertices_id = torch.unique(faces[torch.unique(pix_to_face), :]) - vis_mask = torch.zeros(size=(z.shape[0], 1)) - vis_mask[vis_vertices_id] = 1.0 - - # print("------------------------\n") - # print(f"keep points : {vis_mask.sum()/len(vis_mask)}") - - return vis_mask - - -def barycentric_coordinates_of_projection(points, vertices): - ''' https://github.com/MPI-IS/mesh/blob/master/mesh/geometry/barycentric_coordinates_of_projection.py - ''' - """Given a point, gives projected coords of that point to a triangle - in barycentric coordinates. - See - **Heidrich**, Computing the Barycentric Coordinates of a Projected Point, JGT 05 - at http://www.cs.ubc.ca/~heidrich/Papers/JGT.05.pdf - - :param p: point to project. [B, 3] - :param v0: first vertex of triangles. [B, 3] - :returns: barycentric coordinates of ``p``'s projection in triangle defined by ``q``, ``u``, ``v`` - vectorized so ``p``, ``q``, ``u``, ``v`` can all be ``3xN`` - """ - #(p, q, u, v) - v0, v1, v2 = vertices[:, 0], vertices[:, 1], vertices[:, 2] - p = points - - q = v0 - u = v1 - v0 - v = v2 - v0 - n = torch.cross(u, v) - s = torch.sum(n * n, dim=1) - # If the triangle edges are collinear, cross-product is zero, - # which makes "s" 0, which gives us divide by zero. So we - # make the arbitrary choice to set s to epsv (=numpy.spacing(1)), - # the closest thing to zero - s[s == 0] = 1e-6 - oneOver4ASquared = 1.0 / s - w = p - q - b2 = torch.sum(torch.cross(u, w) * n, dim=1) * oneOver4ASquared - b1 = torch.sum(torch.cross(w, v) * n, dim=1) * oneOver4ASquared - weights = torch.stack((1 - b1 - b2, b1, b2), dim=-1) - # check barycenric weights - # p_n = v0*weights[:,0:1] + v1*weights[:,1:2] + v2*weights[:,2:3] - return weights - - -def cal_sdf_batch(verts, faces, cmaps, vis, points): - - # verts [B, N_vert, 3] - # faces [B, N_face, 3] - # triangles [B, N_face, 3, 3] - # points [B, N_point, 3] - # cmaps [B, N_vert, 3] - - Bsize = points.shape[0] - - normals = Meshes(verts, faces).verts_normals_padded() - - triangles = face_vertices(verts, faces) - normals = face_vertices(normals, faces) - cmaps = face_vertices(cmaps, faces) - vis = face_vertices(vis, faces) - - residues, pts_ind, _ = point_to_mesh_distance(points, triangles) - closest_triangles = torch.gather( - triangles, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3) - closest_normals = torch.gather( - normals, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3) - closest_cmaps = torch.gather( - cmaps, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3) - closest_vis = torch.gather( - vis, 1, pts_ind[:, :, None, None].expand(-1, -1, 3, 1)).view(-1, 3, 1) - bary_weights = barycentric_coordinates_of_projection( - points.view(-1, 3), closest_triangles) - - pts_cmap = (closest_cmaps*bary_weights[:, :, None]).sum(1).unsqueeze(0).clamp_(min=0.0, max=1.0) - pts_vis = (closest_vis*bary_weights[:, - :, None]).sum(1).unsqueeze(0).ge(1e-1) - pts_norm = (closest_normals*bary_weights[:, :, None]).sum( - 1).unsqueeze(0) * torch.tensor([-1.0, 1.0, -1.0]).type_as(normals) - pts_norm = F.normalize(pts_norm, dim=2) - pts_dist = torch.sqrt(residues) / torch.sqrt(torch.tensor(3)) - - pts_signs = 2.0 * (check_sign(verts, faces[0], points).float() - 0.5) - pts_sdf = (pts_dist * pts_signs).unsqueeze(-1) - - return pts_sdf.view(Bsize, -1, 1), pts_norm.view(Bsize, -1, 3), pts_cmap.view(Bsize, -1, 3), pts_vis.view(Bsize, -1, 1) - - -def orthogonal(points, calibrations, transforms=None): - ''' - Compute the orthogonal projections of 3D points into the image plane by given projection matrix - :param points: [B, 3, N] Tensor of 3D points - :param calibrations: [B, 3, 4] Tensor of projection matrix - :param transforms: [B, 2, 3] Tensor of image transform matrix - :return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane - ''' - rot = calibrations[:, :3, :3] - trans = calibrations[:, :3, 3:4] - pts = torch.baddbmm(trans, rot, points) # [B, 3, N] - if transforms is not None: - scale = transforms[:2, :2] - shift = transforms[:2, 2:3] - pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :]) - return pts - - -def projection(points, calib, format='numpy'): - if format == 'tensor': - return torch.mm(calib[:3, :3], points.T).T + calib[:3, 3] - else: - return np.matmul(calib[:3, :3], points.T).T + calib[:3, 3] - - -def load_calib(calib_path): - calib_data = np.loadtxt(calib_path, dtype=float) - extrinsic = calib_data[:4, :4] - intrinsic = calib_data[4:8, :4] - calib_mat = np.matmul(intrinsic, extrinsic) - calib_mat = torch.from_numpy(calib_mat).float() - return calib_mat - - -def load_obj_mesh_for_Hoppe(mesh_file): - vertex_data = [] - face_data = [] - - if isinstance(mesh_file, str): - f = open(mesh_file, "r") - else: - f = mesh_file - for line in f: - if isinstance(line, bytes): - line = line.decode("utf-8") - if line.startswith('#'): - continue - values = line.split() - if not values: - continue - - if values[0] == 'v': - v = list(map(float, values[1:4])) - vertex_data.append(v) - - elif values[0] == 'f': - # quad mesh - if len(values) > 4: - f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) - face_data.append(f) - f = list( - map(lambda x: int(x.split('/')[0]), - [values[3], values[4], values[1]])) - face_data.append(f) - # tri mesh - else: - f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) - face_data.append(f) - - vertices = np.array(vertex_data) - faces = np.array(face_data) - faces[faces > 0] -= 1 - - normals, _ = compute_normal(vertices, faces) - - return vertices, normals, faces - - -def load_obj_mesh_with_color(mesh_file): - vertex_data = [] - color_data = [] - face_data = [] - - if isinstance(mesh_file, str): - f = open(mesh_file, "r") - else: - f = mesh_file - for line in f: - if isinstance(line, bytes): - line = line.decode("utf-8") - if line.startswith('#'): - continue - values = line.split() - if not values: - continue - - if values[0] == 'v': - v = list(map(float, values[1:4])) - vertex_data.append(v) - c = list(map(float, values[4:7])) - color_data.append(c) - - elif values[0] == 'f': - # quad mesh - if len(values) > 4: - f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) - face_data.append(f) - f = list( - map(lambda x: int(x.split('/')[0]), - [values[3], values[4], values[1]])) - face_data.append(f) - # tri mesh - else: - f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) - face_data.append(f) - - vertices = np.array(vertex_data) - colors = np.array(color_data) - faces = np.array(face_data) - faces[faces > 0] -= 1 - - return vertices, colors, faces - - -def load_obj_mesh(mesh_file, with_normal=False, with_texture=False): - vertex_data = [] - norm_data = [] - uv_data = [] - - face_data = [] - face_norm_data = [] - face_uv_data = [] - - if isinstance(mesh_file, str): - f = open(mesh_file, "r") - else: - f = mesh_file - for line in f: - if isinstance(line, bytes): - line = line.decode("utf-8") - if line.startswith('#'): - continue - values = line.split() - if not values: - continue - - if values[0] == 'v': - v = list(map(float, values[1:4])) - vertex_data.append(v) - elif values[0] == 'vn': - vn = list(map(float, values[1:4])) - norm_data.append(vn) - elif values[0] == 'vt': - vt = list(map(float, values[1:3])) - uv_data.append(vt) - - elif values[0] == 'f': - # quad mesh - if len(values) > 4: - f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) - face_data.append(f) - f = list( - map(lambda x: int(x.split('/')[0]), - [values[3], values[4], values[1]])) - face_data.append(f) - # tri mesh - else: - f = list(map(lambda x: int(x.split('/')[0]), values[1:4])) - face_data.append(f) - - # deal with texture - if len(values[1].split('/')) >= 2: - # quad mesh - if len(values) > 4: - f = list(map(lambda x: int(x.split('/')[1]), values[1:4])) - face_uv_data.append(f) - f = list( - map(lambda x: int(x.split('/')[1]), - [values[3], values[4], values[1]])) - face_uv_data.append(f) - # tri mesh - elif len(values[1].split('/')[1]) != 0: - f = list(map(lambda x: int(x.split('/')[1]), values[1:4])) - face_uv_data.append(f) - # deal with normal - if len(values[1].split('/')) == 3: - # quad mesh - if len(values) > 4: - f = list(map(lambda x: int(x.split('/')[2]), values[1:4])) - face_norm_data.append(f) - f = list( - map(lambda x: int(x.split('/')[2]), - [values[3], values[4], values[1]])) - face_norm_data.append(f) - # tri mesh - elif len(values[1].split('/')[2]) != 0: - f = list(map(lambda x: int(x.split('/')[2]), values[1:4])) - face_norm_data.append(f) - - vertices = np.array(vertex_data) - faces = np.array(face_data) - faces[faces > 0] -= 1 - - if with_texture and with_normal: - uvs = np.array(uv_data) - face_uvs = np.array(face_uv_data) - face_uvs[face_uvs > 0] -= 1 - norms = np.array(norm_data) - if norms.shape[0] == 0: - norms, _ = compute_normal(vertices, faces) - face_normals = faces - else: - norms = normalize_v3(norms) - face_normals = np.array(face_norm_data) - face_normals[face_normals > 0] -= 1 - return vertices, faces, norms, face_normals, uvs, face_uvs - - if with_texture: - uvs = np.array(uv_data) - face_uvs = np.array(face_uv_data) - 1 - return vertices, faces, uvs, face_uvs - - if with_normal: - norms = np.array(norm_data) - norms = normalize_v3(norms) - face_normals = np.array(face_norm_data) - 1 - return vertices, faces, norms, face_normals - - return vertices, faces - - -def normalize_v3(arr): - ''' Normalize a numpy array of 3 component vectors shape=(n,3) ''' - lens = np.sqrt(arr[:, 0]**2 + arr[:, 1]**2 + arr[:, 2]**2) - eps = 0.00000001 - lens[lens < eps] = eps - arr[:, 0] /= lens - arr[:, 1] /= lens - arr[:, 2] /= lens - return arr - - -def compute_normal(vertices, faces): - # Create a zeroed array with the same type and shape as our vertices i.e., per vertex normal - vert_norms = np.zeros(vertices.shape, dtype=vertices.dtype) - # Create an indexed view into the vertex array using the array of three indices for triangles - tris = vertices[faces] - # Calculate the normal for all the triangles, by taking the cross product of the vectors v1-v0, and v2-v0 in each triangle - face_norms = np.cross(tris[::, 1] - tris[::, 0], tris[::, 2] - tris[::, 0]) - # n is now an array of normals per triangle. The length of each normal is dependent the vertices, - # we need to normalize these, so that our next step weights each normal equally. - normalize_v3(face_norms) - # now we have a normalized array of normals, one per triangle, i.e., per triangle normals. - # But instead of one per triangle (i.e., flat shading), we add to each vertex in that triangle, - # the triangles' normal. Multiple triangles would then contribute to every vertex, so we need to normalize again afterwards. - # The cool part, we can actually add the normals through an indexed view of our (zeroed) per vertex normal array - vert_norms[faces[:, 0]] += face_norms - vert_norms[faces[:, 1]] += face_norms - vert_norms[faces[:, 2]] += face_norms - normalize_v3(vert_norms) - - return vert_norms, face_norms - - -def save_obj_mesh(mesh_path, verts, faces): - file = open(mesh_path, 'w') - for v in verts: - file.write('v %.4f %.4f %.4f\n' % (v[0], v[1], v[2])) - for f in faces: - f_plus = f + 1 - file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2])) - file.close() - - -def save_obj_mesh_with_color(mesh_path, verts, faces, colors): - file = open(mesh_path, 'w') - - for idx, v in enumerate(verts): - c = colors[idx] - file.write('v %.4f %.4f %.4f %.4f %.4f %.4f\n' % - (v[0], v[1], v[2], c[0], c[1], c[2])) - for f in faces: - f_plus = f + 1 - file.write('f %d %d %d\n' % (f_plus[0], f_plus[1], f_plus[2])) - file.close() - - -def calculate_mIoU(outputs, labels): - - SMOOTH = 1e-6 - - outputs = outputs.int() - labels = labels.int() - - intersection = ( - outputs - & labels).float().sum() # Will be zero if Truth=0 or Prediction=0 - union = (outputs | labels).float().sum() # Will be zzero if both are 0 - - iou = (intersection + SMOOTH) / (union + SMOOTH - ) # We smooth our devision to avoid 0/0 - - thresholded = torch.clamp( - 20 * (iou - 0.5), 0, - 10).ceil() / 10 # This is equal to comparing with thresolds - - return thresholded.mean().detach().cpu().numpy( - ) # Or thresholded.mean() if you are interested in average across the batch - - -def mask_filter(mask, number=1000): - """only keep {number} True items within a mask - - Args: - mask (bool array): [N, ] - number (int, optional): total True item. Defaults to 1000. - """ - true_ids = np.where(mask)[0] - keep_ids = np.random.choice(true_ids, size=number) - filter_mask = np.isin(np.arange(len(mask)), keep_ids) - - return filter_mask - - -def query_mesh(path): - - verts, faces_idx, _ = load_obj(path) - - return verts, faces_idx.verts_idx - - -def add_alpha(colors, alpha=0.7): - - colors_pad = np.pad(colors, ((0, 0), (0, 1)), - mode='constant', - constant_values=alpha) - - return colors_pad - - -def get_optim_grid_image(per_loop_lst, loss=None, nrow=4, type='smpl'): - - font_path = os.path.join(os.path.dirname(__file__), "tbfo.ttf") - font = ImageFont.truetype(font_path, 30) - grid_img = torchvision.utils.make_grid(torch.cat(per_loop_lst, dim=0), - nrow=nrow) - grid_img = Image.fromarray( - ((grid_img.permute(1, 2, 0).detach().cpu().numpy() + 1.0) * 0.5 * - 255.0).astype(np.uint8)) - - # add text - draw = ImageDraw.Draw(grid_img) - grid_size = 512 - if loss is not None: - draw.text((10, 5), f"error: {loss:.3f}", (255, 0, 0), font=font) - - if type == 'smpl': - for col_id, col_txt in enumerate( - ['image', 'smpl-norm(render)', 'cloth-norm(pred)', 'diff-norm', 'diff-mask']): - draw.text((10+(col_id*grid_size), 5), - col_txt, (255, 0, 0), font=font) - elif type == 'cloth': - for col_id, col_txt in enumerate( - ['image', 'cloth-norm(recon)', 'cloth-norm(pred)', 'diff-norm']): - draw.text((10+(col_id*grid_size), 5), - col_txt, (255, 0, 0), font=font) - for col_id, col_txt in enumerate( - ['0', '90', '180', '270']): - draw.text((10+(col_id*grid_size), grid_size*2+5), - col_txt, (255, 0, 0), font=font) - else: - print(f"{type} should be 'smpl' or 'cloth'") - - grid_img = grid_img.resize((grid_img.size[0], grid_img.size[1]), - Image.ANTIALIAS) - - return grid_img - - -def clean_mesh(verts, faces): - - device = verts.device - - mesh_lst = trimesh.Trimesh(verts.detach().cpu().numpy(), - faces.detach().cpu().numpy()) - mesh_lst = mesh_lst.split(only_watertight=False) - comp_num = [mesh.vertices.shape[0] for mesh in mesh_lst] - mesh_clean = mesh_lst[comp_num.index(max(comp_num))] - - final_verts = torch.as_tensor(mesh_clean.vertices).float().to(device) - final_faces = torch.as_tensor(mesh_clean.faces).int().to(device) - - return final_verts, final_faces - - -def merge_mesh(verts_A, faces_A, verts_B, faces_B, color=False): - - sep_mesh = trimesh.Trimesh(np.concatenate([verts_A, verts_B], axis=0), - np.concatenate( - [faces_A, faces_B + faces_A.max() + 1], - axis=0), - maintain_order=True, - process=False) - if color: - colors = np.ones_like(sep_mesh.vertices) - colors[:verts_A.shape[0]] *= np.array([255.0, 0.0, 0.0]) - colors[verts_A.shape[0]:] *= np.array([0.0, 255.0, 0.0]) - sep_mesh.visual.vertex_colors = colors - - # union_mesh = trimesh.boolean.union([trimesh.Trimesh(verts_A, faces_A), - # trimesh.Trimesh(verts_B, faces_B)], engine='blender') - - return sep_mesh - - -def mesh_move(mesh_lst, step, scale=1.0): - - trans = np.array([1.0, 0.0, 0.0]) * step - - resize_matrix = trimesh.transformations.scale_and_translate( - scale=(scale), translate=trans) - - results = [] - - for mesh in mesh_lst: - mesh.apply_transform(resize_matrix) - results.append(mesh) - - return results - - -class SMPLX(): - def __init__(self): - - REPO_ID = "Yuliang/SMPL" - - self.smpl_verts_path = hf_hub_download(REPO_ID, filename='smpl_data/smpl_verts.npy', use_auth_token=os.environ['ICON']) - self.smplx_verts_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_verts.npy', use_auth_token=os.environ['ICON']) - self.faces_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_faces.npy', use_auth_token=os.environ['ICON']) - self.cmap_vert_path = hf_hub_download(REPO_ID, filename='smpl_data/smplx_cmap.npy', use_auth_token=os.environ['ICON']) - - self.faces = np.load(self.faces_path) - self.verts = np.load(self.smplx_verts_path) - self.smpl_verts = np.load(self.smpl_verts_path) - - self.model_dir = hf_hub_url(REPO_ID, filename='models') - self.tedra_dir = hf_hub_url(REPO_ID, filename='tedra_data') - - def get_smpl_mat(self, vert_ids): - - mat = torch.as_tensor(np.load(self.cmap_vert_path)).float() - return mat[vert_ids, :] - - def smpl2smplx(self, vert_ids=None): - """convert vert_ids in smpl to vert_ids in smplx - - Args: - vert_ids ([int.array]): [n, knn_num] - """ - smplx_tree = cKDTree(self.verts, leafsize=1) - _, ind = smplx_tree.query(self.smpl_verts, k=1) # ind: [smpl_num, 1] - - if vert_ids is not None: - smplx_vert_ids = ind[vert_ids] - else: - smplx_vert_ids = ind - - return smplx_vert_ids - - def smplx2smpl(self, vert_ids=None): - """convert vert_ids in smplx to vert_ids in smpl - - Args: - vert_ids ([int.array]): [n, knn_num] - """ - smpl_tree = cKDTree(self.smpl_verts, leafsize=1) - _, ind = smpl_tree.query(self.verts, k=1) # ind: [smplx_num, 1] - if vert_ids is not None: - smpl_vert_ids = ind[vert_ids] - else: - smpl_vert_ids = ind - - return smpl_vert_ids diff --git a/spaces/Zengyf-CVer/Streamlit_YOLOv5_Model2x/utils/loss.py b/spaces/Zengyf-CVer/Streamlit_YOLOv5_Model2x/utils/loss.py deleted file mode 100644 index 9b9c3d9f80181d1ad5b54d2700f32ba042368c31..0000000000000000000000000000000000000000 --- a/spaces/Zengyf-CVer/Streamlit_YOLOv5_Model2x/utils/loss.py +++ /dev/null @@ -1,234 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -Loss functions -""" - -import torch -import torch.nn as nn - -from utils.metrics import bbox_iou -from utils.torch_utils import de_parallel - - -def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 - # return positive, negative label smoothing BCE targets - return 1.0 - 0.5 * eps, 0.5 * eps - - -class BCEBlurWithLogitsLoss(nn.Module): - # BCEwithLogitLoss() with reduced missing label effects. - def __init__(self, alpha=0.05): - super().__init__() - self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() - self.alpha = alpha - - def forward(self, pred, true): - loss = self.loss_fcn(pred, true) - pred = torch.sigmoid(pred) # prob from logits - dx = pred - true # reduce only missing label effects - # dx = (pred - true).abs() # reduce missing label and false label effects - alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) - loss *= alpha_factor - return loss.mean() - - -class FocalLoss(nn.Module): - # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) - def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): - super().__init__() - self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() - self.gamma = gamma - self.alpha = alpha - self.reduction = loss_fcn.reduction - self.loss_fcn.reduction = 'none' # required to apply FL to each element - - def forward(self, pred, true): - loss = self.loss_fcn(pred, true) - # p_t = torch.exp(-loss) - # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability - - # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py - pred_prob = torch.sigmoid(pred) # prob from logits - p_t = true * pred_prob + (1 - true) * (1 - pred_prob) - alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) - modulating_factor = (1.0 - p_t) ** self.gamma - loss *= alpha_factor * modulating_factor - - if self.reduction == 'mean': - return loss.mean() - elif self.reduction == 'sum': - return loss.sum() - else: # 'none' - return loss - - -class QFocalLoss(nn.Module): - # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) - def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): - super().__init__() - self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() - self.gamma = gamma - self.alpha = alpha - self.reduction = loss_fcn.reduction - self.loss_fcn.reduction = 'none' # required to apply FL to each element - - def forward(self, pred, true): - loss = self.loss_fcn(pred, true) - - pred_prob = torch.sigmoid(pred) # prob from logits - alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) - modulating_factor = torch.abs(true - pred_prob) ** self.gamma - loss *= alpha_factor * modulating_factor - - if self.reduction == 'mean': - return loss.mean() - elif self.reduction == 'sum': - return loss.sum() - else: # 'none' - return loss - - -class ComputeLoss: - sort_obj_iou = False - - # Compute losses - def __init__(self, model, autobalance=False): - device = next(model.parameters()).device # get model device - h = model.hyp # hyperparameters - - # Define criteria - BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) - BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) - - # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 - self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets - - # Focal loss - g = h['fl_gamma'] # focal loss gamma - if g > 0: - BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) - - m = de_parallel(model).model[-1] # Detect() module - self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 - self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index - self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance - self.na = m.na # number of anchors - self.nc = m.nc # number of classes - self.nl = m.nl # number of layers - self.anchors = m.anchors - self.device = device - - def __call__(self, p, targets): # predictions, targets - lcls = torch.zeros(1, device=self.device) # class loss - lbox = torch.zeros(1, device=self.device) # box loss - lobj = torch.zeros(1, device=self.device) # object loss - tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets - - # Losses - for i, pi in enumerate(p): # layer index, layer predictions - b, a, gj, gi = indices[i] # image, anchor, gridy, gridx - tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj - - n = b.shape[0] # number of targets - if n: - # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0 - pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions - - # Regression - pxy = pxy.sigmoid() * 2 - 0.5 - pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] - pbox = torch.cat((pxy, pwh), 1) # predicted box - iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target) - lbox += (1.0 - iou).mean() # iou loss - - # Objectness - iou = iou.detach().clamp(0).type(tobj.dtype) - if self.sort_obj_iou: - j = iou.argsort() - b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j] - if self.gr < 1: - iou = (1.0 - self.gr) + self.gr * iou - tobj[b, a, gj, gi] = iou # iou ratio - - # Classification - if self.nc > 1: # cls loss (only if multiple classes) - t = torch.full_like(pcls, self.cn, device=self.device) # targets - t[range(n), tcls[i]] = self.cp - lcls += self.BCEcls(pcls, t) # BCE - - # Append targets to text file - # with open('targets.txt', 'a') as file: - # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] - - obji = self.BCEobj(pi[..., 4], tobj) - lobj += obji * self.balance[i] # obj loss - if self.autobalance: - self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() - - if self.autobalance: - self.balance = [x / self.balance[self.ssi] for x in self.balance] - lbox *= self.hyp['box'] - lobj *= self.hyp['obj'] - lcls *= self.hyp['cls'] - bs = tobj.shape[0] # batch size - - return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach() - - def build_targets(self, p, targets): - # Build targets for compute_loss(), input targets(image,class,x,y,w,h) - na, nt = self.na, targets.shape[0] # number of anchors, targets - tcls, tbox, indices, anch = [], [], [], [] - gain = torch.ones(7, device=self.device) # normalized to gridspace gain - ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) - targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices - - g = 0.5 # bias - off = torch.tensor( - [ - [0, 0], - [1, 0], - [0, 1], - [-1, 0], - [0, -1], # j,k,l,m - # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm - ], - device=self.device).float() * g # offsets - - for i in range(self.nl): - anchors, shape = self.anchors[i], p[i].shape - gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain - - # Match targets to anchors - t = targets * gain # shape(3,n,7) - if nt: - # Matches - r = t[..., 4:6] / anchors[:, None] # wh ratio - j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare - # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) - t = t[j] # filter - - # Offsets - gxy = t[:, 2:4] # grid xy - gxi = gain[[2, 3]] - gxy # inverse - j, k = ((gxy % 1 < g) & (gxy > 1)).T - l, m = ((gxi % 1 < g) & (gxi > 1)).T - j = torch.stack((torch.ones_like(j), j, k, l, m)) - t = t.repeat((5, 1, 1))[j] - offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] - else: - t = targets[0] - offsets = 0 - - # Define - bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors - a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class - gij = (gxy - offsets).long() - gi, gj = gij.T # grid indices - - # Append - indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid - tbox.append(torch.cat((gxy - gij, gwh), 1)) # box - anch.append(anchors[a]) # anchors - tcls.append(c) # class - - return tcls, tbox, indices, anch diff --git a/spaces/abhimanyuniga/chavinlo-gpt4-x-alpaca/app.py b/spaces/abhimanyuniga/chavinlo-gpt4-x-alpaca/app.py deleted file mode 100644 index 09f1c36699f1a948b84b078910d8785b0f7c33ad..0000000000000000000000000000000000000000 --- a/spaces/abhimanyuniga/chavinlo-gpt4-x-alpaca/app.py +++ /dev/null @@ -1,3 +0,0 @@ -import gradio as gr - -gr.Interface.load("models/chavinlo/gpt4-x-alpaca").launch() \ No newline at end of file diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/configs/_base_/models/cgnet.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/configs/_base_/models/cgnet.py deleted file mode 100644 index eff8d9458c877c5db894957e0b1b4597e40da6ab..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/configs/_base_/models/cgnet.py +++ /dev/null @@ -1,35 +0,0 @@ -# model settings -norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True) -model = dict( - type='EncoderDecoder', - backbone=dict( - type='CGNet', - norm_cfg=norm_cfg, - in_channels=3, - num_channels=(32, 64, 128), - num_blocks=(3, 21), - dilations=(2, 4), - reductions=(8, 16)), - decode_head=dict( - type='FCNHead', - in_channels=256, - in_index=2, - channels=256, - num_convs=0, - concat_input=False, - dropout_ratio=0, - num_classes=19, - norm_cfg=norm_cfg, - loss_decode=dict( - type='CrossEntropyLoss', - use_sigmoid=False, - loss_weight=1.0, - class_weight=[ - 2.5959933, 6.7415504, 3.5354059, 9.8663225, 9.690899, 9.369352, - 10.289121, 9.953208, 4.3097677, 9.490387, 7.674431, 9.396905, - 10.347791, 6.3927646, 10.226669, 10.241062, 10.280587, - 10.396974, 10.055647 - ])), - # model training and testing settings - train_cfg=dict(sampler=None), - test_cfg=dict(mode='whole')) diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/core/post_processing/bbox_nms.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/core/post_processing/bbox_nms.py deleted file mode 100644 index 966d3a6ac86637a6be90edc3aab9b6863fb87764..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/core/post_processing/bbox_nms.py +++ /dev/null @@ -1,168 +0,0 @@ -import torch -from mmcv.ops.nms import batched_nms - -from mmdet.core.bbox.iou_calculators import bbox_overlaps - - -def multiclass_nms(multi_bboxes, - multi_scores, - score_thr, - nms_cfg, - max_num=-1, - score_factors=None, - return_inds=False): - """NMS for multi-class bboxes. - - Args: - multi_bboxes (Tensor): shape (n, #class*4) or (n, 4) - multi_scores (Tensor): shape (n, #class), where the last column - contains scores of the background class, but this will be ignored. - score_thr (float): bbox threshold, bboxes with scores lower than it - will not be considered. - nms_thr (float): NMS IoU threshold - max_num (int, optional): if there are more than max_num bboxes after - NMS, only top max_num will be kept. Default to -1. - score_factors (Tensor, optional): The factors multiplied to scores - before applying NMS. Default to None. - return_inds (bool, optional): Whether return the indices of kept - bboxes. Default to False. - - Returns: - tuple: (bboxes, labels, indices (optional)), tensors of shape (k, 5), - (k), and (k). Labels are 0-based. - """ - num_classes = multi_scores.size(1) - 1 - # exclude background category - if multi_bboxes.shape[1] > 4: - bboxes = multi_bboxes.view(multi_scores.size(0), -1, 4) - else: - bboxes = multi_bboxes[:, None].expand( - multi_scores.size(0), num_classes, 4) - - scores = multi_scores[:, :-1] - - labels = torch.arange(num_classes, dtype=torch.long) - labels = labels.view(1, -1).expand_as(scores) - - bboxes = bboxes.reshape(-1, 4) - scores = scores.reshape(-1) - labels = labels.reshape(-1) - - if not torch.onnx.is_in_onnx_export(): - # NonZero not supported in TensorRT - # remove low scoring boxes - valid_mask = scores > score_thr - # multiply score_factor after threshold to preserve more bboxes, improve - # mAP by 1% for YOLOv3 - if score_factors is not None: - # expand the shape to match original shape of score - score_factors = score_factors.view(-1, 1).expand( - multi_scores.size(0), num_classes) - score_factors = score_factors.reshape(-1) - scores = scores * score_factors - - if not torch.onnx.is_in_onnx_export(): - # NonZero not supported in TensorRT - inds = valid_mask.nonzero(as_tuple=False).squeeze(1) - bboxes, scores, labels = bboxes[inds], scores[inds], labels[inds] - else: - # TensorRT NMS plugin has invalid output filled with -1 - # add dummy data to make detection output correct. - bboxes = torch.cat([bboxes, bboxes.new_zeros(1, 4)], dim=0) - scores = torch.cat([scores, scores.new_zeros(1)], dim=0) - labels = torch.cat([labels, labels.new_zeros(1)], dim=0) - - if bboxes.numel() == 0: - if torch.onnx.is_in_onnx_export(): - raise RuntimeError('[ONNX Error] Can not record NMS ' - 'as it has not been executed this time') - if return_inds: - return bboxes, labels, inds - else: - return bboxes, labels - - dets, keep = batched_nms(bboxes, scores, labels, nms_cfg) - - if max_num > 0: - dets = dets[:max_num] - keep = keep[:max_num] - - if return_inds: - return dets, labels[keep], keep - else: - return dets, labels[keep] - - -def fast_nms(multi_bboxes, - multi_scores, - multi_coeffs, - score_thr, - iou_thr, - top_k, - max_num=-1): - """Fast NMS in `YOLACT `_. - - Fast NMS allows already-removed detections to suppress other detections so - that every instance can be decided to be kept or discarded in parallel, - which is not possible in traditional NMS. This relaxation allows us to - implement Fast NMS entirely in standard GPU-accelerated matrix operations. - - Args: - multi_bboxes (Tensor): shape (n, #class*4) or (n, 4) - multi_scores (Tensor): shape (n, #class+1), where the last column - contains scores of the background class, but this will be ignored. - multi_coeffs (Tensor): shape (n, #class*coeffs_dim). - score_thr (float): bbox threshold, bboxes with scores lower than it - will not be considered. - iou_thr (float): IoU threshold to be considered as conflicted. - top_k (int): if there are more than top_k bboxes before NMS, - only top top_k will be kept. - max_num (int): if there are more than max_num bboxes after NMS, - only top max_num will be kept. If -1, keep all the bboxes. - Default: -1. - - Returns: - tuple: (bboxes, labels, coefficients), tensors of shape (k, 5), (k, 1), - and (k, coeffs_dim). Labels are 0-based. - """ - - scores = multi_scores[:, :-1].t() # [#class, n] - scores, idx = scores.sort(1, descending=True) - - idx = idx[:, :top_k].contiguous() - scores = scores[:, :top_k] # [#class, topk] - num_classes, num_dets = idx.size() - boxes = multi_bboxes[idx.view(-1), :].view(num_classes, num_dets, 4) - coeffs = multi_coeffs[idx.view(-1), :].view(num_classes, num_dets, -1) - - iou = bbox_overlaps(boxes, boxes) # [#class, topk, topk] - iou.triu_(diagonal=1) - iou_max, _ = iou.max(dim=1) - - # Now just filter out the ones higher than the threshold - keep = iou_max <= iou_thr - - # Second thresholding introduces 0.2 mAP gain at negligible time cost - keep *= scores > score_thr - - # Assign each kept detection to its corresponding class - classes = torch.arange( - num_classes, device=boxes.device)[:, None].expand_as(keep) - classes = classes[keep] - - boxes = boxes[keep] - coeffs = coeffs[keep] - scores = scores[keep] - - # Only keep the top max_num highest scores across all classes - scores, idx = scores.sort(0, descending=True) - if max_num > 0: - idx = idx[:max_num] - scores = scores[:max_num] - - classes = classes[idx] - boxes = boxes[idx] - coeffs = coeffs[idx] - - cls_dets = torch.cat([boxes, scores[:, None]], dim=1) - return cls_dets, classes, coeffs diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/detectors/nasfcos.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/detectors/nasfcos.py deleted file mode 100644 index fb0148351546f45a451ef5f7a2a9ef4024e85b7c..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/detectors/nasfcos.py +++ /dev/null @@ -1,20 +0,0 @@ -from ..builder import DETECTORS -from .single_stage import SingleStageDetector - - -@DETECTORS.register_module() -class NASFCOS(SingleStageDetector): - """NAS-FCOS: Fast Neural Architecture Search for Object Detection. - - https://arxiv.org/abs/1906.0442 - """ - - def __init__(self, - backbone, - neck, - bbox_head, - train_cfg=None, - test_cfg=None, - pretrained=None): - super(NASFCOS, self).__init__(backbone, neck, bbox_head, train_cfg, - test_cfg, pretrained) diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/roi_heads/mask_scoring_roi_head.py b/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/roi_heads/mask_scoring_roi_head.py deleted file mode 100644 index c6e55c7752209cb5c15eab689ad9e8ac1fef1b66..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer/mmdet_null/models/roi_heads/mask_scoring_roi_head.py +++ /dev/null @@ -1,122 +0,0 @@ -import torch - -from mmdet.core import bbox2roi -from ..builder import HEADS, build_head -from .standard_roi_head import StandardRoIHead - - -@HEADS.register_module() -class MaskScoringRoIHead(StandardRoIHead): - """Mask Scoring RoIHead for Mask Scoring RCNN. - - https://arxiv.org/abs/1903.00241 - """ - - def __init__(self, mask_iou_head, **kwargs): - assert mask_iou_head is not None - super(MaskScoringRoIHead, self).__init__(**kwargs) - self.mask_iou_head = build_head(mask_iou_head) - - def init_weights(self, pretrained): - """Initialize the weights in head. - - Args: - pretrained (str, optional): Path to pre-trained weights. - Defaults to None. - """ - super(MaskScoringRoIHead, self).init_weights(pretrained) - self.mask_iou_head.init_weights() - - def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, - img_metas): - """Run forward function and calculate loss for Mask head in - training.""" - pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results]) - mask_results = super(MaskScoringRoIHead, - self)._mask_forward_train(x, sampling_results, - bbox_feats, gt_masks, - img_metas) - if mask_results['loss_mask'] is None: - return mask_results - - # mask iou head forward and loss - pos_mask_pred = mask_results['mask_pred'][ - range(mask_results['mask_pred'].size(0)), pos_labels] - mask_iou_pred = self.mask_iou_head(mask_results['mask_feats'], - pos_mask_pred) - pos_mask_iou_pred = mask_iou_pred[range(mask_iou_pred.size(0)), - pos_labels] - - mask_iou_targets = self.mask_iou_head.get_targets( - sampling_results, gt_masks, pos_mask_pred, - mask_results['mask_targets'], self.train_cfg) - loss_mask_iou = self.mask_iou_head.loss(pos_mask_iou_pred, - mask_iou_targets) - mask_results['loss_mask'].update(loss_mask_iou) - return mask_results - - def simple_test_mask(self, - x, - img_metas, - det_bboxes, - det_labels, - rescale=False): - """Obtain mask prediction without augmentation.""" - # image shapes of images in the batch - ori_shapes = tuple(meta['ori_shape'] for meta in img_metas) - scale_factors = tuple(meta['scale_factor'] for meta in img_metas) - - num_imgs = len(det_bboxes) - if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes): - num_classes = self.mask_head.num_classes - segm_results = [[[] for _ in range(num_classes)] - for _ in range(num_imgs)] - mask_scores = [[[] for _ in range(num_classes)] - for _ in range(num_imgs)] - else: - # if det_bboxes is rescaled to the original image size, we need to - # rescale it back to the testing scale to obtain RoIs. - if rescale and not isinstance(scale_factors[0], float): - scale_factors = [ - torch.from_numpy(scale_factor).to(det_bboxes[0].device) - for scale_factor in scale_factors - ] - _bboxes = [ - det_bboxes[i][:, :4] * - scale_factors[i] if rescale else det_bboxes[i] - for i in range(num_imgs) - ] - mask_rois = bbox2roi(_bboxes) - mask_results = self._mask_forward(x, mask_rois) - concat_det_labels = torch.cat(det_labels) - # get mask scores with mask iou head - mask_feats = mask_results['mask_feats'] - mask_pred = mask_results['mask_pred'] - mask_iou_pred = self.mask_iou_head( - mask_feats, mask_pred[range(concat_det_labels.size(0)), - concat_det_labels]) - # split batch mask prediction back to each image - num_bboxes_per_img = tuple(len(_bbox) for _bbox in _bboxes) - mask_preds = mask_pred.split(num_bboxes_per_img, 0) - mask_iou_preds = mask_iou_pred.split(num_bboxes_per_img, 0) - - # apply mask post-processing to each image individually - segm_results = [] - mask_scores = [] - for i in range(num_imgs): - if det_bboxes[i].shape[0] == 0: - segm_results.append( - [[] for _ in range(self.mask_head.num_classes)]) - mask_scores.append( - [[] for _ in range(self.mask_head.num_classes)]) - else: - segm_result = self.mask_head.get_seg_masks( - mask_preds[i], _bboxes[i], det_labels[i], - self.test_cfg, ori_shapes[i], scale_factors[i], - rescale) - # get mask scores with mask iou head - mask_score = self.mask_iou_head.get_mask_scores( - mask_iou_preds[i], det_bboxes[i], det_labels[i]) - segm_results.append(segm_result) - mask_scores.append(mask_score) - return list(zip(segm_results, mask_scores)) diff --git a/spaces/abhishek/sketch-to-image/annotator/uniformer_base/mmseg/models/backbones/hrnet.py b/spaces/abhishek/sketch-to-image/annotator/uniformer_base/mmseg/models/backbones/hrnet.py deleted file mode 100644 index 331ebf3ccb8597b3f507670753789073fc3c946d..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/annotator/uniformer_base/mmseg/models/backbones/hrnet.py +++ /dev/null @@ -1,555 +0,0 @@ -import torch.nn as nn -from annotator.uniformer.mmcv.cnn import (build_conv_layer, build_norm_layer, constant_init, - kaiming_init) -from annotator.uniformer.mmcv.runner import load_checkpoint -from annotator.uniformer.mmcv.utils.parrots_wrapper import _BatchNorm - -from annotator.uniformer.mmseg.ops import Upsample, resize -from annotator.uniformer.mmseg.utils import get_root_logger -from ..builder import BACKBONES -from .resnet import BasicBlock, Bottleneck - - -class HRModule(nn.Module): - """High-Resolution Module for HRNet. - - In this module, every branch has 4 BasicBlocks/Bottlenecks. Fusion/Exchange - is in this module. - """ - - def __init__(self, - num_branches, - blocks, - num_blocks, - in_channels, - num_channels, - multiscale_output=True, - with_cp=False, - conv_cfg=None, - norm_cfg=dict(type='BN', requires_grad=True)): - super(HRModule, self).__init__() - self._check_branches(num_branches, num_blocks, in_channels, - num_channels) - - self.in_channels = in_channels - self.num_branches = num_branches - - self.multiscale_output = multiscale_output - self.norm_cfg = norm_cfg - self.conv_cfg = conv_cfg - self.with_cp = with_cp - self.branches = self._make_branches(num_branches, blocks, num_blocks, - num_channels) - self.fuse_layers = self._make_fuse_layers() - self.relu = nn.ReLU(inplace=False) - - def _check_branches(self, num_branches, num_blocks, in_channels, - num_channels): - """Check branches configuration.""" - if num_branches != len(num_blocks): - error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_BLOCKS(' \ - f'{len(num_blocks)})' - raise ValueError(error_msg) - - if num_branches != len(num_channels): - error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_CHANNELS(' \ - f'{len(num_channels)})' - raise ValueError(error_msg) - - if num_branches != len(in_channels): - error_msg = f'NUM_BRANCHES({num_branches}) <> NUM_INCHANNELS(' \ - f'{len(in_channels)})' - raise ValueError(error_msg) - - def _make_one_branch(self, - branch_index, - block, - num_blocks, - num_channels, - stride=1): - """Build one branch.""" - downsample = None - if stride != 1 or \ - self.in_channels[branch_index] != \ - num_channels[branch_index] * block.expansion: - downsample = nn.Sequential( - build_conv_layer( - self.conv_cfg, - self.in_channels[branch_index], - num_channels[branch_index] * block.expansion, - kernel_size=1, - stride=stride, - bias=False), - build_norm_layer(self.norm_cfg, num_channels[branch_index] * - block.expansion)[1]) - - layers = [] - layers.append( - block( - self.in_channels[branch_index], - num_channels[branch_index], - stride, - downsample=downsample, - with_cp=self.with_cp, - norm_cfg=self.norm_cfg, - conv_cfg=self.conv_cfg)) - self.in_channels[branch_index] = \ - num_channels[branch_index] * block.expansion - for i in range(1, num_blocks[branch_index]): - layers.append( - block( - self.in_channels[branch_index], - num_channels[branch_index], - with_cp=self.with_cp, - norm_cfg=self.norm_cfg, - conv_cfg=self.conv_cfg)) - - return nn.Sequential(*layers) - - def _make_branches(self, num_branches, block, num_blocks, num_channels): - """Build multiple branch.""" - branches = [] - - for i in range(num_branches): - branches.append( - self._make_one_branch(i, block, num_blocks, num_channels)) - - return nn.ModuleList(branches) - - def _make_fuse_layers(self): - """Build fuse layer.""" - if self.num_branches == 1: - return None - - num_branches = self.num_branches - in_channels = self.in_channels - fuse_layers = [] - num_out_branches = num_branches if self.multiscale_output else 1 - for i in range(num_out_branches): - fuse_layer = [] - for j in range(num_branches): - if j > i: - fuse_layer.append( - nn.Sequential( - build_conv_layer( - self.conv_cfg, - in_channels[j], - in_channels[i], - kernel_size=1, - stride=1, - padding=0, - bias=False), - build_norm_layer(self.norm_cfg, in_channels[i])[1], - # we set align_corners=False for HRNet - Upsample( - scale_factor=2**(j - i), - mode='bilinear', - align_corners=False))) - elif j == i: - fuse_layer.append(None) - else: - conv_downsamples = [] - for k in range(i - j): - if k == i - j - 1: - conv_downsamples.append( - nn.Sequential( - build_conv_layer( - self.conv_cfg, - in_channels[j], - in_channels[i], - kernel_size=3, - stride=2, - padding=1, - bias=False), - build_norm_layer(self.norm_cfg, - in_channels[i])[1])) - else: - conv_downsamples.append( - nn.Sequential( - build_conv_layer( - self.conv_cfg, - in_channels[j], - in_channels[j], - kernel_size=3, - stride=2, - padding=1, - bias=False), - build_norm_layer(self.norm_cfg, - in_channels[j])[1], - nn.ReLU(inplace=False))) - fuse_layer.append(nn.Sequential(*conv_downsamples)) - fuse_layers.append(nn.ModuleList(fuse_layer)) - - return nn.ModuleList(fuse_layers) - - def forward(self, x): - """Forward function.""" - if self.num_branches == 1: - return [self.branches[0](x[0])] - - for i in range(self.num_branches): - x[i] = self.branches[i](x[i]) - - x_fuse = [] - for i in range(len(self.fuse_layers)): - y = 0 - for j in range(self.num_branches): - if i == j: - y += x[j] - elif j > i: - y = y + resize( - self.fuse_layers[i][j](x[j]), - size=x[i].shape[2:], - mode='bilinear', - align_corners=False) - else: - y += self.fuse_layers[i][j](x[j]) - x_fuse.append(self.relu(y)) - return x_fuse - - -@BACKBONES.register_module() -class HRNet(nn.Module): - """HRNet backbone. - - High-Resolution Representations for Labeling Pixels and Regions - arXiv: https://arxiv.org/abs/1904.04514 - - Args: - extra (dict): detailed configuration for each stage of HRNet. - in_channels (int): Number of input image channels. Normally 3. - conv_cfg (dict): dictionary to construct and config conv layer. - norm_cfg (dict): dictionary to construct and config norm layer. - norm_eval (bool): Whether to set norm layers to eval mode, namely, - freeze running stats (mean and var). Note: Effect on Batch Norm - and its variants only. - with_cp (bool): Use checkpoint or not. Using checkpoint will save some - memory while slowing down the training speed. - zero_init_residual (bool): whether to use zero init for last norm layer - in resblocks to let them behave as identity. - - Example: - >>> from annotator.uniformer.mmseg.models import HRNet - >>> import torch - >>> extra = dict( - >>> stage1=dict( - >>> num_modules=1, - >>> num_branches=1, - >>> block='BOTTLENECK', - >>> num_blocks=(4, ), - >>> num_channels=(64, )), - >>> stage2=dict( - >>> num_modules=1, - >>> num_branches=2, - >>> block='BASIC', - >>> num_blocks=(4, 4), - >>> num_channels=(32, 64)), - >>> stage3=dict( - >>> num_modules=4, - >>> num_branches=3, - >>> block='BASIC', - >>> num_blocks=(4, 4, 4), - >>> num_channels=(32, 64, 128)), - >>> stage4=dict( - >>> num_modules=3, - >>> num_branches=4, - >>> block='BASIC', - >>> num_blocks=(4, 4, 4, 4), - >>> num_channels=(32, 64, 128, 256))) - >>> self = HRNet(extra, in_channels=1) - >>> self.eval() - >>> inputs = torch.rand(1, 1, 32, 32) - >>> level_outputs = self.forward(inputs) - >>> for level_out in level_outputs: - ... print(tuple(level_out.shape)) - (1, 32, 8, 8) - (1, 64, 4, 4) - (1, 128, 2, 2) - (1, 256, 1, 1) - """ - - blocks_dict = {'BASIC': BasicBlock, 'BOTTLENECK': Bottleneck} - - def __init__(self, - extra, - in_channels=3, - conv_cfg=None, - norm_cfg=dict(type='BN', requires_grad=True), - norm_eval=False, - with_cp=False, - zero_init_residual=False): - super(HRNet, self).__init__() - self.extra = extra - self.conv_cfg = conv_cfg - self.norm_cfg = norm_cfg - self.norm_eval = norm_eval - self.with_cp = with_cp - self.zero_init_residual = zero_init_residual - - # stem net - self.norm1_name, norm1 = build_norm_layer(self.norm_cfg, 64, postfix=1) - self.norm2_name, norm2 = build_norm_layer(self.norm_cfg, 64, postfix=2) - - self.conv1 = build_conv_layer( - self.conv_cfg, - in_channels, - 64, - kernel_size=3, - stride=2, - padding=1, - bias=False) - - self.add_module(self.norm1_name, norm1) - self.conv2 = build_conv_layer( - self.conv_cfg, - 64, - 64, - kernel_size=3, - stride=2, - padding=1, - bias=False) - - self.add_module(self.norm2_name, norm2) - self.relu = nn.ReLU(inplace=True) - - # stage 1 - self.stage1_cfg = self.extra['stage1'] - num_channels = self.stage1_cfg['num_channels'][0] - block_type = self.stage1_cfg['block'] - num_blocks = self.stage1_cfg['num_blocks'][0] - - block = self.blocks_dict[block_type] - stage1_out_channels = num_channels * block.expansion - self.layer1 = self._make_layer(block, 64, num_channels, num_blocks) - - # stage 2 - self.stage2_cfg = self.extra['stage2'] - num_channels = self.stage2_cfg['num_channels'] - block_type = self.stage2_cfg['block'] - - block = self.blocks_dict[block_type] - num_channels = [channel * block.expansion for channel in num_channels] - self.transition1 = self._make_transition_layer([stage1_out_channels], - num_channels) - self.stage2, pre_stage_channels = self._make_stage( - self.stage2_cfg, num_channels) - - # stage 3 - self.stage3_cfg = self.extra['stage3'] - num_channels = self.stage3_cfg['num_channels'] - block_type = self.stage3_cfg['block'] - - block = self.blocks_dict[block_type] - num_channels = [channel * block.expansion for channel in num_channels] - self.transition2 = self._make_transition_layer(pre_stage_channels, - num_channels) - self.stage3, pre_stage_channels = self._make_stage( - self.stage3_cfg, num_channels) - - # stage 4 - self.stage4_cfg = self.extra['stage4'] - num_channels = self.stage4_cfg['num_channels'] - block_type = self.stage4_cfg['block'] - - block = self.blocks_dict[block_type] - num_channels = [channel * block.expansion for channel in num_channels] - self.transition3 = self._make_transition_layer(pre_stage_channels, - num_channels) - self.stage4, pre_stage_channels = self._make_stage( - self.stage4_cfg, num_channels) - - @property - def norm1(self): - """nn.Module: the normalization layer named "norm1" """ - return getattr(self, self.norm1_name) - - @property - def norm2(self): - """nn.Module: the normalization layer named "norm2" """ - return getattr(self, self.norm2_name) - - def _make_transition_layer(self, num_channels_pre_layer, - num_channels_cur_layer): - """Make transition layer.""" - num_branches_cur = len(num_channels_cur_layer) - num_branches_pre = len(num_channels_pre_layer) - - transition_layers = [] - for i in range(num_branches_cur): - if i < num_branches_pre: - if num_channels_cur_layer[i] != num_channels_pre_layer[i]: - transition_layers.append( - nn.Sequential( - build_conv_layer( - self.conv_cfg, - num_channels_pre_layer[i], - num_channels_cur_layer[i], - kernel_size=3, - stride=1, - padding=1, - bias=False), - build_norm_layer(self.norm_cfg, - num_channels_cur_layer[i])[1], - nn.ReLU(inplace=True))) - else: - transition_layers.append(None) - else: - conv_downsamples = [] - for j in range(i + 1 - num_branches_pre): - in_channels = num_channels_pre_layer[-1] - out_channels = num_channels_cur_layer[i] \ - if j == i - num_branches_pre else in_channels - conv_downsamples.append( - nn.Sequential( - build_conv_layer( - self.conv_cfg, - in_channels, - out_channels, - kernel_size=3, - stride=2, - padding=1, - bias=False), - build_norm_layer(self.norm_cfg, out_channels)[1], - nn.ReLU(inplace=True))) - transition_layers.append(nn.Sequential(*conv_downsamples)) - - return nn.ModuleList(transition_layers) - - def _make_layer(self, block, inplanes, planes, blocks, stride=1): - """Make each layer.""" - downsample = None - if stride != 1 or inplanes != planes * block.expansion: - downsample = nn.Sequential( - build_conv_layer( - self.conv_cfg, - inplanes, - planes * block.expansion, - kernel_size=1, - stride=stride, - bias=False), - build_norm_layer(self.norm_cfg, planes * block.expansion)[1]) - - layers = [] - layers.append( - block( - inplanes, - planes, - stride, - downsample=downsample, - with_cp=self.with_cp, - norm_cfg=self.norm_cfg, - conv_cfg=self.conv_cfg)) - inplanes = planes * block.expansion - for i in range(1, blocks): - layers.append( - block( - inplanes, - planes, - with_cp=self.with_cp, - norm_cfg=self.norm_cfg, - conv_cfg=self.conv_cfg)) - - return nn.Sequential(*layers) - - def _make_stage(self, layer_config, in_channels, multiscale_output=True): - """Make each stage.""" - num_modules = layer_config['num_modules'] - num_branches = layer_config['num_branches'] - num_blocks = layer_config['num_blocks'] - num_channels = layer_config['num_channels'] - block = self.blocks_dict[layer_config['block']] - - hr_modules = [] - for i in range(num_modules): - # multi_scale_output is only used for the last module - if not multiscale_output and i == num_modules - 1: - reset_multiscale_output = False - else: - reset_multiscale_output = True - - hr_modules.append( - HRModule( - num_branches, - block, - num_blocks, - in_channels, - num_channels, - reset_multiscale_output, - with_cp=self.with_cp, - norm_cfg=self.norm_cfg, - conv_cfg=self.conv_cfg)) - - return nn.Sequential(*hr_modules), in_channels - - def init_weights(self, pretrained=None): - """Initialize the weights in backbone. - - Args: - pretrained (str, optional): Path to pre-trained weights. - Defaults to None. - """ - if isinstance(pretrained, str): - logger = get_root_logger() - load_checkpoint(self, pretrained, strict=False, logger=logger) - elif pretrained is None: - for m in self.modules(): - if isinstance(m, nn.Conv2d): - kaiming_init(m) - elif isinstance(m, (_BatchNorm, nn.GroupNorm)): - constant_init(m, 1) - - if self.zero_init_residual: - for m in self.modules(): - if isinstance(m, Bottleneck): - constant_init(m.norm3, 0) - elif isinstance(m, BasicBlock): - constant_init(m.norm2, 0) - else: - raise TypeError('pretrained must be a str or None') - - def forward(self, x): - """Forward function.""" - - x = self.conv1(x) - x = self.norm1(x) - x = self.relu(x) - x = self.conv2(x) - x = self.norm2(x) - x = self.relu(x) - x = self.layer1(x) - - x_list = [] - for i in range(self.stage2_cfg['num_branches']): - if self.transition1[i] is not None: - x_list.append(self.transition1[i](x)) - else: - x_list.append(x) - y_list = self.stage2(x_list) - - x_list = [] - for i in range(self.stage3_cfg['num_branches']): - if self.transition2[i] is not None: - x_list.append(self.transition2[i](y_list[-1])) - else: - x_list.append(y_list[i]) - y_list = self.stage3(x_list) - - x_list = [] - for i in range(self.stage4_cfg['num_branches']): - if self.transition3[i] is not None: - x_list.append(self.transition3[i](y_list[-1])) - else: - x_list.append(y_list[i]) - y_list = self.stage4(x_list) - - return y_list - - def train(self, mode=True): - """Convert the model into training mode will keeping the normalization - layer freezed.""" - super(HRNet, self).train(mode) - if mode and self.norm_eval: - for m in self.modules(): - # trick: eval have effect on BatchNorm only - if isinstance(m, _BatchNorm): - m.eval() diff --git a/spaces/abhishek/sketch-to-image/lib/ddim_multi.py b/spaces/abhishek/sketch-to-image/lib/ddim_multi.py deleted file mode 100644 index bd979031e1cc19069c513591442d28841bf53c49..0000000000000000000000000000000000000000 --- a/spaces/abhishek/sketch-to-image/lib/ddim_multi.py +++ /dev/null @@ -1,351 +0,0 @@ -''' - * Copyright (c) 2023 Salesforce, Inc. - * All rights reserved. - * SPDX-License-Identifier: Apache License 2.0 - * For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/ - * By Can Qin - * Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet - * Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala -''' - -"""SAMPLING ONLY.""" - -import torch -import numpy as np -from tqdm import tqdm - -from lib.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor - - -class DDIMSampler(object): - def __init__(self, model, schedule="linear", **kwargs): - super().__init__() - self.model = model - self.ddpm_num_timesteps = model.num_timesteps - self.schedule = schedule - - def register_buffer(self, name, attr): - if type(attr) == torch.Tensor: - if attr.device != torch.device("cuda"): - attr = attr.to(torch.device("cuda")) - setattr(self, name, attr) - - def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): - self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, - num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) - alphas_cumprod = self.model.alphas_cumprod - assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' - to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) - - self.register_buffer('betas', to_torch(self.model.betas)) - self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) - self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) - - # calculations for diffusion q(x_t | x_{t-1}) and others - self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) - self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) - self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) - self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) - - # ddim sampling parameters - ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), - ddim_timesteps=self.ddim_timesteps, - eta=ddim_eta,verbose=verbose) - self.register_buffer('ddim_sigmas', ddim_sigmas) - self.register_buffer('ddim_alphas', ddim_alphas) - self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) - self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) - sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( - (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( - 1 - self.alphas_cumprod / self.alphas_cumprod_prev)) - self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) - - @torch.no_grad() - def sample(self, - S, - batch_size, - shape, - conditioning=None, - callback=None, - normals_sequence=None, - img_callback=None, - quantize_x0=False, - eta=0., - mask=None, - x0=None, - temperature=1., - noise_dropout=0., - score_corrector=None, - corrector_kwargs=None, - verbose=True, - x_T=None, - log_every_t=100, - unconditional_guidance_scale=1., - unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... - dynamic_threshold=None, - ucg_schedule=None, - **kwargs - ): - if conditioning is not None: - if isinstance(conditioning, dict): - ctmp = conditioning[list(conditioning.keys())[0]] - while isinstance(ctmp, list): ctmp = ctmp[0] - cbs = ctmp.shape[0] - if cbs != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - - elif isinstance(conditioning, list): - for ctmp in conditioning: - if ctmp.shape[0] != batch_size: - print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") - - else: - if conditioning.shape[0] != batch_size: - print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") - - self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) - # sampling - C, H, W = shape - size = (batch_size, C, H, W) - print(f'Data shape for DDIM sampling is {size}, eta {eta}') - - samples, intermediates = self.ddim_sampling(conditioning, size, - callback=callback, - img_callback=img_callback, - quantize_denoised=quantize_x0, - mask=mask, x0=x0, - ddim_use_original_steps=False, - noise_dropout=noise_dropout, - temperature=temperature, - score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - x_T=x_T, - log_every_t=log_every_t, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - dynamic_threshold=dynamic_threshold, - ucg_schedule=ucg_schedule - ) - return samples, intermediates - - @torch.no_grad() - def ddim_sampling(self, cond, shape, - x_T=None, ddim_use_original_steps=False, - callback=None, timesteps=None, quantize_denoised=False, - mask=None, x0=None, img_callback=None, log_every_t=100, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None, - ucg_schedule=None): - device = self.model.betas.device - b = shape[0] - if x_T is None: - img = torch.randn(shape, device=device) - else: - img = x_T - - if timesteps is None: - timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps - elif timesteps is not None and not ddim_use_original_steps: - subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 - timesteps = self.ddim_timesteps[:subset_end] - - intermediates = {'x_inter': [img], 'pred_x0': [img]} - time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) - total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] - print(f"Running DDIM Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) - - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((b,), step, device=device, dtype=torch.long) - - if mask is not None: - assert x0 is not None - img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? - img = img_orig * mask + (1. - mask) * img - - if ucg_schedule is not None: - assert len(ucg_schedule) == len(time_range) - unconditional_guidance_scale = ucg_schedule[i] - - outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps, - quantize_denoised=quantize_denoised, temperature=temperature, - noise_dropout=noise_dropout, score_corrector=score_corrector, - corrector_kwargs=corrector_kwargs, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning, - dynamic_threshold=dynamic_threshold) - img, pred_x0 = outs - if callback: callback(i) - if img_callback: img_callback(pred_x0, i) - - if index % log_every_t == 0 or index == total_steps - 1: - intermediates['x_inter'].append(img) - intermediates['pred_x0'].append(pred_x0) - - return img, intermediates - - @torch.no_grad() - def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, - temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, - unconditional_guidance_scale=1., unconditional_conditioning=None, - dynamic_threshold=None): - b, *_, device = *x.shape, x.device - - task_name = c['task'] - - if unconditional_conditioning is None or unconditional_guidance_scale == 1.: - model_output = self.model.apply_model(x, t, c) - else: - x_in = torch.cat([x] * 2) - t_in = torch.cat([t] * 2) - if isinstance(c, dict): - assert isinstance(unconditional_conditioning, dict) - c_in = dict() - for k in c: - if k == 'task': - continue - if isinstance(c[k], list): - c_in[k] = [torch.cat([ - unconditional_conditioning[k][i], - c[k][i]]) for i in range(len(c[k]))] - else: - c_in[k] = torch.cat([ - unconditional_conditioning[k], - c[k]]) - elif isinstance(c, list): - c_in = list() - assert isinstance(unconditional_conditioning, list) - for i in range(len(c)): - c_in.append(torch.cat([unconditional_conditioning[i], c[i]])) - else: - c_in = torch.cat([unconditional_conditioning, c]) - c_in['task'] = task_name - model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2) - model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond) - - if self.model.parameterization == "v": - e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) - else: - e_t = model_output - - if score_corrector is not None: - assert self.model.parameterization == "eps", 'not implemented' - e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) - - alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas - alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev - sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas - sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas - # select parameters corresponding to the currently considered timestep - a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) - a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) - sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) - sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) - - # current prediction for x_0 - if self.model.parameterization != "v": - pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() - else: - pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) - - if quantize_denoised: - pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) - - if dynamic_threshold is not None: - raise NotImplementedError() - - # direction pointing to x_t - dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t - noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature - if noise_dropout > 0.: - noise = torch.nn.functional.dropout(noise, p=noise_dropout) - x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise - return x_prev, pred_x0 - - @torch.no_grad() - def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None, - unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None): - num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0] - - assert t_enc <= num_reference_steps - num_steps = t_enc - - if use_original_steps: - alphas_next = self.alphas_cumprod[:num_steps] - alphas = self.alphas_cumprod_prev[:num_steps] - else: - alphas_next = self.ddim_alphas[:num_steps] - alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) - - x_next = x0 - intermediates = [] - inter_steps = [] - for i in tqdm(range(num_steps), desc='Encoding Image'): - t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long) - if unconditional_guidance_scale == 1.: - noise_pred = self.model.apply_model(x_next, t, c) - else: - assert unconditional_conditioning is not None - e_t_uncond, noise_pred = torch.chunk( - self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)), - torch.cat((unconditional_conditioning, c))), 2) - noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond) - - xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next - weighted_noise_pred = alphas_next[i].sqrt() * ( - (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred - x_next = xt_weighted + weighted_noise_pred - if return_intermediates and i % ( - num_steps // return_intermediates) == 0 and i < num_steps - 1: - intermediates.append(x_next) - inter_steps.append(i) - elif return_intermediates and i >= num_steps - 2: - intermediates.append(x_next) - inter_steps.append(i) - if callback: callback(i) - - out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} - if return_intermediates: - out.update({'intermediates': intermediates}) - return x_next, out - - @torch.no_grad() - def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): - # fast, but does not allow for exact reconstruction - # t serves as an index to gather the correct alphas - if use_original_steps: - sqrt_alphas_cumprod = self.sqrt_alphas_cumprod - sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod - else: - sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) - sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas - - if noise is None: - noise = torch.randn_like(x0) - return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + - extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) - - @torch.no_grad() - def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, - use_original_steps=False, callback=None): - - timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps - timesteps = timesteps[:t_start] - - time_range = np.flip(timesteps) - total_steps = timesteps.shape[0] - print(f"Running DDIM Sampling with {total_steps} timesteps") - - iterator = tqdm(time_range, desc='Decoding image', total=total_steps) - x_dec = x_latent - for i, step in enumerate(iterator): - index = total_steps - i - 1 - ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) - x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, - unconditional_guidance_scale=unconditional_guidance_scale, - unconditional_conditioning=unconditional_conditioning) - if callback: callback(i) - return x_dec diff --git a/spaces/achyuth1344/stable-diffusion-webui/env_patch.py b/spaces/achyuth1344/stable-diffusion-webui/env_patch.py deleted file mode 100644 index bd0e40dd64274ce8679905df4e1ca9ff454de06d..0000000000000000000000000000000000000000 --- a/spaces/achyuth1344/stable-diffusion-webui/env_patch.py +++ /dev/null @@ -1,3 +0,0 @@ - -is_spaces = True if "SPACE_ID" in os.environ else False -is_shared_ui = True if "IS_SHARED_UI" in os.environ else False diff --git a/spaces/akhaliq/VQMIVC/ParallelWaveGAN/parallel_wavegan/datasets/scp_dataset.py b/spaces/akhaliq/VQMIVC/ParallelWaveGAN/parallel_wavegan/datasets/scp_dataset.py deleted file mode 100644 index 5f992ec72e0fc6b61a169befc97ee7fc3f6a8cca..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/VQMIVC/ParallelWaveGAN/parallel_wavegan/datasets/scp_dataset.py +++ /dev/null @@ -1,356 +0,0 @@ -# -*- coding: utf-8 -*- - -# Copyright 2019 Tomoki Hayashi -# MIT License (https://opensource.org/licenses/MIT) - -"""Dataset modules based on kaldi-style scp files.""" - -import logging - -from multiprocessing import Manager - -import kaldiio -import numpy as np - -from torch.utils.data import Dataset - -from parallel_wavegan.utils import HDF5ScpLoader -from parallel_wavegan.utils import NpyScpLoader - - -def _get_feats_scp_loader(feats_scp): - # read the first line of feats.scp file - with open(feats_scp) as f: - key, value = f.readlines()[0].replace("\n", "").split() - - # check scp type - if ":" in value: - value_1, value_2 = value.split(":") - if value_1.endswith(".ark"): - # kaldi-ark case: utt_id_1 /path/to/utt_id_1.ark:index - return kaldiio.load_scp(feats_scp) - elif value_1.endswith(".h5"): - # hdf5 case with path in hdf5: utt_id_1 /path/to/utt_id_1.h5:feats - return HDF5ScpLoader(feats_scp) - else: - raise ValueError("Not supported feats.scp type.") - else: - if value.endswith(".h5"): - # hdf5 case without path in hdf5: utt_id_1 /path/to/utt_id_1.h5 - return HDF5ScpLoader(feats_scp) - elif value.endswith(".npy"): - # npy case: utt_id_1 /path/to/utt_id_1.npy - return NpyScpLoader(feats_scp) - else: - raise ValueError("Not supported feats.scp type.") - - -class AudioMelSCPDataset(Dataset): - """PyTorch compatible audio and mel dataset based on kaldi-stype scp files.""" - - def __init__( - self, - wav_scp, - feats_scp, - segments=None, - audio_length_threshold=None, - mel_length_threshold=None, - return_utt_id=False, - return_sampling_rate=False, - allow_cache=False, - ): - """Initialize dataset. - - Args: - wav_scp (str): Kaldi-style wav.scp file. - feats_scp (str): Kaldi-style fests.scp file. - segments (str): Kaldi-style segments file. - audio_length_threshold (int): Threshold to remove short audio files. - mel_length_threshold (int): Threshold to remove short feature files. - return_utt_id (bool): Whether to return utterance id. - return_sampling_rate (bool): Wheter to return sampling rate. - allow_cache (bool): Whether to allow cache of the loaded files. - - """ - # load scp as lazy dict - audio_loader = kaldiio.load_scp(wav_scp, segments=segments) - mel_loader = _get_feats_scp_loader(feats_scp) - audio_keys = list(audio_loader.keys()) - mel_keys = list(mel_loader.keys()) - - # filter by threshold - if audio_length_threshold is not None: - audio_lengths = [audio.shape[0] for _, audio in audio_loader.values()] - idxs = [ - idx - for idx in range(len(audio_keys)) - if audio_lengths[idx] > audio_length_threshold - ] - if len(audio_keys) != len(idxs): - logging.warning( - f"Some files are filtered by audio length threshold " - f"({len(audio_keys)} -> {len(idxs)})." - ) - audio_keys = [audio_keys[idx] for idx in idxs] - mel_keys = [mel_keys[idx] for idx in idxs] - if mel_length_threshold is not None: - mel_lengths = [mel.shape[0] for mel in mel_loader.values()] - idxs = [ - idx - for idx in range(len(mel_keys)) - if mel_lengths[idx] > mel_length_threshold - ] - if len(mel_keys) != len(idxs): - logging.warning( - f"Some files are filtered by mel length threshold " - f"({len(mel_keys)} -> {len(idxs)})." - ) - audio_keys = [audio_keys[idx] for idx in idxs] - mel_keys = [mel_keys[idx] for idx in idxs] - - # assert the number of files - assert len(audio_keys) == len( - mel_keys - ), f"Number of audio and mel files are different ({len(audio_keys)} vs {len(mel_keys)})." - - self.audio_loader = audio_loader - self.mel_loader = mel_loader - self.utt_ids = audio_keys - self.return_utt_id = return_utt_id - self.return_sampling_rate = return_sampling_rate - self.allow_cache = allow_cache - - if allow_cache: - # NOTE(kan-bayashi): Manager is need to share memory in dataloader with num_workers > 0 - self.manager = Manager() - self.caches = self.manager.list() - self.caches += [() for _ in range(len(self.utt_ids))] - - def __getitem__(self, idx): - """Get specified idx items. - - Args: - idx (int): Index of the item. - - Returns: - str: Utterance id (only in return_utt_id = True). - ndarray or tuple: Audio signal (T,) or (w/ sampling rate if return_sampling_rate = True). - ndarray: Feature (T', C). - - """ - if self.allow_cache and len(self.caches[idx]) != 0: - return self.caches[idx] - - utt_id = self.utt_ids[idx] - fs, audio = self.audio_loader[utt_id] - mel = self.mel_loader[utt_id] - - # normalize audio signal to be [-1, 1] - audio = audio.astype(np.float32) - audio /= 1 << (16 - 1) # assume that wav is PCM 16 bit - - if self.return_sampling_rate: - audio = (audio, fs) - - if self.return_utt_id: - items = utt_id, audio, mel - else: - items = audio, mel - - if self.allow_cache: - self.caches[idx] = items - - return items - - def __len__(self): - """Return dataset length. - - Returns: - int: The length of dataset. - - """ - return len(self.utt_ids) - - -class AudioSCPDataset(Dataset): - """PyTorch compatible audio dataset based on kaldi-stype scp files.""" - - def __init__( - self, - wav_scp, - segments=None, - audio_length_threshold=None, - return_utt_id=False, - return_sampling_rate=False, - allow_cache=False, - ): - """Initialize dataset. - - Args: - wav_scp (str): Kaldi-style wav.scp file. - segments (str): Kaldi-style segments file. - audio_length_threshold (int): Threshold to remove short audio files. - return_utt_id (bool): Whether to return utterance id. - return_sampling_rate (bool): Wheter to return sampling rate. - allow_cache (bool): Whether to allow cache of the loaded files. - - """ - # load scp as lazy dict - audio_loader = kaldiio.load_scp(wav_scp, segments=segments) - audio_keys = list(audio_loader.keys()) - - # filter by threshold - if audio_length_threshold is not None: - audio_lengths = [audio.shape[0] for _, audio in audio_loader.values()] - idxs = [ - idx - for idx in range(len(audio_keys)) - if audio_lengths[idx] > audio_length_threshold - ] - if len(audio_keys) != len(idxs): - logging.warning( - f"Some files are filtered by audio length threshold " - f"({len(audio_keys)} -> {len(idxs)})." - ) - audio_keys = [audio_keys[idx] for idx in idxs] - - self.audio_loader = audio_loader - self.utt_ids = audio_keys - self.return_utt_id = return_utt_id - self.return_sampling_rate = return_sampling_rate - self.allow_cache = allow_cache - - if allow_cache: - # NOTE(kan-bayashi): Manager is need to share memory in dataloader with num_workers > 0 - self.manager = Manager() - self.caches = self.manager.list() - self.caches += [() for _ in range(len(self.utt_ids))] - - def __getitem__(self, idx): - """Get specified idx items. - - Args: - idx (int): Index of the item. - - Returns: - str: Utterance id (only in return_utt_id = True). - ndarray or tuple: Audio signal (T,) or (w/ sampling rate if return_sampling_rate = True). - - """ - if self.allow_cache and len(self.caches[idx]) != 0: - return self.caches[idx] - - utt_id = self.utt_ids[idx] - fs, audio = self.audio_loader[utt_id] - - # normalize audio signal to be [-1, 1] - audio = audio.astype(np.float32) - audio /= 1 << (16 - 1) # assume that wav is PCM 16 bit - - if self.return_sampling_rate: - audio = (audio, fs) - - if self.return_utt_id: - items = utt_id, audio - else: - items = audio - - if self.allow_cache: - self.caches[idx] = items - - return items - - def __len__(self): - """Return dataset length. - - Returns: - int: The length of dataset. - - """ - return len(self.utt_ids) - - -class MelSCPDataset(Dataset): - """PyTorch compatible mel dataset based on kaldi-stype scp files.""" - - def __init__( - self, - feats_scp, - mel_length_threshold=None, - return_utt_id=False, - allow_cache=False, - ): - """Initialize dataset. - - Args: - feats_scp (str): Kaldi-style fests.scp file. - mel_length_threshold (int): Threshold to remove short feature files. - return_utt_id (bool): Whether to return utterance id. - allow_cache (bool): Whether to allow cache of the loaded files. - - """ - # load scp as lazy dict - mel_loader = _get_feats_scp_loader(feats_scp) - mel_keys = list(mel_loader.keys()) - - # filter by threshold - if mel_length_threshold is not None: - mel_lengths = [mel.shape[0] for mel in mel_loader.values()] - idxs = [ - idx - for idx in range(len(mel_keys)) - if mel_lengths[idx] > mel_length_threshold - ] - if len(mel_keys) != len(idxs): - logging.warning( - f"Some files are filtered by mel length threshold " - f"({len(mel_keys)} -> {len(idxs)})." - ) - mel_keys = [mel_keys[idx] for idx in idxs] - - self.mel_loader = mel_loader - self.utt_ids = mel_keys - self.return_utt_id = return_utt_id - self.allow_cache = allow_cache - - if allow_cache: - # NOTE(kan-bayashi): Manager is need to share memory in dataloader with num_workers > 0 - self.manager = Manager() - self.caches = self.manager.list() - self.caches += [() for _ in range(len(self.utt_ids))] - - def __getitem__(self, idx): - """Get specified idx items. - - Args: - idx (int): Index of the item. - - Returns: - str: Utterance id (only in return_utt_id = True). - ndarray: Feature (T', C). - - """ - if self.allow_cache and len(self.caches[idx]) != 0: - return self.caches[idx] - - utt_id = self.utt_ids[idx] - mel = self.mel_loader[utt_id] - - if self.return_utt_id: - items = utt_id, mel - else: - items = mel - - if self.allow_cache: - self.caches[idx] = items - - return items - - def __len__(self): - """Return dataset length. - - Returns: - int: The length of dataset. - - """ - return len(self.utt_ids) diff --git a/spaces/akhaliq/VQMIVC/ParallelWaveGAN/utils/combine_data.sh b/spaces/akhaliq/VQMIVC/ParallelWaveGAN/utils/combine_data.sh deleted file mode 100644 index 7ceb1703bd0e784d07f1c8e8624a1d552a505c1e..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/VQMIVC/ParallelWaveGAN/utils/combine_data.sh +++ /dev/null @@ -1,57 +0,0 @@ -#!/bin/bash - -# Combine data direcotries into a single data direcotry - -# Copyright 2019 Tomoki Hayashi -# MIT License (https://opensource.org/licenses/MIT) - -if [ $# -lt 2 ]; then - echo "Usage: $0 ..." - echo "e.g.: $0 data/all data/spk_1 data/spk_2 data/spk_3" - exit 1 -fi - -set -euo pipefail - -dist_dir=$1 -shift -first_src_dir=$1 - - -[ ! -e "${dist_dir}" ] && mkdir -p "${dist_dir}" - -if [ -e "${first_src_dir}/segments" ]; then - has_segments=true - segments=${dist_dir}/segments - segments_tmp=${dist_dir}/segments.unsorted - [ -e "${segments_tmp}" ] && rm "${segments_tmp}" -else - has_segments=false -fi -scp=${dist_dir}/wav.scp -scp_tmp=${dist_dir}/wav.scp.unsorted -[ -e "${scp_tmp}" ] && rm "${scp_tmp}" - -# concatenate all of wav.scp and segments file -for _ in $(seq 1 ${#}); do - src_dir=$1 - - if "${has_segments}"; then - [ ! -e "${src_dir}/segments" ] && echo "WARN: Not found segments in ${src_dir}. Skipped." >&2 && shift && continue - cat "${src_dir}/segments" >> "${segments_tmp}" - fi - - [ ! -e "${src_dir}/wav.scp" ] && echo "Not found wav.scp in ${src_dir}." >&2 && exit 1; - cat "${src_dir}/wav.scp" >> "${scp_tmp}" - - shift -done - -# sort -sort "${scp_tmp}" > "${scp}" -if "${has_segments}"; then - sort "${segments_tmp}" > "${segments}" -fi -rm "${dist_dir}"/*.unsorted - -echo "Successfully combined data direcotries." diff --git a/spaces/akhaliq/stylegan3_clip/gen_video.py b/spaces/akhaliq/stylegan3_clip/gen_video.py deleted file mode 100644 index 7a4bcc0ea7669530fa2727392e4c09500d8eed5e..0000000000000000000000000000000000000000 --- a/spaces/akhaliq/stylegan3_clip/gen_video.py +++ /dev/null @@ -1,178 +0,0 @@ -# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -"""Generate lerp videos using pretrained network pickle.""" - -import copy -import os -import re -from typing import List, Optional, Tuple, Union - -import click -import dnnlib -import imageio -import numpy as np -import scipy.interpolate -import torch -from tqdm import tqdm - -import legacy - -#---------------------------------------------------------------------------- - -def layout_grid(img, grid_w=None, grid_h=1, float_to_uint8=True, chw_to_hwc=True, to_numpy=True): - batch_size, channels, img_h, img_w = img.shape - if grid_w is None: - grid_w = batch_size // grid_h - assert batch_size == grid_w * grid_h - if float_to_uint8: - img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8) - img = img.reshape(grid_h, grid_w, channels, img_h, img_w) - img = img.permute(2, 0, 3, 1, 4) - img = img.reshape(channels, grid_h * img_h, grid_w * img_w) - if chw_to_hwc: - img = img.permute(1, 2, 0) - if to_numpy: - img = img.cpu().numpy() - return img - -#---------------------------------------------------------------------------- - -def gen_interp_video(G, mp4: str, seeds, shuffle_seed=None, w_frames=60*4, kind='cubic', grid_dims=(1,1), num_keyframes=None, wraps=2, psi=1, device=torch.device('cuda'), **video_kwargs): - grid_w = grid_dims[0] - grid_h = grid_dims[1] - - if num_keyframes is None: - if len(seeds) % (grid_w*grid_h) != 0: - raise ValueError('Number of input seeds must be divisible by grid W*H') - num_keyframes = len(seeds) // (grid_w*grid_h) - - all_seeds = np.zeros(num_keyframes*grid_h*grid_w, dtype=np.int64) - for idx in range(num_keyframes*grid_h*grid_w): - all_seeds[idx] = seeds[idx % len(seeds)] - - if shuffle_seed is not None: - rng = np.random.RandomState(seed=shuffle_seed) - rng.shuffle(all_seeds) - - zs = torch.from_numpy(np.stack([np.random.RandomState(seed).randn(G.z_dim) for seed in all_seeds])).to(device) - ws = G.mapping(z=zs, c=None, truncation_psi=psi) - _ = G.synthesis(ws[:1]) # warm up - ws = ws.reshape(grid_h, grid_w, num_keyframes, *ws.shape[1:]) - - # Interpolation. - grid = [] - for yi in range(grid_h): - row = [] - for xi in range(grid_w): - x = np.arange(-num_keyframes * wraps, num_keyframes * (wraps + 1)) - y = np.tile(ws[yi][xi].cpu().numpy(), [wraps * 2 + 1, 1, 1]) - interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=0) - row.append(interp) - grid.append(row) - - # Render video. - video_out = imageio.get_writer(mp4, mode='I', fps=60, codec='libx264', **video_kwargs) - for frame_idx in tqdm(range(num_keyframes * w_frames)): - imgs = [] - for yi in range(grid_h): - for xi in range(grid_w): - interp = grid[yi][xi] - w = torch.from_numpy(interp(frame_idx / w_frames)).to(device) - img = G.synthesis(ws=w.unsqueeze(0), noise_mode='const')[0] - imgs.append(img) - video_out.append_data(layout_grid(torch.stack(imgs), grid_w=grid_w, grid_h=grid_h)) - video_out.close() - -#---------------------------------------------------------------------------- - -def parse_range(s: Union[str, List[int]]) -> List[int]: - '''Parse a comma separated list of numbers or ranges and return a list of ints. - - Example: '1,2,5-10' returns [1, 2, 5, 6, 7] - ''' - if isinstance(s, list): return s - ranges = [] - range_re = re.compile(r'^(\d+)-(\d+)$') - for p in s.split(','): - if m := range_re.match(p): - ranges.extend(range(int(m.group(1)), int(m.group(2))+1)) - else: - ranges.append(int(p)) - return ranges - -#---------------------------------------------------------------------------- - -def parse_tuple(s: Union[str, Tuple[int,int]]) -> Tuple[int, int]: - '''Parse a 'M,N' or 'MxN' integer tuple. - - Example: - '4x2' returns (4,2) - '0,1' returns (0,1) - ''' - if isinstance(s, tuple): return s - if m := re.match(r'^(\d+)[x,](\d+)$', s): - return (int(m.group(1)), int(m.group(2))) - raise ValueError(f'cannot parse tuple {s}') - -#---------------------------------------------------------------------------- - -@click.command() -@click.option('--network', 'network_pkl', help='Network pickle filename', required=True) -@click.option('--seeds', type=parse_range, help='List of random seeds', required=True) -@click.option('--shuffle-seed', type=int, help='Random seed to use for shuffling seed order', default=None) -@click.option('--grid', type=parse_tuple, help='Grid width/height, e.g. \'4x3\' (default: 1x1)', default=(1,1)) -@click.option('--num-keyframes', type=int, help='Number of seeds to interpolate through. If not specified, determine based on the length of the seeds array given by --seeds.', default=None) -@click.option('--w-frames', type=int, help='Number of frames to interpolate between latents', default=120) -@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True) -@click.option('--output', help='Output .mp4 filename', type=str, required=True, metavar='FILE') -def generate_images( - network_pkl: str, - seeds: List[int], - shuffle_seed: Optional[int], - truncation_psi: float, - grid: Tuple[int,int], - num_keyframes: Optional[int], - w_frames: int, - output: str -): - """Render a latent vector interpolation video. - - Examples: - - \b - # Render a 4x2 grid of interpolations for seeds 0 through 31. - python gen_video.py --output=lerp.mp4 --trunc=1 --seeds=0-31 --grid=4x2 \\ - --network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl - - Animation length and seed keyframes: - - The animation length is either determined based on the --seeds value or explicitly - specified using the --num-keyframes option. - - When num keyframes is specified with --num-keyframes, the output video length - will be 'num_keyframes*w_frames' frames. - - If --num-keyframes is not specified, the number of seeds given with - --seeds must be divisible by grid size W*H (--grid). In this case the - output video length will be '# seeds/(w*h)*w_frames' frames. - """ - - print('Loading networks from "%s"...' % network_pkl) - device = torch.device('cuda') - with dnnlib.util.open_url(network_pkl) as f: - G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore - - gen_interp_video(G=G, mp4=output, bitrate='12M', grid_dims=grid, num_keyframes=num_keyframes, w_frames=w_frames, seeds=seeds, shuffle_seed=shuffle_seed, psi=truncation_psi) - -#---------------------------------------------------------------------------- - -if __name__ == "__main__": - generate_images() # pylint: disable=no-value-for-parameter - -#---------------------------------------------------------------------------- diff --git a/spaces/alGOriTM207/Ru_DialoModel/README.md b/spaces/alGOriTM207/Ru_DialoModel/README.md deleted file mode 100644 index 25ec7cf17bf6f62a777493298a21c7bc2946b94b..0000000000000000000000000000000000000000 --- a/spaces/alGOriTM207/Ru_DialoModel/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Ru DialoModel -emoji: 📊 -colorFrom: indigo -colorTo: yellow -sdk: streamlit -sdk_version: 1.28.1 -app_file: app.py -pinned: false -license: cc-by-nc-nd-4.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_vendor/html5lib/treewalkers/__init__.py b/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_vendor/html5lib/treewalkers/__init__.py deleted file mode 100644 index b2d3aac3137f5d374ec35dd4bbfdb5e732fc51f0..0000000000000000000000000000000000000000 --- a/spaces/alexray/btc_predictor/venv/lib/python3.10/site-packages/pip/_vendor/html5lib/treewalkers/__init__.py +++ /dev/null @@ -1,154 +0,0 @@ -"""A collection of modules for iterating through different kinds of -tree, generating tokens identical to those produced by the tokenizer -module. - -To create a tree walker for a new type of tree, you need to -implement a tree walker object (called TreeWalker by convention) that -implements a 'serialize' method which takes a tree as sole argument and -returns an iterator which generates tokens. -""" - -from __future__ import absolute_import, division, unicode_literals - -from .. import constants -from .._utils import default_etree - -__all__ = ["getTreeWalker", "pprint"] - -treeWalkerCache = {} - - -def getTreeWalker(treeType, implementation=None, **kwargs): - """Get a TreeWalker class for various types of tree with built-in support - - :arg str treeType: the name of the tree type required (case-insensitive). - Supported values are: - - * "dom": The xml.dom.minidom DOM implementation - * "etree": A generic walker for tree implementations exposing an - elementtree-like interface (known to work with ElementTree, - cElementTree and lxml.etree). - * "lxml": Optimized walker for lxml.etree - * "genshi": a Genshi stream - - :arg implementation: A module implementing the tree type e.g. - xml.etree.ElementTree or cElementTree (Currently applies to the "etree" - tree type only). - - :arg kwargs: keyword arguments passed to the etree walker--for other - walkers, this has no effect - - :returns: a TreeWalker class - - """ - - treeType = treeType.lower() - if treeType not in treeWalkerCache: - if treeType == "dom": - from . import dom - treeWalkerCache[treeType] = dom.TreeWalker - elif treeType == "genshi": - from . import genshi - treeWalkerCache[treeType] = genshi.TreeWalker - elif treeType == "lxml": - from . import etree_lxml - treeWalkerCache[treeType] = etree_lxml.TreeWalker - elif treeType == "etree": - from . import etree - if implementation is None: - implementation = default_etree - # XXX: NEVER cache here, caching is done in the etree submodule - return etree.getETreeModule(implementation, **kwargs).TreeWalker - return treeWalkerCache.get(treeType) - - -def concatenateCharacterTokens(tokens): - pendingCharacters = [] - for token in tokens: - type = token["type"] - if type in ("Characters", "SpaceCharacters"): - pendingCharacters.append(token["data"]) - else: - if pendingCharacters: - yield {"type": "Characters", "data": "".join(pendingCharacters)} - pendingCharacters = [] - yield token - if pendingCharacters: - yield {"type": "Characters", "data": "".join(pendingCharacters)} - - -def pprint(walker): - """Pretty printer for tree walkers - - Takes a TreeWalker instance and pretty prints the output of walking the tree. - - :arg walker: a TreeWalker instance - - """ - output = [] - indent = 0 - for token in concatenateCharacterTokens(walker): - type = token["type"] - if type in ("StartTag", "EmptyTag"): - # tag name - if token["namespace"] and token["namespace"] != constants.namespaces["html"]: - if token["namespace"] in constants.prefixes: - ns = constants.prefixes[token["namespace"]] - else: - ns = token["namespace"] - name = "%s %s" % (ns, token["name"]) - else: - name = token["name"] - output.append("%s<%s>" % (" " * indent, name)) - indent += 2 - # attributes (sorted for consistent ordering) - attrs = token["data"] - for (namespace, localname), value in sorted(attrs.items()): - if namespace: - if namespace in constants.prefixes: - ns = constants.prefixes[namespace] - else: - ns = namespace - name = "%s %s" % (ns, localname) - else: - name = localname - output.append("%s%s=\"%s\"" % (" " * indent, name, value)) - # self-closing - if type == "EmptyTag": - indent -= 2 - - elif type == "EndTag": - indent -= 2 - - elif type == "Comment": - output.append("%s" % (" " * indent, token["data"])) - - elif type == "Doctype": - if token["name"]: - if token["publicId"]: - output.append("""%s""" % - (" " * indent, - token["name"], - token["publicId"], - token["systemId"] if token["systemId"] else "")) - elif token["systemId"]: - output.append("""%s""" % - (" " * indent, - token["name"], - token["systemId"])) - else: - output.append("%s" % (" " * indent, - token["name"])) - else: - output.append("%s" % (" " * indent,)) - - elif type == "Characters": - output.append("%s\"%s\"" % (" " * indent, token["data"])) - - elif type == "SpaceCharacters": - assert False, "concatenateCharacterTokens should have got rid of all Space tokens" - - else: - raise ValueError("Unknown token type, %s" % type) - - return "\n".join(output) diff --git a/spaces/aliabd/SummerTime/model/third_party/HMNet/ThirdParty/ROUGE/ROUGE-1.5.5/XML/DOM/Node.pod b/spaces/aliabd/SummerTime/model/third_party/HMNet/ThirdParty/ROUGE/ROUGE-1.5.5/XML/DOM/Node.pod deleted file mode 100644 index c32991d005415c7fabecdda25b236235210e69c0..0000000000000000000000000000000000000000 --- a/spaces/aliabd/SummerTime/model/third_party/HMNet/ThirdParty/ROUGE/ROUGE-1.5.5/XML/DOM/Node.pod +++ /dev/null @@ -1,451 +0,0 @@ -=head1 NAME - -XML::DOM::Node - Super class of all nodes in XML::DOM - -=head1 DESCRIPTION - -XML::DOM::Node is the super class of all nodes in an XML::DOM document. -This means that all nodes that subclass XML::DOM::Node also inherit all -the methods that XML::DOM::Node implements. - -=head2 GLOBAL VARIABLES - -=over 4 - -=item @NodeNames - -The variable @XML::DOM::Node::NodeNames maps the node type constants to strings. -It is used by XML::DOM::Node::getNodeTypeName. - -=back - -=head2 METHODS - -=over 4 - -=item getNodeType - -Return an integer indicating the node type. See XML::DOM constants. - -=item getNodeName - -Return a property or a hardcoded string, depending on the node type. -Here are the corresponding functions or values: - - Attr getName - AttDef getName - AttlistDecl getName - CDATASection "#cdata-section" - Comment "#comment" - Document "#document" - DocumentType getNodeName - DocumentFragment "#document-fragment" - Element getTagName - ElementDecl getName - EntityReference getEntityName - Entity getNotationName - Notation getName - ProcessingInstruction getTarget - Text "#text" - XMLDecl "#xml-declaration" - -B: AttDef, AttlistDecl, ElementDecl and XMLDecl were added for -completeness. - -=item getNodeValue and setNodeValue (value) - -Returns a string or undef, depending on the node type. This method is provided -for completeness. In other languages it saves the programmer an upcast. -The value is either available thru some other method defined in the subclass, or -else undef is returned. Here are the corresponding methods: -Attr::getValue, Text::getData, CDATASection::getData, Comment::getData, -ProcessingInstruction::getData. - -=item getParentNode and setParentNode (parentNode) - -The parent of this node. All nodes, except Document, -DocumentFragment, and Attr may have a parent. However, if a -node has just been created and not yet added to the tree, or -if it has been removed from the tree, this is undef. - -=item getChildNodes - -A NodeList that contains all children of this node. If there -are no children, this is a NodeList containing no nodes. The -content of the returned NodeList is "live" in the sense that, -for instance, changes to the children of the node object that -it was created from are immediately reflected in the nodes -returned by the NodeList accessors; it is not a static -snapshot of the content of the node. This is true for every -NodeList, including the ones returned by the -getElementsByTagName method. - -NOTE: this implementation does not return a "live" NodeList for -getElementsByTagName. See L. - -When this method is called in a list context, it returns a regular perl list -containing the child nodes. Note that this list is not "live". E.g. - - @list = $node->getChildNodes; # returns a perl list - $nodelist = $node->getChildNodes; # returns a NodeList (object reference) - for my $kid ($node->getChildNodes) # iterate over the children of $node - -=item getFirstChild - -The first child of this node. If there is no such node, this returns undef. - -=item getLastChild - -The last child of this node. If there is no such node, this returns undef. - -=item getPreviousSibling - -The node immediately preceding this node. If there is no such -node, this returns undef. - -=item getNextSibling - -The node immediately following this node. If there is no such node, this returns -undef. - -=item getAttributes - -A NamedNodeMap containing the attributes (Attr nodes) of this node -(if it is an Element) or undef otherwise. -Note that adding/removing attributes from the returned object, also adds/removes -attributes from the Element node that the NamedNodeMap came from. - -=item getOwnerDocument - -The Document object associated with this node. This is also -the Document object used to create new nodes. When this node -is a Document this is undef. - -=item insertBefore (newChild, refChild) - -Inserts the node newChild before the existing child node -refChild. If refChild is undef, insert newChild at the end of -the list of children. - -If newChild is a DocumentFragment object, all of its children -are inserted, in the same order, before refChild. If the -newChild is already in the tree, it is first removed. - -Return Value: The node being inserted. - -DOMExceptions: - -=over 4 - -=item * HIERARCHY_REQUEST_ERR - -Raised if this node is of a type that does not allow children of the type of -the newChild node, or if the node to insert is one of this node's ancestors. - -=item * WRONG_DOCUMENT_ERR - -Raised if newChild was created from a different document than the one that -created this node. - -=item * NO_MODIFICATION_ALLOWED_ERR - -Raised if this node is readonly. - -=item * NOT_FOUND_ERR - -Raised if refChild is not a child of this node. - -=back - -=item replaceChild (newChild, oldChild) - -Replaces the child node oldChild with newChild in the list of -children, and returns the oldChild node. If the newChild is -already in the tree, it is first removed. - -Return Value: The node replaced. - -DOMExceptions: - -=over 4 - -=item * HIERARCHY_REQUEST_ERR - -Raised if this node is of a type that does not allow children of the type of -the newChild node, or it the node to put in is one of this node's ancestors. - -=item * WRONG_DOCUMENT_ERR - -Raised if newChild was created from a different document than the one that -created this node. - -=item * NO_MODIFICATION_ALLOWED_ERR - -Raised if this node is readonly. - -=item * NOT_FOUND_ERR - -Raised if oldChild is not a child of this node. - -=back - -=item removeChild (oldChild) - -Removes the child node indicated by oldChild from the list of -children, and returns it. - -Return Value: The node removed. - -DOMExceptions: - -=over 4 - -=item * NO_MODIFICATION_ALLOWED_ERR - -Raised if this node is readonly. - -=item * NOT_FOUND_ERR - -Raised if oldChild is not a child of this node. - -=back - -=item appendChild (newChild) - -Adds the node newChild to the end of the list of children of -this node. If the newChild is already in the tree, it is -first removed. If it is a DocumentFragment object, the entire contents of -the document fragment are moved into the child list of this node - -Return Value: The node added. - -DOMExceptions: - -=over 4 - -=item * HIERARCHY_REQUEST_ERR - -Raised if this node is of a type that does not allow children of the type of -the newChild node, or if the node to append is one of this node's ancestors. - -=item * WRONG_DOCUMENT_ERR - -Raised if newChild was created from a different document than the one that -created this node. - -=item * NO_MODIFICATION_ALLOWED_ERR - -Raised if this node is readonly. - -=back - -=item hasChildNodes - -This is a convenience method to allow easy determination of -whether a node has any children. - -Return Value: 1 if the node has any children, 0 otherwise. - -=item cloneNode (deep) - -Returns a duplicate of this node, i.e., serves as a generic -copy constructor for nodes. The duplicate node has no parent -(parentNode returns undef.). - -Cloning an Element copies all attributes and their values, -including those generated by the XML processor to represent -defaulted attributes, but this method does not copy any text -it contains unless it is a deep clone, since the text is -contained in a child Text node. Cloning any other type of -node simply returns a copy of this node. - -Parameters: - I If true, recursively clone the subtree under the specified node. -If false, clone only the node itself (and its attributes, if it is an Element). - -Return Value: The duplicate node. - -=item normalize - -Puts all Text nodes in the full depth of the sub-tree -underneath this Element into a "normal" form where only -markup (e.g., tags, comments, processing instructions, CDATA -sections, and entity references) separates Text nodes, i.e., -there are no adjacent Text nodes. This can be used to ensure -that the DOM view of a document is the same as if it were -saved and re-loaded, and is useful when operations (such as -XPointer lookups) that depend on a particular document tree -structure are to be used. - -B: In the DOM Spec this method is defined in the Element and -Document class interfaces only, but it doesn't hurt to have it here... - -=item getElementsByTagName (name [, recurse]) - -Returns a NodeList of all descendant elements with a given -tag name, in the order in which they would be encountered in -a preorder traversal of the Element tree. - -Parameters: - I The name of the tag to match on. The special value "*" matches all tags. - I Whether it should return only direct child nodes (0) or any descendant that matches the tag name (1). This argument is optional and defaults to 1. It is not part of the DOM spec. - -Return Value: A list of matching Element nodes. - -NOTE: this implementation does not return a "live" NodeList for -getElementsByTagName. See L. - -When this method is called in a list context, it returns a regular perl list -containing the result nodes. E.g. - - @list = $node->getElementsByTagName("tag"); # returns a perl list - $nodelist = $node->getElementsByTagName("tag"); # returns a NodeList (object ref.) - for my $elem ($node->getElementsByTagName("tag")) # iterate over the result nodes - -=back - -=head2 Additional methods not in the DOM Spec - -=over 4 - -=item getNodeTypeName - -Return the string describing the node type. -E.g. returns "ELEMENT_NODE" if getNodeType returns ELEMENT_NODE. -It uses @XML::DOM::Node::NodeNames. - -=item toString - -Returns the entire subtree as a string. - -=item printToFile (filename) - -Prints the entire subtree to the file with the specified filename. - -Croaks: if the file could not be opened for writing. - -=item printToFileHandle (handle) - -Prints the entire subtree to the file handle. -E.g. to print to STDOUT: - - $node->printToFileHandle (\*STDOUT); - -=item print (obj) - -Prints the entire subtree using the object's print method. E.g to print to a -FileHandle object: - - $f = new FileHandle ("file.out", "w"); - $node->print ($f); - -=item getChildIndex (child) - -Returns the index of the child node in the list returned by getChildNodes. - -Return Value: the index or -1 if the node is not found. - -=item getChildAtIndex (index) - -Returns the child node at the specifed index or undef. - -=item addText (text) - -Appends the specified string to the last child if it is a Text node, or else -appends a new Text node (with the specified text.) - -Return Value: the last child if it was a Text node or else the new Text node. - -=item dispose - -Removes all circular references in this node and its descendants so the -objects can be claimed for garbage collection. The objects should not be used -afterwards. - -=item setOwnerDocument (doc) - -Sets the ownerDocument property of this node and all its children (and -attributes etc.) to the specified document. -This allows the user to cut and paste document subtrees between different -XML::DOM::Documents. The node should be removed from the original document -first, before calling setOwnerDocument. - -This method does nothing when called on a Document node. - -=item isAncestor (parent) - -Returns 1 if parent is an ancestor of this node or if it is this node itself. - -=item expandEntityRefs (str) - -Expands all the entity references in the string and returns the result. -The entity references can be character references (e.g. "{" or "ῂ"), -default entity references (""", ">", "<", "'" and "&") or -entity references defined in Entity objects as part of the DocumentType of -the owning Document. Character references are expanded into UTF-8. -Parameter entity references (e.g. %ent;) are not expanded. - -=item to_sax ( %HANDLERS ) - -E.g. - - $node->to_sax (DocumentHandler => $my_handler, - Handler => $handler2 ); - -%HANDLERS may contain the following handlers: - -=over 4 - -=item * DocumentHandler - -=item * DTDHandler - -=item * EntityResolver - -=item * Handler - -Default handler when one of the above is not specified - -=back - -Each XML::DOM::Node generates the appropriate SAX callbacks (for the -appropriate SAX handler.) Different SAX handlers can be plugged in to -accomplish different things, e.g. L would check the node -(currently only Document and Element nodes are supported), L -would create a new DOM subtree (thereby, in essence, copying the Node) -and in the near future, XML::Writer could print the node. -All Perl SAX related work is still in flux, so this interface may change a -little. - -See PerlSAX for the description of the SAX interface. - -=item check ( [$checker] ) - -See descriptions for check() in L and L. - -=item xql ( @XQL_OPTIONS ) - -To use the xql method, you must first I L and L. -This method is basically a shortcut for: - - $query = new XML::XQL::Query ( @XQL_OPTIONS ); - return $query->solve ($node); - -If the first parameter in @XQL_OPTIONS is the XQL expression, you can leave off -the 'Expr' keyword, so: - - $node->xql ("doc//elem1[@attr]", @other_options); - -is identical to: - - $node->xql (Expr => "doc//elem1[@attr]", @other_options); - -See L for other available XQL_OPTIONS. -See L and L for more info. - -=item isHidden () - -Whether the node is hidden. -See L for details. - -=back diff --git a/spaces/aliabid94/AutoGPT/tests/unit/test_chat.py b/spaces/aliabid94/AutoGPT/tests/unit/test_chat.py deleted file mode 100644 index 774f4103762c28d5a02e89c14b224fae0bc0756a..0000000000000000000000000000000000000000 --- a/spaces/aliabid94/AutoGPT/tests/unit/test_chat.py +++ /dev/null @@ -1,86 +0,0 @@ -# Generated by CodiumAI -import time -import unittest -from unittest.mock import patch - -from autogpt.chat import create_chat_message, generate_context - - -class TestChat(unittest.TestCase): - # Tests that the function returns a dictionary with the correct keys and values when valid strings are provided for role and content. - def test_happy_path_role_content(self): - result = create_chat_message("system", "Hello, world!") - self.assertEqual(result, {"role": "system", "content": "Hello, world!"}) - - # Tests that the function returns a dictionary with the correct keys and values when empty strings are provided for role and content. - def test_empty_role_content(self): - result = create_chat_message("", "") - self.assertEqual(result, {"role": "", "content": ""}) - - # Tests the behavior of the generate_context function when all input parameters are empty. - @patch("time.strftime") - def test_generate_context_empty_inputs(self, mock_strftime): - # Mock the time.strftime function to return a fixed value - mock_strftime.return_value = "Sat Apr 15 00:00:00 2023" - # Arrange - prompt = "" - relevant_memory = "" - full_message_history = [] - model = "gpt-3.5-turbo-0301" - - # Act - result = generate_context(prompt, relevant_memory, full_message_history, model) - - # Assert - expected_result = ( - -1, - 47, - 3, - [ - {"role": "system", "content": ""}, - { - "role": "system", - "content": f"The current time and date is {time.strftime('%c')}", - }, - { - "role": "system", - "content": f"This reminds you of these events from your past:\n\n\n", - }, - ], - ) - self.assertEqual(result, expected_result) - - # Tests that the function successfully generates a current_context given valid inputs. - def test_generate_context_valid_inputs(self): - # Given - prompt = "What is your favorite color?" - relevant_memory = "You once painted your room blue." - full_message_history = [ - create_chat_message("user", "Hi there!"), - create_chat_message("assistant", "Hello! How can I assist you today?"), - create_chat_message("user", "Can you tell me a joke?"), - create_chat_message( - "assistant", - "Why did the tomato turn red? Because it saw the salad dressing!", - ), - create_chat_message("user", "Haha, that's funny."), - ] - model = "gpt-3.5-turbo-0301" - - # When - result = generate_context(prompt, relevant_memory, full_message_history, model) - - # Then - self.assertIsInstance(result[0], int) - self.assertIsInstance(result[1], int) - self.assertIsInstance(result[2], int) - self.assertIsInstance(result[3], list) - self.assertGreaterEqual(result[0], 0) - self.assertGreaterEqual(result[1], 0) - self.assertGreaterEqual(result[2], 0) - self.assertGreaterEqual( - len(result[3]), 3 - ) # current_context should have at least 3 messages - self.assertLessEqual( - result[1], 2048 - ) # token limit for GPT-3.5-turbo-0301 is 2048 tokens diff --git a/spaces/allknowingroger/Image-Models-Test126/app.py b/spaces/allknowingroger/Image-Models-Test126/app.py deleted file mode 100644 index 826da0104ece98fd9e164a9014b505b39d81896d..0000000000000000000000000000000000000000 --- a/spaces/allknowingroger/Image-Models-Test126/app.py +++ /dev/null @@ -1,144 +0,0 @@ -import gradio as gr -# import os -# import sys -# from pathlib import Path -import time - -models =[ - "DamarJati/melaura-v1", - "KyriaAnnwyn/lora-trained-dog-xl", - "KyriaAnnwyn/lora-trained-plu-xl", - "amanastel/astel", - "MakAttack/dalmation13img500", - "jejel/dreambooth_mrabdel_sdxl", - "Yntec/lametta", - "joachimsallstrom/aether-cloud-lora-for-sdxl", - "Yntec/lametta", -] - - -model_functions = {} -model_idx = 1 -for model_path in models: - try: - model_functions[model_idx] = gr.Interface.load(f"models/{model_path}", live=False, preprocess=True, postprocess=False) - except Exception as error: - def the_fn(txt): - return None - model_functions[model_idx] = gr.Interface(fn=the_fn, inputs=["text"], outputs=["image"]) - model_idx+=1 - - -def send_it_idx(idx): - def send_it_fn(prompt): - output = (model_functions.get(str(idx)) or model_functions.get(str(1)))(prompt) - return output - return send_it_fn - -def get_prompts(prompt_text): - return prompt_text - -def clear_it(val): - if int(val) != 0: - val = 0 - else: - val = 0 - pass - return val - -def all_task_end(cnt,t_stamp): - to = t_stamp + 60 - et = time.time() - if et > to and t_stamp != 0: - d = gr.update(value=0) - tog = gr.update(value=1) - #print(f'to: {to} et: {et}') - else: - if cnt != 0: - d = gr.update(value=et) - else: - d = gr.update(value=0) - tog = gr.update(value=0) - #print (f'passing: to: {to} et: {et}') - pass - return d, tog - -def all_task_start(): - print("\n\n\n\n\n\n\n") - t = time.gmtime() - t_stamp = time.time() - current_time = time.strftime("%H:%M:%S", t) - return gr.update(value=t_stamp), gr.update(value=t_stamp), gr.update(value=0) - -def clear_fn(): - nn = len(models) - return tuple([None, *[None for _ in range(nn)]]) - - - -with gr.Blocks(title="SD Models") as my_interface: - with gr.Column(scale=12): - # with gr.Row(): - # gr.Markdown("""- Primary prompt: 你想画的内容(英文单词,如 a cat, 加英文逗号效果更好;点 Improve 按钮进行完善)\n- Real prompt: 完善后的提示词,出现后再点右边的 Run 按钮开始运行""") - with gr.Row(): - with gr.Row(scale=6): - primary_prompt=gr.Textbox(label="Prompt", value="") - # real_prompt=gr.Textbox(label="Real prompt") - with gr.Row(scale=6): - # improve_prompts_btn=gr.Button("Improve") - with gr.Row(): - run=gr.Button("Run",variant="primary") - clear_btn=gr.Button("Clear") - with gr.Row(): - sd_outputs = {} - model_idx = 1 - for model_path in models: - with gr.Column(scale=3, min_width=320): - with gr.Box(): - sd_outputs[model_idx] = gr.Image(label=model_path) - pass - model_idx += 1 - pass - pass - - with gr.Row(visible=False): - start_box=gr.Number(interactive=False) - end_box=gr.Number(interactive=False) - tog_box=gr.Textbox(value=0,interactive=False) - - start_box.change( - all_task_end, - [start_box, end_box], - [start_box, tog_box], - every=1, - show_progress=False) - - primary_prompt.submit(all_task_start, None, [start_box, end_box, tog_box]) - run.click(all_task_start, None, [start_box, end_box, tog_box]) - runs_dict = {} - model_idx = 1 - for model_path in models: - runs_dict[model_idx] = run.click(model_functions[model_idx], inputs=[primary_prompt], outputs=[sd_outputs[model_idx]]) - model_idx += 1 - pass - pass - - # improve_prompts_btn_clicked=improve_prompts_btn.click( - # get_prompts, - # inputs=[primary_prompt], - # outputs=[primary_prompt], - # cancels=list(runs_dict.values())) - clear_btn.click( - clear_fn, - None, - [primary_prompt, *list(sd_outputs.values())], - cancels=[*list(runs_dict.values())]) - tog_box.change( - clear_it, - tog_box, - tog_box, - cancels=[*list(runs_dict.values())]) - -my_interface.queue(concurrency_count=600, status_update_rate=1) -my_interface.launch(inline=True, show_api=False) - \ No newline at end of file diff --git a/spaces/alvanlii/domain-expansion/legacy.py b/spaces/alvanlii/domain-expansion/legacy.py deleted file mode 100644 index 9387d79f23224642ca316399de2f0258f72de79b..0000000000000000000000000000000000000000 --- a/spaces/alvanlii/domain-expansion/legacy.py +++ /dev/null @@ -1,320 +0,0 @@ -# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -import click -import pickle -import re -import copy -import numpy as np -import torch -import dnnlib -from torch_utils import misc - -#---------------------------------------------------------------------------- - -def load_network_pkl(f, force_fp16=False): - data = _LegacyUnpickler(f).load() - - # Legacy TensorFlow pickle => convert. - if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data): - tf_G, tf_D, tf_Gs = data - G = convert_tf_generator(tf_G) - D = convert_tf_discriminator(tf_D) - G_ema = convert_tf_generator(tf_Gs) - data = dict(G=G, D=D, G_ema=G_ema) - - # Add missing fields. - if 'training_set_kwargs' not in data: - data['training_set_kwargs'] = None - if 'augment_pipe' not in data: - data['augment_pipe'] = None - - # Validate contents. - assert isinstance(data['G'], torch.nn.Module) - assert isinstance(data['D'], torch.nn.Module) - assert isinstance(data['G_ema'], torch.nn.Module) - assert isinstance(data['training_set_kwargs'], (dict, type(None))) - assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None))) - - # Force FP16. - if force_fp16: - for key in ['G', 'D', 'G_ema']: - old = data[key] - kwargs = copy.deepcopy(old.init_kwargs) - if key.startswith('G'): - kwargs.synthesis_kwargs = dnnlib.EasyDict(kwargs.get('synthesis_kwargs', {})) - kwargs.synthesis_kwargs.num_fp16_res = 4 - kwargs.synthesis_kwargs.conv_clamp = 256 - if key.startswith('D'): - kwargs.num_fp16_res = 4 - kwargs.conv_clamp = 256 - if kwargs != old.init_kwargs: - new = type(old)(**kwargs).eval().requires_grad_(False) - misc.copy_params_and_buffers(old, new, require_all=True) - data[key] = new - return data - -#---------------------------------------------------------------------------- - -class _TFNetworkStub(dnnlib.EasyDict): - pass - -class _LegacyUnpickler(pickle.Unpickler): - def find_class(self, module, name): - if module == 'dnnlib.tflib.network' and name == 'Network': - return _TFNetworkStub - return super().find_class(module, name) - -#---------------------------------------------------------------------------- - -def _collect_tf_params(tf_net): - # pylint: disable=protected-access - tf_params = dict() - def recurse(prefix, tf_net): - for name, value in tf_net.variables: - tf_params[prefix + name] = value - for name, comp in tf_net.components.items(): - recurse(prefix + name + '/', comp) - recurse('', tf_net) - return tf_params - -#---------------------------------------------------------------------------- - -def _populate_module_params(module, *patterns): - for name, tensor in misc.named_params_and_buffers(module): - found = False - value = None - for pattern, value_fn in zip(patterns[0::2], patterns[1::2]): - match = re.fullmatch(pattern, name) - if match: - found = True - if value_fn is not None: - value = value_fn(*match.groups()) - break - try: - assert found - if value is not None: - tensor.copy_(torch.from_numpy(np.array(value))) - except: - print(name, list(tensor.shape)) - raise - -#---------------------------------------------------------------------------- - -def convert_tf_generator(tf_G): - if tf_G.version < 4: - raise ValueError('TensorFlow pickle version too low') - - # Collect kwargs. - tf_kwargs = tf_G.static_kwargs - known_kwargs = set() - def kwarg(tf_name, default=None, none=None): - known_kwargs.add(tf_name) - val = tf_kwargs.get(tf_name, default) - return val if val is not None else none - - # Convert kwargs. - kwargs = dnnlib.EasyDict( - z_dim = kwarg('latent_size', 512), - c_dim = kwarg('label_size', 0), - w_dim = kwarg('dlatent_size', 512), - img_resolution = kwarg('resolution', 1024), - img_channels = kwarg('num_channels', 3), - mapping_kwargs = dnnlib.EasyDict( - num_layers = kwarg('mapping_layers', 8), - embed_features = kwarg('label_fmaps', None), - layer_features = kwarg('mapping_fmaps', None), - activation = kwarg('mapping_nonlinearity', 'lrelu'), - lr_multiplier = kwarg('mapping_lrmul', 0.01), - w_avg_beta = kwarg('w_avg_beta', 0.995, none=1), - ), - synthesis_kwargs = dnnlib.EasyDict( - channel_base = kwarg('fmap_base', 16384) * 2, - channel_max = kwarg('fmap_max', 512), - num_fp16_res = kwarg('num_fp16_res', 0), - conv_clamp = kwarg('conv_clamp', None), - architecture = kwarg('architecture', 'skip'), - resample_filter = kwarg('resample_kernel', [1,3,3,1]), - use_noise = kwarg('use_noise', True), - activation = kwarg('nonlinearity', 'lrelu'), - ), - ) - - # Check for unknown kwargs. - kwarg('truncation_psi') - kwarg('truncation_cutoff') - kwarg('style_mixing_prob') - kwarg('structure') - unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs) - if len(unknown_kwargs) > 0: - raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0]) - - # Collect params. - tf_params = _collect_tf_params(tf_G) - for name, value in list(tf_params.items()): - match = re.fullmatch(r'ToRGB_lod(\d+)/(.*)', name) - if match: - r = kwargs.img_resolution // (2 ** int(match.group(1))) - tf_params[f'{r}x{r}/ToRGB/{match.group(2)}'] = value - kwargs.synthesis.kwargs.architecture = 'orig' - #for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}') - - # Convert params. - from training import networks - G = networks.Generator(**kwargs).eval().requires_grad_(False) - # pylint: disable=unnecessary-lambda - _populate_module_params(G, - r'mapping\.w_avg', lambda: tf_params[f'dlatent_avg'], - r'mapping\.embed\.weight', lambda: tf_params[f'mapping/LabelEmbed/weight'].transpose(), - r'mapping\.embed\.bias', lambda: tf_params[f'mapping/LabelEmbed/bias'], - r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'mapping/Dense{i}/weight'].transpose(), - r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'mapping/Dense{i}/bias'], - r'synthesis\.b4\.const', lambda: tf_params[f'synthesis/4x4/Const/const'][0], - r'synthesis\.b4\.conv1\.weight', lambda: tf_params[f'synthesis/4x4/Conv/weight'].transpose(3, 2, 0, 1), - r'synthesis\.b4\.conv1\.bias', lambda: tf_params[f'synthesis/4x4/Conv/bias'], - r'synthesis\.b4\.conv1\.noise_const', lambda: tf_params[f'synthesis/noise0'][0, 0], - r'synthesis\.b4\.conv1\.noise_strength', lambda: tf_params[f'synthesis/4x4/Conv/noise_strength'], - r'synthesis\.b4\.conv1\.affine\.weight', lambda: tf_params[f'synthesis/4x4/Conv/mod_weight'].transpose(), - r'synthesis\.b4\.conv1\.affine\.bias', lambda: tf_params[f'synthesis/4x4/Conv/mod_bias'] + 1, - r'synthesis\.b(\d+)\.conv0\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/weight'][::-1, ::-1].transpose(3, 2, 0, 1), - r'synthesis\.b(\d+)\.conv0\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/bias'], - r'synthesis\.b(\d+)\.conv0\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-5}'][0, 0], - r'synthesis\.b(\d+)\.conv0\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/noise_strength'], - r'synthesis\.b(\d+)\.conv0\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_weight'].transpose(), - r'synthesis\.b(\d+)\.conv0\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_bias'] + 1, - r'synthesis\.b(\d+)\.conv1\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/weight'].transpose(3, 2, 0, 1), - r'synthesis\.b(\d+)\.conv1\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/bias'], - r'synthesis\.b(\d+)\.conv1\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-4}'][0, 0], - r'synthesis\.b(\d+)\.conv1\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/noise_strength'], - r'synthesis\.b(\d+)\.conv1\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_weight'].transpose(), - r'synthesis\.b(\d+)\.conv1\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_bias'] + 1, - r'synthesis\.b(\d+)\.torgb\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/weight'].transpose(3, 2, 0, 1), - r'synthesis\.b(\d+)\.torgb\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/bias'], - r'synthesis\.b(\d+)\.torgb\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_weight'].transpose(), - r'synthesis\.b(\d+)\.torgb\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_bias'] + 1, - r'synthesis\.b(\d+)\.skip\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Skip/weight'][::-1, ::-1].transpose(3, 2, 0, 1), - r'.*\.resample_filter', None, - ) - return G - -#---------------------------------------------------------------------------- - -def convert_tf_discriminator(tf_D): - if tf_D.version < 4: - raise ValueError('TensorFlow pickle version too low') - - # Collect kwargs. - tf_kwargs = tf_D.static_kwargs - known_kwargs = set() - def kwarg(tf_name, default=None): - known_kwargs.add(tf_name) - return tf_kwargs.get(tf_name, default) - - # Convert kwargs. - kwargs = dnnlib.EasyDict( - c_dim = kwarg('label_size', 0), - img_resolution = kwarg('resolution', 1024), - img_channels = kwarg('num_channels', 3), - architecture = kwarg('architecture', 'resnet'), - channel_base = kwarg('fmap_base', 16384) * 2, - channel_max = kwarg('fmap_max', 512), - num_fp16_res = kwarg('num_fp16_res', 0), - conv_clamp = kwarg('conv_clamp', None), - cmap_dim = kwarg('mapping_fmaps', None), - block_kwargs = dnnlib.EasyDict( - activation = kwarg('nonlinearity', 'lrelu'), - resample_filter = kwarg('resample_kernel', [1,3,3,1]), - freeze_layers = kwarg('freeze_layers', 0), - ), - mapping_kwargs = dnnlib.EasyDict( - num_layers = kwarg('mapping_layers', 0), - embed_features = kwarg('mapping_fmaps', None), - layer_features = kwarg('mapping_fmaps', None), - activation = kwarg('nonlinearity', 'lrelu'), - lr_multiplier = kwarg('mapping_lrmul', 0.1), - ), - epilogue_kwargs = dnnlib.EasyDict( - mbstd_group_size = kwarg('mbstd_group_size', None), - mbstd_num_channels = kwarg('mbstd_num_features', 1), - activation = kwarg('nonlinearity', 'lrelu'), - ), - ) - - # Check for unknown kwargs. - kwarg('structure') - unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs) - if len(unknown_kwargs) > 0: - raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0]) - - # Collect params. - tf_params = _collect_tf_params(tf_D) - for name, value in list(tf_params.items()): - match = re.fullmatch(r'FromRGB_lod(\d+)/(.*)', name) - if match: - r = kwargs.img_resolution // (2 ** int(match.group(1))) - tf_params[f'{r}x{r}/FromRGB/{match.group(2)}'] = value - kwargs.architecture = 'orig' - #for name, value in tf_params.items(): print(f'{name:<50s}{list(value.shape)}') - - # Convert params. - from training import networks - D = networks.Discriminator(**kwargs).eval().requires_grad_(False) - # pylint: disable=unnecessary-lambda - _populate_module_params(D, - r'b(\d+)\.fromrgb\.weight', lambda r: tf_params[f'{r}x{r}/FromRGB/weight'].transpose(3, 2, 0, 1), - r'b(\d+)\.fromrgb\.bias', lambda r: tf_params[f'{r}x{r}/FromRGB/bias'], - r'b(\d+)\.conv(\d+)\.weight', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'].transpose(3, 2, 0, 1), - r'b(\d+)\.conv(\d+)\.bias', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'], - r'b(\d+)\.skip\.weight', lambda r: tf_params[f'{r}x{r}/Skip/weight'].transpose(3, 2, 0, 1), - r'mapping\.embed\.weight', lambda: tf_params[f'LabelEmbed/weight'].transpose(), - r'mapping\.embed\.bias', lambda: tf_params[f'LabelEmbed/bias'], - r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'Mapping{i}/weight'].transpose(), - r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'Mapping{i}/bias'], - r'b4\.conv\.weight', lambda: tf_params[f'4x4/Conv/weight'].transpose(3, 2, 0, 1), - r'b4\.conv\.bias', lambda: tf_params[f'4x4/Conv/bias'], - r'b4\.fc\.weight', lambda: tf_params[f'4x4/Dense0/weight'].transpose(), - r'b4\.fc\.bias', lambda: tf_params[f'4x4/Dense0/bias'], - r'b4\.out\.weight', lambda: tf_params[f'Output/weight'].transpose(), - r'b4\.out\.bias', lambda: tf_params[f'Output/bias'], - r'.*\.resample_filter', None, - ) - return D - -#---------------------------------------------------------------------------- - -@click.command() -@click.option('--source', help='Input pickle', required=True, metavar='PATH') -@click.option('--dest', help='Output pickle', required=True, metavar='PATH') -@click.option('--force-fp16', help='Force the networks to use FP16', type=bool, default=False, metavar='BOOL', show_default=True) -def convert_network_pickle(source, dest, force_fp16): - """Convert legacy network pickle into the native PyTorch format. - - The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA. - It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks. - - Example: - - \b - python legacy.py \\ - --source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\ - --dest=stylegan2-cat-config-f.pkl - """ - print(f'Loading "{source}"...') - with dnnlib.util.open_url(source) as f: - data = load_network_pkl(f, force_fp16=force_fp16) - print(f'Saving "{dest}"...') - with open(dest, 'wb') as f: - pickle.dump(data, f) - print('Done.') - -#---------------------------------------------------------------------------- - -if __name__ == "__main__": - convert_network_pickle() # pylint: disable=no-value-for-parameter - -#---------------------------------------------------------------------------- diff --git a/spaces/alysa/vieTTS/README.md b/spaces/alysa/vieTTS/README.md deleted file mode 100644 index b972725567160983d5dc3bb0157a3498200b7cd6..0000000000000000000000000000000000000000 --- a/spaces/alysa/vieTTS/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: VieTTS -emoji: 💩 -colorFrom: blue -colorTo: purple -sdk: gradio -sdk_version: 3.19.1 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/amagastya/SPARK/Dockerfile b/spaces/amagastya/SPARK/Dockerfile deleted file mode 100644 index 5c687214a8146fe1c3c7bdfbb7f914cc2841f0bc..0000000000000000000000000000000000000000 --- a/spaces/amagastya/SPARK/Dockerfile +++ /dev/null @@ -1,45 +0,0 @@ -# The builder image, used to build the virtual environment -FROM python:3.11-slim-buster as builder - -RUN apt-get update && apt-get install -y git - -RUN pip install poetry==1.4.2 - -ENV POETRY_NO_INTERACTION=1 \ - POETRY_VIRTUALENVS_IN_PROJECT=1 \ - POETRY_VIRTUALENVS_CREATE=1 \ - POETRY_CACHE_DIR=/tmp/poetry_cache - -WORKDIR /app - -COPY pyproject.toml poetry.lock ./ - -RUN poetry install --without dev --no-root && rm -rf $POETRY_CACHE_DIR - -# The runtime image, used to just run the code provided its virtual environment -FROM python:3.11-slim-buster as runtime - -RUN useradd -m -u 1000 user - -USER user - -ENV HOME=/home/user \ - PATH="/home/user/.local/bin:$PATH" \ - VIRTUAL_ENV=/app/.venv \ - LISTEN_PORT=8000 \ - HOST=0.0.0.0 - -WORKDIR $HOME/app - -COPY --from=builder --chown=user ${VIRTUAL_ENV} ${VIRTUAL_ENV} - -COPY --chown=user ./app ./app -COPY --chown=user ./.chainlit ./.chainlit -COPY --chown=user chainlit.md ./ - -EXPOSE $LISTEN_PORT - -# If chainlit is a Python package that needs to be installed, uncomment the following line: -RUN pip install -r app/requirements.txt - -CMD ["chainlit", "run", "app/spark.py"] \ No newline at end of file diff --git a/spaces/anaclaudia13ct/insect_detection/utils/__init__.py b/spaces/anaclaudia13ct/insect_detection/utils/__init__.py deleted file mode 100644 index 3b1a2c87329a3333e8ea1998e1507dcf0d2a554b..0000000000000000000000000000000000000000 --- a/spaces/anaclaudia13ct/insect_detection/utils/__init__.py +++ /dev/null @@ -1,80 +0,0 @@ -# YOLOv5 🚀 by Ultralytics, GPL-3.0 license -""" -utils/initialization -""" - -import contextlib -import platform -import threading - - -def emojis(str=''): - # Return platform-dependent emoji-safe version of string - return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str - - -class TryExcept(contextlib.ContextDecorator): - # YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager - def __init__(self, msg=''): - self.msg = msg - - def __enter__(self): - pass - - def __exit__(self, exc_type, value, traceback): - if value: - print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}")) - return True - - -def threaded(func): - # Multi-threads a target function and returns thread. Usage: @threaded decorator - def wrapper(*args, **kwargs): - thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) - thread.start() - return thread - - return wrapper - - -def join_threads(verbose=False): - # Join all daemon threads, i.e. atexit.register(lambda: join_threads()) - main_thread = threading.current_thread() - for t in threading.enumerate(): - if t is not main_thread: - if verbose: - print(f'Joining thread {t.name}') - t.join() - - -def notebook_init(verbose=True): - # Check system software and hardware - print('Checking setup...') - - import os - import shutil - - from utils.general import check_font, check_requirements, is_colab - from utils.torch_utils import select_device # imports - - check_font() - - import psutil - from IPython import display # to display images and clear console output - - if is_colab(): - shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory - - # System info - if verbose: - gb = 1 << 30 # bytes to GiB (1024 ** 3) - ram = psutil.virtual_memory().total - total, used, free = shutil.disk_usage("/") - display.clear_output() - s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)' - else: - s = '' - - select_device(newline=False) - print(emojis(f'Setup complete ✅ {s}')) - return display diff --git a/spaces/aodianyun/panoptic-segment-anything/GroundingDINO/groundingdino/util/vl_utils.py b/spaces/aodianyun/panoptic-segment-anything/GroundingDINO/groundingdino/util/vl_utils.py deleted file mode 100644 index c91bb02f584398f08a28e6b7719e2b99f6e28616..0000000000000000000000000000000000000000 --- a/spaces/aodianyun/panoptic-segment-anything/GroundingDINO/groundingdino/util/vl_utils.py +++ /dev/null @@ -1,100 +0,0 @@ -import os -import random -from typing import List - -import torch - - -def create_positive_map_from_span(tokenized, token_span, max_text_len=256): - """construct a map such that positive_map[i,j] = True iff box i is associated to token j - Input: - - tokenized: - - input_ids: Tensor[1, ntokens] - - attention_mask: Tensor[1, ntokens] - - token_span: list with length num_boxes. - - each item: [start_idx, end_idx] - """ - positive_map = torch.zeros((len(token_span), max_text_len), dtype=torch.float) - for j, tok_list in enumerate(token_span): - for (beg, end) in tok_list: - beg_pos = tokenized.char_to_token(beg) - end_pos = tokenized.char_to_token(end - 1) - if beg_pos is None: - try: - beg_pos = tokenized.char_to_token(beg + 1) - if beg_pos is None: - beg_pos = tokenized.char_to_token(beg + 2) - except: - beg_pos = None - if end_pos is None: - try: - end_pos = tokenized.char_to_token(end - 2) - if end_pos is None: - end_pos = tokenized.char_to_token(end - 3) - except: - end_pos = None - if beg_pos is None or end_pos is None: - continue - - assert beg_pos is not None and end_pos is not None - if os.environ.get("SHILONG_DEBUG_ONLY_ONE_POS", None) == "TRUE": - positive_map[j, beg_pos] = 1 - break - else: - positive_map[j, beg_pos : end_pos + 1].fill_(1) - - return positive_map / (positive_map.sum(-1)[:, None] + 1e-6) - - -def build_captions_and_token_span(cat_list, force_lowercase): - """ - Return: - captions: str - cat2tokenspan: dict - { - 'dog': [[0, 2]], - ... - } - """ - - cat2tokenspan = {} - captions = "" - for catname in cat_list: - class_name = catname - if force_lowercase: - class_name = class_name.lower() - if "/" in class_name: - class_name_list: List = class_name.strip().split("/") - class_name_list.append(class_name) - class_name: str = random.choice(class_name_list) - - tokens_positive_i = [] - subnamelist = [i.strip() for i in class_name.strip().split(" ")] - for subname in subnamelist: - if len(subname) == 0: - continue - if len(captions) > 0: - captions = captions + " " - strat_idx = len(captions) - end_idx = strat_idx + len(subname) - tokens_positive_i.append([strat_idx, end_idx]) - captions = captions + subname - - if len(tokens_positive_i) > 0: - captions = captions + " ." - cat2tokenspan[class_name] = tokens_positive_i - - return captions, cat2tokenspan - - -def build_id2posspan_and_caption(category_dict: dict): - """Build id2pos_span and caption from category_dict - - Args: - category_dict (dict): category_dict - """ - cat_list = [item["name"].lower() for item in category_dict] - id2catname = {item["id"]: item["name"].lower() for item in category_dict} - caption, cat2posspan = build_captions_and_token_span(cat_list, force_lowercase=True) - id2posspan = {catid: cat2posspan[catname] for catid, catname in id2catname.items()} - return id2posspan, caption diff --git a/spaces/aphenx/bingo/src/lib/storage.ts b/spaces/aphenx/bingo/src/lib/storage.ts deleted file mode 100644 index a5b7825c4f76a28c704da512ae39e8bb45addd09..0000000000000000000000000000000000000000 --- a/spaces/aphenx/bingo/src/lib/storage.ts +++ /dev/null @@ -1,27 +0,0 @@ -import { getMany, set, del, clear } from 'idb-keyval'; - -export const Storage = { - async get(key: string | string[] | null): Promise { - if (key === null) return null; - if (typeof key === 'string') { - key = [key] - } - const returnData: Record = {} - const values = await getMany(key) - key.forEach((k, idx)=> { - returnData[k] = values[idx] - }) - return returnData; - }, - async set(object: any) { - for (let key of Object.keys(object)) { - await set(key, object[key]) - } - }, - async remove(key: string) { - return del(key); - }, - async clear() { - return clear(); - } -} diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/PIL/FitsStubImagePlugin.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/PIL/FitsStubImagePlugin.py deleted file mode 100644 index 440240a9958089121b7edc693112d9a9db13586f..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/PIL/FitsStubImagePlugin.py +++ /dev/null @@ -1,76 +0,0 @@ -# -# The Python Imaging Library -# $Id$ -# -# FITS stub adapter -# -# Copyright (c) 1998-2003 by Fredrik Lundh -# -# See the README file for information on usage and redistribution. -# - -from . import FitsImagePlugin, Image, ImageFile -from ._deprecate import deprecate - -_handler = None - - -def register_handler(handler): - """ - Install application-specific FITS image handler. - - :param handler: Handler object. - """ - global _handler - _handler = handler - - deprecate( - "FitsStubImagePlugin", - 10, - action="FITS images can now be read without " - "a handler through FitsImagePlugin instead", - ) - - # Override FitsImagePlugin with this handler - # for backwards compatibility - try: - Image.ID.remove(FITSStubImageFile.format) - except ValueError: - pass - - Image.register_open( - FITSStubImageFile.format, FITSStubImageFile, FitsImagePlugin._accept - ) - - -class FITSStubImageFile(ImageFile.StubImageFile): - - format = FitsImagePlugin.FitsImageFile.format - format_description = FitsImagePlugin.FitsImageFile.format_description - - def _open(self): - offset = self.fp.tell() - - im = FitsImagePlugin.FitsImageFile(self.fp) - self._size = im.size - self.mode = im.mode - self.tile = [] - - self.fp.seek(offset) - - loader = self._load() - if loader: - loader.open(self) - - def _load(self): - return _handler - - -def _save(im, fp, filename): - raise OSError("FITS save handler not installed") - - -# -------------------------------------------------------------------- -# Registry - -Image.register_save(FITSStubImageFile.format, _save) diff --git a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/vegalite/v3/theme.py b/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/vegalite/v3/theme.py deleted file mode 100644 index 91d37649b4ef661842f823c16e10d6c22200fd0e..0000000000000000000000000000000000000000 --- a/spaces/arxify/RVC-beta-v2-0618/runtime/Lib/site-packages/altair/vegalite/v3/theme.py +++ /dev/null @@ -1,54 +0,0 @@ -"""Tools for enabling and registering chart themes""" - -from ...utils.theme import ThemeRegistry - -VEGA_THEMES = ["ggplot2", "quartz", "vox", "fivethirtyeight", "dark", "latimes"] - - -class VegaTheme(object): - """Implementation of a builtin vega theme.""" - - def __init__(self, theme): - self.theme = theme - - def __call__(self): - return { - "usermeta": {"embedOptions": {"theme": self.theme}}, - "config": { - "view": {"width": 400, "height": 300}, - "mark": {"tooltip": None}, - }, - } - - def __repr__(self): - return "VegaTheme({!r})".format(self.theme) - - -# The entry point group that can be used by other packages to declare other -# renderers that will be auto-detected. Explicit registration is also -# allowed by the PluginRegistery API. -ENTRY_POINT_GROUP = "altair.vegalite.v3.theme" # type: str -themes = ThemeRegistry(entry_point_group=ENTRY_POINT_GROUP) - -themes.register( - "default", - lambda: { - "config": {"view": {"width": 400, "height": 300}, "mark": {"tooltip": None}} - }, -) -themes.register( - "opaque", - lambda: { - "config": { - "background": "white", - "view": {"width": 400, "height": 300}, - "mark": {"tooltip": None}, - } - }, -) -themes.register("none", lambda: {}) - -for theme in VEGA_THEMES: - themes.register(theme, VegaTheme(theme)) - -themes.enable("default") diff --git a/spaces/ashishraics/NLP/sentiment_clf_helper.py b/spaces/ashishraics/NLP/sentiment_clf_helper.py deleted file mode 100644 index cc25ffa99b98b3a8b166911782c8c63ea374a075..0000000000000000000000000000000000000000 --- a/spaces/ashishraics/NLP/sentiment_clf_helper.py +++ /dev/null @@ -1,100 +0,0 @@ -import numpy as np -import transformers -from onnxruntime.quantization import quantize_dynamic,QuantType -import transformers.convert_graph_to_onnx as onnx_convert -from pathlib import Path -import os -import torch -import yaml - -def read_yaml(file_path): - with open(file_path, "r") as f: - return yaml.safe_load(f) - -config = read_yaml('config.yaml') - -sent_chkpt=config['SENTIMENT_CLF']['sent_chkpt'] -sent_mdl_dir=config['SENTIMENT_CLF']['sent_mdl_dir'] -sent_onnx_mdl_dir=config['SENTIMENT_CLF']['sent_onnx_mdl_dir'] -sent_onnx_mdl_name=config['SENTIMENT_CLF']['sent_onnx_mdl_name'] -sent_onnx_quant_mdl_name=config['SENTIMENT_CLF']['sent_onnx_quant_mdl_name'] - -def classify_sentiment(texts,model,tokenizer): - """ - user will pass texts separated by comma - """ - try: - texts=texts.split(',') - except: - pass - - input = tokenizer(texts, padding=True, truncation=True, - return_tensors="pt") - logits = model(**input)['logits'].softmax(dim=1) - logits = torch.argmax(logits, dim=1) - output = ['Positive' if i == 1 else 'Negative' for i in logits] - return output - - -def create_onnx_model_sentiment(_model, _tokenizer,sent_onnx_mdl_dir=sent_onnx_mdl_dir): - """ - - Args: - _model: model checkpoint with AutoModelForSequenceClassification - _tokenizer: model checkpoint with AutoTokenizer - - Returns: - Creates a simple ONNX model & int8 Quantized Model in the directory "sent_clf_onnx/" if directory not present - - """ - if not os.path.exists(sent_onnx_mdl_dir): - try: - os.mkdir(sent_onnx_mdl_dir) - except: - pass - pipeline=transformers.pipeline("text-classification", model=_model, tokenizer=_tokenizer) - - onnx_convert.convert_pytorch(pipeline, - opset=11, - output=Path(f"{sent_onnx_mdl_dir}/{sent_onnx_mdl_name}"), - use_external_format=False - ) - - # quantize_dynamic(f"{sent_onnx_mdl_dir}/{sent_onnx_mdl_name}", - # f"{sent_onnx_mdl_dir}/{sent_onnx_quant_mdl_name}", - # weight_type=QuantType.QUInt8) - else: - pass - - -def classify_sentiment_onnx(texts, _session, _tokenizer): - """ - - Args: - texts: input texts from user - _session: pass ONNX runtime session - _tokenizer: Relevant Tokenizer e.g. AutoTokenizer.from_pretrained("same checkpoint as the model") - - Returns: - list of Positve and Negative texts - - """ - try: - texts=texts.split(',') - except: - pass - - _inputs = _tokenizer(texts, padding=True, truncation=True, - return_tensors="np") - - input_feed={ - "input_ids":np.array(_inputs['input_ids']), - "attention_mask":np.array((_inputs['attention_mask'])) - } - - output = _session.run(input_feed=input_feed, output_names=['output_0'])[0] - - output=np.argmax(output,axis=1) - output = ['Positive' if i == 1 else 'Negative' for i in output] - return output - diff --git a/spaces/awaawawawa/iurf7irfuyytruyyugb/ldmlib/modules/image_degradation/bsrgan_light.py b/spaces/awaawawawa/iurf7irfuyytruyyugb/ldmlib/modules/image_degradation/bsrgan_light.py deleted file mode 100644 index ec1200882368fe48194ed94b9a57c97276aa9e83..0000000000000000000000000000000000000000 --- a/spaces/awaawawawa/iurf7irfuyytruyyugb/ldmlib/modules/image_degradation/bsrgan_light.py +++ /dev/null @@ -1,650 +0,0 @@ -# -*- coding: utf-8 -*- -import numpy as np -import cv2 -import torch - -from functools import partial -import random -from scipy import ndimage -import scipy -import scipy.stats as ss -from scipy.interpolate import interp2d -from scipy.linalg import orth -import albumentations - -import ldmlib.modules.image_degradation.utils_image as util - -""" -# -------------------------------------------- -# Super-Resolution -# -------------------------------------------- -# -# Kai Zhang (cskaizhang@gmail.com) -# https://github.com/cszn -# From 2019/03--2021/08 -# -------------------------------------------- -""" - - -def modcrop_np(img, sf): - ''' - Args: - img: numpy image, WxH or WxHxC - sf: scale factor - Return: - cropped image - ''' - w, h = img.shape[:2] - im = np.copy(img) - return im[:w - w % sf, :h - h % sf, ...] - - -""" -# -------------------------------------------- -# anisotropic Gaussian kernels -# -------------------------------------------- -""" - - -def analytic_kernel(k): - """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" - k_size = k.shape[0] - # Calculate the big kernels size - big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) - # Loop over the small kernel to fill the big one - for r in range(k_size): - for c in range(k_size): - big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k - # Crop the edges of the big kernel to ignore very small values and increase run time of SR - crop = k_size // 2 - cropped_big_k = big_k[crop:-crop, crop:-crop] - # Normalize to 1 - return cropped_big_k / cropped_big_k.sum() - - -def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): - """ generate an anisotropic Gaussian kernel - Args: - ksize : e.g., 15, kernel size - theta : [0, pi], rotation angle range - l1 : [0.1,50], scaling of eigenvalues - l2 : [0.1,l1], scaling of eigenvalues - If l1 = l2, will get an isotropic Gaussian kernel. - Returns: - k : kernel - """ - - v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) - V = np.array([[v[0], v[1]], [v[1], -v[0]]]) - D = np.array([[l1, 0], [0, l2]]) - Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) - k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) - - return k - - -def gm_blur_kernel(mean, cov, size=15): - center = size / 2.0 + 0.5 - k = np.zeros([size, size]) - for y in range(size): - for x in range(size): - cy = y - center + 1 - cx = x - center + 1 - k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) - - k = k / np.sum(k) - return k - - -def shift_pixel(x, sf, upper_left=True): - """shift pixel for super-resolution with different scale factors - Args: - x: WxHxC or WxH - sf: scale factor - upper_left: shift direction - """ - h, w = x.shape[:2] - shift = (sf - 1) * 0.5 - xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) - if upper_left: - x1 = xv + shift - y1 = yv + shift - else: - x1 = xv - shift - y1 = yv - shift - - x1 = np.clip(x1, 0, w - 1) - y1 = np.clip(y1, 0, h - 1) - - if x.ndim == 2: - x = interp2d(xv, yv, x)(x1, y1) - if x.ndim == 3: - for i in range(x.shape[-1]): - x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) - - return x - - -def blur(x, k): - ''' - x: image, NxcxHxW - k: kernel, Nx1xhxw - ''' - n, c = x.shape[:2] - p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 - x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') - k = k.repeat(1, c, 1, 1) - k = k.view(-1, 1, k.shape[2], k.shape[3]) - x = x.view(1, -1, x.shape[2], x.shape[3]) - x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) - x = x.view(n, c, x.shape[2], x.shape[3]) - - return x - - -def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): - """" - # modified version of https://github.com/assafshocher/BlindSR_dataset_generator - # Kai Zhang - # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var - # max_var = 2.5 * sf - """ - # Set random eigen-vals (lambdas) and angle (theta) for COV matrix - lambda_1 = min_var + np.random.rand() * (max_var - min_var) - lambda_2 = min_var + np.random.rand() * (max_var - min_var) - theta = np.random.rand() * np.pi # random theta - noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 - - # Set COV matrix using Lambdas and Theta - LAMBDA = np.diag([lambda_1, lambda_2]) - Q = np.array([[np.cos(theta), -np.sin(theta)], - [np.sin(theta), np.cos(theta)]]) - SIGMA = Q @ LAMBDA @ Q.T - INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] - - # Set expectation position (shifting kernel for aligned image) - MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) - MU = MU[None, None, :, None] - - # Create meshgrid for Gaussian - [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) - Z = np.stack([X, Y], 2)[:, :, :, None] - - # Calcualte Gaussian for every pixel of the kernel - ZZ = Z - MU - ZZ_t = ZZ.transpose(0, 1, 3, 2) - raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) - - # shift the kernel so it will be centered - # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) - - # Normalize the kernel and return - # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) - kernel = raw_kernel / np.sum(raw_kernel) - return kernel - - -def fspecial_gaussian(hsize, sigma): - hsize = [hsize, hsize] - siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] - std = sigma - [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) - arg = -(x * x + y * y) / (2 * std * std) - h = np.exp(arg) - h[h < scipy.finfo(float).eps * h.max()] = 0 - sumh = h.sum() - if sumh != 0: - h = h / sumh - return h - - -def fspecial_laplacian(alpha): - alpha = max([0, min([alpha, 1])]) - h1 = alpha / (alpha + 1) - h2 = (1 - alpha) / (alpha + 1) - h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] - h = np.array(h) - return h - - -def fspecial(filter_type, *args, **kwargs): - ''' - python code from: - https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py - ''' - if filter_type == 'gaussian': - return fspecial_gaussian(*args, **kwargs) - if filter_type == 'laplacian': - return fspecial_laplacian(*args, **kwargs) - - -""" -# -------------------------------------------- -# degradation models -# -------------------------------------------- -""" - - -def bicubic_degradation(x, sf=3): - ''' - Args: - x: HxWxC image, [0, 1] - sf: down-scale factor - Return: - bicubicly downsampled LR image - ''' - x = util.imresize_np(x, scale=1 / sf) - return x - - -def srmd_degradation(x, k, sf=3): - ''' blur + bicubic downsampling - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2018learning, - title={Learning a single convolutional super-resolution network for multiple degradations}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={3262--3271}, - year={2018} - } - ''' - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' - x = bicubic_degradation(x, sf=sf) - return x - - -def dpsr_degradation(x, k, sf=3): - ''' bicubic downsampling + blur - Args: - x: HxWxC image, [0, 1] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - Reference: - @inproceedings{zhang2019deep, - title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, - author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, - booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, - pages={1671--1681}, - year={2019} - } - ''' - x = bicubic_degradation(x, sf=sf) - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - return x - - -def classical_degradation(x, k, sf=3): - ''' blur + downsampling - Args: - x: HxWxC image, [0, 1]/[0, 255] - k: hxw, double - sf: down-scale factor - Return: - downsampled LR image - ''' - x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') - # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) - st = 0 - return x[st::sf, st::sf, ...] - - -def add_sharpening(img, weight=0.5, radius=50, threshold=10): - """USM sharpening. borrowed from real-ESRGAN - Input image: I; Blurry image: B. - 1. K = I + weight * (I - B) - 2. Mask = 1 if abs(I - B) > threshold, else: 0 - 3. Blur mask: - 4. Out = Mask * K + (1 - Mask) * I - Args: - img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. - weight (float): Sharp weight. Default: 1. - radius (float): Kernel size of Gaussian blur. Default: 50. - threshold (int): - """ - if radius % 2 == 0: - radius += 1 - blur = cv2.GaussianBlur(img, (radius, radius), 0) - residual = img - blur - mask = np.abs(residual) * 255 > threshold - mask = mask.astype('float32') - soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) - - K = img + weight * residual - K = np.clip(K, 0, 1) - return soft_mask * K + (1 - soft_mask) * img - - -def add_blur(img, sf=4): - wd2 = 4.0 + sf - wd = 2.0 + 0.2 * sf - - wd2 = wd2/4 - wd = wd/4 - - if random.random() < 0.5: - l1 = wd2 * random.random() - l2 = wd2 * random.random() - k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) - else: - k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random()) - img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror') - - return img - - -def add_resize(img, sf=4): - rnum = np.random.rand() - if rnum > 0.8: # up - sf1 = random.uniform(1, 2) - elif rnum < 0.7: # down - sf1 = random.uniform(0.5 / sf, 1) - else: - sf1 = 1.0 - img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - return img - - -# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): -# noise_level = random.randint(noise_level1, noise_level2) -# rnum = np.random.rand() -# if rnum > 0.6: # add color Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) -# elif rnum < 0.4: # add grayscale Gaussian noise -# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) -# else: # add noise -# L = noise_level2 / 255. -# D = np.diag(np.random.rand(3)) -# U = orth(np.random.rand(3, 3)) -# conv = np.dot(np.dot(np.transpose(U), D), U) -# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) -# img = np.clip(img, 0.0, 1.0) -# return img - -def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - rnum = np.random.rand() - if rnum > 0.6: # add color Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: # add grayscale Gaussian noise - img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: # add noise - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_speckle_noise(img, noise_level1=2, noise_level2=25): - noise_level = random.randint(noise_level1, noise_level2) - img = np.clip(img, 0.0, 1.0) - rnum = random.random() - if rnum > 0.6: - img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) - elif rnum < 0.4: - img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) - else: - L = noise_level2 / 255. - D = np.diag(np.random.rand(3)) - U = orth(np.random.rand(3, 3)) - conv = np.dot(np.dot(np.transpose(U), D), U) - img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) - img = np.clip(img, 0.0, 1.0) - return img - - -def add_Poisson_noise(img): - img = np.clip((img * 255.0).round(), 0, 255) / 255. - vals = 10 ** (2 * random.random() + 2.0) # [2, 4] - if random.random() < 0.5: - img = np.random.poisson(img * vals).astype(np.float32) / vals - else: - img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) - img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. - noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray - img += noise_gray[:, :, np.newaxis] - img = np.clip(img, 0.0, 1.0) - return img - - -def add_JPEG_noise(img): - quality_factor = random.randint(80, 95) - img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) - result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) - img = cv2.imdecode(encimg, 1) - img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) - return img - - -def random_crop(lq, hq, sf=4, lq_patchsize=64): - h, w = lq.shape[:2] - rnd_h = random.randint(0, h - lq_patchsize) - rnd_w = random.randint(0, w - lq_patchsize) - lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] - - rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) - hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] - return lq, hq - - -def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = img.shape[:2] - img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = img.shape[:2] - - if h < lq_patchsize * sf or w < lq_patchsize * sf: - raise ValueError(f'img size ({h1}X{w1}) is too small!') - - hq = img.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - img = util.imresize_np(img, 1 / 2, True) - img = np.clip(img, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - img = add_blur(img, sf=sf) - - elif i == 1: - img = add_blur(img, sf=sf) - - elif i == 2: - a, b = img.shape[1], img.shape[0] - # downsample2 - if random.random() < 0.75: - sf1 = random.uniform(1, 2 * sf) - img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') - img = img[0::sf, 0::sf, ...] # nearest downsampling - img = np.clip(img, 0.0, 1.0) - - elif i == 3: - # downsample3 - img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - img = np.clip(img, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - img = add_JPEG_noise(img) - - elif i == 6: - # add processed camera sensor noise - if random.random() < isp_prob and isp_model is not None: - with torch.no_grad(): - img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - img = add_JPEG_noise(img) - - # random crop - img, hq = random_crop(img, hq, sf_ori, lq_patchsize) - - return img, hq - - -# todo no isp_model? -def degradation_bsrgan_variant(image, sf=4, isp_model=None): - """ - This is the degradation model of BSRGAN from the paper - "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" - ---------- - sf: scale factor - isp_model: camera ISP model - Returns - ------- - img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] - hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] - """ - image = util.uint2single(image) - isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 - sf_ori = sf - - h1, w1 = image.shape[:2] - image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop - h, w = image.shape[:2] - - hq = image.copy() - - if sf == 4 and random.random() < scale2_prob: # downsample1 - if np.random.rand() < 0.5: - image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - image = util.imresize_np(image, 1 / 2, True) - image = np.clip(image, 0.0, 1.0) - sf = 2 - - shuffle_order = random.sample(range(7), 7) - idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) - if idx1 > idx2: # keep downsample3 last - shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] - - for i in shuffle_order: - - if i == 0: - image = add_blur(image, sf=sf) - - # elif i == 1: - # image = add_blur(image, sf=sf) - - if i == 0: - pass - - elif i == 2: - a, b = image.shape[1], image.shape[0] - # downsample2 - if random.random() < 0.8: - sf1 = random.uniform(1, 2 * sf) - image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), - interpolation=random.choice([1, 2, 3])) - else: - k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) - k_shifted = shift_pixel(k, sf) - k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel - image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') - image = image[0::sf, 0::sf, ...] # nearest downsampling - - image = np.clip(image, 0.0, 1.0) - - elif i == 3: - # downsample3 - image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) - image = np.clip(image, 0.0, 1.0) - - elif i == 4: - # add Gaussian noise - image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2) - - elif i == 5: - # add JPEG noise - if random.random() < jpeg_prob: - image = add_JPEG_noise(image) - # - # elif i == 6: - # # add processed camera sensor noise - # if random.random() < isp_prob and isp_model is not None: - # with torch.no_grad(): - # img, hq = isp_model.forward(img.copy(), hq) - - # add final JPEG compression noise - image = add_JPEG_noise(image) - image = util.single2uint(image) - example = {"image": image} - return example - - - - -if __name__ == '__main__': - print("hey") - img = util.imread_uint('utils/test.png', 3) - img = img[:448, :448] - h = img.shape[0] // 4 - print("resizing to", h) - sf = 4 - deg_fn = partial(degradation_bsrgan_variant, sf=sf) - for i in range(20): - print(i) - img_hq = img - img_lq = deg_fn(img)["image"] - img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq) - print(img_lq) - img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"] - print(img_lq.shape) - print("bicubic", img_lq_bicubic.shape) - print(img_hq.shape) - lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), - (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), - interpolation=0) - img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) - util.imsave(img_concat, str(i) + '.png') diff --git a/spaces/awacke1/AW-05-GR-NLP-Image2Text-Multilingual-OCR/README.md b/spaces/awacke1/AW-05-GR-NLP-Image2Text-Multilingual-OCR/README.md deleted file mode 100644 index cfc99076a313850252d5f120dd7c9c49563e44ab..0000000000000000000000000000000000000000 --- a/spaces/awacke1/AW-05-GR-NLP-Image2Text-Multilingual-OCR/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: AW 05 GR NLP Image2Text Multilingual OCR -emoji: 🚀 -colorFrom: purple -colorTo: red -sdk: gradio -sdk_version: 3.4 -app_file: app.py -pinned: false -license: apache-2.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/awacke1/California-Medical-Centers-Streamlit/README.md b/spaces/awacke1/California-Medical-Centers-Streamlit/README.md deleted file mode 100644 index 8ffcf5d41ab626f642656adb4bd80d8d92adff1f..0000000000000000000000000000000000000000 --- a/spaces/awacke1/California-Medical-Centers-Streamlit/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: California Medical Centers Streamlit -emoji: 📈 -colorFrom: yellow -colorTo: red -sdk: streamlit -sdk_version: 1.27.2 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/awacke1/GeographyandPopulationDensityUnitedStates/app.py b/spaces/awacke1/GeographyandPopulationDensityUnitedStates/app.py deleted file mode 100644 index 0e8df3614efeefe378bb0c061647a29c299481ec..0000000000000000000000000000000000000000 --- a/spaces/awacke1/GeographyandPopulationDensityUnitedStates/app.py +++ /dev/null @@ -1,145 +0,0 @@ -# Import necessary libraries -import pandas as pd -import streamlit as st -import matplotlib.pyplot as plt -import pydeck as pdk -states = { - 'Alabama': {'region': 'South', 'population': 4903185, 'area': 135767, 'lat': 32.806671, 'lon': -86.791130}, - 'Alaska': {'region': 'West', 'population': 731545, 'area': 1723337, 'lat': 61.370716, 'lon': -152.404419}, - 'Arizona': {'region': 'West', 'population': 7278717, 'area': 295234, 'lat': 33.729759, 'lon': -111.431221}, - 'Arkansas': {'region': 'South', 'population': 3017804, 'area': 137732, 'lat': 34.969704, 'lon': -92.373123}, - 'California': {'region': 'West', 'population': 39538223, 'area': 423967, 'lat': 36.116203, 'lon': -119.681567}, - 'Colorado': {'region': 'West', 'population': 5773714, 'area': 269601, 'lat': 39.059811, 'lon': -105.311104}, - 'Connecticut': {'region': 'Northeast', 'population': 3605944, 'area': 14357, 'lat': 41.597782, 'lon': -72.755371}, - 'Delaware': {'region': 'South', 'population': 989948, 'area': 6446, 'lat': 39.318523, 'lon': -75.507141}, - 'Florida': {'region': 'South', 'population': 21538187, 'area': 170312, 'lat': 27.766279, 'lon': -81.686783}, - 'Georgia': {'region': 'South', 'population': 10711908, 'area': 153910, 'lat': 33.040619, 'lon': -83.643074}, - 'Hawaii': {'region': 'West', 'population': 1415872, 'area': 28314, 'lat': 21.094318, 'lon': -157.498337}, - 'Idaho': {'region': 'West', 'population': 1826156, 'area': 216443, 'lat': 44.240459, 'lon': -114.478828}, - 'Illinois': {'region': 'Midwest', 'population': 12671821, 'area': 149995, 'lat': 40.349457, 'lon': -88.986137}, - 'Indiana': {'region': 'Midwest', 'population': 6732219, 'area': 94326, 'lat': 39.849426, 'lon': -86.258284}, - 'Iowa': {'region': 'Midwest', 'population': 3155070, 'area': 145746, 'lat': 42.011539, 'lon': -93.210526}, - 'Kansas': {'region': 'Midwest', 'population': 2913314, 'area': 213099, 'lat': 38.526600, 'lon': -96.726486}, - 'Kentucky': {'region': 'South', 'population': 4467673, 'area': 104656, 'lat': 37.668140, 'lon': -84.670067}, - 'Louisiana': {'region': 'South', 'population': 4648794, 'area': 135659, 'lat': 31.169546, 'lon': -91.867805}, - 'Maine': {'region': 'Northeast', 'population': 1362359, 'area': 91634, 'lat': 44.693947, 'lon': -69.381927}, - 'Maryland': {'region': 'South', 'population': 6177224, 'area': 32131, 'lat': 39.063946, 'lon': -76.802101}, - 'Massachusetts': {'region': 'Northeast', 'population': 7029917, 'area': 27336, 'lat': 42.230171, 'lon': -71.530106}, - 'Michigan': {'region': 'Midwest', 'population': 10077331, 'area': 250487, 'lat': 43.326618, 'lon': -84.536095}, - 'Minnesota': {'region': 'Midwest', 'population': 5706494, 'area': 225163, 'lat': 45.694454, 'lon': -93.900192}, - 'Mississippi': {'region': 'South', 'population': 2989260, 'area': 125438, 'lat': 32.741646, 'lon': -89.678697}, - 'Missouri': {'region': 'Midwest', 'population': 6169270, 'area': 180540, 'lat': 38.456085, 'lon': -92.288368}, - 'Montana': {'region': 'West', 'population': 1084225, 'area': 380831, 'lat': 46.921925, 'lon': -110.454353}, - 'Nebraska': {'region': 'Midwest', 'population': 1952570, 'area': 200330, 'lat': 41.125370, 'lon': -98.268082}, - 'Nevada': {'region': 'West', 'population': 3139658, 'area': 286380, 'lat': 38.313515, 'lon': -117.055374}, - 'New Hampshire': {'region': 'Northeast', 'population': 1371246, 'area': 24214, 'lat': 43.452492, 'lon': -71.563896}, - 'New Jersey': {'region': 'Northeast', 'population': 9288994, 'area': 22591, 'lat': 40.298904, 'lon': -74.521011}, - 'New Mexico': {'region': 'West', 'population': 2117522, 'area': 314917, 'lat': 34.840515, 'lon': -106.248482}, - 'New York': {'region': 'Northeast', 'population': 20215751, 'area': 141297, 'lat': 42.165726, 'lon': -74.948051}, - 'North Carolina': {'region': 'South', 'population': 10488084, 'area': 139391, 'lat': 35.630066, 'lon': -79.806419}, - 'North Dakota': {'region': 'Midwest', 'population': 762062, 'area': 183108, 'lat': 47.528912, 'lon': -99.784012}, - 'Ohio': {'region': 'Midwest', 'population': 11689100, 'area': 116098, 'lat': 40.388783, 'lon': -82.764915}, - 'Oklahoma': {'region': 'South', 'population': 3953823, 'area': 181037, 'lat': 35.565342, 'lon': -96.928917}, - 'Oregon': {'region': 'West', 'population': 4217737, 'area': 254799, 'lat': 44.572021, 'lon': -122.070938}, - 'Pennsylvania': {'region': 'Northeast', 'population': 12801989, 'area': 119280, 'lat': 40.590752, 'lon': -77.209755}, - 'Rhode Island': {'region': 'Northeast', 'population': 1097379, 'area': 4001, 'lat': 41.680893, 'lon': -71.511780}, - 'South Carolina': {'region': 'South', 'population': 5148714, 'area': 82933, 'lat': 33.856892, 'lon': -80.945007}, - 'South Dakota': {'region': 'Midwest', 'population': 884659, 'area': 199729, 'lat': 44.299782, 'lon': -99.438828}, - 'Tennessee': {'region': 'South', 'population': 6833174, 'area': 109153, 'lat': 35.747845, 'lon': -86.692345}, - 'Texas': {'region': 'South', 'population': 29145505, 'area': 695662, 'lat': 31.054487, 'lon': -97.563461}, - 'Utah': {'region': 'West', 'population': 3271616, 'area': 219882, 'lat': 40.150032, 'lon': -111.862434}, - 'Vermont': {'region': 'Northeast', 'population': 623989, 'area': 24906, 'lat': 44.045876, 'lon': -72.710686}, - 'Virginia': {'region': 'South', 'population': 8631393, 'area': 110787, 'lat': 37.769337, 'lon': -78.170400}, - 'Washington': {'region': 'West', 'population': 7693612, 'area': 184661, 'lat': 47.400902, 'lon': -121.490494}, - 'West Virginia': {'region': 'South', 'population': 1792147, 'area': 62756, 'lat': 38.491000, 'lon': -80.954570}, - 'Wisconsin': {'region': 'Midwest', 'population': 5851754, 'area': 169635, 'lat': 44.268543, 'lon': -89.616508}, - 'Wyoming': {'region': 'West', 'population': 578759, 'area': 253335, 'lat': 42.755966, 'lon': -107.302490} -} - - -# Create a function to calculate population density -def calculate_density(population, area): - return population / area - -# Create a function to plot the graph -def plot_graph(df, region): - plt.figure(figsize=(10, 5)) - plt.bar(df['State'], df['Population Density']) - plt.title(f'Population Density of States in {region} Region') - plt.xlabel('State') - plt.ylabel('Population Density') - plt.xticks(rotation=90) - plt.show() - -# Group states by region and calculate the total population and area for each region -regions = {} -for state, data in states.items(): - region = data['region'] - population = data['population'] - area = data['area'] - if region not in regions: - regions[region] = {'population': population, 'area': area, 'states': []} - else: - regions[region]['population'] += population - regions[region]['area'] += area - regions[region]['states'].append(state) - -# Calculate the population density for each state in each region and create dataframes -dataframes = [] -for region, data in regions.items(): - population = data['population'] - area = data['area'] - states_in_region = data['states'] - densities = [] - for state in states_in_region: - state_data = states[state] - state_population = state_data['population'] - state_area = state_data['area'] - state_density = calculate_density(state_population, state_area) - densities.append(state_density) - df = pd.DataFrame({'State': states_in_region, 'Population Density': densities}) - dataframes.append(df) - - plot_graph(df, region) - -# Use Streamlit to display dataframes -for df in dataframes: - st.write(df) - - - - -# Add lat and lon to your states data -#states = { -# 'Alabama': {'region': 'South', 'population': 4903185, 'area': 135767, 'lat': 32.806671, 'lon': -86.791130}, -# 'Alaska': {'region': 'West', 'population': 731545, 'area': 1723337, 'lat': 61.370716, 'lon': -152.404419}, -# # Continue for all states... -#} - -# Create dataframe from states data -df = pd.DataFrame.from_dict(states, orient='index').reset_index() -df.columns = ['State', 'Region', 'Population', 'Area', 'Latitude', 'Longitude'] - -# Define initial viewport for the deckgl map -view_state = pdk.ViewState( - longitude=-97.6, - latitude=38.5, - zoom=3, - pitch=50, -) - -# Define deckgl layer -layer = pdk.Layer( - "ScatterplotLayer", - data=df, - get_position='[Longitude, Latitude]', - get_radius='Area', - get_fill_color='[190, 30, 0, 140]', - pickable=True, - auto_highlight=True, -) - -# Render the deckgl map in the Streamlit app -st.pydeck_chart(pdk.Deck(layers=[layer], initial_view_state=view_state)) - - diff --git a/spaces/awacke1/Webcam-Object-Recognition-Yolo-n-Coco/custom_callbacks.py b/spaces/awacke1/Webcam-Object-Recognition-Yolo-n-Coco/custom_callbacks.py deleted file mode 100644 index d2b9338277a1a5ea4626755e2ee600c6496b02fd..0000000000000000000000000000000000000000 --- a/spaces/awacke1/Webcam-Object-Recognition-Yolo-n-Coco/custom_callbacks.py +++ /dev/null @@ -1,15 +0,0 @@ -from tensorflow.keras import callbacks -import math - - -class CosineAnnealingScheduler(callbacks.LearningRateScheduler): - def __init__(self, epochs_per_cycle, lr_min, lr_max, verbose=0): - super(callbacks.LearningRateScheduler, self).__init__() - self.verbose = verbose - self.lr_min = lr_min - self.lr_max = lr_max - self.epochs_per_cycle = epochs_per_cycle - - def schedule(self, epoch, lr): - return self.lr_min + (self.lr_max - self.lr_min) *\ - (1 + math.cos(math.pi * (epoch % self.epochs_per_cycle) / self.epochs_per_cycle)) / 2 \ No newline at end of file diff --git a/spaces/b1sheng/kg_llm_leaderboard_test/src/assets/css_html_js.py b/spaces/b1sheng/kg_llm_leaderboard_test/src/assets/css_html_js.py deleted file mode 100644 index bbef866c3463ec869be0cc47e22d2449e4db1656..0000000000000000000000000000000000000000 --- a/spaces/b1sheng/kg_llm_leaderboard_test/src/assets/css_html_js.py +++ /dev/null @@ -1,87 +0,0 @@ -custom_css = """ -#changelog-text { - font-size: 16px !important; -} - -#changelog-text h2 { - font-size: 18px !important; -} - -.markdown-text { - font-size: 16px !important; -} - -#models-to-add-text { - font-size: 18px !important; -} - -#citation-button span { - font-size: 16px !important; -} - -#citation-button textarea { - font-size: 16px !important; -} - -#citation-button > label > button { - margin: 6px; - transform: scale(1.3); -} - -#leaderboard-table { - margin-top: 15px -} - -#leaderboard-table-lite { - margin-top: 15px -} - -#search-bar-table-box > div:first-child { - background: none; - border: none; -} - -#search-bar { - padding: 0px; - width: 30%; -} - -/* Hides the final AutoEvalColumn */ -#llm-benchmark-tab-table table td:last-child, -#llm-benchmark-tab-table table th:last-child { - display: none; -} - -/* Limit the width of the first AutoEvalColumn so that names don't expand too much */ -table td:first-child, -table th:first-child { - max-width: 400px; - overflow: auto; - white-space: nowrap; -} - -.tab-buttons button { - font-size: 20px; -} - -#scale-logo { - border-style: none !important; - box-shadow: none; - display: block; - margin-left: auto; - margin-right: auto; - max-width: 600px; -} - -#scale-logo .download { - display: none; -} -""" - -get_window_url_params = """ - function(url_params) { - const params = new URLSearchParams(window.location.search); - url_params = Object.fromEntries(params); - return url_params; - } - """ diff --git a/spaces/banana-projects/web3d/node_modules/three/examples/js/lights/RectAreaLightUniformsLib.js b/spaces/banana-projects/web3d/node_modules/three/examples/js/lights/RectAreaLightUniformsLib.js deleted file mode 100644 index bb67e629eaed273dc61576b9e621e5844e624404..0000000000000000000000000000000000000000 --- a/spaces/banana-projects/web3d/node_modules/three/examples/js/lights/RectAreaLightUniformsLib.js +++ /dev/null @@ -1,47 +0,0 @@ -/** - * Uniforms library for RectAreaLight shared webgl shaders - * @author abelnation - * @author WestLangley / http://github.com/WestLangley - * - * NOTE: This is a temporary location for the BRDF approximation texture data - * based off of Eric Heitz's work (see citation below). BRDF data for - * RectAreaLight is currently approximated using a precomputed texture - * of roughly 80kb in size. The hope is to find a better way to include - * the large texture data before including the full RectAreaLight implementation - * in the main build files. - * - * TODO: figure out a way to compress the LTC BRDF data - */ - -// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines -// by Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt -// code: https://github.com/selfshadow/ltc_code/ - -( function () { - - // source: https://github.com/selfshadow/ltc_code/tree/master/fit/results/ltc.js - - var LTC_MAT_1 = [ 1, 0, 0, 2e-05, 1, 0, 0, 0.000503905, 1, 0, 0, 0.00201562, 1, 0, 0, 0.00453516, 1, 0, 0, 0.00806253, 1, 0, 0, 0.0125978, 1, 0, 0, 0.018141, 1, 0, 0, 0.0246924, 1, 0, 0, 0.0322525, 1, 0, 0, 0.0408213, 1, 0, 0, 0.0503999, 1, 0, 0, 0.0609894, 1, 0, 0, 0.0725906, 1, 0, 0, 0.0852058, 1, 0, 0, 0.0988363, 1, 0, 0, 0.113484, 1, 0, 0, 0.129153, 1, 0, 0, 0.145839, 1, 0, 0, 0.163548, 1, 0, 0, 0.182266, 1, 0, 0, 0.201942, 1, 0, 0, 0.222314, 1, 0, 0, 0.241906, 1, 0, 0, 0.262314, 1, 0, 0, 0.285754, 1, 0, 0, 0.310159, 1, 0, 0, 0.335426, 1, 0, 0, 0.361341, 1, 0, 0, 0.387445, 1, 0, 0, 0.412784, 1, 0, 0, 0.438197, 1, 0, 0, 0.466966, 1, 0, 0, 0.49559, 1, 0, 0, 0.523448, 1, 0, 0, 0.549938, 1, 0, 0, 0.57979, 1, 0, 0, 0.608746, 1, 0, 0, 0.636185, 1, 0, 0, 0.664748, 1, 0, 0, 0.69313, 1, 0, 0, 0.71966, 1, 0, 0, 0.747662, 1, 0, 0, 0.774023, 1, 0, 0, 0.799775, 1, 0, 0, 0.825274, 1, 0, 0, 0.849156, 1, 0, 0, 0.873248, 1, 0, 0, 0.89532, 1, 0, 0, 0.917565, 1, 0, 0, 0.937863, 1, 0, 0, 0.958139, 1, 0, 0, 0.976563, 1, 0, 0, 0.994658, 1, 0, 0, 1.0112, 1, 0, 0, 1.02712, 1, 0, 0, 1.04189, 1, 0, 0, 1.05568, 1, 0, 0, 1.06877, 1, 0, 0, 1.08058, 1, 0, 0, 1.09194, 1, 0, 0, 1.10191, 1, 0, 0, 1.11161, 1, 0, 0, 1.1199, 1, 0, 0, 1.12813, 0.999547, -4.48815e-07, 0.0224417, 1.99902e-05, 0.999495, -1.13079e-05, 0.0224406, 0.000503651, 0.999496, -4.52317e-05, 0.0224406, 0.00201461, 0.999496, -0.000101772, 0.0224406, 0.00453287, 0.999495, -0.000180928, 0.0224406, 0.00805845, 0.999497, -0.000282702, 0.0224406, 0.0125914, 0.999496, -0.000407096, 0.0224406, 0.0181319, 0.999498, -0.000554114, 0.0224406, 0.02468, 0.999499, -0.000723768, 0.0224406, 0.0322363, 0.999495, -0.000916058, 0.0224405, 0.0408009, 0.999499, -0.00113101, 0.0224408, 0.050375, 0.999494, -0.00136863, 0.0224405, 0.0609586, 0.999489, -0.00162896, 0.0224401, 0.0725537, 0.999489, -0.00191201, 0.0224414, 0.0851619, 0.999498, -0.00221787, 0.0224413, 0.0987867, 0.999492, -0.00254642, 0.0224409, 0.113426, 0.999507, -0.00289779, 0.0224417, 0.129088, 0.999494, -0.0032716, 0.0224386, 0.145767, 0.999546, -0.0036673, 0.0224424, 0.163472, 0.999543, -0.00408166, 0.0224387, 0.182182, 0.999499, -0.00450056, 0.0224338, 0.201843, 0.999503, -0.00483661, 0.0224203, 0.222198, 0.999546, -0.00452928, 0.022315, 0.241714, 0.999508, -0.00587403, 0.0224329, 0.262184, 0.999509, -0.00638806, 0.0224271, 0.285609, 0.999501, -0.00691028, 0.0224166, 0.309998, 0.999539, -0.00741979, 0.0223989, 0.335262, 0.999454, -0.00786282, 0.0223675, 0.361154, 0.999529, -0.00811928, 0.0222828, 0.387224, 0.999503, -0.00799941, 0.0221063, 0.41252, 0.999561, -0.00952753, 0.0223057, 0.438006, 0.999557, -0.0099134, 0.0222065, 0.466735, 0.999541, -0.0100935, 0.0220402, 0.495332, 0.999562, -0.00996821, 0.0218067, 0.523197, 0.999556, -0.0105031, 0.0217096, 0.550223, 0.999561, -0.0114191, 0.0217215, 0.579498, 0.999588, -0.0111818, 0.0213357, 0.608416, 0.999633, -0.0107725, 0.0208689, 0.635965, 0.999527, -0.0121671, 0.0210149, 0.664476, 0.999508, -0.0116005, 0.020431, 0.692786, 0.999568, -0.0115604, 0.0199791, 0.719709, 0.999671, -0.0121117, 0.0197415, 0.74737, 0.999688, -0.0110769, 0.0188846, 0.773692, 0.99962, -0.0122368, 0.0188452, 0.799534, 0.999823, -0.0110325, 0.0178001, 0.825046, 0.999599, -0.0114923, 0.0174221, 0.849075, 0.999619, -0.0105923, 0.0164345, 0.872999, 0.999613, -0.0105988, 0.0158227, 0.895371, 0.99964, -0.00979861, 0.0148131, 0.917364, 0.99977, -0.00967238, 0.0140721, 0.938002, 0.999726, -0.00869175, 0.0129543, 0.957917, 0.99973, -0.00866872, 0.0122329, 0.976557, 0.999773, -0.00731956, 0.0108958, 0.994459, 0.999811, -0.00756027, 0.0102715, 1.01118, 0.999862, -0.00583732, 0.00878781, 1.02701, 0.999835, -0.00631438, 0.00827529, 1.04186, 0.999871, -0.00450785, 0.00674583, 1.05569, 0.999867, -0.00486079, 0.00621041, 1.06861, 0.999939, -0.00322072, 0.00478301, 1.08064, 0.999918, -0.00318199, 0.00406395, 1.09181, 1.00003, -0.00193348, 0.00280682, 1.10207, 0.999928, -0.00153729, 0.00198741, 1.11152, 0.999933, -0.000623666, 0.000917714, 1.12009, 1, -1.02387e-06, 9.07581e-07, 1.12813, 0.997866, -8.96716e-07, 0.0448334, 1.99584e-05, 0.997987, -2.25945e-05, 0.0448389, 0.000502891, 0.997987, -9.03781e-05, 0.0448388, 0.00201156, 0.997985, -0.000203351, 0.0448388, 0.00452602, 0.997986, -0.000361514, 0.0448388, 0.00804629, 0.997987, -0.00056487, 0.0448389, 0.0125724, 0.997988, -0.000813423, 0.0448389, 0.0181045, 0.997984, -0.00110718, 0.0448387, 0.0246427, 0.997985, -0.00144616, 0.0448388, 0.0321875, 0.997987, -0.00183038, 0.044839, 0.0407392, 0.997983, -0.00225987, 0.0448387, 0.0502986, 0.997991, -0.00273467, 0.0448389, 0.0608667, 0.997984, -0.00325481, 0.0448384, 0.0724444, 0.998002, -0.00382043, 0.044839, 0.0850348, 0.997997, -0.00443145, 0.0448396, 0.0986372, 0.998007, -0.00508796, 0.0448397, 0.113255, 0.998008, -0.00578985, 0.04484, 0.128891, 0.998003, -0.00653683, 0.0448384, 0.145548, 0.997983, -0.00732713, 0.0448358, 0.163221, 0.997985, -0.00815454, 0.0448358, 0.181899, 0.998005, -0.00898985, 0.0448286, 0.201533, 0.998026, -0.00964404, 0.0447934, 0.221821, 0.998055, -0.00922677, 0.044611, 0.241282, 0.99804, -0.0117361, 0.0448245, 0.261791, 0.998048, -0.0127628, 0.0448159, 0.285181, 0.998088, -0.0138055, 0.0447996, 0.30954, 0.998058, -0.0148206, 0.0447669, 0.334751, 0.998099, -0.0156998, 0.044697, 0.36061, 0.998116, -0.0161976, 0.0445122, 0.386603, 0.998195, -0.015945, 0.0441711, 0.411844, 0.998168, -0.0183947, 0.0444255, 0.43773, 0.998184, -0.0197913, 0.0443809, 0.466009, 0.998251, -0.0201426, 0.0440689, 0.494574, 0.998305, -0.0198847, 0.0435632, 0.522405, 0.998273, -0.0210577, 0.043414, 0.549967, 0.998254, -0.0227901, 0.0433943, 0.578655, 0.998349, -0.0223108, 0.0426529, 0.60758, 0.99843, -0.0223088, 0.042, 0.635524, 0.998373, -0.0241141, 0.0418987, 0.663621, 0.998425, -0.0231446, 0.0408118, 0.691906, 0.998504, -0.0233684, 0.0400565, 0.719339, 0.998443, -0.0241652, 0.0394634, 0.74643, 0.99848, -0.0228715, 0.0380002, 0.773086, 0.998569, -0.023519, 0.0372322, 0.798988, 0.998619, -0.0223108, 0.0356468, 0.824249, 0.998594, -0.0223105, 0.034523, 0.848808, 0.998622, -0.0213426, 0.0328887, 0.87227, 0.998669, -0.0207912, 0.0314374, 0.895157, 0.998705, -0.0198416, 0.0296925, 0.916769, 0.998786, -0.0189168, 0.0279634, 0.937773, 0.998888, -0.0178811, 0.0261597, 0.957431, 0.99906, -0.0166845, 0.0242159, 0.976495, 0.999038, -0.0155464, 0.0222638, 0.994169, 0.999237, -0.0141349, 0.0201967, 1.01112, 0.999378, -0.0129324, 0.0181744, 1.02692, 0.999433, -0.0113192, 0.0159898, 1.04174, 0.999439, -0.0101244, 0.0140385, 1.05559, 0.999614, -0.00837456, 0.0117826, 1.06852, 0.999722, -0.00721769, 0.00983745, 1.08069, 0.999817, -0.00554067, 0.00769002, 1.09176, 0.99983, -0.00426961, 0.005782, 1.10211, 0.999964, -0.00273904, 0.00374503, 1.11152, 1.00001, -0.00136739, 0.00187176, 1.12031, 0.999946, 3.93227e-05, -2.8919e-05, 1.12804, 0.995847, -1.3435e-06, 0.0671785, 1.9916e-05, 0.995464, -3.38387e-05, 0.0671527, 0.000501622, 0.99547, -0.000135355, 0.0671531, 0.00200649, 0.995471, -0.00030455, 0.0671532, 0.00451461, 0.99547, -0.000541423, 0.0671531, 0.008026, 0.995471, -0.00084598, 0.0671531, 0.0125407, 0.99547, -0.00121823, 0.0671531, 0.0180589, 0.99547, -0.00165817, 0.0671531, 0.0245806, 0.995463, -0.00216583, 0.0671526, 0.0321062, 0.995468, -0.00274127, 0.0671527, 0.0406366, 0.995474, -0.00338447, 0.0671534, 0.0501717, 0.995473, -0.00409554, 0.0671533, 0.0607131, 0.995478, -0.00487451, 0.0671531, 0.0722618, 0.995476, -0.00572148, 0.0671532, 0.0848191, 0.995477, -0.00663658, 0.0671539, 0.0983882, 0.995498, -0.00761986, 0.0671541, 0.112972, 0.995509, -0.00867094, 0.0671542, 0.128568, 0.995509, -0.00978951, 0.0671531, 0.145183, 0.995503, -0.0109725, 0.0671491, 0.162808, 0.995501, -0.012211, 0.0671465, 0.181441, 0.99553, -0.0134565, 0.0671371, 0.201015, 0.99555, -0.014391, 0.0670831, 0.221206, 0.99558, -0.014351, 0.0668883, 0.240813, 0.995577, -0.0173997, 0.0671055, 0.261257, 0.995602, -0.0191111, 0.0671178, 0.284467, 0.995623, -0.0206705, 0.0670946, 0.308765, 0.995658, -0.022184, 0.0670472, 0.333905, 0.995705, -0.0234832, 0.0669417, 0.359677, 0.995719, -0.0241933, 0.0666714, 0.385554, 0.995786, -0.0243539, 0.066266, 0.410951, 0.995887, -0.0271866, 0.0664367, 0.437163, 0.995944, -0.0296012, 0.0664931, 0.464842, 0.996004, -0.0301045, 0.0660105, 0.49332, 0.996128, -0.0298311, 0.0652694, 0.521131, 0.996253, -0.0316426, 0.0650739, 0.549167, 0.996244, -0.0339043, 0.0649433, 0.57737, 0.996309, -0.033329, 0.0638926, 0.606073, 0.996417, -0.0338935, 0.0630849, 0.634527, 0.996372, -0.0353104, 0.0625083, 0.66256, 0.996542, -0.0348942, 0.0611986, 0.690516, 0.996568, -0.0351614, 0.060069, 0.718317, 0.996711, -0.0354317, 0.0588522, 0.74528, 0.996671, -0.0349513, 0.0571902, 0.772061, 0.996865, -0.0345622, 0.0555321, 0.798089, 0.996802, -0.0342566, 0.0537816, 0.823178, 0.996992, -0.0330862, 0.0516095, 0.847949, 0.996944, -0.0324666, 0.0495537, 0.871431, 0.997146, -0.0309544, 0.0470302, 0.894357, 0.997189, -0.0299372, 0.0446043, 0.916142, 0.997471, -0.0281389, 0.0418812, 0.937193, 0.997515, -0.0268702, 0.0391823, 0.957, 0.997812, -0.0247166, 0.0361338, 0.975936, 0.998027, -0.0233525, 0.0333945, 0.99391, 0.998233, -0.0209839, 0.0301917, 1.01075, 0.998481, -0.0194309, 0.027271, 1.02669, 0.998859, -0.0169728, 0.0240162, 1.04173, 0.99894, -0.0152322, 0.0210517, 1.05551, 0.999132, -0.0127497, 0.0178632, 1.06856, 0.999369, -0.0108282, 0.014787, 1.08054, 0.999549, -0.00845886, 0.0116185, 1.09185, 0.999805, -0.0063937, 0.00867209, 1.10207, 0.99985, -0.00414582, 0.00566823, 1.1117, 0.999912, -0.00207443, 0.00277562, 1.12022, 1.00001, 8.70226e-05, -5.3766e-05, 1.12832, 0.991943, -1.78672e-06, 0.0893382, 1.98384e-05, 0.991952, -4.50183e-05, 0.089339, 0.000499849, 0.991956, -0.000180074, 0.0893394, 0.0019994, 0.991955, -0.000405167, 0.0893393, 0.00449867, 0.991953, -0.000720298, 0.0893391, 0.00799764, 0.991955, -0.00112548, 0.0893393, 0.0124964, 0.991957, -0.0016207, 0.0893395, 0.0179951, 0.991958, -0.00220601, 0.0893396, 0.0244939, 0.991947, -0.00288137, 0.0893385, 0.0319929, 0.991962, -0.00364693, 0.0893399, 0.0404933, 0.991965, -0.00450264, 0.0893399, 0.049995, 0.99198, -0.00544862, 0.0893411, 0.0604995, 0.99197, -0.00648491, 0.0893397, 0.0720074, 0.991976, -0.00761164, 0.089341, 0.0845207, 0.99198, -0.00882891, 0.0893405, 0.0980413, 0.991982, -0.0101367, 0.0893396, 0.112571, 0.992008, -0.011535, 0.0893415, 0.128115, 0.992026, -0.0130228, 0.0893414, 0.144672, 0.992064, -0.0145966, 0.0893418, 0.162241, 0.992041, -0.0162421, 0.0893359, 0.180801, 0.992086, -0.0178888, 0.0893214, 0.200302, 0.992157, -0.0190368, 0.0892401, 0.220332, 0.992181, -0.0195584, 0.0890525, 0.240144, 0.992175, -0.0227257, 0.0892153, 0.260728, 0.99221, -0.0254195, 0.089304, 0.283473, 0.99222, -0.0274883, 0.0892703, 0.307673, 0.992317, -0.0294905, 0.0892027, 0.332729, 0.992374, -0.0311861, 0.0890577, 0.358387, 0.992505, -0.0320656, 0.0886994, 0.384102, 0.992568, -0.0329715, 0.0883198, 0.409767, 0.992675, -0.036006, 0.0883602, 0.436145, 0.992746, -0.0392897, 0.0884591, 0.463217, 0.992873, -0.0399337, 0.0878287, 0.491557, 0.992934, -0.040231, 0.0870108, 0.519516, 0.993091, -0.0422013, 0.0865857, 0.547741, 0.993259, -0.0443503, 0.0861937, 0.575792, 0.993455, -0.0446368, 0.0851187, 0.604233, 0.993497, -0.0454299, 0.0840576, 0.632925, 0.993694, -0.0463296, 0.0829671, 0.660985, 0.993718, -0.0470619, 0.0817185, 0.688714, 0.993973, -0.0468838, 0.0800294, 0.716743, 0.994207, -0.046705, 0.0781286, 0.74377, 0.994168, -0.0469698, 0.0763337, 0.77042, 0.9945, -0.0456816, 0.0738184, 0.796659, 0.994356, -0.0455518, 0.0715545, 0.821868, 0.994747, -0.0439488, 0.0686085, 0.846572, 0.994937, -0.0430056, 0.065869, 0.870435, 0.995142, -0.0413414, 0.0626446, 0.893272, 0.995451, -0.0396521, 0.05929, 0.915376, 0.995445, -0.0378453, 0.0558503, 0.936196, 0.995967, -0.0355219, 0.0520949, 0.956376, 0.996094, -0.0335146, 0.048377, 0.975327, 0.996622, -0.030682, 0.0442575, 0.993471, 0.996938, -0.0285504, 0.0404693, 1.01052, 0.997383, -0.0253399, 0.0360903, 1.02637, 0.997714, -0.0231651, 0.0322176, 1.04139, 0.998249, -0.0198138, 0.0278433, 1.05542, 0.998596, -0.0174337, 0.0238759, 1.06846, 0.998946, -0.0141349, 0.0195944, 1.08056, 0.99928, -0.0115603, 0.0156279, 1.09181, 0.999507, -0.00839065, 0.0114607, 1.10213, 0.999697, -0.005666, 0.00763325, 1.11169, 0.999869, -0.00269902, 0.00364946, 1.12042, 1.00001, 6.23836e-05, -3.19288e-05, 1.12832, 0.987221, -2.22675e-06, 0.111332, 1.97456e-05, 0.98739, -5.61116e-05, 0.111351, 0.000497563, 0.987448, -0.000224453, 0.111357, 0.00199031, 0.987441, -0.000505019, 0.111357, 0.0044782, 0.987442, -0.000897816, 0.111357, 0.00796129, 0.987442, -0.00140284, 0.111357, 0.0124396, 0.987444, -0.00202012, 0.111357, 0.0179132, 0.987442, -0.00274964, 0.111357, 0.0243824, 0.987446, -0.00359147, 0.111357, 0.0318474, 0.987435, -0.00454562, 0.111356, 0.0403086, 0.987461, -0.00561225, 0.111358, 0.0497678, 0.987458, -0.00679125, 0.111358, 0.0602239, 0.987443, -0.0080828, 0.111356, 0.0716792, 0.987476, -0.0094872, 0.111358, 0.0841364, 0.98749, -0.0110044, 0.111361, 0.097597, 0.987508, -0.0126344, 0.111362, 0.112062, 0.987494, -0.0143767, 0.111357, 0.127533, 0.987526, -0.0162307, 0.111359, 0.144015, 0.987558, -0.0181912, 0.111361, 0.161502, 0.987602, -0.0202393, 0.111355, 0.179979, 0.987692, -0.022273, 0.111346, 0.199386, 0.987702, -0.0235306, 0.111215, 0.219183, 0.987789, -0.0247628, 0.111061, 0.239202, 0.987776, -0.0280668, 0.111171, 0.259957, 0.987856, -0.0316751, 0.111327, 0.282198, 0.987912, -0.0342468, 0.111282, 0.306294, 0.988, -0.0367205, 0.111198, 0.331219, 0.988055, -0.0387766, 0.110994, 0.356708, 0.988241, -0.0397722, 0.110547, 0.382234, 0.988399, -0.0416076, 0.110198, 0.408227, 0.988539, -0.0448192, 0.110137, 0.434662, 0.988661, -0.0483793, 0.110143, 0.461442, 0.988967, -0.0495895, 0.109453, 0.489318, 0.989073, -0.0506797, 0.108628, 0.517516, 0.989274, -0.0526953, 0.108003, 0.545844, 0.989528, -0.054578, 0.107255, 0.573823, 0.989709, -0.0561503, 0.106294, 0.601944, 0.989991, -0.056866, 0.104896, 0.630855, 0.990392, -0.0572914, 0.103336, 0.658925, 0.990374, -0.0586224, 0.10189, 0.686661, 0.990747, -0.0584764, 0.099783, 0.714548, 0.991041, -0.0582662, 0.0974309, 0.74186, 0.991236, -0.0584118, 0.0951678, 0.768422, 0.991585, -0.0573055, 0.0921581, 0.794817, 0.991984, -0.0564241, 0.0891167, 0.820336, 0.9921, -0.0553608, 0.085805, 0.84493, 0.992749, -0.0533816, 0.0820354, 0.868961, 0.99288, -0.0518661, 0.0782181, 0.891931, 0.993511, -0.0492492, 0.0738935, 0.914186, 0.993617, -0.0471956, 0.0696402, 0.93532, 0.99411, -0.044216, 0.0649659, 0.95543, 0.994595, -0.0416654, 0.0603177, 0.974685, 0.994976, -0.0384314, 0.0553493, 0.992807, 0.995579, -0.0353491, 0.0503942, 1.00996, 0.996069, -0.0319787, 0.0452123, 1.02606, 0.996718, -0.028472, 0.0400112, 1.04114, 0.997173, -0.0250789, 0.0349456, 1.05517, 0.997818, -0.0213326, 0.029653, 1.0683, 0.998318, -0.0178509, 0.024549, 1.0805, 0.998853, -0.0141118, 0.0194197, 1.09177, 0.999218, -0.0105914, 0.0143869, 1.1022, 0.999594, -0.00693474, 0.00943517, 1.11175, 0.99975, -0.00340478, 0.00464051, 1.12056, 1.00001, 0.000109172, -0.000112821, 1.12853, 0.983383, -2.66524e-06, 0.133358, 1.96534e-05, 0.981942, -6.71009e-05, 0.133162, 0.000494804, 0.981946, -0.000268405, 0.133163, 0.00197923, 0.981944, -0.000603912, 0.133163, 0.00445326, 0.981941, -0.00107362, 0.133162, 0.00791693, 0.981946, -0.00167755, 0.133163, 0.0123703, 0.981944, -0.00241569, 0.133162, 0.0178135, 0.981945, -0.00328807, 0.133163, 0.0242466, 0.981945, -0.00429472, 0.133162, 0.03167, 0.981955, -0.00543573, 0.133164, 0.0400846, 0.981951, -0.00671105, 0.133163, 0.0494901, 0.981968, -0.00812092, 0.133165, 0.0598886, 0.981979, -0.00966541, 0.133166, 0.0712811, 0.981996, -0.0113446, 0.133168, 0.083669, 0.982014, -0.0131585, 0.133169, 0.0970533, 0.982011, -0.0151073, 0.133167, 0.111438, 0.982062, -0.0171906, 0.133172, 0.126826, 0.9821, -0.0194067, 0.133175, 0.143215, 0.982149, -0.0217502, 0.133176, 0.160609, 0.982163, -0.0241945, 0.133173, 0.178981, 0.982247, -0.0265907, 0.133148, 0.198249, 0.982291, -0.027916, 0.132974, 0.217795, 0.982396, -0.0299663, 0.132868, 0.238042, 0.982456, -0.0334544, 0.132934, 0.258901, 0.982499, -0.0378636, 0.133137, 0.280639, 0.982617, -0.0409274, 0.133085, 0.304604, 0.98274, -0.0438523, 0.132985, 0.329376, 0.982944, -0.0462288, 0.132728, 0.354697, 0.98308, -0.0475995, 0.132228, 0.380102, 0.983391, -0.0501901, 0.131924, 0.406256, 0.983514, -0.0535899, 0.131737, 0.432735, 0.98373, -0.0571858, 0.131567, 0.459359, 0.984056, -0.0592353, 0.130932, 0.486637, 0.984234, -0.0610488, 0.130092, 0.51509, 0.984748, -0.0630758, 0.12923, 0.543461, 0.985073, -0.0647398, 0.128174, 0.571376, 0.985195, -0.0671941, 0.127133, 0.599414, 0.985734, -0.0681345, 0.125576, 0.628134, 0.986241, -0.0686089, 0.123639, 0.656399, 0.986356, -0.0698511, 0.121834, 0.684258, 0.986894, -0.0700931, 0.119454, 0.711818, 0.987382, -0.0698321, 0.116718, 0.739511, 0.988109, -0.0693975, 0.113699, 0.766267, 0.988363, -0.0689584, 0.110454, 0.792456, 0.989112, -0.0672353, 0.106602, 0.81813, 0.989241, -0.0662034, 0.10267, 0.842889, 0.990333, -0.0638938, 0.0981381, 0.867204, 0.990591, -0.0618534, 0.0935388, 0.89038, 0.991106, -0.0593117, 0.088553, 0.912576, 0.991919, -0.0562676, 0.0832187, 0.934118, 0.992111, -0.0534085, 0.0778302, 0.954254, 0.992997, -0.0495459, 0.0720453, 0.973722, 0.993317, -0.0463707, 0.0663458, 0.991949, 0.994133, -0.0421245, 0.0601883, 1.00936, 0.994705, -0.0384977, 0.0542501, 1.02559, 0.995495, -0.0340956, 0.0479862, 1.04083, 0.996206, -0.030105, 0.041887, 1.05497, 0.996971, -0.0256095, 0.0355355, 1.06824, 0.997796, -0.0213932, 0.0293655, 1.08056, 0.998272, -0.0169612, 0.0232926, 1.09182, 0.998857, -0.0126756, 0.0172786, 1.10219, 0.99939, -0.00832486, 0.0113156, 1.11192, 0.999752, -0.00410826, 0.00557892, 1.12075, 1, 0.000150957, -0.000119101, 1.12885, 0.975169, -3.09397e-06, 0.154669, 1.95073e-05, 0.975439, -7.79608e-05, 0.154712, 0.000491534, 0.975464, -0.000311847, 0.154716, 0.00196617, 0.975464, -0.000701656, 0.154716, 0.00442387, 0.975462, -0.0012474, 0.154715, 0.0078647, 0.975461, -0.00194906, 0.154715, 0.0122886, 0.975464, -0.00280667, 0.154715, 0.0176959, 0.975468, -0.00382025, 0.154716, 0.0240867, 0.975471, -0.00498985, 0.154716, 0.0314612, 0.975472, -0.00631541, 0.154717, 0.0398199, 0.975486, -0.00779719, 0.154718, 0.0491639, 0.975489, -0.00943505, 0.154718, 0.0594932, 0.975509, -0.0112295, 0.154721, 0.0708113, 0.97554, -0.0131802, 0.154724, 0.0831176, 0.975557, -0.0152876, 0.154726, 0.096415, 0.975585, -0.0175512, 0.154728, 0.110705, 0.975605, -0.0199713, 0.154729, 0.125992, 0.975645, -0.0225447, 0.154729, 0.142272, 0.975711, -0.0252649, 0.154735, 0.159549, 0.975788, -0.0280986, 0.154736, 0.177805, 0.975872, -0.0308232, 0.154704, 0.196911, 0.975968, -0.0324841, 0.154525, 0.216324, 0.976063, -0.0351281, 0.154432, 0.236628, 0.976157, -0.0388618, 0.15446, 0.257539, 0.976204, -0.0437704, 0.154665, 0.278975, 0.976358, -0.047514, 0.154652, 0.302606, 0.976571, -0.0508638, 0.154535, 0.327204, 0.976725, -0.0534995, 0.154221, 0.352276, 0.977013, -0.0555547, 0.153737, 0.377696, 0.977294, -0.0586728, 0.153403, 0.403855, 0.977602, -0.0622715, 0.15312, 0.430333, 0.977932, -0.0658166, 0.152755, 0.456855, 0.978241, -0.0689877, 0.152233, 0.483668, 0.978602, -0.0712805, 0.15132, 0.512097, 0.979234, -0.0732775, 0.150235, 0.540455, 0.97977, -0.075163, 0.148978, 0.568486, 0.979995, -0.0778026, 0.147755, 0.596524, 0.98078, -0.0791854, 0.146019, 0.624825, 0.981628, -0.0799666, 0.143906, 0.653403, 0.982067, -0.0808532, 0.141561, 0.681445, 0.98271, -0.0816024, 0.139025, 0.708918, 0.983734, -0.0812511, 0.135764, 0.736594, 0.98431, -0.0806201, 0.132152, 0.763576, 0.985071, -0.0801605, 0.12846, 0.789797, 0.98618, -0.0784208, 0.124084, 0.815804, 0.986886, -0.0766643, 0.1193, 0.840869, 0.987485, -0.0747744, 0.114236, 0.864952, 0.988431, -0.0716701, 0.108654, 0.888431, 0.988886, -0.0691609, 0.102994, 0.910963, 0.990024, -0.0654048, 0.0967278, 0.932629, 0.990401, -0.0619765, 0.090384, 0.95313, 0.991093, -0.0579296, 0.0837885, 0.972587, 0.992018, -0.0536576, 0.0770171, 0.991184, 0.992536, -0.0493719, 0.0701486, 1.00863, 0.993421, -0.0444813, 0.062953, 1.02494, 0.993928, -0.040008, 0.0560455, 1.04017, 0.994994, -0.0347982, 0.04856, 1.05463, 0.995866, -0.0301017, 0.0416152, 1.06807, 0.996916, -0.0248225, 0.0342597, 1.08039, 0.997766, -0.0199229, 0.0271668, 1.09177, 0.998479, -0.0147422, 0.0201387, 1.10235, 0.99921, -0.00980173, 0.0131944, 1.11206, 0.999652, -0.0047426, 0.00640712, 1.12104, 0.999998, 8.91673e-05, -0.00010379, 1.12906, 0.967868, -3.51885e-06, 0.175947, 1.93569e-05, 0.968001, -8.86733e-05, 0.175972, 0.000487782, 0.96801, -0.000354697, 0.175973, 0.00195115, 0.968012, -0.000798063, 0.175974, 0.00439006, 0.968011, -0.00141879, 0.175973, 0.00780461, 0.968011, -0.00221686, 0.175973, 0.0121948, 0.968016, -0.00319231, 0.175974, 0.0175607, 0.968019, -0.00434515, 0.175974, 0.0239027, 0.968018, -0.00567538, 0.175974, 0.0312208, 0.968033, -0.00718308, 0.175977, 0.0395158, 0.968049, -0.00886836, 0.175979, 0.0487885, 0.968047, -0.0107312, 0.175978, 0.0590394, 0.968072, -0.0127719, 0.175981, 0.0702705, 0.968108, -0.0149905, 0.175986, 0.0824836, 0.968112, -0.0173866, 0.175985, 0.0956783, 0.968173, -0.0199611, 0.175993, 0.109862, 0.96827, -0.0227128, 0.176008, 0.125033, 0.968292, -0.025639, 0.17601, 0.141193, 0.968339, -0.0287299, 0.176007, 0.158336, 0.968389, -0.0319399, 0.176001, 0.176441, 0.968501, -0.034941, 0.175962, 0.195359, 0.968646, -0.0370812, 0.175793, 0.214686, 0.968789, -0.0402329, 0.175708, 0.234973, 0.96886, -0.0442601, 0.1757, 0.255871, 0.969013, -0.049398, 0.175876, 0.277238, 0.969242, -0.0539932, 0.17594, 0.300326, 0.969419, -0.0577299, 0.175781, 0.324702, 0.969763, -0.0605643, 0.175432, 0.349527, 0.970093, -0.0634488, 0.174992, 0.374976, 0.970361, -0.0670589, 0.174611, 0.401097, 0.970825, -0.0708246, 0.174226, 0.427496, 0.971214, -0.0742871, 0.173684, 0.453858, 0.971622, -0.0782608, 0.173186, 0.480637, 0.972175, -0.0813151, 0.172288, 0.508655, 0.972944, -0.0832678, 0.170979, 0.536973, 0.973595, -0.0855964, 0.169573, 0.565138, 0.974345, -0.0882163, 0.168152, 0.593222, 0.975233, -0.0901671, 0.166314, 0.621201, 0.976239, -0.0912111, 0.163931, 0.649919, 0.977289, -0.0916959, 0.161106, 0.678011, 0.978076, -0.0927061, 0.158272, 0.705717, 0.979533, -0.0925562, 0.15475, 0.733228, 0.980335, -0.0918159, 0.150638, 0.760454, 0.981808, -0.0908508, 0.146201, 0.786918, 0.983061, -0.0896172, 0.141386, 0.812953, 0.984148, -0.0871588, 0.135837, 0.838281, 0.985047, -0.0850624, 0.130135, 0.862594, 0.986219, -0.0818541, 0.123882, 0.88633, 0.987043, -0.0784523, 0.117126, 0.908952, 0.988107, -0.0749601, 0.110341, 0.930744, 0.988955, -0.0703548, 0.102885, 0.951728, 0.989426, -0.0662798, 0.0954167, 0.971166, 0.990421, -0.0610834, 0.0876331, 0.989984, 0.991032, -0.0562936, 0.0797785, 1.00765, 0.992041, -0.0508154, 0.0718166, 1.02434, 0.992794, -0.0454045, 0.0637125, 1.03976, 0.993691, -0.0398194, 0.0555338, 1.05418, 0.994778, -0.0341482, 0.0473388, 1.06772, 0.995915, -0.028428, 0.0391016, 1.08028, 0.997109, -0.022642, 0.0309953, 1.09185, 0.998095, -0.0168738, 0.0230288, 1.10247, 0.998985, -0.0111274, 0.0150722, 1.11229, 0.999581, -0.00543881, 0.00740605, 1.12131, 1.00003, 0.000162239, -0.000105549, 1.12946, 0.959505, -3.93734e-06, 0.196876, 1.91893e-05, 0.959599, -9.92157e-05, 0.196895, 0.000483544, 0.959641, -0.000396868, 0.196903, 0.0019342, 0.959599, -0.000892948, 0.196895, 0.00435193, 0.959603, -0.00158747, 0.196896, 0.0077368, 0.959604, -0.00248042, 0.196896, 0.0120888, 0.959605, -0.00357184, 0.196896, 0.0174082, 0.959605, -0.00486169, 0.196896, 0.0236949, 0.959613, -0.00635008, 0.196897, 0.0309497, 0.959619, -0.00803696, 0.196898, 0.0391725, 0.959636, -0.00992255, 0.196901, 0.0483649, 0.959634, -0.0120067, 0.1969, 0.0585266, 0.959675, -0.0142898, 0.196906, 0.0696609, 0.959712, -0.0167717, 0.196911, 0.0817678, 0.959752, -0.0194524, 0.196918, 0.0948494, 0.959807, -0.0223321, 0.196925, 0.10891, 0.959828, -0.0254091, 0.196924, 0.123947, 0.959906, -0.0286815, 0.196934, 0.139968, 0.960005, -0.0321371, 0.196944, 0.156968, 0.960071, -0.0357114, 0.196936, 0.17491, 0.960237, -0.0389064, 0.196882, 0.193597, 0.960367, -0.041623, 0.196731, 0.21285, 0.960562, -0.0452655, 0.196654, 0.233075, 0.960735, -0.0496207, 0.196643, 0.253941, 0.960913, -0.0549379, 0.196774, 0.275278, 0.961121, -0.0603414, 0.196893, 0.297733, 0.96139, -0.0644244, 0.196717, 0.321877, 0.961818, -0.067556, 0.196314, 0.346476, 0.962175, -0.0712709, 0.195917, 0.371907, 0.96255, -0.0752848, 0.1955, 0.397916, 0.963164, -0.0792073, 0.195026, 0.424229, 0.963782, -0.0828225, 0.194424, 0.450637, 0.964306, -0.0873119, 0.193831, 0.477288, 0.964923, -0.0911051, 0.192973, 0.504716, 0.966048, -0.093251, 0.19151, 0.533053, 0.967024, -0.0958983, 0.190013, 0.561366, 0.968038, -0.09835, 0.188253, 0.589464, 0.969152, -0.100754, 0.186257, 0.617433, 0.970557, -0.102239, 0.183775, 0.645801, 0.972104, -0.102767, 0.180645, 0.674278, 0.973203, -0.103492, 0.177242, 0.702004, 0.975123, -0.103793, 0.17345, 0.729529, 0.97641, -0.102839, 0.168886, 0.756712, 0.978313, -0.101687, 0.163892, 0.783801, 0.980036, -0.100314, 0.158439, 0.809671, 0.981339, -0.097836, 0.152211, 0.835402, 0.982794, -0.0950006, 0.145679, 0.860081, 0.984123, -0.0920994, 0.138949, 0.883757, 0.984918, -0.0878641, 0.131283, 0.90685, 0.985999, -0.083939, 0.123464, 0.928786, 0.987151, -0.0791234, 0.115324, 0.94983, 0.987827, -0.0739332, 0.106854, 0.96962, 0.988806, -0.0688088, 0.0982691, 0.98861, 0.989588, -0.0628962, 0.0893456, 1.00667, 0.990438, -0.0573146, 0.0805392, 1.02344, 0.991506, -0.0509433, 0.0713725, 1.03933, 0.992492, -0.0448724, 0.0623732, 1.05378, 0.993663, -0.0383497, 0.0530838, 1.06747, 0.994956, -0.0319593, 0.0439512, 1.08007, 0.99634, -0.025401, 0.0347803, 1.09182, 0.99761, -0.0189687, 0.0257954, 1.1025, 0.99863, -0.0124441, 0.0169893, 1.11247, 0.99947, -0.00614003, 0.00829498, 1.12151, 1.00008, 0.000216624, -0.000146107, 1.12993, 0.950129, -4.34955e-06, 0.217413, 1.90081e-05, 0.950264, -0.00010957, 0.217444, 0.00047884, 0.9503, -0.000438299, 0.217451, 0.00191543, 0.950246, -0.000986124, 0.21744, 0.00430951, 0.950246, -0.00175311, 0.21744, 0.00766137, 0.950245, -0.00273923, 0.21744, 0.011971, 0.950253, -0.00394453, 0.217441, 0.0172385, 0.950258, -0.00536897, 0.217442, 0.0234641, 0.950267, -0.00701262, 0.217444, 0.030648, 0.950277, -0.00887551, 0.217446, 0.038791, 0.950284, -0.0109576, 0.217446, 0.0478931, 0.950312, -0.0132591, 0.217451, 0.0579568, 0.950334, -0.01578, 0.217454, 0.0689821, 0.950378, -0.0185204, 0.217462, 0.0809714, 0.950417, -0.0214803, 0.217467, 0.0939265, 0.950488, -0.0246594, 0.217479, 0.10785, 0.950534, -0.0280565, 0.217483, 0.122743, 0.950633, -0.0316685, 0.217498, 0.138611, 0.950698, -0.0354787, 0.217499, 0.155442, 0.950844, -0.0394003, 0.217507, 0.173208, 0.950999, -0.0426812, 0.217419, 0.191605, 0.951221, -0.0461302, 0.217317, 0.21084, 0.951412, -0.0502131, 0.217238, 0.230945, 0.951623, -0.0549183, 0.21722, 0.251745, 0.951867, -0.0604493, 0.217306, 0.273001, 0.952069, -0.0665189, 0.217466, 0.294874, 0.952459, -0.0709179, 0.217266, 0.318732, 0.952996, -0.0746112, 0.216891, 0.34318, 0.953425, -0.0789252, 0.216503, 0.36849, 0.953885, -0.0833293, 0.216042, 0.394373, 0.954617, -0.087371, 0.215469, 0.420505, 0.955429, -0.0914054, 0.214802, 0.446907, 0.956068, -0.0961671, 0.214146, 0.473522, 0.957094, -0.10048, 0.213286, 0.50052, 0.958372, -0.103248, 0.211796, 0.528715, 0.959654, -0.106033, 0.21016, 0.557065, 0.961305, -0.108384, 0.208149, 0.585286, 0.962785, -0.111122, 0.206024, 0.613334, 0.964848, -0.112981, 0.203442, 0.641334, 0.966498, -0.113717, 0.19996, 0.669955, 0.968678, -0.114121, 0.196105, 0.698094, 0.970489, -0.114524, 0.191906, 0.725643, 0.972903, -0.113792, 0.186963, 0.752856, 0.974701, -0.112406, 0.181343, 0.780013, 0.976718, -0.110685, 0.175185, 0.806268, 0.978905, -0.108468, 0.168535, 0.832073, 0.980267, -0.105061, 0.161106, 0.857149, 0.981967, -0.101675, 0.153387, 0.881145, 0.983063, -0.0974492, 0.145199, 0.904255, 0.984432, -0.0925815, 0.136527, 0.926686, 0.985734, -0.0877983, 0.127584, 0.947901, 0.986228, -0.081884, 0.118125, 0.968111, 0.98719, -0.0761208, 0.108594, 0.98719, 0.988228, -0.0698196, 0.0989996, 1.00559, 0.989046, -0.0632739, 0.0890074, 1.02246, 0.990242, -0.056522, 0.0790832, 1.03841, 0.991252, -0.0495272, 0.0689182, 1.05347, 0.992542, -0.0425373, 0.0588592, 1.06724, 0.994096, -0.0353198, 0.0486833, 1.08009, 0.995593, -0.028235, 0.0385977, 1.09177, 0.99711, -0.0209511, 0.0286457, 1.10274, 0.998263, -0.0139289, 0.0188497, 1.11262, 0.999254, -0.0067359, 0.009208, 1.12191, 0.999967, 0.000141846, -6.57764e-05, 1.13024, 0.935608, -4.74692e-06, 0.236466, 1.87817e-05, 0.93996, -0.00011971, 0.237568, 0.000473646, 0.939959, -0.000478845, 0.237567, 0.0018946, 0.939954, -0.0010774, 0.237566, 0.00426284, 0.939956, -0.00191538, 0.237566, 0.00757842, 0.939954, -0.00299277, 0.237566, 0.0118413, 0.93996, -0.00430961, 0.237567, 0.0170518, 0.939969, -0.00586589, 0.237569, 0.02321, 0.939982, -0.00766166, 0.237572, 0.0303164, 0.939987, -0.00969686, 0.237572, 0.0383711, 0.939997, -0.0119715, 0.237574, 0.0473751, 0.940031, -0.0144858, 0.237581, 0.0573298, 0.940073, -0.0172399, 0.237589, 0.0682366, 0.94012, -0.0202335, 0.237598, 0.080097, 0.940162, -0.0234663, 0.237604, 0.0929116, 0.940237, -0.0269387, 0.237615, 0.106686, 0.940328, -0.0306489, 0.237632, 0.121421, 0.940419, -0.0345917, 0.237645, 0.137115, 0.940522, -0.0387481, 0.237654, 0.153766, 0.940702, -0.0429906, 0.237661, 0.17133, 0.940871, -0.0465089, 0.237561, 0.189502, 0.941103, -0.050531, 0.23748, 0.208616, 0.941369, -0.0550657, 0.237423, 0.228595, 0.941641, -0.0601337, 0.237399, 0.249287, 0.941903, -0.0658804, 0.237443, 0.270467, 0.942224, -0.0722674, 0.237597, 0.292024, 0.942633, -0.0771788, 0.237419, 0.315272, 0.943172, -0.0815623, 0.237068, 0.339579, 0.943691, -0.0863973, 0.236682, 0.364717, 0.944382, -0.0911536, 0.236213, 0.390435, 0.945392, -0.0952967, 0.235562, 0.416425, 0.946185, -0.0998948, 0.234832, 0.442772, 0.947212, -0.104796, 0.234114, 0.469347, 0.948778, -0.10928, 0.233222, 0.496162, 0.950149, -0.113081, 0.231845, 0.523978, 0.951989, -0.115893, 0.230005, 0.552295, 0.953921, -0.11846, 0.227862, 0.580569, 0.955624, -0.12115, 0.225439, 0.608698, 0.958234, -0.123373, 0.222635, 0.636696, 0.960593, -0.124519, 0.219093, 0.665208, 0.963201, -0.124736, 0.214749, 0.693557, 0.965642, -0.125012, 0.210059, 0.721334, 0.968765, -0.124661, 0.204935, 0.748613, 0.971753, -0.122996, 0.198661, 0.776224, 0.973751, -0.120998, 0.191823, 0.802461, 0.976709, -0.118583, 0.184359, 0.828399, 0.977956, -0.115102, 0.176437, 0.853693, 0.979672, -0.111077, 0.167681, 0.877962, 0.981816, -0.10688, 0.158872, 0.901564, 0.98238, -0.101469, 0.149398, 0.924057, 0.983964, -0.0960013, 0.139436, 0.945751, 0.984933, -0.0899626, 0.12943, 0.966272, 0.985694, -0.0832973, 0.11894, 0.985741, 0.986822, -0.0767082, 0.108349, 1.00407, 0.987725, -0.0693614, 0.0976026, 1.02154, 0.98877, -0.06211, 0.086652, 1.03757, 0.990129, -0.0544143, 0.0756182, 1.05296, 0.991337, -0.046744, 0.0645753, 1.06683, 0.992978, -0.0387931, 0.0534683, 1.0798, 0.994676, -0.030973, 0.0424137, 1.09181, 0.99645, -0.0230311, 0.0314035, 1.10286, 0.997967, -0.0152065, 0.0206869, 1.11291, 0.99922, -0.00744837, 0.010155, 1.12237, 1.00002, 0.000240209, -7.52767e-05, 1.13089, 0.922948, -5.15351e-06, 0.255626, 1.86069e-05, 0.928785, -0.000129623, 0.257244, 0.000468009, 0.928761, -0.00051849, 0.257237, 0.00187202, 0.928751, -0.0011666, 0.257235, 0.00421204, 0.928751, -0.00207395, 0.257234, 0.0074881, 0.928754, -0.00324055, 0.257235, 0.0117002, 0.92876, -0.00466639, 0.257236, 0.0168486, 0.928763, -0.00635149, 0.257237, 0.0229334, 0.928774, -0.00829584, 0.257239, 0.029955, 0.928791, -0.0104995, 0.257243, 0.0379139, 0.928804, -0.0129623, 0.257245, 0.0468108, 0.928847, -0.0156846, 0.257255, 0.0566473, 0.92889, -0.0186661, 0.257263, 0.0674246, 0.928924, -0.0219067, 0.257268, 0.0791433, 0.928989, -0.0254066, 0.257282, 0.0918076, 0.92909, -0.0291651, 0.257301, 0.105419, 0.92918, -0.0331801, 0.257316, 0.119978, 0.92929, -0.0374469, 0.257332, 0.135491, 0.929453, -0.041939, 0.257357, 0.151948, 0.929586, -0.0464612, 0.257347, 0.169275, 0.929858, -0.0503426, 0.257269, 0.187257, 0.930125, -0.0548409, 0.257199, 0.206204, 0.930403, -0.0598063, 0.257149, 0.22601, 0.930726, -0.0652437, 0.257122, 0.246561, 0.931098, -0.0712376, 0.257153, 0.267618, 0.931396, -0.0777506, 0.257237, 0.288993, 0.931947, -0.0832374, 0.257124, 0.311527, 0.932579, -0.0883955, 0.25683, 0.335697, 0.933194, -0.0937037, 0.256444, 0.360634, 0.934013, -0.0987292, 0.255939, 0.386126, 0.935307, -0.103215, 0.255282, 0.412018, 0.936374, -0.108234, 0.254538, 0.438292, 0.93776, -0.113234, 0.253728, 0.464805, 0.939599, -0.118013, 0.25275, 0.491464, 0.941036, -0.122661, 0.251404, 0.518751, 0.94337, -0.125477, 0.249435, 0.547133, 0.945318, -0.128374, 0.247113, 0.575456, 0.947995, -0.130996, 0.244441, 0.60372, 0.950818, -0.133438, 0.241352, 0.63174, 0.954378, -0.135004, 0.237849, 0.659971, 0.957151, -0.135313, 0.233188, 0.688478, 0.960743, -0.13521, 0.228001, 0.716767, 0.964352, -0.135007, 0.222249, 0.744349, 0.967273, -0.133523, 0.21542, 0.771786, 0.969767, -0.131155, 0.208039, 0.798639, 0.973195, -0.128492, 0.200076, 0.824774, 0.975557, -0.125094, 0.191451, 0.850222, 0.977692, -0.120578, 0.18184, 0.874761, 0.98026, -0.115882, 0.172102, 0.898497, 0.981394, -0.110372, 0.161859, 0.921636, 0.982386, -0.10415, 0.15108, 0.943467, 0.983783, -0.0978128, 0.140407, 0.964045, 0.98422, -0.0906171, 0.129058, 0.98398, 0.985447, -0.0832921, 0.117614, 1.00276, 0.986682, -0.0754412, 0.10585, 1.02047, 0.987326, -0.0673885, 0.0940943, 1.03678, 0.988707, -0.0592565, 0.0822093, 1.05218, 0.990185, -0.050717, 0.070192, 1.06652, 0.991866, -0.0423486, 0.0582081, 1.07965, 0.993897, -0.0336118, 0.0460985, 1.09188, 0.995841, -0.0252178, 0.0342737, 1.10307, 0.997605, -0.0164893, 0.0224829, 1.11324, 0.999037, -0.00817112, 0.0110647, 1.12262, 1.00003, 0.000291686, -0.000168673, 1.13139, 0.915304, -5.52675e-06, 0.275999, 1.83285e-05, 0.91668, -0.000139285, 0.276414, 0.000461914, 0.916664, -0.00055713, 0.276409, 0.00184763, 0.916653, -0.00125354, 0.276406, 0.00415715, 0.916651, -0.00222851, 0.276405, 0.00739053, 0.916655, -0.00348205, 0.276406, 0.0115478, 0.916653, -0.00501414, 0.276405, 0.0166291, 0.916667, -0.00682478, 0.276409, 0.0226346, 0.91668, -0.00891398, 0.276412, 0.0295648, 0.91669, -0.0112817, 0.276413, 0.0374199, 0.916727, -0.013928, 0.276422, 0.0462016, 0.916759, -0.0168528, 0.276429, 0.0559101, 0.916793, -0.0200558, 0.276436, 0.0665466, 0.916849, -0.0235373, 0.276448, 0.0781139, 0.916964, -0.0272973, 0.276474, 0.0906156, 0.917047, -0.0313344, 0.276491, 0.104051, 0.917152, -0.0356465, 0.276511, 0.118424, 0.917286, -0.0402271, 0.276533, 0.133736, 0.917469, -0.0450408, 0.276564, 0.149978, 0.917686, -0.0497872, 0.276563, 0.167057, 0.917953, -0.0540937, 0.276493, 0.184846, 0.918228, -0.0590709, 0.276437, 0.203614, 0.918572, -0.0644277, 0.276398, 0.223212, 0.918918, -0.0702326, 0.276362, 0.243584, 0.919356, -0.076484, 0.276383, 0.264465, 0.919842, -0.0830808, 0.276434, 0.285701, 0.920451, -0.0892972, 0.276407, 0.307559, 0.921113, -0.095016, 0.276128, 0.331501, 0.921881, -0.100771, 0.275754, 0.356207, 0.923027, -0.106029, 0.275254, 0.381477, 0.924364, -0.111029, 0.274595, 0.40722, 0.925818, -0.116345, 0.273841, 0.433385, 0.92746, -0.121424, 0.272913, 0.459848, 0.929167, -0.12657, 0.271837, 0.486493, 0.931426, -0.131581, 0.270575, 0.513432, 0.934001, -0.135038, 0.268512, 0.541502, 0.936296, -0.138039, 0.266135, 0.569658, 0.939985, -0.140687, 0.263271, 0.598375, 0.943516, -0.143247, 0.260058, 0.626563, 0.94782, -0.145135, 0.256138, 0.654711, 0.951023, -0.145733, 0.251154, 0.683285, 0.955338, -0.145554, 0.245562, 0.711831, 0.959629, -0.145008, 0.239265, 0.739573, 0.963123, -0.144003, 0.232064, 0.767027, 0.966742, -0.141289, 0.224036, 0.794359, 0.969991, -0.138247, 0.215305, 0.820361, 0.973403, -0.134786, 0.206051, 0.846548, 0.975317, -0.129966, 0.195914, 0.871541, 0.977647, -0.12471, 0.185184, 0.895313, 0.980137, -0.119086, 0.174161, 0.918398, 0.981031, -0.112297, 0.162792, 0.940679, 0.982037, -0.105372, 0.150952, 0.961991, 0.983164, -0.097821, 0.138921, 0.981913, 0.983757, -0.0897245, 0.126611, 1.00109, 0.985036, -0.0815974, 0.114228, 1.01902, 0.986289, -0.0727725, 0.101389, 1.03604, 0.987329, -0.0639323, 0.0886476, 1.05149, 0.989193, -0.0548109, 0.0756837, 1.06619, 0.990716, -0.045687, 0.0627581, 1.07948, 0.992769, -0.0364315, 0.0498337, 1.09172, 0.99524, -0.0271761, 0.0370305, 1.1033, 0.997154, -0.0179609, 0.0243959, 1.11353, 0.998845, -0.00878063, 0.0119567, 1.12319, 1.00002, 0.000259038, -0.000108146, 1.13177, 0.903945, -5.91681e-06, 0.295126, 1.81226e-05, 0.903668, -0.000148672, 0.295037, 0.000455367, 0.903677, -0.000594683, 0.29504, 0.00182145, 0.903673, -0.00133805, 0.295039, 0.00409831, 0.903666, -0.00237872, 0.295036, 0.00728584, 0.903668, -0.00371676, 0.295037, 0.0113842, 0.903679, -0.00535212, 0.29504, 0.0163936, 0.903684, -0.00728479, 0.295041, 0.0223141, 0.903698, -0.00951473, 0.295044, 0.0291462, 0.903718, -0.0120419, 0.295049, 0.0368904, 0.903754, -0.0148664, 0.295058, 0.0455477, 0.903801, -0.017988, 0.29507, 0.0551194, 0.903851, -0.0214064, 0.295082, 0.0656058, 0.903921, -0.0251219, 0.295097, 0.0770109, 0.904002, -0.0291337, 0.295116, 0.0893354, 0.904111, -0.033441, 0.29514, 0.102583, 0.904246, -0.0380415, 0.295169, 0.116755, 0.904408, -0.0429258, 0.295202, 0.131853, 0.904637, -0.0480468, 0.295245, 0.147869, 0.904821, -0.0529208, 0.295214, 0.164658, 0.905163, -0.0577748, 0.295185, 0.182274, 0.905469, -0.0631763, 0.295143, 0.200828, 0.905851, -0.068917, 0.295112, 0.2202, 0.906322, -0.0750861, 0.295104, 0.240372, 0.906761, -0.0815855, 0.295086, 0.261082, 0.90735, -0.0882138, 0.295095, 0.282123, 0.908087, -0.095082, 0.295139, 0.303563, 0.908826, -0.101488, 0.29492, 0.327028, 0.909832, -0.107577, 0.294577, 0.351464, 0.911393, -0.113033, 0.294115, 0.376497, 0.912804, -0.118629, 0.293446, 0.402115, 0.914081, -0.124232, 0.292581, 0.428111, 0.91637, -0.129399, 0.29166, 0.454442, 0.91814, -0.134892, 0.290422, 0.481024, 0.921179, -0.140069, 0.289194, 0.507924, 0.924544, -0.144431, 0.287421, 0.535557, 0.927995, -0.147498, 0.284867, 0.563984, 0.931556, -0.150197, 0.281722, 0.5923, 0.935777, -0.152711, 0.278207, 0.620832, 0.940869, -0.154836, 0.274148, 0.649069, 0.945994, -0.155912, 0.269057, 0.677746, 0.949634, -0.155641, 0.262799, 0.706293, 0.955032, -0.154809, 0.256097, 0.734278, 0.95917, -0.153678, 0.248618, 0.761751, 0.962931, -0.151253, 0.239794, 0.789032, 0.966045, -0.147625, 0.230281, 0.815422, 0.96971, -0.143964, 0.220382, 0.841787, 0.972747, -0.139464, 0.209846, 0.867446, 0.975545, -0.133459, 0.198189, 0.892004, 0.978381, -0.127424, 0.186362, 0.915458, 0.979935, -0.120506, 0.173964, 0.937948, 0.980948, -0.11282, 0.161429, 0.959732, 0.982234, -0.104941, 0.148557, 0.980118, 0.982767, -0.0962905, 0.135508, 0.999463, 0.983544, -0.0873625, 0.122338, 1.01756, 0.984965, -0.0783447, 0.108669, 1.03492, 0.986233, -0.0684798, 0.0949911, 1.05087, 0.987796, -0.0590867, 0.0811386, 1.0656, 0.989885, -0.0489145, 0.0673099, 1.0794, 0.991821, -0.0391, 0.0535665, 1.09174, 0.99448, -0.029087, 0.0397529, 1.10341, 0.996769, -0.019114, 0.0261463, 1.11383, 0.998641, -0.00947007, 0.0128731, 1.1237, 0.999978, 0.000446316, -0.000169093, 1.13253, 0.888362, -6.27064e-06, 0.312578, 1.78215e-05, 0.889988, -0.000157791, 0.313148, 0.000448451, 0.889825, -0.000631076, 0.313092, 0.00179356, 0.88984, -0.00141994, 0.313097, 0.00403554, 0.889828, -0.0025243, 0.313092, 0.00717429, 0.889831, -0.00394421, 0.313093, 0.0112099, 0.889831, -0.00567962, 0.313093, 0.0161425, 0.889844, -0.00773051, 0.313096, 0.0219724, 0.889858, -0.0100968, 0.3131, 0.0286999, 0.889882, -0.0127786, 0.313106, 0.0363256, 0.889918, -0.0157757, 0.313116, 0.0448509, 0.889967, -0.0190878, 0.313129, 0.0542758, 0.89003, -0.022715, 0.313145, 0.0646032, 0.890108, -0.0266566, 0.313165, 0.0758339, 0.890218, -0.0309131, 0.313193, 0.0879729, 0.890351, -0.0354819, 0.313226, 0.101019, 0.89051, -0.0403613, 0.313263, 0.114979, 0.890672, -0.0455385, 0.313294, 0.129848, 0.890882, -0.0509444, 0.313333, 0.145616, 0.891189, -0.0559657, 0.313324, 0.162122, 0.891457, -0.0613123, 0.313281, 0.179524, 0.891856, -0.0671488, 0.313281, 0.197855, 0.892312, -0.0732732, 0.313268, 0.216991, 0.892819, -0.0797865, 0.313263, 0.236924, 0.893369, -0.0865269, 0.313247, 0.257433, 0.894045, -0.0931592, 0.313205, 0.278215, 0.894884, -0.100532, 0.313276, 0.299467, 0.895832, -0.107716, 0.313205, 0.322276, 0.897043, -0.114099, 0.312873, 0.34642, 0.898515, -0.119941, 0.312331, 0.371187, 0.900191, -0.126044, 0.311731, 0.396656, 0.90188, -0.131808, 0.310859, 0.422488, 0.904359, -0.137289, 0.309857, 0.448744, 0.906923, -0.142991, 0.308714, 0.475239, 0.910634, -0.148253, 0.307465, 0.501983, 0.914502, -0.153332, 0.305774, 0.529254, 0.919046, -0.156646, 0.303156, 0.557709, 0.923194, -0.159612, 0.299928, 0.586267, 0.928858, -0.162027, 0.296245, 0.614925, 0.934464, -0.164203, 0.291832, 0.643187, 0.939824, -0.165602, 0.286565, 0.671601, 0.944582, -0.165383, 0.280073, 0.700213, 0.949257, -0.164439, 0.272891, 0.728432, 0.954389, -0.162953, 0.264771, 0.756082, 0.958595, -0.161007, 0.255927, 0.78369, 0.962138, -0.157243, 0.245769, 0.810769, 0.966979, -0.152872, 0.235127, 0.836999, 0.969566, -0.148209, 0.22347, 0.862684, 0.972372, -0.142211, 0.211147, 0.887847, 0.975916, -0.135458, 0.198606, 0.911843, 0.978026, -0.128398, 0.185498, 0.934795, 0.979686, -0.120313, 0.17171, 0.956787, 0.980748, -0.11166, 0.158159, 0.978046, 0.981622, -0.103035, 0.144399, 0.997693, 0.982356, -0.0930328, 0.13001, 1.01642, 0.983308, -0.0834627, 0.115778, 1.03366, 0.985037, -0.0732249, 0.101327, 1.05014, 0.986493, -0.0628145, 0.086554, 1.06507, 0.988484, -0.0526556, 0.0720413, 1.07907, 0.991051, -0.0415744, 0.0571151, 1.09189, 0.993523, -0.0314275, 0.0426643, 1.10369, 0.99628, -0.0203603, 0.0279325, 1.11423, 0.998344, -0.0102446, 0.0138182, 1.12421, 0.999997, 0.00042612, -0.000193628, 1.1333, 0.871555, -6.60007e-06, 0.329176, 1.74749e-05, 0.875255, -0.000166579, 0.330571, 0.000441051, 0.875644, -0.000666394, 0.330718, 0.00176441, 0.875159, -0.00149903, 0.330536, 0.00396899, 0.87516, -0.00266493, 0.330536, 0.007056, 0.875158, -0.00416393, 0.330535, 0.0110251, 0.87516, -0.00599598, 0.330535, 0.0158764, 0.875163, -0.00816108, 0.330536, 0.0216101, 0.875174, -0.0106591, 0.330538, 0.0282266, 0.875199, -0.0134899, 0.330545, 0.0357266, 0.875257, -0.0166538, 0.330563, 0.0441117, 0.875304, -0.0201501, 0.330575, 0.0533821, 0.875373, -0.0239785, 0.330595, 0.0635395, 0.875464, -0.0281389, 0.330619, 0.0745872, 0.875565, -0.0326301, 0.330645, 0.0865255, 0.875691, -0.0374516, 0.330676, 0.0993599, 0.875897, -0.0425993, 0.330733, 0.113093, 0.876091, -0.0480576, 0.330776, 0.127722, 0.876353, -0.0537216, 0.330826, 0.143227, 0.876649, -0.0589807, 0.330809, 0.159462, 0.877034, -0.0647865, 0.330819, 0.176642, 0.877443, -0.0709789, 0.330817, 0.194702, 0.877956, -0.0774782, 0.330832, 0.213577, 0.878499, -0.0843175, 0.330822, 0.233246, 0.879144, -0.0912714, 0.330804, 0.253512, 0.879982, -0.0980824, 0.330766, 0.274137, 0.88097, -0.105823, 0.330864, 0.295209, 0.882051, -0.113671, 0.330896, 0.317226, 0.883397, -0.120303, 0.330545, 0.341068, 0.884987, -0.12667, 0.330068, 0.365613, 0.886789, -0.133118, 0.329418, 0.390807, 0.889311, -0.139024, 0.328683, 0.416494, 0.891995, -0.144971, 0.327729, 0.442618, 0.895106, -0.150747, 0.326521, 0.469131, 0.899527, -0.156283, 0.325229, 0.495921, 0.90504, -0.161707, 0.32378, 0.523162, 0.909875, -0.165661, 0.32122, 0.55092, 0.91561, -0.168755, 0.317942, 0.579928, 0.921225, -0.171193, 0.313983, 0.608539, 0.927308, -0.17319, 0.309636, 0.636854, 0.933077, -0.174819, 0.304262, 0.66523, 0.938766, -0.175002, 0.297563, 0.693609, 0.943667, -0.173946, 0.289613, 0.722157, 0.949033, -0.172221, 0.281227, 0.750021, 0.953765, -0.169869, 0.271545, 0.777466, 0.95804, -0.166578, 0.261034, 0.804853, 0.962302, -0.161761, 0.249434, 0.831569, 0.966544, -0.156636, 0.237484, 0.857779, 0.969372, -0.150784, 0.224395, 0.883051, 0.972486, -0.143672, 0.210786, 0.907864, 0.975853, -0.135772, 0.196556, 0.931223, 0.977975, -0.127942, 0.182307, 0.954061, 0.979122, -0.118347, 0.167607, 0.97531, 0.980719, -0.109112, 0.152739, 0.995666, 0.981223, -0.0991789, 0.137932, 1.01475, 0.98216, -0.0883553, 0.122692, 1.03253, 0.983379, -0.0780825, 0.107493, 1.04917, 0.985434, -0.0665646, 0.0917791, 1.06464, 0.987332, -0.0557714, 0.0764949, 1.07896, 0.990004, -0.0442805, 0.060721, 1.09199, 0.992975, -0.0331676, 0.0452284, 1.10393, 0.995811, -0.0219547, 0.0297934, 1.11476, 0.9982, -0.0107613, 0.0146415, 1.12484, 1.00002, 0.000248678, -0.00014555, 1.13413, 0.859519, -6.93595e-06, 0.347264, 1.71673e-05, 0.859843, -0.00017503, 0.347394, 0.000433219, 0.859656, -0.000700076, 0.347319, 0.00173277, 0.859671, -0.00157517, 0.347325, 0.00389875, 0.859669, -0.00280028, 0.347324, 0.00693112, 0.85967, -0.0043754, 0.347324, 0.01083, 0.859665, -0.00630049, 0.347321, 0.0155954, 0.859685, -0.0085755, 0.347328, 0.0212278, 0.859694, -0.0112003, 0.347329, 0.0277273, 0.859718, -0.0141747, 0.347336, 0.0350946, 0.85976, -0.0174988, 0.347348, 0.0433314, 0.85982, -0.0211722, 0.347366, 0.0524384, 0.859892, -0.0251941, 0.347387, 0.0624168, 0.860006, -0.0295649, 0.347422, 0.0732708, 0.860122, -0.0342825, 0.347453, 0.0849999, 0.860282, -0.0393462, 0.347499, 0.0976102, 0.860482, -0.0447513, 0.347554, 0.111104, 0.860719, -0.0504775, 0.347614, 0.125479, 0.860998, -0.0563577, 0.347666, 0.140703, 0.861322, -0.0619473, 0.347662, 0.156681, 0.861724, -0.0681277, 0.347684, 0.173597, 0.862198, -0.0746567, 0.347709, 0.191371, 0.862733, -0.0815234, 0.347727, 0.209976, 0.863371, -0.0886643, 0.347744, 0.229351, 0.86414, -0.0957908, 0.347734, 0.24934, 0.865138, -0.102912, 0.34772, 0.269797, 0.866182, -0.110924, 0.3478, 0.290654, 0.867436, -0.119223, 0.347911, 0.312074, 0.869087, -0.126197, 0.347649, 0.335438, 0.870859, -0.133145, 0.347222, 0.359732, 0.872997, -0.139869, 0.346645, 0.38467, 0.875939, -0.146089, 0.345935, 0.41019, 0.879012, -0.152334, 0.345012, 0.436218, 0.883353, -0.15821, 0.343924, 0.462641, 0.888362, -0.164097, 0.342636, 0.489449, 0.895026, -0.169528, 0.341351, 0.516629, 0.900753, -0.174408, 0.339115, 0.544109, 0.906814, -0.17751, 0.335809, 0.572857, 0.912855, -0.180101, 0.331597, 0.601554, 0.919438, -0.182116, 0.32698, 0.630198, 0.925962, -0.183494, 0.321449, 0.658404, 0.931734, -0.184159, 0.314595, 0.686625, 0.93762, -0.18304, 0.306462, 0.71531, 0.943858, -0.181323, 0.297514, 0.744272, 0.948662, -0.178683, 0.287447, 0.771462, 0.953299, -0.175379, 0.276166, 0.798593, 0.957346, -0.170395, 0.263758, 0.8256, 0.962565, -0.165042, 0.251019, 0.852575, 0.966075, -0.158655, 0.237011, 0.878316, 0.969048, -0.151707, 0.222518, 0.90329, 0.972423, -0.143271, 0.207848, 0.927745, 0.975833, -0.134824, 0.192463, 0.950859, 0.977629, -0.125444, 0.1768, 0.972947, 0.978995, -0.114949, 0.161033, 0.993263, 0.980533, -0.104936, 0.145523, 1.01337, 0.980745, -0.0935577, 0.129799, 1.03128, 0.981814, -0.0822956, 0.113486, 1.04825, 0.983943, -0.0710082, 0.0972925, 1.06405, 0.986141, -0.0587931, 0.0808138, 1.0785, 0.988878, -0.0472755, 0.0644915, 1.09204, 0.992132, -0.0349128, 0.0478128, 1.10413, 0.9953, -0.0232407, 0.031621, 1.11527, 0.998117, -0.0112713, 0.0154935, 1.12551, 1.00003, 0.000339743, -0.000195763, 1.13504, 0.845441, -7.29126e-06, 0.364305, 1.69208e-05, 0.843588, -0.000183164, 0.363506, 0.000425067, 0.843412, -0.00073253, 0.36343, 0.00169999, 0.843401, -0.00164818, 0.363426, 0.00382495, 0.843399, -0.00293008, 0.363425, 0.00679993, 0.843401, -0.00457822, 0.363425, 0.010625, 0.843394, -0.00659249, 0.363421, 0.0153002, 0.843398, -0.00897282, 0.363421, 0.0208258, 0.843415, -0.0117191, 0.363426, 0.0272024, 0.843438, -0.0148312, 0.363432, 0.0344305, 0.843483, -0.018309, 0.363447, 0.0425116, 0.84356, -0.0221521, 0.363472, 0.0514471, 0.843646, -0.0263597, 0.363499, 0.061238, 0.843743, -0.0309315, 0.363527, 0.0718873, 0.84388, -0.0358658, 0.363569, 0.0833969, 0.844079, -0.0411624, 0.363631, 0.0957742, 0.844279, -0.0468128, 0.363688, 0.109015, 0.844549, -0.0527923, 0.363761, 0.123124, 0.844858, -0.0588204, 0.363817, 0.138044, 0.84522, -0.0647573, 0.36383, 0.153755, 0.845669, -0.0713181, 0.363879, 0.170394, 0.846155, -0.0781697, 0.363908, 0.187861, 0.846789, -0.0853913, 0.363969, 0.206176, 0.847502, -0.0928086, 0.363999, 0.225244, 0.8484, -0.10005, 0.363997, 0.244926, 0.849461, -0.107615, 0.364008, 0.265188, 0.850562, -0.115814, 0.364055, 0.28587, 0.851962, -0.124334, 0.364179, 0.306926, 0.854326, -0.131995, 0.364233, 0.329605, 0.856295, -0.139338, 0.363856, 0.35359, 0.858857, -0.146346, 0.363347, 0.37831, 0.862428, -0.152994, 0.362807, 0.403722, 0.866203, -0.159463, 0.361963, 0.429537, 0.871629, -0.165623, 0.36112, 0.456, 0.877365, -0.171649, 0.359917, 0.482773, 0.883744, -0.177151, 0.35848, 0.509705, 0.890693, -0.182381, 0.356523, 0.537215, 0.897278, -0.186076, 0.3533, 0.565493, 0.903958, -0.188602, 0.349095, 0.594293, 0.910908, -0.190755, 0.344215, 0.623165, 0.918117, -0.192063, 0.338606, 0.651573, 0.924644, -0.192758, 0.331544, 0.679869, 0.931054, -0.192238, 0.323163, 0.708668, 0.937303, -0.190035, 0.313529, 0.737201, 0.943387, -0.187162, 0.303152, 0.764977, 0.948494, -0.183876, 0.29146, 0.792683, 0.952546, -0.178901, 0.277917, 0.819228, 0.958077, -0.173173, 0.264753, 0.846559, 0.962462, -0.16645, 0.25002, 0.872962, 0.966569, -0.159452, 0.234873, 0.898729, 0.969108, -0.15074, 0.218752, 0.923126, 0.973072, -0.141523, 0.202673, 0.947278, 0.975452, -0.132075, 0.186326, 0.969938, 0.977784, -0.121257, 0.169396, 0.991325, 0.97899, -0.110182, 0.153044, 1.01123, 0.979777, -0.0989634, 0.136485, 1.0299, 0.980865, -0.0865894, 0.119343, 1.04727, 0.982432, -0.0746115, 0.102452, 1.06341, 0.984935, -0.0621822, 0.0852423, 1.07834, 0.987776, -0.0495694, 0.0678546, 1.092, 0.99103, -0.0372386, 0.0506917, 1.1043, 0.99474, -0.0244353, 0.0333316, 1.11576, 0.997768, -0.0121448, 0.0164348, 1.12617, 1.00003, 0.00031774, -0.000169504, 1.13598, 0.825551, -7.56799e-06, 0.378425, 1.65099e-05, 0.82664, -0.000190922, 0.378923, 0.000416504, 0.826323, -0.000763495, 0.378779, 0.0016656, 0.826359, -0.00171789, 0.378795, 0.00374768, 0.82636, -0.00305402, 0.378795, 0.00666259, 0.826368, -0.00477185, 0.378798, 0.0104104, 0.826364, -0.00687131, 0.378795, 0.0149912, 0.826368, -0.00935232, 0.378795, 0.0204054, 0.826376, -0.0122146, 0.378797, 0.0266532, 0.826399, -0.0154581, 0.378803, 0.0337355, 0.82646, -0.0190825, 0.378824, 0.0416537, 0.826525, -0.0230873, 0.378846, 0.0504091, 0.826614, -0.0274719, 0.378876, 0.0600032, 0.82674, -0.0322355, 0.378917, 0.0704393, 0.826888, -0.0373766, 0.378964, 0.0817195, 0.827078, -0.0428936, 0.379024, 0.0938492, 0.827318, -0.0487778, 0.379099, 0.106828, 0.82764, -0.0549935, 0.379199, 0.120659, 0.827926, -0.0611058, 0.379227, 0.13526, 0.828325, -0.0675054, 0.379275, 0.150713, 0.828801, -0.0743455, 0.379332, 0.167034, 0.8294, -0.0815523, 0.379415, 0.184209, 0.830094, -0.0890779, 0.379495, 0.202203, 0.8309, -0.096736, 0.379555, 0.220945, 0.831943, -0.104135, 0.379577, 0.240306, 0.833037, -0.112106, 0.379604, 0.260317, 0.834278, -0.120554, 0.379668, 0.2808, 0.836192, -0.129128, 0.3799, 0.301654, 0.838671, -0.137541, 0.380109, 0.323502, 0.840939, -0.14523, 0.379809, 0.347176, 0.844575, -0.15248, 0.379593, 0.371706, 0.848379, -0.159607, 0.37909, 0.39688, 0.853616, -0.166267, 0.378617, 0.422702, 0.858921, -0.172698, 0.377746, 0.448919, 0.865324, -0.178823, 0.376749, 0.475661, 0.872207, -0.184542, 0.375363, 0.502599, 0.880018, -0.189836, 0.373657, 0.529914, 0.88694, -0.194294, 0.370673, 0.557683, 0.894779, -0.197022, 0.36662, 0.586848, 0.902242, -0.199108, 0.36138, 0.615831, 0.909914, -0.200398, 0.355434, 0.644478, 0.917088, -0.20094, 0.348173, 0.672905, 0.923888, -0.200671, 0.339482, 0.701327, 0.930495, -0.198773, 0.32956, 0.730101, 0.937247, -0.195394, 0.318363, 0.758383, 0.943108, -0.191956, 0.306323, 0.786539, 0.948296, -0.187227, 0.292576, 0.813637, 0.953472, -0.181165, 0.278234, 0.840793, 0.958485, -0.174119, 0.263054, 0.867712, 0.962714, -0.166564, 0.246756, 0.893635, 0.966185, -0.158181, 0.229945, 0.919028, 0.970146, -0.148275, 0.212633, 0.943413, 0.973491, -0.138157, 0.195229, 0.966627, 0.975741, -0.127574, 0.178048, 0.988817, 0.977238, -0.11554, 0.160312, 1.00924, 0.978411, -0.10364, 0.142857, 1.02845, 0.979811, -0.0913122, 0.125317, 1.04648, 0.98116, -0.0782558, 0.107627, 1.06284, 0.983543, -0.0655957, 0.0895862, 1.07798, 0.986789, -0.0520411, 0.0713756, 1.092, 0.990292, -0.0389727, 0.053228, 1.10484, 0.994187, -0.025808, 0.0351945, 1.11642, 0.997499, -0.0126071, 0.0173198, 1.12703, 0.999999, 0.000275604, -0.000148602, 1.13674, 0.81075, -7.8735e-06, 0.394456, 1.61829e-05, 0.808692, -0.000198293, 0.393453, 0.000407564, 0.80846, -0.000792877, 0.39334, 0.00162965, 0.808595, -0.00178416, 0.393407, 0.00366711, 0.808597, -0.00317182, 0.393408, 0.00651934, 0.808598, -0.00495589, 0.393408, 0.0101866, 0.808591, -0.00713627, 0.393403, 0.0146689, 0.808592, -0.00971285, 0.393402, 0.0199667, 0.80861, -0.0126855, 0.393407, 0.0260803, 0.808633, -0.0160538, 0.393413, 0.0330107, 0.80868, -0.0198175, 0.393429, 0.0407589, 0.808748, -0.0239758, 0.393453, 0.0493264, 0.808854, -0.0285286, 0.39349, 0.0587161, 0.808992, -0.0334748, 0.39354, 0.0689304, 0.809141, -0.0388116, 0.393588, 0.0799707, 0.809352, -0.0445375, 0.39366, 0.0918432, 0.809608, -0.0506427, 0.393742, 0.104549, 0.809915, -0.0570708, 0.393834, 0.118085, 0.810253, -0.0633526, 0.393885, 0.132377, 0.810687, -0.0700966, 0.393953, 0.147537, 0.811233, -0.0772274, 0.394047, 0.163543, 0.811865, -0.0847629, 0.394148, 0.180394, 0.812648, -0.0925663, 0.394265, 0.198051, 0.813583, -0.100416, 0.394363, 0.216443, 0.814683, -0.108119, 0.394402, 0.235502, 0.815948, -0.11644, 0.394489, 0.255242, 0.817278, -0.125036, 0.394542, 0.275441, 0.819605, -0.133655, 0.39486, 0.296094, 0.822256, -0.142682, 0.395248, 0.317309, 0.825349, -0.150756, 0.395241, 0.340516, 0.829605, -0.158392, 0.395285, 0.364819, 0.83391, -0.165801, 0.394922, 0.389736, 0.839808, -0.172677, 0.394691, 0.415409, 0.845708, -0.179448, 0.394006, 0.441546, 0.853025, -0.185746, 0.393279, 0.46832, 0.859666, -0.191684, 0.391655, 0.495302, 0.86789, -0.197146, 0.390068, 0.52262, 0.875845, -0.201904, 0.38727, 0.550336, 0.882634, -0.205023, 0.382688, 0.578825, 0.891076, -0.207098, 0.377543, 0.608103, 0.900589, -0.208474, 0.371752, 0.63723, 0.90791, -0.209068, 0.364016, 0.665769, 0.915971, -0.208655, 0.355593, 0.694428, 0.923455, -0.20729, 0.345439, 0.723224, 0.931514, -0.203821, 0.334099, 0.751925, 0.937885, -0.19986, 0.321069, 0.780249, 0.943136, -0.194993, 0.306571, 0.8077, 0.948818, -0.189132, 0.291556, 0.83497, 0.954433, -0.181617, 0.275745, 0.86188, 0.959078, -0.173595, 0.258695, 0.888562, 0.962705, -0.164855, 0.240825, 0.914008, 0.966753, -0.155129, 0.22268, 0.939145, 0.970704, -0.144241, 0.204542, 0.963393, 0.973367, -0.133188, 0.185927, 0.985983, 0.975984, -0.121146, 0.167743, 1.00704, 0.976994, -0.108366, 0.149218, 1.02715, 0.978485, -0.0956746, 0.13131, 1.0455, 0.980074, -0.0820733, 0.112513, 1.06221, 0.98225, -0.0684061, 0.0938323, 1.07782, 0.98553, -0.0549503, 0.0749508, 1.09199, 0.989529, -0.0407857, 0.055848, 1.10508, 0.993536, -0.0271978, 0.0368581, 1.11684, 0.997247, -0.0132716, 0.0181845, 1.12789, 1, 0.000431817, -0.000198809, 1.13792, 0.785886, -8.12608e-06, 0.405036, 1.57669e-05, 0.790388, -0.000205278, 0.407355, 0.000398297, 0.790145, -0.000820824, 0.407231, 0.00159263, 0.790135, -0.00184681, 0.407226, 0.00358336, 0.790119, -0.00328316, 0.407218, 0.00637039, 0.790126, -0.00512988, 0.40722, 0.0099539, 0.79013, -0.00738684, 0.407221, 0.0143339, 0.790135, -0.0100538, 0.407221, 0.0195107, 0.790134, -0.0131306, 0.407217, 0.0254848, 0.79016, -0.0166169, 0.407224, 0.0322572, 0.790197, -0.020512, 0.407236, 0.0398284, 0.790273, -0.0248157, 0.407263, 0.0482014, 0.790381, -0.029527, 0.407304, 0.0573777, 0.790521, -0.0346446, 0.407355, 0.0673602, 0.790704, -0.0401665, 0.40742, 0.0781522, 0.790925, -0.0460896, 0.407499, 0.0897582, 0.791195, -0.0524017, 0.407589, 0.10218, 0.791522, -0.0590121, 0.407691, 0.11541, 0.791878, -0.0654876, 0.407748, 0.12939, 0.792361, -0.0725207, 0.407849, 0.144237, 0.792942, -0.0799844, 0.407963, 0.159924, 0.79362, -0.0877896, 0.408087, 0.176425, 0.794529, -0.0958451, 0.408259, 0.193733, 0.795521, -0.103827, 0.408362, 0.211756, 0.796778, -0.111937, 0.408482, 0.230524, 0.798027, -0.120521, 0.408547, 0.249967, 0.799813, -0.129242, 0.408721, 0.269926, 0.802387, -0.138048, 0.409148, 0.290338, 0.805279, -0.147301, 0.409641, 0.311193, 0.809251, -0.155895, 0.410154, 0.333611, 0.813733, -0.163942, 0.410297, 0.357615, 0.819081, -0.171666, 0.410373, 0.382339, 0.825427, -0.178905, 0.410348, 0.407828, 0.83172, -0.185812, 0.409486, 0.434034, 0.83877, -0.192318, 0.408776, 0.460493, 0.845817, -0.198249, 0.407176, 0.487346, 0.854664, -0.204034, 0.405719, 0.514832, 0.863495, -0.208908, 0.403282, 0.542401, 0.871883, -0.212765, 0.399293, 0.570683, 0.88065, -0.214911, 0.393803, 0.599947, 0.89004, -0.216214, 0.387536, 0.62932, 0.898476, -0.216745, 0.379846, 0.658319, 0.906738, -0.216387, 0.370625, 0.687138, 0.914844, -0.215053, 0.360139, 0.71601, 0.923877, -0.212007, 0.348849, 0.745124, 0.931925, -0.207481, 0.335639, 0.773366, 0.938054, -0.202418, 0.320798, 0.801636, 0.943895, -0.196507, 0.304772, 0.829055, 0.949468, -0.189009, 0.288033, 0.856097, 0.955152, -0.180539, 0.270532, 0.88301, 0.959403, -0.171437, 0.251639, 0.909296, 0.963309, -0.161661, 0.232563, 0.934868, 0.967399, -0.150425, 0.213231, 0.959662, 0.972009, -0.138659, 0.194247, 0.98302, 0.97433, -0.126595, 0.174718, 1.00517, 0.975823, -0.113205, 0.155518, 1.02566, 0.976371, -0.0996096, 0.136709, 1.04418, 0.978705, -0.0860754, 0.117571, 1.06146, 0.981477, -0.0714438, 0.0980046, 1.07777, 0.984263, -0.0572304, 0.0782181, 1.09214, 0.988423, -0.0428875, 0.0584052, 1.10553, 0.993, -0.0282442, 0.038522, 1.11758, 0.99704, -0.0140183, 0.0190148, 1.12864, 0.999913, 0.000369494, -0.000145203, 1.13901, 0.777662, -8.4153e-06, 0.423844, 1.54403e-05, 0.770458, -0.000211714, 0.419915, 0.00038845, 0.770716, -0.000846888, 0.420055, 0.00155386, 0.770982, -0.00190567, 0.420202, 0.00349653, 0.770981, -0.00338782, 0.420201, 0.00621606, 0.77098, -0.00529338, 0.4202, 0.00971274, 0.770983, -0.00762223, 0.4202, 0.0139867, 0.770985, -0.0103741, 0.420198, 0.0190381, 0.770996, -0.0135489, 0.4202, 0.0248677, 0.771029, -0.0171461, 0.420212, 0.0314764, 0.771052, -0.0211647, 0.420215, 0.0388648, 0.771131, -0.0256048, 0.420245, 0.047036, 0.771235, -0.0304647, 0.420284, 0.0559911, 0.771383, -0.0357436, 0.420341, 0.0657346, 0.771591, -0.0414392, 0.420423, 0.0762694, 0.771819, -0.0475462, 0.420506, 0.0875984, 0.772123, -0.0540506, 0.420617, 0.099727, 0.772464, -0.060797, 0.42072, 0.112637, 0.772855, -0.0675393, 0.420799, 0.126313, 0.773317, -0.0748323, 0.420893, 0.140824, 0.773981, -0.0825681, 0.421058, 0.15617, 0.774746, -0.0906307, 0.421226, 0.172322, 0.77566, -0.0988982, 0.421397, 0.189253, 0.776837, -0.106994, 0.421569, 0.206912, 0.778097, -0.115528, 0.421704, 0.225359, 0.779588, -0.124317, 0.421849, 0.24447, 0.781574, -0.133139, 0.422097, 0.264156, 0.784451, -0.142179, 0.422615, 0.284318, 0.787682, -0.15165, 0.423269, 0.304902, 0.792433, -0.160771, 0.424396, 0.3265, 0.797359, -0.169166, 0.424772, 0.35014, 0.803986, -0.177149, 0.425475, 0.374768, 0.809504, -0.184745, 0.424996, 0.399928, 0.815885, -0.19173, 0.424247, 0.425796, 0.823513, -0.198525, 0.423515, 0.452287, 0.832549, -0.204709, 0.422787, 0.479321, 0.841653, -0.210447, 0.421187, 0.506718, 0.850401, -0.215501, 0.418519, 0.53432, 0.859854, -0.219752, 0.414715, 0.56242, 0.869364, -0.222305, 0.409462, 0.591558, 0.878837, -0.223744, 0.402926, 0.621074, 0.888636, -0.224065, 0.395043, 0.650538, 0.898132, -0.223742, 0.38564, 0.679538, 0.907181, -0.222308, 0.375378, 0.708674, 0.915621, -0.219837, 0.363212, 0.737714, 0.9239, -0.215233, 0.349313, 0.767014, 0.931644, -0.209592, 0.334162, 0.795133, 0.938887, -0.203644, 0.317943, 0.823228, 0.945282, -0.196349, 0.300581, 0.850822, 0.950758, -0.18742, 0.282195, 0.877594, 0.956146, -0.177879, 0.262481, 0.904564, 0.960355, -0.167643, 0.242487, 0.930741, 0.965256, -0.156671, 0.222668, 0.955868, 0.968029, -0.144123, 0.201907, 0.979869, 0.97251, -0.131305, 0.18202, 1.00291, 0.974925, -0.118335, 0.161909, 1.02392, 0.975402, -0.103714, 0.142129, 1.0433, 0.976987, -0.089415, 0.122447, 1.06089, 0.979677, -0.0748858, 0.102248, 1.07713, 0.983184, -0.0596086, 0.0814851, 1.09218, 0.987466, -0.0447671, 0.0609484, 1.10585, 0.992348, -0.0295217, 0.0401835, 1.11829, 0.996674, -0.0143917, 0.0198163, 1.12966, 1.00003, 0.000321364, -0.000149983, 1.1402, 0.757901, -8.69074e-06, 0.436176, 1.51011e-05, 0.751195, -0.000217848, 0.432317, 0.000378533, 0.751178, -0.000871373, 0.432307, 0.0015141, 0.751195, -0.00196061, 0.432317, 0.0034068, 0.751198, -0.00348552, 0.432318, 0.00605659, 0.751195, -0.00544599, 0.432315, 0.00946353, 0.751207, -0.00784203, 0.43232, 0.013628, 0.751213, -0.0106732, 0.43232, 0.0185499, 0.751221, -0.0139393, 0.432319, 0.0242302, 0.751244, -0.0176398, 0.432325, 0.0306694, 0.7513, -0.0217743, 0.432348, 0.0378698, 0.751358, -0.0263412, 0.432367, 0.0458321, 0.751458, -0.0313396, 0.432404, 0.0545587, 0.751608, -0.0367682, 0.432464, 0.0640543, 0.7518, -0.0426246, 0.43254, 0.0743222, 0.752065, -0.0489031, 0.432645, 0.0853668, 0.752376, -0.0555828, 0.432762, 0.0971911, 0.752715, -0.0623861, 0.432859, 0.109768, 0.753137, -0.069415, 0.432958, 0.123126, 0.753676, -0.0770039, 0.433099, 0.137308, 0.754345, -0.084971, 0.433272, 0.15229, 0.755235, -0.0932681, 0.433504, 0.168075, 0.756186, -0.10171, 0.433693, 0.184625, 0.757363, -0.110019, 0.433857, 0.201897, 0.75884, -0.11887, 0.434102, 0.220014, 0.760467, -0.127881, 0.434306, 0.238778, 0.762969, -0.136766, 0.434751, 0.258172, 0.765823, -0.14612, 0.43529, 0.278062, 0.769676, -0.15566, 0.436236, 0.298437, 0.774909, -0.165177, 0.437754, 0.319532, 0.77994, -0.17402, 0.438343, 0.342505, 0.785757, -0.182201, 0.438609, 0.366693, 0.792487, -0.190104, 0.438762, 0.391668, 0.80038, -0.197438, 0.438795, 0.417494, 0.808494, -0.204365, 0.438226, 0.443933, 0.817695, -0.210714, 0.437283, 0.470929, 0.828111, -0.216651, 0.436087, 0.498569, 0.837901, -0.221804, 0.433717, 0.526165, 0.847813, -0.226318, 0.430133, 0.554155, 0.858314, -0.229297, 0.425213, 0.582822, 0.868891, -0.230999, 0.418576, 0.612847, 0.878941, -0.231155, 0.410405, 0.642445, 0.888809, -0.230935, 0.400544, 0.672024, 0.898089, -0.229343, 0.389613, 0.701366, 0.908081, -0.226886, 0.377197, 0.730763, 0.916819, -0.222676, 0.363397, 0.759642, 0.924968, -0.216835, 0.347437, 0.788775, 0.932906, -0.210245, 0.32995, 0.817135, 0.940025, -0.202992, 0.312262, 0.844912, 0.946101, -0.19436, 0.293313, 0.872164, 0.952835, -0.184125, 0.273638, 0.899443, 0.957347, -0.173657, 0.252385, 0.926389, 0.961434, -0.162204, 0.231038, 0.951947, 0.965522, -0.14979, 0.209834, 0.976751, 0.969412, -0.136307, 0.188821, 1.00022, 0.973902, -0.122527, 0.168013, 1.02229, 0.974045, -0.108213, 0.147634, 1.04199, 0.975775, -0.0927397, 0.12705, 1.06019, 0.978383, -0.0778212, 0.106309, 1.07711, 0.98211, -0.0621216, 0.0849279, 1.09245, 0.986517, -0.0463847, 0.0633519, 1.10651, 0.991696, -0.0309353, 0.0419698, 1.11903, 0.996349, -0.0150914, 0.0206272, 1.13073, 1.00003, 0.000442449, -0.000231396, 1.14146, 0.727498, -8.85074e-06, 0.441528, 1.45832e-05, 0.730897, -0.000223525, 0.443589, 0.000368298, 0.730796, -0.000893996, 0.443528, 0.00147303, 0.730805, -0.00201149, 0.443533, 0.00331433, 0.730814, -0.00357596, 0.443538, 0.00589222, 0.730815, -0.00558734, 0.443538, 0.00920678, 0.730822, -0.00804544, 0.44354, 0.0132582, 0.730836, -0.0109501, 0.443545, 0.0180468, 0.730848, -0.0143008, 0.443546, 0.0235732, 0.730871, -0.0180969, 0.443552, 0.0298382, 0.730915, -0.022338, 0.443567, 0.0368438, 0.730982, -0.0270225, 0.443591, 0.044591, 0.731076, -0.0321491, 0.443627, 0.0530831, 0.731245, -0.0377166, 0.443699, 0.0623243, 0.73144, -0.0437216, 0.443777, 0.0723181, 0.7317, -0.0501576, 0.443881, 0.0830691, 0.732034, -0.0569942, 0.444014, 0.0945809, 0.732388, -0.0638756, 0.444113, 0.106825, 0.732853, -0.071203, 0.444247, 0.119859, 0.733473, -0.0790076, 0.444442, 0.13369, 0.734195, -0.0871937, 0.444645, 0.148304, 0.735069, -0.095696, 0.444877, 0.163702, 0.736169, -0.10426, 0.445133, 0.179861, 0.73747, -0.112853, 0.44537, 0.196778, 0.738991, -0.12199, 0.445651, 0.214496, 0.740865, -0.131153, 0.445958, 0.232913, 0.743637, -0.140245, 0.446548, 0.251977, 0.746797, -0.149722, 0.447246, 0.271551, 0.751517, -0.159341, 0.448656, 0.291774, 0.756156, -0.169106, 0.449866, 0.312455, 0.761519, -0.178436, 0.450919, 0.334552, 0.768295, -0.186904, 0.451776, 0.358491, 0.776613, -0.195117, 0.452832, 0.383446, 0.783966, -0.202695, 0.45249, 0.408945, 0.793542, -0.20985, 0.452587, 0.435364, 0.803192, -0.216403, 0.451852, 0.462336, 0.813892, -0.22251, 0.450708, 0.48987, 0.824968, -0.227676, 0.4486, 0.517697, 0.835859, -0.232443, 0.445156, 0.545975, 0.846825, -0.235775, 0.440351, 0.574483, 0.858085, -0.237897, 0.433641, 0.604246, 0.868825, -0.238074, 0.425354, 0.634101, 0.879638, -0.237661, 0.415383, 0.664201, 0.889966, -0.236186, 0.404136, 0.693918, 0.899479, -0.233599, 0.390917, 0.723481, 0.908769, -0.229737, 0.376352, 0.75258, 0.917966, -0.223836, 0.360372, 0.781764, 0.926304, -0.217067, 0.342551, 0.811139, 0.934626, -0.209309, 0.324238, 0.839585, 0.941841, -0.20071, 0.304484, 0.867044, 0.94789, -0.190602, 0.283607, 0.894579, 0.954196, -0.179253, 0.262205, 0.921743, 0.958383, -0.167646, 0.239847, 0.948026, 0.963119, -0.155073, 0.218078, 0.973296, 0.966941, -0.141426, 0.195899, 0.998135, 0.970836, -0.126849, 0.174121, 1.02021, 0.973301, -0.112296, 0.153052, 1.04085, 0.97448, -0.0964965, 0.131733, 1.05946, 0.977045, -0.080489, 0.10997, 1.07693, 0.980751, -0.064844, 0.0881657, 1.09254, 0.985475, -0.0481938, 0.0657987, 1.10697, 0.991089, -0.0319185, 0.0435215, 1.12004, 0.996122, -0.0158088, 0.0214779, 1.13173, 1.00001, 0.000372455, -0.000200295, 1.14291, 0.708622, -9.07597e-06, 0.45304, 1.41962e-05, 0.711162, -0.000228911, 0.454662, 0.000358052, 0.709812, -0.000914446, 0.453797, 0.00143034, 0.709865, -0.00205819, 0.453834, 0.00321935, 0.709864, -0.00365894, 0.453833, 0.00572331, 0.709855, -0.00571692, 0.453826, 0.00894278, 0.709862, -0.00823201, 0.453828, 0.012878, 0.709875, -0.011204, 0.453832, 0.0175295, 0.709896, -0.0146323, 0.453839, 0.0228978, 0.709925, -0.0185163, 0.453847, 0.0289839, 0.709974, -0.0228551, 0.453866, 0.0357894, 0.710045, -0.0276473, 0.453892, 0.0433161, 0.710133, -0.032891, 0.453924, 0.0515665, 0.710292, -0.0385851, 0.453992, 0.0605458, 0.710485, -0.0447254, 0.45407, 0.0702574, 0.710769, -0.0513051, 0.454192, 0.0807077, 0.711106, -0.0582733, 0.454329, 0.091896, 0.711516, -0.0652866, 0.45446, 0.103814, 0.712071, -0.0728426, 0.454653, 0.116508, 0.712676, -0.0808307, 0.45484, 0.129968, 0.713476, -0.0892216, 0.455096, 0.144206, 0.714377, -0.0979047, 0.455346, 0.159212, 0.715579, -0.106531, 0.455647, 0.174973, 0.716977, -0.115492, 0.455961, 0.191504, 0.71862, -0.124821, 0.456315, 0.208835, 0.72084, -0.134079, 0.4568, 0.226869, 0.723786, -0.143427, 0.457521, 0.245582, 0.727464, -0.153061, 0.458475, 0.264957, 0.732771, -0.162768, 0.460239, 0.284948, 0.736515, -0.172627, 0.460899, 0.30522, 0.743519, -0.182487, 0.463225, 0.326717, 0.750041, -0.191295, 0.464027, 0.350113, 0.758589, -0.199746, 0.465227, 0.374782, 0.767703, -0.207584, 0.465877, 0.400226, 0.777484, -0.214973, 0.465996, 0.426442, 0.788792, -0.221796, 0.466019, 0.453688, 0.800194, -0.228038, 0.465083, 0.481246, 0.811234, -0.233346, 0.462506, 0.509086, 0.822859, -0.238073, 0.459257, 0.537338, 0.835082, -0.241764, 0.454863, 0.566108, 0.846332, -0.244241, 0.448163, 0.595126, 0.858355, -0.244736, 0.439709, 0.625574, 0.87034, -0.244278, 0.429837, 0.65617, 0.881027, -0.24255, 0.418002, 0.686029, 0.891007, -0.239912, 0.404325, 0.716039, 0.900874, -0.236133, 0.389222, 0.745518, 0.911072, -0.230672, 0.373269, 0.775026, 0.920359, -0.22356, 0.355083, 0.804521, 0.928604, -0.215591, 0.335533, 0.834045, 0.937175, -0.206503, 0.315278, 0.861612, 0.942825, -0.196684, 0.293653, 0.889131, 0.949805, -0.185116, 0.271503, 0.916853, 0.955535, -0.172703, 0.248821, 0.943541, 0.959843, -0.159978, 0.225591, 0.970132, 0.964393, -0.146375, 0.202719, 0.994709, 0.968008, -0.131269, 0.179928, 1.0186, 0.971013, -0.11569, 0.158007, 1.03928, 0.973334, -0.1003, 0.13624, 1.05887, 0.975775, -0.0833352, 0.1138, 1.07652, 0.979579, -0.0668981, 0.0913141, 1.09297, 0.984323, -0.0500902, 0.0683051, 1.10734, 0.990351, -0.0332377, 0.0451771, 1.12084, 0.995823, -0.0161491, 0.0221705, 1.13296, 1.0001, 0.000234083, -0.000108712, 1.14441, 0.683895, -9.24677e-06, 0.46015, 1.37429e-05, 0.68833, -0.000233383, 0.463134, 0.000346865, 0.688368, -0.000933547, 0.463159, 0.00138748, 0.688367, -0.00210049, 0.463159, 0.00312187, 0.688369, -0.00373415, 0.463159, 0.00555004, 0.688377, -0.00583449, 0.463163, 0.00867216, 0.688386, -0.00840128, 0.463166, 0.0124884, 0.688398, -0.0114343, 0.463169, 0.0169993, 0.688418, -0.0149329, 0.463175, 0.0222054, 0.688453, -0.0188964, 0.463188, 0.028108, 0.688515, -0.0233239, 0.463214, 0.0347085, 0.68857, -0.0282136, 0.463231, 0.0420091, 0.688679, -0.033564, 0.463276, 0.0500132, 0.688854, -0.0393733, 0.463356, 0.0587255, 0.689038, -0.0456354, 0.46343, 0.0681476, 0.689321, -0.0523433, 0.463553, 0.0782897, 0.689662, -0.059412, 0.463693, 0.0891501, 0.690188, -0.0665736, 0.4639, 0.100735, 0.690755, -0.0743106, 0.464107, 0.113074, 0.691405, -0.0824722, 0.464329, 0.126161, 0.692198, -0.0910484, 0.464585, 0.140007, 0.693196, -0.0998778, 0.464893, 0.154612, 0.69454, -0.108651, 0.465285, 0.169984, 0.695921, -0.117855, 0.465596, 0.186106, 0.697749, -0.12734, 0.466056, 0.203034, 0.700375, -0.136714, 0.466771, 0.220703, 0.703395, -0.146386, 0.467579, 0.239062, 0.707904, -0.156096, 0.469067, 0.258188, 0.711673, -0.165904, 0.469851, 0.277759, 0.717489, -0.175812, 0.471815, 0.297935, 0.724051, -0.185931, 0.47389, 0.318916, 0.731965, -0.195238, 0.47587, 0.341591, 0.741151, -0.204021, 0.477523, 0.366062, 0.751416, -0.212113, 0.478881, 0.391396, 0.761848, -0.21979, 0.479226, 0.417599, 0.771886, -0.2267, 0.478495, 0.444401, 0.783998, -0.232991, 0.477622, 0.472084, 0.796523, -0.238645, 0.475833, 0.500193, 0.808851, -0.243396, 0.472568, 0.52865, 0.821191, -0.247226, 0.467857, 0.557362, 0.834261, -0.250102, 0.461871, 0.586768, 0.846762, -0.251056, 0.453543, 0.617085, 0.859867, -0.250604, 0.443494, 0.647659, 0.871948, -0.248783, 0.431711, 0.678119, 0.882967, -0.245855, 0.417911, 0.708399, 0.892826, -0.242168, 0.401993, 0.738256, 0.90332, -0.237062, 0.385371, 0.767999, 0.913633, -0.22997, 0.366837, 0.798191, 0.922774, -0.221687, 0.346372, 0.827756, 0.931371, -0.212345, 0.325682, 0.856425, 0.938929, -0.20206, 0.303665, 0.884299, 0.944821, -0.190981, 0.280786, 0.912023, 0.951792, -0.178065, 0.2573, 0.939669, 0.957712, -0.164634, 0.233448, 0.96655, 0.961912, -0.150863, 0.209504, 0.992366, 0.966382, -0.13577, 0.18597, 1.01633, 0.969588, -0.119593, 0.162905, 1.03843, 0.971777, -0.103203, 0.14053, 1.05841, 0.97433, -0.0865888, 0.117909, 1.07632, 0.978686, -0.0690829, 0.0944101, 1.09326, 0.983281, -0.0516568, 0.0705671, 1.10796, 0.989562, -0.034558, 0.0468592, 1.12182, 0.995465, -0.0167808, 0.0229846, 1.1342, 0.999991, 0.000373016, -0.000235606, 1.1459, 0.662251, -9.39016e-06, 0.468575, 1.32714e-05, 0.666634, -0.000237624, 0.471675, 0.000335842, 0.666411, -0.000950385, 0.471516, 0.00134321, 0.666399, -0.00213833, 0.471509, 0.00302221, 0.666386, -0.0038014, 0.471499, 0.00537283, 0.666405, -0.00593958, 0.471511, 0.00839533, 0.666406, -0.00855253, 0.471508, 0.0120898, 0.666428, -0.0116401, 0.471519, 0.0164569, 0.666444, -0.0152015, 0.471522, 0.0214971, 0.66649, -0.0192362, 0.471543, 0.027212, 0.666537, -0.0237428, 0.471558, 0.033603, 0.666617, -0.0287198, 0.471591, 0.0406728, 0.666718, -0.0341647, 0.471631, 0.0484238, 0.666889, -0.0400759, 0.47171, 0.0568621, 0.667104, -0.0464479, 0.471805, 0.0659915, 0.667374, -0.0532677, 0.471923, 0.0758178, 0.667772, -0.0603805, 0.472098, 0.0863425, 0.668371, -0.0677392, 0.472363, 0.0975917, 0.668971, -0.0756028, 0.472596, 0.109567, 0.669696, -0.0839293, 0.472869, 0.122272, 0.670481, -0.0926683, 0.473126, 0.135718, 0.6715, -0.1016, 0.473442, 0.149914, 0.672911, -0.110566, 0.47389, 0.164882, 0.674512, -0.119984, 0.474354, 0.180602, 0.67651, -0.129574, 0.474922, 0.19711, 0.679292, -0.139106, 0.475764, 0.214371, 0.682798, -0.148993, 0.476886, 0.232405, 0.686955, -0.158737, 0.478179, 0.251153, 0.691406, -0.168754, 0.479432, 0.270436, 0.697438, -0.178703, 0.481481, 0.290374, 0.704761, -0.188955, 0.484143, 0.311044, 0.713599, -0.198814, 0.487007, 0.333003, 0.723194, -0.207869, 0.488962, 0.357144, 0.732601, -0.216189, 0.489815, 0.382169, 0.744193, -0.22398, 0.490888, 0.408227, 0.754907, -0.231156, 0.490355, 0.434928, 0.767403, -0.23747, 0.489548, 0.462599, 0.78107, -0.243503, 0.488274, 0.490908, 0.793893, -0.248114, 0.484843, 0.519421, 0.807296, -0.25222, 0.4803, 0.548561, 0.820529, -0.255265, 0.474097, 0.577772, 0.833716, -0.256741, 0.466041, 0.607782, 0.848403, -0.25637, 0.456547, 0.638807, 0.860755, -0.254804, 0.443946, 0.670058, 0.874012, -0.251834, 0.430852, 0.700749, 0.885619, -0.247867, 0.414903, 0.731446, 0.896069, -0.242634, 0.397276, 0.761191, 0.906266, -0.236093, 0.378535, 0.791053, 0.916759, -0.227543, 0.358038, 0.821298, 0.92523, -0.21783, 0.335705, 0.850747, 0.93436, -0.207534, 0.313797, 0.879258, 0.941631, -0.195983, 0.289671, 0.907734, 0.947564, -0.183567, 0.265319, 0.935206, 0.953681, -0.169345, 0.240815, 0.962739, 0.960008, -0.154909, 0.216119, 0.989227, 0.964145, -0.140161, 0.192096, 1.01465, 0.968171, -0.123411, 0.167855, 1.03737, 0.969859, -0.106525, 0.144817, 1.05767, 0.972666, -0.0891023, 0.12149, 1.0761, 0.977055, -0.0718094, 0.0975306, 1.09336, 0.982527, -0.0534213, 0.0730217, 1.10878, 0.989001, -0.0355579, 0.0483366, 1.12285, 0.99512, -0.0176383, 0.023938, 1.13548, 1.00007, 0.000368831, -0.000211581, 1.14744, 0.651047, -9.60845e-06, 0.484101, 1.2922e-05, 0.644145, -0.000241347, 0.478968, 0.000324578, 0.64396, -0.000965142, 0.478831, 0.00129798, 0.64396, -0.00217154, 0.47883, 0.00292046, 0.643968, -0.00386049, 0.478835, 0.00519202, 0.643974, -0.00603186, 0.478838, 0.0081128, 0.643977, -0.0086854, 0.478836, 0.011683, 0.643982, -0.0118207, 0.478834, 0.0159031, 0.644024, -0.0154374, 0.478856, 0.0207743, 0.644059, -0.0195343, 0.478868, 0.0262975, 0.644122, -0.0241103, 0.478896, 0.0324747, 0.644207, -0.0291638, 0.478933, 0.039309, 0.64432, -0.0346919, 0.478981, 0.0468029, 0.644481, -0.0406919, 0.479053, 0.0549614, 0.644722, -0.047159, 0.479169, 0.0637909, 0.645013, -0.0540748, 0.479302, 0.0732974, 0.645503, -0.0612001, 0.479541, 0.0834898, 0.646117, -0.0687303, 0.479829, 0.0943873, 0.646707, -0.0767846, 0.480061, 0.105991, 0.647431, -0.0852465, 0.480343, 0.11831, 0.64831, -0.0940719, 0.48066, 0.131348, 0.649486, -0.103056, 0.481083, 0.14514, 0.650864, -0.112261, 0.481528, 0.159676, 0.652604, -0.121852, 0.482102, 0.174979, 0.654825, -0.131505, 0.482813, 0.191079, 0.657876, -0.141189, 0.483876, 0.207927, 0.661339, -0.151239, 0.48499, 0.225586, 0.665463, -0.161091, 0.486279, 0.243947, 0.670542, -0.171235, 0.487968, 0.262957, 0.677361, -0.181347, 0.49053, 0.282781, 0.685672, -0.191679, 0.493862, 0.303311, 0.694551, -0.201781, 0.49699, 0.324607, 0.703753, -0.211164, 0.498884, 0.347916, 0.713703, -0.219675, 0.500086, 0.372628, 0.725911, -0.227836, 0.501554, 0.398694, 0.73862, -0.23533, 0.502193, 0.425529, 0.752118, -0.241786, 0.501811, 0.453209, 0.76579, -0.247865, 0.500185, 0.481381, 0.779568, -0.252696, 0.497159, 0.51011, 0.793991, -0.256802, 0.492765, 0.539322, 0.808182, -0.259942, 0.486827, 0.569078, 0.821698, -0.261703, 0.478386, 0.598818, 0.836009, -0.262006, 0.468772, 0.629762, 0.849824, -0.260333, 0.456352, 0.661366, 0.863888, -0.257398, 0.442533, 0.69295, 0.876585, -0.253264, 0.426573, 0.723608, 0.888665, -0.248026, 0.408964, 0.754378, 0.899537, -0.241487, 0.389677, 0.784761, 0.9094, -0.233463, 0.368516, 0.814688, 0.920166, -0.223397, 0.346624, 0.845009, 0.928899, -0.21255, 0.322717, 0.874431, 0.937156, -0.200869, 0.298698, 0.902922, 0.943861, -0.188387, 0.273491, 0.931356, 0.949557, -0.174341, 0.247866, 0.958854, 0.955862, -0.158994, 0.222496, 0.986098, 0.961721, -0.143664, 0.197522, 1.01229, 0.965976, -0.127412, 0.17302, 1.03571, 0.968652, -0.109798, 0.148954, 1.05699, 0.971084, -0.0916787, 0.125044, 1.07587, 0.975584, -0.0739634, 0.100577, 1.09372, 0.98122, -0.055322, 0.0753666, 1.10948, 0.988253, -0.0366825, 0.0498899, 1.12394, 0.99482, -0.0180389, 0.024611, 1.13694, 1.00001, 0.000229839, -0.000188283, 1.14919, 0.613867, -9.64198e-06, 0.479449, 1.23452e-05, 0.621485, -0.000244534, 0.485399, 0.000313091, 0.621429, -0.000978202, 0.485353, 0.00125245, 0.62112, -0.00220004, 0.485114, 0.00281687, 0.621119, -0.0039111, 0.485112, 0.00500783, 0.621122, -0.00611091, 0.485112, 0.00782498, 0.621133, -0.00879922, 0.485117, 0.0112687, 0.621152, -0.0119756, 0.485125, 0.0153394, 0.621183, -0.0156396, 0.485139, 0.0200382, 0.621227, -0.0197898, 0.485158, 0.0253663, 0.621298, -0.0244253, 0.485192, 0.0313261, 0.621388, -0.0295441, 0.485233, 0.0379204, 0.621507, -0.0351432, 0.485286, 0.0451523, 0.621693, -0.0412198, 0.485378, 0.0530277, 0.621933, -0.0477673, 0.485495, 0.0615522, 0.622232, -0.0547574, 0.485635, 0.0707316, 0.622809, -0.0619417, 0.485943, 0.0805883, 0.623407, -0.069625, 0.486232, 0.0911267, 0.62406, -0.077796, 0.486516, 0.102354, 0.624835, -0.0863731, 0.486838, 0.114279, 0.625758, -0.095251, 0.487188, 0.126902, 0.627043, -0.104299, 0.487695, 0.140285, 0.628438, -0.113724, 0.488163, 0.154397, 0.630325, -0.123417, 0.488858, 0.169267, 0.632801, -0.133137, 0.489754, 0.184941, 0.635784, -0.143052, 0.490815, 0.20136, 0.639406, -0.153132, 0.492048, 0.218643, 0.643872, -0.163143, 0.49363, 0.236615, 0.6499, -0.17333, 0.496009, 0.255449, 0.657201, -0.183622, 0.498994, 0.275006, 0.666221, -0.194019, 0.502888, 0.295354, 0.674419, -0.204192, 0.505459, 0.316244, 0.683729, -0.21406, 0.507771, 0.33849, 0.695584, -0.222854, 0.510245, 0.363166, 0.708583, -0.231315, 0.512293, 0.389071, 0.721233, -0.238911, 0.512747, 0.415737, 0.735134, -0.245657, 0.512482, 0.443331, 0.750179, -0.251879, 0.511526, 0.471891, 0.765073, -0.256911, 0.508935, 0.500892, 0.779794, -0.261144, 0.504341, 0.530294, 0.794801, -0.264316, 0.498515, 0.560144, 0.810339, -0.266276, 0.491015, 0.590213, 0.824818, -0.266981, 0.481126, 0.620865, 0.839375, -0.265778, 0.468685, 0.652687, 0.853043, -0.262748, 0.453925, 0.684759, 0.867335, -0.258474, 0.437912, 0.716209, 0.88037, -0.253187, 0.419648, 0.747508, 0.891711, -0.246476, 0.39982, 0.77797, 0.902896, -0.238735, 0.37879, 0.808586, 0.913601, -0.22885, 0.355891, 0.838843, 0.923019, -0.217656, 0.331773, 0.869014, 0.933432, -0.205539, 0.307356, 0.898512, 0.939691, -0.192595, 0.281321, 0.9269, 0.946938, -0.178945, 0.255441, 0.955297, 0.952372, -0.163587, 0.229013, 0.983231, 0.95909, -0.147214, 0.203179, 1.00971, 0.963675, -0.13064, 0.17792, 1.03438, 0.968247, -0.113121, 0.152898, 1.05625, 0.97001, -0.0945824, 0.128712, 1.07598, 0.974458, -0.0755648, 0.103349, 1.094, 0.980168, -0.0571998, 0.0776731, 1.1104, 0.987295, -0.0377994, 0.0514445, 1.12491, 0.994432, -0.0186417, 0.025429, 1.13851, 0.999975, 0.000542714, -0.000282356, 1.15108, 0.592656, -9.80249e-06, 0.486018, 1.19532e-05, 0.598467, -0.000247275, 0.490781, 0.000301531, 0.597934, -0.000988317, 0.490343, 0.00120517, 0.597903, -0.00222366, 0.490319, 0.0027116, 0.597913, -0.00395315, 0.490327, 0.00482077, 0.597919, -0.00617653, 0.490329, 0.00753264, 0.597936, -0.00889375, 0.490339, 0.0108478, 0.597956, -0.0121043, 0.490347, 0.0147668, 0.597992, -0.0158073, 0.490365, 0.0192905, 0.598032, -0.0200017, 0.490382, 0.0244204, 0.598109, -0.0246865, 0.49042, 0.0301593, 0.598215, -0.0298594, 0.490474, 0.03651, 0.59833, -0.0355167, 0.490524, 0.0434757, 0.598525, -0.0416559, 0.490624, 0.0510629, 0.598778, -0.0482692, 0.490753, 0.0592781, 0.599135, -0.0553114, 0.49094, 0.0681304, 0.599802, -0.062542, 0.491328, 0.0776467, 0.600361, -0.0703638, 0.491598, 0.0878184, 0.60101, -0.0786256, 0.491882, 0.0986573, 0.601811, -0.0872962, 0.492232, 0.11018, 0.602861, -0.0962284, 0.492684, 0.1224, 0.604167, -0.10538, 0.493213, 0.135354, 0.605693, -0.114896, 0.493799, 0.149034, 0.607682, -0.124654, 0.494576, 0.163469, 0.610672, -0.13456, 0.4959, 0.178747, 0.613313, -0.144581, 0.496713, 0.194723, 0.617603, -0.154703, 0.498499, 0.211617, 0.622174, -0.16489, 0.500188, 0.229183, 0.628855, -0.175164, 0.503072, 0.247786, 0.636963, -0.185565, 0.506798, 0.267116, 0.644866, -0.195911, 0.509719, 0.28702, 0.653741, -0.206104, 0.512776, 0.307763, 0.664942, -0.216447, 0.516812, 0.329631, 0.67633, -0.22552, 0.519181, 0.353515, 0.690012, -0.234316, 0.521681, 0.379226, 0.704243, -0.242032, 0.523129, 0.405901, 0.719396, -0.249172, 0.523768, 0.433585, 0.734471, -0.255543, 0.522541, 0.462085, 0.750539, -0.260697, 0.520217, 0.491233, 0.766365, -0.26501, 0.516293, 0.521094, 0.781677, -0.268409, 0.509708, 0.551014, 0.797132, -0.270399, 0.501944, 0.581463, 0.812655, -0.271247, 0.492025, 0.612402, 0.828592, -0.270708, 0.480424, 0.643798, 0.844044, -0.268085, 0.465955, 0.67682, 0.857305, -0.263459, 0.448425, 0.708496, 0.87114, -0.258151, 0.430243, 0.74046, 0.884936, -0.251171, 0.410578, 0.771583, 0.895772, -0.243305, 0.38862, 0.802234, 0.906961, -0.234037, 0.365214, 0.833179, 0.917775, -0.222714, 0.34116, 0.86353, 0.927883, -0.210175, 0.31572, 0.893557, 0.936617, -0.196925, 0.289159, 0.922976, 0.943384, -0.182788, 0.261996, 0.951606, 0.949713, -0.167965, 0.235324, 0.979958, 0.955818, -0.151109, 0.208408, 1.00765, 0.961344, -0.133834, 0.182591, 1.03329, 0.965469, -0.115987, 0.156958, 1.0557, 0.968693, -0.09746, 0.132239, 1.07583, 0.973165, -0.0778514, 0.106195, 1.09451, 0.979387, -0.0585067, 0.0797669, 1.11137, 0.98671, -0.0390409, 0.0530263, 1.12643, 0.994093, -0.019408, 0.0263163, 1.14016, 1.00002, 0.000540029, -0.000194487, 1.15299, 0.574483, -9.89066e-06, 0.494533, 1.14896e-05, 0.574478, -0.000249127, 0.494528, 0.000289403, 0.574607, -0.000996811, 0.494637, 0.00115797, 0.574396, -0.00224241, 0.494458, 0.00260498, 0.574377, -0.00398632, 0.49444, 0.00463102, 0.574386, -0.00622836, 0.494445, 0.00723623, 0.574401, -0.0089683, 0.494453, 0.010421, 0.574419, -0.0122056, 0.49446, 0.0141859, 0.574459, -0.0159396, 0.494481, 0.0185322, 0.574525, -0.0201692, 0.49452, 0.0234617, 0.574587, -0.0248924, 0.494547, 0.0289762, 0.574697, -0.0301074, 0.494604, 0.0350797, 0.574853, -0.0358114, 0.494688, 0.0417767, 0.575027, -0.041999, 0.494772, 0.0490718, 0.575294, -0.0486618, 0.494915, 0.0569728, 0.575733, -0.0557148, 0.495173, 0.0654955, 0.576356, -0.0630489, 0.495537, 0.0746612, 0.576944, -0.0709285, 0.495836, 0.0844615, 0.57765, -0.0792723, 0.496177, 0.0949142, 0.578491, -0.0880167, 0.496563, 0.10603, 0.579639, -0.0969462, 0.497096, 0.117841, 0.580989, -0.10622, 0.497684, 0.130367, 0.582587, -0.115861, 0.498337, 0.143609, 0.584951, -0.125605, 0.499414, 0.157625, 0.587602, -0.135608, 0.500518, 0.172413, 0.59076, -0.145742, 0.501767, 0.187999, 0.594992, -0.155934, 0.503542, 0.20445, 0.600656, -0.166303, 0.506135, 0.221764, 0.607816, -0.176681, 0.509542, 0.24002, 0.61522, -0.187071, 0.51263, 0.258992, 0.623702, -0.197465, 0.516021, 0.278773, 0.634192, -0.207816, 0.520422, 0.299377, 0.644936, -0.218183, 0.524073, 0.320802, 0.657888, -0.2278, 0.528049, 0.34384, 0.670666, -0.236747, 0.52986, 0.36916, 0.685626, -0.24484, 0.531892, 0.395867, 0.701304, -0.252071, 0.532727, 0.423488, 0.717727, -0.258714, 0.532146, 0.452201, 0.733914, -0.264211, 0.529883, 0.481579, 0.750529, -0.26859, 0.5259, 0.511558, 0.76747, -0.272046, 0.51999, 0.542042, 0.785189, -0.274225, 0.513083, 0.572799, 0.800954, -0.275189, 0.502936, 0.603816, 0.816962, -0.274946, 0.490921, 0.635461, 0.83336, -0.272695, 0.47684, 0.6676, 0.848143, -0.268223, 0.459405, 0.70051, 0.861818, -0.262768, 0.440319, 0.732902, 0.876828, -0.255872, 0.420123, 0.765084, 0.889312, -0.247703, 0.398379, 0.796391, 0.900412, -0.238381, 0.374496, 0.827333, 0.912251, -0.227783, 0.349874, 0.858385, 0.921792, -0.214832, 0.323181, 0.888652, 0.931273, -0.200949, 0.296624, 0.917763, 0.940295, -0.186537, 0.269211, 0.947878, 0.946812, -0.171538, 0.241447, 0.977016, 0.953588, -0.155254, 0.213829, 1.00501, 0.958841, -0.137156, 0.186807, 1.03179, 0.963746, -0.118699, 0.160706, 1.05502, 0.966468, -0.0998358, 0.135504, 1.07568, 0.971178, -0.0805186, 0.109131, 1.09479, 0.97831, -0.0599348, 0.0818293, 1.1123, 0.985886, -0.0399661, 0.0545872, 1.12771, 0.994021, -0.0198682, 0.0269405, 1.14186, 1.00009, 0.000271022, -0.00012989, 1.15514, 0.538716, -9.90918e-06, 0.486732, 1.09675e-05, 0.550656, -0.000250642, 0.497518, 0.000277412, 0.55057, -0.00100265, 0.497441, 0.00110974, 0.550903, -0.00225672, 0.497733, 0.00249779, 0.550568, -0.00401046, 0.497438, 0.00443906, 0.550574, -0.00626613, 0.49744, 0.00693637, 0.550591, -0.0090226, 0.497449, 0.00998921, 0.550623, -0.0122795, 0.497469, 0.0135984, 0.550667, -0.0160361, 0.497495, 0.0177654, 0.550724, -0.0202908, 0.497526, 0.0224915, 0.550792, -0.0250421, 0.497557, 0.0277795, 0.550918, -0.0302878, 0.49763, 0.0336334, 0.551058, -0.0360241, 0.497701, 0.0400573, 0.551276, -0.0422473, 0.497824, 0.0470585, 0.551551, -0.0489441, 0.497977, 0.0546433, 0.552074, -0.0559596, 0.498312, 0.0628367, 0.552681, -0.0633978, 0.498679, 0.071646, 0.553324, -0.0713176, 0.499031, 0.0810746, 0.554011, -0.0797268, 0.499365, 0.091129, 0.55488, -0.0885238, 0.499779, 0.101837, 0.556171, -0.0974417, 0.500444, 0.113239, 0.557498, -0.106841, 0.501025, 0.125316, 0.559299, -0.116533, 0.501864, 0.138128, 0.561647, -0.126298, 0.502967, 0.151695, 0.564347, -0.136388, 0.504129, 0.16604, 0.567863, -0.146576, 0.505713, 0.181207, 0.572569, -0.156832, 0.507953, 0.197259, 0.578919, -0.167323, 0.511186, 0.214258, 0.585387, -0.177712, 0.514042, 0.232038, 0.593134, -0.188184, 0.517484, 0.250733, 0.603295, -0.198717, 0.522345, 0.270454, 0.613854, -0.209177, 0.526751, 0.290807, 0.626092, -0.219644, 0.531595, 0.312202, 0.637868, -0.229494, 0.534721, 0.334435, 0.652458, -0.238718, 0.538304, 0.359184, 0.666985, -0.247061, 0.539875, 0.385637, 0.683301, -0.254652, 0.541042, 0.41328, 0.69998, -0.261376, 0.540735, 0.441903, 0.717824, -0.267085, 0.539139, 0.471609, 0.734617, -0.271465, 0.534958, 0.501446, 0.753663, -0.27528, 0.53032, 0.532571, 0.770512, -0.277617, 0.522134, 0.563641, 0.787356, -0.278525, 0.51206, 0.595067, 0.806252, -0.278512, 0.50119, 0.627226, 0.822061, -0.277023, 0.486791, 0.659402, 0.838959, -0.273175, 0.470467, 0.692874, 0.85379, -0.267238, 0.450688, 0.725702, 0.868268, -0.260327, 0.429741, 0.75832, 0.881994, -0.251946, 0.407223, 0.790189, 0.893885, -0.242432, 0.383214, 0.821625, 0.905118, -0.231904, 0.357297, 0.853011, 0.916045, -0.219545, 0.330733, 0.883773, 0.927614, -0.205378, 0.303916, 0.914435, 0.936005, -0.190388, 0.275941, 0.944502, 0.944533, -0.1749, 0.247493, 0.974439, 0.950758, -0.158588, 0.218996, 1.00286, 0.957078, -0.141027, 0.191559, 1.0304, 0.962448, -0.121507, 0.164457, 1.05466, 0.964993, -0.102068, 0.138636, 1.0761, 0.970017, -0.0822598, 0.111861, 1.09541, 0.97661, -0.062033, 0.0843438, 1.11317, 0.985073, -0.0409832, 0.0558496, 1.12911, 0.993515, -0.020146, 0.0275331, 1.1438, 1.00006, 0.00027329, -0.000107883, 1.15736, 0.525324, -9.99341e-06, 0.498153, 1.05385e-05, 0.526513, -0.000251605, 0.499277, 0.000265329, 0.526517, -0.00100641, 0.499282, 0.0010613, 0.526588, -0.00226466, 0.499337, 0.00238823, 0.526539, -0.0040255, 0.499302, 0.00424535, 0.526547, -0.00628954, 0.499306, 0.00663364, 0.526561, -0.00905628, 0.499313, 0.00955337, 0.526593, -0.0123253, 0.499334, 0.0130054, 0.526642, -0.0160957, 0.499365, 0.0169911, 0.5267, -0.0203661, 0.499396, 0.0215122, 0.526792, -0.0251347, 0.499451, 0.0265718, 0.526904, -0.0303985, 0.499511, 0.0321732, 0.527079, -0.0361554, 0.499617, 0.0383231, 0.527285, -0.0423982, 0.499731, 0.045026, 0.527602, -0.0491121, 0.499924, 0.0522936, 0.528166, -0.0561127, 0.500306, 0.0601528, 0.52879, -0.0635988, 0.5007, 0.0686059, 0.529421, -0.071581, 0.501048, 0.0776518, 0.530144, -0.0799854, 0.501421, 0.0873148, 0.531062, -0.0888032, 0.501884, 0.0976084, 0.532374, -0.0977643, 0.50259, 0.108588, 0.533828, -0.107197, 0.50329, 0.120234, 0.53581, -0.116887, 0.504312, 0.132602, 0.538063, -0.126755, 0.505365, 0.145721, 0.5409, -0.136819, 0.506668, 0.159617, 0.544882, -0.147117, 0.508731, 0.174369, 0.550238, -0.157446, 0.511601, 0.190028, 0.556038, -0.167988, 0.514431, 0.206587, 0.563031, -0.178364, 0.517808, 0.224046, 0.571543, -0.189007, 0.521937, 0.242503, 0.582255, -0.199546, 0.527415, 0.261977, 0.59272, -0.210084, 0.531682, 0.282162, 0.605648, -0.220448, 0.537123, 0.303426, 0.61785, -0.230593, 0.540664, 0.325323, 0.632223, -0.240238, 0.544467, 0.348993, 0.648819, -0.24887, 0.547594, 0.375462, 0.665825, -0.256657, 0.54912, 0.403024, 0.683389, -0.263711, 0.549294, 0.431773, 0.701495, -0.269666, 0.547649, 0.461494, 0.719197, -0.274169, 0.543786, 0.491623, 0.737906, -0.278124, 0.538644, 0.522994, 0.756652, -0.280632, 0.531057, 0.554775, 0.775279, -0.281741, 0.521972, 0.586441, 0.792688, -0.281652, 0.509613, 0.618596, 0.811894, -0.280345, 0.496497, 0.651462, 0.827938, -0.277128, 0.47968, 0.684023, 0.844837, -0.271646, 0.460688, 0.718024, 0.859239, -0.264397, 0.438872, 0.751207, 0.874088, -0.256144, 0.41577, 0.784232, 0.887693, -0.246311, 0.391369, 0.816191, 0.899402, -0.235497, 0.365872, 0.847828, 0.910973, -0.223631, 0.338618, 0.87934, 0.92204, -0.209874, 0.310803, 0.910325, 0.930987, -0.194265, 0.281802, 0.940695, 0.94, -0.178125, 0.252836, 0.970958, 0.948018, -0.161479, 0.224239, 1.00078, 0.955141, -0.144038, 0.195857, 1.0288, 0.960513, -0.124915, 0.168487, 1.05371, 0.963964, -0.104284, 0.141495, 1.07596, 0.968713, -0.0838732, 0.114437, 1.09628, 0.975524, -0.0635579, 0.0863105, 1.11448, 0.98431, -0.042291, 0.0574774, 1.13069, 0.992916, -0.0209131, 0.0284343, 1.14568, 0.999926, 0.000743097, -0.000379265, 1.15955, 0.501042, -9.98428e-06, 0.498726, 1.00306e-05, 0.502992, -0.000252112, 0.500665, 0.000253283, 0.502417, -0.00100791, 0.500092, 0.00101259, 0.502965, -0.00226919, 0.500621, 0.00227978, 0.502318, -0.00403109, 0.499994, 0.00405011, 0.502333, -0.00629832, 0.500005, 0.00632868, 0.502362, -0.00906907, 0.500027, 0.00911446, 0.502369, -0.0123423, 0.500023, 0.0124078, 0.50243, -0.0161178, 0.500066, 0.016211, 0.502493, -0.0203937, 0.500103, 0.0205256, 0.502592, -0.0251684, 0.500166, 0.0253548, 0.502707, -0.0304389, 0.50023, 0.0307029, 0.502881, -0.0362015, 0.500335, 0.0365753, 0.503124, -0.0424507, 0.500488, 0.0429798, 0.503443, -0.0491582, 0.500686, 0.0499268, 0.504083, -0.0561476, 0.501155, 0.0574541, 0.504668, -0.0636846, 0.501524, 0.0655408, 0.505319, -0.0716834, 0.501904, 0.0742072, 0.50609, -0.0800925, 0.502321, 0.0834699, 0.507122, -0.0888425, 0.502896, 0.0933603, 0.508414, -0.097855, 0.503603, 0.10391, 0.509955, -0.107304, 0.504416, 0.115113, 0.512061, -0.116921, 0.505565, 0.127054, 0.514419, -0.12689, 0.506732, 0.139709, 0.517529, -0.136934, 0.508338, 0.153173, 0.522085, -0.147327, 0.510987, 0.167528, 0.526986, -0.157612, 0.513527, 0.182708, 0.533122, -0.168213, 0.516717, 0.198881, 0.540807, -0.178688, 0.520832, 0.215986, 0.550687, -0.189511, 0.52632, 0.234335, 0.560567, -0.199998, 0.531009, 0.253375, 0.571698, -0.210652, 0.535839, 0.273499, 0.584364, -0.220917, 0.541091, 0.294355, 0.599066, -0.23137, 0.546875, 0.316525, 0.614148, -0.241206, 0.551306, 0.339671, 0.631157, -0.250379, 0.555187, 0.36531, 0.647919, -0.258397, 0.556595, 0.392767, 0.666112, -0.265528, 0.556949, 0.421397, 0.686158, -0.271827, 0.556617, 0.451433, 0.704838, -0.27674, 0.552975, 0.482131, 0.723957, -0.280733, 0.547814, 0.513458, 0.74262, -0.283359, 0.53997, 0.545446, 0.762009, -0.284541, 0.530422, 0.57775, 0.781314, -0.284507, 0.518546, 0.610434, 0.799116, -0.283309, 0.504178, 0.643178, 0.817604, -0.280378, 0.48843, 0.676248, 0.83459, -0.275619, 0.469457, 0.709698, 0.850974, -0.26856, 0.447698, 0.744245, 0.866747, -0.260094, 0.424791, 0.777695, 0.881412, -0.249929, 0.399913, 0.810392, 0.8936, -0.239137, 0.37308, 0.842872, 0.905943, -0.226818, 0.345705, 0.874677, 0.916408, -0.213699, 0.31706, 0.906257, 0.927215, -0.198428, 0.288444, 0.936881, 0.935625, -0.181643, 0.258329, 0.96795, 0.944076, -0.164386, 0.228488, 0.998216, 0.951229, -0.146339, 0.199763, 1.02689, 0.958793, -0.127709, 0.172153, 1.0535, 0.963219, -0.107244, 0.144989, 1.07646, 0.967562, -0.0857764, 0.11685, 1.09675, 0.974866, -0.0645377, 0.0880571, 1.11576, 0.983353, -0.0431732, 0.0587352, 1.13227, 0.992503, -0.0218356, 0.0294181, 1.1478, 1.00003, 0.000605203, -0.000231013, 1.16207, 0.482935, -1.01177e-05, 0.504695, 9.68142e-06, 0.477554, -0.000251521, 0.499071, 0.000240676, 0.477904, -0.00100683, 0.499436, 0.00096342, 0.478368, -0.00226636, 0.499899, 0.0021687, 0.477977, -0.00402719, 0.499513, 0.00385384, 0.477993, -0.00629226, 0.499525, 0.0060221, 0.478011, -0.00906011, 0.499536, 0.00867289, 0.478051, -0.0123305, 0.499566, 0.0118074, 0.478089, -0.016102, 0.499587, 0.0154269, 0.478171, -0.0203736, 0.499645, 0.0195341, 0.478254, -0.025143, 0.499692, 0.0241318, 0.47839, -0.0304071, 0.499779, 0.0292247, 0.478588, -0.0361631, 0.499911, 0.0348196, 0.478812, -0.0424023, 0.500046, 0.0409231, 0.479208, -0.0490724, 0.500326, 0.047552, 0.479841, -0.0560722, 0.500805, 0.0547377, 0.480392, -0.0636125, 0.501152, 0.0624607, 0.481068, -0.0716134, 0.501561, 0.0707473, 0.481898, -0.0800062, 0.502054, 0.0796118, 0.483022, -0.0886568, 0.502728, 0.0890974, 0.484332, -0.0977553, 0.503479, 0.0992099, 0.486126, -0.107173, 0.504546, 0.10999, 0.488066, -0.11677, 0.50557, 0.121476, 0.490521, -0.126725, 0.506849, 0.133672, 0.494232, -0.136793, 0.50911, 0.146731, 0.498302, -0.147116, 0.511345, 0.160577, 0.503565, -0.157446, 0.514344, 0.175335, 0.510902, -0.168121, 0.518824, 0.191207, 0.519263, -0.178799, 0.523666, 0.208058, 0.528204, -0.189407, 0.528296, 0.225875, 0.538854, -0.200145, 0.533724, 0.244782, 0.551278, -0.210701, 0.539833, 0.264753, 0.565222, -0.221303, 0.546131, 0.285745, 0.579403, -0.231688, 0.551496, 0.307592, 0.595469, -0.241718, 0.556809, 0.330582, 0.610929, -0.250992, 0.559641, 0.354995, 0.629433, -0.259602, 0.562379, 0.382471, 0.648504, -0.267038, 0.563676, 0.411126, 0.66756, -0.273388, 0.562092, 0.440924, 0.689143, -0.278788, 0.560807, 0.472118, 0.709056, -0.282783, 0.555701, 0.503774, 0.729855, -0.285836, 0.548698, 0.536364, 0.748954, -0.287078, 0.538544, 0.56895, 0.768373, -0.287133, 0.526711, 0.601991, 0.78827, -0.285839, 0.512511, 0.635403, 0.807465, -0.283238, 0.496323, 0.668797, 0.825194, -0.27906, 0.477638, 0.702584, 0.842203, -0.272286, 0.456253, 0.736393, 0.857749, -0.263854, 0.432412, 0.77096, 0.874799, -0.253943, 0.407806, 0.80489, 0.887497, -0.24237, 0.38033, 0.83771, 0.89966, -0.230278, 0.352446, 0.870376, 0.911753, -0.21646, 0.323268, 0.902256, 0.923011, -0.202071, 0.294314, 0.933306, 0.932375, -0.185519, 0.264104, 0.965177, 0.940537, -0.167604, 0.234035, 0.996303, 0.948904, -0.149068, 0.20412, 1.0261, 0.955263, -0.129539, 0.175431, 1.05304, 0.960303, -0.109932, 0.148116, 1.07617, 0.965512, -0.0880572, 0.119693, 1.09742, 0.973466, -0.0660548, 0.0901619, 1.11721, 0.98284, -0.0439228, 0.0599875, 1.13436, 0.992216, -0.0219588, 0.0298975, 1.15006, 0.999946, 0.000119402, -2.08547e-05, 1.16471, 0.447827, -1.00414e-05, 0.491543, 9.14833e-06, 0.454778, -0.000251257, 0.499172, 0.00022891, 0.453519, -0.00100342, 0.497787, 0.000914184, 0.45357, -0.00225776, 0.497847, 0.00205701, 0.453578, -0.00401371, 0.497855, 0.00365705, 0.45357, -0.00627107, 0.497841, 0.00571453, 0.453598, -0.00902968, 0.497864, 0.00823019, 0.453627, -0.0122888, 0.497882, 0.0112049, 0.453684, -0.0160475, 0.497923, 0.0146405, 0.453764, -0.0203044, 0.49798, 0.0185394, 0.453866, -0.0250576, 0.498049, 0.0229054, 0.453996, -0.0303028, 0.49813, 0.0277424, 0.454196, -0.0360379, 0.498267, 0.0330587, 0.454457, -0.0422521, 0.498445, 0.0388613, 0.454926, -0.0488393, 0.498812, 0.0451767, 0.455525, -0.0558653, 0.499272, 0.0520153, 0.456074, -0.0633772, 0.499625, 0.0593754, 0.456752, -0.0713606, 0.500049, 0.0672751, 0.457648, -0.07971, 0.500615, 0.0757447, 0.458849, -0.0883032, 0.501399, 0.0848231, 0.46029, -0.0974095, 0.502293, 0.0945135, 0.462, -0.106729, 0.503301, 0.104848, 0.464121, -0.116354, 0.504533, 0.115884, 0.466889, -0.126214, 0.506172, 0.127652, 0.470744, -0.136324, 0.508667, 0.14024, 0.47488, -0.146595, 0.510995, 0.153673, 0.480845, -0.157027, 0.514832, 0.168053, 0.488262, -0.167658, 0.519506, 0.183508, 0.496547, -0.178343, 0.524347, 0.199948, 0.506254, -0.188916, 0.52983, 0.217503, 0.517961, -0.199975, 0.536357, 0.236272, 0.531484, -0.210624, 0.543641, 0.256096, 0.545496, -0.221227, 0.550048, 0.277085, 0.559497, -0.231568, 0.555076, 0.298615, 0.575752, -0.241698, 0.560541, 0.321547, 0.591999, -0.251172, 0.564156, 0.345602, 0.610654, -0.260178, 0.567607, 0.371851, 0.630484, -0.268094, 0.56923, 0.40076, 0.651807, -0.274661, 0.569779, 0.430801, 0.67239, -0.280331, 0.566791, 0.461939, 0.693024, -0.284501, 0.562007, 0.493854, 0.715473, -0.287852, 0.555791, 0.526992, 0.736323, -0.28929, 0.546345, 0.560102, 0.755771, -0.289405, 0.534, 0.593543, 0.775424, -0.2881, 0.519114, 0.627256, 0.795447, -0.285562, 0.502543, 0.661464, 0.815319, -0.281416, 0.484773, 0.695206, 0.831769, -0.275523, 0.463445, 0.729044, 0.849464, -0.267516, 0.440269, 0.764069, 0.866775, -0.257584, 0.415049, 0.799089, 0.881252, -0.245817, 0.388049, 0.831948, 0.894209, -0.233127, 0.35889, 0.865526, 0.906922, -0.219579, 0.329915, 0.89818, 0.919686, -0.204491, 0.300441, 0.930013, 0.929044, -0.188962, 0.269445, 0.962061, 0.938393, -0.171079, 0.238402, 0.994214, 0.94661, -0.15199, 0.208204, 1.02533, 0.953095, -0.131953, 0.178653, 1.0529, 0.958644, -0.111233, 0.150684, 1.0771, 0.963925, -0.0903098, 0.122359, 1.09855, 0.971995, -0.0680505, 0.0923342, 1.11874, 0.981658, -0.0448512, 0.0614195, 1.13635, 0.991649, -0.0221931, 0.0303582, 1.15238, 0.999985, 0.000393403, -0.000111086, 1.16772, 0.396806, -9.71563e-06, 0.457671, 8.42355e-06, 0.429186, -0.000249421, 0.495017, 0.00021625, 0.429324, -0.000998052, 0.495173, 0.000865322, 0.429175, -0.00224487, 0.494999, 0.00194637, 0.429129, -0.00399041, 0.494952, 0.00346004, 0.429153, -0.00623476, 0.494974, 0.00540684, 0.429168, -0.0089773, 0.494983, 0.00778714, 0.429207, -0.0122175, 0.495012, 0.0106022, 0.429257, -0.0159542, 0.495047, 0.0138535, 0.429338, -0.0201864, 0.495106, 0.0175443, 0.429431, -0.0249104, 0.495165, 0.0216774, 0.429587, -0.0301252, 0.495279, 0.0262594, 0.429796, -0.0358249, 0.495432, 0.0312968, 0.430065, -0.0419972, 0.495621, 0.0367985, 0.430588, -0.0485144, 0.496061, 0.042798, 0.43113, -0.0555028, 0.496472, 0.0492914, 0.431743, -0.0629852, 0.496904, 0.0562907, 0.432448, -0.0709256, 0.497369, 0.0638056, 0.433414, -0.0791942, 0.498032, 0.071885, 0.434638, -0.0877346, 0.498854, 0.0805517, 0.43611, -0.0968056, 0.499812, 0.0898047, 0.437859, -0.106002, 0.500891, 0.0997142, 0.440017, -0.115648, 0.502198, 0.110289, 0.443236, -0.125427, 0.504389, 0.121644, 0.44697, -0.135492, 0.506809, 0.133769, 0.451689, -0.145746, 0.509858, 0.146787, 0.45811, -0.156219, 0.514247, 0.160793, 0.465305, -0.166834, 0.518816, 0.175791, 0.474085, -0.177546, 0.524331, 0.191906, 0.484808, -0.188262, 0.53104, 0.209199, 0.49732, -0.199346, 0.538511, 0.227825, 0.509693, -0.209951, 0.544554, 0.247269, 0.524367, -0.220533, 0.551616, 0.267978, 0.539228, -0.231082, 0.557368, 0.289672, 0.55644, -0.241342, 0.563782, 0.31268, 0.574204, -0.250964, 0.568851, 0.33651, 0.593388, -0.260306, 0.57312, 0.362219, 0.613358, -0.268667, 0.574916, 0.390322, 0.634512, -0.275591, 0.575053, 0.420478, 0.65563, -0.281328, 0.572404, 0.451614, 0.678265, -0.285948, 0.568893, 0.484112, 0.70011, -0.289408, 0.561878, 0.517348, 0.723005, -0.291328, 0.55359, 0.551355, 0.743744, -0.291418, 0.541099, 0.585109, 0.763949, -0.290252, 0.526489, 0.619487, 0.784186, -0.287648, 0.509496, 0.65404, 0.804304, -0.283782, 0.491484, 0.688649, 0.823629, -0.278067, 0.470517, 0.723133, 0.84094, -0.270588, 0.44705, 0.757163, 0.857852, -0.261188, 0.421252, 0.792816, 0.874934, -0.249313, 0.394191, 0.827248, 0.888709, -0.236492, 0.365359, 0.861074, 0.902589, -0.222185, 0.336016, 0.894417, 0.914201, -0.207314, 0.30527, 0.926825, 0.925978, -0.191146, 0.274532, 0.9595, 0.93512, -0.174135, 0.243393, 0.991583, 0.943656, -0.155231, 0.212414, 1.02356, 0.951719, -0.134403, 0.182005, 1.05239, 0.957164, -0.113023, 0.153043, 1.07754, 0.962656, -0.0914493, 0.124186, 1.09984, 0.970695, -0.0694179, 0.0941654, 1.12, 0.980749, -0.0466199, 0.0629671, 1.13849, 0.991205, -0.0227032, 0.0311146, 1.15494, 0.999884, 0.000632388, -0.000254483, 1.1706, 0.379821, -9.57289e-06, 0.460637, 7.89337e-06, 0.405188, -0.000247483, 0.491396, 0.000204064, 0.404796, -0.000989434, 0.490914, 0.000815853, 0.40483, -0.00222607, 0.490949, 0.00183559, 0.40473, -0.00395723, 0.49084, 0.00326332, 0.404731, -0.00618287, 0.490836, 0.00509945, 0.404768, -0.00890258, 0.490871, 0.00734463, 0.404791, -0.0121156, 0.490883, 0.00999992, 0.404857, -0.0158214, 0.490938, 0.0130676, 0.404943, -0.0200178, 0.491004, 0.0165503, 0.405059, -0.0247027, 0.491093, 0.0204521, 0.405213, -0.0298729, 0.491205, 0.0247788, 0.405399, -0.0355226, 0.491333, 0.0295373, 0.405731, -0.0416352, 0.491604, 0.034741, 0.406303, -0.0480807, 0.492116, 0.0404255, 0.406814, -0.0550458, 0.492506, 0.0465732, 0.407404, -0.0624652, 0.492926, 0.0532058, 0.408149, -0.0702958, 0.493442, 0.0603442, 0.409128, -0.0784623, 0.494136, 0.0680297, 0.410408, -0.087007, 0.495054, 0.0762786, 0.411813, -0.0959639, 0.495962, 0.0851046, 0.413735, -0.105075, 0.497257, 0.0945878, 0.416137, -0.114646, 0.498882, 0.104725, 0.41934, -0.124394, 0.501132, 0.11563, 0.423326, -0.134328, 0.503883, 0.127325, 0.428419, -0.14458, 0.50747, 0.139911, 0.43484, -0.154979, 0.511964, 0.153481, 0.442641, -0.165628, 0.517328, 0.168114, 0.452511, -0.176365, 0.524258, 0.183995, 0.463473, -0.187298, 0.531248, 0.200953, 0.475564, -0.198244, 0.538367, 0.219176, 0.488664, -0.208938, 0.545175, 0.238514, 0.504073, -0.219599, 0.553227, 0.259129, 0.520832, -0.230378, 0.560653, 0.280997, 0.538455, -0.240703, 0.567523, 0.303821, 0.55709, -0.250548, 0.573287, 0.327948, 0.576646, -0.259964, 0.577795, 0.353362, 0.596705, -0.268721, 0.580077, 0.380336, 0.618053, -0.276054, 0.58018, 0.4101, 0.640303, -0.282176, 0.578747, 0.44161, 0.662365, -0.286931, 0.574294, 0.474106, 0.684542, -0.290521, 0.567035, 0.507549, 0.707984, -0.292672, 0.558687, 0.541853, 0.730913, -0.293189, 0.547606, 0.576581, 0.752948, -0.292199, 0.533471, 0.61172, 0.773452, -0.289508, 0.516395, 0.646339, 0.794715, -0.285716, 0.497873, 0.682131, 0.814251, -0.280051, 0.476845, 0.716396, 0.833057, -0.272873, 0.453449, 0.751503, 0.84959, -0.263982, 0.427857, 0.786085, 0.867022, -0.252745, 0.400335, 0.821355, 0.882277, -0.239655, 0.371304, 0.85646, 0.895375, -0.225386, 0.340397, 0.890828, 0.909347, -0.209587, 0.310005, 0.923532, 0.921885, -0.193433, 0.2796, 0.956419, 0.932127, -0.176135, 0.247276, 0.989445, 0.941869, -0.157872, 0.216186, 1.02221, 0.949735, -0.137577, 0.185602, 1.05195, 0.956617, -0.115285, 0.155767, 1.07822, 0.961974, -0.0928418, 0.126103, 1.10149, 0.96972, -0.0700592, 0.0956758, 1.12207, 0.98012, -0.0474671, 0.0643269, 1.1408, 0.990825, -0.0238113, 0.0320863, 1.1577, 0.999876, 0.000381574, -8.12203e-05, 1.17403, 0.367636, -9.61342e-06, 0.469176, 7.53287e-06, 0.380377, -0.000244772, 0.485434, 0.000191797, 0.380416, -0.000978857, 0.485475, 0.000767015, 0.380376, -0.00220165, 0.485435, 0.00172522, 0.380419, -0.00391408, 0.485487, 0.00306734, 0.380438, -0.00611549, 0.485505, 0.00479332, 0.380462, -0.00880558, 0.485525, 0.00690391, 0.380496, -0.0119837, 0.485551, 0.00940039, 0.38056, -0.0156487, 0.485605, 0.0122848, 0.38064, -0.0197988, 0.485666, 0.0155601, 0.380767, -0.0244324, 0.48577, 0.0192313, 0.380909, -0.0295444, 0.485871, 0.0233032, 0.381142, -0.0351321, 0.48606, 0.0277861, 0.381472, -0.0411535, 0.486336, 0.0326939, 0.382015, -0.0475408, 0.486833, 0.0380565, 0.382523, -0.0544395, 0.487231, 0.0438615, 0.383129, -0.061784, 0.487683, 0.0501332, 0.383952, -0.0695085, 0.488313, 0.0568996, 0.38498, -0.0775819, 0.489077, 0.0641952, 0.386331, -0.0860443, 0.490113, 0.0720324, 0.387788, -0.0948406, 0.491099, 0.0804379, 0.389808, -0.103899, 0.492566, 0.0894899, 0.39252, -0.113313, 0.494601, 0.0992098, 0.395493, -0.123007, 0.496619, 0.109641, 0.399826, -0.132859, 0.499912, 0.120919, 0.405341, -0.143077, 0.504061, 0.133107, 0.411932, -0.153465, 0.508905, 0.146263, 0.420591, -0.164108, 0.515482, 0.160544, 0.43101, -0.174893, 0.523191, 0.176123, 0.441881, -0.185839, 0.53026, 0.192757, 0.453919, -0.196633, 0.537295, 0.210535, 0.468715, -0.207611, 0.546156, 0.229886, 0.485182, -0.218517, 0.555173, 0.250543, 0.501926, -0.229249, 0.562728, 0.27221, 0.51785, -0.239481, 0.567494, 0.294892, 0.536947, -0.249395, 0.573889, 0.318987, 0.557115, -0.259, 0.578831, 0.344348, 0.577966, -0.268075, 0.582055, 0.371223, 0.599489, -0.276115, 0.583307, 0.399834, 0.62479, -0.282523, 0.583902, 0.431415, 0.647504, -0.287663, 0.57953, 0.464301, 0.670601, -0.291538, 0.573103, 0.498123, 0.693539, -0.293842, 0.563731, 0.532662, 0.717385, -0.294681, 0.553169, 0.567925, 0.741533, -0.293717, 0.539908, 0.603502, 0.762142, -0.291156, 0.521902, 0.639074, 0.783014, -0.28719, 0.502815, 0.674439, 0.805158, -0.281773, 0.482598, 0.710497, 0.823646, -0.274682, 0.458949, 0.7456, 0.841879, -0.266184, 0.433129, 0.781085, 0.859515, -0.255682, 0.406064, 0.816, 0.875335, -0.242849, 0.376509, 0.851074, 0.890147, -0.228329, 0.345502, 0.886473, 0.903144, -0.212491, 0.31428, 0.920751, 0.916618, -0.195695, 0.282994, 0.954606, 0.927953, -0.178267, 0.251091, 0.988402, 0.937414, -0.159549, 0.219107, 1.02141, 0.946823, -0.140022, 0.18896, 1.05167, 0.954651, -0.118154, 0.158667, 1.07819, 0.959955, -0.0946636, 0.128808, 1.1025, 0.96858, -0.0711792, 0.0973787, 1.12391, 0.97938, -0.0475046, 0.0650965, 1.14322, 0.990498, -0.024059, 0.0326267, 1.16077, 0.999844, -5.12408e-05, 0.000112444, 1.17727, 0.316912, -9.34977e-06, 0.425996, 6.95559e-06, 0.356423, -0.000241372, 0.479108, 0.000179562, 0.356272, -0.000965292, 0.478897, 0.00071811, 0.356262, -0.00217182, 0.478894, 0.00161574, 0.356265, -0.00386092, 0.478895, 0.00287261, 0.356278, -0.0060324, 0.478905, 0.00448907, 0.356293, -0.00868565, 0.478914, 0.00646572, 0.356346, -0.0118207, 0.478965, 0.00880438, 0.356395, -0.0154355, 0.479001, 0.0115066, 0.356484, -0.019529, 0.479075, 0.0145762, 0.356609, -0.0240991, 0.47918, 0.018018, 0.356766, -0.0291413, 0.479305, 0.0218379, 0.357009, -0.0346498, 0.479512, 0.0260454, 0.357424, -0.0405462, 0.479909, 0.0306657, 0.357899, -0.0468825, 0.480337, 0.0357054, 0.358424, -0.0536887, 0.480771, 0.0411728, 0.359041, -0.0609416, 0.481242, 0.0470841, 0.359903, -0.0685239, 0.481943, 0.0534831, 0.360932, -0.0764883, 0.482741, 0.0603795, 0.362196, -0.0848364, 0.483688, 0.0678028, 0.363847, -0.0935002, 0.484947, 0.0758086, 0.365972, -0.102471, 0.486588, 0.0844173, 0.368741, -0.111751, 0.488787, 0.0937199, 0.372146, -0.121334, 0.491405, 0.103732, 0.377114, -0.131147, 0.495604, 0.114608, 0.38226, -0.141213, 0.499436, 0.126345, 0.389609, -0.151632, 0.505334, 0.139116, 0.397925, -0.162073, 0.51168, 0.152995, 0.407824, -0.172819, 0.518876, 0.168071, 0.420014, -0.183929, 0.527639, 0.184495, 0.434266, -0.195032, 0.537588, 0.20232, 0.447352, -0.205792, 0.544379, 0.221189, 0.463726, -0.216704, 0.553422, 0.241616, 0.481406, -0.227531, 0.562074, 0.263298, 0.498707, -0.238017, 0.568227, 0.286116, 0.518039, -0.247936, 0.574473, 0.3101, 0.538277, -0.257437, 0.579191, 0.335401, 0.561166, -0.266829, 0.584807, 0.362246, 0.583189, -0.275329, 0.586476, 0.390609, 0.606024, -0.28234, 0.585578, 0.420998, 0.632419, -0.287924, 0.584496, 0.454357, 0.656128, -0.291972, 0.577766, 0.488233, 0.679953, -0.29456, 0.56875, 0.523248, 0.704654, -0.295816, 0.558388, 0.559168, 0.729016, -0.295157, 0.544826, 0.595326, 0.752062, -0.292779, 0.528273, 0.631864, 0.773138, -0.288681, 0.508482, 0.667793, 0.794869, -0.283358, 0.487341, 0.704035, 0.815101, -0.27608, 0.46354, 0.739925, 0.834212, -0.26767, 0.438672, 0.775539, 0.852368, -0.257397, 0.411239, 0.810895, 0.870207, -0.245689, 0.3829, 0.846472, 0.884063, -0.231452, 0.351496, 0.881788, 0.898284, -0.215561, 0.31895, 0.917438, 0.912964, -0.198208, 0.287367, 0.952422, 0.924666, -0.180426, 0.254487, 0.987551, 0.934429, -0.161525, 0.222226, 1.02142, 0.943485, -0.141197, 0.191143, 1.05218, 0.9521, -0.120085, 0.161112, 1.07937, 0.957876, -0.0975881, 0.130982, 1.10403, 0.966943, -0.0726842, 0.0990553, 1.12616, 0.978313, -0.0483705, 0.0662818, 1.14619, 0.990048, -0.0239072, 0.0329243, 1.16413, 0.999984, 0.000461885, -7.72859e-05, 1.18099, 0.321287, -9.35049e-06, 0.455413, 6.59662e-06, 0.332595, -0.000237513, 0.471437, 0.000167562, 0.332729, -0.000949964, 0.471618, 0.000670192, 0.332305, -0.00213618, 0.471028, 0.00150712, 0.332326, -0.00379765, 0.471055, 0.00267959, 0.332344, -0.00593353, 0.471072, 0.00418751, 0.332356, -0.00854349, 0.471077, 0.00603172, 0.332403, -0.0116268, 0.471121, 0.00821362, 0.332461, -0.0151824, 0.47117, 0.0107357, 0.332552, -0.0192088, 0.471251, 0.0136014, 0.332657, -0.0237024, 0.47133, 0.0168152, 0.332835, -0.0286615, 0.471487, 0.0203853, 0.333083, -0.0340765, 0.471708, 0.0243212, 0.333547, -0.0398563, 0.47219, 0.0286518, 0.333989, -0.0460916, 0.472587, 0.0333763, 0.334532, -0.0527897, 0.473054, 0.0385084, 0.335167, -0.0599284, 0.473568, 0.0440638, 0.33608, -0.0673514, 0.474362, 0.0500962, 0.337146, -0.0752237, 0.475231, 0.0566022, 0.338462, -0.083418, 0.476282, 0.0636272, 0.34014, -0.0919382, 0.477615, 0.0712153, 0.342341, -0.100741, 0.479404, 0.079417, 0.345088, -0.109905, 0.481618, 0.0882631, 0.349049, -0.119369, 0.485081, 0.0978851, 0.353939, -0.129033, 0.489317, 0.108336, 0.359893, -0.139038, 0.494309, 0.119698, 0.366945, -0.149411, 0.499983, 0.132024, 0.375814, -0.159843, 0.507185, 0.145558, 0.387112, -0.170664, 0.516392, 0.160433, 0.40023, -0.181897, 0.526519, 0.176648, 0.412555, -0.192785, 0.53423, 0.193922, 0.427023, -0.203663, 0.542741, 0.212662, 0.443685, -0.214695, 0.552066, 0.232944, 0.461499, -0.225561, 0.560762, 0.254495, 0.480975, -0.236257, 0.569421, 0.277531, 0.501, -0.24639, 0.576101, 0.301724, 0.521691, -0.256101, 0.581493, 0.327112, 0.543478, -0.265289, 0.585221, 0.353917, 0.566094, -0.273938, 0.587614, 0.381941, 0.589578, -0.281679, 0.587991, 0.41172, 0.614583, -0.287655, 0.585928, 0.444148, 0.641813, -0.292228, 0.582092, 0.478617, 0.666189, -0.295172, 0.57398, 0.51397, 0.690475, -0.29648, 0.561676, 0.550118, 0.715543, -0.296203, 0.548758, 0.586933, 0.740405, -0.293999, 0.532792, 0.62384, 0.762183, -0.28998, 0.512735, 0.660723, 0.786069, -0.28478, 0.492402, 0.69807, 0.806812, -0.277568, 0.469058, 0.734422, 0.826987, -0.268951, 0.443017, 0.770946, 0.844588, -0.259049, 0.415501, 0.80699, 0.863725, -0.2471, 0.387328, 0.842107, 0.879137, -0.234157, 0.356108, 0.878078, 0.894634, -0.218719, 0.324315, 0.914058, 0.909162, -0.201293, 0.291813, 0.949922, 0.92072, -0.18267, 0.258474, 0.985337, 0.93158, -0.163212, 0.225593, 1.0205, 0.941238, -0.142771, 0.193986, 1.05273, 0.949293, -0.120956, 0.163392, 1.08075, 0.956226, -0.0985743, 0.132934, 1.10559, 0.96546, -0.075118, 0.101255, 1.12823, 0.977403, -0.0497921, 0.0675441, 1.149, 0.989648, -0.0241574, 0.0334681, 1.16765, 1.00001, 0.0005762, -0.000184807, 1.18519, 0.303474, -9.16603e-06, 0.4542, 6.1243e-06, 0.308894, -0.000232869, 0.462306, 0.000155592, 0.309426, -0.000931661, 0.463093, 0.000622499, 0.308643, -0.0020949, 0.461933, 0.00139979, 0.308651, -0.0037242, 0.461941, 0.00248874, 0.308662, -0.00581873, 0.46195, 0.00388933, 0.308687, -0.00837818, 0.461974, 0.00560247, 0.308728, -0.0114016, 0.462011, 0.00762948, 0.308789, -0.0148884, 0.462067, 0.00997326, 0.308882, -0.0188369, 0.462151, 0.0126375, 0.309007, -0.0232436, 0.462263, 0.0156271, 0.30918, -0.0281054, 0.462417, 0.0189498, 0.309442, -0.0334065, 0.462667, 0.0226167, 0.309901, -0.0390589, 0.463162, 0.0266614, 0.310331, -0.0452042, 0.463555, 0.0310715, 0.310858, -0.0517735, 0.464019, 0.0358698, 0.311576, -0.0587359, 0.464669, 0.0410848, 0.312436, -0.0660383, 0.465406, 0.0467453, 0.313526, -0.0737266, 0.466339, 0.0528718, 0.314903, -0.0817574, 0.467504, 0.0595039, 0.316814, -0.090167, 0.469226, 0.0666888, 0.318965, -0.0987555, 0.470981, 0.0744658, 0.322077, -0.107792, 0.473814, 0.082912, 0.325947, -0.117098, 0.477241, 0.0920846, 0.331008, -0.126602, 0.48184, 0.102137, 0.337893, -0.136619, 0.488334, 0.113135, 0.345106, -0.146838, 0.494415, 0.12511, 0.355111, -0.157357, 0.503275, 0.138356, 0.365095, -0.167955, 0.510966, 0.152686, 0.378344, -0.179157, 0.521508, 0.16856, 0.391599, -0.190143, 0.530455, 0.18561, 0.407786, -0.20123, 0.541275, 0.204308, 0.425294, -0.212456, 0.551784, 0.224623, 0.444021, -0.223568, 0.561493, 0.246172, 0.463418, -0.234154, 0.569886, 0.268979, 0.484077, -0.244546, 0.577116, 0.293411, 0.505513, -0.254301, 0.582914, 0.318936, 0.527672, -0.263564, 0.587208, 0.345856, 0.550565, -0.272332, 0.589277, 0.374054, 0.573656, -0.280011, 0.588426, 0.403276, 0.59827, -0.286924, 0.587504, 0.43474, 0.624731, -0.291994, 0.583401, 0.468767, 0.652396, -0.295159, 0.576997, 0.504411, 0.67732, -0.296954, 0.565863, 0.54114, 0.703147, -0.296877, 0.552316, 0.57816, 0.728715, -0.295147, 0.536773, 0.616124, 0.752448, -0.291275, 0.51771, 0.653885, 0.775169, -0.285905, 0.496087, 0.691537, 0.799307, -0.279064, 0.474232, 0.729251, 0.819482, -0.270294, 0.447676, 0.766267, 0.837659, -0.260032, 0.419656, 0.802616, 0.856903, -0.248497, 0.391328, 0.838583, 0.873325, -0.235252, 0.360285, 0.874711, 0.889788, -0.221126, 0.329215, 0.91077, 0.904486, -0.204304, 0.296392, 0.94653, 0.917711, -0.185562, 0.262159, 0.983828, 0.928969, -0.165635, 0.229142, 1.01955, 0.939707, -0.14442, 0.19673, 1.05317, 0.948167, -0.122147, 0.165095, 1.0823, 0.955222, -0.099098, 0.13451, 1.10791, 0.964401, -0.0755332, 0.102476, 1.1312, 0.976605, -0.0513817, 0.0689667, 1.15218, 0.989085, -0.0258499, 0.034506, 1.17129, 0.999908, 0.000617773, -0.000271268, 1.18961, 0.285803, -9.05752e-06, 0.452348, 5.72272e-06, 0.284689, -0.00022732, 0.450581, 0.000143626, 0.285263, -0.000910214, 0.451482, 0.000575099, 0.285302, -0.00204784, 0.451553, 0.00129395, 0.285318, -0.00364057, 0.451574, 0.0023006, 0.28533, -0.00568813, 0.451585, 0.00359547, 0.285361, -0.00819001, 0.451618, 0.00517934, 0.285397, -0.0111458, 0.45165, 0.007054, 0.285447, -0.0145536, 0.451688, 0.00922167, 0.285527, -0.0184127, 0.451758, 0.0116869, 0.285688, -0.0227207, 0.451929, 0.0144555, 0.28584, -0.0274712, 0.452055, 0.0175341, 0.286136, -0.0326278, 0.452369, 0.0209406, 0.286574, -0.0381792, 0.452853, 0.0246965, 0.287012, -0.0441879, 0.453272, 0.0287996, 0.287542, -0.0506096, 0.453752, 0.033268, 0.288299, -0.0573634, 0.454488, 0.0381504, 0.289186, -0.0645458, 0.455294, 0.0434447, 0.290302, -0.0720405, 0.456301, 0.0491973, 0.291776, -0.0799046, 0.457648, 0.0554453, 0.29372, -0.088117, 0.459483, 0.0622311, 0.296052, -0.0965328, 0.461571, 0.0695992, 0.299563, -0.105409, 0.465085, 0.077658, 0.30335, -0.114553, 0.468506, 0.0864176, 0.309167, -0.123917, 0.474423, 0.0961078, 0.31529, -0.13381, 0.47995, 0.106643, 0.324163, -0.144021, 0.488592, 0.118322, 0.333272, -0.154382, 0.496461, 0.131133, 0.344224, -0.165015, 0.50562, 0.145208, 0.357733, -0.176168, 0.516719, 0.16073, 0.373046, -0.187468, 0.528513, 0.177807, 0.38788, -0.198488, 0.537713, 0.196072, 0.405133, -0.209545, 0.547999, 0.21605, 0.423845, -0.220724, 0.55759, 0.237484, 0.443777, -0.231518, 0.566246, 0.26039, 0.464824, -0.242035, 0.574326, 0.284835, 0.486635, -0.251898, 0.58037, 0.310518, 0.51012, -0.261304, 0.58568, 0.337678, 0.535301, -0.270384, 0.590197, 0.366242, 0.559193, -0.27841, 0.590569, 0.395873, 0.583544, -0.285325, 0.588161, 0.426857, 0.608834, -0.291113, 0.584249, 0.459477, 0.635753, -0.294882, 0.57763, 0.494734, 0.664367, -0.297088, 0.569479, 0.532023, 0.689688, -0.297364, 0.555064, 0.569629, 0.715732, -0.295949, 0.539522, 0.608124, 0.741307, -0.292259, 0.521613, 0.646231, 0.764949, -0.287063, 0.49969, 0.684938, 0.788599, -0.28012, 0.476747, 0.723548, 0.81048, -0.27153, 0.45116, 0.761135, 0.831372, -0.261289, 0.424101, 0.798916, 0.850092, -0.249559, 0.39443, 0.835952, 0.867777, -0.236348, 0.363849, 0.871606, 0.884632, -0.221569, 0.332477, 0.907843, 0.90047, -0.20618, 0.300667, 0.944187, 0.914524, -0.188771, 0.266552, 0.981371, 0.926892, -0.168362, 0.232349, 1.01841, 0.937951, -0.146761, 0.199359, 1.05308, 0.947236, -0.123813, 0.1675, 1.0839, 0.954367, -0.099984, 0.136166, 1.11047, 0.963907, -0.0759278, 0.103808, 1.13414, 0.976218, -0.0511367, 0.0697061, 1.15575, 0.988772, -0.0267415, 0.0352529, 1.17531, 0.999888, -0.000520778, 0.000289926, 1.19389, 0.263546, -8.83274e-06, 0.441896, 5.26783e-06, 0.262352, -0.000221849, 0.439889, 0.000132311, 0.262325, -0.000886683, 0.439848, 0.000528824, 0.26228, -0.00199476, 0.439765, 0.00118975, 0.262372, -0.00354671, 0.439922, 0.00211568, 0.26239, -0.00554141, 0.439941, 0.00330652, 0.262412, -0.00797888, 0.439961, 0.00476346, 0.262453, -0.0108584, 0.440002, 0.00648818, 0.262528, -0.0141788, 0.440085, 0.0084835, 0.262615, -0.017938, 0.440166, 0.0107533, 0.262744, -0.0221346, 0.440291, 0.0133044, 0.262939, -0.026762, 0.440493, 0.0161445, 0.263277, -0.0317573, 0.440889, 0.0192974, 0.26368, -0.0371832, 0.441338, 0.0227699, 0.264106, -0.0430371, 0.441753, 0.0265698, 0.264624, -0.0493035, 0.442227, 0.0307178, 0.265378, -0.0558669, 0.442985, 0.0352616, 0.266253, -0.0628718, 0.443795, 0.0401968, 0.267478, -0.0701569, 0.445008, 0.04559, 0.269062, -0.077845, 0.446599, 0.0514539, 0.270926, -0.0857941, 0.448349, 0.0578382, 0.273693, -0.0940773, 0.451221, 0.0648363, 0.276746, -0.102704, 0.454097, 0.0724389, 0.281693, -0.111735, 0.459517, 0.0808744, 0.287335, -0.121004, 0.46531, 0.0901551, 0.29448, -0.130734, 0.472605, 0.100371, 0.30257, -0.140777, 0.480251, 0.111644, 0.312465, -0.15111, 0.489444, 0.124111, 0.324856, -0.16189, 0.500919, 0.137979, 0.33774, -0.172946, 0.511317, 0.153163, 0.35255, -0.184152, 0.522684, 0.169817, 0.367786, -0.19522, 0.53248, 0.187886, 0.385474, -0.20632, 0.543326, 0.207634, 0.404976, -0.217744, 0.554109, 0.229165, 0.425203, -0.228691, 0.563395, 0.252068, 0.446704, -0.239299, 0.571565, 0.276471, 0.468951, -0.249348, 0.577935, 0.302323, 0.493487, -0.258933, 0.584309, 0.329882, 0.517861, -0.268009, 0.58773, 0.358525, 0.543309, -0.276238, 0.589612, 0.388585, 0.569704, -0.28356, 0.589294, 0.419787, 0.594871, -0.289497, 0.585137, 0.452114, 0.622555, -0.294452, 0.580356, 0.486466, 0.651167, -0.296918, 0.57185, 0.523079, 0.677332, -0.297647, 0.558428, 0.5611, 0.703718, -0.296321, 0.542232, 0.599592, 0.730262, -0.293339, 0.524541, 0.639138, 0.754304, -0.288036, 0.502691, 0.677978, 0.778051, -0.281018, 0.479212, 0.716537, 0.801557, -0.272414, 0.454071, 0.75586, 0.822559, -0.262419, 0.425952, 0.794477, 0.843051, -0.250702, 0.397313, 0.832664, 0.86232, -0.237264, 0.366534, 0.869876, 0.879044, -0.222716, 0.334816, 0.906973, 0.896362, -0.206827, 0.303143, 0.943558, 0.910342, -0.189659, 0.269699, 0.979759, 0.924119, -0.171108, 0.236411, 1.01718, 0.935374, -0.149579, 0.202224, 1.05289, 0.944295, -0.126295, 0.16989, 1.08496, 0.952227, -0.101511, 0.138089, 1.11256, 0.962041, -0.0766392, 0.105053, 1.1375, 0.97528, -0.0511967, 0.070329, 1.15983, 0.988476, -0.025463, 0.0351268, 1.17987, 0.999962, 2.86808e-05, 1.45564e-05, 1.19901, 0.227089, -8.41413e-06, 0.404216, 4.72707e-06, 0.239725, -0.000215083, 0.426708, 0.000120833, 0.239904, -0.000860718, 0.427028, 0.000483555, 0.239911, -0.00193661, 0.427039, 0.00108806, 0.239914, -0.00344276, 0.42704, 0.00193457, 0.239933, -0.00537907, 0.427064, 0.00302363, 0.239944, -0.00774482, 0.427065, 0.00435604, 0.239993, -0.01054, 0.427122, 0.00593398, 0.240052, -0.0137626, 0.427179, 0.00775987, 0.240148, -0.0174115, 0.427279, 0.00983854, 0.240278, -0.021484, 0.42741, 0.0121763, 0.240472, -0.0259729, 0.427618, 0.0147827, 0.240839, -0.0308131, 0.428086, 0.0176837, 0.241201, -0.0360893, 0.428482, 0.0208775, 0.241626, -0.0417723, 0.428907, 0.0243821, 0.242207, -0.0478337, 0.42952, 0.0282228, 0.24298, -0.0542199, 0.430332, 0.0324333, 0.243881, -0.0610015, 0.431222, 0.0370252, 0.245123, -0.0680874, 0.432512, 0.0420535, 0.24667, -0.0755482, 0.434088, 0.0475414, 0.248779, -0.0832873, 0.436323, 0.0535542, 0.251665, -0.0913546, 0.439509, 0.0601716, 0.255305, -0.0998489, 0.443478, 0.0674282, 0.260049, -0.108576, 0.448713, 0.0754673, 0.266192, -0.117754, 0.455524, 0.084339, 0.273158, -0.127294, 0.4627, 0.0941683, 0.282131, -0.137311, 0.472068, 0.10515, 0.293332, -0.147736, 0.483565, 0.117402, 0.304667, -0.158357, 0.493702, 0.130824, 0.317785, -0.169274, 0.504708, 0.145724, 0.333245, -0.180595, 0.517107, 0.16215, 0.349843, -0.191892, 0.528849, 0.180149, 0.367944, -0.203168, 0.540301, 0.199746, 0.387579, -0.214443, 0.551514, 0.221047, 0.408247, -0.225624, 0.560906, 0.243981, 0.43014, -0.236422, 0.56959, 0.268513, 0.452669, -0.24654, 0.576098, 0.294409, 0.476196, -0.256157, 0.580925, 0.322002, 0.501157, -0.265289, 0.584839, 0.351052, 0.527632, -0.273671, 0.587614, 0.3812, 0.555754, -0.281254, 0.589119, 0.412994, 0.581682, -0.287448, 0.585204, 0.445498, 0.608196, -0.292614, 0.579006, 0.479505, 0.635661, -0.296068, 0.571297, 0.514643, 0.664999, -0.297395, 0.560855, 0.552213, 0.691039, -0.296645, 0.544525, 0.591365, 0.7179, -0.293785, 0.526535, 0.630883, 0.744059, -0.289089, 0.50545, 0.670932, 0.76863, -0.282239, 0.482514, 0.710904, 0.793273, -0.273688, 0.457246, 0.750259, 0.814731, -0.26328, 0.428872, 0.78948, 0.835603, -0.251526, 0.399384, 0.828597, 0.85489, -0.238339, 0.368811, 0.866892, 0.872828, -0.223607, 0.336617, 0.90563, 0.889462, -0.207538, 0.303997, 0.943538, 0.904929, -0.190297, 0.270812, 0.980591, 0.919101, -0.172034, 0.237453, 1.01935, 0.930536, -0.152058, 0.204431, 1.05498, 0.941223, -0.129515, 0.172495, 1.08717, 0.94982, -0.104263, 0.140175, 1.11551, 0.960592, -0.0781944, 0.106465, 1.14098, 0.974629, -0.051688, 0.0711592, 1.16418, 0.98811, -0.0253929, 0.0354432, 1.18465, 1.00004, 0.000804378, -0.000330876, 1.20462, 0.214668, -8.21282e-06, 0.406619, 4.33582e-06, 0.218053, -0.000208144, 0.413025, 0.000109887, 0.217987, -0.000832212, 0.412901, 0.000439362, 0.217971, -0.00187246, 0.412876, 0.000988623, 0.217968, -0.00332855, 0.41286, 0.00175772, 0.217985, -0.00520055, 0.412882, 0.00274729, 0.218014, -0.00748814, 0.412916, 0.00395842, 0.218054, -0.0101901, 0.412957, 0.00539274, 0.218106, -0.0133057, 0.413005, 0.00705348, 0.218217, -0.0168342, 0.413139, 0.00894581, 0.218338, -0.0207707, 0.413258, 0.0110754, 0.21855, -0.0251001, 0.413509, 0.0134551, 0.218913, -0.0297861, 0.413992, 0.0161081, 0.219265, -0.0348956, 0.414383, 0.0190307, 0.219696, -0.0403909, 0.414839, 0.0222458, 0.220329, -0.0462003, 0.415567, 0.025792, 0.220989, -0.0524208, 0.41621, 0.0296637, 0.222027, -0.058948, 0.417385, 0.0339323, 0.223301, -0.0658208, 0.418779, 0.0386055, 0.224988, -0.0730347, 0.420665, 0.0437355, 0.227211, -0.0805274, 0.423198, 0.0493844, 0.230131, -0.088395, 0.426566, 0.0556135, 0.233908, -0.0966208, 0.43091, 0.0624829, 0.239092, -0.105223, 0.437148, 0.0701636, 0.245315, -0.11424, 0.444302, 0.0786949, 0.253166, -0.12368, 0.453262, 0.0882382, 0.262374, -0.133569, 0.463211, 0.0988682, 0.273145, -0.143836, 0.474271, 0.110727, 0.285512, -0.154577, 0.4863, 0.123945, 0.299512, -0.165501, 0.498817, 0.138581, 0.314287, -0.176698, 0.510341, 0.154676, 0.331083, -0.188066, 0.522583, 0.172459, 0.349615, -0.199597, 0.534879, 0.191979, 0.369318, -0.210843, 0.546083, 0.21309, 0.390377, -0.222068, 0.5562, 0.235998, 0.412411, -0.233059, 0.564704, 0.260518, 0.435715, -0.24357, 0.572314, 0.286795, 0.461196, -0.253356, 0.579395, 0.314559, 0.485587, -0.262362, 0.581985, 0.343581, 0.511908, -0.270895, 0.584347, 0.374367, 0.539798, -0.278452, 0.58505, 0.406015, 0.567974, -0.284877, 0.583344, 0.439168, 0.594303, -0.290124, 0.577348, 0.473005, 0.622951, -0.294183, 0.570751, 0.508534, 0.652404, -0.296389, 0.561541, 0.544764, 0.679291, -0.296605, 0.546426, 0.582927, 0.706437, -0.294095, 0.528599, 0.622681, 0.734485, -0.28978, 0.508676, 0.663567, 0.758841, -0.283363, 0.484768, 0.704092, 0.78537, -0.275015, 0.460434, 0.745101, 0.807315, -0.264689, 0.432166, 0.784712, 0.8271, -0.252597, 0.401807, 0.824241, 0.849191, -0.239154, 0.371458, 0.863803, 0.867046, -0.224451, 0.338873, 0.903063, 0.8852, -0.208342, 0.306175, 0.942763, 0.901771, -0.190684, 0.272759, 0.981559, 0.915958, -0.172105, 0.239306, 1.02048, 0.928046, -0.152214, 0.206071, 1.05765, 0.939961, -0.130247, 0.17367, 1.08999, 0.948711, -0.10672, 0.142201, 1.11829, 0.959305, -0.0808688, 0.108454, 1.14467, 0.973009, -0.0539145, 0.0728109, 1.16839, 0.987631, -0.0262947, 0.0360625, 1.19004, 0.999978, 0.00132758, -0.000559424, 1.21058, 0.193925, -7.93421e-06, 0.391974, 3.92537e-06, 0.196746, -0.000200315, 0.397675, 9.91033e-05, 0.19667, -0.000801099, 0.397521, 0.000396342, 0.196633, -0.00180246, 0.397445, 0.000891829, 0.196654, -0.00320443, 0.397482, 0.00158582, 0.196659, -0.00500647, 0.39748, 0.00247867, 0.196683, -0.0072086, 0.397506, 0.00357167, 0.196728, -0.00981001, 0.397562, 0.00486675, 0.196792, -0.0128096, 0.397633, 0.00636707, 0.19689, -0.0162055, 0.397746, 0.00807752, 0.197017, -0.0199943, 0.397884, 0.0100052, 0.19729, -0.024139, 0.39827, 0.0121691, 0.197583, -0.0286671, 0.398639, 0.0145755, 0.197927, -0.0335858, 0.399034, 0.0172355, 0.198383, -0.0388806, 0.399554, 0.0201718, 0.199002, -0.0444736, 0.400289, 0.0234194, 0.199739, -0.0504583, 0.401111, 0.026984, 0.200784, -0.056729, 0.402349, 0.0309217, 0.202075, -0.0633643, 0.403841, 0.0352496, 0.203898, -0.0703247, 0.406076, 0.0400313, 0.206199, -0.0775565, 0.408841, 0.0453282, 0.209252, -0.085184, 0.41259, 0.0511794, 0.213638, -0.0931994, 0.418288, 0.0577459, 0.21881, -0.101617, 0.424681, 0.0650508, 0.225642, -0.11052, 0.433429, 0.0732759, 0.233717, -0.119772, 0.442897, 0.0824683, 0.242823, -0.129505, 0.452888, 0.0927484, 0.254772, -0.139906, 0.466407, 0.104417, 0.266603, -0.150402, 0.477413, 0.117211, 0.28073, -0.161395, 0.490519, 0.131598, 0.295399, -0.172465, 0.50201, 0.147407, 0.312705, -0.183982, 0.515311, 0.165031, 0.331335, -0.195532, 0.52786, 0.184336, 0.351037, -0.206971, 0.5392, 0.205361, 0.372175, -0.218117, 0.54941, 0.228043, 0.394548, -0.229327, 0.558642, 0.25267, 0.419598, -0.240052, 0.567861, 0.279071, 0.443922, -0.249937, 0.573332, 0.306882, 0.471495, -0.259407, 0.58013, 0.33661, 0.496769, -0.267749, 0.580564, 0.367328, 0.524951, -0.275524, 0.581696, 0.399753, 0.55318, -0.282148, 0.579885, 0.433134, 0.581577, -0.287533, 0.575471, 0.467534, 0.609231, -0.291612, 0.567445, 0.502943, 0.637478, -0.293911, 0.557657, 0.53871, 0.667795, -0.295096, 0.546535, 0.576568, 0.694272, -0.294073, 0.529561, 0.614929, 0.722937, -0.290386, 0.510561, 0.655909, 0.749682, -0.284481, 0.487846, 0.697663, 0.774754, -0.276188, 0.462487, 0.738515, 0.799301, -0.266215, 0.43481, 0.779802, 0.820762, -0.254116, 0.404879, 0.820045, 0.843231, -0.240393, 0.374559, 0.860294, 0.861857, -0.225503, 0.341582, 0.900965, 0.880815, -0.209382, 0.308778, 0.941727, 0.89766, -0.19155, 0.275232, 0.980916, 0.912926, -0.172346, 0.240938, 1.02162, 0.926391, -0.151799, 0.207223, 1.0597, 0.938429, -0.129968, 0.17484, 1.09291, 0.947834, -0.10651, 0.142984, 1.12248, 0.958432, -0.0824098, 0.109902, 1.149, 0.972402, -0.0565242, 0.0744454, 1.1733, 0.987191, -0.028427, 0.0373794, 1.19538, 0.999975, 3.85685e-05, -4.203e-05, 1.21676, 0.178114, -7.66075e-06, 0.385418, 3.54027e-06, 0.176074, -0.000191966, 0.381002, 8.87135e-05, 0.17601, -0.000767549, 0.380861, 0.000354715, 0.17598, -0.00172696, 0.380798, 0.000798168, 0.175994, -0.00307012, 0.380824, 0.00141928, 0.176017, -0.00479684, 0.380858, 0.00221859, 0.176019, -0.00690648, 0.380839, 0.00319714, 0.176072, -0.00939888, 0.380913, 0.0043572, 0.176131, -0.0122726, 0.380979, 0.005702, 0.176239, -0.0155264, 0.38112, 0.00723689, 0.176371, -0.0191551, 0.381272, 0.00896907, 0.176638, -0.023117, 0.381669, 0.0109194, 0.176912, -0.0274633, 0.382015, 0.0130903, 0.177279, -0.032173, 0.382476, 0.0154949, 0.17774, -0.0372219, 0.383041, 0.0181669, 0.178344, -0.0426132, 0.38378, 0.0211209, 0.179153, -0.0483309, 0.384773, 0.0243899, 0.180197, -0.0543447, 0.386076, 0.0280062, 0.181581, -0.0607122, 0.387809, 0.032004, 0.18344, -0.0673855, 0.390205, 0.036453, 0.186139, -0.0743989, 0.393944, 0.0414162, 0.189432, -0.0817731, 0.39832, 0.0469394, 0.193795, -0.0895464, 0.404188, 0.0531442, 0.199641, -0.0978264, 0.4121, 0.0601374, 0.206679, -0.106499, 0.421425, 0.0680078, 0.214865, -0.115654, 0.431504, 0.076919, 0.224406, -0.125268, 0.442526, 0.0868835, 0.235876, -0.135475, 0.455465, 0.0981875, 0.248335, -0.146023, 0.4681, 0.110759, 0.262868, -0.157016, 0.482069, 0.124885, 0.278962, -0.168245, 0.496182, 0.140645, 0.295082, -0.17958, 0.507401, 0.157838, 0.313738, -0.191227, 0.520252, 0.17695, 0.333573, -0.202718, 0.531708, 0.197817, 0.356433, -0.214424, 0.544509, 0.220785, 0.378853, -0.225492, 0.55373, 0.245306, 0.402717, -0.236236, 0.561348, 0.271593, 0.428375, -0.246568, 0.568538, 0.299776, 0.454724, -0.255941, 0.573462, 0.329433, 0.482291, -0.264511, 0.576356, 0.360598, 0.509706, -0.272129, 0.576446, 0.393204, 0.538805, -0.278979, 0.575298, 0.427227, 0.568919, -0.284528, 0.572154, 0.462157, 0.596804, -0.288801, 0.564691, 0.497997, 0.625987, -0.291334, 0.555134, 0.534467, 0.656414, -0.292722, 0.545051, 0.571736, 0.683916, -0.292185, 0.528813, 0.610158, 0.711809, -0.290043, 0.51106, 0.649061, 0.739547, -0.285246, 0.490103, 0.690081, 0.766914, -0.277647, 0.465523, 0.732554, 0.791375, -0.267603, 0.437718, 0.773982, 0.814772, -0.256109, 0.40882, 0.81609, 0.836691, -0.242281, 0.377823, 0.856849, 0.856984, -0.227155, 0.34496, 0.898363, 0.876332, -0.210395, 0.311335, 0.939471, 0.894988, -0.192612, 0.277703, 0.980799, 0.911113, -0.173236, 0.243019, 1.02215, 0.924092, -0.152258, 0.209037, 1.06139, 0.936828, -0.129575, 0.175909, 1.09635, 0.946869, -0.10594, 0.143852, 1.12707, 0.958284, -0.081318, 0.110289, 1.15419, 0.972325, -0.0556133, 0.0747232, 1.17909, 0.986878, -0.0297899, 0.0383149, 1.20163, 0.999936, -0.00197169, 0.000912402, 1.22338, 0.151174, -7.20365e-06, 0.351531, 3.09789e-06, 0.155594, -0.00018279, 0.361806, 7.8608e-05, 0.156099, -0.000731569, 0.362982, 0.000314615, 0.156053, -0.00164578, 0.362869, 0.000707845, 0.156093, -0.0029261, 0.362961, 0.00125884, 0.156099, -0.00457155, 0.362959, 0.00196783, 0.15612, -0.00658224, 0.362982, 0.00283622, 0.156168, -0.00895774, 0.363048, 0.00386625, 0.156221, -0.0116962, 0.363101, 0.00506109, 0.156324, -0.0147973, 0.363241, 0.00642675, 0.156476, -0.0182503, 0.363448, 0.00797175, 0.156731, -0.0220266, 0.36384, 0.00971484, 0.156994, -0.026176, 0.364179, 0.0116575, 0.157341, -0.0306701, 0.36462, 0.0138207, 0.157867, -0.0354591, 0.365364, 0.0162356, 0.15846, -0.0406141, 0.366111, 0.0189092, 0.159308, -0.0460519, 0.367248, 0.021885, 0.160426, -0.0518096, 0.368767, 0.0252004, 0.161877, -0.0578906, 0.370745, 0.0288825, 0.163995, -0.0642812, 0.373831, 0.0330139, 0.16655, -0.0710067, 0.377366, 0.0376283, 0.170237, -0.0781522, 0.382799, 0.0428493, 0.175096, -0.0857172, 0.389915, 0.0487324, 0.181069, -0.0938025, 0.398487, 0.0554214, 0.188487, -0.102363, 0.408799, 0.0630189, 0.197029, -0.111343, 0.419991, 0.071634, 0.206684, -0.120812, 0.431455, 0.0812797, 0.218698, -0.131033, 0.445746, 0.0923651, 0.230726, -0.141373, 0.457471, 0.104545, 0.245516, -0.152387, 0.472388, 0.118449, 0.261551, -0.163628, 0.486671, 0.133923, 0.277437, -0.174814, 0.49762, 0.150849, 0.296662, -0.186713, 0.51162, 0.169924, 0.31795, -0.198513, 0.525435, 0.190848, 0.339422, -0.210119, 0.536267, 0.213504, 0.362143, -0.221354, 0.545982, 0.237947, 0.387198, -0.23224, 0.555364, 0.264427, 0.412349, -0.24257, 0.561489, 0.292519, 0.439274, -0.252284, 0.566903, 0.322561, 0.466779, -0.261023, 0.569614, 0.353952, 0.496011, -0.26899, 0.571589, 0.387278, 0.524964, -0.275498, 0.570325, 0.421356, 0.556518, -0.281449, 0.568792, 0.457314, 0.584363, -0.285526, 0.560268, 0.493199, 0.614214, -0.28844, 0.55205, 0.530276, 0.645684, -0.289777, 0.541906, 0.56855, 0.673446, -0.289722, 0.526464, 0.606927, 0.701924, -0.287792, 0.509872, 0.645945, 0.73037, -0.284315, 0.490649, 0.685564, 0.757405, -0.278804, 0.467964, 0.726511, 0.784025, -0.269543, 0.441468, 0.768601, 0.808255, -0.258117, 0.41216, 0.811321, 0.830739, -0.244728, 0.380606, 0.853496, 0.851914, -0.229428, 0.348111, 0.895374, 0.872586, -0.212508, 0.314732, 0.937674, 0.891581, -0.194025, 0.280338, 0.979869, 0.907641, -0.174711, 0.245203, 1.02253, 0.922233, -0.153509, 0.21077, 1.06371, 0.935878, -0.130418, 0.177399, 1.09972, 0.946338, -0.105558, 0.144507, 1.13124, 0.957265, -0.080059, 0.110508, 1.15973, 0.971668, -0.0539766, 0.0742311, 1.18515, 0.9866, -0.0277101, 0.0375224, 1.20858, 1.00021, -0.000515531, 0.000135226, 1.23135, 0.137468, -6.86011e-06, 0.345041, 2.73315e-06, 0.13703, -0.000173378, 0.343936, 6.90761e-05, 0.136986, -0.000693048, 0.34383, 0.000276126, 0.136964, -0.00155931, 0.343761, 0.000621337, 0.137003, -0.00277211, 0.343863, 0.00110494, 0.137012, -0.00433103, 0.343868, 0.00172744, 0.137043, -0.00623606, 0.343916, 0.00249022, 0.13709, -0.0084868, 0.343986, 0.00339559, 0.137145, -0.0110814, 0.344045, 0.00444687, 0.137242, -0.0140187, 0.344177, 0.00565007, 0.137431, -0.0172713, 0.344491, 0.00701868, 0.137644, -0.0208605, 0.344805, 0.00856042, 0.13791, -0.024792, 0.345172, 0.0102863, 0.138295, -0.0290461, 0.345734, 0.0122185, 0.138764, -0.0335957, 0.346371, 0.0143771, 0.139415, -0.038467, 0.347298, 0.0167894, 0.140272, -0.0436176, 0.348527, 0.0194895, 0.141457, -0.0491016, 0.350276, 0.0225043, 0.14303, -0.0548764, 0.352646, 0.0258962, 0.145289, -0.0610096, 0.356206, 0.0297168, 0.148502, -0.0674777, 0.361488, 0.0340562, 0.152188, -0.074345, 0.367103, 0.0389534, 0.157359, -0.0817442, 0.375247, 0.0445541, 0.16379, -0.0896334, 0.385064, 0.0509535, 0.171376, -0.098005, 0.396082, 0.0582611, 0.179901, -0.106817, 0.407418, 0.06654, 0.189892, -0.116239, 0.420031, 0.075994, 0.201838, -0.12627, 0.434321, 0.0867239, 0.214311, -0.136701, 0.447631, 0.0987517, 0.228902, -0.147616, 0.462046, 0.112353, 0.245107, -0.158871, 0.476942, 0.127605, 0.262292, -0.170261, 0.490285, 0.144469, 0.281215, -0.182017, 0.503783, 0.163282, 0.301058, -0.193729, 0.515505, 0.183873, 0.322752, -0.205512, 0.52682, 0.206466, 0.347547, -0.217214, 0.539473, 0.231194, 0.370969, -0.227966, 0.546625, 0.257288, 0.397533, -0.238555, 0.55472, 0.285789, 0.42398, -0.248278, 0.559468, 0.315746, 0.452928, -0.257422, 0.564095, 0.347724, 0.482121, -0.265306, 0.565426, 0.380922, 0.510438, -0.272043, 0.563205, 0.415639, 0.541188, -0.277614, 0.561087, 0.451702, 0.571667, -0.281927, 0.554922, 0.48845, 0.602432, -0.285015, 0.546838, 0.526442, 0.634126, -0.286512, 0.537415, 0.564896, 0.662816, -0.286388, 0.522906, 0.604037, 0.692411, -0.284734, 0.507003, 0.643795, 0.720946, -0.281297, 0.488398, 0.68298, 0.748293, -0.276262, 0.466353, 0.723466, 0.776931, -0.269978, 0.443573, 0.764565, 0.801065, -0.260305, 0.415279, 0.805838, 0.825843, -0.247426, 0.384773, 0.849985, 0.84807, -0.232437, 0.352555, 0.893174, 0.869122, -0.215806, 0.318642, 0.936564, 0.888963, -0.197307, 0.28381, 0.980253, 0.905547, -0.177203, 0.247888, 1.02463, 0.918554, -0.155542, 0.212904, 1.06714, 0.931395, -0.131948, 0.1787, 1.10451, 0.941749, -0.106723, 0.145902, 1.13694, 0.954551, -0.0804939, 0.111193, 1.1666, 0.970279, -0.0534239, 0.0744697, 1.19249, 0.986117, -0.0257452, 0.0368788, 1.21665, 0.999938, 0.00190634, -0.0010291, 1.23981, 0.118493, -6.47439e-06, 0.32272, 2.3772e-06, 0.118765, -0.000163023, 0.323456, 5.98573e-05, 0.118772, -0.00065212, 0.323477, 0.000239447, 0.118843, -0.00146741, 0.323657, 0.000538881, 0.118804, -0.00260846, 0.323553, 0.00095826, 0.118826, -0.00407576, 0.323595, 0.00149845, 0.118846, -0.00586826, 0.323617, 0.00216047, 0.118886, -0.00798578, 0.32367, 0.00294679, 0.118947, -0.0104273, 0.323753, 0.00386124, 0.119055, -0.0131909, 0.323922, 0.00490999, 0.119241, -0.0162444, 0.324251, 0.00610804, 0.11944, -0.0196339, 0.324544, 0.00745805, 0.119739, -0.0233378, 0.325026, 0.00897805, 0.12011, -0.0273179, 0.325586, 0.0106895, 0.120571, -0.0316143, 0.326231, 0.0126073, 0.12124, -0.0361939, 0.327264, 0.0147654, 0.122162, -0.0410511, 0.328733, 0.0172001, 0.123378, -0.0462233, 0.330659, 0.0199375, 0.125183, -0.0517109, 0.333754, 0.0230498, 0.127832, -0.0575652, 0.338507, 0.026597, 0.130909, -0.0637441, 0.343666, 0.0306345, 0.135221, -0.0704302, 0.351063, 0.035273, 0.14082, -0.0776364, 0.360604, 0.0406137, 0.146781, -0.0852293, 0.369638, 0.0466788, 0.155121, -0.0935351, 0.3827, 0.0537628, 0.16398, -0.102234, 0.39522, 0.0617985, 0.173926, -0.111465, 0.40793, 0.07097, 0.185137, -0.121296, 0.42105, 0.0813426, 0.19826, -0.13169, 0.435735, 0.0931596, 0.212938, -0.142614, 0.450932, 0.106547, 0.229046, -0.153884, 0.465726, 0.121575, 0.246246, -0.165382, 0.479461, 0.138286, 0.264637, -0.176806, 0.492106, 0.15666, 0.284959, -0.188793, 0.504774, 0.17728, 0.308157, -0.200763, 0.518805, 0.19988, 0.330951, -0.21239, 0.528231, 0.224293, 0.3549, -0.223521, 0.536376, 0.250541, 0.381502, -0.234169, 0.544846, 0.278902, 0.409529, -0.244077, 0.551717, 0.309227, 0.437523, -0.253363, 0.55517, 0.341426, 0.467624, -0.261659, 0.557772, 0.37518, 0.497268, -0.268498, 0.556442, 0.41007, 0.528294, -0.274018, 0.553915, 0.446445, 0.559053, -0.278169, 0.549153, 0.483779, 0.589329, -0.281229, 0.539878, 0.522249, 0.622503, -0.282902, 0.53162, 0.561754, 0.652382, -0.282815, 0.518119, 0.601544, 0.681847, -0.281247, 0.502187, 0.641574, 0.712285, -0.277986, 0.484824, 0.682633, 0.740094, -0.273017, 0.463483, 0.723426, 0.768478, -0.266692, 0.441299, 0.763747, 0.794556, -0.258358, 0.415238, 0.805565, 0.819408, -0.248807, 0.386912, 0.847254, 0.843411, -0.236214, 0.356165, 0.891091, 0.862397, -0.219794, 0.320562, 0.936174, 0.883113, -0.201768, 0.285322, 0.982562, 0.90023, -0.181672, 0.249713, 1.02862, 0.915192, -0.159279, 0.214546, 1.07163, 0.928458, -0.134725, 0.180285, 1.10995, 0.94069, -0.10913, 0.147119, 1.14354, 0.953409, -0.0821315, 0.112492, 1.17372, 0.969537, -0.0542677, 0.0752014, 1.20043, 0.985612, -0.0259096, 0.0370361, 1.22528, 0.999835, 0.00298198, -0.00151801, 1.24959, 0.10097, -6.02574e-06, 0.300277, 2.02619e-06, 0.101577, -0.000152164, 0.302077, 5.11662e-05, 0.101572, -0.000608889, 0.302066, 0.000204751, 0.101566, -0.00136997, 0.302047, 0.000460753, 0.101592, -0.00243557, 0.302114, 0.000819497, 0.101608, -0.0038053, 0.30214, 0.00128154, 0.101627, -0.00547906, 0.30216, 0.0018483, 0.101669, -0.00745647, 0.302224, 0.00252223, 0.101732, -0.00973615, 0.302318, 0.00330716, 0.101844, -0.0123097, 0.302513, 0.00421061, 0.102025, -0.0151681, 0.30285, 0.00524481, 0.102224, -0.0183334, 0.303166, 0.0064154, 0.102515, -0.0217819, 0.303654, 0.00774063, 0.102886, -0.0255067, 0.304243, 0.0092398, 0.103395, -0.029514, 0.305089, 0.0109339, 0.104109, -0.0337912, 0.306301, 0.0128561, 0.105074, -0.0383565, 0.30798, 0.0150338, 0.10654, -0.0432132, 0.310726, 0.0175228, 0.108478, -0.0484244, 0.314351, 0.0203648, 0.111015, -0.0539339, 0.319032, 0.0236325, 0.114682, -0.0598885, 0.32605, 0.0274188, 0.11911, -0.0663375, 0.334109, 0.0317905, 0.124736, -0.0733011, 0.344013, 0.0368502, 0.131479, -0.0807744, 0.355358, 0.0427104, 0.139283, -0.0888204, 0.367614, 0.0494788, 0.148054, -0.0973394, 0.380072, 0.0572367, 0.159037, -0.10665, 0.395678, 0.0662704, 0.169794, -0.116221, 0.40795, 0.0763192, 0.18314, -0.126632, 0.423546, 0.087956, 0.197515, -0.137383, 0.438213, 0.101042, 0.213514, -0.148641, 0.453248, 0.115827, 0.23065, -0.160117, 0.46688, 0.132283, 0.249148, -0.171807, 0.479962, 0.150644, 0.270219, -0.183695, 0.494618, 0.171073, 0.292338, -0.195574, 0.506937, 0.193378, 0.314999, -0.207205, 0.516463, 0.217585, 0.340991, -0.218955, 0.528123, 0.24428, 0.367982, -0.229917, 0.537025, 0.272784, 0.39432, -0.239737, 0.541627, 0.302742, 0.423364, -0.249048, 0.546466, 0.335112, 0.453751, -0.257329, 0.549466, 0.369032, 0.48416, -0.264623, 0.549503, 0.404577, 0.515262, -0.270411, 0.547008, 0.441337, 0.547036, -0.274581, 0.542249, 0.479162, 0.576614, -0.277266, 0.533015, 0.517904, 0.611143, -0.279144, 0.525512, 0.558508, 0.640989, -0.279001, 0.51154, 0.598995, 0.671182, -0.277324, 0.495641, 0.639935, 0.700848, -0.273908, 0.477526, 0.681017, 0.729862, -0.269063, 0.457955, 0.722764, 0.758273, -0.262282, 0.434846, 0.764349, 0.784121, -0.254281, 0.409203, 0.806206, 0.809798, -0.24505, 0.382694, 0.848617, 0.834953, -0.233861, 0.354034, 0.892445, 0.856817, -0.221308, 0.321764, 0.936263, 0.877609, -0.205996, 0.288118, 0.982401, 0.897489, -0.186702, 0.253277, 1.02975, 0.913792, -0.164618, 0.217963, 1.07488, 0.92785, -0.140023, 0.183221, 1.11487, 0.940378, -0.11328, 0.149385, 1.14947, 0.95273, -0.0853958, 0.114152, 1.1807, 0.969059, -0.0568698, 0.0769845, 1.20912, 0.985574, -0.0276502, 0.0381186, 1.23498, 0.999943, 0.00239052, -0.00126861, 1.25987, 0.0852715, -5.60067e-06, 0.279021, 1.71162e-06, 0.0854143, -0.000140871, 0.279483, 4.30516e-05, 0.0854191, -0.000563385, 0.2795, 0.000172184, 0.0854188, -0.00126753, 0.279493, 0.000387464, 0.0854229, -0.00225337, 0.279501, 0.00068918, 0.0854443, -0.00352086, 0.279549, 0.00107803, 0.0854697, -0.00506962, 0.279591, 0.00155536, 0.0855093, -0.00689873, 0.279652, 0.00212354, 0.0855724, -0.00900821, 0.279752, 0.00278703, 0.0856991, -0.0113799, 0.280011, 0.0035551, 0.085855, -0.0140314, 0.280297, 0.00443449, 0.0860682, -0.016963, 0.280682, 0.00543636, 0.086344, -0.0201438, 0.281159, 0.0065788, 0.0867426, -0.0235999, 0.281886, 0.00787977, 0.087239, -0.0273069, 0.282745, 0.0093606, 0.0879815, -0.031269, 0.284139, 0.011056, 0.0891258, -0.035531, 0.28647, 0.0130065, 0.0906909, -0.0400947, 0.289708, 0.0152495, 0.0927624, -0.0449638, 0.293904, 0.0178454, 0.0958376, -0.0502427, 0.300471, 0.0208915, 0.0995827, -0.0559514, 0.30806, 0.0244247, 0.104526, -0.0622152, 0.317874, 0.0285721, 0.110532, -0.0690046, 0.329332, 0.0334227, 0.117385, -0.0763068, 0.341217, 0.0390466, 0.12522, -0.084184, 0.353968, 0.0455786, 0.134037, -0.0925248, 0.366797, 0.0530773, 0.144014, -0.101487, 0.380209, 0.0617424, 0.156013, -0.111273, 0.395956, 0.071777, 0.168872, -0.121431, 0.41053, 0.0830905, 0.183089, -0.132105, 0.425073, 0.0959341, 0.198763, -0.143286, 0.439833, 0.110448, 0.216159, -0.154841, 0.454507, 0.126769, 0.234859, -0.166588, 0.468368, 0.14495, 0.255879, -0.178626, 0.482846, 0.165233, 0.27677, -0.190218, 0.493489, 0.187217, 0.301184, -0.202227, 0.506549, 0.211659, 0.325852, -0.213764, 0.5158, 0.237922, 0.352824, -0.22487, 0.525442, 0.26632, 0.380882, -0.235246, 0.532487, 0.296691, 0.410137, -0.244847, 0.537703, 0.329179, 0.439787, -0.253122, 0.540361, 0.363135, 0.472291, -0.260517, 0.542734, 0.399222, 0.501856, -0.266519, 0.538826, 0.436352, 0.534816, -0.270905, 0.535152, 0.474505, 0.565069, -0.273826, 0.525979, 0.513988, 0.597154, -0.275333, 0.516394, 0.554852, 0.630473, -0.275314, 0.506206, 0.596592, 0.660574, -0.273323, 0.489769, 0.638117, 0.692015, -0.270008, 0.472578, 0.680457, 0.720647, -0.265001, 0.452134, 0.723008, 0.750528, -0.258311, 0.430344, 0.765954, 0.777568, -0.250046, 0.405624, 0.809012, 0.80387, -0.240114, 0.378339, 0.852425, 0.828439, -0.228737, 0.349877, 0.895346, 0.851472, -0.216632, 0.318968, 0.940695, 0.873906, -0.202782, 0.287489, 0.987235, 0.89467, -0.187059, 0.254394, 1.03348, 0.912281, -0.168818, 0.221294, 1.07812, 0.927358, -0.146494, 0.18675, 1.11928, 0.940385, -0.120009, 0.152322, 1.15609, 0.952672, -0.0917183, 0.117514, 1.18875, 0.968496, -0.0620321, 0.0797405, 1.21821, 0.985236, -0.0314945, 0.0402383, 1.24523, 0.99998, -0.000575153, 0.000110644, 1.27133, 0.0702429, -5.12222e-06, 0.255273, 1.40947e-06, 0.0702981, -0.000128826, 0.255469, 3.54488e-05, 0.0703691, -0.000515562, 0.255727, 0.000141874, 0.0703805, -0.00116, 0.255754, 0.00031929, 0.0703961, -0.00206224, 0.255813, 0.000567999, 0.0704102, -0.00322223, 0.255839, 0.00088871, 0.0704298, -0.00463928, 0.255863, 0.00128272, 0.0704759, -0.00631375, 0.255953, 0.00175283, 0.0705434, -0.00824317, 0.256079, 0.00230342, 0.0706693, -0.010412, 0.25636, 0.0029443, 0.0708189, -0.0128439, 0.256647, 0.00368031, 0.0710364, -0.0155177, 0.257084, 0.00452614, 0.0713223, -0.0184374, 0.257637, 0.00549706, 0.0717182, -0.0216002, 0.258416, 0.00661246, 0.072321, -0.0249966, 0.259699, 0.00790147, 0.0731446, -0.0286566, 0.261475, 0.0093884, 0.0743352, -0.0325888, 0.264132, 0.0111186, 0.0760676, -0.036843, 0.26815, 0.013145, 0.078454, -0.0414292, 0.273636, 0.0155251, 0.0818618, -0.0464634, 0.281653, 0.0183525, 0.0857382, -0.0519478, 0.289992, 0.0216642, 0.0908131, -0.0579836, 0.30066, 0.0255956, 0.0967512, -0.0645124, 0.312204, 0.0301954, 0.103717, -0.0716505, 0.325001, 0.0356017, 0.111596, -0.0793232, 0.338129, 0.041896, 0.120933, -0.087645, 0.352853, 0.0492447, 0.130787, -0.096492, 0.366192, 0.0576749, 0.142311, -0.105973, 0.380864, 0.0673969, 0.155344, -0.116182, 0.396575, 0.0785899, 0.169535, -0.126815, 0.411443, 0.0912377, 0.185173, -0.138015, 0.426256, 0.105607, 0.201755, -0.149325, 0.439607, 0.121551, 0.221334, -0.161207, 0.455467, 0.139608, 0.241461, -0.173162, 0.469096, 0.159591, 0.26294, -0.18504, 0.481014, 0.18156, 0.286776, -0.196881, 0.493291, 0.205781, 0.311596, -0.208311, 0.503556, 0.231819, 0.338667, -0.219671, 0.513268, 0.260274, 0.366021, -0.230451, 0.519414, 0.290862, 0.395875, -0.240131, 0.526766, 0.323196, 0.425564, -0.248566, 0.52905, 0.357071, 0.457094, -0.256195, 0.530796, 0.393262, 0.488286, -0.262331, 0.528703, 0.430797, 0.522291, -0.267141, 0.52727, 0.470231, 0.554172, -0.270411, 0.519848, 0.510477, 0.586427, -0.271986, 0.510307, 0.551594, 0.619638, -0.27192, 0.499158, 0.593849, 0.650656, -0.269817, 0.483852, 0.636314, 0.68284, -0.266267, 0.467515, 0.679679, 0.714356, -0.26113, 0.44931, 0.723884, 0.742717, -0.254067, 0.425789, 0.767245, 0.770894, -0.245652, 0.401144, 0.811819, 0.797358, -0.235554, 0.374224, 0.856315, 0.823377, -0.223896, 0.346167, 0.901077, 0.847456, -0.210865, 0.316056, 0.946502, 0.870697, -0.196574, 0.284503, 0.993711, 0.891068, -0.180814, 0.251628, 1.04134, 0.909267, -0.163314, 0.219065, 1.08609, 0.925653, -0.143304, 0.186446, 1.12702, 0.940017, -0.121322, 0.153416, 1.16371, 0.952398, -0.0973872, 0.120334, 1.19712, 0.967568, -0.0698785, 0.08352, 1.22791, 0.984772, -0.0390031, 0.0439209, 1.25672, 1.00026, -0.0070087, 0.00315668, 1.28428, 0.0556653, -4.59654e-06, 0.227325, 1.12556e-06, 0.0565238, -0.000116382, 0.230826, 2.84985e-05, 0.0565717, -0.000465666, 0.231026, 0.000114036, 0.0565859, -0.00104773, 0.231079, 0.000256656, 0.0565761, -0.00186255, 0.231025, 0.00045663, 0.0565913, -0.00291002, 0.231058, 0.000714664, 0.0566108, -0.00418998, 0.231085, 0.00103224, 0.0566532, -0.00570206, 0.231169, 0.00141202, 0.0567473, -0.00743666, 0.231417, 0.00186018, 0.0568567, -0.00940298, 0.231661, 0.00238264, 0.0569859, -0.0115991, 0.231895, 0.00298699, 0.0572221, -0.0140096, 0.232456, 0.00368957, 0.057519, -0.0166508, 0.233096, 0.00450303, 0.0579534, -0.01951, 0.234094, 0.00544945, 0.0585922, -0.0225991, 0.235629, 0.00655564, 0.0595647, -0.0259416, 0.238106, 0.00785724, 0.0609109, -0.0295661, 0.241557, 0.00939127, 0.0628751, -0.0335126, 0.246652, 0.0112198, 0.0656908, -0.0378604, 0.254091, 0.0134168, 0.0691347, -0.0426543, 0.262666, 0.0160374, 0.0732165, -0.0478967, 0.272029, 0.0191514, 0.0782863, -0.0536716, 0.283007, 0.0228597, 0.0843973, -0.0600683, 0.295732, 0.0272829, 0.0913598, -0.0670095, 0.308779, 0.032484, 0.0994407, -0.0745516, 0.322886, 0.0385886, 0.108189, -0.082712, 0.336408, 0.0457133, 0.118574, -0.0914927, 0.351692, 0.0539832, 0.129989, -0.100854, 0.366502, 0.0635162, 0.142722, -0.110837, 0.381675, 0.0744386, 0.156654, -0.121353, 0.3963, 0.0868483, 0.172151, -0.132414, 0.411477, 0.100963, 0.188712, -0.143809, 0.42508, 0.116795, 0.208093, -0.155765, 0.441328, 0.134715, 0.227936, -0.167608, 0.454328, 0.154396, 0.249495, -0.179579, 0.467235, 0.176179, 0.27362, -0.191488, 0.480248, 0.200193, 0.296371, -0.202618, 0.487886, 0.225775, 0.324234, -0.214133, 0.499632, 0.25441, 0.353049, -0.225212, 0.509532, 0.285077, 0.381785, -0.234875, 0.514265, 0.317047, 0.414038, -0.244205, 0.521282, 0.351874, 0.445251, -0.252145, 0.522931, 0.388279, 0.476819, -0.258433, 0.520947, 0.425825, 0.509209, -0.263411, 0.517669, 0.465104, 0.542759, -0.266732, 0.512841, 0.505741, 0.574822, -0.268263, 0.503317, 0.547611, 0.609324, -0.268489, 0.493035, 0.590953, 0.641772, -0.266941, 0.478816, 0.63488, 0.674049, -0.263297, 0.462863, 0.679072, 0.705071, -0.257618, 0.442931, 0.723487, 0.734709, -0.250625, 0.421299, 0.768708, 0.763704, -0.24179, 0.397085, 0.814375, 0.791818, -0.231115, 0.370577, 0.859907, 0.817439, -0.21922, 0.34232, 0.906715, 0.843202, -0.205658, 0.312627, 0.953943, 0.866639, -0.190563, 0.280933, 1.00185, 0.888129, -0.173978, 0.248393, 1.05105, 0.907239, -0.155485, 0.216007, 1.09704, 0.923893, -0.134782, 0.183233, 1.13857, 0.938882, -0.11249, 0.150376, 1.17539, 0.952464, -0.0890706, 0.117177, 1.20924, 0.968529, -0.0646523, 0.0813095, 1.24055, 0.984763, -0.038606, 0.0439378, 1.27018, 1.00053, -0.01238, 0.00598668, 1.29873, 0.0437928, -4.09594e-06, 0.204012, 8.79224e-07, 0.0440166, -0.000103395, 0.205049, 2.21946e-05, 0.0440529, -0.000413633, 0.205225, 8.87981e-05, 0.0440493, -0.000930594, 0.2052, 0.000199858, 0.0439884, -0.00165352, 0.204901, 0.000355495, 0.0440716, -0.0025849, 0.205255, 0.000556983, 0.0440968, -0.00372222, 0.205311, 0.000805326, 0.0441359, -0.00506478, 0.205391, 0.00110333, 0.0442231, -0.00660384, 0.205638, 0.00145768, 0.0443254, -0.00835246, 0.205877, 0.00187275, 0.0444832, -0.0102992, 0.20627, 0.00235938, 0.0447001, -0.0124449, 0.206796, 0.0029299, 0.0450168, -0.0147935, 0.207593, 0.0036005, 0.0454816, -0.017336, 0.208819, 0.00439246, 0.0462446, -0.0201156, 0.211036, 0.00533864, 0.0473694, -0.0231568, 0.214388, 0.00646984, 0.0490191, -0.0264941, 0.219357, 0.00783856, 0.0512776, -0.030184, 0.226061, 0.00950182, 0.0541279, -0.0342661, 0.234094, 0.0115156, 0.0578989, -0.0388539, 0.244297, 0.0139687, 0.0620835, -0.0438735, 0.254457, 0.0169015, 0.0673497, -0.04951, 0.266706, 0.0204554, 0.0731759, -0.0556263, 0.278753, 0.0246606, 0.0803937, -0.0624585, 0.29309, 0.0297126, 0.0879287, -0.0697556, 0.305856, 0.0355868, 0.0970669, -0.0778795, 0.321059, 0.0425768, 0.106508, -0.0863541, 0.333873, 0.05056, 0.11776, -0.0955935, 0.349008, 0.0598972, 0.130081, -0.105438, 0.363776, 0.0706314, 0.144454, -0.115899, 0.380112, 0.0828822, 0.1596, -0.126827, 0.394843, 0.0967611, 0.176097, -0.138161, 0.409033, 0.112381, 0.194726, -0.149904, 0.424257, 0.129952, 0.213944, -0.161675, 0.436945, 0.149333, 0.235516, -0.173659, 0.450176, 0.170892, 0.260564, -0.185963, 0.466305, 0.194984, 0.285183, -0.197582, 0.477328, 0.220805, 0.311095, -0.208697, 0.486566, 0.248694, 0.338924, -0.219519, 0.494811, 0.279015, 0.369757, -0.229766, 0.504065, 0.311725, 0.3996, -0.238879, 0.507909, 0.345844, 0.430484, -0.246802, 0.509805, 0.381749, 0.46413, -0.253924, 0.511436, 0.420251, 0.497077, -0.259319, 0.508787, 0.459957, 0.530434, -0.263297, 0.50394, 0.501356, 0.565725, -0.265619, 0.49804, 0.544252, 0.599254, -0.265842, 0.487346, 0.587856, 0.631251, -0.263978, 0.472975, 0.631969, 0.663972, -0.26043, 0.457135, 0.677471, 0.697724, -0.255358, 0.439844, 0.723744, 0.727725, -0.248308, 0.417872, 0.770653, 0.756417, -0.239181, 0.39273, 0.817357, 0.785419, -0.22814, 0.367839, 0.864221, 0.81266, -0.215681, 0.339449, 0.912701, 0.839391, -0.201623, 0.309279, 0.962419, 0.86366, -0.185624, 0.278029, 1.0122, 0.885028, -0.16797, 0.245294, 1.06186, 0.904639, -0.148336, 0.212689, 1.10934, 0.922048, -0.12637, 0.179616, 1.15063, 0.936952, -0.102928, 0.146749, 1.18885, 0.951895, -0.0785268, 0.112733, 1.22352, 0.967198, -0.0530153, 0.0760056, 1.25681, 0.984405, -0.02649, 0.0383183, 1.28762, 1.00021, 0.00070019, -0.00020039, 1.31656, 0.0325964, -3.55447e-06, 0.176706, 6.55682e-07, 0.0329333, -8.99174e-05, 0.178527, 1.65869e-05, 0.0329181, -0.000359637, 0.178453, 6.63498e-05, 0.0329085, -0.000808991, 0.178383, 0.000149332, 0.0329181, -0.00143826, 0.178394, 0.000265873, 0.0329425, -0.00224678, 0.178517, 0.000416597, 0.0329511, -0.00323575, 0.17849, 0.000603299, 0.033011, -0.00439875, 0.178695, 0.000829422, 0.0330733, -0.00574059, 0.178843, 0.00109908, 0.0331857, -0.00725896, 0.179176, 0.00141933, 0.0333445, -0.00895289, 0.179618, 0.0017999, 0.0335674, -0.0108219, 0.180238, 0.00225316, 0.033939, -0.0128687, 0.181417, 0.00279765, 0.0345239, -0.015114, 0.183395, 0.0034564, 0.0354458, -0.017596, 0.186616, 0.00425864, 0.0368313, -0.0203524, 0.191547, 0.00524936, 0.0386115, -0.0234105, 0.197508, 0.00647033, 0.0410303, -0.0268509, 0.205395, 0.00798121, 0.0442245, -0.0307481, 0.215365, 0.0098557, 0.0478659, -0.0350863, 0.225595, 0.0121417, 0.0522416, -0.0399506, 0.236946, 0.0149385, 0.0574513, -0.045357, 0.249442, 0.0183189, 0.0631208, -0.0512863, 0.261222, 0.0223644, 0.0701124, -0.0579273, 0.275418, 0.0272418, 0.0777331, -0.0650652, 0.288989, 0.0329458, 0.0862709, -0.0728813, 0.302546, 0.0396819, 0.096103, -0.081363, 0.317164, 0.04757, 0.106976, -0.0904463, 0.331733, 0.0567012, 0.119175, -0.100105, 0.34661, 0.067202, 0.132919, -0.110375, 0.362249, 0.0792588, 0.147727, -0.121115, 0.376978, 0.0928672, 0.163618, -0.132299, 0.390681, 0.108228, 0.182234, -0.143887, 0.406571, 0.125502, 0.201809, -0.155827, 0.42042, 0.144836, 0.225041, -0.168357, 0.438411, 0.166706, 0.247621, -0.18004, 0.450368, 0.189909, 0.27097, -0.191536, 0.460083, 0.215251, 0.296658, -0.203024, 0.469765, 0.243164, 0.325892, -0.214056, 0.481837, 0.273388, 0.35406, -0.224104, 0.487474, 0.305344, 0.384372, -0.233489, 0.492773, 0.339741, 0.41749, -0.241874, 0.498451, 0.376287, 0.45013, -0.248834, 0.499632, 0.414195, 0.481285, -0.254658, 0.495233, 0.454077, 0.519183, -0.259367, 0.496401, 0.496352, 0.551544, -0.261818, 0.487686, 0.538798, 0.587349, -0.262964, 0.479453, 0.583626, 0.621679, -0.262128, 0.467709, 0.629451, 0.654991, -0.258998, 0.452123, 0.67566, 0.686873, -0.254119, 0.433495, 0.723248, 0.719801, -0.246946, 0.413657, 0.771156, 0.750355, -0.237709, 0.390366, 0.81989, 0.780033, -0.226549, 0.364947, 0.868601, 0.809254, -0.214186, 0.337256, 0.920034, 0.836576, -0.199639, 0.307395, 0.971706, 0.861774, -0.183169, 0.275431, 1.02479, 0.885707, -0.165111, 0.243431, 1.07837, 0.904742, -0.144363, 0.210921, 1.12783, 0.915604, -0.121305, 0.17647, 1.17254, 0.930959, -0.0962119, 0.143106, 1.21012, 0.948404, -0.069969, 0.108112, 1.24474, 0.967012, -0.0427586, 0.0708478, 1.27718, 0.984183, -0.0147043, 0.032335, 1.3083, 0.999577, 0.0142165, -0.00726867, 1.3382, 0.0229227, -2.99799e-06, 0.148623, 4.62391e-07, 0.0232194, -7.58796e-05, 0.15054, 1.17033e-05, 0.0232315, -0.000303636, 0.15063, 4.68397e-05, 0.0232354, -0.000683189, 0.150624, 0.000105472, 0.0232092, -0.0012136, 0.150445, 0.000187744, 0.0232523, -0.00189765, 0.150679, 0.000294847, 0.0232828, -0.00273247, 0.150789, 0.000428013, 0.0233371, -0.00371287, 0.150995, 0.000591134, 0.0234015, -0.00484794, 0.15118, 0.000787642, 0.023514, -0.00612877, 0.151562, 0.00102547, 0.023679, -0.00756125, 0.152116, 0.00131351, 0.0239559, -0.00914651, 0.153162, 0.00166594, 0.0244334, -0.010904, 0.155133, 0.00210182, 0.025139, -0.0128615, 0.158035, 0.00264406, 0.0262598, -0.0150628, 0.162751, 0.00332923, 0.0277875, -0.0175532, 0.168944, 0.00419773, 0.0298472, -0.0203981, 0.176835, 0.00530034, 0.0325444, -0.023655, 0.186686, 0.00669777, 0.0355581, -0.0272982, 0.196248, 0.00842661, 0.0392841, -0.0314457, 0.207352, 0.0105854, 0.0436815, -0.0361157, 0.219279, 0.0132458, 0.0485272, -0.0412932, 0.230728, 0.0164736, 0.0541574, -0.0470337, 0.242994, 0.0203715, 0.0609479, -0.0535002, 0.257042, 0.0250953, 0.0685228, -0.0605409, 0.27102, 0.0306856, 0.0768042, -0.0680553, 0.28406, 0.037193, 0.0864844, -0.0765011, 0.299186, 0.0449795, 0.0969415, -0.0852674, 0.3132, 0.0538316, 0.108478, -0.0947333, 0.327138, 0.0641149, 0.121705, -0.10481, 0.342345, 0.0759185, 0.136743, -0.115474, 0.358472, 0.0894116, 0.152986, -0.126536, 0.374067, 0.104562, 0.170397, -0.138061, 0.388267, 0.121632, 0.191392, -0.150203, 0.406467, 0.140996, 0.211566, -0.161751, 0.418641, 0.161696, 0.233567, -0.173407, 0.430418, 0.184557, 0.257769, -0.185397, 0.44277, 0.210092, 0.28531, -0.197048, 0.457191, 0.237827, 0.311726, -0.20784, 0.464712, 0.267253, 0.340537, -0.218345, 0.472539, 0.299332, 0.372921, -0.228306, 0.482331, 0.333988, 0.402924, -0.236665, 0.484378, 0.369722, 0.434475, -0.244097, 0.484717, 0.407836, 0.469736, -0.250547, 0.487093, 0.448465, 0.505045, -0.25511, 0.485575, 0.490263, 0.540262, -0.258444, 0.481225, 0.534495, 0.576347, -0.259903, 0.473481, 0.579451, 0.608656, -0.259572, 0.4603, 0.625604, 0.646679, -0.257908, 0.450341, 0.674511, 0.679902, -0.253663, 0.431561, 0.723269, 0.714159, -0.247419, 0.412684, 0.773263, 0.745345, -0.239122, 0.389388, 0.824182, 0.778248, -0.228837, 0.365361, 0.876634, 0.807208, -0.216197, 0.337667, 0.92945, 0.835019, -0.201772, 0.307197, 0.985261, 0.860261, -0.185291, 0.274205, 1.04299, 0.877601, -0.165809, 0.240178, 1.09816, 0.898211, -0.143897, 0.207571, 1.14694, 0.915789, -0.119513, 0.174904, 1.19008, 0.931831, -0.0932919, 0.141423, 1.2297, 0.949244, -0.0656528, 0.105603, 1.26553, 0.967527, -0.0370262, 0.0679551, 1.29986, 0.984139, -0.00730117, 0.0283133, 1.33252, 0.999713, 0.0234648, -0.0121785, 1.36397, 0.0152135, -2.45447e-06, 0.122795, 3.04092e-07, 0.0151652, -6.15778e-05, 0.122399, 7.6292e-06, 0.0151181, -0.000245948, 0.122023, 3.04802e-05, 0.0151203, -0.000553394, 0.12203, 6.86634e-05, 0.015125, -0.000983841, 0.122037, 0.000122463, 0.0151427, -0.00153774, 0.12214, 0.000192706, 0.0151708, -0.0022103, 0.122237, 0.000281219, 0.0152115, -0.00300741, 0.12238, 0.000390804, 0.0152877, -0.00392494, 0.1227, 0.000526317, 0.015412, -0.00496597, 0.123244, 0.00069443, 0.0156201, -0.00613314, 0.124228, 0.00090547, 0.0159658, -0.00744113, 0.125945, 0.0011732, 0.0165674, -0.00892546, 0.129098, 0.00151888, 0.017487, -0.010627, 0.133865, 0.00197007, 0.018839, -0.0126043, 0.140682, 0.0025637, 0.020554, -0.0148814, 0.148534, 0.00333637, 0.0226727, -0.0175123, 0.157381, 0.00433738, 0.0251879, -0.0205266, 0.166685, 0.00561664, 0.0283635, -0.0240319, 0.177796, 0.00725563, 0.0318694, -0.0279432, 0.188251, 0.00928811, 0.0361044, -0.0324313, 0.200038, 0.011835, 0.0406656, -0.0373527, 0.210685, 0.0149146, 0.0463846, -0.0430132, 0.224182, 0.0187254, 0.0525696, -0.0491013, 0.23634, 0.0232283, 0.0598083, -0.0559175, 0.250013, 0.0286521, 0.0679437, -0.0633657, 0.263981, 0.0350634, 0.0771181, -0.0714602, 0.278072, 0.0425882, 0.0881273, -0.0803502, 0.29511, 0.0514487, 0.0996628, -0.0896903, 0.309976, 0.0615766, 0.112702, -0.099644, 0.325611, 0.0732139, 0.126488, -0.109829, 0.339321, 0.0862324, 0.142625, -0.120859, 0.35574, 0.101275, 0.15953, -0.131956, 0.369845, 0.117892, 0.176991, -0.143145, 0.38146, 0.136205, 0.199715, -0.155292, 0.40052, 0.157252, 0.220787, -0.167066, 0.412055, 0.179966, 0.243697, -0.178396, 0.423133, 0.204418, 0.272106, -0.190433, 0.439524, 0.232141, 0.297637, -0.201265, 0.447041, 0.261109, 0.325273, -0.211834, 0.454488, 0.292627, 0.357219, -0.221889, 0.465004, 0.326669, 0.387362, -0.230729, 0.468527, 0.362426, 0.423131, -0.23924, 0.475836, 0.401533, 0.45543, -0.246067, 0.475017, 0.441902, 0.493393, -0.251557, 0.478017, 0.484239, 0.526253, -0.255571, 0.4709, 0.528586, 0.560554, -0.257752, 0.463167, 0.574346, 0.599306, -0.258076, 0.456452, 0.621655, 0.634541, -0.256471, 0.443725, 0.670492, 0.668907, -0.253283, 0.428719, 0.721943, 0.705619, -0.247562, 0.411348, 0.772477, 0.739034, -0.240626, 0.388939, 0.8264, 0.771408, -0.231493, 0.36425, 0.881702, 0.803312, -0.220125, 0.337321, 0.9385, 0.828457, -0.206645, 0.305364, 0.997437, 0.854819, -0.190664, 0.273715, 1.05693, 0.878666, -0.171429, 0.242218, 1.11251, 0.898404, -0.149235, 0.209556, 1.16398, 0.917416, -0.12435, 0.176863, 1.21014, 0.933133, -0.0972703, 0.142775, 1.25178, 0.95066, -0.0683607, 0.106735, 1.29028, 0.968589, -0.0378724, 0.0681609, 1.32703, 0.984776, -0.00605712, 0.0273966, 1.36158, 0.99994, 0.0263276, -0.0138124, 1.3943, 0.00867437, -1.86005e-06, 0.0928979, 1.73682e-07, 0.00864003, -4.66389e-05, 0.0925237, 4.35505e-06, 0.00864593, -0.000186594, 0.0925806, 1.74322e-05, 0.00864095, -0.000419639, 0.0924903, 3.92862e-05, 0.00863851, -0.000746272, 0.0924589, 7.02598e-05, 0.00868531, -0.00116456, 0.0929, 0.000111188, 0.00869667, -0.00167711, 0.0928529, 0.000163867, 0.00874332, -0.00228051, 0.0930914, 0.00023104, 0.00882709, -0.00297864, 0.0935679, 0.00031741, 0.00898874, -0.00377557, 0.0946165, 0.000430186, 0.00929346, -0.00469247, 0.0967406, 0.000580383, 0.00978271, -0.00575491, 0.100084, 0.000783529, 0.0105746, -0.00701514, 0.105447, 0.00106304, 0.0116949, -0.00851797, 0.112494, 0.00144685, 0.0130419, -0.0102757, 0.119876, 0.00196439, 0.0148375, -0.012381, 0.129034, 0.00266433, 0.0168725, -0.01482, 0.137812, 0.00358364, 0.0193689, -0.0176563, 0.147696, 0.00478132, 0.0222691, -0.0209211, 0.157795, 0.00631721, 0.0256891, -0.0246655, 0.168431, 0.00826346, 0.0294686, -0.0288597, 0.178587, 0.0106714, 0.0340412, -0.0336441, 0.190251, 0.0136629, 0.0393918, -0.039033, 0.202999, 0.0173272, 0.0453947, -0.0450087, 0.215655, 0.0217448, 0.0521936, -0.0515461, 0.228686, 0.0269941, 0.0600279, -0.058817, 0.242838, 0.033272, 0.0692398, -0.0667228, 0.258145, 0.0406457, 0.0793832, -0.0752401, 0.273565, 0.0492239, 0.0902297, -0.0841851, 0.287735, 0.0590105, 0.102014, -0.0936479, 0.301161, 0.0702021, 0.116054, -0.103967, 0.317438, 0.0832001, 0.13191, -0.114622, 0.334166, 0.0977951, 0.148239, -0.125452, 0.348192, 0.113985, 0.165809, -0.136453, 0.361094, 0.131928, 0.184616, -0.147648, 0.373534, 0.151811, 0.207491, -0.159607, 0.39101, 0.174476, 0.230106, -0.171119, 0.402504, 0.198798, 0.257036, -0.182906, 0.418032, 0.225796, 0.281172, -0.193605, 0.425468, 0.254027, 0.312034, -0.204771, 0.440379, 0.285713, 0.340402, -0.214988, 0.445406, 0.319196, 0.370231, -0.224711, 0.44968, 0.35537, 0.407105, -0.233516, 0.460747, 0.393838, 0.439037, -0.240801, 0.460624, 0.433747, 0.47781, -0.24762, 0.465957, 0.477234, 0.510655, -0.251823, 0.460054, 0.52044, 0.550584, -0.255552, 0.459172, 0.567853, 0.585872, -0.257036, 0.450311, 0.615943, 0.620466, -0.257535, 0.437763, 0.667693, 0.660496, -0.255248, 0.426639, 0.718988, 0.695578, -0.251141, 0.409185, 0.772503, 0.732176, -0.244718, 0.39015, 0.827023, 0.760782, -0.236782, 0.362594, 0.885651, 0.79422, -0.225923, 0.33711, 0.943756, 0.824521, -0.213855, 0.308272, 1.00874, 0.854964, -0.197723, 0.278529, 1.06764, 0.878065, -0.179209, 0.246208, 1.12836, 0.899834, -0.157569, 0.21329, 1.18318, 0.918815, -0.133206, 0.181038, 1.23161, 0.934934, -0.106545, 0.146993, 1.27644, 0.952115, -0.0780574, 0.111175, 1.31842, 0.96906, -0.0478279, 0.0728553, 1.35839, 0.985178, -0.0160014, 0.032579, 1.39697, 1.00039, 0.0173126, -0.0095256, 1.43312, 0.00384146, -1.24311e-06, 0.0613583, 7.78271e-08, 0.00390023, -3.14043e-05, 0.0622919, 1.96626e-06, 0.00389971, -0.000125622, 0.0622632, 7.87379e-06, 0.00389491, -0.000282352, 0.0620659, 1.778e-05, 0.00391618, -0.000502512, 0.0624687, 3.20918e-05, 0.00392662, -0.000784458, 0.0625113, 5.15573e-05, 0.00396053, -0.00112907, 0.0628175, 7.78668e-05, 0.00401911, -0.00153821, 0.0633286, 0.000113811, 0.00414994, -0.0020208, 0.0646443, 0.00016445, 0.00441223, -0.00260007, 0.0673886, 0.000237734, 0.00484427, -0.0033097, 0.0716528, 0.000345929, 0.00549109, -0.00418966, 0.0774998, 0.000505987, 0.00636293, -0.00527331, 0.0844758, 0.000739208, 0.00746566, -0.00660428, 0.0921325, 0.00107347, 0.00876625, -0.00818826, 0.0997067, 0.00153691, 0.0103125, -0.0100811, 0.107433, 0.00217153, 0.0123309, -0.0123643, 0.117088, 0.00303427, 0.0146274, -0.0150007, 0.126438, 0.00416018, 0.0172295, -0.0180531, 0.135672, 0.00561513, 0.0204248, -0.0215962, 0.146244, 0.007478, 0.0241597, -0.0256234, 0.157481, 0.00981046, 0.0284693, -0.0302209, 0.169125, 0.0127148, 0.033445, -0.0353333, 0.181659, 0.0162453, 0.0391251, -0.0410845, 0.1944, 0.0205417, 0.0454721, -0.0473451, 0.207082, 0.0256333, 0.0530983, -0.0542858, 0.221656, 0.0317036, 0.0615356, -0.0618384, 0.236036, 0.0388319, 0.0703363, -0.0697631, 0.248398, 0.046974, 0.0810391, -0.0784757, 0.263611, 0.0565246, 0.0920144, -0.0873488, 0.275857, 0.0671724, 0.105584, -0.0973652, 0.292555, 0.0798105, 0.119506, -0.107271, 0.306333, 0.0935945, 0.134434, -0.117608, 0.318888, 0.109106, 0.153399, -0.128938, 0.337552, 0.127074, 0.171258, -0.139944, 0.349955, 0.14643, 0.191059, -0.151288, 0.361545, 0.168, 0.215069, -0.163018, 0.378421, 0.192082, 0.237838, -0.174226, 0.38879, 0.217838, 0.266965, -0.186063, 0.405857, 0.246931, 0.292827, -0.196909, 0.414146, 0.277505, 0.324352, -0.207473, 0.426955, 0.310711, 0.354427, -0.217713, 0.433429, 0.346794, 0.389854, -0.227183, 0.443966, 0.385237, 0.420749, -0.235131, 0.44471, 0.424955, 0.459597, -0.242786, 0.451729, 0.468446, 0.495316, -0.248767, 0.45072, 0.513422, 0.534903, -0.253351, 0.450924, 0.560618, 0.572369, -0.256277, 0.445266, 0.609677, 0.612383, -0.2576, 0.438798, 0.660995, 0.644037, -0.256931, 0.421693, 0.713807, 0.686749, -0.254036, 0.4109, 0.767616, 0.719814, -0.249785, 0.390151, 0.82533, 0.754719, -0.244283, 0.367847, 0.888311, 0.792022, -0.235076, 0.345013, 0.948177, 0.822404, -0.225061, 0.316193, 1.01661, 0.853084, -0.211113, 0.287013, 1.08075, 0.879871, -0.19449, 0.255424, 1.14501, 0.901655, -0.174023, 0.222879, 1.20203, 0.919957, -0.1509, 0.18989, 1.25698, 0.938412, -0.124923, 0.15606, 1.30588, 0.953471, -0.0968139, 0.120512, 1.3529, 0.970451, -0.066734, 0.0828515, 1.3986, 0.985522, -0.034734, 0.0424458, 1.44148, 1.00099, -0.00102222, 0.000678929, 1.48398, 0.000965494, -6.27338e-07, 0.0306409, 1.97672e-08, 0.00099168, -1.58573e-05, 0.0314638, 4.99803e-07, 0.000991068, -6.34012e-05, 0.031363, 2.00682e-06, 0.000974567, -0.00014144, 0.03036, 4.57312e-06, 0.000998079, -0.000252812, 0.031496, 8.60131e-06, 0.00102243, -0.000396506, 0.0319955, 1.48288e-05, 0.00107877, -0.000577593, 0.0331376, 2.49141e-05, 0.00121622, -0.000816816, 0.0359396, 4.23011e-05, 0.0014455, -0.00113761, 0.0399652, 7.24613e-05, 0.00178791, -0.00156959, 0.0450556, 0.000123929, 0.00225668, -0.00214064, 0.0508025, 0.000208531, 0.00285627, -0.00287655, 0.0568443, 0.000341969, 0.0035991, -0.00380271, 0.0630892, 0.000544158, 0.00455524, -0.00496264, 0.0702204, 0.000842423, 0.00569143, -0.0063793, 0.0773426, 0.00126704, 0.00716928, -0.00813531, 0.0860839, 0.00186642, 0.00885307, -0.0101946, 0.0944079, 0.00267014, 0.0109316, -0.0126386, 0.103951, 0.00374033, 0.0133704, -0.0154876, 0.113786, 0.0051304, 0.0161525, -0.0187317, 0.123477, 0.00688858, 0.0194267, -0.0224652, 0.133986, 0.00910557, 0.0230967, -0.0265976, 0.143979, 0.0118074, 0.0273627, -0.0312848, 0.154645, 0.0151266, 0.0323898, -0.0365949, 0.166765, 0.0191791, 0.0379225, -0.0422914, 0.177932, 0.0239236, 0.0447501, -0.0487469, 0.19167, 0.0296568, 0.0519391, -0.0556398, 0.203224, 0.0362924, 0.0599464, -0.0631646, 0.215652, 0.0440585, 0.0702427, -0.0714308, 0.232089, 0.0531619, 0.0806902, -0.0800605, 0.245258, 0.0634564, 0.0923194, -0.0892815, 0.258609, 0.0752481, 0.106938, -0.09931, 0.276654, 0.0888914, 0.121238, -0.109575, 0.289847, 0.104055, 0.138817, -0.120461, 0.307566, 0.121266, 0.15595, -0.131209, 0.320117, 0.139944, 0.178418, -0.143049, 0.339677, 0.161591, 0.197875, -0.154074, 0.349886, 0.184303, 0.224368, -0.166307, 0.369352, 0.210669, 0.252213, -0.178051, 0.386242, 0.238895, 0.277321, -0.189335, 0.395294, 0.269182, 0.310332, -0.200683, 0.412148, 0.302508, 0.338809, -0.210856, 0.418266, 0.337264, 0.372678, -0.220655, 0.428723, 0.374881, 0.405632, -0.230053, 0.433887, 0.415656, 0.442293, -0.237993, 0.439911, 0.457982, 0.477256, -0.244897, 0.440175, 0.502831, 0.515592, -0.250657, 0.441079, 0.550277, 0.550969, -0.255459, 0.435219, 0.601102, 0.592883, -0.257696, 0.432882, 0.651785, 0.629092, -0.259894, 0.421054, 0.708961, 0.672033, -0.258592, 0.41177, 0.763806, 0.709147, -0.256525, 0.395267, 0.824249, 0.745367, -0.254677, 0.375013, 0.8951, 0.784715, -0.247892, 0.353906, 0.959317, 0.818107, -0.240162, 0.327801, 1.03153, 0.847895, -0.229741, 0.298821, 1.10601, 0.879603, -0.213084, 0.269115, 1.164, 0.902605, -0.195242, 0.236606, 1.22854, 0.922788, -0.174505, 0.203442, 1.29017, 0.944831, -0.150169, 0.169594, 1.34157, 0.959656, -0.124099, 0.135909, 1.3956, 0.972399, -0.0960626, 0.0990563, 1.45128, 0.986549, -0.0657097, 0.0602348, 1.50312, 1.00013, -0.0333558, 0.0186694, 1.55364, 6.19747e-06, -1e-07, 0.00778326, 7.96756e-11, 2.37499e-08, -9.99999e-08, 2.82592e-05, 1.14596e-10, 1.00292e-06, -1.66369e-06, 0.000250354, 6.77492e-09, 3.50752e-06, -6.37769e-06, 0.000357289, 6.31655e-08, 8.26445e-06, -1.74689e-05, 0.000516179, 3.1851e-07, 2.42481e-05, -4.50868e-05, 0.0010223, 1.30577e-06, 4.55631e-05, -8.9044e-05, 0.00144302, 3.74587e-06, 9.71222e-05, -0.000178311, 0.00241912, 1.02584e-05, 0.000171403, -0.000313976, 0.00354938, 2.36481e-05, 0.000292747, -0.000520026, 0.00513765, 4.96014e-05, 0.000789827, -0.00118187, 0.0238621, 0.000139056, 0.00114093, -0.00171827, 0.0286691, 0.000244093, 0.00176119, -0.00249667, 0.0368565, 0.000420623, 0.0022233, -0.00333742, 0.0400469, 0.00065673, 0.00343382, -0.00481976, 0.0535751, 0.00109323, 0.00427602, -0.00600755, 0.057099, 0.00155268, 0.00461435, -0.00737637, 0.0551084, 0.00215031, 0.00695698, -0.00971401, 0.0715767, 0.00316529, 0.00867619, -0.0120943, 0.0793314, 0.00436995, 0.0106694, -0.0148202, 0.0869391, 0.0058959, 0.0140351, -0.0183501, 0.101572, 0.00798757, 0.0168939, -0.022006, 0.11018, 0.0104233, 0.020197, -0.0261568, 0.119041, 0.0134167, 0.0254702, -0.0312778, 0.135404, 0.0173009, 0.0298384, -0.0362469, 0.1437, 0.0215428, 0.035159, -0.042237, 0.15512, 0.0268882, 0.0427685, -0.0488711, 0.17128, 0.033235, 0.0494848, -0.0557997, 0.181813, 0.0404443, 0.0592394, -0.0635578, 0.198745, 0.0490043, 0.0681463, -0.071838, 0.210497, 0.0588239, 0.0804753, -0.0809297, 0.228864, 0.0702835, 0.0942205, -0.0906488, 0.247008, 0.0834012, 0.106777, -0.100216, 0.258812, 0.0975952, 0.124471, -0.110827, 0.278617, 0.114162, 0.138389, -0.121193, 0.287049, 0.131983, 0.159543, -0.13253, 0.307151, 0.152541, 0.176432, -0.143611, 0.31564, 0.174673, 0.201723, -0.15548, 0.33538, 0.199842, 0.229721, -0.167166, 0.355256, 0.227097, 0.250206, -0.178238, 0.360047, 0.256014, 0.282118, -0.189905, 0.378761, 0.28855, 0.312821, -0.201033, 0.39181, 0.323348, 0.341482, -0.211584, 0.397716, 0.360564, 0.377368, -0.221314, 0.410141, 0.400004, 0.418229, -0.230474, 0.423485, 0.442371, 0.444881, -0.239443, 0.418874, 0.488796, 0.488899, -0.245987, 0.427545, 0.535012, 0.520317, -0.253948, 0.422147, 0.589678, 0.568566, -0.256616, 0.42719, 0.637683, 0.599607, -0.26376, 0.415114, 0.703363, 0.64222, -0.268687, 0.408715, 0.771363, 0.685698, -0.2694, 0.399722, 0.83574, 0.732327, -0.266642, 0.388651, 0.897764, 0.769873, -0.267712, 0.369198, 0.983312, 0.806733, -0.263479, 0.346802, 1.06222, 0.843466, -0.254575, 0.321368, 1.13477, 0.873008, -0.242749, 0.29211, 1.20712, 0.908438, -0.22725, 0.262143, 1.27465, 0.936321, -0.207621, 0.228876, 1.33203, 0.950353, -0.187932, 0.19484, 1.40439, 0.96442, -0.165154, 0.163178, 1.4732, 0.979856, -0.139302, 0.127531, 1.53574, 0.982561, -0.11134, 0.0903457, 1.59982, 0.996389, -0.0808124, 0.0489007, 1.6577 ]; - - var LTC_MAT_2 = [ 1, 0, 0, 0, 1, 7.91421e-31, 0, 0, 1, 1.04392e-24, 0, 0, 1, 3.49405e-21, 0, 0, 1, 1.09923e-18, 0, 0, 1, 9.47414e-17, 0, 0, 1, 3.59627e-15, 0, 0, 1, 7.72053e-14, 0, 0, 1, 1.08799e-12, 0, 0, 1, 1.10655e-11, 0, 0, 1, 8.65818e-11, 0, 0, 0.999998, 5.45037e-10, 0, 0, 0.999994, 2.85095e-09, 0, 0, 0.999989, 1.26931e-08, 0, 0, 0.999973, 4.89938e-08, 0, 0, 0.999947, 1.66347e-07, 0, 0, 0.999894, 5.02694e-07, 0, 0, 0.999798, 1.36532e-06, 0, 0, 0.999617, 3.35898e-06, 0, 0, 0.999234, 7.52126e-06, 0, 0, 0.998258, 1.52586e-05, 0, 0, 0.99504, 2.66207e-05, 0, 0, 0.980816, 2.36802e-05, 0, 0, 0.967553, 2.07684e-06, 0, 0, 0.966877, 4.03733e-06, 0, 0, 0.965752, 7.41174e-06, 0, 0, 0.96382, 1.27746e-05, 0, 0, 0.960306, 2.02792e-05, 0, 0, 0.953619, 2.80232e-05, 0, 0, 0.941103, 2.78816e-05, 0, 0, 0.926619, 1.60221e-05, 0, 0, 0.920983, 2.35164e-05, 0, 0, 0.912293, 3.11924e-05, 0, 0.0158731, 0.899277, 3.48118e-05, 0, 0.0476191, 0.880884, 2.6041e-05, 0, 0.0793651, 0.870399, 3.38726e-05, 0, 0.111111, 0.856138, 3.92906e-05, 0, 0.142857, 0.837436, 3.72874e-05, 0, 0.174603, 0.820973, 3.92558e-05, 0, 0.206349, 0.803583, 4.34658e-05, 0, 0.238095, 0.782168, 4.0256e-05, 0, 0.269841, 0.764107, 4.48159e-05, 0, 0.301587, 0.743092, 4.57627e-05, 0, 0.333333, 0.721626, 4.55314e-05, 0, 0.365079, 0.700375, 4.77335e-05, 0, 0.396825, 0.677334, 4.61072e-05, 0, 0.428571, 0.655702, 4.84393e-05, 0, 0.460317, 0.632059, 4.64583e-05, 0, 0.492064, 0.610125, 4.83923e-05, 0, 0.52381, 0.58653, 4.64342e-05, 0, 0.555556, 0.564508, 4.77033e-05, 0, 0.587302, 0.541405, 4.59263e-05, 0, 0.619048, 0.519556, 4.6412e-05, 0, 0.650794, 0.497292, 4.48913e-05, 0, 0.68254, 0.475898, 4.45789e-05, 0, 0.714286, 0.454722, 4.33496e-05, 0, 0.746032, 0.434042, 4.23054e-05, 0, 0.777778, 0.414126, 4.13737e-05, 0, 0.809524, 0.394387, 3.97265e-05, 0, 0.84127, 0.375841, 3.90709e-05, 0, 0.873016, 0.357219, 3.69938e-05, 0, 0.904762, 0.340084, 3.65618e-05, 0, 0.936508, 0.322714, 3.42533e-05, 0, 0.968254, 0.306974, 3.39596e-05, 0, 1, 1, 1.01524e-18, 0, 0, 1, 1.0292e-18, 0, 0, 1, 1.30908e-18, 0, 0, 1, 4.73331e-18, 0, 0, 1, 6.25319e-17, 0, 0, 1, 1.07932e-15, 0, 0, 1, 1.63779e-14, 0, 0, 1, 2.03198e-13, 0, 0, 1, 2.04717e-12, 0, 0, 0.999999, 1.68995e-11, 0, 0, 0.999998, 1.15855e-10, 0, 0, 0.999996, 6.6947e-10, 0, 0, 0.999991, 3.30863e-09, 0, 0, 0.999983, 1.41737e-08, 0, 0, 0.999968, 5.32626e-08, 0, 0, 0.99994, 1.77431e-07, 0, 0, 0.999891, 5.28835e-07, 0, 0, 0.999797, 1.42169e-06, 0, 0, 0.999617, 3.47057e-06, 0, 0, 0.999227, 7.7231e-06, 0, 0, 0.998239, 1.55753e-05, 0, 0, 0.994937, 2.68495e-05, 0, 0, 0.980225, 2.13742e-05, 0, 0, 0.967549, 2.1631e-06, 0, 0, 0.966865, 4.17989e-06, 0, 0, 0.965739, 7.63341e-06, 0, 0, 0.963794, 1.30892e-05, 0, 0, 0.960244, 2.06456e-05, 0, 0, 0.953495, 2.82016e-05, 0, 0.000148105, 0.940876, 2.71581e-05, 0, 0.002454, 0.926569, 1.64159e-05, 0, 0.00867491, 0.920905, 2.39521e-05, 0, 0.01956, 0.912169, 3.15127e-05, 0, 0.035433, 0.899095, 3.46626e-05, 0, 0.056294, 0.882209, 2.90223e-05, 0, 0.0818191, 0.870272, 3.42992e-05, 0, 0.111259, 0.855977, 3.94164e-05, 0, 0.142857, 0.837431, 3.72343e-05, 0, 0.174603, 0.820826, 3.96691e-05, 0, 0.206349, 0.803408, 4.35395e-05, 0, 0.238095, 0.782838, 4.19579e-05, 0, 0.269841, 0.763941, 4.50953e-05, 0, 0.301587, 0.742904, 4.55847e-05, 0, 0.333333, 0.721463, 4.58833e-05, 0, 0.365079, 0.700197, 4.77159e-05, 0, 0.396825, 0.677501, 4.70641e-05, 0, 0.428571, 0.655527, 4.84732e-05, 0, 0.460317, 0.6324, 4.76834e-05, 0, 0.492064, 0.609964, 4.84213e-05, 0, 0.52381, 0.586839, 4.75541e-05, 0, 0.555556, 0.564353, 4.76951e-05, 0, 0.587302, 0.541589, 4.67611e-05, 0, 0.619048, 0.519413, 4.63493e-05, 0, 0.650794, 0.497337, 4.53994e-05, 0, 0.68254, 0.475797, 4.45308e-05, 0, 0.714286, 0.454659, 4.35787e-05, 0, 0.746032, 0.434065, 4.24839e-05, 0, 0.777778, 0.414018, 4.1436e-05, 0, 0.809524, 0.39455, 4.01902e-05, 0, 0.84127, 0.375742, 3.90813e-05, 0, 0.873016, 0.357501, 3.77116e-05, 0, 0.904762, 0.339996, 3.6535e-05, 0, 0.936508, 0.323069, 3.51265e-05, 0, 0.968254, 0.306897, 3.39112e-05, 0, 1, 1, 1.0396e-15, 0, 0, 1, 1.04326e-15, 0, 0, 1, 1.10153e-15, 0, 0, 1, 1.44668e-15, 0, 0, 1, 3.4528e-15, 0, 0, 1, 1.75958e-14, 0, 0, 1, 1.2627e-13, 0, 0, 1, 9.36074e-13, 0, 0, 1, 6.45742e-12, 0, 0, 0.999998, 4.01228e-11, 0, 0, 0.999997, 2.22338e-10, 0, 0, 0.999995, 1.0967e-09, 0, 0, 0.999991, 4.82132e-09, 0, 0, 0.999981, 1.89434e-08, 0, 0, 0.999967, 6.67716e-08, 0, 0, 0.999938, 2.12066e-07, 0, 0, 0.999886, 6.0977e-07, 0, 0, 0.999792, 1.59504e-06, 0, 0, 0.999608, 3.81191e-06, 0, 0, 0.999209, 8.33727e-06, 0, 0, 0.998179, 1.65288e-05, 0, 0, 0.994605, 2.74387e-05, 0, 0, 0.979468, 1.67316e-05, 0, 0, 0.967529, 2.42877e-06, 0, 0, 0.966836, 4.61696e-06, 0, 0, 0.96569, 8.30977e-06, 0, 0, 0.963706, 1.40427e-05, 0, 2.44659e-06, 0.960063, 2.17353e-05, 0, 0.000760774, 0.953113, 2.86606e-05, 0, 0.00367261, 0.940192, 2.47691e-05, 0, 0.00940263, 0.927731, 1.95814e-05, 0, 0.018333, 0.920669, 2.52531e-05, 0, 0.0306825, 0.911799, 3.24277e-05, 0, 0.0465556, 0.89857, 3.40982e-05, 0, 0.0659521, 0.883283, 3.19622e-05, 0, 0.0887677, 0.86989, 3.5548e-05, 0, 0.114784, 0.855483, 3.97143e-05, 0, 0.143618, 0.837987, 3.91665e-05, 0, 0.174606, 0.820546, 4.11306e-05, 0, 0.206349, 0.802878, 4.36753e-05, 0, 0.238095, 0.783402, 4.44e-05, 0, 0.269841, 0.763439, 4.58726e-05, 0, 0.301587, 0.742925, 4.67097e-05, 0, 0.333333, 0.721633, 4.78887e-05, 0, 0.365079, 0.69985, 4.81251e-05, 0, 0.396825, 0.67783, 4.91811e-05, 0, 0.428571, 0.655126, 4.88199e-05, 0, 0.460318, 0.632697, 4.96025e-05, 0, 0.492064, 0.609613, 4.8829e-05, 0, 0.52381, 0.587098, 4.92754e-05, 0, 0.555556, 0.564119, 4.82625e-05, 0, 0.587302, 0.541813, 4.82807e-05, 0, 0.619048, 0.519342, 4.71552e-05, 0, 0.650794, 0.497514, 4.66765e-05, 0, 0.68254, 0.475879, 4.55582e-05, 0, 0.714286, 0.454789, 4.46007e-05, 0, 0.746032, 0.434217, 4.35382e-05, 0, 0.777778, 0.414086, 4.21753e-05, 0, 0.809524, 0.394744, 4.12093e-05, 0, 0.84127, 0.375782, 3.96634e-05, 0, 0.873016, 0.357707, 3.86419e-05, 0, 0.904762, 0.340038, 3.70345e-05, 0, 0.936508, 0.323284, 3.59725e-05, 0, 0.968254, 0.306954, 3.436e-05, 0, 1, 1, 5.99567e-14, 0, 0, 1, 6.00497e-14, 0, 0, 1, 6.14839e-14, 0, 0, 1, 6.86641e-14, 0, 0, 1, 9.72658e-14, 0, 0, 1, 2.21271e-13, 0, 0, 1, 8.33195e-13, 0, 0, 1, 4.03601e-12, 0, 0, 0.999999, 2.06001e-11, 0, 0, 0.999998, 1.01739e-10, 0, 0, 0.999997, 4.70132e-10, 0, 0, 0.999993, 2.00436e-09, 0, 0, 0.999988, 7.83682e-09, 0, 0, 0.999979, 2.80338e-08, 0, 0, 0.999962, 9.17033e-08, 0, 0, 0.999933, 2.74514e-07, 0, 0, 0.999881, 7.53201e-07, 0, 0, 0.999783, 1.89826e-06, 0, 0, 0.999594, 4.40279e-06, 0, 0, 0.999178, 9.3898e-06, 0, 0, 0.998073, 1.81265e-05, 0, 0, 0.993993, 2.80487e-05, 0, 0, 0.979982, 1.49422e-05, 0, 0, 0.968145, 3.78481e-06, 0, 0, 0.966786, 5.3771e-06, 0, 0, 0.965611, 9.47508e-06, 0, 3.88934e-05, 0.963557, 1.56616e-05, 0, 0.0009693, 0.959752, 2.35144e-05, 0, 0.00370329, 0.952461, 2.91568e-05, 0, 0.00868428, 0.940193, 2.40102e-05, 0, 0.0161889, 0.929042, 2.31235e-05, 0, 0.0263948, 0.920266, 2.73968e-05, 0, 0.0394088, 0.911178, 3.37915e-05, 0, 0.0552818, 0.897873, 3.33629e-05, 0, 0.0740138, 0.884053, 3.51405e-05, 0, 0.0955539, 0.869455, 3.78034e-05, 0, 0.119795, 0.854655, 3.99378e-05, 0, 0.14656, 0.838347, 4.19108e-05, 0, 0.175573, 0.820693, 4.40831e-05, 0, 0.206388, 0.802277, 4.45599e-05, 0, 0.238095, 0.783634, 4.72691e-05, 0, 0.269841, 0.763159, 4.76984e-05, 0, 0.301587, 0.742914, 4.91487e-05, 0, 0.333333, 0.721662, 5.02312e-05, 0, 0.365079, 0.699668, 5.02817e-05, 0, 0.396825, 0.677839, 5.1406e-05, 0, 0.428571, 0.655091, 5.11095e-05, 0, 0.460317, 0.632665, 5.16067e-05, 0, 0.492064, 0.609734, 5.12255e-05, 0, 0.52381, 0.587043, 5.10263e-05, 0, 0.555556, 0.564298, 5.0565e-05, 0, 0.587302, 0.541769, 4.97951e-05, 0, 0.619048, 0.519529, 4.92698e-05, 0, 0.650794, 0.497574, 4.82066e-05, 0, 0.68254, 0.476028, 4.73689e-05, 0, 0.714286, 0.454961, 4.61941e-05, 0, 0.746032, 0.434341, 4.50618e-05, 0, 0.777778, 0.414364, 4.38355e-05, 0, 0.809524, 0.394832, 4.24196e-05, 0, 0.84127, 0.376109, 4.12563e-05, 0, 0.873016, 0.35779, 3.96226e-05, 0, 0.904762, 0.340379, 3.84886e-05, 0, 0.936508, 0.323385, 3.68214e-05, 0, 0.968254, 0.307295, 3.56636e-05, 0, 1, 1, 1.06465e-12, 0, 0, 1, 1.06555e-12, 0, 0, 1, 1.07966e-12, 0, 0, 1, 1.14601e-12, 0, 0, 1, 1.37123e-12, 0, 0, 1, 2.1243e-12, 0, 0, 0.999999, 4.89653e-12, 0, 0, 0.999999, 1.60283e-11, 0, 0, 0.999998, 6.2269e-11, 0, 0, 0.999997, 2.51859e-10, 0, 0, 0.999996, 9.96192e-10, 0, 0, 0.999992, 3.74531e-09, 0, 0, 0.999986, 1.32022e-08, 0, 0, 0.999975, 4.33315e-08, 0, 0, 0.999959, 1.31956e-07, 0, 0, 0.999927, 3.72249e-07, 0, 0, 0.999871, 9.72461e-07, 0, 0, 0.999771, 2.35343e-06, 0, 0, 0.999572, 5.2768e-06, 0, 0, 0.999133, 1.09237e-05, 0, 0, 0.997912, 2.03675e-05, 0, 0, 0.993008, 2.79396e-05, 0, 0, 0.980645, 1.39604e-05, 0, 0, 0.970057, 6.46596e-06, 0, 0, 0.966717, 6.5089e-06, 0, 4.74145e-05, 0.965497, 1.11863e-05, 0, 0.00089544, 0.96334, 1.79857e-05, 0, 0.0032647, 0.959294, 2.59045e-05, 0, 0.0075144, 0.951519, 2.92327e-05, 0, 0.0138734, 0.940517, 2.49769e-05, 0, 0.0224952, 0.93014, 2.6803e-05, 0, 0.0334828, 0.91972, 3.03656e-05, 0, 0.0468973, 0.910294, 3.53323e-05, 0, 0.0627703, 0.897701, 3.51002e-05, 0, 0.0811019, 0.884522, 3.88104e-05, 0, 0.10186, 0.869489, 4.12932e-05, 0, 0.124985, 0.853983, 4.15781e-05, 0, 0.150372, 0.838425, 4.54066e-05, 0, 0.177868, 0.820656, 4.71624e-05, 0, 0.207245, 0.801875, 4.75243e-05, 0, 0.238143, 0.783521, 5.05621e-05, 0, 0.269841, 0.763131, 5.0721e-05, 0, 0.301587, 0.74261, 5.23293e-05, 0, 0.333333, 0.72148, 5.28699e-05, 0, 0.365079, 0.699696, 5.38677e-05, 0, 0.396825, 0.677592, 5.39255e-05, 0, 0.428571, 0.65525, 5.46367e-05, 0, 0.460317, 0.632452, 5.41348e-05, 0, 0.492064, 0.609903, 5.44976e-05, 0, 0.52381, 0.586928, 5.36201e-05, 0, 0.555556, 0.564464, 5.35185e-05, 0, 0.587302, 0.541801, 5.24949e-05, 0, 0.619048, 0.519681, 5.1812e-05, 0, 0.650794, 0.497685, 5.07687e-05, 0, 0.68254, 0.47622, 4.96243e-05, 0, 0.714286, 0.455135, 4.85714e-05, 0, 0.746032, 0.4346, 4.71847e-05, 0, 0.777778, 0.414564, 4.59294e-05, 0, 0.809524, 0.395165, 4.44705e-05, 0, 0.84127, 0.376333, 4.30772e-05, 0, 0.873016, 0.358197, 4.16229e-05, 0, 0.904762, 0.34064, 4.01019e-05, 0, 0.936508, 0.323816, 3.86623e-05, 0, 0.968254, 0.307581, 3.70933e-05, 0, 1, 1, 9.91541e-12, 0, 0, 1, 9.92077e-12, 0, 0, 1, 1.00041e-11, 0, 0, 1, 1.0385e-11, 0, 0, 1, 1.15777e-11, 0, 0, 1, 1.50215e-11, 0, 0, 0.999999, 2.54738e-11, 0, 0, 0.999999, 5.98822e-11, 0, 0, 0.999998, 1.79597e-10, 0, 0, 0.999997, 6.02367e-10, 0, 0, 0.999994, 2.06835e-09, 0, 0, 0.99999, 6.94952e-09, 0, 0, 0.999984, 2.23363e-08, 0, 0, 0.999972, 6.78578e-08, 0, 0, 0.999952, 1.93571e-07, 0, 0, 0.999919, 5.16594e-07, 0, 0, 0.99986, 1.28739e-06, 0, 0, 0.999753, 2.99298e-06, 0, 0, 0.999546, 6.48258e-06, 0, 0, 0.999074, 1.29985e-05, 0, 0, 0.997671, 2.32176e-05, 0, 0, 0.991504, 2.56701e-05, 0, 0, 0.981148, 1.31141e-05, 0, 0, 0.971965, 8.69048e-06, 0, 2.80182e-05, 0.966624, 8.08301e-06, 0, 0.000695475, 0.965344, 1.35235e-05, 0, 0.00265522, 0.963048, 2.10592e-05, 0, 0.00622975, 0.958673, 2.87473e-05, 0, 0.0116234, 0.950262, 2.81379e-05, 0, 0.018976, 0.940836, 2.71089e-05, 0, 0.0283844, 0.930996, 3.0926e-05, 0, 0.0399151, 0.919848, 3.48359e-05, 0, 0.0536063, 0.909136, 3.66092e-05, 0, 0.0694793, 0.897554, 3.84162e-05, 0, 0.0875342, 0.884691, 4.30971e-05, 0, 0.107749, 0.869414, 4.47803e-05, 0, 0.130087, 0.853462, 4.52858e-05, 0, 0.154481, 0.838187, 4.95769e-05, 0, 0.180833, 0.820381, 5.02709e-05, 0, 0.209005, 0.801844, 5.22713e-05, 0, 0.238791, 0.783061, 5.41505e-05, 0, 0.269869, 0.763205, 5.53712e-05, 0, 0.301587, 0.742362, 5.64909e-05, 0, 0.333333, 0.721393, 5.72646e-05, 0, 0.365079, 0.699676, 5.81012e-05, 0, 0.396825, 0.677395, 5.8096e-05, 0, 0.428571, 0.655208, 5.85766e-05, 0, 0.460317, 0.632451, 5.83602e-05, 0, 0.492064, 0.609839, 5.80234e-05, 0, 0.52381, 0.587093, 5.77161e-05, 0, 0.555556, 0.564467, 5.68447e-05, 0, 0.587302, 0.542043, 5.63166e-05, 0, 0.619048, 0.519826, 5.5156e-05, 0, 0.650794, 0.497952, 5.41682e-05, 0, 0.68254, 0.476477, 5.28971e-05, 0, 0.714286, 0.455412, 5.14952e-05, 0, 0.746032, 0.434926, 5.02222e-05, 0, 0.777778, 0.4149, 4.85779e-05, 0, 0.809524, 0.395552, 4.72242e-05, 0, 0.84127, 0.376712, 4.54891e-05, 0, 0.873016, 0.358622, 4.40924e-05, 0, 0.904762, 0.341048, 4.22984e-05, 0, 0.936508, 0.324262, 4.08582e-05, 0, 0.968254, 0.308013, 3.90839e-05, 0, 1, 1, 6.13913e-11, 0, 0, 1, 6.14145e-11, 0, 0, 1, 6.17708e-11, 0, 0, 1, 6.33717e-11, 0, 0, 1, 6.81648e-11, 0, 0, 1, 8.08291e-11, 0, 0, 1, 1.14608e-10, 0, 0, 0.999998, 2.10507e-10, 0, 0, 0.999997, 4.99595e-10, 0, 0, 0.999995, 1.39897e-09, 0, 0, 0.999994, 4.19818e-09, 0, 0, 0.999988, 1.27042e-08, 0, 0, 0.999979, 3.75153e-08, 0, 0, 0.999965, 1.06206e-07, 0, 0, 0.999945, 2.85381e-07, 0, 0, 0.999908, 7.23611e-07, 0, 0, 0.999846, 1.7255e-06, 0, 0, 0.999733, 3.86104e-06, 0, 0, 0.999511, 8.08493e-06, 0, 0, 0.998993, 1.56884e-05, 0, 0, 0.997326, 2.65538e-05, 0, 0, 0.989706, 2.06466e-05, 0, 0, 0.981713, 1.30756e-05, 0, 7.0005e-06, 0.973636, 1.06473e-05, 0, 0.000464797, 0.966509, 1.0194e-05, 0, 0.00201743, 0.965149, 1.65881e-05, 0, 0.00497549, 0.962669, 2.49147e-05, 0, 0.00953262, 0.95786, 3.17449e-05, 0, 0.0158211, 0.949334, 2.81045e-05, 0, 0.0239343, 0.941041, 3.03263e-05, 0, 0.0339372, 0.931575, 3.56754e-05, 0, 0.0458738, 0.920102, 3.97075e-05, 0, 0.059772, 0.908002, 3.84886e-05, 0, 0.075645, 0.897269, 4.3027e-05, 0, 0.0934929, 0.884559, 4.79925e-05, 0, 0.113302, 0.869161, 4.8246e-05, 0, 0.135045, 0.853342, 5.09505e-05, 0, 0.158678, 0.837633, 5.42846e-05, 0, 0.184136, 0.820252, 5.54139e-05, 0, 0.211325, 0.801872, 5.81412e-05, 0, 0.240113, 0.782418, 5.85535e-05, 0, 0.270306, 0.7631, 6.10923e-05, 0, 0.301594, 0.742183, 6.13678e-05, 0, 0.333333, 0.721098, 6.27275e-05, 0, 0.365079, 0.699512, 6.29413e-05, 0, 0.396825, 0.677372, 6.36351e-05, 0, 0.428571, 0.655059, 6.33555e-05, 0, 0.460317, 0.632567, 6.36513e-05, 0, 0.492064, 0.609784, 6.28965e-05, 0, 0.52381, 0.587237, 6.25546e-05, 0, 0.555556, 0.564525, 6.15825e-05, 0, 0.587302, 0.542181, 6.05048e-05, 0, 0.619048, 0.520017, 5.96329e-05, 0, 0.650794, 0.498204, 5.81516e-05, 0, 0.68254, 0.476742, 5.69186e-05, 0, 0.714286, 0.455803, 5.53833e-05, 0, 0.746032, 0.435251, 5.37807e-05, 0, 0.777778, 0.415374, 5.22025e-05, 0, 0.809524, 0.395921, 5.03421e-05, 0, 0.84127, 0.377253, 4.88211e-05, 0, 0.873016, 0.359021, 4.68234e-05, 0, 0.904762, 0.341637, 4.53269e-05, 0, 0.936508, 0.3247, 4.33014e-05, 0, 0.968254, 0.308625, 4.18007e-05, 0, 1, 1, 2.86798e-10, 0, 0, 1, 2.86877e-10, 0, 0, 1, 2.88094e-10, 0, 0, 1, 2.93506e-10, 0, 0, 1, 3.09262e-10, 0, 0, 0.999999, 3.48593e-10, 0, 0, 0.999999, 4.44582e-10, 0, 0, 0.999998, 6.88591e-10, 0, 0, 0.999996, 1.34391e-09, 0, 0, 0.999993, 3.17438e-09, 0, 0, 0.999989, 8.35609e-09, 0, 0, 0.999983, 2.28677e-08, 0, 0, 0.999974, 6.23361e-08, 0, 0, 0.999959, 1.65225e-07, 0, 0, 0.999936, 4.19983e-07, 0, 0, 0.999896, 1.01546e-06, 0, 0, 0.99983, 2.32376e-06, 0, 0, 0.999709, 5.0156e-06, 0, 0, 0.999469, 1.0167e-05, 0, 0, 0.998886, 1.90775e-05, 0, 0, 0.996819, 3.00511e-05, 0, 0, 0.988837, 1.85092e-05, 0, 1.68222e-07, 0.982178, 1.34622e-05, 0, 0.000259622, 0.975017, 1.25961e-05, 0, 0.00142595, 0.967101, 1.3507e-05, 0, 0.00382273, 0.964905, 2.05003e-05, 0, 0.00764164, 0.96218, 2.9546e-05, 0, 0.0130121, 0.956821, 3.43738e-05, 0, 0.0200253, 0.948829, 3.05063e-05, 0, 0.0287452, 0.941092, 3.46487e-05, 0, 0.039218, 0.931883, 4.12061e-05, 0, 0.0514748, 0.920211, 4.44651e-05, 0, 0.0655351, 0.907307, 4.31252e-05, 0, 0.0814082, 0.89684, 4.90382e-05, 0, 0.0990939, 0.884119, 5.3334e-05, 0, 0.118583, 0.869148, 5.4114e-05, 0, 0.139856, 0.853377, 5.78536e-05, 0, 0.162882, 0.836753, 5.92285e-05, 0, 0.187615, 0.820063, 6.22787e-05, 0, 0.213991, 0.801694, 6.45492e-05, 0, 0.241918, 0.782116, 6.5353e-05, 0, 0.271267, 0.762673, 6.74344e-05, 0, 0.301847, 0.742133, 6.82788e-05, 0, 0.333333, 0.720779, 6.91959e-05, 0, 0.365079, 0.699386, 6.96817e-05, 0, 0.396826, 0.67732, 6.99583e-05, 0, 0.428572, 0.654888, 6.98447e-05, 0, 0.460318, 0.632499, 6.94063e-05, 0, 0.492064, 0.609825, 6.91612e-05, 0, 0.52381, 0.587287, 6.81576e-05, 0, 0.555556, 0.564743, 6.74138e-05, 0, 0.587302, 0.542409, 6.61617e-05, 0, 0.619048, 0.520282, 6.47785e-05, 0, 0.650794, 0.498506, 6.33836e-05, 0, 0.68254, 0.477102, 6.15905e-05, 0, 0.714286, 0.456167, 6.01013e-05, 0, 0.746032, 0.435728, 5.81457e-05, 0, 0.777778, 0.415809, 5.64215e-05, 0, 0.809524, 0.396517, 5.44997e-05, 0, 0.84127, 0.377737, 5.25061e-05, 0, 0.873016, 0.359698, 5.06831e-05, 0, 0.904762, 0.342164, 4.8568e-05, 0, 0.936508, 0.325417, 4.67826e-05, 0, 0.968254, 0.309186, 4.46736e-05, 0, 1, 1, 1.09018e-09, 0, 0, 1, 1.0904e-09, 0, 0, 1, 1.09393e-09, 0, 0, 1, 1.1095e-09, 0, 0, 1, 1.154e-09, 0, 0, 1, 1.26089e-09, 0, 0, 0.999999, 1.5059e-09, 0, 0, 0.999997, 2.07899e-09, 0, 0, 0.999994, 3.48164e-09, 0, 0, 0.999993, 7.05728e-09, 0, 0, 0.999987, 1.63692e-08, 0, 0, 0.999981, 4.06033e-08, 0, 0, 0.999969, 1.0245e-07, 0, 0, 0.999953, 2.55023e-07, 0, 0, 0.999925, 6.1511e-07, 0, 0, 0.999881, 1.42218e-06, 0, 0, 0.99981, 3.13086e-06, 0, 0, 0.99968, 6.53119e-06, 0, 0, 0.999418, 1.2832e-05, 0, 0, 0.998748, 2.32497e-05, 0, 0, 0.996066, 3.29522e-05, 0, 0, 0.988379, 1.79613e-05, 0, 0.000108799, 0.982567, 1.43715e-05, 0, 0.000921302, 0.976097, 1.48096e-05, 0, 0.00280738, 0.968475, 1.78905e-05, 0, 0.00596622, 0.964606, 2.53921e-05, 0, 0.0105284, 0.961564, 3.48623e-05, 0, 0.0165848, 0.955517, 3.57612e-05, 0, 0.0242, 0.948381, 3.43493e-05, 0, 0.03342, 0.941095, 4.05849e-05, 0, 0.0442777, 0.931923, 4.75394e-05, 0, 0.0567958, 0.91996, 4.84328e-05, 0, 0.0709879, 0.907419, 5.02146e-05, 0, 0.086861, 0.89618, 5.61654e-05, 0, 0.104415, 0.88337, 5.87612e-05, 0, 0.123643, 0.869046, 6.18057e-05, 0, 0.144531, 0.853278, 6.57392e-05, 0, 0.167057, 0.836091, 6.6303e-05, 0, 0.191188, 0.819644, 7.04445e-05, 0, 0.216878, 0.801246, 7.14071e-05, 0, 0.244062, 0.782031, 7.40093e-05, 0, 0.272649, 0.762066, 7.4685e-05, 0, 0.302509, 0.741964, 7.66647e-05, 0, 0.333442, 0.720554, 7.66328e-05, 0, 0.365079, 0.699098, 7.77857e-05, 0, 0.396826, 0.677189, 7.74633e-05, 0, 0.428572, 0.65484, 7.76235e-05, 0, 0.460318, 0.632496, 7.70316e-05, 0, 0.492064, 0.609908, 7.62669e-05, 0, 0.52381, 0.587312, 7.53972e-05, 0, 0.555556, 0.564938, 7.39994e-05, 0, 0.587302, 0.542577, 7.28382e-05, 0, 0.619048, 0.52062, 7.1112e-05, 0, 0.650794, 0.498819, 6.94004e-05, 0, 0.68254, 0.477555, 6.75575e-05, 0, 0.714286, 0.456568, 6.53449e-05, 0, 0.746032, 0.436278, 6.36068e-05, 0, 0.777778, 0.41637, 6.13466e-05, 0, 0.809524, 0.397144, 5.94177e-05, 0, 0.84127, 0.378412, 5.70987e-05, 0, 0.873016, 0.360376, 5.50419e-05, 0, 0.904762, 0.342906, 5.27422e-05, 0, 0.936508, 0.326136, 5.06544e-05, 0, 0.968254, 0.30997, 4.84307e-05, 0, 1, 1, 3.54014e-09, 0, 0, 1, 3.54073e-09, 0, 0, 1, 3.54972e-09, 0, 0, 1, 3.58929e-09, 0, 0, 1, 3.70093e-09, 0, 0, 0.999999, 3.96194e-09, 0, 0, 0.999998, 4.53352e-09, 0, 0, 0.999997, 5.78828e-09, 0, 0, 0.999994, 8.63812e-09, 0, 0, 0.999991, 1.53622e-08, 0, 0, 0.999985, 3.16356e-08, 0, 0, 0.999977, 7.12781e-08, 0, 0, 0.999964, 1.66725e-07, 0, 0, 0.999945, 3.90501e-07, 0, 0, 0.999912, 8.95622e-07, 0, 0, 0.999866, 1.98428e-06, 0, 0, 0.999786, 4.21038e-06, 0, 0, 0.999647, 8.50239e-06, 0, 0, 0.999356, 1.62059e-05, 0, 0, 0.998563, 2.82652e-05, 0, 0, 0.994928, 3.36309e-05, 0, 2.44244e-05, 0.987999, 1.78458e-05, 0, 0.000523891, 0.982893, 1.59162e-05, 0, 0.00194729, 0.977044, 1.78056e-05, 0, 0.00451099, 0.969972, 2.30624e-05, 0, 0.00835132, 0.964237, 3.13922e-05, 0, 0.013561, 0.960791, 4.06145e-05, 0, 0.0202056, 0.954292, 3.72796e-05, 0, 0.0283321, 0.948052, 4.03199e-05, 0, 0.0379739, 0.940938, 4.79537e-05, 0, 0.0491551, 0.931689, 5.45292e-05, 0, 0.0618918, 0.91987, 5.4038e-05, 0, 0.0761941, 0.907665, 5.89909e-05, 0, 0.0920672, 0.895281, 6.42651e-05, 0, 0.109511, 0.882621, 6.59707e-05, 0, 0.12852, 0.86873, 7.09973e-05, 0, 0.149085, 0.853008, 7.42221e-05, 0, 0.171189, 0.835944, 7.61754e-05, 0, 0.194809, 0.818949, 7.97052e-05, 0, 0.21991, 0.800951, 8.12434e-05, 0, 0.246447, 0.781847, 8.38075e-05, 0, 0.274352, 0.761649, 8.4501e-05, 0, 0.303535, 0.74152, 8.60258e-05, 0, 0.333857, 0.720495, 8.66233e-05, 0, 0.365104, 0.698742, 8.68326e-05, 0, 0.396826, 0.677096, 8.7133e-05, 0, 0.428572, 0.654782, 8.63497e-05, 0, 0.460318, 0.632335, 8.60206e-05, 0, 0.492064, 0.610031, 8.49337e-05, 0, 0.52381, 0.587457, 8.38279e-05, 0, 0.555556, 0.56513, 8.2309e-05, 0, 0.587302, 0.542877, 8.03542e-05, 0, 0.619048, 0.5209, 7.86928e-05, 0, 0.650794, 0.499291, 7.65171e-05, 0, 0.68254, 0.477971, 7.44753e-05, 0, 0.714286, 0.457221, 7.2209e-05, 0, 0.746032, 0.436803, 6.97448e-05, 0, 0.777778, 0.417083, 6.75333e-05, 0, 0.809524, 0.397749, 6.48058e-05, 0, 0.84127, 0.379177, 6.25759e-05, 0, 0.873016, 0.361061, 5.98584e-05, 0, 0.904762, 0.343713, 5.75797e-05, 0, 0.936508, 0.326894, 5.49999e-05, 0, 0.968254, 0.310816, 5.27482e-05, 0, 1, 1, 1.0153e-08, 0, 0, 1, 1.01544e-08, 0, 0, 1, 1.01751e-08, 0, 0, 1, 1.02662e-08, 0, 0, 1, 1.0521e-08, 0, 0, 0.999999, 1.11049e-08, 0, 0, 0.999999, 1.23408e-08, 0, 0, 0.999996, 1.4924e-08, 0, 0, 0.999992, 2.04471e-08, 0, 0, 0.999989, 3.26539e-08, 0, 0, 0.99998, 6.03559e-08, 0, 0, 0.999971, 1.23936e-07, 0, 0, 0.999955, 2.69058e-07, 0, 0, 0.999933, 5.93604e-07, 0, 0, 0.999901, 1.29633e-06, 0, 0, 0.999847, 2.75621e-06, 0, 0, 0.999761, 5.64494e-06, 0, 0, 0.999607, 1.10485e-05, 0, 0, 0.999282, 2.04388e-05, 0, 0, 0.99831, 3.41084e-05, 0, 2.2038e-07, 0.993288, 2.94949e-05, 0, 0.000242388, 0.987855, 1.92736e-05, 0, 0.0012503, 0.983167, 1.82383e-05, 0, 0.0032745, 0.977908, 2.18633e-05, 0, 0.00646321, 0.971194, 2.90662e-05, 0, 0.0109133, 0.963867, 3.86401e-05, 0, 0.0166927, 0.95982, 4.62827e-05, 0, 0.0238494, 0.953497, 4.20705e-05, 0, 0.0324178, 0.947621, 4.77743e-05, 0, 0.0424225, 0.940611, 5.68258e-05, 0, 0.0538808, 0.931174, 6.18061e-05, 0, 0.0668047, 0.919919, 6.27098e-05, 0, 0.0812014, 0.907856, 6.94714e-05, 0, 0.0970745, 0.894509, 7.35008e-05, 0, 0.114424, 0.881954, 7.63369e-05, 0, 0.133246, 0.868309, 8.21896e-05, 0, 0.153534, 0.852511, 8.3769e-05, 0, 0.175275, 0.835821, 8.81615e-05, 0, 0.198453, 0.817981, 8.96368e-05, 0, 0.223042, 0.800504, 9.30906e-05, 0, 0.249009, 0.78141, 9.45056e-05, 0, 0.276304, 0.761427, 9.63605e-05, 0, 0.304862, 0.74094, 9.68088e-05, 0, 0.334584, 0.720233, 9.81481e-05, 0, 0.365322, 0.698592, 9.79122e-05, 0, 0.396826, 0.676763, 9.81057e-05, 0, 0.428571, 0.654808, 9.73956e-05, 0, 0.460318, 0.632326, 9.62619e-05, 0, 0.492064, 0.610049, 9.52996e-05, 0, 0.52381, 0.58763, 9.33334e-05, 0, 0.555556, 0.565261, 9.17573e-05, 0, 0.587302, 0.543244, 8.96636e-05, 0, 0.619048, 0.521273, 8.73304e-05, 0, 0.650794, 0.499818, 8.52648e-05, 0, 0.68254, 0.478536, 8.23961e-05, 0, 0.714286, 0.457826, 7.9939e-05, 0, 0.746032, 0.437549, 7.7126e-05, 0, 0.777778, 0.41776, 7.43043e-05, 0, 0.809524, 0.39863, 7.16426e-05, 0, 0.84127, 0.379954, 6.86456e-05, 0, 0.873016, 0.362025, 6.60514e-05, 0, 0.904762, 0.344581, 6.30755e-05, 0, 0.936508, 0.327909, 6.05439e-05, 0, 0.968254, 0.311736, 5.76345e-05, 0, 1, 1, 2.63344e-08, 0, 0, 1, 2.63373e-08, 0, 0, 1, 2.63815e-08, 0, 0, 1, 2.65753e-08, 0, 0, 1, 2.71132e-08, 0, 0, 0.999999, 2.83279e-08, 0, 0, 0.999997, 3.0833e-08, 0, 0, 0.999995, 3.58711e-08, 0, 0, 0.999992, 4.61266e-08, 0, 0, 0.999985, 6.7574e-08, 0, 0, 0.999977, 1.1358e-07, 0, 0, 0.999966, 2.13657e-07, 0, 0, 0.999948, 4.31151e-07, 0, 0, 0.999923, 8.96656e-07, 0, 0, 0.999884, 1.86603e-06, 0, 0, 0.999826, 3.81115e-06, 0, 0, 0.999732, 7.54184e-06, 0, 0, 0.999561, 1.43192e-05, 0, 0, 0.999191, 2.57061e-05, 0, 0, 0.997955, 4.05724e-05, 0, 7.44132e-05, 0.992228, 2.76537e-05, 0, 0.000716477, 0.987638, 2.08885e-05, 0, 0.0022524, 0.983395, 2.15226e-05, 0, 0.00484816, 0.978614, 2.70795e-05, 0, 0.00860962, 0.972389, 3.65282e-05, 0, 0.0136083, 0.964392, 4.74747e-05, 0, 0.0198941, 0.95861, 5.09141e-05, 0, 0.0275023, 0.952806, 4.8963e-05, 0, 0.0364584, 0.94712, 5.71119e-05, 0, 0.04678, 0.940104, 6.71704e-05, 0, 0.0584799, 0.930398, 6.87586e-05, 0, 0.0715665, 0.919866, 7.38161e-05, 0, 0.086045, 0.907853, 8.13235e-05, 0, 0.101918, 0.894078, 8.34582e-05, 0, 0.119186, 0.881177, 8.92093e-05, 0, 0.137845, 0.867575, 9.44548e-05, 0, 0.157891, 0.852107, 9.69607e-05, 0, 0.179316, 0.835502, 0.000101456, 0, 0.202106, 0.81756, 0.000103256, 0, 0.226243, 0.79984, 0.000106954, 0, 0.251704, 0.780998, 0.000108066, 0, 0.278451, 0.761132, 0.000110111, 0, 0.306436, 0.740429, 0.000110459, 0, 0.335586, 0.719836, 0.000111219, 0, 0.365796, 0.698467, 0.00011145, 0, 0.3969, 0.676446, 0.000110393, 0, 0.428571, 0.654635, 0.000110035, 0, 0.460318, 0.632411, 0.000108548, 0, 0.492064, 0.609986, 0.000106963, 0, 0.52381, 0.587872, 0.000105238, 0, 0.555556, 0.565528, 0.000102665, 0, 0.587302, 0.543563, 0.000100543, 0, 0.619048, 0.52176, 9.76182e-05, 0, 0.650794, 0.500188, 9.47099e-05, 0, 0.68254, 0.479204, 9.19929e-05, 0, 0.714286, 0.458413, 8.86139e-05, 0, 0.746032, 0.438314, 8.57839e-05, 0, 0.777778, 0.418573, 8.2411e-05, 0, 0.809524, 0.39947, 7.92211e-05, 0, 0.84127, 0.380892, 7.59546e-05, 0, 0.873016, 0.362953, 7.27571e-05, 0, 0.904762, 0.345601, 6.95738e-05, 0, 0.936508, 0.328895, 6.64907e-05, 0, 0.968254, 0.312808, 6.34277e-05, 0, 1, 1, 6.28647e-08, 0, 0, 1, 6.28705e-08, 0, 0, 1, 6.29587e-08, 0, 0, 1, 6.33441e-08, 0, 0, 0.999999, 6.44087e-08, 0, 0, 0.999998, 6.67856e-08, 0, 0, 0.999997, 7.15889e-08, 0, 0, 0.999995, 8.09577e-08, 0, 0, 0.999989, 9.92764e-08, 0, 0, 0.999983, 1.35834e-07, 0, 0, 0.999974, 2.10482e-07, 0, 0, 0.999959, 3.65215e-07, 0, 0, 0.999939, 6.86693e-07, 0, 0, 0.999911, 1.3472e-06, 0, 0, 0.999868, 2.6731e-06, 0, 0, 0.999804, 5.24756e-06, 0, 0, 0.9997, 1.00403e-05, 0, 0, 0.99951, 1.85019e-05, 0, 0, 0.999078, 3.22036e-05, 0, 6.20676e-06, 0.997428, 4.70002e-05, 0, 0.000341552, 0.99162, 2.87123e-05, 0, 0.00143727, 0.987479, 2.34706e-05, 0, 0.00349201, 0.983582, 2.60083e-05, 0, 0.0066242, 0.979186, 3.37927e-05, 0, 0.0109113, 0.97325, 4.54689e-05, 0, 0.0164064, 0.965221, 5.73759e-05, 0, 0.0231463, 0.957262, 5.44114e-05, 0, 0.0311571, 0.952211, 5.87006e-05, 0, 0.0404572, 0.946631, 6.92256e-05, 0, 0.0510592, 0.939391, 7.87819e-05, 0, 0.0629723, 0.929795, 7.92368e-05, 0, 0.0762025, 0.91965, 8.75075e-05, 0, 0.090753, 0.907737, 9.50903e-05, 0, 0.106626, 0.893899, 9.72963e-05, 0, 0.123822, 0.880239, 0.00010459, 0, 0.142337, 0.866562, 0.000107689, 0, 0.16217, 0.85164, 0.000113081, 0, 0.183314, 0.835021, 0.000116636, 0, 0.20576, 0.817311, 0.000120074, 0, 0.229496, 0.798845, 0.000121921, 0, 0.254502, 0.780479, 0.00012475, 0, 0.280753, 0.760694, 0.000125255, 0, 0.308212, 0.740142, 0.000126719, 0, 0.336825, 0.719248, 0.00012636, 0, 0.366517, 0.698209, 0.000126712, 0, 0.397167, 0.676398, 0.000125769, 0, 0.428578, 0.654378, 0.000124432, 0, 0.460318, 0.632484, 0.000123272, 0, 0.492064, 0.610113, 0.00012085, 0, 0.52381, 0.587931, 0.000118411, 0, 0.555556, 0.565872, 0.00011569, 0, 0.587302, 0.543814, 0.000112521, 0, 0.619048, 0.522265, 0.000109737, 0, 0.650794, 0.500835, 0.000106228, 0, 0.68254, 0.479818, 0.000102591, 0, 0.714286, 0.459258, 9.91288e-05, 0, 0.746032, 0.439061, 9.52325e-05, 0, 0.777778, 0.419552, 9.1895e-05, 0, 0.809524, 0.400399, 8.79051e-05, 0, 0.84127, 0.381976, 8.44775e-05, 0, 0.873016, 0.364009, 8.06316e-05, 0, 0.904762, 0.346761, 7.71848e-05, 0, 0.936508, 0.330049, 7.35429e-05, 0, 0.968254, 0.314018, 7.02103e-05, 0, 1, 1, 1.39968e-07, 0, 0, 1, 1.39979e-07, 0, 0, 1, 1.40145e-07, 0, 0, 1, 1.4087e-07, 0, 0, 0.999999, 1.42865e-07, 0, 0, 0.999998, 1.47279e-07, 0, 0, 0.999997, 1.56057e-07, 0, 0, 0.999992, 1.7276e-07, 0, 0, 0.999989, 2.04352e-07, 0, 0, 0.99998, 2.6494e-07, 0, 0, 0.999969, 3.83435e-07, 0, 0, 0.999953, 6.18641e-07, 0, 0, 0.999929, 1.08755e-06, 0, 0, 0.999898, 2.01497e-06, 0, 0, 0.999849, 3.81346e-06, 0, 0, 0.999778, 7.19815e-06, 0, 0, 0.999661, 1.33215e-05, 0, 0, 0.999451, 2.38313e-05, 0, 0, 0.998936, 4.01343e-05, 0, 0.000113724, 0.99662, 5.17346e-05, 0, 0.000820171, 0.991094, 3.04323e-05, 0, 0.00238143, 0.987487, 2.81757e-05, 0, 0.00493527, 0.983731, 3.20048e-05, 0, 0.00856859, 0.979647, 4.23905e-05, 0, 0.0133393, 0.973837, 5.62935e-05, 0, 0.0192863, 0.96584, 6.77442e-05, 0, 0.0264369, 0.956309, 6.23073e-05, 0, 0.03481, 0.951523, 7.04131e-05, 0, 0.0444184, 0.946003, 8.36594e-05, 0, 0.0552713, 0.938454, 9.11736e-05, 0, 0.0673749, 0.929279, 9.38264e-05, 0, 0.0807329, 0.919239, 0.000103754, 0, 0.0953479, 0.907293, 0.000109928, 0, 0.111221, 0.893936, 0.000115257, 0, 0.128352, 0.879674, 0.000122265, 0, 0.14674, 0.865668, 0.000125733, 0, 0.166382, 0.850998, 0.000132305, 0, 0.187276, 0.834498, 0.000134844, 0, 0.209413, 0.816903, 0.000139276, 0, 0.232786, 0.798235, 0.000140984, 0, 0.257382, 0.779724, 0.00014378, 0, 0.283181, 0.760251, 0.000144623, 0, 0.310156, 0.739808, 0.000145228, 0, 0.338269, 0.718762, 0.00014539, 0, 0.367461, 0.697815, 0.000144432, 0, 0.397646, 0.67631, 0.000143893, 0, 0.428685, 0.654278, 0.000141846, 0, 0.460318, 0.632347, 0.00013935, 0, 0.492064, 0.610296, 0.000137138, 0, 0.52381, 0.588039, 0.000133806, 0, 0.555556, 0.566218, 0.000130755, 0, 0.587302, 0.544346, 0.000127128, 0, 0.619048, 0.522701, 0.000123002, 0, 0.650794, 0.501542, 0.000119443, 0, 0.68254, 0.480508, 0.000115055, 0, 0.714286, 0.460092, 0.000111032, 0, 0.746032, 0.440021, 0.000106635, 0, 0.777778, 0.420446, 0.000102162, 0, 0.809524, 0.401512, 9.8184e-05, 0, 0.84127, 0.38299, 9.36497e-05, 0, 0.873016, 0.365232, 8.9813e-05, 0, 0.904762, 0.347865, 8.53073e-05, 0, 0.936508, 0.331342, 8.17068e-05, 0, 0.968254, 0.315202, 7.73818e-05, 0, 1, 1, 2.9368e-07, 0, 0, 1, 2.937e-07, 0, 0, 1, 2.93998e-07, 0, 0, 1, 2.95298e-07, 0, 0, 0.999999, 2.98865e-07, 0, 0, 0.999998, 3.067e-07, 0, 0, 0.999995, 3.22082e-07, 0, 0, 0.999992, 3.50767e-07, 0, 0, 0.999986, 4.03538e-07, 0, 0, 0.999976, 5.01372e-07, 0, 0, 0.999964, 6.8562e-07, 0, 0, 0.999945, 1.0374e-06, 0, 0, 0.999919, 1.71269e-06, 0, 0, 0.999882, 3.00175e-06, 0, 0, 0.999829, 5.42144e-06, 0, 0, 0.999749, 9.84182e-06, 0, 0, 0.99962, 1.76213e-05, 0, 0, 0.999382, 3.05995e-05, 0, 1.38418e-05, 0.998751, 4.96686e-05, 0, 0.000389844, 0.995344, 5.10733e-05, 0, 0.00150343, 0.990768, 3.45829e-05, 0, 0.00352451, 0.987464, 3.42841e-05, 0, 0.00655379, 0.983846, 3.99072e-05, 0, 0.0106554, 0.980007, 5.33219e-05, 0, 0.0158723, 0.974494, 6.96992e-05, 0, 0.0222333, 0.96622, 7.76754e-05, 0, 0.029758, 0.956273, 7.47718e-05, 0, 0.0384596, 0.950952, 8.64611e-05, 0, 0.0483473, 0.945215, 0.000100464, 0, 0.0594266, 0.937287, 0.000103729, 0, 0.0717019, 0.928649, 0.000111665, 0, 0.0851752, 0.918791, 0.00012353, 0, 0.0998479, 0.906685, 0.000127115, 0, 0.115721, 0.893706, 0.00013628, 0, 0.132794, 0.879248, 0.000142427, 0, 0.151067, 0.864685, 0.000148091, 0, 0.170538, 0.850032, 0.000153517, 0, 0.191204, 0.833853, 0.000157322, 0, 0.213063, 0.816353, 0.000161086, 0, 0.236107, 0.797834, 0.000164111, 0, 0.260329, 0.778831, 0.000165446, 0, 0.285714, 0.759756, 0.000167492, 0, 0.312243, 0.739419, 0.000166928, 0, 0.339887, 0.718491, 0.000167, 0, 0.368604, 0.697392, 0.000165674, 0, 0.398329, 0.676102, 0.000163815, 0, 0.428961, 0.654243, 0.000162003, 0, 0.460331, 0.632176, 0.000158831, 0, 0.492064, 0.610407, 0.000155463, 0, 0.52381, 0.588394, 0.000152062, 0, 0.555556, 0.56645, 0.000147665, 0, 0.587302, 0.5449, 0.00014375, 0, 0.619048, 0.523276, 0.000138905, 0, 0.650794, 0.502179, 0.000134189, 0, 0.68254, 0.481359, 0.000129392, 0, 0.714286, 0.46092, 0.000124556, 0, 0.746032, 0.441084, 0.00011957, 0, 0.777778, 0.421517, 0.000114652, 0, 0.809524, 0.402721, 0.000109688, 0, 0.84127, 0.384222, 0.000104667, 0, 0.873016, 0.366534, 9.99633e-05, 0, 0.904762, 0.349205, 9.50177e-05, 0, 0.936508, 0.332702, 9.07301e-05, 0, 0.968254, 0.316599, 8.59769e-05, 0, 1, 1, 5.85473e-07, 0, 0, 1, 5.85507e-07, 0, 0, 1, 5.8602e-07, 0, 0, 0.999999, 5.88259e-07, 0, 0, 0.999999, 5.94381e-07, 0, 0, 0.999998, 6.07754e-07, 0, 0, 0.999995, 6.33729e-07, 0, 0, 0.99999, 6.8137e-07, 0, 0, 0.999984, 7.67003e-07, 0, 0, 0.999973, 9.21212e-07, 0, 0, 0.999959, 1.20218e-06, 0, 0, 0.999936, 1.72024e-06, 0, 0, 0.999907, 2.68088e-06, 0, 0, 0.999866, 4.45512e-06, 0, 0, 0.999806, 7.68481e-06, 0, 0, 0.999716, 1.342e-05, 0, 0, 0.999576, 2.32473e-05, 0, 0, 0.9993, 3.91694e-05, 0, 0.000129917, 0.998498, 6.08429e-05, 0, 0.000845035, 0.994132, 4.89743e-05, 0, 0.00237616, 0.99031, 3.84644e-05, 0, 0.00484456, 0.987409, 4.21768e-05, 0, 0.00832472, 0.983981, 5.04854e-05, 0, 0.0128643, 0.980268, 6.71028e-05, 0, 0.0184947, 0.974875, 8.52749e-05, 0, 0.025237, 0.966063, 8.5531e-05, 0, 0.0331046, 0.956779, 9.00588e-05, 0, 0.0421067, 0.950259, 0.00010577, 0, 0.0522487, 0.944239, 0.000119458, 0, 0.0635343, 0.936341, 0.000122164, 0, 0.0759654, 0.928047, 0.000134929, 0, 0.0895434, 0.918065, 0.000145544, 0, 0.104269, 0.906267, 0.000150531, 0, 0.120142, 0.893419, 0.000161652, 0, 0.137163, 0.878758, 0.00016593, 0, 0.15533, 0.863699, 0.000174014, 0, 0.174645, 0.848876, 0.000177877, 0, 0.195106, 0.833032, 0.000184049, 0, 0.21671, 0.815557, 0.000186088, 0, 0.239454, 0.797323, 0.00019054, 0, 0.263332, 0.778124, 0.000191765, 0, 0.288336, 0.758929, 0.000192535, 0, 0.314451, 0.738979, 0.000192688, 0, 0.341658, 0.718213, 0.000191522, 0, 0.369924, 0.696947, 0.000190491, 0, 0.399202, 0.675807, 0.000187913, 0, 0.429416, 0.654147, 0.000184451, 0, 0.460447, 0.63229, 0.000181442, 0, 0.492064, 0.610499, 0.000177139, 0, 0.523809, 0.588747, 0.000172596, 0, 0.555555, 0.566783, 0.000167457, 0, 0.587301, 0.545359, 0.000162518, 0, 0.619048, 0.523984, 0.000156818, 0, 0.650794, 0.502917, 0.000151884, 0, 0.68254, 0.482294, 0.000145514, 0, 0.714286, 0.461945, 0.000140199, 0, 0.746032, 0.442133, 0.000134101, 0, 0.777778, 0.422705, 0.000128374, 0, 0.809524, 0.403916, 0.000122996, 0, 0.84127, 0.38554, 0.000116808, 0, 0.873016, 0.367909, 0.000111973, 0, 0.904762, 0.350651, 0.000105938, 0, 0.936508, 0.334208, 0.000101355, 0, 0.968254, 0.318123, 9.57629e-05, 0, 1, 1, 1.11633e-06, 0, 0, 1, 1.11639e-06, 0, 0, 1, 1.11725e-06, 0, 0, 1, 1.12096e-06, 0, 0, 0.999999, 1.1311e-06, 0, 0, 0.999997, 1.15315e-06, 0, 0, 0.999995, 1.1956e-06, 0, 0, 0.999989, 1.27239e-06, 0, 0, 0.999981, 1.40772e-06, 0, 0, 0.999969, 1.64541e-06, 0, 0, 0.999952, 2.06607e-06, 0, 0, 0.999928, 2.81783e-06, 0, 0, 0.999895, 4.16835e-06, 0, 0, 0.999848, 6.58728e-06, 0, 0, 0.999781, 1.08648e-05, 0, 0, 0.999682, 1.82579e-05, 0, 0, 0.999523, 3.06003e-05, 0, 1.59122e-05, 0.999205, 4.99862e-05, 0, 0.000391184, 0.998131, 7.3306e-05, 0, 0.00147534, 0.993334, 5.13229e-05, 0, 0.0034227, 0.99016, 4.67783e-05, 0, 0.00632232, 0.987321, 5.23413e-05, 0, 0.0102295, 0.984099, 6.4267e-05, 0, 0.0151794, 0.980432, 8.43042e-05, 0, 0.0211947, 0.974976, 0.000102819, 0, 0.0282899, 0.966429, 9.96234e-05, 0, 0.0364739, 0.957633, 0.000111074, 0, 0.0457522, 0.949422, 0.000128644, 0, 0.0561278, 0.943045, 0.000140076, 0, 0.0676023, 0.935448, 0.000146349, 0, 0.0801762, 0.927225, 0.000161854, 0, 0.0938499, 0.917033, 0.000169135, 0, 0.108623, 0.905762, 0.000179987, 0, 0.124496, 0.892879, 0.000189832, 0, 0.141469, 0.878435, 0.000195881, 0, 0.159541, 0.863114, 0.00020466, 0, 0.178713, 0.84776, 0.000209473, 0, 0.198985, 0.832084, 0.000214861, 0, 0.220355, 0.814915, 0.000217695, 0, 0.242823, 0.796711, 0.000220313, 0, 0.266385, 0.777603, 0.00022313, 0, 0.291036, 0.757991, 0.000222471, 0, 0.316767, 0.738371, 0.000222869, 0, 0.343563, 0.717872, 0.000221243, 0, 0.371402, 0.696619, 0.000218089, 0, 0.400248, 0.675379, 0.00021562, 0, 0.430047, 0.65411, 0.00021169, 0, 0.460709, 0.63241, 0.000206947, 0, 0.492079, 0.61046, 0.000201709, 0, 0.52381, 0.58903, 0.000196753, 0, 0.555556, 0.567267, 0.000189637, 0, 0.587302, 0.545886, 0.000184735, 0, 0.619048, 0.524714, 0.000177257, 0, 0.650794, 0.503789, 0.000171424, 0, 0.68254, 0.483204, 0.000164688, 0, 0.714286, 0.462976, 0.000157172, 0, 0.746032, 0.443294, 0.000151341, 0, 0.777778, 0.423988, 0.000143737, 0, 0.809524, 0.405325, 0.000138098, 0, 0.84127, 0.386981, 0.000130698, 0, 0.873016, 0.369436, 0.000125276, 0, 0.904762, 0.35219, 0.000118349, 0, 0.936508, 0.335804, 0.00011312, 0, 0.968254, 0.319749, 0.000106687, 0, 1, 1, 2.04685e-06, 0, 0, 1, 2.04694e-06, 0, 0, 1, 2.04831e-06, 0, 0, 0.999999, 2.05428e-06, 0, 0, 0.999999, 2.07056e-06, 0, 0, 0.999997, 2.10581e-06, 0, 0, 0.999993, 2.1732e-06, 0, 0, 0.999987, 2.29365e-06, 0, 0, 0.999979, 2.50243e-06, 0, 0, 0.999965, 2.86127e-06, 0, 0, 0.999947, 3.48028e-06, 0, 0, 0.999918, 4.55588e-06, 0, 0, 0.999881, 6.43303e-06, 0, 0, 0.999828, 9.70064e-06, 0, 0, 0.999753, 1.53233e-05, 0, 0, 0.999642, 2.4793e-05, 0, 0, 0.999464, 4.02032e-05, 0, 0.000122947, 0.999089, 6.35852e-05, 0, 0.000807414, 0.997567, 8.57026e-05, 0, 0.00227206, 0.992903, 5.94912e-05, 0, 0.00462812, 0.990011, 5.78515e-05, 0, 0.00794162, 0.987192, 6.5399e-05, 0, 0.0122534, 0.98418, 8.19675e-05, 0, 0.0175888, 0.980491, 0.000105514, 0, 0.0239635, 0.974779, 0.000121532, 0, 0.031387, 0.96675, 0.000119144, 0, 0.0398644, 0.958248, 0.000136125, 0, 0.0493982, 0.948884, 0.000155408, 0, 0.0599896, 0.941673, 0.000162281, 0, 0.0716382, 0.934521, 0.000176754, 0, 0.0843437, 0.926205, 0.000192873, 0, 0.0981056, 0.916089, 0.000200038, 0, 0.112923, 0.904963, 0.000213624, 0, 0.128796, 0.892089, 0.000221834, 0, 0.145725, 0.878028, 0.000232619, 0, 0.163709, 0.86249, 0.000238632, 0, 0.182749, 0.846587, 0.000247002, 0, 0.202847, 0.830988, 0.000250702, 0, 0.224001, 0.814165, 0.000255562, 0, 0.246214, 0.796135, 0.000257505, 0, 0.269482, 0.777052, 0.000258625, 0, 0.293805, 0.757201, 0.000258398, 0, 0.319176, 0.737655, 0.000256714, 0, 0.345587, 0.717477, 0.000255187, 0, 0.373021, 0.696433, 0.000251792, 0, 0.401454, 0.675084, 0.000247223, 0, 0.430844, 0.653907, 0.000242213, 0, 0.461125, 0.632561, 0.000237397, 0, 0.492187, 0.610658, 0.000229313, 0, 0.52381, 0.589322, 0.000224402, 0, 0.555556, 0.567857, 0.000216116, 0, 0.587302, 0.54652, 0.000209124, 0, 0.619048, 0.525433, 0.000201601, 0, 0.650794, 0.504679, 0.000192957, 0, 0.68254, 0.484203, 0.000186052, 0, 0.714286, 0.464203, 0.000177672, 0, 0.746032, 0.444549, 0.000170005, 0, 0.777778, 0.425346, 0.000162401, 0, 0.809524, 0.406706, 0.0001544, 0, 0.84127, 0.388576, 0.000147437, 0, 0.873016, 0.37094, 0.000139493, 0, 0.904762, 0.353996, 0.000133219, 0, 0.936508, 0.337391, 0.000125573, 0, 0.968254, 0.321648, 0.000119867, 0, 1, 1, 3.62511e-06, 0, 0, 1, 3.62525e-06, 0, 0, 1, 3.62739e-06, 0, 0, 0.999999, 3.63673e-06, 0, 0, 0.999998, 3.66214e-06, 0, 0, 0.999996, 3.71698e-06, 0, 0, 0.999992, 3.82116e-06, 0, 0, 0.999986, 4.00554e-06, 0, 0, 0.999976, 4.32058e-06, 0, 0, 0.999961, 4.85194e-06, 0, 0, 0.999938, 5.74808e-06, 0, 0, 0.999908, 7.26643e-06, 0, 0, 0.999865, 9.84707e-06, 0, 0, 0.999807, 1.42217e-05, 0, 0, 0.999723, 2.15581e-05, 0, 0, 0.999602, 3.36114e-05, 0, 1.19113e-05, 0.999398, 5.27353e-05, 0, 0.000355813, 0.998946, 8.05809e-05, 0, 0.00137768, 0.996647, 9.42908e-05, 0, 0.00322469, 0.992298, 6.68733e-05, 0, 0.00597897, 0.989802, 7.16564e-05, 0, 0.00968903, 0.987019, 8.21355e-05, 0, 0.0143845, 0.984219, 0.000104555, 0, 0.0200831, 0.980425, 0.000131245, 0, 0.0267948, 0.974241, 0.000139613, 0, 0.034525, 0.967006, 0.000145931, 0, 0.0432757, 0.95893, 0.000167153, 0, 0.0530471, 0.949157, 0.000188146, 0, 0.0638386, 0.94062, 0.000194625, 0, 0.0756487, 0.933509, 0.000213721, 0, 0.0884762, 0.925088, 0.000229616, 0, 0.10232, 0.915178, 0.000239638, 0, 0.117178, 0.904093, 0.000254814, 0, 0.133051, 0.891337, 0.000263685, 0, 0.149939, 0.877326, 0.000274789, 0, 0.167841, 0.861794, 0.000280534, 0, 0.18676, 0.845758, 0.000289534, 0, 0.206696, 0.829792, 0.000294446, 0, 0.22765, 0.813037, 0.000296877, 0, 0.249625, 0.795285, 0.000300217, 0, 0.27262, 0.776323, 0.000299826, 0, 0.296636, 0.756673, 0.000299787, 0, 0.321671, 0.736856, 0.000297867, 0, 0.347718, 0.716883, 0.000294052, 0, 0.374768, 0.696089, 0.000289462, 0, 0.402804, 0.67505, 0.000285212, 0, 0.431796, 0.653509, 0.00027653, 0, 0.461695, 0.63258, 0.000271759, 0, 0.49242, 0.61104, 0.000262811, 0, 0.523822, 0.589567, 0.000255151, 0, 0.555556, 0.568322, 0.000246434, 0, 0.587302, 0.547235, 0.000237061, 0, 0.619048, 0.52616, 0.000228343, 0, 0.650794, 0.505716, 0.000219236, 0, 0.68254, 0.485274, 0.000209595, 0, 0.714286, 0.465411, 0.000201011, 0, 0.746032, 0.445854, 0.00019109, 0, 0.777778, 0.426911, 0.000182897, 0, 0.809524, 0.408222, 0.000173569, 0, 0.84127, 0.390307, 0.000165496, 0, 0.873016, 0.372624, 0.000156799, 0, 0.904762, 0.355804, 0.00014917, 0, 0.936508, 0.33924, 0.000140907, 0, 0.968254, 0.323534, 0.000134062, 0, 1, 1, 6.22487e-06, 0, 0, 1, 6.2251e-06, 0, 0, 1, 6.22837e-06, 0, 0, 0.999999, 6.24259e-06, 0, 0, 0.999998, 6.28127e-06, 0, 0, 0.999996, 6.36451e-06, 0, 0, 0.999991, 6.5218e-06, 0, 0, 0.999984, 6.79782e-06, 0, 0, 0.999973, 7.26361e-06, 0, 0, 0.999955, 8.03644e-06, 0, 0, 0.999931, 9.31397e-06, 0, 0, 0.999896, 1.14299e-05, 0, 0, 0.999847, 1.49402e-05, 0, 0, 0.999784, 2.07461e-05, 0, 0, 0.999692, 3.02493e-05, 0, 0, 0.999554, 4.54957e-05, 0, 9.97275e-05, 0.999326, 6.90762e-05, 0, 0.000724813, 0.998757, 0.000101605, 0, 0.0020972, 0.995367, 9.58745e-05, 0, 0.00432324, 0.99209, 8.32808e-05, 0, 0.00746347, 0.989517, 8.87601e-05, 0, 0.0115534, 0.987008, 0.00010564, 0, 0.0166134, 0.98421, 0.000133179, 0, 0.0226552, 0.98021, 0.000161746, 0, 0.0296838, 0.973676, 0.000161821, 0, 0.0377016, 0.967052, 0.000178635, 0, 0.0467079, 0.959385, 0.000206765, 0, 0.0567013, 0.949461, 0.00022476, 0, 0.0676796, 0.939578, 0.00023574, 0, 0.0796403, 0.932416, 0.00025893, 0, 0.0925812, 0.923759, 0.000271228, 0, 0.106501, 0.914223, 0.000289165, 0, 0.121397, 0.902942, 0.000301156, 0, 0.13727, 0.890419, 0.000313852, 0, 0.15412, 0.876639, 0.000324408, 0, 0.171946, 0.861316, 0.00033249, 0, 0.190751, 0.84496, 0.000338497, 0, 0.210537, 0.828427, 0.000345861, 0, 0.231305, 0.811871, 0.000347863, 0, 0.253057, 0.794397, 0.000350225, 0, 0.275797, 0.775726, 0.000349915, 0, 0.299525, 0.75617, 0.000347297, 0, 0.324242, 0.736091, 0.000344232, 0, 0.349947, 0.716213, 0.000340835, 0, 0.376633, 0.695736, 0.000332369, 0, 0.404289, 0.674961, 0.000327943, 0, 0.432895, 0.653518, 0.000318533, 0, 0.462415, 0.632574, 0.000310391, 0, 0.492788, 0.61134, 0.000300755, 0, 0.523909, 0.590017, 0.000290506, 0, 0.555556, 0.568752, 0.000280446, 0, 0.587302, 0.548061, 0.000269902, 0, 0.619048, 0.52711, 0.000258815, 0, 0.650794, 0.506682, 0.000248481, 0, 0.68254, 0.486524, 0.000237141, 0, 0.714286, 0.466812, 0.000226872, 0, 0.746032, 0.44732, 0.000216037, 0, 0.777778, 0.428473, 0.000205629, 0, 0.809524, 0.409921, 0.000195691, 0, 0.84127, 0.392028, 0.000185457, 0, 0.873016, 0.374606, 0.000176436, 0, 0.904762, 0.357601, 0.000166508, 0, 0.936508, 0.341348, 0.000158385, 0, 0.968254, 0.32542, 0.000149203, 0, 1, 1, 1.03967e-05, 0, 0, 1, 1.0397e-05, 0, 0, 1, 1.04019e-05, 0, 0, 0.999999, 1.04231e-05, 0, 0, 0.999998, 1.04806e-05, 0, 0, 0.999995, 1.06042e-05, 0, 0, 0.999991, 1.08366e-05, 0, 0, 0.999982, 1.12415e-05, 0, 0, 0.999968, 1.19174e-05, 0, 0, 0.99995, 1.30227e-05, 0, 0, 0.999922, 1.48176e-05, 0, 0, 0.999884, 1.77303e-05, 0, 0, 0.99983, 2.24564e-05, 0, 0, 0.999758, 3.00966e-05, 0, 0, 0.999654, 4.23193e-05, 0, 5.49083e-06, 0.999503, 6.14848e-05, 0, 0.000296087, 0.999237, 9.03576e-05, 0, 0.00123144, 0.998491, 0.0001271, 0, 0.00295954, 0.994594, 0.000107754, 0, 0.00555829, 0.99178, 0.000103025, 0, 0.00907209, 0.989265, 0.00011154, 0, 0.0135257, 0.986998, 0.000136296, 0, 0.0189327, 0.984137, 0.000169154, 0, 0.0252993, 0.979798, 0.000196671, 0, 0.0326272, 0.97337, 0.000196678, 0, 0.0409157, 0.967239, 0.000223121, 0, 0.0501623, 0.959543, 0.000253809, 0, 0.0603638, 0.949466, 0.000265972, 0, 0.0715171, 0.939074, 0.000288372, 0, 0.0836187, 0.931118, 0.000310983, 0, 0.0966657, 0.922525, 0.000325561, 0, 0.110656, 0.912983, 0.000345725, 0, 0.125588, 0.901617, 0.0003556, 0, 0.141461, 0.889487, 0.000374012, 0, 0.158275, 0.875787, 0.000383445, 0, 0.176031, 0.860654, 0.000393972, 0, 0.19473, 0.844417, 0.000400311, 0, 0.214374, 0.82741, 0.000405004, 0, 0.234967, 0.810545, 0.000407378, 0, 0.256512, 0.793312, 0.000407351, 0, 0.279011, 0.774847, 0.000406563, 0, 0.302468, 0.755621, 0.000404903, 0, 0.326887, 0.735511, 0.000397486, 0, 0.352266, 0.715435, 0.00039357, 0, 0.378605, 0.695403, 0.000384739, 0, 0.405897, 0.674681, 0.000376108, 0, 0.43413, 0.65359, 0.000365997, 0, 0.463277, 0.632471, 0.000354957, 0, 0.493295, 0.61151, 0.000343593, 0, 0.524106, 0.59064, 0.000331841, 0, 0.555561, 0.569386, 0.000318891, 0, 0.587302, 0.548785, 0.0003072, 0, 0.619048, 0.528146, 0.00029361, 0, 0.650794, 0.507872, 0.000281709, 0, 0.68254, 0.487805, 0.000268627, 0, 0.714286, 0.468196, 0.000255887, 0, 0.746032, 0.448922, 0.000243997, 0, 0.777778, 0.430093, 0.000231662, 0, 0.809524, 0.411845, 0.000220339, 0, 0.84127, 0.393808, 0.000208694, 0, 0.873016, 0.376615, 0.000198045, 0, 0.904762, 0.359655, 0.000187375, 0, 0.936508, 0.343452, 0.000177371, 0, 0.968254, 0.32765, 0.000167525, 0, 1, 1, 1.69351e-05, 0, 0, 1, 1.69356e-05, 0, 0, 1, 1.69427e-05, 0, 0, 0.999999, 1.69736e-05, 0, 0, 0.999998, 1.70575e-05, 0, 0, 0.999995, 1.72372e-05, 0, 0, 0.99999, 1.75739e-05, 0, 0, 0.999979, 1.81568e-05, 0, 0, 0.999966, 1.91206e-05, 0, 0, 0.999944, 2.0677e-05, 0, 0, 0.999912, 2.31644e-05, 0, 0, 0.999869, 2.71268e-05, 0, 0, 0.999811, 3.34272e-05, 0, 0, 0.99973, 4.33979e-05, 0, 0, 0.999617, 5.90083e-05, 0, 6.80315e-05, 0.999445, 8.29497e-05, 0, 0.000612796, 0.999138, 0.000118019, 0, 0.00187408, 0.998095, 0.000156712, 0, 0.00395791, 0.993919, 0.000125054, 0, 0.00692144, 0.991333, 0.000126091, 0, 0.0107962, 0.989226, 0.000144912, 0, 0.0155986, 0.986954, 0.000175737, 0, 0.0213364, 0.983982, 0.000213883, 0, 0.0280114, 0.979128, 0.000234526, 0, 0.0356226, 0.973327, 0.000243725, 0, 0.0441668, 0.967416, 0.0002773, 0, 0.0536399, 0.959729, 0.000308799, 0, 0.0640376, 0.949758, 0.000322447, 0, 0.0753554, 0.939173, 0.000350021, 0, 0.0875893, 0.9296, 0.000370089, 0, 0.100736, 0.921181, 0.000391365, 0, 0.114793, 0.91164, 0.000413636, 0, 0.129759, 0.900435, 0.000427068, 0, 0.145632, 0.888183, 0.000441046, 0, 0.162412, 0.874772, 0.000454968, 0, 0.180101, 0.859566, 0.000461882, 0, 0.1987, 0.843579, 0.000471556, 0, 0.218213, 0.826453, 0.000474335, 0, 0.238641, 0.809164, 0.000477078, 0, 0.259989, 0.792179, 0.00047755, 0, 0.282262, 0.773866, 0.000472573, 0, 0.305464, 0.754944, 0.000469765, 0, 0.329599, 0.735133, 0.000462371, 0, 0.35467, 0.714858, 0.000453674, 0, 0.380678, 0.694829, 0.000443888, 0, 0.407622, 0.674453, 0.000432052, 0, 0.435493, 0.653685, 0.000420315, 0, 0.464275, 0.632666, 0.000406829, 0, 0.493938, 0.611676, 0.000392234, 0, 0.524422, 0.591193, 0.000379208, 0, 0.555624, 0.570145, 0.00036319, 0, 0.587302, 0.549566, 0.000349111, 0, 0.619048, 0.529278, 0.000334166, 0, 0.650794, 0.509026, 0.000318456, 0, 0.68254, 0.489186, 0.00030449, 0, 0.714286, 0.469662, 0.000289051, 0, 0.746032, 0.450691, 0.000275494, 0, 0.777778, 0.431841, 0.000261437, 0, 0.809524, 0.413752, 0.000247846, 0, 0.84127, 0.395951, 0.000235085, 0, 0.873016, 0.378633, 0.000222245, 0, 0.904762, 0.36194, 0.000210533, 0, 0.936508, 0.345599, 0.000198494, 0, 0.968254, 0.329999, 0.000188133, 0, 1, 1, 2.69663e-05, 0, 0, 1, 2.6967e-05, 0, 0, 1, 2.69772e-05, 0, 0, 0.999999, 2.70214e-05, 0, 0, 0.999998, 2.71415e-05, 0, 0, 0.999994, 2.7398e-05, 0, 0, 0.999988, 2.78771e-05, 0, 0, 0.999977, 2.87019e-05, 0, 0, 0.999961, 3.00544e-05, 0, 0, 0.999937, 3.22138e-05, 0, 0, 0.999904, 3.56163e-05, 0, 0, 0.999854, 4.09465e-05, 0, 0, 0.99979, 4.92651e-05, 0, 0, 0.999699, 6.21722e-05, 0, 8.8288e-07, 0.999572, 8.19715e-05, 0, 0.000223369, 0.999381, 0.000111689, 0, 0.00105414, 0.999016, 0.000153862, 0, 0.0026493, 0.997437, 0.000187667, 0, 0.00508608, 0.993545, 0.000155672, 0, 0.00840554, 0.991135, 0.000161455, 0, 0.012629, 0.989157, 0.000188241, 0, 0.0177661, 0.986874, 0.000226229, 0, 0.0238198, 0.983714, 0.000268668, 0, 0.0307887, 0.978301, 0.000277109, 0, 0.0386688, 0.973227, 0.000303446, 0, 0.0474554, 0.967317, 0.000341851, 0, 0.0571428, 0.959477, 0.000370885, 0, 0.0677256, 0.950012, 0.000392753, 0, 0.0791988, 0.939484, 0.00042781, 0, 0.0915576, 0.928135, 0.000443866, 0, 0.104798, 0.919819, 0.000472959, 0, 0.118918, 0.910049, 0.000491551, 0, 0.133915, 0.899181, 0.000512616, 0, 0.149788, 0.886881, 0.000523563, 0, 0.166537, 0.87359, 0.000540183, 0, 0.184164, 0.858613, 0.000547386, 0, 0.202669, 0.842809, 0.000554809, 0, 0.222056, 0.825727, 0.000558316, 0, 0.242329, 0.808086, 0.000557824, 0, 0.263492, 0.790728, 0.000556346, 0, 0.285551, 0.772987, 0.000552672, 0, 0.30851, 0.7541, 0.000543738, 0, 0.332376, 0.734669, 0.000536107, 0, 0.357153, 0.714411, 0.000523342, 0, 0.382845, 0.694196, 0.000512238, 0, 0.409454, 0.674252, 0.000497465, 0, 0.436977, 0.65357, 0.000481096, 0, 0.465404, 0.632999, 0.000467054, 0, 0.494713, 0.611994, 0.000448771, 0, 0.524864, 0.591604, 0.000431889, 0, 0.555779, 0.571134, 0.000415238, 0, 0.587302, 0.550528, 0.000396369, 0, 0.619048, 0.530292, 0.000379477, 0, 0.650794, 0.510364, 0.000361488, 0, 0.68254, 0.490749, 0.000343787, 0, 0.714286, 0.471266, 0.000327822, 0, 0.746032, 0.452462, 0.000310626, 0, 0.777778, 0.433907, 0.000295352, 0, 0.809524, 0.415659, 0.000279179, 0, 0.84127, 0.398138, 0.000264685, 0, 0.873016, 0.380833, 0.000249905, 0, 0.904762, 0.364247, 0.000236282, 0, 0.936508, 0.348041, 0.000222905, 0, 0.968254, 0.332389, 0.000210522, 0, 1, 1, 4.20604e-05, 0, 0, 1, 4.20614e-05, 0, 0, 1, 4.20757e-05, 0, 0, 0.999999, 4.2138e-05, 0, 0, 0.999997, 4.23067e-05, 0, 0, 0.999993, 4.26668e-05, 0, 0, 0.999986, 4.33372e-05, 0, 0, 0.999974, 4.44857e-05, 0, 0, 0.999956, 4.63554e-05, 0, 0, 0.99993, 4.93105e-05, 0, 0, 0.999892, 5.39077e-05, 0, 0, 0.999838, 6.10005e-05, 0, 0, 0.999767, 7.18822e-05, 0, 0, 0.999666, 8.84581e-05, 0, 3.65471e-05, 0.999525, 0.000113398, 0, 0.000485623, 0.999311, 0.000150043, 0, 0.00162096, 0.998865, 0.000200063, 0, 0.00355319, 0.996278, 0.000211014, 0, 0.00633818, 0.992956, 0.000189672, 0, 0.0100043, 0.991017, 0.000210262, 0, 0.0145648, 0.989055, 0.000244292, 0, 0.0200237, 0.986741, 0.000290481, 0, 0.0263798, 0.983288, 0.000334303, 0, 0.033629, 0.977784, 0.000340307, 0, 0.0417652, 0.973037, 0.000377864, 0, 0.0507821, 0.967181, 0.0004239, 0, 0.060673, 0.958971, 0.000443854, 0, 0.0714314, 0.950093, 0.000483039, 0, 0.0830518, 0.939552, 0.000517934, 0, 0.0955288, 0.927678, 0.000539449, 0, 0.108859, 0.918278, 0.000568604, 0, 0.123038, 0.908449, 0.000588505, 0, 0.138065, 0.897713, 0.000612473, 0, 0.153938, 0.885533, 0.000625575, 0, 0.170657, 0.872131, 0.00063854, 0, 0.188224, 0.857517, 0.000647034, 0, 0.20664, 0.841796, 0.00065209, 0, 0.225909, 0.824726, 0.0006544, 0, 0.246035, 0.807297, 0.000655744, 0, 0.267022, 0.789058, 0.000646716, 0, 0.288878, 0.77189, 0.000643898, 0, 0.311607, 0.753082, 0.000629973, 0, 0.335216, 0.7341, 0.000621564, 0, 0.359713, 0.714094, 0.000605171, 0, 0.385103, 0.693839, 0.000588752, 0, 0.41139, 0.673891, 0.000573294, 0, 0.438576, 0.653565, 0.000552682, 0, 0.466656, 0.633326, 0.000533446, 0, 0.495617, 0.612582, 0.000514635, 0, 0.525431, 0.59205, 0.00049303, 0, 0.556041, 0.571918, 0.000471842, 0, 0.587338, 0.551572, 0.000451713, 0, 0.619048, 0.531553, 0.000430049, 0, 0.650794, 0.51175, 0.000410445, 0, 0.68254, 0.49238, 0.000390098, 0, 0.714286, 0.473143, 0.000370033, 0, 0.746032, 0.45423, 0.000351205, 0, 0.777778, 0.435963, 0.000332049, 0, 0.809524, 0.41787, 0.000315021, 0, 0.84127, 0.400387, 0.000297315, 0, 0.873016, 0.383332, 0.000281385, 0, 0.904762, 0.366665, 0.000265397, 0, 0.936508, 0.350633, 0.000250601, 0, 0.968254, 0.334964, 0.00023589, 0, 1, 1, 6.43736e-05, 0, 0, 1, 6.4375e-05, 0, 0, 1, 6.43947e-05, 0, 0, 0.999999, 6.4481e-05, 0, 0, 0.999997, 6.47143e-05, 0, 0, 0.999994, 6.52119e-05, 0, 0, 0.999985, 6.61359e-05, 0, 0, 0.999972, 6.77116e-05, 0, 0, 0.999952, 7.02599e-05, 0, 0, 0.999922, 7.42517e-05, 0, 0, 0.99988, 8.03906e-05, 0, 0, 0.99982, 8.97315e-05, 0, 0, 0.999741, 0.000103838, 0, 0, 0.999629, 0.00012496, 0, 0.000149024, 0.999474, 0.000156161, 0, 0.000861027, 0.999229, 0.000201034, 0, 0.00231198, 0.998662, 0.000259069, 0, 0.00458147, 0.995299, 0.000245439, 0, 0.00770895, 0.992732, 0.00024498, 0, 0.0117126, 0.990847, 0.000273211, 0, 0.0165989, 0.988911, 0.000316492, 0, 0.0223674, 0.98654, 0.00037161, 0, 0.0290135, 0.982636, 0.000410352, 0, 0.0365309, 0.977346, 0.000421756, 0, 0.0449117, 0.972909, 0.000475578, 0, 0.0541481, 0.966821, 0.000522482, 0, 0.0642326, 0.958686, 0.000545008, 0, 0.075158, 0.949754, 0.000589286, 0, 0.0869181, 0.939184, 0.000619995, 0, 0.0995074, 0.927505, 0.000654266, 0, 0.112922, 0.916606, 0.000682362, 0, 0.127157, 0.906707, 0.000704286, 0, 0.142212, 0.895937, 0.000725909, 0, 0.158085, 0.883913, 0.000743939, 0, 0.174776, 0.870642, 0.000755157, 0, 0.192287, 0.856241, 0.000764387, 0, 0.210619, 0.84069, 0.000771032, 0, 0.229775, 0.823728, 0.000765906, 0, 0.249761, 0.806481, 0.000767604, 0, 0.270582, 0.787924, 0.000754385, 0, 0.292243, 0.770588, 0.000749668, 0, 0.314753, 0.751991, 0.000731613, 0, 0.338118, 0.733407, 0.000717655, 0, 0.362347, 0.713688, 0.000700604, 0, 0.387447, 0.693595, 0.000678765, 0, 0.413424, 0.673426, 0.000657042, 0, 0.440284, 0.65359, 0.000635892, 0, 0.468027, 0.633576, 0.000611569, 0, 0.496645, 0.613144, 0.000586011, 0, 0.526122, 0.592711, 0.000563111, 0, 0.556417, 0.572722, 0.000537699, 0, 0.587451, 0.552762, 0.000512556, 0, 0.619048, 0.532985, 0.000489757, 0, 0.650794, 0.513219, 0.000464139, 0, 0.68254, 0.493992, 0.000442193, 0, 0.714286, 0.47509, 0.000418629, 0, 0.746032, 0.456287, 0.000397045, 0, 0.777778, 0.438152, 0.000375504, 0, 0.809524, 0.420294, 0.00035492, 0, 0.84127, 0.402749, 0.000335327, 0, 0.873016, 0.385879, 0.000316422, 0, 0.904762, 0.369352, 0.000298333, 0, 0.936508, 0.353301, 0.000281417, 0, 0.968254, 0.337781, 0.000265203, 0, 1, 1, 9.68267e-05, 0, 0, 1, 9.68284e-05, 0, 0, 1, 9.68556e-05, 0, 0, 0.999999, 9.69733e-05, 0, 0, 0.999997, 9.72913e-05, 0, 0, 0.999993, 9.79688e-05, 0, 0, 0.999984, 9.92239e-05, 0, 0, 0.999969, 0.000101356, 0, 0, 0.999946, 0.000104784, 0, 0, 0.999913, 0.000110111, 0, 0, 0.999868, 0.000118217, 0, 0, 0.999801, 0.000130396, 0, 0, 0.999712, 0.000148523, 0, 1.24907e-05, 0.999589, 0.000175233, 0, 0.000355405, 0.999416, 0.000213999, 0, 0.0013528, 0.999136, 0.000268529, 0, 0.00312557, 0.998367, 0.000333088, 0, 0.00573045, 0.994701, 0.000304757, 0, 0.00919397, 0.992497, 0.000318031, 0, 0.0135261, 0.990608, 0.000353863, 0, 0.0187278, 0.988715, 0.000409044, 0, 0.0247947, 0.986241, 0.000472967, 0, 0.0317196, 0.981696, 0.000495104, 0, 0.039494, 0.977097, 0.000532873, 0, 0.0481087, 0.972583, 0.000594447, 0, 0.0575549, 0.966142, 0.000636867, 0, 0.0678242, 0.95823, 0.000669899, 0, 0.0789089, 0.949677, 0.000719499, 0, 0.0908023, 0.939226, 0.000750584, 0, 0.103499, 0.927501, 0.000793183, 0, 0.116993, 0.915199, 0.00081995, 0, 0.131282, 0.90498, 0.000847654, 0, 0.146364, 0.894243, 0.000868929, 0, 0.162237, 0.882154, 0.000884278, 0, 0.178902, 0.869161, 0.000898108, 0, 0.196358, 0.854751, 0.000901254, 0, 0.21461, 0.839368, 0.00090679, 0, 0.23366, 0.822874, 0.000901541, 0, 0.253512, 0.805514, 0.000897297, 0, 0.274174, 0.78716, 0.000881856, 0, 0.29565, 0.769061, 0.000870032, 0, 0.31795, 0.751, 0.000851719, 0, 0.341081, 0.732614, 0.000830671, 0, 0.365053, 0.713171, 0.000806569, 0, 0.389874, 0.693472, 0.00078338, 0, 0.415553, 0.673528, 0.000756404, 0, 0.442098, 0.653397, 0.000726872, 0, 0.469512, 0.633781, 0.000700494, 0, 0.497794, 0.613877, 0.00067105, 0, 0.526935, 0.593506, 0.000640361, 0, 0.556908, 0.573667, 0.000613502, 0, 0.587657, 0.553932, 0.000583177, 0, 0.61906, 0.534345, 0.000554375, 0, 0.650794, 0.515042, 0.000527811, 0, 0.68254, 0.495674, 0.000499367, 0, 0.714286, 0.477132, 0.00047429, 0, 0.746032, 0.458609, 0.000447726, 0, 0.777778, 0.440354, 0.000424205, 0, 0.809524, 0.422765, 0.000399549, 0, 0.84127, 0.405472, 0.000378315, 0, 0.873016, 0.388482, 0.000355327, 0, 0.904762, 0.372191, 0.000336122, 0, 0.936508, 0.356099, 0.000315247, 0, 0.968254, 0.340737, 0.00029794, 0, 1, 1, 0.000143327, 0, 0, 1, 0.00014333, 0, 0, 1, 0.000143366, 0, 0, 0.999999, 0.000143524, 0, 0, 0.999996, 0.000143952, 0, 0, 0.999991, 0.000144862, 0, 0, 0.999981, 0.000146544, 0, 0, 0.999966, 0.000149391, 0, 0, 0.999941, 0.000153946, 0, 0, 0.999905, 0.000160971, 0, 0, 0.999852, 0.000171562, 0, 0, 0.99978, 0.00018729, 0, 0, 0.999681, 0.000210386, 0, 8.26239e-05, 0.999546, 0.000243906, 0, 0.000664807, 0.999352, 0.000291739, 0, 0.00196192, 0.999027, 0.000357419, 0, 0.00405941, 0.997886, 0.000422349, 0, 0.00699664, 0.99419, 0.000385008, 0, 0.0107896, 0.99214, 0.000409775, 0, 0.0154415, 0.990274, 0.000456418, 0, 0.0209488, 0.988455, 0.000527008, 0, 0.0273037, 0.985804, 0.000597685, 0, 0.0344969, 0.98103, 0.000613124, 0, 0.0425183, 0.976674, 0.000668321, 0, 0.0513575, 0.972021, 0.000736985, 0, 0.0610046, 0.965274, 0.000773789, 0, 0.0714508, 0.958046, 0.000830852, 0, 0.0826877, 0.949333, 0.000875766, 0, 0.0947085, 0.939135, 0.000917088, 0, 0.107507, 0.927119, 0.000952244, 0, 0.121078, 0.91469, 0.000990626, 0, 0.135419, 0.903006, 0.00101304, 0, 0.150526, 0.892368, 0.00103834, 0, 0.166399, 0.880231, 0.00105002, 0, 0.183038, 0.867432, 0.00106331, 0, 0.200443, 0.853208, 0.00106783, 0, 0.218618, 0.837956, 0.00106458, 0, 0.237566, 0.821772, 0.00105945, 0, 0.257291, 0.804328, 0.00104685, 0, 0.2778, 0.786465, 0.00103178, 0, 0.2991, 0.768004, 0.00101077, 0, 0.321199, 0.74972, 0.000985504, 0, 0.344106, 0.731682, 0.000962893, 0, 0.36783, 0.712813, 0.000932146, 0, 0.392383, 0.693139, 0.00089871, 0, 0.417774, 0.673566, 0.000869678, 0, 0.444013, 0.653483, 0.000835525, 0, 0.471107, 0.633891, 0.000799853, 0, 0.49906, 0.614433, 0.000766838, 0, 0.527869, 0.594586, 0.000732227, 0, 0.557517, 0.574769, 0.000696442, 0, 0.587966, 0.555149, 0.000663935, 0, 0.61913, 0.535898, 0.000629826, 0, 0.650794, 0.516753, 0.000596486, 0, 0.68254, 0.497816, 0.000567078, 0, 0.714286, 0.479034, 0.000534399, 0, 0.746032, 0.460975, 0.000507013, 0, 0.777778, 0.442935, 0.000477421, 0, 0.809524, 0.425263, 0.000451101, 0, 0.84127, 0.408248, 0.000424964, 0, 0.873016, 0.391339, 0.00039993, 0, 0.904762, 0.37513, 0.000377619, 0, 0.936508, 0.359172, 0.000354418, 0, 0.968254, 0.343876, 0.000334823, 0, 1, 1, 0.000209042, 0, 0, 1, 0.000209045, 0, 0, 1, 0.000209093, 0, 0, 0.999999, 0.000209304, 0, 0, 0.999996, 0.000209871, 0, 0, 0.999991, 0.000211078, 0, 0, 0.999979, 0.000213304, 0, 0, 0.999963, 0.000217061, 0, 0, 0.999933, 0.000223042, 0, 0, 0.999894, 0.000232206, 0, 0, 0.999837, 0.000245901, 0, 0, 0.999756, 0.000266023, 0, 1.02927e-06, 0.999648, 0.000295204, 0, 0.000233468, 0.999499, 0.000336958, 0, 0.00108237, 0.999283, 0.000395563, 0, 0.00268832, 0.998896, 0.000473785, 0, 0.00511138, 0.997006, 0.000520008, 0, 0.00837705, 0.993819, 0.000497261, 0, 0.0124928, 0.991632, 0.000523722, 0, 0.0174561, 0.989875, 0.000587258, 0, 0.0232596, 0.988109, 0.000676329, 0, 0.0298932, 0.985155, 0.000747701, 0, 0.0373453, 0.980479, 0.000768803, 0, 0.0456045, 0.976271, 0.000841054, 0, 0.0546593, 0.971347, 0.000911469, 0, 0.0644994, 0.964528, 0.000953057, 0, 0.0751152, 0.957632, 0.00102221, 0, 0.0864981, 0.948681, 0.00106122, 0, 0.0986407, 0.938716, 0.00111857, 0, 0.111537, 0.926629, 0.00114762, 0, 0.125182, 0.914025, 0.00118995, 0, 0.139571, 0.901026, 0.00121228, 0, 0.154703, 0.890358, 0.00123946, 0, 0.170576, 0.878283, 0.0012527, 0, 0.18719, 0.865459, 0.00125536, 0, 0.204547, 0.851407, 0.00126134, 0, 0.222648, 0.836276, 0.00124759, 0, 0.241498, 0.820436, 0.00124443, 0, 0.261101, 0.803253, 0.00122071, 0, 0.281465, 0.785562, 0.00120107, 0, 0.302595, 0.76718, 0.00117762, 0, 0.324501, 0.748551, 0.00114289, 0, 0.347192, 0.730564, 0.00110872, 0, 0.370679, 0.712253, 0.00107636, 0, 0.394973, 0.692867, 0.00103646, 0, 0.420085, 0.673695, 0.000996793, 0, 0.446027, 0.653912, 0.00095675, 0, 0.47281, 0.634129, 0.000916739, 0, 0.500441, 0.615004, 0.000874401, 0, 0.528921, 0.595587, 0.000833411, 0, 0.558244, 0.575965, 0.000794556, 0, 0.588384, 0.5566, 0.00075196, 0, 0.619281, 0.537428, 0.000716381, 0, 0.650795, 0.518623, 0.000676558, 0, 0.68254, 0.499964, 0.00064074, 0, 0.714286, 0.481356, 0.000605984, 0, 0.746032, 0.463279, 0.000570256, 0, 0.777778, 0.445673, 0.000540138, 0, 0.809524, 0.428032, 0.000507299, 0, 0.84127, 0.411112, 0.000479553, 0, 0.873016, 0.394444, 0.000450737, 0, 0.904762, 0.378247, 0.000424269, 0, 0.936508, 0.362415, 0.000399111, 0, 0.968254, 0.347103, 0.000375274, 0, 1, 1, 0.000300729, 0, 0, 1, 0.000300733, 0, 0, 1, 0.000300797, 0, 0, 0.999998, 0.000301072, 0, 0, 0.999996, 0.000301817, 0, 0, 0.999989, 0.000303398, 0, 0, 0.999977, 0.000306309, 0, 0, 0.999958, 0.000311209, 0, 0, 0.999927, 0.000318975, 0, 0, 0.999884, 0.000330804, 0, 0, 0.99982, 0.00034834, 0, 0, 0.999733, 0.000373854, 0, 3.26995e-05, 0.999613, 0.000410424, 0, 0.000477174, 0.999447, 0.000462047, 0, 0.00161099, 0.999204, 0.000533322, 0, 0.00353153, 0.998725, 0.000624964, 0, 0.00627965, 0.995871, 0.000631786, 0, 0.0098693, 0.993194, 0.000632017, 0, 0.0143011, 0.991541, 0.00068923, 0, 0.019568, 0.989773, 0.000766892, 0, 0.0256593, 0.987647, 0.000863668, 0, 0.0325625, 0.984193, 0.000922089, 0, 0.0402647, 0.980016, 0.000970749, 0, 0.0487532, 0.975859, 0.00106027, 0, 0.058016, 0.970514, 0.00112239, 0, 0.0680419, 0.963625, 0.00117212, 0, 0.0788208, 0.956959, 0.00125211, 0, 0.0903439, 0.947956, 0.00129411, 0, 0.102604, 0.93809, 0.00135879, 0, 0.115594, 0.92659, 0.00139309, 0, 0.129309, 0.913829, 0.00143253, 0, 0.143745, 0.90005, 0.00145809, 0, 0.158901, 0.888129, 0.0014748, 0, 0.174774, 0.87607, 0.00148756, 0, 0.191365, 0.863461, 0.00148714, 0, 0.208674, 0.849594, 0.00148892, 0, 0.226705, 0.834531, 0.00146496, 0, 0.245461, 0.81903, 0.0014579, 0, 0.264947, 0.802122, 0.00143039, 0, 0.28517, 0.78445, 0.00139717, 0, 0.306137, 0.766434, 0.00136312, 0, 0.327857, 0.747816, 0.00132597, 0, 0.350341, 0.729519, 0.00128323, 0, 0.373598, 0.711454, 0.00123803, 0, 0.397642, 0.692699, 0.00119097, 0, 0.422485, 0.673723, 0.00114565, 0, 0.448139, 0.654386, 0.00109552, 0, 0.474619, 0.634673, 0.00104553, 0, 0.501933, 0.615554, 0.00099985, 0, 0.530089, 0.596462, 0.000948207, 0, 0.559087, 0.577385, 0.000902299, 0, 0.588913, 0.558257, 0.000856448, 0, 0.619525, 0.5392, 0.000810395, 0, 0.650826, 0.520543, 0.000768558, 0, 0.68254, 0.502206, 0.0007239, 0, 0.714286, 0.48402, 0.000685794, 0, 0.746032, 0.465779, 0.00064471, 0, 0.777778, 0.448455, 0.000609583, 0, 0.809524, 0.431091, 0.00057227, 0, 0.84127, 0.414147, 0.00054042, 0, 0.873016, 0.39765, 0.000506545, 0, 0.904762, 0.381576, 0.000477635, 0, 0.936508, 0.365881, 0.000448446, 0, 0.968254, 0.350582, 0.000421424, 0, 1, 1, 0.000427144, 0, 0, 1, 0.000427151, 0, 0, 1, 0.000427232, 0, 0, 0.999998, 0.00042759, 0, 0, 0.999995, 0.000428555, 0, 0, 0.999988, 0.000430603, 0, 0, 0.999976, 0.000434368, 0, 0, 0.999952, 0.000440688, 0, 0, 0.999919, 0.000450667, 0, 0, 0.999871, 0.00046578, 0, 0, 0.999801, 0.000488024, 0, 0, 0.999704, 0.000520092, 0, 0.000129791, 0.999572, 0.000565553, 0, 0.000821056, 0.999389, 0.000628906, 0, 0.00225241, 0.999114, 0.000714911, 0, 0.00449109, 0.998488, 0.000819218, 0, 0.00756249, 0.995234, 0.00080415, 0, 0.0114716, 0.993021, 0.000830181, 0, 0.0162131, 0.991407, 0.000902645, 0, 0.021776, 0.989625, 0.000996934, 0, 0.0281471, 0.987064, 0.00109707, 0, 0.0353118, 0.983265, 0.00114353, 0, 0.0432562, 0.979535, 0.0012272, 0, 0.0519665, 0.975224, 0.00132642, 0, 0.0614298, 0.969574, 0.00138092, 0, 0.0716348, 0.963021, 0.00145896, 0, 0.0825709, 0.956046, 0.00152834, 0, 0.094229, 0.947136, 0.00158217, 0, 0.106602, 0.937313, 0.0016347, 0, 0.119682, 0.926073, 0.00168383, 0, 0.133465, 0.913121, 0.00171627, 0, 0.147947, 0.899165, 0.00174229, 0, 0.163125, 0.885891, 0.00176137, 0, 0.178998, 0.873783, 0.00176406, 0, 0.195566, 0.861331, 0.00176156, 0, 0.21283, 0.847569, 0.00175346, 0, 0.230793, 0.832785, 0.00172753, 0, 0.249459, 0.817442, 0.00170204, 0, 0.268832, 0.800613, 0.00166576, 0, 0.28892, 0.783597, 0.00162909, 0, 0.30973, 0.76571, 0.0015826, 0, 0.331271, 0.747021, 0.00153106, 0, 0.353554, 0.728593, 0.00148036, 0, 0.37659, 0.710661, 0.00142808, 0, 0.400391, 0.692426, 0.00136906, 0, 0.424973, 0.673623, 0.00131066, 0, 0.450347, 0.65494, 0.00125569, 0, 0.476531, 0.635448, 0.00119517, 0, 0.503535, 0.616221, 0.00113828, 0, 0.531372, 0.597531, 0.0010816, 0, 0.560047, 0.578795, 0.00102673, 0, 0.589554, 0.559892, 0.000970985, 0, 0.619869, 0.541307, 0.000919773, 0, 0.650923, 0.522608, 0.000868479, 0, 0.68254, 0.504484, 0.00082137, 0, 0.714286, 0.486603, 0.000772916, 0, 0.746032, 0.468802, 0.000730353, 0, 0.777778, 0.451172, 0.000684955, 0, 0.809524, 0.434348, 0.000647565, 0, 0.84127, 0.417445, 0.000605863, 0, 0.873016, 0.401077, 0.000571885, 0, 0.904762, 0.385039, 0.000536034, 0, 0.936508, 0.369483, 0.000504227, 0, 0.968254, 0.354272, 0.000473165, 0, 1, 1, 0.000599525, 0, 0, 1, 0.000599533, 0, 0, 1, 0.000599639, 0, 0, 0.999998, 0.000600097, 0, 0, 0.999994, 0.000601336, 0, 0, 0.999987, 0.000603958, 0, 0, 0.999972, 0.000608775, 0, 0, 0.999949, 0.000616842, 0, 0, 0.999912, 0.000629534, 0, 0, 0.999857, 0.000648658, 0, 0, 0.999781, 0.000676615, 0, 5.38873e-06, 0.999674, 0.000716574, 0, 0.000308602, 0.999528, 0.000772641, 0, 0.00127003, 0.999326, 0.000849806, 0, 0.00300783, 0.999009, 0.000952682, 0, 0.00556637, 0.998112, 0.00106394, 0, 0.00895889, 0.994496, 0.00102228, 0, 0.0131827, 0.992806, 0.00108586, 0, 0.0182277, 0.991211, 0.0011759, 0, 0.0240795, 0.989415, 0.00128955, 0, 0.030723, 0.986499, 0.00139038, 0, 0.0381418, 0.982679, 0.00144539, 0, 0.046321, 0.978839, 0.00153954, 0, 0.0552459, 0.974295, 0.00164417, 0, 0.0649034, 0.968784, 0.00171517, 0, 0.0752814, 0.962324, 0.00180282, 0, 0.0863693, 0.954956, 0.00186387, 0, 0.0981578, 0.94624, 0.00193817, 0, 0.110639, 0.936517, 0.00198156, 0, 0.123806, 0.925186, 0.00203042, 0, 0.137655, 0.91252, 0.0020664, 0, 0.15218, 0.898441, 0.00207822, 0, 0.16738, 0.884394, 0.0020992, 0, 0.183253, 0.871273, 0.00208748, 0, 0.199799, 0.859057, 0.00208686, 0, 0.21702, 0.845243, 0.00205519, 0, 0.234918, 0.830723, 0.00202868, 0, 0.253496, 0.815801, 0.00199501, 0, 0.272761, 0.79914, 0.00194193, 0, 0.292719, 0.782372, 0.00188824, 0, 0.313377, 0.76482, 0.00183695, 0, 0.334745, 0.746586, 0.00177418, 0, 0.356833, 0.7281, 0.00170628, 0, 0.379654, 0.709842, 0.00164063, 0, 0.403221, 0.692019, 0.00157355, 0, 0.427548, 0.67364, 0.00150262, 0, 0.452651, 0.655277, 0.00143473, 0, 0.478545, 0.636438, 0.00136371, 0, 0.505246, 0.617364, 0.00129911, 0, 0.532768, 0.598603, 0.00123014, 0, 0.561122, 0.580195, 0.00116587, 0, 0.590309, 0.561786, 0.00110398, 0, 0.620318, 0.543377, 0.00104148, 0, 0.651102, 0.525093, 0.000983984, 0, 0.682545, 0.506791, 0.00092667, 0, 0.714286, 0.489291, 0.000874326, 0, 0.746032, 0.471811, 0.000821734, 0, 0.777778, 0.454435, 0.000774698, 0, 0.809524, 0.437493, 0.000727302, 0, 0.84127, 0.420977, 0.000684039, 0, 0.873016, 0.404729, 0.00064373, 0, 0.904762, 0.388756, 0.00060285, 0, 0.936508, 0.373344, 0.00056765, 0, 0.968254, 0.358191, 0.000531929, 0, 1, 1, 0.000832169, 0, 0, 1, 0.000832178, 0, 0, 1, 0.00083231, 0, 0, 0.999998, 0.000832893, 0, 0, 0.999995, 0.000834465, 0, 0, 0.999985, 0.000837791, 0, 0, 0.999969, 0.000843893, 0, 0, 0.999944, 0.000854086, 0, 0, 0.999903, 0.000870071, 0, 0, 0.999843, 0.000894042, 0, 0, 0.999759, 0.000928865, 0, 5.31805e-05, 0.999643, 0.000978242, 0, 0.000579365, 0.99948, 0.00104684, 0, 0.00182774, 0.999255, 0.00114012, 0, 0.00387804, 0.998885, 0.00126188, 0, 0.00675709, 0.997405, 0.00135888, 0, 0.010468, 0.99424, 0.00133626, 0, 0.0150018, 0.992458, 0.00140905, 0, 0.0203443, 0.990929, 0.00152305, 0, 0.0264786, 0.989116, 0.00165882, 0, 0.0333875, 0.985624, 0.00174128, 0, 0.0410536, 0.982003, 0.00182108, 0, 0.0494609, 0.978336, 0.00194498, 0, 0.0585941, 0.973184, 0.00202708, 0, 0.0684396, 0.9678, 0.00212166, 0, 0.0789851, 0.961348, 0.00221366, 0, 0.0902199, 0.953841, 0.00228219, 0, 0.102134, 0.94534, 0.00235662, 0, 0.114721, 0.935552, 0.00240572, 0, 0.127972, 0.924064, 0.00244405, 0, 0.141884, 0.911827, 0.00247557, 0, 0.156451, 0.897731, 0.00248374, 0, 0.171672, 0.883409, 0.00249863, 0, 0.187545, 0.868625, 0.00246688, 0, 0.20407, 0.856529, 0.00246523, 0, 0.221249, 0.842999, 0.00242368, 0, 0.239083, 0.828505, 0.00237354, 0, 0.257578, 0.813825, 0.00232588, 0, 0.276738, 0.797813, 0.00226731, 0, 0.296569, 0.781097, 0.00219704, 0, 0.31708, 0.764038, 0.00212394, 0, 0.338281, 0.746067, 0.00204786, 0, 0.360181, 0.727687, 0.00196728, 0, 0.382794, 0.709571, 0.00188779, 0, 0.406133, 0.691503, 0.00180532, 0, 0.430213, 0.673673, 0.00171849, 0, 0.45505, 0.655732, 0.00164147, 0, 0.480662, 0.637399, 0.00155858, 0, 0.507065, 0.618616, 0.00147641, 0, 0.534278, 0.60005, 0.00140125, 0, 0.562313, 0.581713, 0.00132441, 0, 0.59118, 0.563546, 0.00125014, 0, 0.620875, 0.545605, 0.00118249, 0, 0.651373, 0.527559, 0.0011116, 0, 0.682593, 0.509764, 0.00104979, 0, 0.714286, 0.49193, 0.000985977, 0, 0.746032, 0.475011, 0.000928592, 0, 0.777778, 0.457878, 0.000873466, 0, 0.809524, 0.440979, 0.000819585, 0, 0.84127, 0.424613, 0.000772365, 0, 0.873016, 0.408549, 0.000722195, 0, 0.904762, 0.392771, 0.000680014, 0, 0.936508, 0.377317, 0.000636797, 0, 0.968254, 0.362352, 0.000598318, 0, 1, 1, 0.00114313, 0, 0, 1, 0.00114314, 0, 0, 0.999999, 0.00114331, 0, 0, 0.999998, 0.00114404, 0, 0, 0.999994, 0.00114601, 0, 0, 0.999984, 0.00115019, 0, 0, 0.999967, 0.00115784, 0, 0, 0.999937, 0.0011706, 0, 0, 0.999894, 0.00119054, 0, 0, 0.999828, 0.00122031, 0, 0, 0.999735, 0.00126331, 0, 0.000169263, 0.999606, 0.00132382, 0, 0.000949167, 0.999426, 0.0014071, 0, 0.00249668, 0.999173, 0.00151895, 0, 0.00486392, 0.99873, 0.00166102, 0, 0.00806323, 0.996243, 0.0017023, 0, 0.0120895, 0.993779, 0.00172782, 0, 0.0169288, 0.9919, 0.0018108, 0, 0.0225633, 0.990524, 0.00196028, 0, 0.028974, 0.98868, 0.00212014, 0, 0.036142, 0.984663, 0.00217598, 0, 0.044049, 0.981457, 0.00230563, 0, 0.0526781, 0.977608, 0.00243966, 0, 0.0620137, 0.972215, 0.00251336, 0, 0.0720418, 0.966798, 0.0026285, 0, 0.0827499, 0.960241, 0.00271409, 0, 0.0941271, 0.952489, 0.00278381, 0, 0.106164, 0.944127, 0.00285399, 0, 0.118852, 0.934282, 0.00290994, 0, 0.132185, 0.923271, 0.00294558, 0, 0.146157, 0.910803, 0.00296269, 0, 0.160766, 0.896705, 0.00296803, 0, 0.176007, 0.88238, 0.00296637, 0, 0.19188, 0.867116, 0.00293163, 0, 0.208385, 0.853636, 0.00289418, 0, 0.225523, 0.840469, 0.00284663, 0, 0.243296, 0.82639, 0.00278594, 0, 0.261709, 0.811759, 0.00271618, 0, 0.280767, 0.796113, 0.00263187, 0, 0.300476, 0.779518, 0.00254589, 0, 0.320845, 0.763142, 0.00246003, 0, 0.341883, 0.745464, 0.00236529, 0, 0.363601, 0.727491, 0.00226536, 0, 0.386011, 0.709414, 0.00216375, 0, 0.409128, 0.691396, 0.00207127, 0, 0.432967, 0.67368, 0.00197106, 0, 0.457545, 0.656049, 0.00187022, 0, 0.482881, 0.638188, 0.00177605, 0, 0.508992, 0.620177, 0.00168482, 0, 0.535899, 0.601506, 0.00158909, 0, 0.563619, 0.58362, 0.00150583, 0, 0.592165, 0.565496, 0.00141791, 0, 0.621544, 0.54789, 0.00133693, 0, 0.651743, 0.530323, 0.00126038, 0, 0.682709, 0.512795, 0.00118556, 0, 0.714286, 0.495199, 0.00111527, 0, 0.746032, 0.478101, 0.0010489, 0, 0.777778, 0.461511, 0.000984264, 0, 0.809524, 0.444879, 0.00092591, 0, 0.84127, 0.428424, 0.000866582, 0, 0.873016, 0.412495, 0.000814463, 0, 0.904762, 0.396975, 0.000764498, 0, 0.936508, 0.381614, 0.000715967, 0, 0.968254, 0.366732, 0.000672483, 0, 1, 1, 0.00155501, 0, 0, 1, 0.00155503, 0, 0, 1, 0.00155524, 0, 0, 0.999998, 0.00155615, 0, 0, 0.999994, 0.0015586, 0, 0, 0.999983, 0.00156379, 0, 0, 0.999963, 0.0015733, 0, 0, 0.999932, 0.00158911, 0, 0, 0.999882, 0.00161376, 0, 0, 0.99981, 0.00165041, 0, 1.00875e-05, 0.999708, 0.00170304, 0, 0.000367658, 0.999565, 0.00177658, 0, 0.0014234, 0.999368, 0.00187688, 0, 0.00327939, 0.999081, 0.00200989, 0, 0.00596629, 0.99852, 0.00217177, 0, 0.0094852, 0.99549, 0.0021745, 0, 0.013824, 0.993252, 0.00222357, 0, 0.0189642, 0.991727, 0.00235022, 0, 0.0248856, 0.989951, 0.00250561, 0, 0.0315669, 0.988029, 0.00268829, 0, 0.0389882, 0.984029, 0.0027496, 0, 0.0471302, 0.980683, 0.00289793, 0, 0.0559754, 0.976554, 0.00303315, 0, 0.0655081, 0.97139, 0.00313257, 0, 0.0757138, 0.965544, 0.00323656, 0, 0.08658, 0.95912, 0.00333432, 0, 0.0980954, 0.951183, 0.0034039, 0, 0.110251, 0.942974, 0.00347515, 0, 0.123038, 0.932642, 0.00350381, 0, 0.13645, 0.922158, 0.00354519, 0, 0.150482, 0.909404, 0.00353851, 0, 0.165129, 0.896071, 0.0035435, 0, 0.18039, 0.881206, 0.00349936, 0, 0.196263, 0.866077, 0.00347256, 0, 0.212748, 0.85093, 0.003415, 0, 0.229847, 0.837703, 0.00333367, 0, 0.247561, 0.823878, 0.003249, 0, 0.265895, 0.809449, 0.00316347, 0, 0.284854, 0.794379, 0.00306351, 0, 0.304445, 0.778138, 0.0029499, 0, 0.324675, 0.761997, 0.00284099, 0, 0.345555, 0.744938, 0.00272104, 0, 0.367095, 0.727212, 0.00260715, 0, 0.389309, 0.709549, 0.00248855, 0, 0.41221, 0.691704, 0.00236783, 0, 0.435814, 0.673689, 0.00225178, 0, 0.460138, 0.656453, 0.00213765, 0, 0.485203, 0.639128, 0.00202178, 0, 0.511028, 0.621512, 0.00191443, 0, 0.537634, 0.603598, 0.00180977, 0, 0.565041, 0.58559, 0.00170456, 0, 0.593268, 0.567852, 0.00160927, 0, 0.622327, 0.5503, 0.00151395, 0, 0.652217, 0.533033, 0.00142499, 0, 0.682907, 0.515942, 0.00133955, 0, 0.714296, 0.498814, 0.0012602, 0, 0.746032, 0.481595, 0.00118188, 0, 0.777778, 0.465117, 0.00111171, 0, 0.809524, 0.448865, 0.00104091, 0, 0.84127, 0.432711, 0.000976618, 0, 0.873016, 0.416822, 0.00091859, 0, 0.904762, 0.401272, 0.000857704, 0, 0.936508, 0.386226, 0.000807172, 0, 0.968254, 0.371321, 0.00075464, 0, 1, 1, 0.00209596, 0, 0, 1, 0.00209598, 0, 0, 1, 0.00209624, 0, 0, 0.999997, 0.00209736, 0, 0, 0.999991, 0.00210039, 0, 0, 0.999979, 0.00210678, 0, 0, 0.999959, 0.00211847, 0, 0, 0.999925, 0.0021379, 0, 0, 0.99987, 0.00216809, 0, 0, 0.999791, 0.00221281, 0, 6.81487e-05, 0.999677, 0.00227669, 0, 0.000658161, 0.999521, 0.00236533, 0, 0.00200635, 0.999301, 0.00248514, 0, 0.0041779, 0.998977, 0.00264185, 0, 0.00718648, 0.998191, 0.00281695, 0, 0.0110239, 0.994801, 0.00278518, 0, 0.015672, 0.993091, 0.00288774, 0, 0.0211091, 0.991571, 0.00303931, 0, 0.0273123, 0.9897, 0.00321643, 0, 0.034259, 0.987023, 0.00337332, 0, 0.0419282, 0.983289, 0.00346146, 0, 0.0502998, 0.979892, 0.00363704, 0, 0.0593562, 0.975111, 0.00373601, 0, 0.069081, 0.970351, 0.0038842, 0, 0.0794598, 0.964131, 0.00397053, 0, 0.0904798, 0.957747, 0.00408078, 0, 0.10213, 0.949536, 0.00413533, 0, 0.1144, 0.941372, 0.00420305, 0, 0.127284, 0.931049, 0.00422815, 0, 0.140772, 0.920647, 0.00425048, 0, 0.154862, 0.908033, 0.0042281, 0, 0.169548, 0.895028, 0.00422026, 0, 0.184828, 0.879968, 0.00415042, 0, 0.200701, 0.864875, 0.00408821, 0, 0.217167, 0.84918, 0.00400909, 0, 0.234227, 0.834934, 0.00391178, 0, 0.251884, 0.821397, 0.00380066, 0, 0.270141, 0.807135, 0.00367974, 0, 0.289004, 0.792363, 0.00355172, 0, 0.308479, 0.776661, 0.003411, 0, 0.328575, 0.760705, 0.00328123, 0, 0.349301, 0.744408, 0.00314003, 0, 0.370668, 0.726994, 0.0029906, 0, 0.392689, 0.709598, 0.00285034, 0, 0.415379, 0.692112, 0.00271179, 0, 0.438754, 0.674435, 0.00257185, 0, 0.46283, 0.65676, 0.00243425, 0, 0.48763, 0.639982, 0.00230351, 0, 0.513173, 0.622983, 0.0021777, 0, 0.539482, 0.605471, 0.00204991, 0, 0.566579, 0.58796, 0.00193759, 0, 0.594488, 0.570463, 0.00181976, 0, 0.623226, 0.553058, 0.00171497, 0, 0.6528, 0.535894, 0.00161109, 0, 0.683198, 0.519089, 0.00151394, 0, 0.714354, 0.502454, 0.00142122, 0, 0.746032, 0.485681, 0.00133488, 0, 0.777778, 0.468935, 0.00124975, 0, 0.809524, 0.452951, 0.00117309, 0, 0.84127, 0.437139, 0.00110155, 0, 0.873016, 0.421446, 0.00103124, 0, 0.904762, 0.405951, 0.000966387, 0, 0.936508, 0.391003, 0.000908119, 0, 0.968254, 0.376198, 0.000848057, 0, 1, 1, 0.00280076, 0, 0, 1, 0.00280078, 0, 0, 0.999999, 0.00280109, 0, 0, 0.999997, 0.00280246, 0, 0, 0.999992, 0.00280616, 0, 0, 0.999979, 0.00281396, 0, 0, 0.999956, 0.00282822, 0, 0, 0.999916, 0.00285186, 0, 0, 0.999857, 0.0028885, 0, 0, 0.999768, 0.00294259, 0, 0.000196026, 0.999645, 0.00301946, 0, 0.00104842, 0.99947, 0.00312541, 0, 0.00270199, 0.999229, 0.00326733, 0, 0.00519449, 0.998852, 0.00344992, 0, 0.00852602, 0.997558, 0.00361052, 0, 0.0126804, 0.994417, 0.0035898, 0, 0.017635, 0.992824, 0.00372393, 0, 0.023365, 0.991344, 0.00390695, 0, 0.0298456, 0.989337, 0.00410392, 0, 0.0370529, 0.985811, 0.00420987, 0, 0.0449651, 0.982772, 0.00437488, 0, 0.0535615, 0.979001, 0.00455069, 0, 0.0628243, 0.974102, 0.00464462, 0, 0.0727368, 0.969197, 0.00480577, 0, 0.0832844, 0.962759, 0.00487818, 0, 0.0944545, 0.956207, 0.00498176, 0, 0.106236, 0.947909, 0.00503392, 0, 0.118619, 0.939596, 0.00507474, 0, 0.131595, 0.929642, 0.00509798, 0, 0.145159, 0.918807, 0.00508476, 0, 0.159305, 0.906921, 0.00505634, 0, 0.174028, 0.893312, 0.00498845, 0, 0.189327, 0.878933, 0.0049133, 0, 0.2052, 0.863986, 0.0048259, 0, 0.221647, 0.847936, 0.00470848, 0, 0.23867, 0.832253, 0.00456889, 0, 0.25627, 0.818619, 0.00442726, 0, 0.274453, 0.804788, 0.00427677, 0, 0.293222, 0.790241, 0.00411906, 0, 0.312585, 0.775162, 0.00394833, 0, 0.33255, 0.759463, 0.00377366, 0, 0.353126, 0.743598, 0.00361026, 0, 0.374324, 0.72697, 0.00343627, 0, 0.396158, 0.709646, 0.00326422, 0, 0.418641, 0.69277, 0.00309717, 0, 0.44179, 0.675371, 0.0029356, 0, 0.465624, 0.657863, 0.00277712, 0, 0.490163, 0.640772, 0.00261738, 0, 0.515429, 0.624441, 0.0024737, 0, 0.541445, 0.607497, 0.00233125, 0, 0.568236, 0.590438, 0.00218994, 0, 0.595828, 0.573224, 0.0020664, 0, 0.624242, 0.556168, 0.00193526, 0, 0.653496, 0.539232, 0.00182463, 0, 0.683588, 0.522352, 0.00170735, 0, 0.714482, 0.506172, 0.00160555, 0, 0.746032, 0.489842, 0.00150451, 0, 0.777778, 0.473463, 0.00140938, 0, 0.809524, 0.457266, 0.00132568, 0, 0.84127, 0.441609, 0.0012376, 0, 0.873016, 0.426348, 0.00116265, 0, 0.904762, 0.411002, 0.00108935, 0, 0.936508, 0.396045, 0.00101946, 0, 0.968254, 0.381448, 0.000955665, 0, 1, 1, 0.0037121, 0, 0, 1, 0.00371213, 0, 0, 1, 0.00371251, 0, 0, 0.999997, 0.00371417, 0, 0, 0.99999, 0.00371863, 0, 0, 0.999977, 0.00372807, 0, 0, 0.99995, 0.00374529, 0, 0, 0.999908, 0.0037738, 0, 0, 0.999843, 0.00381789, 0, 1.23596e-05, 0.999745, 0.00388273, 0, 0.000407442, 0.999608, 0.00397443, 0, 0.0015447, 0.999415, 0.00409998, 0, 0.00351385, 0.999143, 0.00426662, 0, 0.0063316, 0.9987, 0.00447625, 0, 0.00998679, 0.996363, 0.00455323, 0, 0.0144569, 0.994021, 0.00461052, 0, 0.0197151, 0.992372, 0.00476359, 0, 0.0257344, 0.991007, 0.00499101, 0, 0.0324882, 0.988767, 0.0051972, 0, 0.0399517, 0.984872, 0.00528407, 0, 0.0481022, 0.982004, 0.00548926, 0, 0.0569191, 0.977714, 0.00564385, 0, 0.0663839, 0.973076, 0.0057693, 0, 0.0764801, 0.967565, 0.0058924, 0, 0.0871928, 0.961384, 0.00599629, 0, 0.0985095, 0.954435, 0.00605998, 0, 0.110419, 0.946303, 0.0061133, 0, 0.122912, 0.937662, 0.00612028, 0, 0.13598, 0.927867, 0.00612209, 0, 0.149617, 0.916475, 0.00604813, 0, 0.163817, 0.90541, 0.00603088, 0, 0.178577, 0.891591, 0.00592218, 0, 0.193894, 0.877573, 0.00578854, 0, 0.209767, 0.862511, 0.00566648, 0, 0.226196, 0.846861, 0.00551481, 0, 0.243182, 0.83068, 0.00533754, 0, 0.260728, 0.815725, 0.00515487, 0, 0.278837, 0.802321, 0.0049655, 0, 0.297515, 0.787826, 0.00475421, 0, 0.316768, 0.773454, 0.00456002, 0, 0.336605, 0.758224, 0.00434727, 0, 0.357034, 0.74265, 0.00414444, 0, 0.378067, 0.726729, 0.00393738, 0, 0.399717, 0.710155, 0.00373575, 0, 0.421998, 0.693312, 0.00353736, 0, 0.444928, 0.67653, 0.00334368, 0, 0.468523, 0.659444, 0.00315981, 0, 0.492806, 0.642051, 0.00297809, 0, 0.517798, 0.625758, 0.00280592, 0, 0.543525, 0.609615, 0.00264254, 0, 0.570012, 0.592919, 0.00248459, 0, 0.597288, 0.576298, 0.00233327, 0, 0.625379, 0.559489, 0.00219519, 0, 0.654307, 0.542891, 0.00205441, 0, 0.684084, 0.526255, 0.00193385, 0, 0.714693, 0.509853, 0.00180745, 0, 0.746044, 0.494131, 0.00169817, 0, 0.777778, 0.478114, 0.0015913, 0, 0.809524, 0.462274, 0.00148981, 0, 0.84127, 0.446412, 0.00139537, 0, 0.873016, 0.431274, 0.00130984, 0, 0.904762, 0.41635, 0.00122403, 0, 0.936508, 0.401476, 0.00114809, 0, 0.968254, 0.386993, 0.00107563, 0, 1, 1, 0.00488216, 0, 0, 1, 0.0048822, 0, 0, 1, 0.00488265, 0, 0, 0.999997, 0.00488463, 0, 0, 0.999988, 0.00488999, 0, 0, 0.999974, 0.00490129, 0, 0, 0.999946, 0.00492191, 0, 0, 0.999897, 0.00495598, 0, 0, 0.999825, 0.00500855, 0, 7.44791e-05, 0.999718, 0.00508559, 0, 0.000712744, 0.999565, 0.005194, 0, 0.00215249, 0.999352, 0.00534147, 0, 0.00444576, 0.999046, 0.00553523, 0, 0.00759218, 0.998492, 0.00577016, 0, 0.0115714, 0.995564, 0.00578487, 0, 0.0163557, 0.993339, 0.00586414, 0, 0.021915, 0.991834, 0.00606002, 0, 0.0282201, 0.990496, 0.00633312, 0, 0.0352433, 0.987826, 0.00651941, 0, 0.042959, 0.98383, 0.00660842, 0, 0.0513439, 0.98109, 0.00685523, 0, 0.0603772, 0.976131, 0.00695778, 0, 0.0700402, 0.971922, 0.00714236, 0, 0.0803163, 0.965901, 0.00721437, 0, 0.0911908, 0.959606, 0.00732017, 0, 0.102651, 0.952504, 0.00735788, 0, 0.114686, 0.944365, 0.00738493, 0, 0.127286, 0.935652, 0.00737969, 0, 0.140443, 0.925813, 0.00733612, 0, 0.154151, 0.914397, 0.00723094, 0, 0.168405, 0.903257, 0.00714002, 0, 0.183201, 0.890015, 0.00700149, 0, 0.198536, 0.876014, 0.00682813, 0, 0.214409, 0.861436, 0.00665567, 0, 0.23082, 0.845752, 0.00644526, 0, 0.24777, 0.829169, 0.00621635, 0, 0.265263, 0.813435, 0.00597789, 0, 0.283301, 0.799701, 0.00575694, 0, 0.301889, 0.785726, 0.00549866, 0, 0.321035, 0.77152, 0.0052503, 0, 0.340746, 0.75683, 0.00499619, 0, 0.361032, 0.741951, 0.0047543, 0, 0.381904, 0.726367, 0.0045084, 0, 0.403374, 0.710537, 0.00426784, 0, 0.425457, 0.693965, 0.00403487, 0, 0.448169, 0.677724, 0.0038075, 0, 0.47153, 0.66117, 0.00359431, 0, 0.495561, 0.644274, 0.00338354, 0, 0.520284, 0.627449, 0.00318163, 0, 0.545725, 0.611645, 0.00299672, 0, 0.571911, 0.595614, 0.00281016, 0, 0.598873, 0.579426, 0.00264252, 0, 0.62664, 0.563016, 0.00247509, 0, 0.655239, 0.546728, 0.00232647, 0, 0.684692, 0.530539, 0.00217803, 0, 0.714999, 0.514164, 0.00204216, 0, 0.746106, 0.498344, 0.00191403, 0, 0.777778, 0.482957, 0.00179203, 0, 0.809524, 0.467336, 0.00167695, 0, 0.84127, 0.451994, 0.00157567, 0, 0.873016, 0.436514, 0.00147113, 0, 0.904762, 0.42178, 0.00138034, 0, 0.936508, 0.407271, 0.00129219, 0, 0.968254, 0.392822, 0.0012098, 0, 1, 1, 0.00637427, 0, 0, 1, 0.00637431, 0, 0, 0.999999, 0.00637485, 0, 0, 0.999996, 0.00637721, 0, 0, 0.999987, 0.00638357, 0, 0, 0.999971, 0.006397, 0, 0, 0.999939, 0.00642142, 0, 0, 0.999888, 0.00646177, 0, 0, 0.999807, 0.00652387, 0, 0.000207916, 0.999689, 0.00661454, 0, 0.00112051, 0.99952, 0.00674155, 0, 0.00287719, 0.999283, 0.00691313, 0, 0.00550145, 0.998936, 0.00713598, 0, 0.00897928, 0.998165, 0.00738501, 0, 0.0132829, 0.994847, 0.00734388, 0, 0.01838, 0.993182, 0.00749991, 0, 0.0242381, 0.991665, 0.0077246, 0, 0.030826, 0.989708, 0.00797579, 0, 0.0381152, 0.986663, 0.00813011, 0, 0.0460794, 0.983288, 0.00830365, 0, 0.0546951, 0.980104, 0.00853496, 0, 0.0639411, 0.974855, 0.00861045, 0, 0.0737988, 0.97045, 0.00879133, 0, 0.0842516, 0.964509, 0.00886377, 0, 0.0952848, 0.957594, 0.00890346, 0, 0.106886, 0.950546, 0.00893289, 0, 0.119044, 0.942225, 0.00890074, 0, 0.131749, 0.933365, 0.00886826, 0, 0.144994, 0.923202, 0.0087316, 0, 0.158772, 0.912605, 0.00863082, 0, 0.173078, 0.901099, 0.00847403, 0, 0.187908, 0.888177, 0.00825838, 0, 0.203261, 0.873955, 0.00801834, 0, 0.219134, 0.860091, 0.00779026, 0, 0.235527, 0.84434, 0.00752478, 0, 0.252443, 0.828517, 0.00724074, 0, 0.269883, 0.81239, 0.00693769, 0, 0.287851, 0.79721, 0.00664817, 0, 0.306352, 0.783489, 0.00634763, 0, 0.325393, 0.769514, 0.00604221, 0, 0.344981, 0.755419, 0.00573568, 0, 0.365126, 0.741083, 0.00544359, 0, 0.385839, 0.726059, 0.00515515, 0, 0.407132, 0.710809, 0.00487139, 0, 0.42902, 0.695052, 0.00459846, 0, 0.45152, 0.678886, 0.00433412, 0, 0.474651, 0.663042, 0.00407981, 0, 0.498433, 0.646634, 0.00384264, 0, 0.52289, 0.630117, 0.00360897, 0, 0.548048, 0.613804, 0.00338863, 0, 0.573936, 0.598338, 0.00318486, 0, 0.600584, 0.582687, 0.00298377, 0, 0.628027, 0.566809, 0.00280082, 0, 0.656295, 0.550817, 0.00262255, 0, 0.685417, 0.534937, 0.00245835, 0, 0.715406, 0.519151, 0.00230574, 0, 0.74624, 0.503118, 0.0021549, 0, 0.777778, 0.487723, 0.00202008, 0, 0.809524, 0.472725, 0.00189355, 0, 0.84127, 0.457599, 0.00177108, 0, 0.873016, 0.442558, 0.00165843, 0, 0.904762, 0.427624, 0.00155494, 0, 0.936508, 0.413171, 0.00145273, 0, 0.968254, 0.399122, 0.00136454, 0, 1, 1, 0.00826496, 0, 0, 1, 0.00826499, 0, 0, 1, 0.00826564, 0, 0, 0.999996, 0.00826842, 0, 0, 0.999987, 0.00827589, 0, 0, 0.999967, 0.00829167, 0, 0, 0.999933, 0.00832037, 0, 0, 0.999876, 0.00836768, 0, 1.09338e-05, 0.999786, 0.00844031, 0, 0.000427145, 0.999655, 0.00854603, 0, 0.0016384, 0.999468, 0.00869337, 0, 0.00372392, 0.999203, 0.008891, 0, 0.00668513, 0.998803, 0.00914387, 0, 0.0104968, 0.99748, 0.00935838, 0, 0.015125, 0.994446, 0.00933309, 0, 0.0205338, 0.99292, 0.00953084, 0, 0.0266884, 0.991414, 0.0097893, 0, 0.0335565, 0.989049, 0.0100228, 0, 0.0411086, 0.98582, 0.0101664, 0, 0.0493181, 0.982441, 0.0103582, 0, 0.0581613, 0.978595, 0.0105292, 0, 0.0676169, 0.973495, 0.0106274, 0, 0.0776661, 0.968405, 0.0107261, 0, 0.0882926, 0.962717, 0.0108234, 0, 0.0994817, 0.955478, 0.0108102, 0, 0.111221, 0.948275, 0.0107914, 0, 0.123499, 0.940006, 0.0107161, 0, 0.136308, 0.930831, 0.0106309, 0, 0.149639, 0.920648, 0.0104083, 0, 0.163485, 0.910205, 0.0102312, 0, 0.177843, 0.898445, 0.0100051, 0, 0.192707, 0.885986, 0.00971928, 0, 0.208077, 0.872204, 0.00940747, 0, 0.22395, 0.858436, 0.0091085, 0, 0.240326, 0.843454, 0.00876595, 0, 0.257208, 0.827437, 0.00839794, 0, 0.274596, 0.811488, 0.00803692, 0, 0.292496, 0.796039, 0.00767352, 0, 0.310911, 0.781083, 0.0073097, 0, 0.329849, 0.767642, 0.00694032, 0, 0.349316, 0.753901, 0.00657476, 0, 0.369323, 0.740131, 0.00622699, 0, 0.38988, 0.725845, 0.0058838, 0, 0.410999, 0.710991, 0.00555586, 0, 0.432696, 0.696002, 0.00523089, 0, 0.454987, 0.680461, 0.00492494, 0, 0.47789, 0.664875, 0.00463464, 0, 0.501426, 0.649273, 0.00435422, 0, 0.52562, 0.63302, 0.0040875, 0, 0.550498, 0.61705, 0.00384075, 0, 0.576089, 0.601154, 0.00359557, 0, 0.602427, 0.586008, 0.00337636, 0, 0.629544, 0.570699, 0.00316019, 0, 0.657479, 0.555166, 0.00296033, 0, 0.686264, 0.539645, 0.00277552, 0, 0.715924, 0.524159, 0.00259499, 0, 0.746459, 0.508682, 0.00243257, 0, 0.777789, 0.493163, 0.00227851, 0, 0.809524, 0.478004, 0.00213083, 0, 0.84127, 0.46347, 0.00199502, 0, 0.873016, 0.448778, 0.00186967, 0, 0.904762, 0.434105, 0.00174732, 0, 0.936508, 0.419576, 0.00163861, 0, 0.968254, 0.405541, 0.00153341, 0, 1, 1, 0.0106462, 0, 0, 1, 0.0106462, 0, 0, 0.999999, 0.010647, 0, 0, 0.999995, 0.0106502, 0, 0, 0.999985, 0.0106589, 0, 0, 0.999964, 0.0106773, 0, 0, 0.999925, 0.0107106, 0, 0, 0.999861, 0.0107655, 0, 7.12986e-05, 0.999763, 0.0108497, 0, 0.000743959, 0.999616, 0.0109716, 0, 0.00227361, 0.999408, 0.0111408, 0, 0.0046983, 0.999112, 0.0113659, 0, 0.00800158, 0.998637, 0.0116475, 0, 0.0121493, 0.996223, 0.0117231, 0, 0.0171023, 0.994006, 0.0118064, 0, 0.0228218, 0.992444, 0.0120254, 0, 0.0292711, 0.991028, 0.0123314, 0, 0.036417, 0.98803, 0.0124954, 0, 0.0442295, 0.984816, 0.0126538, 0, 0.0526815, 0.981399, 0.0128537, 0, 0.0617492, 0.977085, 0.0129694, 0, 0.0714114, 0.972154, 0.013091, 0, 0.0816495, 0.966617, 0.0131166, 0, 0.0924472, 0.960628, 0.0131583, 0, 0.10379, 0.953295, 0.0131094, 0, 0.115665, 0.94575, 0.0129966, 0, 0.128062, 0.937654, 0.0128796, 0, 0.140972, 0.927716, 0.0126477, 0, 0.154387, 0.917932, 0.0123889, 0, 0.168301, 0.907719, 0.012131, 0, 0.182709, 0.89584, 0.0118013, 0, 0.197608, 0.883526, 0.0114145, 0, 0.212994, 0.870301, 0.0110075, 0, 0.228867, 0.856272, 0.0106019, 0, 0.245227, 0.842251, 0.0101938, 0, 0.262074, 0.826466, 0.00973254, 0, 0.279412, 0.810859, 0.0092846, 0, 0.297244, 0.795051, 0.00883304, 0, 0.315575, 0.780053, 0.00840272, 0, 0.334412, 0.76575, 0.00796438, 0, 0.35376, 0.752298, 0.00752526, 0, 0.373631, 0.739153, 0.00711486, 0, 0.394034, 0.725514, 0.00670361, 0, 0.414983, 0.711473, 0.00632656, 0, 0.436491, 0.696936, 0.00595206, 0, 0.458575, 0.682126, 0.00559191, 0, 0.481253, 0.667027, 0.00525362, 0, 0.504547, 0.651875, 0.00493805, 0, 0.528481, 0.636463, 0.00462848, 0, 0.553081, 0.620641, 0.00433936, 0, 0.578377, 0.604931, 0.00407, 0, 0.604404, 0.589549, 0.00380864, 0, 0.631197, 0.574712, 0.00357049, 0, 0.658795, 0.559775, 0.00334466, 0, 0.687238, 0.544514, 0.00312505, 0, 0.716559, 0.529555, 0.00293199, 0, 0.746776, 0.514402, 0.00274204, 0, 0.777849, 0.499302, 0.00256647, 0, 0.809524, 0.484114, 0.00239901, 0, 0.84127, 0.469308, 0.00225148, 0, 0.873016, 0.455133, 0.00210178, 0, 0.904762, 0.440939, 0.0019727, 0, 0.936508, 0.426627, 0.00184382, 0, 0.968254, 0.412509, 0.00172548, 0, 1, 1, 0.013628, 0, 0, 1, 0.0136281, 0, 0, 0.999999, 0.0136289, 0, 0, 0.999995, 0.0136327, 0, 0, 0.999983, 0.0136427, 0, 0, 0.99996, 0.0136638, 0, 0, 0.999917, 0.0137022, 0, 0, 0.999846, 0.0137652, 0, 0.000204597, 0.999736, 0.0138615, 0, 0.00116837, 0.999573, 0.0140007, 0, 0.00303325, 0.99934, 0.0141927, 0, 0.00580613, 0.999004, 0.0144457, 0, 0.00945626, 0.998407, 0.0147489, 0, 0.0139421, 0.995464, 0.014731, 0, 0.0192202, 0.993328, 0.0148283, 0, 0.0252495, 0.991799, 0.0150797, 0, 0.0319921, 0.990397, 0.0154316, 0, 0.0394138, 0.986835, 0.0155005, 0, 0.0474843, 0.983938, 0.0157308, 0, 0.0561763, 0.980154, 0.0158753, 0, 0.0654661, 0.975659, 0.0159581, 0, 0.0753326, 0.970171, 0.0159832, 0, 0.0857571, 0.964803, 0.0160084, 0, 0.0967236, 0.958366, 0.0159484, 0, 0.108218, 0.950613, 0.0158001, 0, 0.120227, 0.942874, 0.0155845, 0, 0.132741, 0.935005, 0.0154292, 0, 0.145751, 0.924991, 0.0150742, 0, 0.159249, 0.914814, 0.0146757, 0, 0.17323, 0.904743, 0.0143097, 0, 0.187687, 0.893216, 0.0138695, 0, 0.202619, 0.880769, 0.0133706, 0, 0.218021, 0.868136, 0.0128606, 0, 0.233894, 0.85469, 0.0123403, 0, 0.250238, 0.840593, 0.0118091, 0, 0.267052, 0.825808, 0.011253, 0, 0.284341, 0.81009, 0.0107099, 0, 0.302106, 0.79504, 0.0101636, 0, 0.320354, 0.779757, 0.00964041, 0, 0.33909, 0.764697, 0.00911896, 0, 0.358322, 0.750913, 0.00859533, 0, 0.378059, 0.738175, 0.00811592, 0, 0.398311, 0.725242, 0.00764504, 0, 0.41909, 0.711864, 0.00718885, 0, 0.440412, 0.698009, 0.00675843, 0, 0.462292, 0.683841, 0.00634984, 0, 0.484748, 0.669391, 0.00595502, 0, 0.507802, 0.654731, 0.00558671, 0, 0.531477, 0.639805, 0.00523578, 0, 0.555802, 0.624789, 0.00490834, 0, 0.580805, 0.609325, 0.00459448, 0, 0.606522, 0.593975, 0.00430342, 0, 0.63299, 0.578983, 0.00403019, 0, 0.66025, 0.564442, 0.0037707, 0, 0.688346, 0.549835, 0.0035316, 0, 0.717319, 0.535039, 0.00330255, 0, 0.7472, 0.520403, 0.00308932, 0, 0.777982, 0.505687, 0.00289335, 0, 0.809524, 0.490939, 0.00270818, 0, 0.84127, 0.476233, 0.0025343, 0, 0.873016, 0.461624, 0.00237097, 0, 0.904762, 0.447833, 0.00222065, 0, 0.936508, 0.433992, 0.00207561, 0, 0.968254, 0.420147, 0.00194955, 0, 1, 1, 0.0173415, 0, 0, 1, 0.0173416, 0, 0, 0.999999, 0.0173426, 0, 0, 0.999995, 0.0173468, 0, 0, 0.999983, 0.0173582, 0, 0, 0.999954, 0.0173822, 0, 0, 0.999908, 0.0174258, 0, 6.69501e-06, 0.999828, 0.0174973, 0, 0.000427399, 0.999705, 0.0176063, 0, 0.00171019, 0.999524, 0.0177631, 0, 0.0039248, 0.999263, 0.0179781, 0, 0.00705382, 0.998878, 0.018258, 0, 0.0110552, 0.998012, 0.0185551, 0, 0.0158812, 0.994614, 0.0184264, 0, 0.0214852, 0.993132, 0.0186385, 0, 0.0278239, 0.991563, 0.0189067, 0, 0.0348585, 0.989298, 0.0191577, 0, 0.0425544, 0.986036, 0.0192522, 0, 0.050881, 0.982558, 0.0194063, 0, 0.059811, 0.978531, 0.019486, 0, 0.0693209, 0.974198, 0.0195847, 0, 0.0793895, 0.968148, 0.0194749, 0, 0.0899984, 0.962565, 0.0194277, 0, 0.101132, 0.956041, 0.0192991, 0, 0.112775, 0.947749, 0.0189893, 0, 0.124917, 0.94018, 0.018704, 0, 0.137547, 0.93165, 0.0183458, 0, 0.150655, 0.921798, 0.0178775, 0, 0.164236, 0.911573, 0.0173618, 0, 0.178281, 0.901569, 0.0168482, 0, 0.192788, 0.890341, 0.016265, 0, 0.207752, 0.877835, 0.0156199, 0, 0.223171, 0.865472, 0.0149516, 0, 0.239044, 0.852905, 0.0143274, 0, 0.255371, 0.838906, 0.0136643, 0, 0.272153, 0.824888, 0.0129903, 0, 0.289393, 0.809977, 0.0123218, 0, 0.307093, 0.794697, 0.0116572, 0, 0.325259, 0.780028, 0.0110307, 0, 0.343896, 0.765124, 0.0104236, 0, 0.363012, 0.750411, 0.0098219, 0, 0.382617, 0.737264, 0.00924397, 0, 0.402719, 0.724799, 0.00868719, 0, 0.423332, 0.712253, 0.00816476, 0, 0.444469, 0.699267, 0.00767262, 0, 0.466146, 0.685618, 0.00719746, 0, 0.488383, 0.671736, 0.00673916, 0, 0.511199, 0.657777, 0.00631937, 0, 0.534618, 0.643497, 0.00592411, 0, 0.558668, 0.62889, 0.00553928, 0, 0.58338, 0.614299, 0.0051934, 0, 0.608787, 0.599197, 0.00485985, 0, 0.634929, 0.584175, 0.00454357, 0, 0.661849, 0.569541, 0.00425787, 0, 0.689594, 0.555193, 0.00397905, 0, 0.718211, 0.540947, 0.00372364, 0, 0.747742, 0.526593, 0.00348599, 0, 0.778205, 0.512335, 0.00326103, 0, 0.80953, 0.498017, 0.00305137, 0, 0.84127, 0.483609, 0.00285485, 0, 0.873016, 0.469368, 0.00267472, 0, 0.904762, 0.455037, 0.00249945, 0, 0.936508, 0.441493, 0.00234792, 0, 0.968254, 0.428147, 0.00219936, 0, 1, 1, 0.0219422, 0, 0, 1, 0.0219423, 0, 0, 0.999998, 0.0219434, 0, 0, 0.999993, 0.0219481, 0, 0, 0.999981, 0.021961, 0, 0, 0.999949, 0.0219879, 0, 0, 0.999896, 0.0220367, 0, 5.93194e-05, 0.999808, 0.0221167, 0, 0.00075364, 0.99967, 0.0222383, 0, 0.00237884, 0.999466, 0.0224125, 0, 0.00495612, 0.999174, 0.0226495, 0, 0.00844887, 0.998725, 0.0229525, 0, 0.0128058, 0.996979, 0.0231123, 0, 0.0179742, 0.994317, 0.0230742, 0, 0.0239047, 0.992781, 0.0232895, 0, 0.0305526, 0.991191, 0.0235734, 0, 0.0378786, 0.987787, 0.0236152, 0, 0.0458475, 0.985092, 0.0237994, 0, 0.0544287, 0.981121, 0.0238553, 0, 0.0635952, 0.976924, 0.0238706, 0, 0.0733233, 0.97218, 0.0238704, 0, 0.0835922, 0.965956, 0.0236598, 0, 0.0943839, 0.959998, 0.0234735, 0, 0.105682, 0.953245, 0.0232277, 0, 0.117474, 0.944445, 0.0226973, 0, 0.129747, 0.937087, 0.0223527, 0, 0.142491, 0.928341, 0.0218144, 0, 0.155697, 0.9184, 0.0211516, 0, 0.169358, 0.907959, 0.0204553, 0, 0.183469, 0.89808, 0.0197673, 0, 0.198024, 0.887047, 0.0189915, 0, 0.21302, 0.875221, 0.0182082, 0, 0.228455, 0.86269, 0.0173584, 0, 0.244329, 0.850735, 0.0165718, 0, 0.260639, 0.837545, 0.0157524, 0, 0.277389, 0.823639, 0.0149482, 0, 0.29458, 0.809699, 0.0141431, 0, 0.312216, 0.794797, 0.0133527, 0, 0.3303, 0.780578, 0.0126193, 0, 0.34884, 0.766019, 0.0118914, 0, 0.367842, 0.751447, 0.0111839, 0, 0.387315, 0.737275, 0.010514, 0, 0.40727, 0.724545, 0.00987277, 0, 0.427717, 0.712644, 0.00926569, 0, 0.448671, 0.700432, 0.00869029, 0, 0.470149, 0.687664, 0.00814691, 0, 0.492167, 0.674288, 0.00763012, 0, 0.514746, 0.660966, 0.00714437, 0, 0.537911, 0.647264, 0.00668457, 0, 0.561688, 0.633431, 0.00626581, 0, 0.586108, 0.619133, 0.00585593, 0, 0.611206, 0.604935, 0.00548188, 0, 0.637022, 0.590236, 0.00513288, 0, 0.663599, 0.575473, 0.0047906, 0, 0.690989, 0.561228, 0.00448895, 0, 0.719242, 0.547054, 0.00420233, 0, 0.748411, 0.533175, 0.00392869, 0, 0.778531, 0.519163, 0.00367445, 0, 0.809583, 0.505328, 0.00344097, 0, 0.84127, 0.491446, 0.00322003, 0, 0.873016, 0.477356, 0.00301283, 0, 0.904762, 0.46356, 0.00282592, 0, 0.936508, 0.449623, 0.00264956, 0, 0.968254, 0.436068, 0.00246956, 0, 1, 1, 0.0276135, 0, 0, 1, 0.0276136, 0, 0, 0.999998, 0.0276148, 0, 0, 0.999993, 0.0276201, 0, 0, 0.999976, 0.0276342, 0, 0, 0.999945, 0.027664, 0, 0, 0.999884, 0.0277179, 0, 0.00018679, 0.999784, 0.027806, 0, 0.00119607, 0.99963, 0.0279394, 0, 0.00318407, 0.999401, 0.0281295, 0, 0.00613601, 0.999066, 0.0283858, 0, 0.00999963, 0.998524, 0.0287027, 0, 0.0147164, 0.995702, 0.0286256, 0, 0.0202295, 0.993593, 0.0286733, 0, 0.0264876, 0.992067, 0.0288989, 0, 0.0334452, 0.990548, 0.0292135, 0, 0.0410621, 0.986775, 0.0291296, 0, 0.0493032, 0.984054, 0.0293099, 0, 0.0581381, 0.979481, 0.0291881, 0, 0.0675397, 0.975297, 0.0291598, 0, 0.0774848, 0.96981, 0.028954, 0, 0.0879528, 0.963524, 0.028628, 0, 0.0989258, 0.957398, 0.0283135, 0, 0.110388, 0.950088, 0.0278469, 0, 0.122327, 0.941538, 0.0271798, 0, 0.134729, 0.933332, 0.0265388, 0, 0.147587, 0.924392, 0.0257776, 0, 0.160889, 0.914581, 0.024916, 0, 0.174631, 0.904347, 0.0240242, 0, 0.188806, 0.894324, 0.0231229, 0, 0.203409, 0.883724, 0.022153, 0, 0.218437, 0.872207, 0.0211355, 0, 0.233888, 0.859927, 0.0201048, 0, 0.249761, 0.848373, 0.0191263, 0, 0.266056, 0.836023, 0.0181306, 0, 0.282774, 0.82289, 0.0171718, 0, 0.299917, 0.809324, 0.0162196, 0, 0.317488, 0.795361, 0.0152622, 0, 0.335493, 0.781253, 0.01439, 0, 0.353936, 0.767338, 0.013533, 0, 0.372825, 0.753156, 0.0127244, 0, 0.392168, 0.739122, 0.0119454, 0, 0.411976, 0.725358, 0.0112054, 0, 0.432259, 0.712949, 0.010487, 0, 0.453032, 0.701621, 0.00984032, 0, 0.47431, 0.689703, 0.00921495, 0, 0.496111, 0.677216, 0.00862492, 0, 0.518456, 0.664217, 0.00806882, 0, 0.541367, 0.65137, 0.00755922, 0, 0.564872, 0.638, 0.00705705, 0, 0.589001, 0.62453, 0.00661266, 0, 0.613789, 0.610601, 0.00618432, 0, 0.639277, 0.59676, 0.00578033, 0, 0.66551, 0.582433, 0.00540927, 0, 0.692539, 0.568026, 0.00506104, 0, 0.720422, 0.55414, 0.0047353, 0, 0.749216, 0.540178, 0.00442889, 0, 0.778974, 0.526513, 0.00414363, 0, 0.809711, 0.512954, 0.00388237, 0, 0.84127, 0.499403, 0.00362875, 0, 0.873016, 0.486026, 0.00340827, 0, 0.904762, 0.472345, 0.00318598, 0, 0.936508, 0.458828, 0.00297635, 0, 0.968254, 0.445379, 0.00279447, 0, 1, 1, 0.0345716, 0, 0, 1, 0.0345717, 0, 0, 0.999999, 0.034573, 0, 0, 0.999991, 0.0345787, 0, 0, 0.999974, 0.0345941, 0, 0, 0.999937, 0.0346263, 0, 1.88589e-06, 0.999869, 0.0346847, 0, 0.000409238, 0.999757, 0.0347798, 0, 0.0017674, 0.999582, 0.0349233, 0, 0.00413658, 0.999322, 0.0351265, 0, 0.00747408, 0.998939, 0.0353967, 0, 0.0117157, 0.998219, 0.0357018, 0, 0.0167966, 0.994974, 0.0354726, 0, 0.0226572, 0.993201, 0.0355621, 0, 0.0292445, 0.991573, 0.0357641, 0, 0.0365123, 0.989301, 0.0359252, 0, 0.0444203, 0.985712, 0.0358017, 0, 0.0529334, 0.982411, 0.0358353, 0, 0.0620214, 0.977827, 0.035617, 0, 0.0716574, 0.973278, 0.0354398, 0, 0.0818186, 0.967397, 0.0350483, 0, 0.0924846, 0.960696, 0.0344795, 0, 0.103638, 0.954349, 0.0339861, 0, 0.115263, 0.946066, 0.0331323, 0, 0.127348, 0.938012, 0.032359, 0, 0.13988, 0.929413, 0.0314413, 0, 0.152849, 0.920355, 0.0304103, 0, 0.166248, 0.910586, 0.0292785, 0, 0.18007, 0.900609, 0.0281391, 0, 0.194308, 0.890093, 0.0269103, 0, 0.208958, 0.880013, 0.0257269, 0, 0.224018, 0.869001, 0.0244671, 0, 0.239485, 0.85751, 0.0232252, 0, 0.255359, 0.84582, 0.0220117, 0, 0.271638, 0.834383, 0.0208274, 0, 0.288324, 0.822158, 0.0196628, 0, 0.305419, 0.809056, 0.0185306, 0, 0.322927, 0.795832, 0.0174174, 0, 0.340851, 0.782547, 0.0163758, 0, 0.359199, 0.7689, 0.015391, 0, 0.377975, 0.755526, 0.0144488, 0, 0.397189, 0.741681, 0.0135372, 0, 0.416851, 0.728178, 0.0126957, 0, 0.436971, 0.714642, 0.0118812, 0, 0.457564, 0.702756, 0.0111165, 0, 0.478644, 0.69175, 0.0104145, 0, 0.500229, 0.680159, 0.00974439, 0, 0.522339, 0.668073, 0.00911926, 0, 0.544997, 0.655405, 0.00851393, 0, 0.56823, 0.642921, 0.00797637, 0, 0.592068, 0.629993, 0.00745119, 0, 0.616546, 0.616828, 0.00696972, 0, 0.641705, 0.603305, 0.00652425, 0, 0.66759, 0.589833, 0.00610188, 0, 0.694255, 0.575945, 0.00570834, 0, 0.72176, 0.561745, 0.00533384, 0, 0.750168, 0.548277, 0.00500001, 0, 0.779545, 0.534467, 0.00467582, 0, 0.809933, 0.521032, 0.00438092, 0, 0.841272, 0.507877, 0.00410348, 0, 0.873016, 0.494654, 0.00383618, 0, 0.904762, 0.481592, 0.00358699, 0, 0.936508, 0.468509, 0.00337281, 0, 0.968254, 0.455293, 0.00316196, 0, 1, 1, 0.0430698, 0, 0, 1, 0.0430699, 0, 0, 0.999998, 0.0430713, 0, 0, 0.999991, 0.0430773, 0, 0, 0.99997, 0.0430936, 0, 0, 0.999928, 0.0431277, 0, 4.06396e-05, 0.999852, 0.0431893, 0, 0.000744376, 0.999724, 0.0432895, 0, 0.0024806, 0.999527, 0.0434397, 0, 0.00524779, 0.99923, 0.0436507, 0, 0.00898164, 0.998783, 0.0439255, 0, 0.0136083, 0.997507, 0.0441104, 0, 0.0190582, 0.994418, 0.0438225, 0, 0.0252694, 0.992864, 0.0439396, 0, 0.0321879, 0.991127, 0.0440962, 0, 0.039767, 0.987331, 0.0438408, 0, 0.0479667, 0.984819, 0.0438991, 0, 0.056752, 0.980384, 0.0435906, 0, 0.0660929, 0.975846, 0.0432543, 0, 0.075963, 0.970748, 0.0428293, 0, 0.0863398, 0.964303, 0.042153, 0, 0.0972035, 0.95772, 0.0414111, 0, 0.108537, 0.950747, 0.0405893, 0, 0.120325, 0.942533, 0.0394887, 0, 0.132554, 0.934045, 0.0383544, 0, 0.145215, 0.924942, 0.037057, 0, 0.158296, 0.915811, 0.0356993, 0, 0.17179, 0.90612, 0.0342401, 0, 0.185691, 0.896434, 0.0328078, 0, 0.199993, 0.886021, 0.031288, 0, 0.214691, 0.876081, 0.0297776, 0, 0.229782, 0.865608, 0.0282334, 0, 0.245265, 0.854924, 0.026749, 0, 0.261138, 0.843607, 0.02526, 0, 0.277401, 0.832456, 0.0238214, 0, 0.294056, 0.821342, 0.0224682, 0, 0.311104, 0.809303, 0.0211297, 0, 0.328548, 0.796468, 0.0198387, 0, 0.346394, 0.784046, 0.0186227, 0, 0.364645, 0.771262, 0.0174561, 0, 0.38331, 0.758118, 0.0163806, 0, 0.402396, 0.745075, 0.0153287, 0, 0.421912, 0.731926, 0.0143647, 0, 0.44187, 0.71863, 0.0134363, 0, 0.462283, 0.705414, 0.0125603, 0, 0.483165, 0.693792, 0.0117508, 0, 0.504535, 0.683108, 0.0110016, 0, 0.52641, 0.67183, 0.0102757, 0, 0.548816, 0.66015, 0.00962044, 0, 0.571776, 0.647907, 0.00898031, 0, 0.595323, 0.635734, 0.00840811, 0, 0.619489, 0.623208, 0.00786211, 0, 0.644317, 0.610438, 0.00734953, 0, 0.669852, 0.597345, 0.00687688, 0, 0.696148, 0.584138, 0.00643469, 0, 0.723267, 0.5707, 0.00602236, 0, 0.75128, 0.556966, 0.0056324, 0, 0.780258, 0.543607, 0.00528277, 0, 0.810268, 0.530213, 0.00493999, 0, 0.841311, 0.516912, 0.00462265, 0, 0.873016, 0.503916, 0.0043307, 0, 0.904762, 0.491146, 0.00406858, 0, 0.936508, 0.478439, 0.00381436, 0, 0.968254, 0.465834, 0.00358003, 0, 1, 1, 0.0534039, 0, 0, 1, 0.053404, 0, 0, 0.999998, 0.0534055, 0, 0, 0.999989, 0.0534116, 0, 0, 0.999968, 0.0534283, 0, 0, 0.999918, 0.0534633, 0, 0.000155895, 0.99983, 0.0535262, 0, 0.00120914, 0.999685, 0.0536281, 0, 0.00334944, 0.999461, 0.0537799, 0, 0.00653077, 0.999119, 0.0539902, 0, 0.0106718, 0.998582, 0.0542524, 0, 0.0156907, 0.995919, 0.0540318, 0, 0.0215147, 0.993735, 0.0538914, 0, 0.0280801, 0.992126, 0.0539557, 0, 0.0353323, 0.990266, 0.0540401, 0, 0.0432247, 0.986317, 0.0536064, 0, 0.0517172, 0.983213, 0.0534425, 0, 0.0607754, 0.978303, 0.0528622, 0, 0.0703698, 0.973665, 0.0523363, 0, 0.0804742, 0.968091, 0.0516165, 0, 0.0910667, 0.961026, 0.0505434, 0, 0.102128, 0.954333, 0.049523, 0, 0.113641, 0.946372, 0.0481698, 0, 0.125591, 0.938254, 0.0467674, 0, 0.137965, 0.929516, 0.0452341, 0, 0.150754, 0.920106, 0.0435083, 0, 0.163947, 0.910899, 0.0417399, 0, 0.177537, 0.901532, 0.0399389, 0, 0.191516, 0.891919, 0.0380901, 0, 0.205881, 0.882006, 0.0362341, 0, 0.220626, 0.871965, 0.0343444, 0, 0.235749, 0.862145, 0.0324832, 0, 0.251248, 0.852058, 0.0306681, 0, 0.267121, 0.84161, 0.0289097, 0, 0.283368, 0.830806, 0.0272079, 0, 0.299992, 0.820476, 0.0256089, 0, 0.316992, 0.809514, 0.0240394, 0, 0.334374, 0.797865, 0.0225379, 0, 0.35214, 0.785621, 0.0211235, 0, 0.370296, 0.773765, 0.0197908, 0, 0.388849, 0.761629, 0.0185235, 0, 0.407807, 0.748891, 0.0173358, 0, 0.427178, 0.736437, 0.0162305, 0, 0.446974, 0.723707, 0.0151778, 0, 0.467207, 0.710606, 0.0141791, 0, 0.487892, 0.698019, 0.0132592, 0, 0.509046, 0.686203, 0.0123887, 0, 0.530687, 0.675692, 0.0115976, 0, 0.552839, 0.664826, 0.0108325, 0, 0.575527, 0.65349, 0.0101348, 0, 0.59878, 0.641774, 0.00947756, 0, 0.622634, 0.629794, 0.00886058, 0, 0.647128, 0.617647, 0.00828526, 0, 0.672308, 0.60534, 0.00775312, 0, 0.698231, 0.592718, 0.00726033, 0, 0.724958, 0.579746, 0.00679731, 0, 0.752563, 0.566763, 0.00636111, 0, 0.781127, 0.553515, 0.00595228, 0, 0.810733, 0.540118, 0.00556876, 0, 0.841426, 0.527325, 0.00523051, 0, 0.873016, 0.514265, 0.00490712, 0, 0.904762, 0.501406, 0.00460297, 0, 0.936508, 0.488922, 0.00431247, 0, 0.968254, 0.476541, 0.0040472, 0, 1, 1, 0.0659184, 0, 0, 1, 0.0659185, 0, 0, 0.999998, 0.06592, 0, 0, 0.999988, 0.0659259, 0, 0, 0.999963, 0.0659423, 0, 0, 0.999907, 0.0659764, 0, 0.000374198, 0.999806, 0.0660376, 0, 0.00182071, 0.999639, 0.0661361, 0, 0.0043894, 0.999378, 0.0662814, 0, 0.00800055, 0.998985, 0.0664779, 0, 0.0125594, 0.998285, 0.0666914, 0, 0.0179786, 0.995071, 0.0661989, 0, 0.0241822, 0.993172, 0.0660454, 0, 0.031106, 0.991438, 0.0660105, 0, 0.0386952, 0.988428, 0.0656875, 0, 0.0469032, 0.985218, 0.0652913, 0, 0.0556905, 0.981128, 0.0647107, 0, 0.065023, 0.976015, 0.0638491, 0, 0.0748717, 0.97097, 0.062993, 0, 0.0852112, 0.964582, 0.0617927, 0, 0.0960199, 0.957383, 0.0603626, 0, 0.107279, 0.949969, 0.0588128, 0, 0.118971, 0.941843, 0.0570274, 0, 0.131084, 0.933624, 0.0551885, 0, 0.143604, 0.924543, 0.053122, 0, 0.156521, 0.914919, 0.0508897, 0, 0.169825, 0.905773, 0.0486418, 0, 0.18351, 0.896434, 0.0463364, 0, 0.197569, 0.887195, 0.0440623, 0, 0.211997, 0.877706, 0.0417799, 0, 0.226789, 0.867719, 0.03945, 0, 0.241944, 0.858587, 0.037243, 0, 0.257458, 0.849317, 0.0350956, 0, 0.273331, 0.839585, 0.0329852, 0, 0.289563, 0.829856, 0.0310028, 0, 0.306154, 0.819589, 0.0290953, 0, 0.323108, 0.809714, 0.0272738, 0, 0.340426, 0.79934, 0.0255631, 0, 0.358113, 0.788224, 0.0239175, 0, 0.376175, 0.776619, 0.0223831, 0, 0.394616, 0.76521, 0.0209298, 0, 0.413445, 0.753716, 0.0195786, 0, 0.432671, 0.741564, 0.0183001, 0, 0.452305, 0.729413, 0.0171259, 0, 0.472358, 0.717146, 0.0159933, 0, 0.492845, 0.70436, 0.0149495, 0, 0.513783, 0.69219, 0.0139681, 0, 0.535189, 0.680289, 0.0130577, 0, 0.557087, 0.669611, 0.0122198, 0, 0.5795, 0.659113, 0.0114174, 0, 0.602459, 0.648148, 0.0106729, 0, 0.625997, 0.636905, 0.00998997, 0, 0.650154, 0.625154, 0.00934313, 0, 0.674976, 0.613481, 0.00874839, 0, 0.700518, 0.60154, 0.00818265, 0, 0.726845, 0.58943, 0.00766889, 0, 0.754032, 0.576828, 0.00717153, 0, 0.782167, 0.564194, 0.00672696, 0, 0.811344, 0.551501, 0.00630863, 0, 0.841644, 0.538635, 0.00592177, 0, 0.873016, 0.525724, 0.00554888, 0, 0.904762, 0.513209, 0.00520225, 0, 0.936508, 0.500457, 0.00488231, 0, 0.968254, 0.48799, 0.00457153, 0, 1, 1, 0.0810131, 0, 0, 1, 0.0810133, 0, 0, 0.999997, 0.0810145, 0, 0, 0.999985, 0.08102, 0, 0, 0.999956, 0.0810347, 0, 1.95026e-05, 0.999893, 0.0810656, 0, 0.000719316, 0.999777, 0.0811205, 0, 0.00259774, 0.999583, 0.081208, 0, 0.00561807, 0.999281, 0.0813343, 0, 0.00967472, 0.998813, 0.0814969, 0, 0.0146627, 0.997597, 0.0815217, 0, 0.0204902, 0.994379, 0.0808502, 0, 0.0270802, 0.992744, 0.0806792, 0, 0.0343674, 0.990745, 0.0804589, 0, 0.0422974, 0.986646, 0.0796107, 0, 0.0508242, 0.983611, 0.0790913, 0, 0.0599087, 0.978869, 0.0780746, 0, 0.0695175, 0.973475, 0.0768218, 0, 0.0796223, 0.967845, 0.0754926, 0, 0.0901983, 0.960778, 0.0737063, 0, 0.101224, 0.953333, 0.0718052, 0, 0.112682, 0.945274, 0.0695946, 0, 0.124555, 0.936955, 0.0672492, 0, 0.136831, 0.928319, 0.0647732, 0, 0.149496, 0.919075, 0.0620947, 0, 0.162542, 0.909114, 0.0591816, 0, 0.175958, 0.900137, 0.0563917, 0, 0.189739, 0.891069, 0.0535392, 0, 0.203877, 0.882262, 0.0507642, 0, 0.218368, 0.873232, 0.0479793, 0, 0.233208, 0.864042, 0.045226, 0, 0.248393, 0.855002, 0.0425413, 0, 0.263923, 0.846569, 0.0400126, 0, 0.279796, 0.837714, 0.0375269, 0, 0.296012, 0.828918, 0.0352027, 0, 0.312573, 0.819783, 0.0330011, 0, 0.329479, 0.810129, 0.0308908, 0, 0.346734, 0.800866, 0.0289112, 0, 0.364342, 0.79093, 0.0270255, 0, 0.382307, 0.780593, 0.0252758, 0, 0.400637, 0.769511, 0.0236178, 0, 0.419337, 0.758558, 0.0220652, 0, 0.438418, 0.747632, 0.0206289, 0, 0.457889, 0.736146, 0.0192873, 0, 0.477761, 0.724093, 0.0180333, 0, 0.49805, 0.71234, 0.0168264, 0, 0.51877, 0.700201, 0.015746, 0, 0.53994, 0.687949, 0.0147027, 0, 0.561581, 0.676163, 0.0137512, 0, 0.583718, 0.665001, 0.0128655, 0, 0.60638, 0.65472, 0.0120366, 0, 0.629599, 0.644213, 0.0112604, 0, 0.653415, 0.633382, 0.0105413, 0, 0.677874, 0.62212, 0.00986498, 0, 0.70303, 0.610631, 0.00923308, 0, 0.728948, 0.599078, 0.00864206, 0, 0.755706, 0.587519, 0.00811784, 0, 0.783396, 0.575505, 0.00761237, 0, 0.812121, 0.563148, 0.00713949, 0, 0.841989, 0.550828, 0.00668379, 0, 0.873035, 0.538458, 0.00627715, 0, 0.904762, 0.525905, 0.00588336, 0, 0.936508, 0.513517, 0.00552687, 0, 0.968254, 0.501395, 0.00519681, 0, 1, 1, 0.0991506, 0, 0, 1, 0.0991504, 0, 0, 0.999996, 0.0991515, 0, 0, 0.999984, 0.0991558, 0, 0, 0.999947, 0.0991672, 0, 0.000114389, 0.999874, 0.0991912, 0, 0.00121503, 0.999739, 0.0992331, 0, 0.00356108, 0.999514, 0.0992983, 0, 0.00705578, 0.999159, 0.0993877, 0, 0.011574, 0.998586, 0.0994837, 0, 0.017003, 0.995731, 0.0988425, 0, 0.0232484, 0.993384, 0.098276, 0, 0.0302318, 0.991615, 0.0979269, 0, 0.0378884, 0.989029, 0.0973432, 0, 0.0461641, 0.985373, 0.0963539, 0, 0.0550136, 0.981278, 0.0952306, 0, 0.0643988, 0.975777, 0.0936233, 0, 0.0742868, 0.970526, 0.0920219, 0, 0.0846501, 0.963755, 0.0898912, 0, 0.0954644, 0.956676, 0.0876064, 0, 0.106709, 0.948099, 0.0847751, 0, 0.118367, 0.939718, 0.0818638, 0, 0.130423, 0.931305, 0.078857, 0, 0.142862, 0.922342, 0.0756127, 0, 0.155674, 0.912842, 0.0721473, 0, 0.168849, 0.903304, 0.0686195, 0, 0.182378, 0.89411, 0.0650589, 0, 0.196255, 0.885512, 0.0616022, 0, 0.210473, 0.877193, 0.0582434, 0, 0.225027, 0.86877, 0.0548979, 0, 0.239915, 0.860267, 0.0516095, 0, 0.255132, 0.851915, 0.048468, 0, 0.270678, 0.843912, 0.0454447, 0, 0.286551, 0.83604, 0.0425612, 0, 0.302751, 0.828245, 0.0398752, 0, 0.31928, 0.820159, 0.0373198, 0, 0.336138, 0.81167, 0.034916, 0, 0.35333, 0.802659, 0.0326402, 0, 0.370858, 0.793921, 0.0304901, 0, 0.388728, 0.784713, 0.0284857, 0, 0.406944, 0.774946, 0.0266186, 0, 0.425515, 0.76448, 0.0248593, 0, 0.444449, 0.753793, 0.0232114, 0, 0.463756, 0.743506, 0.0217039, 0, 0.483447, 0.732555, 0.0202841, 0, 0.503535, 0.720965, 0.0189648, 0, 0.524036, 0.709422, 0.0177189, 0, 0.544968, 0.697756, 0.0165626, 0, 0.56635, 0.685565, 0.015483, 0, 0.588208, 0.673987, 0.0144892, 0, 0.610569, 0.66244, 0.0135607, 0, 0.633466, 0.651675, 0.0126956, 0, 0.656936, 0.641598, 0.0118788, 0, 0.681025, 0.63121, 0.0111261, 0, 0.705788, 0.620514, 0.010437, 0, 0.731289, 0.609366, 0.00978747, 0, 0.757606, 0.598137, 0.00917257, 0, 0.784834, 0.586966, 0.00859778, 0, 0.813085, 0.575549, 0.00806803, 0, 0.842485, 0.563797, 0.00757294, 0, 0.87313, 0.551758, 0.00710592, 0, 0.904762, 0.539894, 0.0066841, 0, 0.936508, 0.527901, 0.00627901, 0, 0.968254, 0.515819, 0.00590506, 0, 1, 1, 0.120864, 0, 0, 1, 0.120864, 0, 0, 0.999996, 0.120864, 0, 0, 0.99998, 0.120867, 0, 0, 0.99994, 0.120872, 0, 0.000323781, 0.999852, 0.120884, 0, 0.00188693, 0.999693, 0.120903, 0, 0.00473489, 0.999426, 0.120929, 0, 0.00872704, 0.999002, 0.120955, 0, 0.0137237, 0.998235, 0.120918, 0, 0.0196068, 0.994608, 0.119764, 0, 0.0262803, 0.992997, 0.119265, 0, 0.0336657, 0.990968, 0.11863, 0, 0.0416987, 0.987002, 0.117261, 0, 0.0503261, 0.983524, 0.116009, 0, 0.0595035, 0.97875, 0.114252, 0, 0.0691935, 0.972652, 0.11193, 0, 0.0793645, 0.966613, 0.109555, 0, 0.0899894, 0.959275, 0.106612, 0, 0.101045, 0.951272, 0.103375, 0, 0.112512, 0.942323, 0.0996594, 0, 0.124372, 0.933679, 0.0958841, 0, 0.136611, 0.924822, 0.0919265, 0, 0.149216, 0.915742, 0.0878061, 0, 0.162176, 0.906348, 0.0834894, 0, 0.175482, 0.896883, 0.079085, 0, 0.189125, 0.88774, 0.0746745, 0, 0.203098, 0.87986, 0.0705773, 0, 0.217396, 0.871998, 0.0665005, 0, 0.232015, 0.864325, 0.0625413, 0, 0.24695, 0.856685, 0.0586781, 0, 0.2622, 0.84925, 0.0550063, 0, 0.277761, 0.841719, 0.0514727, 0, 0.293634, 0.834755, 0.0481398, 0, 0.309819, 0.827853, 0.0450172, 0, 0.326315, 0.820888, 0.0420969, 0, 0.343126, 0.813616, 0.0393702, 0, 0.360254, 0.805767, 0.0367771, 0, 0.377701, 0.797338, 0.0343274, 0, 0.395474, 0.789122, 0.0320529, 0, 0.413577, 0.780601, 0.0299485, 0, 0.432018, 0.771424, 0.0279812, 0, 0.450804, 0.761502, 0.0261054, 0, 0.469944, 0.751166, 0.0243942, 0, 0.489451, 0.741276, 0.0228087, 0, 0.509337, 0.730898, 0.0213265, 0, 0.529617, 0.719878, 0.0199307, 0, 0.550307, 0.708379, 0.0186574, 0, 0.571428, 0.697165, 0.0174446, 0, 0.593003, 0.685554, 0.0163144, 0, 0.615059, 0.673631, 0.015276, 0, 0.637628, 0.662385, 0.0143003, 0, 0.660746, 0.651059, 0.0134112, 0, 0.68446, 0.640451, 0.0125794, 0, 0.70882, 0.630536, 0.011793, 0, 0.733893, 0.620316, 0.0110547, 0, 0.759756, 0.609722, 0.0103668, 0, 0.786505, 0.598804, 0.00973009, 0, 0.814259, 0.587871, 0.00912812, 0, 0.843157, 0.577121, 0.00858916, 0, 0.87334, 0.566019, 0.00807333, 0, 0.904762, 0.554664, 0.00759687, 0, 0.936508, 0.543101, 0.00714759, 0, 0.968254, 0.531558, 0.00673418, 0, 1, 1, 0.146767, 0, 0, 1, 0.146767, 0, 0, 0.999997, 0.146767, 0, 0, 0.999977, 0.146765, 0, 3.20658e-06, 0.999929, 0.146762, 0, 0.000682576, 0.999823, 0.146753, 0, 0.00276402, 0.999633, 0.146735, 0, 0.00614771, 0.999314, 0.146699, 0, 0.0106613, 0.998796, 0.14662, 0, 0.0161546, 0.997124, 0.146107, 0, 0.0225063, 0.994062, 0.144857, 0, 0.0296198, 0.992154, 0.144011, 0, 0.037417, 0.989186, 0.142712, 0, 0.0458348, 0.985279, 0.140926, 0, 0.0548211, 0.980826, 0.13885, 0, 0.0643326, 0.975056, 0.136168, 0, 0.074333, 0.969005, 0.133217, 0, 0.0847917, 0.961554, 0.12959, 0, 0.0956828, 0.954206, 0.125886, 0, 0.106984, 0.945046, 0.121335, 0, 0.118675, 0.935678, 0.116492, 0, 0.130741, 0.926748, 0.111635, 0, 0.143166, 0.917764, 0.106625, 0, 0.155939, 0.908358, 0.101325, 0, 0.169049, 0.899219, 0.0960249, 0, 0.182487, 0.890089, 0.0906527, 0, 0.196245, 0.881488, 0.0853905, 0, 0.210317, 0.874031, 0.0804177, 0, 0.224697, 0.866932, 0.0756005, 0, 0.23938, 0.859976, 0.0709019, 0, 0.254364, 0.853375, 0.0664391, 0, 0.269646, 0.846971, 0.0622012, 0, 0.285223, 0.840483, 0.058129, 0, 0.301096, 0.833969, 0.0542762, 0, 0.317265, 0.82806, 0.0507042, 0, 0.333729, 0.822128, 0.047368, 0, 0.350491, 0.815989, 0.044272, 0, 0.367554, 0.809336, 0.0413444, 0, 0.38492, 0.802177, 0.038601, 0, 0.402594, 0.79441, 0.0360227, 0, 0.420582, 0.786573, 0.0336383, 0, 0.438891, 0.778619, 0.0314321, 0, 0.457527, 0.77, 0.029362, 0, 0.476499, 0.760698, 0.0274102, 0, 0.49582, 0.750932, 0.0256146, 0, 0.5155, 0.740993, 0.023974, 0, 0.535555, 0.731159, 0.0224182, 0, 0.556, 0.720836, 0.0209889, 0, 0.576855, 0.709913, 0.0196411, 0, 0.598143, 0.698415, 0.0183824, 0, 0.619888, 0.68745, 0.0172222, 0, 0.642123, 0.676154, 0.0161509, 0, 0.664883, 0.664383, 0.0151397, 0, 0.688211, 0.6533, 0.0141873, 0, 0.71216, 0.642072, 0.0133105, 0, 0.736792, 0.631412, 0.0124932, 0, 0.762186, 0.621622, 0.0117408, 0, 0.788439, 0.611681, 0.0110358, 0, 0.815672, 0.60142, 0.0103775, 0, 0.844034, 0.59083, 0.00975623, 0, 0.873699, 0.580254, 0.00918084, 0, 0.904765, 0.569841, 0.00864721, 0, 0.936508, 0.559224, 0.00815731, 0, 0.968254, 0.548315, 0.00767924, 0, 1, 1, 0.177563, 0, 0, 1, 0.177563, 0, 0, 0.999994, 0.177562, 0, 0, 0.999972, 0.177555, 0, 6.64171e-05, 0.999914, 0.177536, 0, 0.0012276, 0.999787, 0.177496, 0, 0.00388025, 0.999556, 0.17742, 0, 0.00783463, 0.999165, 0.177285, 0, 0.0128953, 0.9985, 0.177037, 0, 0.0189053, 0.995388, 0.175634, 0, 0.025742, 0.993102, 0.174375, 0, 0.033309, 0.990992, 0.173121, 0, 0.0415298, 0.986932, 0.170896, 0, 0.0503425, 0.982786, 0.16847, 0, 0.0596964, 0.977592, 0.165455, 0, 0.0695498, 0.971075, 0.161676, 0, 0.0798676, 0.963967, 0.157458, 0, 0.0906201, 0.956397, 0.152836, 0, 0.101783, 0.947489, 0.147467, 0, 0.113333, 0.937564, 0.14145, 0, 0.125254, 0.928182, 0.135383, 0, 0.137529, 0.919027, 0.129212, 0, 0.150144, 0.909618, 0.12276, 0, 0.163088, 0.900492, 0.116273, 0, 0.176351, 0.891671, 0.1098, 0, 0.189924, 0.883146, 0.103362, 0, 0.203799, 0.875151, 0.0970799, 0, 0.21797, 0.868338, 0.0911732, 0, 0.232433, 0.862033, 0.0854966, 0, 0.247182, 0.856107, 0.0800691, 0, 0.262216, 0.850644, 0.0749618, 0, 0.27753, 0.845261, 0.070079, 0, 0.293124, 0.839885, 0.0654321, 0, 0.308997, 0.834609, 0.0610975, 0, 0.325149, 0.829083, 0.0569741, 0, 0.341581, 0.82404, 0.0531736, 0, 0.358294, 0.818968, 0.049665, 0, 0.37529, 0.813496, 0.0463856, 0, 0.392573, 0.807533, 0.0433217, 0, 0.410148, 0.80099, 0.0404402, 0, 0.428019, 0.793891, 0.0377578, 0, 0.446192, 0.786281, 0.0352616, 0, 0.464676, 0.778773, 0.0329577, 0, 0.483478, 0.770737, 0.030808, 0, 0.502608, 0.762094, 0.0287964, 0, 0.522079, 0.752898, 0.0269254, 0, 0.541905, 0.743306, 0.0251926, 0, 0.5621, 0.733416, 0.023595, 0, 0.582684, 0.723742, 0.0221155, 0, 0.603677, 0.713542, 0.0207435, 0, 0.625106, 0.702755, 0.019434, 0, 0.646998, 0.691484, 0.0182046, 0, 0.66939, 0.680531, 0.0170771, 0, 0.692324, 0.66953, 0.0160339, 0, 0.715849, 0.658126, 0.0150677, 0, 0.740028, 0.646933, 0.0141551, 0, 0.764937, 0.636107, 0.0133179, 0, 0.790673, 0.625271, 0.0125284, 0, 0.817358, 0.615225, 0.0117937, 0, 0.84515, 0.605678, 0.0111181, 0, 0.874244, 0.59583, 0.0104759, 0, 0.904828, 0.585704, 0.00986672, 0, 0.936508, 0.575413, 0.00929712, 0, 0.968254, 0.565373, 0.00876713, 0, 1, 1, 0.214058, 0, 0, 0.999999, 0.214058, 0, 0, 0.999994, 0.214055, 0, 0, 0.999966, 0.214039, 0, 0.000259642, 0.999893, 0.213998, 0, 0.00200075, 0.999737, 0.21391, 0, 0.00527775, 0.999449, 0.213745, 0, 0.00983959, 0.99896, 0.213458, 0, 0.0154755, 0.9979, 0.212855, 0, 0.0220249, 0.994278, 0.210779, 0, 0.0293654, 0.992254, 0.20926, 0, 0.0374021, 0.98881, 0.206908, 0, 0.0460604, 0.984715, 0.204009, 0, 0.0552802, 0.979738, 0.200471, 0, 0.0650127, 0.972884, 0.195813, 0, 0.0752175, 0.965996, 0.190856, 0, 0.0858612, 0.957974, 0.185077, 0, 0.0969155, 0.949155, 0.17868, 0, 0.108356, 0.939288, 0.171513, 0, 0.120163, 0.928996, 0.163838, 0, 0.132319, 0.919563, 0.156246, 0, 0.144808, 0.910004, 0.148359, 0, 0.157618, 0.900791, 0.140417, 0, 0.170737, 0.892135, 0.132569, 0, 0.184155, 0.883803, 0.124741, 0, 0.197866, 0.876034, 0.117091, 0, 0.211861, 0.869219, 0.109835, 0, 0.226134, 0.863062, 0.102859, 0, 0.240682, 0.857795, 0.0962928, 0, 0.255499, 0.853009, 0.0900725, 0, 0.270583, 0.848603, 0.0842101, 0, 0.285931, 0.844335, 0.0786527, 0, 0.301542, 0.840208, 0.0734397, 0, 0.317415, 0.836035, 0.0685334, 0, 0.33355, 0.83172, 0.0639275, 0, 0.349948, 0.827135, 0.0595909, 0, 0.36661, 0.822797, 0.0556204, 0, 0.383539, 0.818387, 0.0519394, 0, 0.400738, 0.813565, 0.0485317, 0, 0.41821, 0.808142, 0.0453138, 0, 0.435961, 0.802212, 0.0423354, 0, 0.453997, 0.79573, 0.0395553, 0, 0.472324, 0.788741, 0.036988, 0, 0.490951, 0.781093, 0.0345688, 0, 0.509887, 0.773597, 0.0323297, 0, 0.529144, 0.765622, 0.0302719, 0, 0.548735, 0.757083, 0.0283477, 0, 0.568674, 0.747992, 0.0265562, 0, 0.588979, 0.738591, 0.0248844, 0, 0.609671, 0.728719, 0.0233342, 0, 0.630773, 0.719146, 0.0219081, 0, 0.652314, 0.709165, 0.0205711, 0, 0.674328, 0.69875, 0.0193248, 0, 0.696854, 0.687884, 0.0181582, 0, 0.719942, 0.676818, 0.0170746, 0, 0.743651, 0.666247, 0.0160718, 0, 0.768057, 0.655284, 0.0151262, 0, 0.793253, 0.64401, 0.0142561, 0, 0.819363, 0.633353, 0.0134327, 0, 0.846547, 0.622674, 0.012653, 0, 0.875017, 0.612265, 0.0119354, 0, 0.905021, 0.602455, 0.0112533, 0, 0.936508, 0.593147, 0.0106234, 0, 0.968254, 0.583592, 0.0100213, 0, 1, 1, 0.25717, 0, 0, 1, 0.25717, 0, 0, 0.999992, 0.257164, 0, 0, 0.999958, 0.257135, 0, 0.000641715, 0.999864, 0.25706, 0, 0.00305314, 0.999666, 0.256897, 0, 0.00700975, 0.999302, 0.256596, 0, 0.0122194, 0.998663, 0.25607, 0, 0.0184622, 0.995607, 0.254123, 0, 0.0255773, 0.993094, 0.252081, 0, 0.0334439, 0.9907, 0.249867, 0, 0.0419696, 0.98594, 0.246118, 0, 0.0510823, 0.981214, 0.242049, 0, 0.0607242, 0.974966, 0.236869, 0, 0.0708486, 0.967589, 0.230724, 0, 0.081417, 0.95915, 0.223635, 0, 0.0923974, 0.950257, 0.21596, 0, 0.103763, 0.940165, 0.207296, 0, 0.115491, 0.929396, 0.197901, 0, 0.127562, 0.919288, 0.188437, 0, 0.13996, 0.909428, 0.178762, 0, 0.15267, 0.900105, 0.169072, 0, 0.165679, 0.891418, 0.159478, 0, 0.178979, 0.883347, 0.15002, 0, 0.192558, 0.875992, 0.140813, 0, 0.20641, 0.869466, 0.13196, 0, 0.220529, 0.863699, 0.123501, 0, 0.234907, 0.858553, 0.115436, 0, 0.249542, 0.854379, 0.107901, 0, 0.264428, 0.850894, 0.10088, 0, 0.279564, 0.847632, 0.0942296, 0, 0.294947, 0.844571, 0.0879861, 0, 0.310575, 0.84163, 0.0821534, 0, 0.326448, 0.838542, 0.0766409, 0, 0.342566, 0.835412, 0.0715322, 0, 0.358929, 0.831899, 0.0666883, 0, 0.37554, 0.828177, 0.0622175, 0, 0.392399, 0.82416, 0.0580452, 0, 0.409511, 0.820393, 0.054267, 0, 0.426878, 0.816068, 0.0507172, 0, 0.444506, 0.811201, 0.0474041, 0, 0.4624, 0.805785, 0.0443174, 0, 0.480566, 0.799878, 0.0414562, 0, 0.499013, 0.793469, 0.0388147, 0, 0.517749, 0.786473, 0.0363453, 0, 0.536785, 0.778874, 0.0340225, 0, 0.556134, 0.771277, 0.0318599, 0, 0.575809, 0.763426, 0.0298859, 0, 0.595827, 0.755044, 0.0280357, 0, 0.616207, 0.746161, 0.0262979, 0, 0.636973, 0.737124, 0.0247295, 0, 0.65815, 0.72761, 0.0232514, 0, 0.679772, 0.717822, 0.0218755, 0, 0.701876, 0.708279, 0.0205942, 0, 0.724509, 0.698333, 0.0193947, 0, 0.74773, 0.68802, 0.0182717, 0, 0.771609, 0.677321, 0.0172044, 0, 0.79624, 0.666504, 0.0162122, 0, 0.821743, 0.656184, 0.0152924, 0, 0.84828, 0.64556, 0.0144326, 0, 0.876069, 0.634636, 0.0136157, 0, 0.905404, 0.624124, 0.0128612, 0, 0.936508, 0.613914, 0.0121435, 0, 0.968254, 0.603589, 0.0114887, 0, 1, 1, 0.307946, 0, 0, 0.999999, 0.307945, 0, 0, 0.999988, 0.307934, 0, 2.04479e-05, 0.999944, 0.307886, 0, 0.00127833, 0.999824, 0.307756, 0, 0.00445047, 0.999565, 0.30748, 0, 0.00914673, 0.999085, 0.306966, 0, 0.0150498, 0.998103, 0.306004, 0, 0.0219367, 0.994249, 0.303028, 0, 0.0296485, 0.991807, 0.300435, 0, 0.038068, 0.987773, 0.296554, 0, 0.0471062, 0.982673, 0.2916, 0, 0.0566942, 0.976623, 0.285641, 0, 0.0667768, 0.968757, 0.27815, 0, 0.0773099, 0.959849, 0.269529, 0, 0.088257, 0.950663, 0.260248, 0, 0.0995879, 0.940129, 0.249704, 0, 0.111277, 0.92895, 0.238291, 0, 0.123304, 0.917996, 0.226501, 0, 0.13565, 0.907813, 0.214669, 0, 0.148299, 0.898305, 0.202835, 0, 0.161237, 0.889626, 0.191158, 0, 0.174455, 0.88175, 0.179695, 0, 0.187941, 0.874715, 0.168548, 0, 0.201687, 0.868746, 0.15792, 0, 0.215687, 0.863703, 0.147807, 0, 0.229933, 0.859315, 0.138149, 0, 0.24442, 0.855538, 0.128993, 0, 0.259145, 0.852428, 0.120414, 0, 0.274103, 0.850168, 0.112498, 0, 0.289293, 0.848132, 0.105054, 0, 0.304711, 0.846291, 0.0981087, 0, 0.320357, 0.844431, 0.0915942, 0, 0.33623, 0.842493, 0.0855056, 0, 0.35233, 0.840368, 0.0798204, 0, 0.368658, 0.83798, 0.0745097, 0, 0.385214, 0.83523, 0.0695424, 0, 0.402002, 0.832091, 0.0649092, 0, 0.419023, 0.828667, 0.0606291, 0, 0.436282, 0.824805, 0.0566523, 0, 0.453782, 0.820988, 0.0530229, 0, 0.471529, 0.816635, 0.0496364, 0, 0.489528, 0.811725, 0.0464658, 0, 0.507788, 0.806316, 0.0435082, 0, 0.526317, 0.800469, 0.0407873, 0, 0.545124, 0.794107, 0.038255, 0, 0.564221, 0.787218, 0.0358825, 0, 0.583621, 0.779872, 0.0336785, 0, 0.603341, 0.772097, 0.0316379, 0, 0.623397, 0.764484, 0.0297379, 0, 0.643812, 0.756428, 0.0279581, 0, 0.664611, 0.748022, 0.0263153, 0, 0.685824, 0.739268, 0.0247799, 0, 0.707488, 0.73024, 0.0233385, 0, 0.729646, 0.720893, 0.0220035, 0, 0.752354, 0.71119, 0.0207555, 0, 0.77568, 0.701791, 0.0195843, 0, 0.799715, 0.692184, 0.0184891, 0, 0.824574, 0.682258, 0.0174541, 0, 0.850417, 0.67206, 0.0164873, 0, 0.877466, 0.661717, 0.0155959, 0, 0.90604, 0.651462, 0.0147519, 0, 0.936528, 0.641467, 0.0139727, 0, 0.968254, 0.631229, 0.0132363, 0, 1, 1, 0.367573, 0, 0, 0.999999, 0.367571, 0, 0, 0.999984, 0.367553, 0, 0.000183382, 0.999925, 0.367473, 0, 0.00225254, 0.999759, 0.367259, 0, 0.00628165, 0.99941, 0.366801, 0, 0.0117858, 0.998739, 0.365946, 0, 0.0184359, 0.995529, 0.363191, 0, 0.0260114, 0.992875, 0.360171, 0, 0.0343581, 0.989135, 0.355981, 0, 0.0433637, 0.984166, 0.350401, 0, 0.0529438, 0.977871, 0.343348, 0, 0.0630334, 0.96951, 0.334341, 0, 0.0735805, 0.959964, 0.323862, 0, 0.0845437, 0.950162, 0.312521, 0, 0.095889, 0.938882, 0.299577, 0, 0.107588, 0.926992, 0.285573, 0, 0.119617, 0.915589, 0.271212, 0, 0.131957, 0.904791, 0.256611, 0, 0.144591, 0.895177, 0.242224, 0, 0.157503, 0.886403, 0.227952, 0, 0.170682, 0.878957, 0.214192, 0, 0.184117, 0.872418, 0.200795, 0, 0.197799, 0.867029, 0.188015, 0, 0.21172, 0.862835, 0.175975, 0, 0.225873, 0.859411, 0.164526, 0, 0.240253, 0.856655, 0.153693, 0, 0.254854, 0.854519, 0.14352, 0, 0.269673, 0.852828, 0.13397, 0, 0.284707, 0.851412, 0.124984, 0, 0.299953, 0.850609, 0.116748, 0, 0.315408, 0.849855, 0.10905, 0, 0.331073, 0.849017, 0.101839, 0, 0.346946, 0.848079, 0.0951359, 0, 0.363028, 0.846911, 0.0888774, 0, 0.379318, 0.845445, 0.0830375, 0, 0.395818, 0.84362, 0.0775844, 0, 0.41253, 0.841411, 0.0725054, 0, 0.429457, 0.838768, 0.0677691, 0, 0.446602, 0.835801, 0.0634016, 0, 0.463968, 0.832341, 0.0593095, 0, 0.481561, 0.828424, 0.0555121, 0, 0.499386, 0.824312, 0.052024, 0, 0.51745, 0.819918, 0.0487865, 0, 0.535761, 0.815072, 0.0457801, 0, 0.554328, 0.809863, 0.0430184, 0, 0.573162, 0.804164, 0.0404245, 0, 0.592275, 0.798034, 0.0380146, 0, 0.611681, 0.791436, 0.0357436, 0, 0.631398, 0.784498, 0.0336475, 0, 0.651445, 0.777125, 0.0316666, 0, 0.671845, 0.769365, 0.0298122, 0, 0.692628, 0.761579, 0.0281001, 0, 0.713827, 0.753746, 0.0265049, 0, 0.735484, 0.745573, 0.0250067, 0, 0.75765, 0.737083, 0.0236026, 0, 0.78039, 0.728545, 0.0223302, 0, 0.803789, 0.719691, 0.0211243, 0, 0.82796, 0.710569, 0.0199983, 0, 0.853056, 0.701216, 0.0189569, 0, 0.879298, 0.692094, 0.0179702, 0, 0.907014, 0.682909, 0.0170418, 0, 0.936691, 0.673509, 0.0161732, 0, 0.968254, 0.663863, 0.0153406, 0, 1, 1, 0.437395, 0, 0, 0.999998, 0.437394, 0, 0, 0.99998, 0.437363, 0, 0.000616704, 0.999891, 0.437232, 0, 0.00367925, 0.999656, 0.436877, 0, 0.00867446, 0.999148, 0.436121, 0, 0.0150679, 0.997959, 0.434564, 0, 0.022531, 0.993464, 0.430134, 0, 0.0308507, 0.990606, 0.426077, 0, 0.0398805, 0.985027, 0.419397, 0, 0.0495148, 0.978491, 0.41118, 0, 0.0596749, 0.969643, 0.40048, 0, 0.0703001, 0.959189, 0.38769, 0, 0.0813427, 0.948223, 0.373575, 0, 0.0927641, 0.935955, 0.357622, 0, 0.104533, 0.923237, 0.34043, 0, 0.116624, 0.911074, 0.322735, 0, 0.129015, 0.899724, 0.30479, 0, 0.141687, 0.890189, 0.287392, 0, 0.154626, 0.881796, 0.270248, 0, 0.167818, 0.874781, 0.253659, 0, 0.181252, 0.869166, 0.237786, 0, 0.194918, 0.864725, 0.222618, 0, 0.208807, 0.861565, 0.208356, 0, 0.222913, 0.859284, 0.194867, 0, 0.237229, 0.857677, 0.18212, 0, 0.25175, 0.856714, 0.17018, 0, 0.266473, 0.856155, 0.158969, 0, 0.281392, 0.8558, 0.148413, 0, 0.296505, 0.855672, 0.138578, 0, 0.311811, 0.855538, 0.129345, 0, 0.327306, 0.855689, 0.120861, 0, 0.342991, 0.855767, 0.112969, 0, 0.358864, 0.855618, 0.105593, 0, 0.374925, 0.85525, 0.0987451, 0, 0.391176, 0.854583, 0.0923727, 0, 0.407616, 0.853534, 0.0864143, 0, 0.424249, 0.852061, 0.0808338, 0, 0.441076, 0.850253, 0.0756771, 0, 0.4581, 0.848004, 0.0708612, 0, 0.475324, 0.845333, 0.0663784, 0, 0.492754, 0.842376, 0.0622631, 0, 0.510394, 0.838956, 0.0584112, 0, 0.528251, 0.835121, 0.0548328, 0, 0.546331, 0.830842, 0.0514838, 0, 0.564644, 0.826212, 0.048355, 0, 0.583198, 0.821522, 0.0454714, 0, 0.602005, 0.816551, 0.0428263, 0, 0.621078, 0.811211, 0.0403612, 0, 0.640434, 0.805479, 0.038039, 0, 0.660089, 0.799409, 0.0358739, 0, 0.680066, 0.79306, 0.0338727, 0, 0.70039, 0.786395, 0.0319985, 0, 0.721094, 0.779416, 0.030241, 0, 0.742215, 0.77214, 0.0285951, 0, 0.7638, 0.764636, 0.0270747, 0, 0.785912, 0.756836, 0.0256354, 0, 0.808628, 0.749315, 0.0243027, 0, 0.832055, 0.741561, 0.0230497, 0, 0.856338, 0.733589, 0.0218801, 0, 0.88169, 0.725479, 0.020784, 0, 0.908441, 0.717255, 0.0197702, 0, 0.937125, 0.708829, 0.0188168, 0, 0.968254, 0.700191, 0.0179113, 0, 1, 1, 0.518937, 0, 0, 0.999998, 0.518933, 0, 0, 0.999967, 0.518883, 0, 0.00147741, 0.999832, 0.51866, 0, 0.00573221, 0.999466, 0.518057, 0, 0.011826, 0.998644, 0.516752, 0, 0.0192116, 0.994458, 0.512347, 0, 0.027573, 0.991223, 0.507675, 0, 0.0367099, 0.985515, 0.500188, 0, 0.046487, 0.978308, 0.490408, 0, 0.0568071, 0.968359, 0.477357, 0, 0.0675984, 0.95682, 0.461752, 0, 0.0788059, 0.943929, 0.443796, 0, 0.090386, 0.930224, 0.423893, 0, 0.102304, 0.916514, 0.402682, 0, 0.114532, 0.903653, 0.380914, 0, 0.127047, 0.892315, 0.359212, 0, 0.139828, 0.882942, 0.338102, 0, 0.152861, 0.875438, 0.31773, 0, 0.16613, 0.869642, 0.298186, 0, 0.179624, 0.865304, 0.279491, 0, 0.193332, 0.862382, 0.261804, 0, 0.207247, 0.860666, 0.245146, 0, 0.22136, 0.859788, 0.229406, 0, 0.235666, 0.859608, 0.214605, 0, 0.250158, 0.859912, 0.200691, 0, 0.264832, 0.86053, 0.187623, 0, 0.279684, 0.861368, 0.17539, 0, 0.294711, 0.862237, 0.163901, 0, 0.309911, 0.863127, 0.153175, 0, 0.32528, 0.863923, 0.143147, 0, 0.340819, 0.864567, 0.133781, 0, 0.356524, 0.865013, 0.125042, 0, 0.372397, 0.86539, 0.116952, 0, 0.388438, 0.865591, 0.109476, 0, 0.404645, 0.865517, 0.102542, 0, 0.421022, 0.865084, 0.0960688, 0, 0.437569, 0.864309, 0.0900499, 0, 0.454287, 0.863151, 0.0844328, 0, 0.471181, 0.861649, 0.0792218, 0, 0.488253, 0.859742, 0.0743482, 0, 0.505507, 0.857446, 0.0697963, 0, 0.522947, 0.854757, 0.0655364, 0, 0.54058, 0.851783, 0.061608, 0, 0.558412, 0.848516, 0.0579701, 0, 0.576449, 0.844897, 0.0545742, 0, 0.594701, 0.840956, 0.0514167, 0, 0.613178, 0.836676, 0.0484598, 0, 0.631892, 0.832075, 0.0456934, 0, 0.650856, 0.827191, 0.0431178, 0, 0.670088, 0.822295, 0.0407718, 0, 0.689606, 0.817294, 0.0386032, 0, 0.709434, 0.812013, 0.0365675, 0, 0.7296, 0.806465, 0.0346547, 0, 0.750138, 0.800691, 0.0328717, 0, 0.771093, 0.794709, 0.031211, 0, 0.792519, 0.788493, 0.0296504, 0, 0.814488, 0.782049, 0.0281782, 0, 0.837097, 0.775403, 0.0267965, 0, 0.860481, 0.76857, 0.0255002, 0, 0.884842, 0.761536, 0.0242759, 0, 0.910494, 0.754303, 0.0231142, 0, 0.937985, 0.74692, 0.0220305, 0, 0.968254, 0.739745, 0.0210192, 0, 1, 1, 0.613914, 0, 0, 0.999996, 0.613907, 0, 9.63597e-05, 0.999942, 0.613814, 0, 0.00301247, 0.999704, 0.613407, 0, 0.00870385, 0.999046, 0.612302, 0, 0.0160714, 0.995516, 0.608266, 0, 0.0245899, 0.991726, 0.602863, 0, 0.0339681, 0.985157, 0.593956, 0, 0.0440254, 0.97642, 0.581748, 0, 0.0546409, 0.964404, 0.565183, 0, 0.0657284, 0.950601, 0.545273, 0, 0.0772246, 0.935158, 0.522129, 0, 0.0890812, 0.919364, 0.496782, 0, 0.10126, 0.904754, 0.470571, 0, 0.113731, 0.89176, 0.444037, 0, 0.126469, 0.881492, 0.418322, 0, 0.139454, 0.873656, 0.393522, 0, 0.15267, 0.868053, 0.369795, 0, 0.166101, 0.864336, 0.347171, 0, 0.179736, 0.862259, 0.325737, 0, 0.193565, 0.861556, 0.305532, 0, 0.207578, 0.861776, 0.286416, 0, 0.221769, 0.862661, 0.268355, 0, 0.23613, 0.864015, 0.251334, 0, 0.250656, 0.865711, 0.235352, 0, 0.265343, 0.867519, 0.220302, 0, 0.280187, 0.869351, 0.206161, 0, 0.295183, 0.871144, 0.192908, 0, 0.31033, 0.872839, 0.180505, 0, 0.325624, 0.874307, 0.168848, 0, 0.341065, 0.875667, 0.158021, 0, 0.35665, 0.876758, 0.147877, 0, 0.37238, 0.87764, 0.138441, 0, 0.388253, 0.878237, 0.129627, 0, 0.404269, 0.878563, 0.121415, 0, 0.42043, 0.878572, 0.113741, 0, 0.436735, 0.87842, 0.106652, 0, 0.453187, 0.878057, 0.100097, 0, 0.469786, 0.877413, 0.0940128, 0, 0.486536, 0.87646, 0.0883462, 0, 0.503439, 0.875233, 0.0830924, 0, 0.520498, 0.8737, 0.0781975, 0, 0.537717, 0.871873, 0.07364, 0, 0.555102, 0.86978, 0.0694103, 0, 0.572657, 0.867405, 0.0654696, 0, 0.59039, 0.864751, 0.0617914, 0, 0.608307, 0.861818, 0.0583491, 0, 0.626419, 0.858645, 0.0551443, 0, 0.644733, 0.855307, 0.0521894, 0, 0.663264, 0.851736, 0.0494334, 0, 0.682025, 0.847927, 0.0468504, 0, 0.701032, 0.843888, 0.0444261, 0, 0.720308, 0.839629, 0.0421497, 0, 0.739875, 0.835158, 0.0400082, 0, 0.759764, 0.830509, 0.0380076, 0, 0.780014, 0.825714, 0.0361488, 0, 0.800673, 0.820729, 0.0343956, 0, 0.821803, 0.815751, 0.0327781, 0, 0.843492, 0.810752, 0.031275, 0, 0.86586, 0.805587, 0.0298542, 0, 0.889087, 0.800317, 0.0285397, 0, 0.913466, 0.79489, 0.0272948, 0, 0.93952, 0.789314, 0.0261139, 0, 0.96835, 0.783593, 0.0249938, 0, 1, 1, 0.724258, 0, 0, 0.999992, 0.724243, 0, 0.000726889, 0.99987, 0.724044, 0, 0.00569574, 0.999336, 0.72317, 0, 0.0131702, 0.996271, 0.719432, 0, 0.0220738, 0.991159, 0.712576, 0, 0.0319405, 0.982465, 0.700927, 0, 0.0425202, 0.97049, 0.684297, 0, 0.0536599, 0.953973, 0.661244, 0, 0.065258, 0.935546, 0.633804, 0, 0.0772427, 0.916596, 0.603071, 0, 0.0895616, 0.899353, 0.57105, 0, 0.102175, 0.885216, 0.539206, 0, 0.11505, 0.875076, 0.508714, 0, 0.128164, 0.868334, 0.479571, 0, 0.141495, 0.864414, 0.451796, 0, 0.155026, 0.862678, 0.425328, 0, 0.168745, 0.862835, 0.400352, 0, 0.182639, 0.864067, 0.376532, 0, 0.196699, 0.866086, 0.35391, 0, 0.210915, 0.868557, 0.332424, 0, 0.225282, 0.871271, 0.312053, 0, 0.239792, 0.874058, 0.292764, 0, 0.25444, 0.8768, 0.27453, 0, 0.269223, 0.87939, 0.257297, 0, 0.284135, 0.8819, 0.24114, 0, 0.299174, 0.884187, 0.225934, 0, 0.314337, 0.886262, 0.211669, 0, 0.329622, 0.888119, 0.198311, 0, 0.345026, 0.889709, 0.185783, 0, 0.360549, 0.891054, 0.174063, 0, 0.376189, 0.892196, 0.163143, 0, 0.391946, 0.893101, 0.152952, 0, 0.407819, 0.893803, 0.143475, 0, 0.423808, 0.894277, 0.134647, 0, 0.439914, 0.894532, 0.126434, 0, 0.456137, 0.894576, 0.1188, 0, 0.472479, 0.894393, 0.111694, 0, 0.48894, 0.893976, 0.105069, 0, 0.505523, 0.893346, 0.0989077, 0, 0.52223, 0.892502, 0.0931724, 0, 0.539064, 0.891441, 0.0878276, 0, 0.556028, 0.890276, 0.082903, 0, 0.573125, 0.888972, 0.0783505, 0, 0.590361, 0.887469, 0.0741083, 0, 0.607741, 0.885785, 0.0701633, 0, 0.62527, 0.883914, 0.0664835, 0, 0.642957, 0.881872, 0.0630567, 0, 0.660809, 0.879651, 0.0598527, 0, 0.678836, 0.877267, 0.0568615, 0, 0.69705, 0.874717, 0.05406, 0, 0.715465, 0.872012, 0.0514378, 0, 0.734098, 0.869157, 0.0489805, 0, 0.752968, 0.866155, 0.0466727, 0, 0.772101, 0.863014, 0.0445056, 0, 0.791529, 0.859748, 0.0424733, 0, 0.81129, 0.856416, 0.0405957, 0, 0.831438, 0.852958, 0.0388273, 0, 0.852044, 0.849382, 0.0371619, 0, 0.87321, 0.845694, 0.0355959, 0, 0.89509, 0.841893, 0.0341155, 0, 0.917932, 0.837981, 0.0327141, 0, 0.942204, 0.833963, 0.0313856, 0, 0.968981, 0.829847, 0.0301275, 0, 1, 1, 0.85214, 0, 0, 0.999969, 0.852095, 0, 0.00279627, 0.999483, 0.851408, 0, 0.0107635, 0.994545, 0.84579, 0, 0.0206454, 0.986188, 0.835231, 0, 0.0315756, 0.969847, 0.814687, 0, 0.0432021, 0.945951, 0.783735, 0, 0.0553396, 0.91917, 0.746074, 0, 0.0678766, 0.895488, 0.706938, 0, 0.0807395, 0.878232, 0.669534, 0, 0.0938767, 0.868252, 0.635168, 0, 0.10725, 0.863873, 0.603069, 0, 0.120832, 0.863369, 0.572514, 0, 0.134598, 0.86545, 0.543169, 0, 0.148533, 0.868803, 0.514578, 0, 0.16262, 0.872794, 0.486762, 0, 0.176849, 0.87702, 0.459811, 0, 0.19121, 0.881054, 0.433654, 0, 0.205694, 0.884974, 0.408574, 0, 0.220294, 0.888587, 0.384525, 0, 0.235005, 0.891877, 0.36156, 0, 0.24982, 0.894793, 0.339661, 0, 0.264737, 0.89743, 0.318913, 0, 0.279751, 0.899796, 0.299302, 0, 0.294859, 0.901943, 0.280843, 0, 0.310058, 0.903858, 0.263481, 0, 0.325346, 0.905574, 0.247197, 0, 0.340721, 0.907069, 0.231915, 0, 0.356181, 0.908379, 0.217614, 0, 0.371725, 0.90952, 0.20425, 0, 0.387353, 0.910483, 0.191758, 0, 0.403063, 0.91128, 0.180092, 0, 0.418854, 0.911936, 0.169222, 0, 0.434727, 0.912454, 0.159098, 0, 0.450682, 0.912835, 0.149668, 0, 0.466718, 0.913078, 0.140884, 0, 0.482837, 0.913192, 0.132709, 0, 0.499038, 0.913175, 0.125095, 0, 0.515324, 0.91304, 0.118012, 0, 0.531695, 0.912781, 0.111417, 0, 0.548153, 0.91241, 0.105281, 0, 0.5647, 0.911924, 0.0995691, 0, 0.581338, 0.911331, 0.0942531, 0, 0.59807, 0.910637, 0.0893076, 0, 0.6149, 0.90984, 0.0846998, 0, 0.63183, 0.908941, 0.0804044, 0, 0.648865, 0.907944, 0.0763984, 0, 0.666011, 0.906857, 0.0726638, 0, 0.683273, 0.90568, 0.0691783, 0, 0.700659, 0.904416, 0.0659222, 0, 0.718176, 0.903067, 0.0628782, 0, 0.735834, 0.901637, 0.0600307, 0, 0.753646, 0.900128, 0.0573647, 0, 0.771625, 0.898544, 0.0548668, 0, 0.78979, 0.89689, 0.052527, 0, 0.808162, 0.895165, 0.0503306, 0, 0.826771, 0.893371, 0.0482668, 0, 0.845654, 0.891572, 0.0463605, 0, 0.864863, 0.889763, 0.0445998, 0, 0.884472, 0.887894, 0.0429451, 0, 0.904592, 0.885967, 0.0413884, 0, 0.925407, 0.883984, 0.0399225, 0, 0.947271, 0.881945, 0.0385405, 0, 0.97105, 0.879854, 0.0372362, 0, 1, 0.999804, 0.995833, 0, 0, 0.938155, 0.933611, 0, 0.0158731, 0.864755, 0.854311, 0, 0.0317461, 0.888594, 0.865264, 0, 0.0476191, 0.905575, 0.863922, 0, 0.0634921, 0.915125, 0.850558, 0, 0.0793651, 0.920665, 0.829254, 0, 0.0952381, 0.924073, 0.802578, 0, 0.111111, 0.926304, 0.772211, 0, 0.126984, 0.927829, 0.739366, 0, 0.142857, 0.928924, 0.705033, 0, 0.15873, 0.92973, 0.670019, 0, 0.174603, 0.930339, 0.634993, 0, 0.190476, 0.930811, 0.600485, 0, 0.206349, 0.931191, 0.566897, 0, 0.222222, 0.93149, 0.534485, 0, 0.238095, 0.931737, 0.503429, 0, 0.253968, 0.931939, 0.473811, 0, 0.269841, 0.932108, 0.445668, 0, 0.285714, 0.93225, 0.418993, 0, 0.301587, 0.932371, 0.393762, 0, 0.31746, 0.932474, 0.369939, 0, 0.333333, 0.932562, 0.347479, 0, 0.349206, 0.932638, 0.326336, 0, 0.365079, 0.932703, 0.306462, 0, 0.380952, 0.93276, 0.287805, 0, 0.396825, 0.932809, 0.270313, 0, 0.412698, 0.932851, 0.253933, 0, 0.428571, 0.932887, 0.23861, 0, 0.444444, 0.932917, 0.224289, 0, 0.460317, 0.932943, 0.210917, 0, 0.47619, 0.932965, 0.19844, 0, 0.492063, 0.932982, 0.186807, 0, 0.507937, 0.932995, 0.175966, 0, 0.52381, 0.933005, 0.165869, 0, 0.539683, 0.933011, 0.156468, 0, 0.555556, 0.933013, 0.147719, 0, 0.571429, 0.933013, 0.139579, 0, 0.587302, 0.93301, 0.132007, 0, 0.603175, 0.933004, 0.124965, 0, 0.619048, 0.932994, 0.118416, 0, 0.634921, 0.932982, 0.112326, 0, 0.650794, 0.932968, 0.106663, 0, 0.666667, 0.93295, 0.101397, 0, 0.68254, 0.932931, 0.0964993, 0, 0.698413, 0.932908, 0.0919438, 0, 0.714286, 0.932883, 0.0877057, 0, 0.730159, 0.932856, 0.0837623, 0, 0.746032, 0.932827, 0.0800921, 0, 0.761905, 0.932796, 0.0766754, 0, 0.777778, 0.932762, 0.0734936, 0, 0.793651, 0.932727, 0.0705296, 0, 0.809524, 0.932689, 0.0677676, 0, 0.825397, 0.93265, 0.0651929, 0, 0.84127, 0.932609, 0.0627917, 0, 0.857143, 0.932565, 0.0605515, 0, 0.873016, 0.932521, 0.0584606, 0, 0.888889, 0.932474, 0.0565082, 0, 0.904762, 0.932427, 0.0546841, 0, 0.920635, 0.932377, 0.0529793, 0, 0.936508, 0.932326, 0.0513851, 0, 0.952381, 0.932274, 0.0498936, 0, 0.968254, 0.93222, 0.0484975, 0, 0.984127, 0.932164, 0.0471899, 0, 1 ]; - - // data textures - - var ltc_1 = new THREE.DataTexture( new Float32Array( LTC_MAT_1 ), 64, 64, THREE.RGBAFormat, THREE.FloatType, THREE.UVMapping, THREE.ClampToEdgeWrapping, THREE.ClampToEdgeWrapping, THREE.LinearFilter, THREE.NearestFilter, 1 ); - - var ltc_2 = new THREE.DataTexture( new Float32Array( LTC_MAT_2 ), 64, 64, THREE.RGBAFormat, THREE.FloatType, THREE.UVMapping, THREE.ClampToEdgeWrapping, THREE.ClampToEdgeWrapping, THREE.LinearFilter, THREE.NearestFilter, 1 ); - - ltc_1.needsUpdate = true; - ltc_2.needsUpdate = true; - - THREE.UniformsLib.LTC_1 = ltc_1; - THREE.UniformsLib.LTC_2 = ltc_2; - - // add ltc data textures to material uniforms - - var ltc = { ltc_1: { value: null }, ltc_2: { value: null } }; - - Object.assign( THREE.ShaderLib.standard.uniforms, ltc ); - Object.assign( THREE.ShaderLib.physical.uniforms, ltc ); - -} )() diff --git a/spaces/banana-projects/web3d/node_modules/three/src/extras/curves/SplineCurve.js b/spaces/banana-projects/web3d/node_modules/three/src/extras/curves/SplineCurve.js deleted file mode 100644 index e844b002c86a878dc4675fa58754c8830ecc2575..0000000000000000000000000000000000000000 --- a/spaces/banana-projects/web3d/node_modules/three/src/extras/curves/SplineCurve.js +++ /dev/null @@ -1,98 +0,0 @@ -import { Curve } from '../core/Curve.js'; -import { CatmullRom } from '../core/Interpolations.js'; -import { Vector2 } from '../../math/Vector2.js'; - - -function SplineCurve( points /* array of Vector2 */ ) { - - Curve.call( this ); - - this.type = 'SplineCurve'; - - this.points = points || []; - -} - -SplineCurve.prototype = Object.create( Curve.prototype ); -SplineCurve.prototype.constructor = SplineCurve; - -SplineCurve.prototype.isSplineCurve = true; - -SplineCurve.prototype.getPoint = function ( t, optionalTarget ) { - - var point = optionalTarget || new Vector2(); - - var points = this.points; - var p = ( points.length - 1 ) * t; - - var intPoint = Math.floor( p ); - var weight = p - intPoint; - - var p0 = points[ intPoint === 0 ? intPoint : intPoint - 1 ]; - var p1 = points[ intPoint ]; - var p2 = points[ intPoint > points.length - 2 ? points.length - 1 : intPoint + 1 ]; - var p3 = points[ intPoint > points.length - 3 ? points.length - 1 : intPoint + 2 ]; - - point.set( - CatmullRom( weight, p0.x, p1.x, p2.x, p3.x ), - CatmullRom( weight, p0.y, p1.y, p2.y, p3.y ) - ); - - return point; - -}; - -SplineCurve.prototype.copy = function ( source ) { - - Curve.prototype.copy.call( this, source ); - - this.points = []; - - for ( var i = 0, l = source.points.length; i < l; i ++ ) { - - var point = source.points[ i ]; - - this.points.push( point.clone() ); - - } - - return this; - -}; - -SplineCurve.prototype.toJSON = function () { - - var data = Curve.prototype.toJSON.call( this ); - - data.points = []; - - for ( var i = 0, l = this.points.length; i < l; i ++ ) { - - var point = this.points[ i ]; - data.points.push( point.toArray() ); - - } - - return data; - -}; - -SplineCurve.prototype.fromJSON = function ( json ) { - - Curve.prototype.fromJSON.call( this, json ); - - this.points = []; - - for ( var i = 0, l = json.points.length; i < l; i ++ ) { - - var point = json.points[ i ]; - this.points.push( new Vector2().fromArray( point ) ); - - } - - return this; - -}; - - -export { SplineCurve }; diff --git a/spaces/banana-projects/web3d/node_modules/three/src/geometries/ConeGeometry.js b/spaces/banana-projects/web3d/node_modules/three/src/geometries/ConeGeometry.js deleted file mode 100644 index 21df9ac0c5fee1a82bba01b3024e11c400954a83..0000000000000000000000000000000000000000 --- a/spaces/banana-projects/web3d/node_modules/three/src/geometries/ConeGeometry.js +++ /dev/null @@ -1,55 +0,0 @@ -/** - * @author abelnation / http://github.com/abelnation - */ - -import { CylinderGeometry } from './CylinderGeometry.js'; -import { CylinderBufferGeometry } from './CylinderGeometry.js'; - -// ConeGeometry - -function ConeGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { - - CylinderGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); - - this.type = 'ConeGeometry'; - - this.parameters = { - radius: radius, - height: height, - radialSegments: radialSegments, - heightSegments: heightSegments, - openEnded: openEnded, - thetaStart: thetaStart, - thetaLength: thetaLength - }; - -} - -ConeGeometry.prototype = Object.create( CylinderGeometry.prototype ); -ConeGeometry.prototype.constructor = ConeGeometry; - -// ConeBufferGeometry - -function ConeBufferGeometry( radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ) { - - CylinderBufferGeometry.call( this, 0, radius, height, radialSegments, heightSegments, openEnded, thetaStart, thetaLength ); - - this.type = 'ConeBufferGeometry'; - - this.parameters = { - radius: radius, - height: height, - radialSegments: radialSegments, - heightSegments: heightSegments, - openEnded: openEnded, - thetaStart: thetaStart, - thetaLength: thetaLength - }; - -} - -ConeBufferGeometry.prototype = Object.create( CylinderBufferGeometry.prototype ); -ConeBufferGeometry.prototype.constructor = ConeBufferGeometry; - - -export { ConeGeometry, ConeBufferGeometry }; diff --git a/spaces/banana-projects/web3d/node_modules/three/src/loaders/CubeTextureLoader.d.ts b/spaces/banana-projects/web3d/node_modules/three/src/loaders/CubeTextureLoader.d.ts deleted file mode 100644 index c8eb68aef38d6174b68a8f79fc47798423574b84..0000000000000000000000000000000000000000 --- a/spaces/banana-projects/web3d/node_modules/three/src/loaders/CubeTextureLoader.d.ts +++ /dev/null @@ -1,19 +0,0 @@ -import { LoadingManager } from './LoadingManager'; -import { CubeTexture } from './../textures/CubeTexture'; - -export class CubeTextureLoader { - constructor(manager?: LoadingManager); - - manager: LoadingManager; - crossOrigin: string; - path?: string; - - load( - urls: Array, - onLoad?: (texture: CubeTexture) => void, - onProgress?: (event: ProgressEvent) => void, - onError?: (event: ErrorEvent) => void - ): CubeTexture; - setCrossOrigin(crossOrigin: string): this; - setPath(path: string): this; -} diff --git a/spaces/banana-projects/web3d/node_modules/three/src/scenes/FogExp2.js b/spaces/banana-projects/web3d/node_modules/three/src/scenes/FogExp2.js deleted file mode 100644 index 526e06446f176de03cf037e0f3f66744278dbcc9..0000000000000000000000000000000000000000 --- a/spaces/banana-projects/web3d/node_modules/three/src/scenes/FogExp2.js +++ /dev/null @@ -1,39 +0,0 @@ -/** - * @author mrdoob / http://mrdoob.com/ - * @author alteredq / http://alteredqualia.com/ - */ - -import { Color } from '../math/Color.js'; - -function FogExp2( color, density ) { - - this.name = ''; - - this.color = new Color( color ); - this.density = ( density !== undefined ) ? density : 0.00025; - -} - -Object.assign( FogExp2.prototype, { - - isFogExp2: true, - - clone: function () { - - return new FogExp2( this.color, this.density ); - - }, - - toJSON: function ( /* meta */ ) { - - return { - type: 'FogExp2', - color: this.color.getHex(), - density: this.density - }; - - } - -} ); - -export { FogExp2 }; diff --git a/spaces/beihai/GFPGAN-V1.3-whole-image/.history/app_20220327093003.py b/spaces/beihai/GFPGAN-V1.3-whole-image/.history/app_20220327093003.py deleted file mode 100644 index c7577a69049892b3c11b6172f750a51803225ddf..0000000000000000000000000000000000000000 --- a/spaces/beihai/GFPGAN-V1.3-whole-image/.history/app_20220327093003.py +++ /dev/null @@ -1,65 +0,0 @@ -import os -#os.system("pip install gfpgan") - -#os.system("pip freeze") -#os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth -P .") -import random -import gradio as gr -from PIL import Image -import torch -# torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg', 'lincoln.jpg') -# torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/5/50/Albert_Einstein_%28Nobel%29.png', 'einstein.png') -# torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Thomas_Edison2.jpg/1024px-Thomas_Edison2.jpg', 'edison.jpg') -# torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/a/a9/Henry_Ford_1888.jpg/1024px-Henry_Ford_1888.jpg', 'Henry.jpg') -# torch.hub.download_url_to_file('https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Frida_Kahlo%2C_by_Guillermo_Kahlo.jpg/800px-Frida_Kahlo%2C_by_Guillermo_Kahlo.jpg', 'Frida.jpg') - - -import cv2 -import glob -import numpy as np -from basicsr.utils import imwrite -from gfpgan import GFPGANer - -bg_upsampler = None - - - -# set up GFPGAN restorer -restorer = GFPGANer( - model_path='experiments/pretrained_models/GFPGANv1.3.pth', - upscale=2, - arch='clean', - channel_multiplier=2, - bg_upsampler=bg_upsampler) - - -def inference(img): - input_img = cv2.imread(img, cv2.IMREAD_COLOR) - cropped_faces, restored_faces, restored_img = restorer.enhance( - input_img, has_aligned=False, only_center_face=False, paste_back=True) - - #return Image.fromarray(restored_faces[0][:,:,::-1]) - return Image.fromarray(restored_img[:, :, ::-1]) - -title = "让美好回忆更清晰" -description = "上传老照片,点击Submit,稍等片刻,右侧Output框将照片另存为即可。" -article = "

    | Github Repo

    visitor badge
    " - -article = "

    " -gr.Interface( - inference, - [gr.inputs.Image(type="filepath", label="Input")], - gr.outputs.Image(type="pil", label="Output"), - title=title, - description=description, - article=article, - examples=[ - ['lincoln.jpg'], - ['einstein.png'], - ['edison.jpg'], - ['Henry.jpg'], - ['Frida.jpg'] - ] - ).launch(enable_queue=True,cache_examples=True,share=True) - - diff --git a/spaces/bhasker412/IDD-YOLO-Tracking/trackers/strongsort/deep/models/resnet_ibn_a.py b/spaces/bhasker412/IDD-YOLO-Tracking/trackers/strongsort/deep/models/resnet_ibn_a.py deleted file mode 100644 index d198e7c9e361c40d25bc7eb1f352b971596ee124..0000000000000000000000000000000000000000 --- a/spaces/bhasker412/IDD-YOLO-Tracking/trackers/strongsort/deep/models/resnet_ibn_a.py +++ /dev/null @@ -1,289 +0,0 @@ -""" -Credit to https://github.com/XingangPan/IBN-Net. -""" -from __future__ import division, absolute_import -import math -import torch -import torch.nn as nn -import torch.utils.model_zoo as model_zoo - -__all__ = ['resnet50_ibn_a'] - -model_urls = { - 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', - 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', - 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', -} - - -def conv3x3(in_planes, out_planes, stride=1): - "3x3 convolution with padding" - return nn.Conv2d( - in_planes, - out_planes, - kernel_size=3, - stride=stride, - padding=1, - bias=False - ) - - -class BasicBlock(nn.Module): - expansion = 1 - - def __init__(self, inplanes, planes, stride=1, downsample=None): - super(BasicBlock, self).__init__() - self.conv1 = conv3x3(inplanes, planes, stride) - self.bn1 = nn.BatchNorm2d(planes) - self.relu = nn.ReLU(inplace=True) - self.conv2 = conv3x3(planes, planes) - self.bn2 = nn.BatchNorm2d(planes) - self.downsample = downsample - self.stride = stride - - def forward(self, x): - residual = x - - out = self.conv1(x) - out = self.bn1(out) - out = self.relu(out) - - out = self.conv2(out) - out = self.bn2(out) - - if self.downsample is not None: - residual = self.downsample(x) - - out += residual - out = self.relu(out) - - return out - - -class IBN(nn.Module): - - def __init__(self, planes): - super(IBN, self).__init__() - half1 = int(planes / 2) - self.half = half1 - half2 = planes - half1 - self.IN = nn.InstanceNorm2d(half1, affine=True) - self.BN = nn.BatchNorm2d(half2) - - def forward(self, x): - split = torch.split(x, self.half, 1) - out1 = self.IN(split[0].contiguous()) - out2 = self.BN(split[1].contiguous()) - out = torch.cat((out1, out2), 1) - return out - - -class Bottleneck(nn.Module): - expansion = 4 - - def __init__(self, inplanes, planes, ibn=False, stride=1, downsample=None): - super(Bottleneck, self).__init__() - self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) - if ibn: - self.bn1 = IBN(planes) - else: - self.bn1 = nn.BatchNorm2d(planes) - self.conv2 = nn.Conv2d( - planes, - planes, - kernel_size=3, - stride=stride, - padding=1, - bias=False - ) - self.bn2 = nn.BatchNorm2d(planes) - self.conv3 = nn.Conv2d( - planes, planes * self.expansion, kernel_size=1, bias=False - ) - self.bn3 = nn.BatchNorm2d(planes * self.expansion) - self.relu = nn.ReLU(inplace=True) - self.downsample = downsample - self.stride = stride - - def forward(self, x): - residual = x - - out = self.conv1(x) - out = self.bn1(out) - out = self.relu(out) - - out = self.conv2(out) - out = self.bn2(out) - out = self.relu(out) - - out = self.conv3(out) - out = self.bn3(out) - - if self.downsample is not None: - residual = self.downsample(x) - - out += residual - out = self.relu(out) - - return out - - -class ResNet(nn.Module): - """Residual network + IBN layer. - - Reference: - - He et al. Deep Residual Learning for Image Recognition. CVPR 2016. - - Pan et al. Two at Once: Enhancing Learning and Generalization - Capacities via IBN-Net. ECCV 2018. - """ - - def __init__( - self, - block, - layers, - num_classes=1000, - loss='softmax', - fc_dims=None, - dropout_p=None, - **kwargs - ): - scale = 64 - self.inplanes = scale - super(ResNet, self).__init__() - self.loss = loss - self.feature_dim = scale * 8 * block.expansion - - self.conv1 = nn.Conv2d( - 3, scale, kernel_size=7, stride=2, padding=3, bias=False - ) - self.bn1 = nn.BatchNorm2d(scale) - self.relu = nn.ReLU(inplace=True) - self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) - self.layer1 = self._make_layer(block, scale, layers[0]) - self.layer2 = self._make_layer(block, scale * 2, layers[1], stride=2) - self.layer3 = self._make_layer(block, scale * 4, layers[2], stride=2) - self.layer4 = self._make_layer(block, scale * 8, layers[3], stride=2) - self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) - self.fc = self._construct_fc_layer( - fc_dims, scale * 8 * block.expansion, dropout_p - ) - self.classifier = nn.Linear(self.feature_dim, num_classes) - - for m in self.modules(): - if isinstance(m, nn.Conv2d): - n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels - m.weight.data.normal_(0, math.sqrt(2. / n)) - elif isinstance(m, nn.BatchNorm2d): - m.weight.data.fill_(1) - m.bias.data.zero_() - elif isinstance(m, nn.InstanceNorm2d): - m.weight.data.fill_(1) - m.bias.data.zero_() - - def _make_layer(self, block, planes, blocks, stride=1): - downsample = None - if stride != 1 or self.inplanes != planes * block.expansion: - downsample = nn.Sequential( - nn.Conv2d( - self.inplanes, - planes * block.expansion, - kernel_size=1, - stride=stride, - bias=False - ), - nn.BatchNorm2d(planes * block.expansion), - ) - - layers = [] - ibn = True - if planes == 512: - ibn = False - layers.append(block(self.inplanes, planes, ibn, stride, downsample)) - self.inplanes = planes * block.expansion - for i in range(1, blocks): - layers.append(block(self.inplanes, planes, ibn)) - - return nn.Sequential(*layers) - - def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None): - """Constructs fully connected layer - - Args: - fc_dims (list or tuple): dimensions of fc layers, if None, no fc layers are constructed - input_dim (int): input dimension - dropout_p (float): dropout probability, if None, dropout is unused - """ - if fc_dims is None: - self.feature_dim = input_dim - return None - - assert isinstance( - fc_dims, (list, tuple) - ), 'fc_dims must be either list or tuple, but got {}'.format( - type(fc_dims) - ) - - layers = [] - for dim in fc_dims: - layers.append(nn.Linear(input_dim, dim)) - layers.append(nn.BatchNorm1d(dim)) - layers.append(nn.ReLU(inplace=True)) - if dropout_p is not None: - layers.append(nn.Dropout(p=dropout_p)) - input_dim = dim - - self.feature_dim = fc_dims[-1] - - return nn.Sequential(*layers) - - def featuremaps(self, x): - x = self.conv1(x) - x = self.bn1(x) - x = self.relu(x) - x = self.maxpool(x) - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x = self.layer4(x) - return x - - def forward(self, x): - f = self.featuremaps(x) - v = self.avgpool(f) - v = v.view(v.size(0), -1) - if self.fc is not None: - v = self.fc(v) - if not self.training: - return v - y = self.classifier(v) - if self.loss == 'softmax': - return y - elif self.loss == 'triplet': - return y, v - else: - raise KeyError("Unsupported loss: {}".format(self.loss)) - - -def init_pretrained_weights(model, model_url): - """Initializes model with pretrained weights. - - Layers that don't match with pretrained layers in name or size are kept unchanged. - """ - pretrain_dict = model_zoo.load_url(model_url) - model_dict = model.state_dict() - pretrain_dict = { - k: v - for k, v in pretrain_dict.items() - if k in model_dict and model_dict[k].size() == v.size() - } - model_dict.update(pretrain_dict) - model.load_state_dict(model_dict) - - -def resnet50_ibn_a(num_classes, loss='softmax', pretrained=False, **kwargs): - model = ResNet( - Bottleneck, [3, 4, 6, 3], num_classes=num_classes, loss=loss, **kwargs - ) - if pretrained: - init_pretrained_weights(model, model_urls['resnet50']) - return model diff --git a/spaces/bioriAsaeru/text-to-voice/Adobe CS5 Encore Styles Content How to Install and Use for Free.md b/spaces/bioriAsaeru/text-to-voice/Adobe CS5 Encore Styles Content How to Install and Use for Free.md deleted file mode 100644 index 8d717b796daa7e6c95eaa90958429f192f21f3a9..0000000000000000000000000000000000000000 --- a/spaces/bioriAsaeru/text-to-voice/Adobe CS5 Encore Styles Content How to Install and Use for Free.md +++ /dev/null @@ -1,16 +0,0 @@ -
    -

    Experiencing Adobe's Creative Suite 5 (CS5) Master Collection is like visiting London, Paris, or New York! Where you go, what you explore and the delights you choose to sample depend in part on the purpose of your trip. Adobe's Creative Suite 5 offers new tools for collaborative work in multimedia design, web development, and video production. Bundled applications deliver a wealth of digital opportunities for teaching 21st century technology literacy skills supporting creativity, communication, critical thinking and group work across subjects. Additionally, Adobe offers free curriculum and instructional content as well as certification options and professional development resources designed to provide classroom instruction and training in the high demand field of digital communications technology ( (opens in new tab)/).

    -

    Adobe CS5 Encore Styles Content setup free


    DOWNLOAD === https://urloso.com/2uyS3g



    -

    The latest Master Collection delivers improved control over media you use and content you create. Its Mini Bridge Media Manager (a subset of Adobe Bridge) is a customizable panel that lets you see thumbnails of pictures and other assets without leaving Photoshop CS5 or InDesign CS5 (see image, above). You can then open those files with a simple drag and drop. A link to Adobe CS Live in the menu bar of several CS5 applications connects you to Adobe online services where you can share the video sequences, page layouts, artboards, and image comps content you create with others. CS Live (free for a year with the purchase of Master Collection) consists of five services, including Adobe CS Review for online collaborative review, Adobe BrowserLab to preview and test Web content in Internet Browsers or on operating systems you may not have (see image, below), and Acrobat.com for Web conferencing and file sharing. Tight integration with Adobe Flash Catalyst enables users to create artwork in Photoshop or Illustrator and bring it into the new Flash Catalyst application to add actions and interactive components.

    -

    Dreamweaver CS5 comes with a Site Setup dialog box that makes it easier to create new Web sites (see image, below left). The application includes more than 16 CSS layouts that work well with a variety of browsers and platforms. A CSS Inspect feature helps content creators examine border, margin, and padding attributes of selected areas, and edit those properties using the CSS panel. Additionally, Dreamweaver CS5 includes improved support for open-source content management systems such as Drupal, WordPress, and Joomla! Adobe has also released an HTML5 add-on pack for Dreamweaver CS5 so the application can provide code hints for HTML5 elements and CSS3 styles when users build pages in Code-view. Thanks to this add-on (released shortly after the Dreamweaver CS5 debut), the application's Live View window can now render pages built with HTML5 and CSS3.Illustrator now has a Beautiful Strokes option variable Width fill to vary width of the stroke. A new Bristle brush paints brush strokes of different sizes with the appearance of natural bristles. Users choose bristle shape, length, thickness, and opacity. A keyboard shortcut lets you select an object placed behind other objects.

    -

    Overall impression
    Applications in Adobe CS5 Master Collection are powerful and complex. Even if students work through Adobe's free year-long project-based curricula in Visual Design, Digital Design and Digital video (www.adobe.com/education/instruction/teach/digitalcareers.html (opens in new tab)) or they take advantage of the numerous free tutorials and video demonstrations ( ), becoming comfortable with the tools will take time. Applications in the Master Collection are best reserved for high school age students, teachers, staff and administrators, and not elementary school age students. Individual programs in the Master Collection, e.g., Adobe Photoshop, InDesign and Dreamweaver can be introduced to young students with great success.

    -

    Depending on the type of content they create, different YouTubers use different fonts for their subtitles. Roboto Medium is the default option for subtitles for platform users, but YouTube comes with many free font options to choose from.

    -

    -

    Mix content freely by assigning different settings to individual sequences. By nesting those sequences into a single master sequence, you can manage assets more easily and quickly create multiple versions of the project.

    -

    If you want to learn a very important lesson from the music industry (which ZOMG is still making money despite music being free now) attacking your consumers ends poorly for you. Not the only game in town & being an asshole to those willing to pay you means they unsubscribe and find alternative ways to see the content where you make even less.

    -

    Installation
    Installing the five-disc Adobe CS3 Production Premium took about an hour on both Windows XP and Vista PCs. The process was relatively free of surprises, and custom installation lets you pick or reject third-party content, codecs, and libraries. This package requires at least 32 GB of hard drive space, a 32-bit video card, and a 1,280x1,024 resolution monitor. We also worked on a laptop with a 15 inch, 1,280x800 monitor, which felt cramped. Mac users must have an Intel-based machine to run Premiere, Soundbooth, or Encore, or to use the Dynamic Link and Capture features in After Effects; Windows and BootCamp are required for OnLocation.

    -

    Features
    Shared CS3 file formats and dragging and dropping allow you to move content briskly between the applications. In the process, the programs will keep layers, color settings, and styles intact. Flash provides native support for Photoshop files; Illustrator files get the same treatment in Flash. You can also export Photoshop layers to Flash or Flash Video, and export its video layers to After Effects and Premiere Pro. Adobe's Dynamic Link technology enables video editors to move content throughout Premiere, AfterEffects, and Encore while maintaining editing access.

    -

    Besides, you can access its content creation system without an account to see and use everything. Plus, Canva also lets you upload photos, videos, and audio. And publishing is a piece of cake, the format you get is PNG or JPG. All of this totally for free and there is a pro plan that costs $10/mo. if billed annually if you feel like needing more.

    -

    Amazon also counts with a free editing tool for eBooks. It includes designs for chapters, caps, and image inclusions. Besides, it automatically creates a table of content and gives a style to the chapters. Plus, you can add photos, video, and multimedia, check several of its tutorials. And you can check the mobile view and kindler view as you edit.

    aaccfb2cb3
    -
    -
    \ No newline at end of file diff --git a/spaces/bioriAsaeru/text-to-voice/Aiyaary Full Movie Download In Hindi In Hd.md b/spaces/bioriAsaeru/text-to-voice/Aiyaary Full Movie Download In Hindi In Hd.md deleted file mode 100644 index 6ad4469e5aea4a13cb98f010b1254c31096c720b..0000000000000000000000000000000000000000 --- a/spaces/bioriAsaeru/text-to-voice/Aiyaary Full Movie Download In Hindi In Hd.md +++ /dev/null @@ -1,6 +0,0 @@ -

    Aiyaary Full Movie Download In Hindi In Hd


    Download File https://urloso.com/2uyOjW



    - - aaccfb2cb3
    -
    -
    -

    diff --git a/spaces/bioriAsaeru/text-to-voice/Andolan 4 pdf download hindi The latest edition of the revolutionary book.md b/spaces/bioriAsaeru/text-to-voice/Andolan 4 pdf download hindi The latest edition of the revolutionary book.md deleted file mode 100644 index 45dae4d8d9fc1720117e3ae38433f68151c2984d..0000000000000000000000000000000000000000 --- a/spaces/bioriAsaeru/text-to-voice/Andolan 4 pdf download hindi The latest edition of the revolutionary book.md +++ /dev/null @@ -1,16 +0,0 @@ - -

    If candidates are looking to download IGNOU MPS Books and Study Materials in Hindi then our team has uploaded all that materials on our site with the Hindi medium of instruction. So MPS candidates can easily get all those books from the following list without any need for registration.

    -

    Andolan 4 pdf download hindi


    Download Zip ✔✔✔ https://urloso.com/2uyPGt



    -

    CBSE Class 10 Science Notes Chapter 16 Management of Natural Resources Pdf free download is part of Class 10 Science Notes for Quick Revision. Here we have given NCERT Class 10 Science Notes Chapter 16 Management of Natural Resources. According to new CBSE Exam Pattern, MCQ Questions for Class 10 Science pdf Carries 20 Marks.

    -

    We hope the given CBSE Class 10 Science Notes Chapter 16 Management of Natural Resources Pdf free download will help you. If you have any query regarding NCERT Class 10 Science Notes Chapter 16 Management of Natural Resources, drop a comment below and we will get back to you at the earliest.

    -

    We hope that this detailed article on NCERT Class 7 History Books helps you in your preparation and you crack the Class 7 exams or competitive exams with excellent scores. For your convenience, you can download PDFs of books and structure your study plan ahead. You should focus more on practicing previous year question papers too as this will further assist you in understanding the frequency of questions.

    -

    -

    Get here Subject wise NCERT Solutions for Class 10 in both medium Hindi and English. You can also download Subject wise NCERT Solutions for Class 10 in PDF format and learn it when you will offline even. It is FREE of cost, and there is no need for login and registration. If you prepared well with this solution, it would help you to score maximum marks in CBSE Class 10 Board Exam. Download Class 10 Solutions App for all subjects.

    -

    So students need to practice all exercises of the NCERT Maths can download Chapter Wise NCERT Solutions for Class 10 Mathematics PDFs with FREE of cost to learn while offline. This NCERT Solutions for Class 10 Mathematics covers all the NCERT Class 10 Maths textbook chapters including Real Numbers, Triangles, and Introduction to Trigonometry, Pair of Linear Equations in Two Variables, Arithmetic Progression, Constructions, Surface Areas and Volumes, Probability etc.

    -

    Find Chapter wise NCERT Solutions for Class 10 Science here for both mode learning. These solutions provide you understanding the complex topics of Class 10 Science NCERT Book Syllabus that help you score good marks in Board examination of Class 10. All the chapter question answers very important from the exam point of view. There are also all chapters numerical questions are solved with step by step method so that students can easily understand all the logic. Experienced Science teacher provides solutions for Class 10 Science with good review. This NCERT Solutions for Class 10 Science covers the understanding of concepts related to Physics, Chemistry and Biology.

    Just click the below-mentioned links and download Chapter Wise NCERT Solutions for Class 10 Science PDFs and learn offline. You can download unlimited PDFs with FREE of cost. This NCERT solution covers all the chapters of 10 Science NCERT Book Syllabus such as Chemical Reactions and Equations, A Metals and Non-Metals, Carbon and its Compounds,Acids, Bases and Salts, Periodic Classification of Elements, Heredity and Evolution, Magnetic Effects of Electric Current, Our Environment, Management of Natural Resources etc.

    -

    Bharat no itihas liberty book pdf download, bharat no itihas pdf in gujarati, bharat no itihas atul prakashan pdf, bharat no itihas university granth nirman board pdf, bharat no itihas world inbox pdf, bharat no itihas in gujarati pdf free download mcq, bharat no itihas a n d shelat pdf download, madhyakalin bharat no itihas in gujarati pdf, prachin bharat no itihas pdf in gujarati, adhunik bharat no itihas pdf in gujarati

    -

    pdf download.in will bring you new PDFs on Daily Bases, which will be updated in all ways and uploaded on the website, which will prove to be very important for you to prepare for all your upcoming competitive exams.

    -

    The above PDF is only provided to you by PDFdownload.in, we are not the creator of the PDF, if you like the PDF or if you have any kind of doubt, suggestion, or question about the same, please send us on your mail. Do not hesitate to contact me. [email protected] or you can send suggestions in the comment box below.

    -

    TAG- most important general knowledge questions in Hindi, 1000 gk questions and answers in Hindi pdf, most important general knowledge questions in Hindi pdf, 10000 general knowledge questions and answers in Hindi pdf, 5000 gk question in Hindi pdf download, science gk in Hindi pdf, gk question answer in Hindi 2020 pdf download, gk in Hindi pdf 2019

    aaccfb2cb3
    -
    -
    \ No newline at end of file diff --git a/spaces/bioriAsaeru/text-to-voice/GTA Iv Data4.cab.rar.md b/spaces/bioriAsaeru/text-to-voice/GTA Iv Data4.cab.rar.md deleted file mode 100644 index b09f169e37a4c3b022026d544a8df9fd3e3a6aad..0000000000000000000000000000000000000000 --- a/spaces/bioriAsaeru/text-to-voice/GTA Iv Data4.cab.rar.md +++ /dev/null @@ -1,10 +0,0 @@ - -

    GTA Iv Data4.cab.rar for windows 7, factory patched. GTA iv data4.cab.rar. GTA iv data4.cab.rar. GTA iv data4.cab.rar statusmeldungen reklame 4.12.6 words > https://bytlly.com/1grpn9.. dope game update game engine (full version) drm.

    -

    Download GTA iv data4.cab.rar Uga for windows 7, factory patched. GTA iv data4.cab.rar. GTA iv data4.cab.rar. GTA iv data4.cab.rar statusmeldungen reklame 4.12.6 words. GTA iv data4.cab.rar EXE and about the pirate version of the game.

    -

    GTA Iv Data4.cab.rar


    Download ⇒⇒⇒ https://urloso.com/2uyRUb



    -

    GTA iv data4.cab.rar for windows 7, factory patched. GTA iv data4.cab.rar. GTA iv data4.cab.rar statusmeldungen reklame 4.12.6 words. GTA iv data4.cab.rar EXE and about the pirate version of the game.

    -

    Good New Fake Files : GTA Iv Data4.cab.rar View all data; 2017-07-12 Download. Passes 2.1.1 Internet Explorer. Hi, . 1. From the main menu, select Settings. Double-click Advertisement. to install all games. An open and endorsed computer game trading card. 8. Alternately, you can download a list of all the files in the archive:. GTA IV, The Ballad of Gay Tony, The Lost and The Damned, Vice City and San Andreas. To start running the GTA IV Game Launcher, click Start.

    -

    We do not own the Gta iv data4.cab.rar to the above links to, but we are working in our best to find out the right and original owner of the file, so please contact us if you are the right owner and do not want to allow us publish the data on our website.

    -

    Genuine 100% free from viruses. GTA IV Data4.cab.rar. Torrents Data (iPTV)-Información Del Torrent, Descargar, Descargar GTA IV Data4.cab.rar+http://bit.ly/2XuJn0U Good New Fake Files : GTA Iv Data4.cab.rar View all data; 2017-07-12 Download. Passes 2.1.1 Internet Explorer. Hi, . 1. From the main menu, select Settings. Double-click Advertisement. to install all games. An open and endorsed computer game trading card. 8. Alternately, you can download a list of all the files in the archive:. GTA IV, The Ballad of Gay Tony, The Lost and The Damned, Vice City and San Andreas. To start running the GTA IV Game Launcher, click Start.

    899543212b
    -
    -
    \ No newline at end of file diff --git a/spaces/bofenghuang/speech-to-text/app.py b/spaces/bofenghuang/speech-to-text/app.py deleted file mode 100644 index 33211dd64b6db84ea419b608bc19144638afc35d..0000000000000000000000000000000000000000 --- a/spaces/bofenghuang/speech-to-text/app.py +++ /dev/null @@ -1 +0,0 @@ -run_demo_layout.py \ No newline at end of file diff --git a/spaces/brainblow/AudioCreator_Music-Audio_Generation/audiocraft/quantization/core_vq.py b/spaces/brainblow/AudioCreator_Music-Audio_Generation/audiocraft/quantization/core_vq.py deleted file mode 100644 index da02a6ce3a7de15353f0fba9e826052beb67c436..0000000000000000000000000000000000000000 --- a/spaces/brainblow/AudioCreator_Music-Audio_Generation/audiocraft/quantization/core_vq.py +++ /dev/null @@ -1,400 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import typing as tp - -from einops import rearrange, repeat -import flashy -import torch -from torch import nn, einsum -import torch.nn.functional as F - - -def exists(val: tp.Optional[tp.Any]) -> bool: - return val is not None - - -def default(val: tp.Any, d: tp.Any) -> tp.Any: - return val if exists(val) else d - - -def l2norm(t): - return F.normalize(t, p=2, dim=-1) - - -def ema_inplace(moving_avg, new, decay: float): - moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) - - -def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5): - return (x + epsilon) / (x.sum() + n_categories * epsilon) - - -def uniform_init(*shape: int): - t = torch.empty(shape) - nn.init.kaiming_uniform_(t) - return t - - -def sample_vectors(samples, num: int): - num_samples, device = samples.shape[0], samples.device - - if num_samples >= num: - indices = torch.randperm(num_samples, device=device)[:num] - else: - indices = torch.randint(0, num_samples, (num,), device=device) - - return samples[indices] - - -def kmeans(samples, num_clusters: int, num_iters: int = 10): - dim, dtype = samples.shape[-1], samples.dtype - - means = sample_vectors(samples, num_clusters) - - for _ in range(num_iters): - diffs = rearrange(samples, "n d -> n () d") - rearrange( - means, "c d -> () c d" - ) - dists = -(diffs ** 2).sum(dim=-1) - - buckets = dists.max(dim=-1).indices - bins = torch.bincount(buckets, minlength=num_clusters) - zero_mask = bins == 0 - bins_min_clamped = bins.masked_fill(zero_mask, 1) - - new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) - new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples) - new_means = new_means / bins_min_clamped[..., None] - - means = torch.where(zero_mask[..., None], means, new_means) - - return means, bins - - -def orthogonal_loss_fn(t): - # eq (2) from https://arxiv.org/abs/2112.00384 - n = t.shape[0] - normed_codes = l2norm(t) - identity = torch.eye(n, device=t.device) - cosine_sim = einsum("i d, j d -> i j", normed_codes, normed_codes) - return ((cosine_sim - identity) ** 2).sum() / (n ** 2) - - -class EuclideanCodebook(nn.Module): - """Codebook with Euclidean distance. - - Args: - dim (int): Dimension. - codebook_size (int): Codebook size. - kmeans_init (bool): Whether to use k-means to initialize the codebooks. - If set to true, run the k-means algorithm on the first training batch and use - the learned centroids as initialization. - kmeans_iters (int): Number of iterations used for k-means algorithm at initialization. - decay (float): Decay for exponential moving average over the codebooks. - epsilon (float): Epsilon value for numerical stability. - threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes - that have an exponential moving average cluster size less than the specified threshold with - randomly selected vector from the current batch. - """ - def __init__( - self, - dim: int, - codebook_size: int, - kmeans_init: int = False, - kmeans_iters: int = 10, - decay: float = 0.8, - epsilon: float = 1e-5, - threshold_ema_dead_code: int = 2, - ): - super().__init__() - self.decay = decay - init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = uniform_init if not kmeans_init else torch.zeros - embed = init_fn(codebook_size, dim) - - self.codebook_size = codebook_size - - self.kmeans_iters = kmeans_iters - self.epsilon = epsilon - self.threshold_ema_dead_code = threshold_ema_dead_code - - self.register_buffer("inited", torch.Tensor([not kmeans_init])) - self.register_buffer("cluster_size", torch.zeros(codebook_size)) - self.register_buffer("embed", embed) - self.register_buffer("embed_avg", embed.clone()) - - @torch.jit.ignore - def init_embed_(self, data): - if self.inited: - return - - embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters) - self.embed.data.copy_(embed) - self.embed_avg.data.copy_(embed.clone()) - self.cluster_size.data.copy_(cluster_size) - self.inited.data.copy_(torch.Tensor([True])) - # Make sure all buffers across workers are in sync after initialization - flashy.distrib.broadcast_tensors(self.buffers()) - - def replace_(self, samples, mask): - modified_codebook = torch.where( - mask[..., None], sample_vectors(samples, self.codebook_size), self.embed - ) - self.embed.data.copy_(modified_codebook) - - def expire_codes_(self, batch_samples): - if self.threshold_ema_dead_code == 0: - return - - expired_codes = self.cluster_size < self.threshold_ema_dead_code - if not torch.any(expired_codes): - return - - batch_samples = rearrange(batch_samples, "... d -> (...) d") - self.replace_(batch_samples, mask=expired_codes) - flashy.distrib.broadcast_tensors(self.buffers()) - - def preprocess(self, x): - x = rearrange(x, "... d -> (...) d") - return x - - def quantize(self, x): - embed = self.embed.t() - dist = -( - x.pow(2).sum(1, keepdim=True) - - 2 * x @ embed - + embed.pow(2).sum(0, keepdim=True) - ) - embed_ind = dist.max(dim=-1).indices - return embed_ind - - def postprocess_emb(self, embed_ind, shape): - return embed_ind.view(*shape[:-1]) - - def dequantize(self, embed_ind): - quantize = F.embedding(embed_ind, self.embed) - return quantize - - def encode(self, x): - shape = x.shape - # pre-process - x = self.preprocess(x) - # quantize - embed_ind = self.quantize(x) - # post-process - embed_ind = self.postprocess_emb(embed_ind, shape) - return embed_ind - - def decode(self, embed_ind): - quantize = self.dequantize(embed_ind) - return quantize - - def forward(self, x): - shape, dtype = x.shape, x.dtype - x = self.preprocess(x) - self.init_embed_(x) - - embed_ind = self.quantize(x) - embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) - embed_ind = self.postprocess_emb(embed_ind, shape) - quantize = self.dequantize(embed_ind) - - if self.training: - # We do the expiry of code at that point as buffers are in sync - # and all the workers will take the same decision. - self.expire_codes_(x) - ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) - embed_sum = x.t() @ embed_onehot - ema_inplace(self.embed_avg, embed_sum.t(), self.decay) - cluster_size = ( - laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon) - * self.cluster_size.sum() - ) - embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) - self.embed.data.copy_(embed_normalized) - - return quantize, embed_ind - - -class VectorQuantization(nn.Module): - """Vector quantization implementation. - Currently supports only euclidean distance. - - Args: - dim (int): Dimension - codebook_size (int): Codebook size - codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim. - decay (float): Decay for exponential moving average over the codebooks. - epsilon (float): Epsilon value for numerical stability. - kmeans_init (bool): Whether to use kmeans to initialize the codebooks. - kmeans_iters (int): Number of iterations used for kmeans initialization. - threshold_ema_dead_code (int): - channels_last (bool): Channels are the last dimension in the input tensors. - commitment_weight (float): Weight for commitment loss. - orthogonal_reg_weight (float): Orthogonal regularization weights. - orthogonal_reg_active_codes_only (bool): Apply orthogonal regularization only on active codes. - orthogonal_reg_max_codes (optional int): Maximum number of codes to consider - for orthogonal regularization. - threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes - that have an exponential moving average cluster size less than the specified threshold with - randomly selected vector from the current batch. - """ - def __init__( - self, - dim: int, - codebook_size: int, - codebook_dim: tp.Optional[int] = None, - decay: float = 0.8, - epsilon: float = 1e-5, - kmeans_init: bool = False, - kmeans_iters: int = 10, - threshold_ema_dead_code: int = 2, - channels_last: bool = False, - commitment_weight: float = 1., - orthogonal_reg_weight: float = 0.0, - orthogonal_reg_active_codes_only: bool = False, - orthogonal_reg_max_codes: tp.Optional[int] = None, - ): - super().__init__() - _codebook_dim: int = default(codebook_dim, dim) - - requires_projection = _codebook_dim != dim - self.project_in = (nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity()) - self.project_out = (nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity()) - - self.epsilon = epsilon - self.commitment_weight = commitment_weight - - self.orthogonal_reg_weight = orthogonal_reg_weight - self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only - self.orthogonal_reg_max_codes = orthogonal_reg_max_codes - - self._codebook = EuclideanCodebook(dim=_codebook_dim, codebook_size=codebook_size, - kmeans_init=kmeans_init, kmeans_iters=kmeans_iters, - decay=decay, epsilon=epsilon, - threshold_ema_dead_code=threshold_ema_dead_code) - self.codebook_size = codebook_size - - self.channels_last = channels_last - - @property - def codebook(self): - return self._codebook.embed - - @property - def inited(self): - return self._codebook.inited - - def _preprocess(self, x): - if not self.channels_last: - x = rearrange(x, "b d n -> b n d") - return x - - def _postprocess(self, quantize): - if not self.channels_last: - quantize = rearrange(quantize, "b n d -> b d n") - return quantize - - def encode(self, x): - x = self._preprocess(x) - x = self.project_in(x) - embed_in = self._codebook.encode(x) - return embed_in - - def decode(self, embed_ind): - quantize = self._codebook.decode(embed_ind) - quantize = self.project_out(quantize) - quantize = self._postprocess(quantize) - return quantize - - def forward(self, x): - device = x.device - x = self._preprocess(x) - - x = self.project_in(x) - quantize, embed_ind = self._codebook(x) - - if self.training: - quantize = x + (quantize - x).detach() - - loss = torch.tensor([0.0], device=device, requires_grad=self.training) - - if self.training: - if self.commitment_weight > 0: - commit_loss = F.mse_loss(quantize.detach(), x) - loss = loss + commit_loss * self.commitment_weight - - if self.orthogonal_reg_weight > 0: - codebook = self.codebook - - if self.orthogonal_reg_active_codes_only: - # only calculate orthogonal loss for the activated codes for this batch - unique_code_ids = torch.unique(embed_ind) - codebook = codebook[unique_code_ids] - - num_codes = codebook.shape[0] - if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes: - rand_ids = torch.randperm(num_codes, device=device)[:self.orthogonal_reg_max_codes] - codebook = codebook[rand_ids] - - orthogonal_reg_loss = orthogonal_loss_fn(codebook) - loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight - - quantize = self.project_out(quantize) - quantize = self._postprocess(quantize) - - return quantize, embed_ind, loss - - -class ResidualVectorQuantization(nn.Module): - """Residual vector quantization implementation. - - Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf - """ - def __init__(self, *, num_quantizers, **kwargs): - super().__init__() - self.layers = nn.ModuleList( - [VectorQuantization(**kwargs) for _ in range(num_quantizers)] - ) - - def forward(self, x, n_q: tp.Optional[int] = None): - quantized_out = 0.0 - residual = x - - all_losses = [] - all_indices = [] - - n_q = n_q or len(self.layers) - - for i, layer in enumerate(self.layers[:n_q]): - quantized, indices, loss = layer(residual) - residual = residual - quantized - quantized_out = quantized_out + quantized - all_indices.append(indices) - all_losses.append(loss) - - out_losses, out_indices = map(torch.stack, (all_losses, all_indices)) - return quantized_out, out_indices, out_losses - - def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None) -> torch.Tensor: - residual = x - all_indices = [] - n_q = n_q or len(self.layers) - for layer in self.layers[:n_q]: - indices = layer.encode(residual) - quantized = layer.decode(indices) - residual = residual - quantized - all_indices.append(indices) - out_indices = torch.stack(all_indices) - return out_indices - - def decode(self, q_indices: torch.Tensor) -> torch.Tensor: - quantized_out = torch.tensor(0.0, device=q_indices.device) - for i, indices in enumerate(q_indices): - layer = self.layers[i] - quantized = layer.decode(indices) - quantized_out = quantized_out + quantized - return quantized_out diff --git a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/layers/deform_conv.py b/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/layers/deform_conv.py deleted file mode 100644 index dffb720c2a8d10d9273752dbdd291a3714f91338..0000000000000000000000000000000000000000 --- a/spaces/brjathu/HMR2.0/vendor/detectron2/detectron2/layers/deform_conv.py +++ /dev/null @@ -1,514 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import math -from functools import lru_cache -import torch -from torch import nn -from torch.autograd import Function -from torch.autograd.function import once_differentiable -from torch.nn.modules.utils import _pair -from torchvision.ops import deform_conv2d - -from detectron2.utils.develop import create_dummy_class, create_dummy_func - -from .wrappers import _NewEmptyTensorOp - - -class _DeformConv(Function): - @staticmethod - def forward( - ctx, - input, - offset, - weight, - stride=1, - padding=0, - dilation=1, - groups=1, - deformable_groups=1, - im2col_step=64, - ): - if input is not None and input.dim() != 4: - raise ValueError( - "Expected 4D tensor as input, got {}D tensor instead.".format(input.dim()) - ) - ctx.stride = _pair(stride) - ctx.padding = _pair(padding) - ctx.dilation = _pair(dilation) - ctx.groups = groups - ctx.deformable_groups = deformable_groups - ctx.im2col_step = im2col_step - - ctx.save_for_backward(input, offset, weight) - - output = input.new_empty( - _DeformConv._output_size(input, weight, ctx.padding, ctx.dilation, ctx.stride) - ) - - ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones - - if not input.is_cuda: - # TODO: let torchvision support full features of our deformconv. - if deformable_groups != 1: - raise NotImplementedError( - "Deformable Conv with deformable_groups != 1 is not supported on CPUs!" - ) - return deform_conv2d( - input, offset, weight, stride=stride, padding=padding, dilation=dilation - ) - else: - cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) - assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" - - _C.deform_conv_forward( - input, - weight, - offset, - output, - ctx.bufs_[0], - ctx.bufs_[1], - weight.size(3), - weight.size(2), - ctx.stride[1], - ctx.stride[0], - ctx.padding[1], - ctx.padding[0], - ctx.dilation[1], - ctx.dilation[0], - ctx.groups, - ctx.deformable_groups, - cur_im2col_step, - ) - return output - - @staticmethod - @once_differentiable - def backward(ctx, grad_output): - input, offset, weight = ctx.saved_tensors - - grad_input = grad_offset = grad_weight = None - - if not grad_output.is_cuda: - raise NotImplementedError("Deformable Conv is not supported on CPUs!") - else: - cur_im2col_step = _DeformConv._cal_im2col_step(input.shape[0], ctx.im2col_step) - assert (input.shape[0] % cur_im2col_step) == 0, "im2col step must divide batchsize" - - if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: - grad_input = torch.zeros_like(input) - grad_offset = torch.zeros_like(offset) - _C.deform_conv_backward_input( - input, - offset, - grad_output, - grad_input, - grad_offset, - weight, - ctx.bufs_[0], - weight.size(3), - weight.size(2), - ctx.stride[1], - ctx.stride[0], - ctx.padding[1], - ctx.padding[0], - ctx.dilation[1], - ctx.dilation[0], - ctx.groups, - ctx.deformable_groups, - cur_im2col_step, - ) - - if ctx.needs_input_grad[2]: - grad_weight = torch.zeros_like(weight) - _C.deform_conv_backward_filter( - input, - offset, - grad_output, - grad_weight, - ctx.bufs_[0], - ctx.bufs_[1], - weight.size(3), - weight.size(2), - ctx.stride[1], - ctx.stride[0], - ctx.padding[1], - ctx.padding[0], - ctx.dilation[1], - ctx.dilation[0], - ctx.groups, - ctx.deformable_groups, - 1, - cur_im2col_step, - ) - - return grad_input, grad_offset, grad_weight, None, None, None, None, None, None - - @staticmethod - def _output_size(input, weight, padding, dilation, stride): - channels = weight.size(0) - output_size = (input.size(0), channels) - for d in range(input.dim() - 2): - in_size = input.size(d + 2) - pad = padding[d] - kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 - stride_ = stride[d] - output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1,) - if not all(map(lambda s: s > 0, output_size)): - raise ValueError( - "convolution input is too small (output would be {})".format( - "x".join(map(str, output_size)) - ) - ) - return output_size - - @staticmethod - @lru_cache(maxsize=128) - def _cal_im2col_step(input_size, default_size): - """ - Calculate proper im2col step size, which should be divisible by input_size and not larger - than prefer_size. Meanwhile the step size should be as large as possible to be more - efficient. So we choose the largest one among all divisors of input_size which are smaller - than prefer_size. - :param input_size: input batch size . - :param default_size: default preferred im2col step size. - :return: the largest proper step size. - """ - if input_size <= default_size: - return input_size - best_step = 1 - for step in range(2, min(int(math.sqrt(input_size)) + 1, default_size)): - if input_size % step == 0: - if input_size // step <= default_size: - return input_size // step - best_step = step - - return best_step - - -class _ModulatedDeformConv(Function): - @staticmethod - def forward( - ctx, - input, - offset, - mask, - weight, - bias=None, - stride=1, - padding=0, - dilation=1, - groups=1, - deformable_groups=1, - ): - ctx.stride = stride - ctx.padding = padding - ctx.dilation = dilation - ctx.groups = groups - ctx.deformable_groups = deformable_groups - ctx.with_bias = bias is not None - if not ctx.with_bias: - bias = input.new_empty(1) # fake tensor - if not input.is_cuda: - raise NotImplementedError("Deformable Conv is not supported on CPUs!") - if ( - weight.requires_grad - or mask.requires_grad - or offset.requires_grad - or input.requires_grad - ): - ctx.save_for_backward(input, offset, mask, weight, bias) - output = input.new_empty(_ModulatedDeformConv._infer_shape(ctx, input, weight)) - ctx._bufs = [input.new_empty(0), input.new_empty(0)] - _C.modulated_deform_conv_forward( - input, - weight, - bias, - ctx._bufs[0], - offset, - mask, - output, - ctx._bufs[1], - weight.shape[2], - weight.shape[3], - ctx.stride, - ctx.stride, - ctx.padding, - ctx.padding, - ctx.dilation, - ctx.dilation, - ctx.groups, - ctx.deformable_groups, - ctx.with_bias, - ) - return output - - @staticmethod - @once_differentiable - def backward(ctx, grad_output): - if not grad_output.is_cuda: - raise NotImplementedError("Deformable Conv is not supported on CPUs!") - input, offset, mask, weight, bias = ctx.saved_tensors - grad_input = torch.zeros_like(input) - grad_offset = torch.zeros_like(offset) - grad_mask = torch.zeros_like(mask) - grad_weight = torch.zeros_like(weight) - grad_bias = torch.zeros_like(bias) - _C.modulated_deform_conv_backward( - input, - weight, - bias, - ctx._bufs[0], - offset, - mask, - ctx._bufs[1], - grad_input, - grad_weight, - grad_bias, - grad_offset, - grad_mask, - grad_output, - weight.shape[2], - weight.shape[3], - ctx.stride, - ctx.stride, - ctx.padding, - ctx.padding, - ctx.dilation, - ctx.dilation, - ctx.groups, - ctx.deformable_groups, - ctx.with_bias, - ) - if not ctx.with_bias: - grad_bias = None - - return ( - grad_input, - grad_offset, - grad_mask, - grad_weight, - grad_bias, - None, - None, - None, - None, - None, - ) - - @staticmethod - def _infer_shape(ctx, input, weight): - n = input.size(0) - channels_out = weight.size(0) - height, width = input.shape[2:4] - kernel_h, kernel_w = weight.shape[2:4] - height_out = ( - height + 2 * ctx.padding - (ctx.dilation * (kernel_h - 1) + 1) - ) // ctx.stride + 1 - width_out = ( - width + 2 * ctx.padding - (ctx.dilation * (kernel_w - 1) + 1) - ) // ctx.stride + 1 - return n, channels_out, height_out, width_out - - -deform_conv = _DeformConv.apply -modulated_deform_conv = _ModulatedDeformConv.apply - - -class DeformConv(nn.Module): - def __init__( - self, - in_channels, - out_channels, - kernel_size, - stride=1, - padding=0, - dilation=1, - groups=1, - deformable_groups=1, - bias=False, - norm=None, - activation=None, - ): - """ - Deformable convolution from :paper:`deformconv`. - - Arguments are similar to :class:`Conv2D`. Extra arguments: - - Args: - deformable_groups (int): number of groups used in deformable convolution. - norm (nn.Module, optional): a normalization layer - activation (callable(Tensor) -> Tensor): a callable activation function - """ - super(DeformConv, self).__init__() - - assert not bias - assert in_channels % groups == 0, "in_channels {} cannot be divisible by groups {}".format( - in_channels, groups - ) - assert ( - out_channels % groups == 0 - ), "out_channels {} cannot be divisible by groups {}".format(out_channels, groups) - - self.in_channels = in_channels - self.out_channels = out_channels - self.kernel_size = _pair(kernel_size) - self.stride = _pair(stride) - self.padding = _pair(padding) - self.dilation = _pair(dilation) - self.groups = groups - self.deformable_groups = deformable_groups - self.norm = norm - self.activation = activation - - self.weight = nn.Parameter( - torch.Tensor(out_channels, in_channels // self.groups, *self.kernel_size) - ) - self.bias = None - - nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") - - def forward(self, x, offset): - if x.numel() == 0: - # When input is empty, we want to return a empty tensor with "correct" shape, - # So that the following operations will not panic - # if they check for the shape of the tensor. - # This computes the height and width of the output tensor - output_shape = [ - (i + 2 * p - (di * (k - 1) + 1)) // s + 1 - for i, p, di, k, s in zip( - x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride - ) - ] - output_shape = [x.shape[0], self.weight.shape[0]] + output_shape - return _NewEmptyTensorOp.apply(x, output_shape) - - x = deform_conv( - x, - offset, - self.weight, - self.stride, - self.padding, - self.dilation, - self.groups, - self.deformable_groups, - ) - if self.norm is not None: - x = self.norm(x) - if self.activation is not None: - x = self.activation(x) - return x - - def extra_repr(self): - tmpstr = "in_channels=" + str(self.in_channels) - tmpstr += ", out_channels=" + str(self.out_channels) - tmpstr += ", kernel_size=" + str(self.kernel_size) - tmpstr += ", stride=" + str(self.stride) - tmpstr += ", padding=" + str(self.padding) - tmpstr += ", dilation=" + str(self.dilation) - tmpstr += ", groups=" + str(self.groups) - tmpstr += ", deformable_groups=" + str(self.deformable_groups) - tmpstr += ", bias=False" - return tmpstr - - -class ModulatedDeformConv(nn.Module): - def __init__( - self, - in_channels, - out_channels, - kernel_size, - stride=1, - padding=0, - dilation=1, - groups=1, - deformable_groups=1, - bias=True, - norm=None, - activation=None, - ): - """ - Modulated deformable convolution from :paper:`deformconv2`. - - Arguments are similar to :class:`Conv2D`. Extra arguments: - - Args: - deformable_groups (int): number of groups used in deformable convolution. - norm (nn.Module, optional): a normalization layer - activation (callable(Tensor) -> Tensor): a callable activation function - """ - super(ModulatedDeformConv, self).__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.kernel_size = _pair(kernel_size) - self.stride = stride - self.padding = padding - self.dilation = dilation - self.groups = groups - self.deformable_groups = deformable_groups - self.with_bias = bias - self.norm = norm - self.activation = activation - - self.weight = nn.Parameter( - torch.Tensor(out_channels, in_channels // groups, *self.kernel_size) - ) - if bias: - self.bias = nn.Parameter(torch.Tensor(out_channels)) - else: - self.bias = None - - nn.init.kaiming_uniform_(self.weight, nonlinearity="relu") - if self.bias is not None: - nn.init.constant_(self.bias, 0) - - def forward(self, x, offset, mask): - if x.numel() == 0: - output_shape = [ - (i + 2 * p - (di * (k - 1) + 1)) // s + 1 - for i, p, di, k, s in zip( - x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride - ) - ] - output_shape = [x.shape[0], self.weight.shape[0]] + output_shape - return _NewEmptyTensorOp.apply(x, output_shape) - - x = modulated_deform_conv( - x, - offset, - mask, - self.weight, - self.bias, - self.stride, - self.padding, - self.dilation, - self.groups, - self.deformable_groups, - ) - if self.norm is not None: - x = self.norm(x) - if self.activation is not None: - x = self.activation(x) - return x - - def extra_repr(self): - tmpstr = "in_channels=" + str(self.in_channels) - tmpstr += ", out_channels=" + str(self.out_channels) - tmpstr += ", kernel_size=" + str(self.kernel_size) - tmpstr += ", stride=" + str(self.stride) - tmpstr += ", padding=" + str(self.padding) - tmpstr += ", dilation=" + str(self.dilation) - tmpstr += ", groups=" + str(self.groups) - tmpstr += ", deformable_groups=" + str(self.deformable_groups) - tmpstr += ", bias=" + str(self.with_bias) - return tmpstr - - -try: - from detectron2 import _C -except ImportError: - # TODO: register ops natively so there is no need to import _C. - _msg = "detectron2 is not compiled successfully, please build following the instructions!" - _args = ("detectron2._C", _msg) - DeformConv = create_dummy_class("DeformConv", *_args) - ModulatedDeformConv = create_dummy_class("ModulatedDeformConv", *_args) - deform_conv = create_dummy_func("deform_conv", *_args) - modulated_deform_conv = create_dummy_func("modulated_deform_conv", *_args) diff --git a/spaces/brjathu/HMR2.0/vendor/detectron2/tests/test_events.py b/spaces/brjathu/HMR2.0/vendor/detectron2/tests/test_events.py deleted file mode 100644 index 174ca978de21fa09fdf79eca62936ef497aaf2e8..0000000000000000000000000000000000000000 --- a/spaces/brjathu/HMR2.0/vendor/detectron2/tests/test_events.py +++ /dev/null @@ -1,122 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -import json -import os -import tempfile -import unittest - -from detectron2.utils.events import ( - CommonMetricPrinter, - EventStorage, - JSONWriter, - get_event_storage, - has_event_storage, -) - - -class TestEventWriter(unittest.TestCase): - def testScalar(self): - with tempfile.TemporaryDirectory( - prefix="detectron2_tests" - ) as dir, EventStorage() as storage: - json_file = os.path.join(dir, "test.json") - writer = JSONWriter(json_file) - for k in range(60): - storage.put_scalar("key", k, smoothing_hint=False) - if (k + 1) % 20 == 0: - writer.write() - storage.step() - writer.close() - with open(json_file) as f: - data = [json.loads(l) for l in f] - self.assertTrue([int(k["key"]) for k in data] == [19, 39, 59]) - - def testScalarMismatchedPeriod(self): - with tempfile.TemporaryDirectory( - prefix="detectron2_tests" - ) as dir, EventStorage() as storage: - json_file = os.path.join(dir, "test.json") - - writer = JSONWriter(json_file) - for k in range(60): - if k % 17 == 0: # write in a differnt period - storage.put_scalar("key2", k, smoothing_hint=False) - storage.put_scalar("key", k, smoothing_hint=False) - if (k + 1) % 20 == 0: - writer.write() - storage.step() - writer.close() - with open(json_file) as f: - data = [json.loads(l) for l in f] - self.assertTrue([int(k.get("key2", 0)) for k in data] == [17, 0, 34, 0, 51, 0]) - self.assertTrue([int(k.get("key", 0)) for k in data] == [0, 19, 0, 39, 0, 59]) - self.assertTrue([int(k["iteration"]) for k in data] == [17, 19, 34, 39, 51, 59]) - - def testPrintETA(self): - with EventStorage() as s: - p1 = CommonMetricPrinter(10) - p2 = CommonMetricPrinter() - - s.put_scalar("time", 1.0) - s.step() - s.put_scalar("time", 1.0) - s.step() - - with self.assertLogs("detectron2.utils.events") as logs: - p1.write() - self.assertIn("eta", logs.output[0]) - - with self.assertLogs("detectron2.utils.events") as logs: - p2.write() - self.assertNotIn("eta", logs.output[0]) - - def testPrintNonLosses(self): - with EventStorage() as s: - p1 = CommonMetricPrinter(10) - p2 = CommonMetricPrinter() - - s.put_scalar("time", 1.0) - s.put_scalar("[metric]bn_stat", 1.0) - s.step() - s.put_scalar("time", 1.0) - s.put_scalar("[metric]bn_stat", 1.0) - s.step() - - with self.assertLogs("detectron2.utils.events") as logs: - p1.write() - self.assertIn("[metric]bn_stat", logs.output[0]) - - with self.assertLogs("detectron2.utils.events") as logs: - p2.write() - self.assertIn("[metric]bn_stat", logs.output[0]) - - def testSmoothingWithWindowSize(self): - with tempfile.TemporaryDirectory( - prefix="detectron2_tests" - ) as dir, EventStorage() as storage: - json_file = os.path.join(dir, "test.json") - writer = JSONWriter(json_file, window_size=10) - for k in range(20): - storage.put_scalar("key1", k, smoothing_hint=True) - if (k + 1) % 2 == 0: - storage.put_scalar("key2", k, smoothing_hint=True) - if (k + 1) % 5 == 0: - storage.put_scalar("key3", k, smoothing_hint=True) - if (k + 1) % 10 == 0: - writer.write() - storage.step() - - num_samples = {k: storage.count_samples(k, 10) for k in ["key1", "key2", "key3"]} - self.assertEqual(num_samples, {"key1": 10, "key2": 5, "key3": 2}) - writer.close() - with open(json_file) as f: - data = [json.loads(l) for l in f] - self.assertEqual([k["key1"] for k in data], [4.5, 14.5]) - self.assertEqual([k["key2"] for k in data], [5, 15]) - self.assertEqual([k["key3"] for k in data], [6.5, 16.5]) - - def testEventStorage(self): - self.assertFalse(has_event_storage()) - with EventStorage() as storage: - self.assertTrue(has_event_storage()) - self.assertEqual(storage, get_event_storage()) - self.assertFalse(has_event_storage()) diff --git a/spaces/cakiki/doom/index.html b/spaces/cakiki/doom/index.html deleted file mode 100644 index d3c611678cbde1f101d58a16a4373e233df28d3d..0000000000000000000000000000000000000000 --- a/spaces/cakiki/doom/index.html +++ /dev/null @@ -1,20 +0,0 @@ - -
    - -
    - - \ No newline at end of file diff --git a/spaces/carlosalonso/Detection-video/carpeta_deteccion/configs/common/models/mask_rcnn_fpn.py b/spaces/carlosalonso/Detection-video/carpeta_deteccion/configs/common/models/mask_rcnn_fpn.py deleted file mode 100644 index 5e5c501cd1da6cece55210efefc4ec712075ca8a..0000000000000000000000000000000000000000 --- a/spaces/carlosalonso/Detection-video/carpeta_deteccion/configs/common/models/mask_rcnn_fpn.py +++ /dev/null @@ -1,95 +0,0 @@ -from detectron2.config import LazyCall as L -from detectron2.layers import ShapeSpec -from detectron2.modeling.meta_arch import GeneralizedRCNN -from detectron2.modeling.anchor_generator import DefaultAnchorGenerator -from detectron2.modeling.backbone.fpn import LastLevelMaxPool -from detectron2.modeling.backbone import BasicStem, FPN, ResNet -from detectron2.modeling.box_regression import Box2BoxTransform -from detectron2.modeling.matcher import Matcher -from detectron2.modeling.poolers import ROIPooler -from detectron2.modeling.proposal_generator import RPN, StandardRPNHead -from detectron2.modeling.roi_heads import ( - StandardROIHeads, - FastRCNNOutputLayers, - MaskRCNNConvUpsampleHead, - FastRCNNConvFCHead, -) - -from ..data.constants import constants - -model = L(GeneralizedRCNN)( - backbone=L(FPN)( - bottom_up=L(ResNet)( - stem=L(BasicStem)(in_channels=3, out_channels=64, norm="FrozenBN"), - stages=L(ResNet.make_default_stages)( - depth=50, - stride_in_1x1=True, - norm="FrozenBN", - ), - out_features=["res2", "res3", "res4", "res5"], - ), - in_features="${.bottom_up.out_features}", - out_channels=256, - top_block=L(LastLevelMaxPool)(), - ), - proposal_generator=L(RPN)( - in_features=["p2", "p3", "p4", "p5", "p6"], - head=L(StandardRPNHead)(in_channels=256, num_anchors=3), - anchor_generator=L(DefaultAnchorGenerator)( - sizes=[[32], [64], [128], [256], [512]], - aspect_ratios=[0.5, 1.0, 2.0], - strides=[4, 8, 16, 32, 64], - offset=0.0, - ), - anchor_matcher=L(Matcher)( - thresholds=[0.3, 0.7], labels=[0, -1, 1], allow_low_quality_matches=True - ), - box2box_transform=L(Box2BoxTransform)(weights=[1.0, 1.0, 1.0, 1.0]), - batch_size_per_image=256, - positive_fraction=0.5, - pre_nms_topk=(2000, 1000), - post_nms_topk=(1000, 1000), - nms_thresh=0.7, - ), - roi_heads=L(StandardROIHeads)( - num_classes=80, - batch_size_per_image=512, - positive_fraction=0.25, - proposal_matcher=L(Matcher)( - thresholds=[0.5], labels=[0, 1], allow_low_quality_matches=False - ), - box_in_features=["p2", "p3", "p4", "p5"], - box_pooler=L(ROIPooler)( - output_size=7, - scales=(1.0 / 4, 1.0 / 8, 1.0 / 16, 1.0 / 32), - sampling_ratio=0, - pooler_type="ROIAlignV2", - ), - box_head=L(FastRCNNConvFCHead)( - input_shape=ShapeSpec(channels=256, height=7, width=7), - conv_dims=[], - fc_dims=[1024, 1024], - ), - box_predictor=L(FastRCNNOutputLayers)( - input_shape=ShapeSpec(channels=1024), - test_score_thresh=0.05, - box2box_transform=L(Box2BoxTransform)(weights=(10, 10, 5, 5)), - num_classes="${..num_classes}", - ), - mask_in_features=["p2", "p3", "p4", "p5"], - mask_pooler=L(ROIPooler)( - output_size=14, - scales=(1.0 / 4, 1.0 / 8, 1.0 / 16, 1.0 / 32), - sampling_ratio=0, - pooler_type="ROIAlignV2", - ), - mask_head=L(MaskRCNNConvUpsampleHead)( - input_shape=ShapeSpec(channels=256, width=14, height=14), - num_classes="${..num_classes}", - conv_dims=[256, 256, 256, 256, 256], - ), - ), - pixel_mean=constants.imagenet_bgr256_mean, - pixel_std=constants.imagenet_bgr256_std, - input_format="BGR", -) diff --git a/spaces/carlosalonso/Detection-video/carpeta_deteccion/projects/DensePose/densepose/data/samplers/densepose_confidence_based.py b/spaces/carlosalonso/Detection-video/carpeta_deteccion/projects/DensePose/densepose/data/samplers/densepose_confidence_based.py deleted file mode 100644 index 48e325b06e46817dafc0da2d984a8626d754e119..0000000000000000000000000000000000000000 --- a/spaces/carlosalonso/Detection-video/carpeta_deteccion/projects/DensePose/densepose/data/samplers/densepose_confidence_based.py +++ /dev/null @@ -1,108 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. - -import random -from typing import Optional, Tuple -import torch - -from densepose.converters import ToChartResultConverterWithConfidences - -from .densepose_base import DensePoseBaseSampler - - -class DensePoseConfidenceBasedSampler(DensePoseBaseSampler): - """ - Samples DensePose data from DensePose predictions. - Samples for each class are drawn using confidence value estimates. - """ - - def __init__( - self, - confidence_channel: str, - count_per_class: int = 8, - search_count_multiplier: Optional[float] = None, - search_proportion: Optional[float] = None, - ): - """ - Constructor - - Args: - confidence_channel (str): confidence channel to use for sampling; - possible values: - "sigma_2": confidences for UV values - "fine_segm_confidence": confidences for fine segmentation - "coarse_segm_confidence": confidences for coarse segmentation - (default: "sigma_2") - count_per_class (int): the sampler produces at most `count_per_class` - samples for each category (default: 8) - search_count_multiplier (float or None): if not None, the total number - of the most confident estimates of a given class to consider is - defined as `min(search_count_multiplier * count_per_class, N)`, - where `N` is the total number of estimates of the class; cannot be - specified together with `search_proportion` (default: None) - search_proportion (float or None): if not None, the total number of the - of the most confident estimates of a given class to consider is - defined as `min(max(search_proportion * N, count_per_class), N)`, - where `N` is the total number of estimates of the class; cannot be - specified together with `search_count_multiplier` (default: None) - """ - super().__init__(count_per_class) - self.confidence_channel = confidence_channel - self.search_count_multiplier = search_count_multiplier - self.search_proportion = search_proportion - assert (search_count_multiplier is None) or (search_proportion is None), ( - f"Cannot specify both search_count_multiplier (={search_count_multiplier})" - f"and search_proportion (={search_proportion})" - ) - - def _produce_index_sample(self, values: torch.Tensor, count: int): - """ - Produce a sample of indices to select data based on confidences - - Args: - values (torch.Tensor): an array of size [n, k] that contains - estimated values (U, V, confidences); - n: number of channels (U, V, confidences) - k: number of points labeled with part_id - count (int): number of samples to produce, should be positive and <= k - - Return: - list(int): indices of values (along axis 1) selected as a sample - """ - k = values.shape[1] - if k == count: - index_sample = list(range(k)) - else: - # take the best count * search_count_multiplier pixels, - # sample from them uniformly - # (here best = smallest variance) - _, sorted_confidence_indices = torch.sort(values[2]) - if self.search_count_multiplier is not None: - search_count = min(int(count * self.search_count_multiplier), k) - elif self.search_proportion is not None: - search_count = min(max(int(k * self.search_proportion), count), k) - else: - search_count = min(count, k) - sample_from_top = random.sample(range(search_count), count) - index_sample = sorted_confidence_indices[:search_count][sample_from_top] - return index_sample - - def _produce_labels_and_results(self, instance) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Method to get labels and DensePose results from an instance, with confidences - - Args: - instance (Instances): an instance of `DensePoseChartPredictorOutputWithConfidences` - - Return: - labels (torch.Tensor): shape [H, W], DensePose segmentation labels - dp_result (torch.Tensor): shape [3, H, W], DensePose results u and v - stacked with the confidence channel - """ - converter = ToChartResultConverterWithConfidences - chart_result = converter.convert(instance.pred_densepose, instance.pred_boxes) - labels, dp_result = chart_result.labels.cpu(), chart_result.uv.cpu() - dp_result = torch.cat( - (dp_result, getattr(chart_result, self.confidence_channel)[None].cpu()) - ) - - return labels, dp_result diff --git a/spaces/cccc-c/bingo/next.config.js b/spaces/cccc-c/bingo/next.config.js deleted file mode 100644 index 0e6ccd7fbc91d0459eaaff3e968ce0556789c605..0000000000000000000000000000000000000000 --- a/spaces/cccc-c/bingo/next.config.js +++ /dev/null @@ -1,38 +0,0 @@ -/** @type {import('next').NextConfig} */ -const nextConfig = { - // output: 'export', - // assetPrefix: '.', - webpack: (config, { isServer }) => { - if (!isServer) { - config.resolve = { - ...config.resolve, - fallback: { - 'bufferutil': false, - 'utf-8-validate': false, - http: false, - https: false, - stream: false, - // fixes proxy-agent dependencies - net: false, - dns: false, - tls: false, - assert: false, - // fixes next-i18next dependencies - path: false, - fs: false, - // fixes mapbox dependencies - events: false, - // fixes sentry dependencies - process: false - } - }; - } - config.module.exprContextCritical = false; - - return config; - }, -} - -module.exports = (...args) => { - return nextConfig -} diff --git a/spaces/ceckenrode/Biomed-NER-AI-NLP-CT-Demo1/README.md b/spaces/ceckenrode/Biomed-NER-AI-NLP-CT-Demo1/README.md deleted file mode 100644 index 4649776636605beca0d7290cbd1320c3815e645d..0000000000000000000000000000000000000000 --- a/spaces/ceckenrode/Biomed-NER-AI-NLP-CT-Demo1/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Biomed NER AI NLP CT Demo1 -emoji: 🚀 -colorFrom: blue -colorTo: pink -sdk: gradio -sdk_version: 3.17.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git "a/spaces/cfwef/gpt/crazy_functions/\344\270\213\350\275\275arxiv\350\256\272\346\226\207\347\277\273\350\257\221\346\221\230\350\246\201.py" "b/spaces/cfwef/gpt/crazy_functions/\344\270\213\350\275\275arxiv\350\256\272\346\226\207\347\277\273\350\257\221\346\221\230\350\246\201.py" deleted file mode 100644 index b0cef10a55493704e016ea115c7e9635e35f1269..0000000000000000000000000000000000000000 --- "a/spaces/cfwef/gpt/crazy_functions/\344\270\213\350\275\275arxiv\350\256\272\346\226\207\347\277\273\350\257\221\346\221\230\350\246\201.py" +++ /dev/null @@ -1,186 +0,0 @@ -from predict import predict_no_ui -from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down, get_conf -import re, requests, unicodedata, os - -def download_arxiv_(url_pdf): - if 'arxiv.org' not in url_pdf: - if ('.' in url_pdf) and ('/' not in url_pdf): - new_url = 'https://arxiv.org/abs/'+url_pdf - print('下载编号:', url_pdf, '自动定位:', new_url) - # download_arxiv_(new_url) - return download_arxiv_(new_url) - else: - print('不能识别的URL!') - return None - if 'abs' in url_pdf: - url_pdf = url_pdf.replace('abs', 'pdf') - url_pdf = url_pdf + '.pdf' - - url_abs = url_pdf.replace('.pdf', '').replace('pdf', 'abs') - title, other_info = get_name(_url_=url_abs) - - paper_id = title.split()[0] # '[1712.00559]' - if '2' in other_info['year']: - title = other_info['year'] + ' ' + title - - known_conf = ['NeurIPS', 'NIPS', 'Nature', 'Science', 'ICLR', 'AAAI'] - for k in known_conf: - if k in other_info['comment']: - title = k + ' ' + title - - download_dir = './gpt_log/arxiv/' - os.makedirs(download_dir, exist_ok=True) - - title_str = title.replace('?', '?')\ - .replace(':', ':')\ - .replace('\"', '“')\ - .replace('\n', '')\ - .replace(' ', ' ')\ - .replace(' ', ' ') - - requests_pdf_url = url_pdf - file_path = download_dir+title_str - # if os.path.exists(file_path): - # print('返回缓存文件') - # return './gpt_log/arxiv/'+title_str - - print('下载中') - proxies, = get_conf('proxies') - r = requests.get(requests_pdf_url, proxies=proxies) - with open(file_path, 'wb+') as f: - f.write(r.content) - print('下载完成') - - # print('输出下载命令:','aria2c -o \"%s\" %s'%(title_str,url_pdf)) - # subprocess.call('aria2c --all-proxy=\"172.18.116.150:11084\" -o \"%s\" %s'%(download_dir+title_str,url_pdf), shell=True) - - x = "%s %s %s.bib" % (paper_id, other_info['year'], other_info['authors']) - x = x.replace('?', '?')\ - .replace(':', ':')\ - .replace('\"', '“')\ - .replace('\n', '')\ - .replace(' ', ' ')\ - .replace(' ', ' ') - return './gpt_log/arxiv/'+title_str, other_info - - -def get_name(_url_): - import os - from bs4 import BeautifulSoup - print('正在获取文献名!') - print(_url_) - - # arxiv_recall = {} - # if os.path.exists('./arxiv_recall.pkl'): - # with open('./arxiv_recall.pkl', 'rb') as f: - # arxiv_recall = pickle.load(f) - - # if _url_ in arxiv_recall: - # print('在缓存中') - # return arxiv_recall[_url_] - - proxies, = get_conf('proxies') - res = requests.get(_url_, proxies=proxies) - - bs = BeautifulSoup(res.text, 'html.parser') - other_details = {} - - # get year - try: - year = bs.find_all(class_='dateline')[0].text - year = re.search(r'(\d{4})', year, re.M | re.I).group(1) - other_details['year'] = year - abstract = bs.find_all(class_='abstract mathjax')[0].text - other_details['abstract'] = abstract - except: - other_details['year'] = '' - print('年份获取失败') - - # get author - try: - authors = bs.find_all(class_='authors')[0].text - authors = authors.split('Authors:')[1] - other_details['authors'] = authors - except: - other_details['authors'] = '' - print('authors获取失败') - - # get comment - try: - comment = bs.find_all(class_='metatable')[0].text - real_comment = None - for item in comment.replace('\n', ' ').split(' '): - if 'Comments' in item: - real_comment = item - if real_comment is not None: - other_details['comment'] = real_comment - else: - other_details['comment'] = '' - except: - other_details['comment'] = '' - print('年份获取失败') - - title_str = BeautifulSoup( - res.text, 'html.parser').find('title').contents[0] - print('获取成功:', title_str) - # arxiv_recall[_url_] = (title_str+'.pdf', other_details) - # with open('./arxiv_recall.pkl', 'wb') as f: - # pickle.dump(arxiv_recall, f) - - return title_str+'.pdf', other_details - - - -@CatchException -def 下载arxiv论文并翻译摘要(txt, top_p, api_key, temperature, chatbot, history, systemPromptTxt, WEB_PORT): - - CRAZY_FUNCTION_INFO = "下载arxiv论文并翻译摘要,函数插件作者[binary-husky]。正在提取摘要并下载PDF文档……" - import glob - import os - - # 基本信息:功能、贡献者 - chatbot.append(["函数插件功能?", CRAZY_FUNCTION_INFO]) - yield chatbot, history, '正常' - - # 尝试导入依赖,如果缺少依赖,则给出安装建议 - try: - import pdfminer, bs4 - except: - report_execption(chatbot, history, - a = f"解析项目: {txt}", - b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pdfminer beautifulsoup4```。") - yield chatbot, history, '正常' - return - - # 清空历史,以免输入溢出 - history = [] - - # 提取摘要,下载PDF文档 - try: - pdf_path, info = download_arxiv_(txt) - except: - report_execption(chatbot, history, - a = f"解析项目: {txt}", - b = f"下载pdf文件未成功") - yield chatbot, history, '正常' - return - - # 翻译摘要等 - i_say = f"请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。材料如下:{str(info)}" - i_say_show_user = f'请你阅读以下学术论文相关的材料,提取摘要,翻译为中文。论文:{pdf_path}' - chatbot.append((i_say_show_user, "[Local Message] waiting gpt response.")) - yield chatbot, history, '正常' - msg = '正常' - # ** gpt request ** - gpt_say = yield from predict_no_ui_but_counting_down(i_say, i_say_show_user, chatbot, top_p, api_key, temperature, history=[]) # 带超时倒计时 - chatbot[-1] = (i_say_show_user, gpt_say) - history.append(i_say_show_user); history.append(gpt_say) - yield chatbot, history, msg - # 写入文件 - import shutil - # 重置文件的创建时间 - shutil.copyfile(pdf_path, f'./gpt_log/{os.path.basename(pdf_path)}'); os.remove(pdf_path) - res = write_results_to_file(history) - chatbot.append(("完成了吗?", res + "\n\nPDF文件也已经下载")) - yield chatbot, history, msg - diff --git a/spaces/chanhi0603/Create_subtitles_for_videos_ChatGPT/create_srt.py b/spaces/chanhi0603/Create_subtitles_for_videos_ChatGPT/create_srt.py deleted file mode 100644 index 95d052b273231ea824779dba64da3cc4ea5708e1..0000000000000000000000000000000000000000 --- a/spaces/chanhi0603/Create_subtitles_for_videos_ChatGPT/create_srt.py +++ /dev/null @@ -1,44 +0,0 @@ -import datetime -import time -import os -# for _ in tqdm.tqdm(range(10000000), desc='진행율'): -# pass - -def Create_srt(raw_text, file_name): - os_path = os.path.dirname(__file__)[:os.path.dirname(__file__).find('PC')+3] - os_path = os_path+'\\Downloads\\' - path_to_save = f'{os_path}\\{file_name}.srt' - with open(path_to_save, 'w', encoding='utf-8') as f: - for _, text in enumerate(raw_text): - f.write(str(_+1)+'\n') - f.write((lambda x: '0'+x if len(x) < 8 else x)(str(datetime.timedelta(seconds=(int(text['start'])))))+',') - if len(str(text['start']).split('.')[1]) == 1: - f.write((lambda x: '00'+x if len(x) == 1 else x)(str(text['start']).split('.')[1])+' --> ') - elif len(str(text['start']).split('.')[1]) == 2: - f.write((lambda x: '0'+x if len(x) == 2 else x)(str(text['start']).split('.')[1])+' --> ') - elif len(str(text['start']).split('.')[1]) == 3: - f.write(str(text['start']).split('.')[1]+' --> ') - else: - f.write("{0:.3f}".format(text['start']).split('.')[1]+' --> ') - - f.write((lambda x: '0'+x if len(x) < 8 else x)(str(datetime.timedelta(seconds=(int(text['end'])))))+',') - if len(str(text['end']).split('.')[1]) == 1: - f.write((lambda x: '00'+x if len(x) == 1 else x)(str(text['end']).split('.')[1])) - elif len(str(text['end']).split('.')[1]) == 2: - f.write((lambda x: '0'+x if len(x) == 2 else x)(str(text['end']).split('.')[1])) - elif len(str(text['end']).split('.')[1]) == 3: - f.write(str(text['end']).split('.')[1]) - else: - f.write("{0:.3f}".format(text['end']).split('.')[1]) - - if _+1 == len(raw_text): - f.write(f"\n{text['text'].strip()}") - break - f.write(f"\n{text['text'].strip()}\n\n") - - f.close() - time.sleep(0.5) - with open(path_to_save, "r", encoding='utf-8') as f: - notepad_content = f.read() - f.close() - return notepad_content, os_path diff --git a/spaces/chasetank/owner-manual/README.md b/spaces/chasetank/owner-manual/README.md deleted file mode 100644 index 4c990ce9b367a7aea72866c02870846f4ff86b0e..0000000000000000000000000000000000000000 --- a/spaces/chasetank/owner-manual/README.md +++ /dev/null @@ -1,45 +0,0 @@ ---- -title: S Class Manual -emoji: 👁 -colorFrom: yellow -colorTo: yellow -sdk: gradio -sdk_version: 3.19.1 -app_file: app.py -pinned: false -license: mit ---- -# Mercedes-Benz Owner's Manual Chatbot - -This is a chatbot that uses excerpts from the Mercedes-Benz S-Class and EQE owner's manuals to answer questions related to the vehicle's features, functions, and maintenance. The chatbot uses a combination of natural language processing (NLP) and document indexing to provide accurate and relevant responses to user queries. - -## Prerequisites - -To run this chatbot, you will need to have the following installed on your system: - -- Python 3.7 or later -- Gradio -- LangChain -- EdgeGPT -- HuggingFace transformers - -## Installation - -To install the necessary packages, you can use pip: -``` -pip install gradio langchain edgegpt transformers -``` - -You will also need to download the Mercedes-Benz owner's manual data files and store them in the `data` directory. The files should be organized in subdirectories named after the vehicle model (e.g., `s-class-manual` and `eqe-manual`). - -## Usage - -To start the chatbot, you can run the `start_ui()` function in the `app.py` file: -``` -python app.py -``` - -This will launch a Gradio interface that allows users to enter a question, select the vehicle model (S-Class or EQE), specify whether to create a new chatbot instance or reuse an existing one, and adjust the number of documents to retrieve from the database. - -When the user submits a question, the chatbot retrieves the most relevant excerpts from the owner's manual and uses them to generate a response. The response is then displayed in the Gradio interface. - diff --git a/spaces/chendl/compositional_test/transformers/examples/research_projects/onnx/summarization/run_onnx_exporter.py b/spaces/chendl/compositional_test/transformers/examples/research_projects/onnx/summarization/run_onnx_exporter.py deleted file mode 100644 index 889eefb4e74b5663e0acaa2971c5efff9470c5fa..0000000000000000000000000000000000000000 --- a/spaces/chendl/compositional_test/transformers/examples/research_projects/onnx/summarization/run_onnx_exporter.py +++ /dev/null @@ -1,207 +0,0 @@ -#!/usr/bin/env python -# coding=utf-8 -# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" - -""" -import argparse -import logging -import os -import sys - -import numpy as np -import onnxruntime -import torch -from bart_onnx.generation_onnx import BARTBeamSearchGenerator -from bart_onnx.reduce_onnx_size import remove_dup_initializers - -import transformers -from transformers import BartForConditionalGeneration, BartTokenizer - - -logging.basicConfig( - format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s", - datefmt="%Y-%m-%d %H:%M:%S", - level=os.environ.get("LOGLEVEL", "INFO").upper(), - stream=sys.stdout, -) - -logger = logging.getLogger(__name__) - -model_dict = {"facebook/bart-base": BartForConditionalGeneration} -tokenizer_dict = {"facebook/bart-base": BartTokenizer} - - -def parse_args(): - parser = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph.") - parser.add_argument( - "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." - ) - parser.add_argument( - "--max_length", - type=int, - default=5, - help="The maximum total input sequence length after tokenization.", - ) - parser.add_argument( - "--num_beams", - type=int, - default=None, - help=( - "Number of beams to use for evaluation. This argument will be " - "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." - ), - ) - parser.add_argument( - "--model_name_or_path", - type=str, - help="Path to pretrained model or model identifier from huggingface.co/models.", - required=True, - ) - parser.add_argument( - "--config_name", - type=str, - default=None, - help="Pretrained config name or path if not the same as model_name", - ) - parser.add_argument( - "--device", - type=str, - default="cpu", - help="Device where the model will be run", - ) - parser.add_argument("--output_file_path", type=str, default=None, help="Where to store the final ONNX file.") - - args = parser.parse_args() - - return args - - -def load_model_tokenizer(model_name, device="cpu"): - huggingface_model = model_dict[model_name].from_pretrained(model_name).to(device) - tokenizer = tokenizer_dict[model_name].from_pretrained(model_name) - - if model_name in ["facebook/bart-base"]: - huggingface_model.config.no_repeat_ngram_size = 0 - huggingface_model.config.forced_bos_token_id = None - huggingface_model.config.min_length = 0 - - return huggingface_model, tokenizer - - -def export_and_validate_model(model, tokenizer, onnx_file_path, num_beams, max_length): - model.eval() - - ort_sess = None - bart_script_model = torch.jit.script(BARTBeamSearchGenerator(model)) - - with torch.no_grad(): - ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." - inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt").to(model.device) - - summary_ids = model.generate( - inputs["input_ids"], - attention_mask=inputs["attention_mask"], - num_beams=num_beams, - max_length=max_length, - early_stopping=True, - decoder_start_token_id=model.config.decoder_start_token_id, - ) - - torch.onnx.export( - bart_script_model, - ( - inputs["input_ids"], - inputs["attention_mask"], - num_beams, - max_length, - model.config.decoder_start_token_id, - ), - onnx_file_path, - opset_version=14, - input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"], - output_names=["output_ids"], - dynamic_axes={ - "input_ids": {0: "batch", 1: "seq"}, - "output_ids": {0: "batch", 1: "seq_out"}, - }, - example_outputs=summary_ids, - ) - - logger.info("Model exported to {}".format(onnx_file_path)) - - new_onnx_file_path = remove_dup_initializers(os.path.abspath(onnx_file_path)) - - logger.info("Deduplicated and optimized model written to {}".format(new_onnx_file_path)) - - ort_sess = onnxruntime.InferenceSession(new_onnx_file_path) - ort_out = ort_sess.run( - None, - { - "input_ids": inputs["input_ids"].cpu().numpy(), - "attention_mask": inputs["attention_mask"].cpu().numpy(), - "num_beams": np.array(num_beams), - "max_length": np.array(max_length), - "decoder_start_token_id": np.array(model.config.decoder_start_token_id), - }, - ) - - np.testing.assert_allclose(summary_ids.cpu().numpy(), ort_out[0], rtol=1e-3, atol=1e-3) - - logger.info("Model outputs from torch and ONNX Runtime are similar.") - logger.info("Success.") - - -def main(): - args = parse_args() - max_length = 5 - num_beams = 4 - - # Make one log on every process with the configuration for debugging. - logging.basicConfig( - format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", - datefmt="%m/%d/%Y %H:%M:%S", - level=logging.INFO, - ) - - logger.setLevel(logging.INFO) - transformers.utils.logging.set_verbosity_error() - - device = torch.device(args.device) - - model, tokenizer = load_model_tokenizer(args.model_name_or_path, device) - - if model.config.decoder_start_token_id is None: - raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") - - model.to(device) - - if args.max_length: - max_length = args.max_length - - if args.num_beams: - num_beams = args.num_beams - - if args.output_file_path: - output_name = args.output_file_path - else: - output_name = "BART.onnx" - - logger.info("Exporting model to ONNX") - export_and_validate_model(model, tokenizer, output_name, num_beams, max_length) - - -if __name__ == "__main__": - main() diff --git a/spaces/chongjie/MCC_slim/util/hypersim_dataset.py b/spaces/chongjie/MCC_slim/util/hypersim_dataset.py deleted file mode 100644 index dfef52d8622dea2d32c79ef1bb39d95618931e39..0000000000000000000000000000000000000000 --- a/spaces/chongjie/MCC_slim/util/hypersim_dataset.py +++ /dev/null @@ -1,271 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. - -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import os -import random -import glob - -import torch -from pytorch3d.implicitron.dataset.dataset_base import FrameData -from pytorch3d.ops import sample_points_from_meshes - -from util.hypersim_utils import read_h5py, read_img - - -def hypersim_collate_fn(batch): - assert len(batch[0]) == 4 - return ( - FrameData.collate([x[0] for x in batch]), - FrameData.collate([x[1] for x in batch]), - FrameData.collate([x[2] for x in batch]), - [x[2] for x in batch] - ) - - -def is_good_xyz(xyz): - assert len(xyz.shape) == 3 - return (torch.isfinite(xyz.sum(axis=2))).sum() > 2000 - - -def get_camera_pos_file_name_from_frame_name(frame_name): - tmp = frame_name.split('/') - tmp[-3] = '_detail' - tmp[-2] = 'cam_' + tmp[-2].split('_')[2] - tmp[-1] = 'camera_keyframe_positions.hdf5' - return '/'.join(tmp) - - -def get_camera_look_at_file_name_from_frame_name(frame_name): - tmp = frame_name.split('/') - tmp[-3] = '_detail' - tmp[-2] = 'cam_' + tmp[-2].split('_')[2] - tmp[-1] = 'camera_keyframe_look_at_positions.hdf5' - return '/'.join(tmp) - - -def get_camera_orientation_file_name_from_frame_name(frame_name): - tmp = frame_name.split('/') - tmp[-3] = '_detail' - tmp[-2] = 'cam_' + tmp[-2].split('_')[2] - tmp[-1] = 'camera_keyframe_orientations.hdf5' - return '/'.join(tmp) - - -def read_scale_from_frame_name(frame_name): - tmp = frame_name.split('/') - with open('/'.join(tmp[:-3] + ['_detail', 'metadata_scene.csv'])) as f: - for line in f: - items = line.split(',') - return float(items[1]) - - -def random_crop(xyz, img, is_train=True): - assert xyz.shape[0] == img.shape[0] - assert xyz.shape[1] == img.shape[1] - - width, height = img.shape[0], img.shape[1] - w = h = min(width, height) - if is_train: - i = torch.randint(0, width - w + 1, size=(1,)).item() - j = torch.randint(0, height - h + 1, size=(1,)).item() - else: - i = (width - w) // 2 - j = (height - h) // 2 - xyz = xyz[i:i+w, j:j+h] - img = img[i:i+w, j:j+h] - xyz = torch.nn.functional.interpolate( - xyz[None].permute(0, 3, 1, 2), (112, 112), - mode='bilinear', - ).permute(0, 2, 3, 1)[0] - img = torch.nn.functional.interpolate( - img[None].permute(0, 3, 1, 2), (224, 224), - mode='bilinear', - ).permute(0, 2, 3, 1)[0] - return xyz, img - - -class HyperSimDataset(torch.utils.data.Dataset): - def __init__(self, args, is_train, is_viz=False, **kwargs): - - self.args = args - self.is_train = is_train - self.is_viz = is_viz - - self.dataset_split = 'train' if is_train else 'val' - self.scene_names = self.load_scene_names(is_train) - - if not is_train: - self.meshes = self.load_meshes() - - self.hypersim_gt = self.load_hypersim_gt() - - - def load_hypersim_gt(self): - gt_filename = 'hypersim_gt_train.pt' if self.dataset_split == 'train' else 'hypersim_gt_val.pt' - print('loading GT file from', gt_filename) - gt = torch.load(gt_filename) - for scene_name in gt.keys(): - good = torch.isfinite(gt[scene_name][0].sum(axis=1)) & torch.isfinite(gt[scene_name][1].sum(axis=1)) - - # Subsample GT to reduce memory usage. - if self.is_train: - good = good & (torch.rand(good.shape) < 0.5) - else: - good = good & (torch.rand(good.shape) < 0.1) - gt[scene_name] = [gt[scene_name][0][good], gt[scene_name][1][good]] - return gt - - def load_meshes(self): - return torch.load('all_hypersim_val_meshes.pt') - - def load_scene_names(self, is_train): - split = 'train' if is_train else 'test' - scene_names = [] - with open(os.path.join( - self.args.hypersim_path, - 'evermotion_dataset/analysis/metadata_images_split_scene_v1.csv'),'r') as f: - for line in f: - items = line.split(',') - if items[-1].strip() == split: - scene_names.append(items[0]) - scene_names = sorted(list(set(scene_names))) - print(len(scene_names), 'scenes loaded:', scene_names) - return scene_names - - def is_corrupted_frame(self, frame): - return ( - ('ai_003_001' in frame and 'cam_00' in frame) - or ('ai_004_009' in frame and 'cam_01' in frame) - ) - - def get_hypersim_data(self, index): - for retry in range(1000): - try: - if retry < 10: - scene_name = self.scene_names[index % len(self.scene_names)] - else: - scene_name = random.choice(self.scene_names) - - frames = glob.glob(os.path.join(self.args.hypersim_path, scene_name, 'images/scene_cam_*_final_preview/*tonemap*')) - seen_frame = random.choice(frames) - - if self.is_corrupted_frame(seen_frame): - continue - - seen_data = self.load_frame_data(seen_frame) - if not is_good_xyz(seen_data[0]): - continue - - cur_gt = self.hypersim_gt[scene_name] - gt_data = [cur_gt[0], cur_gt[1]] - - if self.is_train: - mesh_points = torch.zeros((1,)) - else: - mesh_points = sample_points_from_meshes(self.meshes[scene_name], 1000000) - - # get camera positions - camera_positions = read_h5py(get_camera_pos_file_name_from_frame_name(seen_frame)) - camera_position = camera_positions[int(seen_frame.split('.')[-3])] - - # get camera orientations - cam_orientations = read_h5py(get_camera_orientation_file_name_from_frame_name(seen_frame)) - cam_orientation = cam_orientations[int(seen_frame.split('.')[-3])] - cam_orientation = cam_orientation * (-1.0) - - # rotate to camera direction - seen_data[0] = torch.matmul(seen_data[0], cam_orientation) - gt_data[0] = torch.matmul(gt_data[0], cam_orientation) - - # shift to camera center - camera_position = torch.matmul(camera_position, cam_orientation) - seen_data[0] -= camera_position - gt_data[0] -= camera_position - # to meter - asset_to_meter_scale = read_scale_from_frame_name(seen_frame) - seen_data[0] = seen_data[0] * asset_to_meter_scale - gt_data[0] = gt_data[0] * asset_to_meter_scale - - # get points GT - n_gt = 30000 - in_front_of_cam = (gt_data[0][..., 2] > 0) - if in_front_of_cam.sum() < 1000: - print('Warning! Not enough in front of cam.', in_front_of_cam.sum()) - continue - gt_data = [gt_data[0][in_front_of_cam], gt_data[1][in_front_of_cam]] - - if in_front_of_cam.sum() < n_gt: - selected = random.choices(range(gt_data[0].shape[0]), k=n_gt) - else: - selected = random.sample(range(gt_data[0].shape[0]), n_gt) - gt_data = [gt_data[0][selected][None], gt_data[1][selected][None], torch.zeros((1,))] - - if not self.is_train: - mesh_points = torch.matmul(mesh_points, cam_orientation) - mesh_points -= camera_position * asset_to_meter_scale - in_front_of_cam = (mesh_points[..., 2] > 0) - if in_front_of_cam.sum() < 1000: - print('Warning! Not enough mesh in front of cam.', in_front_of_cam.sum()) - continue - mesh_points = mesh_points[in_front_of_cam] - if in_front_of_cam.sum() < n_gt: - selected = random.choices(range(mesh_points.shape[0]), k=n_gt) - else: - selected = random.sample(range(mesh_points.shape[0]), n_gt) - mesh_points = mesh_points[selected][None] - mesh_points[..., 0] *= -1 - - seen_data[0][..., 0] *= -1 - gt_data[0][..., 0] *= -1 - - seen_data[1] = seen_data[1].permute(2, 0, 1) - - return seen_data, gt_data, mesh_points, scene_name - except Exception as e: - print(scene_name, 'loading failed', retry, e) - - - def __getitem__(self, index): - - seen_data, gt_data, mesh_points, scene_name = self.get_hypersim_data(index) - - # normalize the data - example_std = get_example_std(seen_data[0]) - seen_data[0] = seen_data[0] / example_std - gt_data[0] = gt_data[0] / example_std - mesh_points = mesh_points / example_std - - return ( - seen_data, - gt_data, - mesh_points, - scene_name, - ) - - def load_frame_data(self, frame_path): - frame_xyz_path = frame_path.replace('final_preview/', 'geometry_hdf5/').replace('.tonemap.jpg', '.position.hdf5') - xyz = read_h5py(frame_xyz_path) - img = read_img(frame_path) - - xyz, img = random_crop( - xyz, img, - is_train=self.is_train, - ) - return [xyz, img] - - def __len__(self) -> int: - if self.is_train: - return int(len(self.scene_names) * self.args.train_epoch_len_multiplier) - elif self.is_viz: - return len(self.scene_names) - else: - return int(len(self.scene_names) * self.args.eval_epoch_len_multiplier) - - -def get_example_std(x): - x = x.reshape(-1, 3) - x = x[torch.isfinite(x.sum(dim=1))] - return x.std(dim=0).mean().detach() diff --git a/spaces/chrisjay/afro-speech/README.md b/spaces/chrisjay/afro-speech/README.md deleted file mode 100644 index 68ef41f70f267b912b052da831e7707c37587fd4..0000000000000000000000000000000000000000 --- a/spaces/chrisjay/afro-speech/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Afro Speech -emoji: 🌍 -colorFrom: indigo -colorTo: blue -sdk: gradio -sdk_version: 3.12.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference diff --git a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/clickhouse_connect/cc_sqlalchemy/inspector.py b/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/clickhouse_connect/cc_sqlalchemy/inspector.py deleted file mode 100644 index 3ec8f0a1091d2b8776a9c6658bda8eac34cf10d2..0000000000000000000000000000000000000000 --- a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/clickhouse_connect/cc_sqlalchemy/inspector.py +++ /dev/null @@ -1,57 +0,0 @@ -import sqlalchemy.schema as sa_schema - -from sqlalchemy.engine.reflection import Inspector -from sqlalchemy.orm.exc import NoResultFound - -from clickhouse_connect.cc_sqlalchemy.datatypes.base import sqla_type_from_name -from clickhouse_connect.cc_sqlalchemy.ddl.tableengine import build_engine -from clickhouse_connect.cc_sqlalchemy.sql import full_table -from clickhouse_connect.cc_sqlalchemy import dialect_name as dn - -ch_col_args = ('default_type', 'codec_expression', 'ttl_expression') - - -def get_engine(connection, table_name, schema=None): - result_set = connection.execute( - f"SELECT engine_full FROM system.tables WHERE database = '{schema}' and name = '{table_name}'") - row = next(result_set, None) - if not row: - raise NoResultFound(f'Table {schema}.{table_name} does not exist') - return build_engine(row.engine_full) - - -class ChInspector(Inspector): - - def reflect_table(self, table, include_columns, exclude_columns, *_args, **_kwargs): - schema = table.schema - for col in self.get_columns(table.name, schema): - name = col.pop('name') - if (include_columns and name not in include_columns) or (exclude_columns and name in exclude_columns): - continue - col_type = col.pop('type') - col_args = {f'{dn}_{key}' if key in ch_col_args else key: value for key, value in col.items() if value} - table.append_column(sa_schema.Column(name, col_type, **col_args)) - table.engine = get_engine(self.bind, table.name, schema) - - def get_columns(self, table_name, schema=None, **_kwargs): - table_id = full_table(table_name, schema) - result_set = self.bind.execute(f'DESCRIBE TABLE {table_id}') - if not result_set: - raise NoResultFound(f'Table {full_table} does not exist') - columns = [] - for row in result_set: - sqla_type = sqla_type_from_name(row.type) - col = {'name': row.name, - 'type': sqla_type, - 'nullable': sqla_type.nullable, - 'autoincrement': False, - 'default': row.default_expression, - 'default_type': row.default_type, - 'comment': row.comment, - 'codec_expression': row.codec_expression, - 'ttl_expression': row.ttl_expression} - columns.append(col) - return columns - - -ChInspector.reflecttable = ChInspector.reflect_table # Hack to provide backward compatibility for SQLAlchemy 1.3 diff --git a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/docx/enum/base.py b/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/docx/enum/base.py deleted file mode 100644 index 36764b1a6d0fb5d70c7e50092ff6ff85b6bfe68e..0000000000000000000000000000000000000000 --- a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/docx/enum/base.py +++ /dev/null @@ -1,363 +0,0 @@ -# encoding: utf-8 - -""" -Base classes and other objects used by enumerations -""" - -from __future__ import absolute_import, print_function - -import sys -import textwrap - -from ..exceptions import InvalidXmlError - - -def alias(*aliases): - """ - Decorating a class with @alias('FOO', 'BAR', ..) allows the class to - be referenced by each of the names provided as arguments. - """ - def decorator(cls): - # alias must be set in globals from caller's frame - caller = sys._getframe(1) - globals_dict = caller.f_globals - for alias in aliases: - globals_dict[alias] = cls - return cls - return decorator - - -class _DocsPageFormatter(object): - """Generate an .rst doc page for an enumeration. - - Formats a RestructuredText documention page (string) for the enumeration - class parts passed to the constructor. An immutable one-shot service - object. - """ - - def __init__(self, clsname, clsdict): - self._clsname = clsname - self._clsdict = clsdict - - @property - def page_str(self): - """ - The RestructuredText documentation page for the enumeration. This is - the only API member for the class. - """ - tmpl = '.. _%s:\n\n%s\n\n%s\n\n----\n\n%s' - components = ( - self._ms_name, self._page_title, self._intro_text, - self._member_defs - ) - return tmpl % components - - @property - def _intro_text(self): - """Docstring of the enumeration, formatted for documentation page.""" - try: - cls_docstring = self._clsdict['__doc__'] - except KeyError: - cls_docstring = '' - - if cls_docstring is None: - return '' - - return textwrap.dedent(cls_docstring).strip() - - def _member_def(self, member): - """ - Return an individual member definition formatted as an RST glossary - entry, wrapped to fit within 78 columns. - """ - member_docstring = textwrap.dedent(member.docstring).strip() - member_docstring = textwrap.fill( - member_docstring, width=78, initial_indent=' '*4, - subsequent_indent=' '*4 - ) - return '%s\n%s\n' % (member.name, member_docstring) - - @property - def _member_defs(self): - """ - A single string containing the aggregated member definitions section - of the documentation page - """ - members = self._clsdict['__members__'] - member_defs = [ - self._member_def(member) for member in members - if member.name is not None - ] - return '\n'.join(member_defs) - - @property - def _ms_name(self): - """ - The Microsoft API name for this enumeration - """ - return self._clsdict['__ms_name__'] - - @property - def _page_title(self): - """ - The title for the documentation page, formatted as code (surrounded - in double-backtics) and underlined with '=' characters - """ - title_underscore = '=' * (len(self._clsname)+4) - return '``%s``\n%s' % (self._clsname, title_underscore) - - -class MetaEnumeration(type): - """ - The metaclass for Enumeration and its subclasses. Adds a name for each - named member and compiles state needed by the enumeration class to - respond to other attribute gets - """ - def __new__(meta, clsname, bases, clsdict): - meta._add_enum_members(clsdict) - meta._collect_valid_settings(clsdict) - meta._generate_docs_page(clsname, clsdict) - return type.__new__(meta, clsname, bases, clsdict) - - @classmethod - def _add_enum_members(meta, clsdict): - """ - Dispatch ``.add_to_enum()`` call to each member so it can do its - thing to properly add itself to the enumeration class. This - delegation allows member sub-classes to add specialized behaviors. - """ - enum_members = clsdict['__members__'] - for member in enum_members: - member.add_to_enum(clsdict) - - @classmethod - def _collect_valid_settings(meta, clsdict): - """ - Return a sequence containing the enumeration values that are valid - assignment values. Return-only values are excluded. - """ - enum_members = clsdict['__members__'] - valid_settings = [] - for member in enum_members: - valid_settings.extend(member.valid_settings) - clsdict['_valid_settings'] = valid_settings - - @classmethod - def _generate_docs_page(meta, clsname, clsdict): - """ - Return the RST documentation page for the enumeration. - """ - clsdict['__docs_rst__'] = ( - _DocsPageFormatter(clsname, clsdict).page_str - ) - - -class EnumerationBase(object): - """ - Base class for all enumerations, used directly for enumerations requiring - only basic behavior. It's __dict__ is used below in the Python 2+3 - compatible metaclass definition. - """ - __members__ = () - __ms_name__ = '' - - @classmethod - def validate(cls, value): - """ - Raise |ValueError| if *value* is not an assignable value. - """ - if value not in cls._valid_settings: - raise ValueError( - "%s not a member of %s enumeration" % (value, cls.__name__) - ) - - -Enumeration = MetaEnumeration( - 'Enumeration', (object,), dict(EnumerationBase.__dict__) -) - - -class XmlEnumeration(Enumeration): - """ - Provides ``to_xml()`` and ``from_xml()`` methods in addition to base - enumeration features - """ - __members__ = () - __ms_name__ = '' - - @classmethod - def from_xml(cls, xml_val): - """ - Return the enumeration member corresponding to the XML value - *xml_val*. - """ - if xml_val not in cls._xml_to_member: - raise InvalidXmlError( - "attribute value '%s' not valid for this type" % xml_val - ) - return cls._xml_to_member[xml_val] - - @classmethod - def to_xml(cls, enum_val): - """ - Return the XML value of the enumeration value *enum_val*. - """ - if enum_val not in cls._member_to_xml: - raise ValueError( - "value '%s' not in enumeration %s" % (enum_val, cls.__name__) - ) - return cls._member_to_xml[enum_val] - - -class EnumMember(object): - """ - Used in the enumeration class definition to define a member value and its - mappings - """ - def __init__(self, name, value, docstring): - self._name = name - if isinstance(value, int): - value = EnumValue(name, value, docstring) - self._value = value - self._docstring = docstring - - def add_to_enum(self, clsdict): - """ - Add a name to *clsdict* for this member. - """ - self.register_name(clsdict) - - @property - def docstring(self): - """ - The description of this member - """ - return self._docstring - - @property - def name(self): - """ - The distinguishing name of this member within the enumeration class, - e.g. 'MIDDLE' for MSO_VERTICAL_ANCHOR.MIDDLE, if this is a named - member. Otherwise the primitive value such as |None|, |True| or - |False|. - """ - return self._name - - def register_name(self, clsdict): - """ - Add a member name to the class dict *clsdict* containing the value of - this member object. Where the name of this object is None, do - nothing; this allows out-of-band values to be defined without adding - a name to the class dict. - """ - if self.name is None: - return - clsdict[self.name] = self.value - - @property - def valid_settings(self): - """ - A sequence containing the values valid for assignment for this - member. May be zero, one, or more in number. - """ - return (self._value,) - - @property - def value(self): - """ - The enumeration value for this member, often an instance of - EnumValue, but may be a primitive value such as |None|. - """ - return self._value - - -class EnumValue(int): - """ - A named enumeration value, providing __str__ and __doc__ string values - for its symbolic name and description, respectively. Subclasses int, so - behaves as a regular int unless the strings are asked for. - """ - def __new__(cls, member_name, int_value, docstring): - return super(EnumValue, cls).__new__(cls, int_value) - - def __init__(self, member_name, int_value, docstring): - super(EnumValue, self).__init__() - self._member_name = member_name - self._docstring = docstring - - @property - def __doc__(self): - """ - The description of this enumeration member - """ - return self._docstring.strip() - - def __str__(self): - """ - The symbolic name and string value of this member, e.g. 'MIDDLE (3)' - """ - return "%s (%d)" % (self._member_name, int(self)) - - -class ReturnValueOnlyEnumMember(EnumMember): - """ - Used to define a member of an enumeration that is only valid as a query - result and is not valid as a setting, e.g. MSO_VERTICAL_ANCHOR.MIXED (-2) - """ - @property - def valid_settings(self): - """ - No settings are valid for a return-only value. - """ - return () - - -class XmlMappedEnumMember(EnumMember): - """ - Used to define a member whose value maps to an XML attribute value. - """ - def __init__(self, name, value, xml_value, docstring): - super(XmlMappedEnumMember, self).__init__(name, value, docstring) - self._xml_value = xml_value - - def add_to_enum(self, clsdict): - """ - Compile XML mappings in addition to base add behavior. - """ - super(XmlMappedEnumMember, self).add_to_enum(clsdict) - self.register_xml_mapping(clsdict) - - def register_xml_mapping(self, clsdict): - """ - Add XML mappings to the enumeration class state for this member. - """ - member_to_xml = self._get_or_add_member_to_xml(clsdict) - member_to_xml[self.value] = self.xml_value - xml_to_member = self._get_or_add_xml_to_member(clsdict) - xml_to_member[self.xml_value] = self.value - - @property - def xml_value(self): - """ - The XML attribute value that corresponds to this enumeration value - """ - return self._xml_value - - @staticmethod - def _get_or_add_member_to_xml(clsdict): - """ - Add the enum -> xml value mapping to the enumeration class state - """ - if '_member_to_xml' not in clsdict: - clsdict['_member_to_xml'] = dict() - return clsdict['_member_to_xml'] - - @staticmethod - def _get_or_add_xml_to_member(clsdict): - """ - Add the xml -> enum value mapping to the enumeration class state - """ - if '_xml_to_member' not in clsdict: - clsdict['_xml_to_member'] = dict() - return clsdict['_xml_to_member'] diff --git a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/docx/shape.py b/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/docx/shape.py deleted file mode 100644 index e4f885d7344cfdd6c358012d9881d8f74cbaf158..0000000000000000000000000000000000000000 --- a/spaces/chuan-hd/law-assistant-chatbot/.venv/lib/python3.11/site-packages/docx/shape.py +++ /dev/null @@ -1,103 +0,0 @@ -# encoding: utf-8 - -""" -Objects related to shapes, visual objects that appear on the drawing layer of -a document. -""" - -from __future__ import ( - absolute_import, division, print_function, unicode_literals -) - -from .enum.shape import WD_INLINE_SHAPE -from .oxml.ns import nsmap -from .shared import Parented - - -class InlineShapes(Parented): - """ - Sequence of |InlineShape| instances, supporting len(), iteration, and - indexed access. - """ - def __init__(self, body_elm, parent): - super(InlineShapes, self).__init__(parent) - self._body = body_elm - - def __getitem__(self, idx): - """ - Provide indexed access, e.g. 'inline_shapes[idx]' - """ - try: - inline = self._inline_lst[idx] - except IndexError: - msg = "inline shape index [%d] out of range" % idx - raise IndexError(msg) - return InlineShape(inline) - - def __iter__(self): - return (InlineShape(inline) for inline in self._inline_lst) - - def __len__(self): - return len(self._inline_lst) - - @property - def _inline_lst(self): - body = self._body - xpath = '//w:p/w:r/w:drawing/wp:inline' - return body.xpath(xpath) - - -class InlineShape(object): - """ - Proxy for an ```` element, representing the container for an - inline graphical object. - """ - def __init__(self, inline): - super(InlineShape, self).__init__() - self._inline = inline - - @property - def height(self): - """ - Read/write. The display height of this inline shape as an |Emu| - instance. - """ - return self._inline.extent.cy - - @height.setter - def height(self, cy): - self._inline.extent.cy = cy - self._inline.graphic.graphicData.pic.spPr.cy = cy - - @property - def type(self): - """ - The type of this inline shape as a member of - ``docx.enum.shape.WD_INLINE_SHAPE``, e.g. ``LINKED_PICTURE``. - Read-only. - """ - graphicData = self._inline.graphic.graphicData - uri = graphicData.uri - if uri == nsmap['pic']: - blip = graphicData.pic.blipFill.blip - if blip.link is not None: - return WD_INLINE_SHAPE.LINKED_PICTURE - return WD_INLINE_SHAPE.PICTURE - if uri == nsmap['c']: - return WD_INLINE_SHAPE.CHART - if uri == nsmap['dgm']: - return WD_INLINE_SHAPE.SMART_ART - return WD_INLINE_SHAPE.NOT_IMPLEMENTED - - @property - def width(self): - """ - Read/write. The display width of this inline shape as an |Emu| - instance. - """ - return self._inline.extent.cx - - @width.setter - def width(self, cx): - self._inline.extent.cx = cx - self._inline.graphic.graphicData.pic.spPr.cx = cx diff --git a/spaces/cihyFjudo/fairness-paper-search/L2 Ultramaximizer Torrent The Secret Weapon of Top Producers and Engineers.md b/spaces/cihyFjudo/fairness-paper-search/L2 Ultramaximizer Torrent The Secret Weapon of Top Producers and Engineers.md deleted file mode 100644 index 1a10addcdb07cde0397124406207854c4430fe08..0000000000000000000000000000000000000000 --- a/spaces/cihyFjudo/fairness-paper-search/L2 Ultramaximizer Torrent The Secret Weapon of Top Producers and Engineers.md +++ /dev/null @@ -1,6 +0,0 @@ -

    L2 Ultramaximizer Torrent


    Download Ziphttps://tinurli.com/2uwkD1



    -
    - aaccfb2cb3
    -
    -
    -

    diff --git a/spaces/cloud-sean/csv-copilot/app.py b/spaces/cloud-sean/csv-copilot/app.py deleted file mode 100644 index 91bda1ad9568976e8e27574d48ea22b05fed15a2..0000000000000000000000000000000000000000 --- a/spaces/cloud-sean/csv-copilot/app.py +++ /dev/null @@ -1,62 +0,0 @@ -import os -import openai -from io import StringIO -import sys - -import gradio as gr -from langchain.agents import create_csv_agent -from langchain.chat_models import AzureChatOpenAI -from langchain.chat_models import ChatOpenAI -from langchain.llms import AzureOpenAI - -# os.environ["OPENAI_API_TYPE"] = openai.api_type = "azure" -# os.environ["OPENAI_API_BASE"] = openai.api_base = "https://aoai-southcentral.openai.azure.com/" -os.environ["OPENAI_API_KEY"] = openai.api_key = "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" -# openai.api_version = "2023-03-15-preview" - - - -class Capturing(list): - def __enter__(self): - self._stdout = sys.stdout - sys.stdout = self._stringio = StringIO() - return self - def __exit__(self, *args): - self.extend(self._stringio.getvalue().splitlines()) - del self._stringio # free up some memory - sys.stdout = self._stdout - -def answer_question(input_file, question): - llm = ChatOpenAI(temperature=0) - agent = create_csv_agent(llm, input_file.name, verbose=True) - question = question - with Capturing() as printed_text: - try: - answer = agent.run(question) - except Exception as e: - answer = "LLM: " + str(e) - - import re - text = '\n'.join(printed_text) + '\n' + str(answer) - # Remove all escape characters - text = re.sub(r"\x1b\[\d+(;\d+)?m", "", text) - - # Remove all characters inside angle brackets - text = re.sub(r"<.*?>", "", text) - - # Remove all leading/trailing whitespaces - text = text.strip() - return text - -with gr.Blocks(css="footer {visibility: hidden}", title="CSV Copilot") as demo: - csv_file = gr.State([]) - csv_file = gr.File(label="CSV File", accept=".csv") - question = gr.Textbox(label="Question") - ask_question = gr.Button(label="Ask Question") - text_box = gr.TextArea(label="Output", lines=10) - - ask_question.click(answer_question, inputs=[csv_file, question], outputs=text_box) - - - -demo.launch() diff --git a/spaces/cloudtheboi/Lofi4All/.pythonlibs/lib/python3.10/site-packages/anyio/abc/_streams.py b/spaces/cloudtheboi/Lofi4All/.pythonlibs/lib/python3.10/site-packages/anyio/abc/_streams.py deleted file mode 100644 index 4fa7ccc9ffe0e750a1b5a4164970ed4de9c93b2b..0000000000000000000000000000000000000000 --- a/spaces/cloudtheboi/Lofi4All/.pythonlibs/lib/python3.10/site-packages/anyio/abc/_streams.py +++ /dev/null @@ -1,203 +0,0 @@ -from __future__ import annotations - -from abc import abstractmethod -from typing import Any, Callable, Generic, TypeVar, Union - -from .._core._exceptions import EndOfStream -from .._core._typedattr import TypedAttributeProvider -from ._resources import AsyncResource -from ._tasks import TaskGroup - -T_Item = TypeVar("T_Item") -T_co = TypeVar("T_co", covariant=True) -T_contra = TypeVar("T_contra", contravariant=True) - - -class UnreliableObjectReceiveStream( - Generic[T_co], AsyncResource, TypedAttributeProvider -): - """ - An interface for receiving objects. - - This interface makes no guarantees that the received messages arrive in the order in which they - were sent, or that no messages are missed. - - Asynchronously iterating over objects of this type will yield objects matching the given type - parameter. - """ - - def __aiter__(self) -> UnreliableObjectReceiveStream[T_co]: - return self - - async def __anext__(self) -> T_co: - try: - return await self.receive() - except EndOfStream: - raise StopAsyncIteration - - @abstractmethod - async def receive(self) -> T_co: - """ - Receive the next item. - - :raises ~anyio.ClosedResourceError: if the receive stream has been explicitly - closed - :raises ~anyio.EndOfStream: if this stream has been closed from the other end - :raises ~anyio.BrokenResourceError: if this stream has been rendered unusable - due to external causes - """ - - -class UnreliableObjectSendStream( - Generic[T_contra], AsyncResource, TypedAttributeProvider -): - """ - An interface for sending objects. - - This interface makes no guarantees that the messages sent will reach the recipient(s) in the - same order in which they were sent, or at all. - """ - - @abstractmethod - async def send(self, item: T_contra) -> None: - """ - Send an item to the peer(s). - - :param item: the item to send - :raises ~anyio.ClosedResourceError: if the send stream has been explicitly - closed - :raises ~anyio.BrokenResourceError: if this stream has been rendered unusable - due to external causes - """ - - -class UnreliableObjectStream( - UnreliableObjectReceiveStream[T_Item], UnreliableObjectSendStream[T_Item] -): - """ - A bidirectional message stream which does not guarantee the order or reliability of message - delivery. - """ - - -class ObjectReceiveStream(UnreliableObjectReceiveStream[T_co]): - """ - A receive message stream which guarantees that messages are received in the same order in - which they were sent, and that no messages are missed. - """ - - -class ObjectSendStream(UnreliableObjectSendStream[T_contra]): - """ - A send message stream which guarantees that messages are delivered in the same order in which - they were sent, without missing any messages in the middle. - """ - - -class ObjectStream( - ObjectReceiveStream[T_Item], - ObjectSendStream[T_Item], - UnreliableObjectStream[T_Item], -): - """ - A bidirectional message stream which guarantees the order and reliability of message delivery. - """ - - @abstractmethod - async def send_eof(self) -> None: - """ - Send an end-of-file indication to the peer. - - You should not try to send any further data to this stream after calling this method. - This method is idempotent (does nothing on successive calls). - """ - - -class ByteReceiveStream(AsyncResource, TypedAttributeProvider): - """ - An interface for receiving bytes from a single peer. - - Iterating this byte stream will yield a byte string of arbitrary length, but no more than - 65536 bytes. - """ - - def __aiter__(self) -> ByteReceiveStream: - return self - - async def __anext__(self) -> bytes: - try: - return await self.receive() - except EndOfStream: - raise StopAsyncIteration - - @abstractmethod - async def receive(self, max_bytes: int = 65536) -> bytes: - """ - Receive at most ``max_bytes`` bytes from the peer. - - .. note:: Implementors of this interface should not return an empty :class:`bytes` object, - and users should ignore them. - - :param max_bytes: maximum number of bytes to receive - :return: the received bytes - :raises ~anyio.EndOfStream: if this stream has been closed from the other end - """ - - -class ByteSendStream(AsyncResource, TypedAttributeProvider): - """An interface for sending bytes to a single peer.""" - - @abstractmethod - async def send(self, item: bytes) -> None: - """ - Send the given bytes to the peer. - - :param item: the bytes to send - """ - - -class ByteStream(ByteReceiveStream, ByteSendStream): - """A bidirectional byte stream.""" - - @abstractmethod - async def send_eof(self) -> None: - """ - Send an end-of-file indication to the peer. - - You should not try to send any further data to this stream after calling this method. - This method is idempotent (does nothing on successive calls). - """ - - -#: Type alias for all unreliable bytes-oriented receive streams. -AnyUnreliableByteReceiveStream = Union[ - UnreliableObjectReceiveStream[bytes], ByteReceiveStream -] -#: Type alias for all unreliable bytes-oriented send streams. -AnyUnreliableByteSendStream = Union[UnreliableObjectSendStream[bytes], ByteSendStream] -#: Type alias for all unreliable bytes-oriented streams. -AnyUnreliableByteStream = Union[UnreliableObjectStream[bytes], ByteStream] -#: Type alias for all bytes-oriented receive streams. -AnyByteReceiveStream = Union[ObjectReceiveStream[bytes], ByteReceiveStream] -#: Type alias for all bytes-oriented send streams. -AnyByteSendStream = Union[ObjectSendStream[bytes], ByteSendStream] -#: Type alias for all bytes-oriented streams. -AnyByteStream = Union[ObjectStream[bytes], ByteStream] - - -class Listener(Generic[T_co], AsyncResource, TypedAttributeProvider): - """An interface for objects that let you accept incoming connections.""" - - @abstractmethod - async def serve( - self, - handler: Callable[[T_co], Any], - task_group: TaskGroup | None = None, - ) -> None: - """ - Accept incoming connections as they come in and start tasks to handle them. - - :param handler: a callable that will be used to handle each accepted connection - :param task_group: the task group that will be used to start tasks for handling each - accepted connection (if omitted, an ad-hoc task group will be created) - """ diff --git a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/ac3enc_float.c b/spaces/colakin/video-generater/public/ffmpeg/libavcodec/ac3enc_float.c deleted file mode 100644 index ae351a535e93d4e35d4c4cea74d851d93ecdefb6..0000000000000000000000000000000000000000 --- a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/ac3enc_float.c +++ /dev/null @@ -1,132 +0,0 @@ -/* - * The simplest AC-3 encoder - * Copyright (c) 2000 Fabrice Bellard - * Copyright (c) 2006-2010 Justin Ruggles - * Copyright (c) 2006-2010 Prakash Punnoor - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/** - * @file - * floating-point AC-3 encoder. - */ - -#define AC3ENC_FLOAT 1 -#include "audiodsp.h" -#include "ac3enc.h" -#include "codec_internal.h" -#include "eac3enc.h" -#include "kbdwin.h" - - -/* - * Scale MDCT coefficients from float to 24-bit fixed-point. - */ -static void scale_coefficients(AC3EncodeContext *s) -{ - int chan_size = AC3_MAX_COEFS * s->num_blocks; - int cpl = s->cpl_on; - s->ac3dsp.float_to_fixed24(s->fixed_coef_buffer + (chan_size * !cpl), - s->mdct_coef_buffer + (chan_size * !cpl), - chan_size * (s->channels + cpl)); -} - - -/* - * Clip MDCT coefficients to allowable range. - */ -static void clip_coefficients(AudioDSPContext *adsp, float *coef, - unsigned int len) -{ - adsp->vector_clipf(coef, coef, len, COEF_MIN, COEF_MAX); -} - - -/* - * Calculate a single coupling coordinate. - */ -static CoefType calc_cpl_coord(CoefSumType energy_ch, CoefSumType energy_cpl) -{ - float coord = 0.125; - if (energy_cpl > 0) - coord *= sqrtf(energy_ch / energy_cpl); - return FFMIN(coord, COEF_MAX); -} - -static void sum_square_butterfly(AC3EncodeContext *s, float sum[4], - const float *coef0, const float *coef1, - int len) -{ - s->ac3dsp.sum_square_butterfly_float(sum, coef0, coef1, len); -} - -#include "ac3enc_template.c" - -/** - * Initialize MDCT tables. - * - * @param s AC-3 encoder private context - * @return 0 on success, negative error code on failure - */ -static av_cold int ac3_float_mdct_init(AC3EncodeContext *s) -{ - const float scale = -2.0 / AC3_WINDOW_SIZE; - float *window = av_malloc_array(AC3_BLOCK_SIZE, sizeof(*window)); - if (!window) { - av_log(s->avctx, AV_LOG_ERROR, "Cannot allocate memory.\n"); - return AVERROR(ENOMEM); - } - - ff_kbd_window_init(window, 5.0, AC3_BLOCK_SIZE); - s->mdct_window = window; - - return av_tx_init(&s->tx, &s->tx_fn, AV_TX_FLOAT_MDCT, 0, - AC3_BLOCK_SIZE, &scale, 0); -} - - -av_cold int ff_ac3_float_encode_init(AVCodecContext *avctx) -{ - AC3EncodeContext *s = avctx->priv_data; - s->mdct_init = ac3_float_mdct_init; - s->allocate_sample_buffers = allocate_sample_buffers; - s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); - if (!s->fdsp) - return AVERROR(ENOMEM); - return ff_ac3_encode_init(avctx); -} - -const FFCodec ff_ac3_encoder = { - .p.name = "ac3", - CODEC_LONG_NAME("ATSC A/52A (AC-3)"), - .p.type = AVMEDIA_TYPE_AUDIO, - .p.id = AV_CODEC_ID_AC3, - .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE, - .priv_data_size = sizeof(AC3EncodeContext), - .init = ff_ac3_float_encode_init, - FF_CODEC_ENCODE_CB(ff_ac3_float_encode_frame), - .close = ff_ac3_encode_close, - .p.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP, - AV_SAMPLE_FMT_NONE }, - .p.priv_class = &ff_ac3enc_class, - .p.supported_samplerates = ff_ac3_sample_rate_tab, - CODEC_OLD_CHANNEL_LAYOUTS_ARRAY(ff_ac3_channel_layouts) - .p.ch_layouts = ff_ac3_ch_layouts, - .defaults = ff_ac3_enc_defaults, - .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, -}; diff --git a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/avs2.c b/spaces/colakin/video-generater/public/ffmpeg/libavcodec/avs2.c deleted file mode 100644 index ead8687d0aa3deaebbcac523fcc3d7dd05b28a92..0000000000000000000000000000000000000000 --- a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/avs2.c +++ /dev/null @@ -1,42 +0,0 @@ -/* - * AVS2 related definitions - * - * Copyright (C) 2022 Zhao Zhili, - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#include "avs2.h" - -const AVRational ff_avs2_frame_rate_tab[16] = { - { 0 , 0 }, // forbid - { 24000, 1001}, - { 24 , 1 }, - { 25 , 1 }, - { 30000, 1001}, - { 30 , 1 }, - { 50 , 1 }, - { 60000, 1001}, - { 60 , 1 }, - { 100 , 1 }, - { 120 , 1 }, - { 200 , 1 }, - { 240 , 1 }, - { 300 , 1 }, - { 0 , 0 }, // reserved - { 0 , 0 } // reserved -}; diff --git a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/dcadata.h b/spaces/colakin/video-generater/public/ffmpeg/libavcodec/dcadata.h deleted file mode 100644 index 5aa85b34144455b7526dc45edd6da7157674cab1..0000000000000000000000000000000000000000 --- a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/dcadata.h +++ /dev/null @@ -1,127 +0,0 @@ -/* - * DCA compatible decoder data - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -#ifndef AVCODEC_DCADATA_H -#define AVCODEC_DCADATA_H - -#include - -#include "dcahuff.h" - -#define DCA_ADPCM_COEFFS 4 -#define DCA_ADPCM_VQCODEBOOK_SZ 4096 - -extern const uint32_t ff_dca_bit_rates[32]; - -extern const uint8_t ff_dca_channels[16]; - -extern const uint8_t ff_dca_dmix_primary_nch[8]; - -extern const uint8_t ff_dca_quant_index_sel_nbits[DCA_CODE_BOOKS]; -extern const uint8_t ff_dca_quant_index_group_size[DCA_CODE_BOOKS]; - -extern const int16_t ff_dca_adpcm_vb[DCA_ADPCM_VQCODEBOOK_SZ][DCA_ADPCM_COEFFS]; - -extern const uint32_t ff_dca_scale_factor_quant6[64]; -extern const uint32_t ff_dca_scale_factor_quant7[128]; - -extern const uint32_t ff_dca_joint_scale_factors[129]; - -extern const uint32_t ff_dca_scale_factor_adj[4]; - -extern const uint32_t ff_dca_quant_levels[32]; - -extern const uint32_t ff_dca_lossy_quant[32]; - -extern const uint32_t ff_dca_lossless_quant[32]; - -extern const int8_t ff_dca_high_freq_vq[1024][32]; - -extern const float ff_dca_fir_32bands_perfect[512]; -extern const float ff_dca_fir_32bands_nonperfect[512]; - -extern const float ff_dca_lfe_fir_64[256]; -extern const float ff_dca_lfe_fir_128[256]; -extern const float ff_dca_fir_64bands[1024]; - -extern const int32_t ff_dca_fir_32bands_perfect_fixed[512]; -extern const int32_t ff_dca_fir_32bands_nonperfect_fixed[512]; -extern const int32_t ff_dca_lfe_fir_64_fixed[256]; -extern const int32_t ff_dca_fir_64bands_fixed[1024]; - -#define FF_DCA_DMIXTABLE_SIZE 242U -#define FF_DCA_INV_DMIXTABLE_SIZE 201U -#define FF_DCA_DMIXTABLE_OFFSET (FF_DCA_DMIXTABLE_SIZE - FF_DCA_INV_DMIXTABLE_SIZE) - -extern const uint16_t ff_dca_dmixtable[FF_DCA_DMIXTABLE_SIZE]; -extern const uint32_t ff_dca_inv_dmixtable[FF_DCA_INV_DMIXTABLE_SIZE]; - -extern const uint16_t ff_dca_xll_refl_coeff[128]; - -extern const int32_t ff_dca_xll_band_coeff[20]; - -extern const uint16_t ff_dca_avg_g3_freqs[3]; - -extern const uint16_t ff_dca_fst_amp[44]; - -extern const uint8_t ff_dca_freq_to_sb[32]; - -extern const int8_t ff_dca_ph0_shift[8]; - -extern const uint8_t ff_dca_grid_1_to_scf[11]; -extern const uint8_t ff_dca_grid_2_to_scf[3]; - -extern const uint8_t ff_dca_scf_to_grid_1[32]; -extern const uint8_t ff_dca_scf_to_grid_2[32]; - -extern const uint8_t ff_dca_grid_1_weights[12][32]; - -extern const uint8_t ff_dca_sb_reorder[8][8]; - -extern const int8_t ff_dca_lfe_delta_index_16[8]; -extern const int8_t ff_dca_lfe_delta_index_24[32]; - -extern const uint16_t ff_dca_rsd_pack_5_in_8[256]; -extern const uint8_t ff_dca_rsd_pack_3_in_7[128][3]; - -extern const float ff_dca_rsd_level_2a[2]; -extern const float ff_dca_rsd_level_2b[2]; -extern const float ff_dca_rsd_level_3[3]; -extern const float ff_dca_rsd_level_5[5]; -extern const float ff_dca_rsd_level_8[8]; -extern const float ff_dca_rsd_level_16[16]; - -extern const float ff_dca_synth_env[32]; - -extern const float ff_dca_corr_cf[32][11]; - -extern const float ff_dca_quant_amp[57]; - -extern const float ff_dca_st_coeff[34]; - -extern const float ff_dca_long_window[128]; - -extern const float ff_dca_lfe_step_size_16[101]; -extern const float ff_dca_lfe_step_size_24[144]; - -extern const float ff_dca_bank_coeff[10]; -extern const float ff_dca_lfe_iir[5][4]; - -#endif /* AVCODEC_DCADATA_H */ diff --git a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/mjpeg2jpeg_bsf.c b/spaces/colakin/video-generater/public/ffmpeg/libavcodec/mjpeg2jpeg_bsf.c deleted file mode 100644 index f545e9438df856230dbca47d8d13c19827ef04c8..0000000000000000000000000000000000000000 --- a/spaces/colakin/video-generater/public/ffmpeg/libavcodec/mjpeg2jpeg_bsf.c +++ /dev/null @@ -1,142 +0,0 @@ -/* - * MJPEG/AVI1 to JPEG/JFIF bitstream format filter - * Copyright (c) 2010 Adrian Daerr and Nicolas George - * - * This file is part of FFmpeg. - * - * FFmpeg is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2.1 of the License, or (at your option) any later version. - * - * FFmpeg is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA - */ - -/* - * Adapted from mjpeg2jpeg.c, with original copyright: - * Paris 2010 Adrian Daerr, public domain - */ - -#include - -#include "libavutil/error.h" -#include "libavutil/intreadwrite.h" - -#include "bsf.h" -#include "bsf_internal.h" -#include "jpegtables.h" -#include "mjpeg.h" - -static const uint8_t jpeg_header[] = { - 0xff, 0xd8, // SOI - 0xff, 0xe0, // APP0 - 0x00, 0x10, // APP0 header size (including - // this field, but excluding preceding) - 0x4a, 0x46, 0x49, 0x46, 0x00, // ID string 'JFIF\0' - 0x01, 0x01, // version - 0x00, // bits per type - 0x00, 0x00, // X density - 0x00, 0x00, // Y density - 0x00, // X thumbnail size - 0x00, // Y thumbnail size -}; - -static const int dht_segment_size = 420; -static const uint8_t dht_segment_head[] = { 0xFF, 0xC4, 0x01, 0xA2, 0x00 }; -static const uint8_t dht_segment_frag[] = { - 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, - 0x0a, 0x0b, 0x01, 0x00, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, - 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, -}; - -static uint8_t *append(uint8_t *buf, const uint8_t *src, int size) -{ - memcpy(buf, src, size); - return buf + size; -} - -static uint8_t *append_dht_segment(uint8_t *buf) -{ - buf = append(buf, dht_segment_head, sizeof(dht_segment_head)); - buf = append(buf, ff_mjpeg_bits_dc_luminance + 1, 16); - buf = append(buf, dht_segment_frag, sizeof(dht_segment_frag)); - buf = append(buf, ff_mjpeg_val_dc, 12); - *(buf++) = 0x10; - buf = append(buf, ff_mjpeg_bits_ac_luminance + 1, 16); - buf = append(buf, ff_mjpeg_val_ac_luminance, 162); - *(buf++) = 0x11; - buf = append(buf, ff_mjpeg_bits_ac_chrominance + 1, 16); - buf = append(buf, ff_mjpeg_val_ac_chrominance, 162); - return buf; -} - -static int mjpeg2jpeg_filter(AVBSFContext *ctx, AVPacket *out) -{ - AVPacket *in; - int ret = 0; - int input_skip, output_size; - uint8_t *output; - - ret = ff_bsf_get_packet(ctx, &in); - if (ret < 0) - return ret; - - if (in->size < 12) { - av_log(ctx, AV_LOG_ERROR, "input is truncated\n"); - ret = AVERROR_INVALIDDATA; - goto fail; - } - if (AV_RB16(in->data) != 0xffd8) { - av_log(ctx, AV_LOG_ERROR, "input is not MJPEG\n"); - ret = AVERROR_INVALIDDATA; - goto fail; - } - if (in->data[2] == 0xff && in->data[3] == APP0) { - input_skip = (in->data[4] << 8) + in->data[5] + 4; - } else { - input_skip = 2; - } - if (in->size < input_skip) { - av_log(ctx, AV_LOG_ERROR, "input is truncated\n"); - ret = AVERROR_INVALIDDATA; - goto fail; - } - output_size = in->size - input_skip + - sizeof(jpeg_header) + dht_segment_size; - ret = av_new_packet(out, output_size); - if (ret < 0) - goto fail; - - output = out->data; - - output = append(output, jpeg_header, sizeof(jpeg_header)); - output = append_dht_segment(output); - output = append(output, in->data + input_skip, in->size - input_skip); - - ret = av_packet_copy_props(out, in); - if (ret < 0) - goto fail; - -fail: - if (ret < 0) - av_packet_unref(out); - av_packet_free(&in); - return ret; -} - -static const enum AVCodecID codec_ids[] = { - AV_CODEC_ID_MJPEG, AV_CODEC_ID_NONE, -}; - -const FFBitStreamFilter ff_mjpeg2jpeg_bsf = { - .p.name = "mjpeg2jpeg", - .p.codec_ids = codec_ids, - .filter = mjpeg2jpeg_filter, -}; diff --git a/spaces/congsaPfin/Manga-OCR/logs/Download Jay Z Big Pimpin MP3 for Free - The Best Hip Hop Song of All Time.md b/spaces/congsaPfin/Manga-OCR/logs/Download Jay Z Big Pimpin MP3 for Free - The Best Hip Hop Song of All Time.md deleted file mode 100644 index 393f62cfc2a3c955ae301c9cc6e3296c5d0ddadf..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Download Jay Z Big Pimpin MP3 for Free - The Best Hip Hop Song of All Time.md +++ /dev/null @@ -1,106 +0,0 @@ - -

    How to Download Jay Z Big Pimpin MP3

    -

    Are you a fan of Jay Z and his classic hip-hop song Big Pimpin? Do you want to download the MP3 version of this song and listen to it offline? If yes, then you are in the right place. In this article, I will show you how to download Jay Z Big Pimpin MP3 for free using two easy methods. But before that, let's learn more about this song and why you should download it.

    -

    download jay z big pimpin mp3


    Download Ziphttps://urlca.com/2uO4qV



    -

    Introduction

    -

    What is Big Pimpin by Jay Z?

    -

    Big Pimpin is a song by American rapper Jay Z, featuring guest appearances from Southern rap group UGK. It was released as the fifth and final single from Jay Z's fourth studio album Vol. 3... Life and Times of S. Carter in 2000. The song was produced by Timbaland, who sampled an Egyptian song called Khosara Khosara by Abdel Halim Hafez. The song is considered one of Jay Z's most popular and successful songs, reaching number 18 on the Billboard Hot 100 and number six on the Hot Rap Songs chart. The song also received positive reviews from critics, who praised Jay Z's lyrical skills and Timbaland's production.

    -

    Why download Big Pimpin MP3?

    -

    There are many reasons why you might want to download Big Pimpin MP3 and listen to it offline. Here are some of them:

    -
      -
    • You love the song and want to enjoy it anytime, anywhere, without relying on an internet connection or streaming service.
    • -
    • You want to save your data or battery life by not streaming the song online.
    • -
    • You want to create your own playlist or mixtape with Big Pimpin and other songs that you like.
    • -
    • You want to support Jay Z and UGK by downloading their music legally and ethically.
    • -
    -

    Whatever your reason is, downloading Big Pimpin MP3 is easy and free if you follow the steps below.

    -

    download jay z big pimpin mp3 free
    -download jay z big pimpin mp3 320kbps
    -download jay z big pimpin mp3 skull
    -download jay z big pimpin mp3 juice
    -download jay z big pimpin mp3 song
    -download jay z big pimpin mp3 instrumental
    -download jay z big pimpin mp3 ringtone
    -download jay z big pimpin mp3 remix
    -download jay z big pimpin mp3 clean
    -download jay z big pimpin mp3 dirty
    -download jay z big pimpin mp3 album version
    -download jay z big pimpin mp3 radio edit
    -download jay z big pimpin mp3 soundcloud
    -download jay z big pimpin mp3 archive.org
    -download jay z big pimpin mp3 youtube
    -download jay z big pimpin mp3 video
    -download jay z big pimpin mp3 lyrics
    -download jay z big pimpin mp3 karaoke
    -download jay z big pimpin mp3 acapella
    -download jay z big pimpin mp3 live performance
    -download jay z big pimpin mp3 feat ugk
    -download jay z big pimpin mp3 feat beyonce
    -download jay z big pimpin mp3 feat kanye west
    -download jay z big pimpin mp3 feat lil wayne
    -download jay z big pimpin mp3 feat drake
    -download jay z big pimpin mp3 feat rihanna
    -download jay z big pimpin mp3 feat nicki minaj
    -download jay z big pimpin mp3 feat eminem
    -download jay z big pimpin mp3 feat 50 cent
    -download jay z big pimpin mp3 feat snoop dogg
    -download jay z big pimpin mp3 extended version
    -download jay z big pimpin mp3 original version
    -download jay z big pimpin mp3 sample version
    -download jay z big pimpin mp3 demo version
    -download jay z big pimpin mp3 unreleased version
    -download jay z big pimpin mp3 official version
    -download jay z big pimpin mp3 alternative version
    -download jay z big pimpin mp3 cover version
    -download jay z big pimpin mp3 tribute version
    -download jay z big pimpin mp3 mashup version
    -how to download jay z big pimpin mp3
    -where to download jay z big pimpin mp3
    -best site to download jay z big pimpin mp3
    -best app to download jay z big pimpin mp3
    -best quality to download jay z big pimpin mp3
    -is it legal to download jay z big pimpin mp3
    -is it safe to download jay z big pimpin mp3
    -is it easy to download jay z big pimpin mp3
    -why should i download jay z big pimpin mp3

    -

    How to download Big Pimpin MP3 for free

    -

    Option 1: Use Internet Archive

    -

    One of the best ways to download Big Pimpin MP3 for free is to use Internet Archive, a non-profit digital library that offers free access to millions of books, movies, music, and more. Internet Archive has a collection of Jay Z's songs, including Big Pimpin, that you can download in various formats and qualities. Here's how to do it:

    -

    Step 1: Go to the Internet Archive website

    -

    Open your web browser and go to https://archive.org/, the official website of Internet Archive. You can also click on this link to go directly there.

    -

    Step 2: Search for Jay Z Big Pimpin

    -

    In the search box at the top of the website, type in "Jay Z Big Pimpin" and hit enter. You will see a list of results that match your query. Look for the one that says "Big Pimpin : Jay-Z" and click on it. You will be taken to a page that contains information and options for downloading the song.

    -

    Step 3: Choose the format and quality

    -

    On the right side of the page, you will see a section that says "Download Options". Here, you can choose the format and quality of the song that you want to download. For example, you can choose MP3, OGG, or FLAC as the format, and 128Kbps, 256Kbps, or 320Kbps as the quality. The higher the quality, the larger the file size. For this example, let's choose MP3 as the format and 128Kbps as the quality.

    -

    Step 4: Download and enjoy

    -

    Once you have chosen the format and quality, click on the corresponding link to start the download. You will see a pop-up window that asks you to save the file to your computer. Choose a location where you want to save the file and click "Save". The download will begin and it may take a few seconds or minutes depending on your internet speed and file size. Once the download is complete, you can open the file and listen to Big Pimpin MP3 offline. Enjoy!

    -

    Option 2: Use YouTube to MP3 converter

    -

    Another way to download Big Pimpin MP3 for free is to use a YouTube to MP3 converter website. These websites allow you to convert any YouTube video into an MP3 file that you can download and listen to offline. There are many YouTube to MP3 converter websites available online, but some of them may be unsafe or unreliable. For this example, I will use https://ytmp3.cc/, a popular and trusted website that I have used before. Here's how to do it:

    -

    Step 1: Go to YouTube and find the Big Pimpin video

    -

    Open your web browser and go to https://www.youtube.com/, the official website of YouTube. You can also click on this link to go directly there. In the search box at the top of the website, type in "Jay Z Big Pimpin" and hit enter. You will see a list of videos that match your query. Look for the one that says "JAY-Z - Big Pimpin' ft. UGK" and has over 100 million views. This is the official music video of Big Pimpin by Jay Z. Click on it to play it.

    -

    Step 2: Copy the video URL

    -

    Once you have opened the video, look at the address bar of your web browser. You will see a URL that starts with https://www.youtube.com/watch?v=... This is the video URL that you need to copy. To copy it, you can either right-click on it and select "Copy", or highlight it with your mouse and press Ctrl+C on your keyboard.

    -

    Step 3: Go to a YouTube to MP3 converter website

    -

    Open a new tab on your web browser and go to https://ytmp3.cc/, the YouTube to MP3 converter website that I mentioned earlier. You can also click on this link to go directly there.

    -

    Step 4: Paste the URL and convert the video

    -

    On the homepage of ytmp3.cc, you will see a box that says "Paste your YouTube URL here". This is where you need to paste the video URL that you copied in step 2. To paste it, you can either right-click on it and select "Paste", or press Ctrl+V on your keyboard. After pasting the URL, click on the "Convert" button next to it. The website will start converting the video into an MP3 file.

    -

    Step 5: Download and enjoy

    -

    Once the conversion is done, you will see a message that says "Conversion finished". Below it, you will see two buttons: one that says "Download" and another that says "Dropbox". Click on the "Download" button to start downloading the MP3 file to your computer. You will see a pop-up window that asks you to save the file to your computer. Choose a location where you want to save the file and click "Save". The download will begin and it may take a few seconds or minutes depending on your internet speed and file size. Once the download is complete, you can open the file and listen to Big Pimpin MP3 offline. Enjoy!

    -

    Conclusion

    -

    In this article, I have shown you how to download Jay Z Big Pimpin MP3 for free using two easy methods: using Internet Archive and using YouTube to MP3 converter. Both methods are simple, fast, and legal, and they allow you to enjoy this classic hip-hop song offline. I hope you found this article helpful and informative. If you have any questions or feedback, please feel free to leave a comment below. Thank you for reading!

    -

    FAQs

    -

    Here are some frequently asked questions about downloading Jay Z Big Pimpin MP3:

    -
      -
    1. Is it legal to download Jay Z Big Pimpin MP3?
    2. -

      Yes, it is legal to download Jay Z Big Pimpin MP3 as long as you do it from a reputable and authorized source, such as Internet Archive or YouTube to MP3 converter. These sources respect the rights of the artists and the publishers, and they do not violate any copyright laws.

      -
    3. Is it safe to download Jay Z Big Pimpin MP3?
    4. -

      Yes, it is safe to download Jay Z Big Pimpin MP3 as long as you do it from a reputable and authorized source, such as Internet Archive or YouTube to MP3 converter. These sources do not contain any viruses, malware, or spyware that could harm your computer or device.

      -
    5. What is the best quality of Jay Z Big Pimpin MP3?
    6. -

      The best quality of Jay Z Big Pimpin MP3 depends on your personal preference and your device's capabilities. Generally, the higher the quality, the better the sound, but also the larger the file size. For most people, 128Kbps or 256Kbps is good enough for listening to music. However, if you want the best possible quality, you can choose 320Kbps or FLAC as the format.

      -
    7. How can I play Jay Z Big Pimpin MP3 on my phone or tablet?
    8. -

      To play Jay Z Big Pimpin MP3 on your phone or tablet, you need to transfer the file from your computer to your device using a USB cable or a wireless connection. Alternatively, you can use a cloud service such as Dropbox or Google Drive to upload the file from your computer and access it from your device.

      -
    9. How can I share Jay Z Big Pimpin MP3 with my friends or family?
    10. -

      To share Jay Z Big Pimpin MP3 with your friends or family, you can use a cloud service such as Dropbox or Google Drive to upload the file from your computer and share the link with them. Alternatively, you can use a social media platform such as Facebook or Twitter to post the link with them. However, make sure that you respect the rights of the artists and the publishers, and do not distribute the file illegally.

      -

    401be4b1e0
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Download The Pirates The Last Royal Treasure (2022) - A thrilling adventure of Joseon pirates and bandits.md b/spaces/congsaPfin/Manga-OCR/logs/Download The Pirates The Last Royal Treasure (2022) - A thrilling adventure of Joseon pirates and bandits.md deleted file mode 100644 index fd53e2da1f83ae54b298f684f6a2a0aeff345844..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Download The Pirates The Last Royal Treasure (2022) - A thrilling adventure of Joseon pirates and bandits.md +++ /dev/null @@ -1,86 +0,0 @@ - -

    The Pirates: The Last Royal Treasure - A Fun Period Swashbuckler From Korea

    -

    If you are looking for a fun and exciting adventure film that will make you laugh and cheer, you might want to check out The Pirates: The Last Royal Treasure, a 2022 South Korean period swashbuckler that is now streaming on Netflix. This film is a spiritual sequel to The Pirates (2014), a hit film that also blended action, comedy, and history in a thrilling pirate story.

    -

    the pirates the last royal treasure download


    Download Filehttps://urlca.com/2uO8zN



    -

    The Pirates: The Last Royal Treasure follows a group of pirates and bandits who embark on a dangerous treasure hunt in the Joseon era, competing with each other and with a ruthless rebel who wants to claim the royal gold for himself. Along the way, they face stormy seas, puzzling clues, fierce battles, and hilarious situations. The film boasts an impressive cast of popular Korean actors, such as Kang Ha-neul, Han Hyo-joo, Lee Kwang-soo, and Kwon Sang-woo, who deliver charismatic and comedic performances. The film also features spectacular production values, such as stunning cinematography, fast-paced editing, impressive special effects, and catchy music.

    -

    The Pirates: The Last Royal Treasure was released in South Korea on January 26, 2022, coinciding with the Korean New Year holiday. It became the first Korean film to register 1 million viewers in 2022 on its 11th day of release. It also received positive reviews from critics and audiences alike, who praised its Table 1: Outline of the article | Heading | Subheading | Content | | --- | --- | --- | | H1: The Pirates: The Last Royal Treasure - A Fun Period Swashbuckler From Korea | | Introduction: A brief overview of the film, its genre, plot, cast, and box office performance. | | H2: The Plot: A Treasure Hunt in the Joseon Era | | Summary: A summary of the main events and characters of the film, including the premise, the conflict, the clues, and the climax. | | H3: The Cast: A Charismatic Ensemble of Pirates and Bandits | H4: Kang Ha-neul as Woo Moo-chi | Description: A description of the character and the actor's performance. | | | H4: Han Hyo-joo as Hae-rang | Description: A description of the character and the actor's performance. | | | H4: Lee Kwang-soo as Mak-yi | Description: A description of the character and the actor's performance. | | | H4: Kwon Sang-woo as Bu Heung-soo | Description: A description of the character and the actor's performance. | | | H4: Other Supporting Characters | Description: A brief mention of other notable characters and actors in the film. | | H2: The Production: A Spectacular Display of Action and Comedy | | Details: Some details about the production of the film, such as the director, the writer, the cinematography, the editing, the special effects, and the music. | | H2: The Reception: A Hit at Home and Abroad | | Reviews: Some excerpts from positive reviews of the film from critics and audiences. | | H2: The Conclusion: A Highly Recommended Adventure Film | | Opinion: A personal opinion on why the film is worth watching and what makes it enjoyable. | | H2: FAQs About The Pirates: The Last Royal Treasure | H3: Is The Pirates: The Last Royal Treasure a sequel to The Pirates (2014)? | Answer: No, it is a spiritual sequel that has a different cast and story but a similar genre and tone. | | | H3: Is The Pirates: The Last Royal Treasure based on a true story? | Answer: No, it is a fictional story that mixes historical elements with fantasy and comedy. | | | H3: Where can I watch The Pirates: The Last Royal Treasure? | Answer: You can watch it on Netflix with a subscription or in selected theaters. | | | H3: How long is The Pirates: The Last Royal Treasure? | Answer: It is 126 minutes long. | | | H3: Will there be another sequel to The Pirates? | Answer: There is no official announcement yet, but it is possible given the popularity and success of the film series. | Table 2: Article with HTML formatting

    The Pirates: The Last Royal Treasure - A Fun Period Swashbuckler From Korea

    -

    If you are looking for a fun and exciting adventure film that will make you laugh and cheer, you might want to check out The Pirates: The Last Royal Treasure, a 2022 South Korean period swashbuckler that is now streaming on Netflix. This film is a spiritual sequel to The Pirates (2014), a hit film that also blended action, comedy, and history in a thrilling pirate story.

    -

    The Pirates: The Last Royal Treasure follows a group of pirates and bandits who embark on a dangerous treasure hunt in the Joseon era, competing with each other and with a ruthless rebel who wants to claim the royal gold for himself. Along the way, they face stormy seas, puzzling clues, fierce battles, and hilarious situations. The film boasts an impressive cast of popular Korean actors, such as Kang Ha-neul, Han Hyo-joo, Lee Kwang-soo, and Kwon Sang-woo, who deliver charismatic and comedic performances. The film also features spectacular production values, such as stunning cinematography, fast-paced editing, impressive special effects, and catchy music.

    -

    The Pirates: The Last Royal Treasure Netflix
    -Kang Ha-neul and Han Hyo-joo pirate movie
    -The Pirates: Goblin Flag 2022
    -How to watch The Pirates: The Last Royal Treasure online
    -The Pirates: The Last Royal Treasure IMDB rating
    -The Pirates: The Last Royal Treasure full movie free
    -The Pirates: The Last Royal Treasure sequel to 2014 film
    -The Pirates: The Last Royal Treasure box office
    -The Pirates: The Last Royal Treasure cast and crew
    -The Pirates: The Last Royal Treasure trailer and review
    -The Pirates: The Last Royal Treasure Korean period adventure film
    -The Pirates: The Last Royal Treasure lost royal gold
    -The Pirates: The Last Royal Treasure streaming on Netflix
    -The Pirates: The Last Royal Treasure director Kim Jeong-hoon
    -The Pirates: The Last Royal Treasure writer Chun Sung-il
    -The Pirates: The Last Royal Treasure starring Lee Kwang-soo and Kwon Sang-woo
    -The Pirates: The Last Royal Treasure released in IMAX format
    -The Pirates: The Last Royal Treasure budget and gross
    -The Pirates: The Last Royal Treasure action comedy fantasy genre
    -The Pirates: The Last Royal Treasure Joseon era setting
    -Watch The Pirates: The Last Royal Treasure with subtitles
    -Download The Pirates: The Last Royal Treasure HD quality
    -Torrent link for The Pirates: The Last Royal Treasure
    -Where to stream The Pirates: The Last Royal Treasure legally
    -Is The Pirates: The Last Royal Treasure worth watching
    -Behind the scenes of The Pirates: The Last Royal Treasure
    -Interview with the stars of The Pirates: The Last Royal Treasure
    -Fan art and memes of The Pirates: The Last Royal Treasure
    -OST and songs of The Pirates: The Last Royal Treasure
    -Awards and nominations of The Pirates: The Last Royal Treasure
    -Spoilers and plot summary of The Pirates: The Last Royal Treasure
    -Fun facts and trivia of The Pirates: The Last Royal Treasure
    -Comparison between 2014 and 2022 versions of The Pirates
    -Merchandise and products of The Pirates: The Last Royal Treasure
    -Fan fiction and stories of

    -

    The Pirates: The Last Royal Treasure was released in South Korea on January 26, 2022, coinciding with the Korean New Year holiday. It became the first Korean film to register 1 million viewers in 2022 on its 11th day of release. It also received positive reviews from critics and audiences alike, who praised its.

    The film also has a number of other supporting characters who add to the story and the humor. Some of them are:

    -
      -
    • Kim Sung-oh as Jang Sa-jung, a loyal and brave pirate who is Woo Moo-chi's right-hand man.
    • -
    • Chae Soo-bin as Soo-yeon, a young and innocent girl who joins Woo Moo-chi's crew as a cook.
    • -
    • Sehun as Han Goong, a skilled and handsome swordsman who is Hae-rang's second-in-command.
    • -
    • Kim Myung-gon as Prince Sooyang, the main antagonist of the film who leads the rebellion against the king.
    • -
    • Park Ji-hwan as The Whale Hunter, a mysterious and mysterious figure who leaves clues for the treasure seekers.
    • -
    -

    The Production: A Spectacular Display of Action and Comedy

    -

    The film was directed by Kim Jung-hoon, who also directed The Pirates (2014). He said that he wanted to make a sequel that would be more fun and exciting than the first film, and that he was inspired by Hollywood films such as Pirates of the Caribbean and Indiana Jones. He also said that he wanted to show the beauty and diversity of Korea's natural scenery, such as the sea, the mountains, and the islands.

    -

    The film was written by Chun Sung-il, who also wrote The Pirates (2014) and other popular Korean films such as The Good, The Bad, The Weird (2008) and The Slave Hunters (2010). He said that he wanted to create a story that would appeal to both domestic and international audiences, and that he tried to balance the historical elements with the fantasy and comedy elements. He also said that he wanted to create memorable characters who would have chemistry and conflict with each other.

    -

    The film was shot by cinematographer Kim Young-ho, who also shot The Pirates (2014) and other acclaimed Korean films such as A Taxi Driver (2017) and Veteran (2015). He said that he wanted to capture the epic scale and the dynamic action of the film, and that he used various techniques such as cranes, drones, helicopters, and underwater cameras. He also said that he wanted to create a colorful and vibrant visual style that would contrast with the dark and gloomy atmosphere of other historical films.

    -

    The film was edited by Shin Min-kyung, who also edited The Pirates (2014) and other successful Korean films such as Along With The Gods (2017) and Tunnel (2016). She said that she wanted to create a fast-paced and smooth flow for the film, and that she had to deal with a lot of footage and special effects. She also said that she wanted to highlight the humor and the emotion of the film, and that she worked closely with the director and the writer.

    -

    The film's special effects were done by Dexter Studios, one of Korea's leading visual effects companies. They said that they wanted to create realistic and impressive effects for the film, such as the whale, the sea monsters, the explosions, and the fire. They also said that they used advanced technology such as motion capture, digital sculpting, and fluid simulation. They also said that they collaborated with other departments such as art direction, costume design, and stunt coordination.

    -

    The film's music was composed by Kim Jun-seok, who also composed The Pirates (2014) and other popular Korean films such as Masquerade (2012) and Detective K (2011). He said that he wanted to create a lively and adventurous soundtrack for the film, and that he used various instruments such as drums, guitars, flutes, violins, and trumpets. He also said that he wanted to create different themes for different characters and situations, such as romance, comedy, action, and suspense.

    -

    The Reception: A Hit at Home and Abroad

    -

    The Pirates: The Last Royal Treasure received positive reviews from critics and audiences alike, who praised its entertaining plot, engaging characters, and spectacular action scenes. Here are some excerpts from some of the reviews:

    -
    -

    "The Pirates: The Last Royal Treasure is a fun and thrilling adventure that will keep you entertained from start to finish. The film has a great balance of action, comedy, and romance, and it showcases the charm and talent of its cast. The film also has a high production value, with stunning visuals and impressive effects. If you are looking for a film that will make you laugh, cheer, and enjoy, this is the one for you." - Kim Hyun-soo, The Korea Herald

    -
    -
    -

    "The Pirates: The Last Royal Treasure is a rare gem in the Korean film industry, a period swashbuckler that is both historically accurate and creatively original. The film has a captivating story that mixes history, fantasy, and comedy in a clever way. The film also has a charismatic ensemble of actors who bring their characters to life with humor and emotion. The film also has a spectacular display of action and comedy, with exciting scenes that will keep you on the edge of your seat." - Lee Seung-hoon, Cine21

    -
    -
    -

    "The Pirates: The Last Royal Treasure is a must-watch for fans of adventure films and Korean cinema. The film has a refreshing and unique take on the pirate genre, with a Korean twist. The film has a witty and humorous script that will make you laugh out loud. The film also has a stellar cast of actors who have great chemistry and charisma. The film also has a magnificent production value, with beautiful cinematography and amazing effects. The film is a perfect example of how to make a fun and exciting period swashbuckler." - James Marsh, South China Morning Post

    -
    -

    The Conclusion: A Highly Recommended Adventure Film

    -

    In conclusion, The Pirates: The Last Royal Treasure is a highly recommended adventure film that will give you a fun and exciting time. The film has everything you could ask for in a period swashbuckler: a treasure hunt, a whale chase, a rebel plot, sea monsters, traps, assassins, rival pirates, and more. The film also has a charming and talented cast of actors who deliver hilarious and heartfelt performances. The film also has an impressive production value, with stunning visuals and impressive effects. The film is a great example of how to make a successful and enjoyable pirate film.

    -

    If you are looking for a film that will make you laugh, cheer, and enjoy, you should definitely watch The Pirates: The Last Royal Treasure. You will not regret it.

    -

    FAQs About The Pirates: The Last Royal Treasure

    -

    Is The Pirates: The Last Royal Treasure a sequel to The Pirates (2014)?

    -

    No, it is not a direct sequel to The Pirates (2014), but rather a spiritual sequel that has a different cast and story but a similar genre and tone. You do not need to watch the first film to enjoy the second one.

    -

    Is The Pirates: The Last Royal Treasure based on a true story?

    -

    No, it is not based on a true story, but rather a fictional story that mixes historical elements with fantasy and comedy. The film is set in the Joseon era, which was a real historical period in Korea's history, but the characters and events are mostly made up.

    -

    Where can I watch The Pirates: The Last Royal Treasure?

    -

    You can watch it on Netflix with a subscription or in selected theaters. You can check the availability of the film on Netflix's website or app. You can also check the local listings of theaters near you.

    -

    How long is The Pirates: The Last Royal Treasure?

    -

    It is 126 minutes long.

    -

    Will there be another sequel to The Pirates?

    -

    There is no official announcement yet, but it is possible given the popularity and success of the film series. The director and the writer have expressed their interest in making another sequel if there is enough demand from the fans.

    - : https://www.koreaherald.com/view.php?ud=20220202000741 : https://www.cine21.com/news/view/?mag_id=100000 : https://www.s

    401be4b1e0
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/Red Ball 4 APK Mod The Ultimate Guide to Playing the Popular Puzzle Game.md b/spaces/congsaPfin/Manga-OCR/logs/Red Ball 4 APK Mod The Ultimate Guide to Playing the Popular Puzzle Game.md deleted file mode 100644 index 2fb1315669189b5f8f5bf4929dfabe44389a966e..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/Red Ball 4 APK Mod The Ultimate Guide to Playing the Popular Puzzle Game.md +++ /dev/null @@ -1,100 +0,0 @@ - -

    Red Ball 4 APK Mod: A Fun and Engaging Platformer Game for Android

    -

    If you are looking for a platformer game that is simple, colorful, and challenging, then you might want to try Red Ball 4. This game is developed by FDG Entertainment and features a cute red ball as the main character who has to save the world from evil squares. The game has 75 levels of adventure, epic boss battles, exciting physics elements, and a groovy soundtrack. You can also play it offline and with a controller.

    -

    red ball 4 apk mod


    DOWNLOAD ===== https://urlca.com/2uOb5R



    -

    But what if you want to enjoy the game without any limitations or ads? Well, there is a way to do that with Red Ball 4 APK mod. This is a modified version of the game that gives you access to premium features such as unlimited lives, unlocked levels, and more. In this article, we will show you how to download and install Red Ball 4 APK mod on your device, how to play it and enjoy its benefits, and what are its pros and cons. Let's get started!

    -

    How to Download and Install Red Ball 4 APK Mod on Your Device

    -

    Downloading and installing Red Ball 4 APK mod is not difficult, but you need to follow some steps carefully. Here is what you need to do:

    -
      -
    1. First, you need to enable unknown sources on your device. This will allow you to install apps from sources other than the Google Play Store. To do this, go to Settings > Security > Unknown Sources and toggle it on.
    2. -
    3. Next, you need to download the Red Ball 4 APK mod file from a reliable source. You can use one of the links provided by `search_web("red ball 4 apk mod download link")` such as or . Make sure you download the latest version of the mod that is compatible with your device.
    4. -
    5. After downloading the file, locate it in your file manager and tap on it to start the installation process. You may need to grant some permissions for the app to install properly.
    6. -
    7. Once the installation is complete, you can launch the game from your app drawer or home screen and enjoy playing Red Ball 4 APK mod.
    8. -
    -

    How to Play Red Ball 4 APK Mod and Enjoy Its Benefits

    -

    Playing Red Ball 4 APK mod is similar to playing the original game, but with some added advantages. Here are some tips and tricks on how to play the game and enjoy its benefits:

    -

    red ball 4 premium unlocked apk
    -red ball 4 mod apk unlimited lives
    -red ball 4 hack apk download
    -red ball 4 latest version mod apk
    -red ball 4 mod apk all levels unlocked
    -red ball 4 mod apk android 1
    -red ball 4 mod apk revdl
    -red ball 4 mod apk happymod
    -red ball 4 mod apk free download
    -red ball 4 mod apk no ads
    -red ball 4 mod apk rexdl
    -red ball 4 mod apk unlimited stars
    -red ball 4 mod apk an1
    -red ball 4 mod apk apkpure
    -red ball 4 mod apk offline
    -red ball 4 mod apk unlimited money
    -red ball 4 mod apk android oyun club
    -red ball 4 mod apk uptodown
    -red ball 4 mod apk pure
    -red ball 4 mod apk unlimited everything
    -red ball 4 mod apk full version
    -red ball 4 mod apk online
    -red ball 4 mod apk old version
    -red ball 4 mod apk new version
    -red ball 4 mod apk obb
    -red ball 4 pro apk download
    -red ball 4 hack version download
    -red ball 4 cheat codes android
    -red ball 4 game download for android
    -red ball 4 game free download for pc
    -red ball 4 game online play now
    -red ball 4 game walkthrough
    -red ball 4 game review
    -red ball 4 game tips and tricks
    -red ball 4 game features and benefits
    -red ball 4 game screenshots and videos
    -red ball 4 game ratings and feedbacks
    -red ball 4 game updates and news
    -red ball 4 game FAQs and guides
    -red ball 4 game support and contact information

    -
      -
    • The gameplay in Red Ball 4 APK mod is very simple. You can use your left thumb to control the direction in which you move the ball (left or right) and your right thumb to jump. You can also use a controller if you prefer.
    • -
    • Your goal is to roll, jump, and bounce through each level, collecting stars, avoiding obstacles, and defeating enemies. You can also use objects such as boxes, rocks, springs, etc. to help you along the way.
    • -
    • With Red Ball 4 APK mod, you don't have to worry about running out of lives or watching ads. You have unlimited lives, so you can retry any level as many times as you want. You also have all levels unlocked, so you can choose any level you want to play.
    • -
    • You can also enjoy some premium features that are normally paid in the original game. For example, you can unlock different skins for your ball such as soccer ball, yellow ball, black ball, etc. You can also access some bonus levels such as Battle for the Moon and Into The Cave.
    • -
    -

    Red Ball 4 APK Mod Review: Pros and Cons

    -

    Red Ball Ball 4 APK mod is a great game for anyone who loves platformer games and wants to have more fun and freedom. However, it also has some drawbacks that you should be aware of. Here are some pros and cons of Red Ball 4 APK mod:

    - - - - - - - - - - - - - - - - - - - - - -
    ProsCons
    - Unlimited lives and no ads- May not work on some devices or cause crashes
    - All levels and skins unlocked- May not be updated as frequently as the original game
    - Bonus levels and premium features available- May be considered cheating or unfair by some players
    - Same gameplay and graphics as the original game- May take up more storage space than the original game
    -

    Conclusion and FAQs

    -

    Red Ball 4 APK mod is a modified version of the popular platformer game Red Ball 4 that gives you access to premium features such as unlimited lives, unlocked levels, skins, bonus levels, and more. It is easy to download and install on your device, and it offers a fun and engaging gameplay experience. However, it also has some disadvantages such as compatibility issues, update delays, ethical concerns, and storage consumption. You should weigh the pros and cons before deciding to play Red Ball 4 APK mod.

    -

    If you have any questions about Red Ball 4 APK mod, you may find the answers below:

    -

    Q: Is Red Ball 4 APK mod safe to download and install?

    -

    A: Red Ball 4 APK mod is generally safe to download and install, as long as you use a reliable source and scan the file for viruses before installing it. However, you should always be careful when downloading and installing any modded app, as they may contain malware or spyware that can harm your device or compromise your privacy.

    -

    Q: Is Red Ball 4 APK mod legal to use?

    -

    A: Red Ball 4 APK mod is not legal to use, as it violates the terms and conditions of the original game developer. By using Red Ball 4 APK mod, you are infringing on the intellectual property rights of FDG Entertainment and potentially exposing yourself to legal action. You should respect the work of the original game developer and support them by playing the official version of the game.

    -

    Q: How can I update Red Ball 4 APK mod?

    -

    A: Red Ball 4 APK mod may not be updated as frequently as the original game, as it depends on the availability and work of the modder. If you want to update Red Ball 4 APK mod, you will need to download and install the latest version of the mod from the same source you used before. You may also need to uninstall the previous version of the mod before installing the new one.

    -

    Q: Can I play Red Ball 4 APK mod online or with friends?

    -

    A: Red Ball 4 APK mod is an offline game that does not require an internet connection to play. However, you can still play it online or with friends if you want to. You can use a third-party app such as Google Play Games or Facebook to connect with other players and share your progress and achievements. You can also use a screen mirroring app such as Chromecast or Miracast to cast your game screen to a larger display and play with your friends.

    -

    Q: Can I restore my progress in Red Ball 4 APK mod if I delete it or switch devices?

    -

    A: Red Ball 4 APK mod does not have a cloud save feature that allows you to sync your progress across different devices or platforms. If you delete the game or switch devices, you will lose your progress and have to start over. However, you can still backup your progress manually by using a file manager app such as ES File Explorer or ZArchiver to copy the data folder of the game from your device's internal storage to an external storage such as a SD card or a USB drive. You can then restore your progress by copying the data folder back to your device's internal storage after reinstalling the game.

    197e85843d
    -
    -
    \ No newline at end of file diff --git a/spaces/congsaPfin/Manga-OCR/logs/VidMate 2018 APK How to Download MP3 Songs from YT and Other Sites.md b/spaces/congsaPfin/Manga-OCR/logs/VidMate 2018 APK How to Download MP3 Songs from YT and Other Sites.md deleted file mode 100644 index 3f3b623256551d5d7f6821bb6aa7d7a88d8dc1e5..0000000000000000000000000000000000000000 --- a/spaces/congsaPfin/Manga-OCR/logs/VidMate 2018 APK How to Download MP3 Songs from YT and Other Sites.md +++ /dev/null @@ -1,86 +0,0 @@ - -

    VidMate 2018 APK Download MP3: How to Download Music from YouTube and Other Sites

    -

    Do you love listening to music online but hate the annoying ads and buffering issues? Do you wish you could download your favorite songs and playlists from YouTube and other sites in MP3 format and enjoy them offline? If yes, then you need VidMate, the best YT downloader app for android. In this article, we will show you how to download and install VidMate 2018 APK, and how to use it to download MP3 music from YouTube and other sites with ease.

    -

    What is VidMate?

    -

    VidMate is a popular video and music downloader app that allows you to download videos and music from YT, Facebook, Instagram, WhatsApp status, Tiktok, and many other sites. You can choose from various formats and quality options, such as MP4, 3GP, WEBM, MP3, M4A, etc. You can also watch live TV channels, movies, shows, and sports on VidMate. VidMate is free to use and has a user-friendly interface. You can download VidMate App for Android and enjoy your favorites on the go!

    -

    vidmate 2018 apk download mp3


    Download Ziphttps://urlca.com/2uOfvt



    -

    Features of VidMate

    -

    Some of the amazing features of VidMate are:

    -
      -
    • Download videos and music from over 1000 sites
    • -
    • Supports HD video and HQ music download
    • -
    • Fast download speed and resume capability
    • -
    • Watch live TV channels, movies, shows, and sports
    • -
    • Built-in video and music player
    • -
    • Manage your downloads and files easily
    • -
    • Customize your app settings and preferences
    • -
    -

    How to download and install VidMate 2018 APK

    -

    To download and install VidMate 2018 APK on your Android device, follow these simple steps:

    -
      -
    1. Go to the official site of VidMate (^1^) or scan the QR code below.
    2. -
    3. Tap on the "Download" button and wait for the APK file to be downloaded.
    4. -
    5. Go to your device settings and enable "Unknown sources" under security options.
    6. -
    7. Locate the downloaded APK file in your file manager and tap on it to install it.
    8. -
    9. Launch the app and grant the necessary permissions.
    10. -
    11. Congratulations! You have successfully installed VidMate 2018 APK on your device.
    12. -
    -

    How to download MP3 music from YouTube and other sites using VidMate

    -

    Now that you have installed VidMate 2018 APK on your device, you can start downloading MP3 music from YouTube and other sites with ease. Here are the steps you need to follow:

    -

    Step 1: Open VidMate and search for the video or music you want to download

    -

    You can either use the built-in browser or the search bar to find the video or music you want to download. You can also paste the URL of the video or music from any site into the search bar. You will see a list of results matching your query.

    -

    Step 2: Tap on the download button and choose the MP3 format

    -

    Once you find the video or music you want to download, tap on the red download button at the bottom right corner of the screen. You will see a pop-up window with various formats and quality options to choose from. Select the MP3 format and the quality you prefer. You can also change the file name and location if you want.

    -

    Step 3: Wait for the download to finish and enjoy your music offline

    -

    VidMate will start downloading the MP3 file of the video or music you selected. You can see the progress and status of the download in the notification bar or in the app itself. You can also pause, resume, or cancel the download at any time. Once the download is complete, you can find the MP3 file in your device storage or in the app's library. You can play it with any music player or share it with others.

    -

    Advantages of downloading MP3 music with VidMate

    -

    Downloading MP3 music with VidMate has many advantages over other methods. Here are some of them:

    -

    vidmate app free download 2018 mp3 songs
    -vidmate apk 2018 latest version download mp3
    -vidmate 2018 apk download for android mp3
    -vidmate music downloader 2018 apk mp3
    -vidmate 2018 apk download install mp3
    -vidmate apk 2018 free download mp3 converter
    -vidmate 2018 apk download old version mp3
    -vidmate video and mp3 downloader 2018 apk
    -vidmate 2018 apk download uptodown mp3
    -vidmate hd video downloader 2018 apk mp3
    -vidmate 2018 apk download for pc mp3
    -vidmate apk 2018 download 9apps mp3
    -vidmate 2018 apk download official site mp3
    -vidmate youtube downloader 2018 apk mp3
    -vidmate 2018 apk download online mp3
    -vidmate movie downloader 2018 apk mp3
    -vidmate 2018 apk download for iphone mp3
    -vidmate apk 2018 download apkpure mp3
    -vidmate 2018 apk download new version mp3
    -vidmate status downloader 2018 apk mp3
    -vidmate app review 2018 apk download mp3
    -vidmate apk 2018 download latest update mp3
    -vidmate 2018 apk download for jio phone mp3
    -vidmate live tv 2018 apk download mp3
    -vidmate app features 2018 apk download mp3

    -

    High-quality audio and fast speed

    -

    VidMate allows you to download MP3 music with high-quality audio and fast speed. You can choose from different bitrates and sample rates, such as 128 kbps, 192 kbps, 256 kbps, 320 kbps, etc. You can also download multiple files at once with VidMate's multi-thread technology.

    -

    Unlimited downloads and free of cost

    -

    VidMate does not limit the number of downloads you can make with it. You can download as many videos and music as you want with VidMate without any restrictions or fees. VidMate is completely free to use and does not require any registration or subscription.

    -

    Supports multiple platforms and languages

    -

    VidMate supports downloading videos and music from over 1000 sites, including YouTube, Facebook, Instagram, WhatsApp status, Tiktok, and many more. You can also download videos and music in different languages, such as English, Hindi, Tamil, Telugu, Malayalam, etc. VidMate also supports multiple regional languages for its interface, such as Hindi, Bengali, Marathi, Gujarati, etc.

    -

    Conclusion

    -

    VidMate is a powerful and versatile video and music downloader app that allows you to download MP3 music from YouTube and other sites with ease. You can enjoy high-quality audio, fast speed, unlimited downloads, and free of cost with VidMate. You can also watch live TV channels, movies, shows, and sports on VidMate. VidMate is easy to use and compatible with most Android devices. Download VidMate 2018 APK today and enjoy your favorite music offline!

    -

    FAQs

    -

    Here are some frequently asked questions about VidMate 2018 APK download MP3:

    -
      -
    • Is VidMate safe to use?
    • -
    • VidMate is safe to use as long as you download it from its official site or a trusted source. It does not contain any viruses or malware that can harm your device or data.
    • -
    • Is VidMate legal to use?
    • -
    • VidMate is legal to use for personal and non-commercial purposes only. You should respect the intellectual property rights of the original creators and owners of the videos and music you download with VidMate. You should not use VidMate for piracy or illegal distribution of content.
    • -
    • How to update VidMate?
    • -
    • VidMate updates itself automatically whenever there is a new version available. You can also check for updates manually by going to the app's settings and tapping on "Check update". If there is an update available, you can download and install it easily.
    • -
    • How to contact VidMate?
    • -
    • If you have any questions, feedback, or suggestions about VidMate, you can contact them through their official website , their Facebook page , their Twitter account , or their email address vidmateapp@gmail.com.
    • -
    • What are some alternatives to VidMate?
    • -
    • If you are looking for some alternatives to VidMate, you can try these apps: Snaptube , TubeMate , Videoder , YMusic , etc.
    • -

    401be4b1e0
    -
    -
    \ No newline at end of file diff --git a/spaces/contluForse/HuggingGPT/assets/EaseUS Data Recovery Wizard 12.9.1 BETTER Crack License Code 2019.md b/spaces/contluForse/HuggingGPT/assets/EaseUS Data Recovery Wizard 12.9.1 BETTER Crack License Code 2019.md deleted file mode 100644 index 47dd22237e14480f0c0441ab349cce88a98606c9..0000000000000000000000000000000000000000 --- a/spaces/contluForse/HuggingGPT/assets/EaseUS Data Recovery Wizard 12.9.1 BETTER Crack License Code 2019.md +++ /dev/null @@ -1,14 +0,0 @@ -
    -

    If your computer is hit by a virus or you unexpectedly lose your data, EaseUS Data Recovery Wizard Free 12.9.1 will help you recover up to 2 GB of data easily for free. If you have more data to recover, you can pick up a full license to get the job done.

    -

    EaseUS Data Recovery Wizard 12.9.1 Crack License Code {2019}


    Download Zip ✯✯✯ https://ssurll.com/2uzy1l



    -

    EaseUS Data Recovery Wizard Free 12.9.1 has all the essential features you need to retrieve lost data. You can try the software free ( up to 500 MB which can be extended up to 2 GB) and if you feel confident about its working, you can pick up a Pro license which costs $69.95.

    -

    Easeus Data Recovery 13.2.0 Crack Professional Wizard + Serial Keys 2020. by zs · February 16, 2020. EASEUS Data Recovery Crack 2020 Incl License Keys Free ... Firstly, Download the EaseUS Data Recovery Crack from the button ... Tags: easeus crackeaseus data recovery 2019 crackeaseus data ...

    -

    EaseUS Data Recovery Wizard Crack With Key is a software scans the ... Still, also, Access Data Recovery Wizard Free is an advanced disaster recovery solution that everyone should try. ... Related Software Download: WonderShare Dr.Fone Crack ... Easeus Data Recovery Wizard Keygen 2019/2020 List.. EaseUS Data Recovery Crack Latest Version 2019. EaseUS Data Recovery Wizard 12.9. 1 Crack is outstanding and effective software for recovering all kinds of data. It also provides users to recover data lost due to partition rearrangement recovery and many more cases of data loss.. Easeus Data Recovery Wizard 12.9.1 Crack With Activation Key Free Download 2019 Viruses are so common and dangerous today.. EaseUS Data Recovery Wizard 12.9.1 Crack is the best free data ... EaseUS Data Recovery Wizard Serial Key is a reliable safe and best data recovery ... EaseUS 2019 latest provides a downloadable WinPE bootable media .... EaseUS Data Recovery Wizard 13 Crack Key + Keygen 2020 Latest Version Download ... like it gives an ultimate data recovery of all your lost data for free of cost. you don't have to pay ... Operating System: Windows 10/8.1/8/7/Vista/XP, Windows Server 2019/2016/2012/2008/2003. ... Download this software from link given: ...

    -

    easeus data recovery wizard activation, easeus data recovery wizard activation key, easeus data recovery wizard activation code 2020, easeus data recovery wizard activation code 2021, easeus data recovery wizard activation keygen, easeus data recovery wizard activation license code, easeus data recovery wizard activation serial number, easeus data recovery wizard activation crack, easeus data recovery wizard activation key 10.8, easeus data recovery wizard activation free

    -

    EaseUS Data Recovery Wizard Crack is the software application which is used to restore the data ... EaseUS Data Recovery Wizard 12.9.1 Crack Keygen Free Download ... EaseUS Data Recovery Wizard License Key 2019:.. Jump to EaseUS Data Recovery Wizard Professional Crack Free ... - EaseUS Data Recovery Wizard Professional Crack Free Download. System .... EaseUS Data Recovery Wizard Crack Free Serial Code 2020 ... You may like to download Recover My Files Serial Key that is ... MiniTool Power Data Recovery 8.7 Crack With Keygen 2020December 31, 2019In "Recovery".. EaseUS Data Recovery Wizard 13.2 Crack + Keygen + License Code 2020 ... of software that would originally cost a fortune but you can now get for free. ... A key benefit of this software is that you can use it to recover a wide range of file types. ... binod chaudhary on Corel Draw X7 Free Download Full Version With Crack ...

    -

    EaseUS Data Recovery Wizard 12.9.1 Crack With License Code + Ke. ... Data Recovery Wizard Crack With License Code Recovery Tools, Data Recovery, Generate Key ... Corel Draw X7 Full Keygen With Crack Patch Free Activator Download ... SamDrivers 19.6 ISO 2019 Offline DriverPack Solution Latest Download.. EaseUS Data Recovery Wizard 13 Crack Key + License Code 2020 ... Without a keygen, license code or serial number, it's an entirely free data retrieval software ... Download Install and setup; Unzip and Practice readme document education. ... Rekordbox DJ Crack 5.6.0 Key + Code 2019 Free Download .... Easeus data Recovery wizard crack, serial range, license key, kickass, license ... EaseUS Data Recovery Wizard 13.2 Crack + Key + License Code 2020 ... There are free and paid versions of the software on both Windows and macOS. ... Additionally, it provides a downloadable WinPE bootable media that helps the user to ...

    -

    -

    EaseUS Data Recovery Wizard 13.2 With Crack Latest 2020. It shows to be an ... EaseUS Data Recovery Crack + Key 2020 Free Download. Whatever option .... Activate EaseUS Data Recovery License Key 2020 Updated & EaseUS Data Recovery ... This software's not free but you can limit access to use with limited features in trial ... 9 EaseUS Data Recovery Wizard 12.9.1 Pro + License Code [Updated]; 10 Share this: ... All windows and Mac Os have EasyUS crack compatibility.. Stop seeking cracked EaseUS Data Recovery Wizard with serial key, ... You can download the full version of this software for free here and .... 22 Feb 2019 . ... EaseUS Data Recovery Wizard 12.9 License Code Crack Full. ... To Active EaseUS Data Recovery Wizard With Serial Key. ... EaseUS Data Recovery Wizard 12.9.1 Crack and License Code enables to recover formatted, ... [Crack & Patch] Download is the best free data recovery software to solve all data .... EASEUS Data Recovery Wizard 12.9.1 Crack + License Code 2019 ... EasyUS Serial Key Data Recovery Free Generator This allows you to recover data in case ... Download trial from the given link; Extract setup.exe and run ... eff9728655

    -

    easeus data recovery wizard code, easeus data recovery wizard code free, easeus data recovery wizard code activation, easeus data recovery wizard 12.0.0 license code, easeus data recovery wizard 13.5 license code, easeus data recovery wizard 13.2 license code, easeus data recovery wizard 12.8.0 license code, easeus data recovery wizard 12.9.1 pro + license code, easeus data recovery wizard 13.3 license code, easeus data recovery wizard 12.9.1 license code, easeus data recovery wizard coupon code, easeus data recovery wizard machine code, easeus data recovery wizard upgrade code, easeus data recovery wizard license code 12.9.1, easeus data recovery wizard license code generator, easeus data recovery wizard license code 13.2, easeus data recovery wizard license code 13.5 1254b32489

    aaccfb2cb3
    -
    -
    \ No newline at end of file diff --git a/spaces/contluForse/HuggingGPT/assets/Europa Universalis Iv Spolszczenie Download [UPDATED].md b/spaces/contluForse/HuggingGPT/assets/Europa Universalis Iv Spolszczenie Download [UPDATED].md deleted file mode 100644 index 3470aaa2aa99a3548fff9f9aab47e26b175368bf..0000000000000000000000000000000000000000 --- a/spaces/contluForse/HuggingGPT/assets/Europa Universalis Iv Spolszczenie Download [UPDATED].md +++ /dev/null @@ -1,6 +0,0 @@ -

    europa universalis iv spolszczenie download


    DOWNLOADhttps://ssurll.com/2uzymL



    - - d5da3c52bf
    -
    -
    -

    diff --git a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/uniformer/mmcv/video/__init__.py b/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/uniformer/mmcv/video/__init__.py deleted file mode 100644 index 73199b01dec52820dc6ca0139903536344d5a1eb..0000000000000000000000000000000000000000 --- a/spaces/coreml-community/ControlNet-v1-1-Annotators-cpu/annotator/uniformer/mmcv/video/__init__.py +++ /dev/null @@ -1,11 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from .io import Cache, VideoReader, frames2video -from .optflow import (dequantize_flow, flow_from_bytes, flow_warp, flowread, - flowwrite, quantize_flow, sparse_flow_from_bytes) -from .processing import concat_video, convert_video, cut_video, resize_video - -__all__ = [ - 'Cache', 'VideoReader', 'frames2video', 'convert_video', 'resize_video', - 'cut_video', 'concat_video', 'flowread', 'flowwrite', 'quantize_flow', - 'dequantize_flow', 'flow_warp', 'flow_from_bytes', 'sparse_flow_from_bytes' -] diff --git a/spaces/coutant/back-translation/README.md b/spaces/coutant/back-translation/README.md deleted file mode 100644 index d30c42e78ed55bc76551b265869b4af35a695ee4..0000000000000000000000000000000000000000 --- a/spaces/coutant/back-translation/README.md +++ /dev/null @@ -1,27 +0,0 @@ ---- -title: Back Translation -emoji: 📚 -colorFrom: yellow -colorTo: indigo -sdk: gradio -sdk_version: 3.3.1 -app_file: app.py -pinned: false -license: afl-3.0 ---- - -# Back translation - -Small translation check demo, computing chained translations En->Fr->En. - -The better meaning similarities the better is the intermediate translation, no? - -Double translation method check : The final outcome in English should match the original as closely as possible in a quality translation job. - -Showcasing difference if any between original and computed outcome. - -using an open Natural Language Processing model. -Helsinki-NLP Opus MT model : https://github.com/Helsinki-NLP - - - diff --git a/spaces/cownclown/Image-and-3D-Model-Creator/PIFu/lib/model/HGFilters.py b/spaces/cownclown/Image-and-3D-Model-Creator/PIFu/lib/model/HGFilters.py deleted file mode 100644 index 870b3c43c82d66df001eb1bc24af9ce21ec60c83..0000000000000000000000000000000000000000 --- a/spaces/cownclown/Image-and-3D-Model-Creator/PIFu/lib/model/HGFilters.py +++ /dev/null @@ -1,146 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from ..net_util import * - - -class HourGlass(nn.Module): - def __init__(self, num_modules, depth, num_features, norm='batch'): - super(HourGlass, self).__init__() - self.num_modules = num_modules - self.depth = depth - self.features = num_features - self.norm = norm - - self._generate_network(self.depth) - - def _generate_network(self, level): - self.add_module('b1_' + str(level), ConvBlock(self.features, self.features, norm=self.norm)) - - self.add_module('b2_' + str(level), ConvBlock(self.features, self.features, norm=self.norm)) - - if level > 1: - self._generate_network(level - 1) - else: - self.add_module('b2_plus_' + str(level), ConvBlock(self.features, self.features, norm=self.norm)) - - self.add_module('b3_' + str(level), ConvBlock(self.features, self.features, norm=self.norm)) - - def _forward(self, level, inp): - # Upper branch - up1 = inp - up1 = self._modules['b1_' + str(level)](up1) - - # Lower branch - low1 = F.avg_pool2d(inp, 2, stride=2) - low1 = self._modules['b2_' + str(level)](low1) - - if level > 1: - low2 = self._forward(level - 1, low1) - else: - low2 = low1 - low2 = self._modules['b2_plus_' + str(level)](low2) - - low3 = low2 - low3 = self._modules['b3_' + str(level)](low3) - - # NOTE: for newer PyTorch (1.3~), it seems that training results are degraded due to implementation diff in F.grid_sample - # if the pretrained model behaves weirdly, switch with the commented line. - # NOTE: I also found that "bicubic" works better. - up2 = F.interpolate(low3, scale_factor=2, mode='bicubic', align_corners=True) - # up2 = F.interpolate(low3, scale_factor=2, mode='nearest) - - return up1 + up2 - - def forward(self, x): - return self._forward(self.depth, x) - - -class HGFilter(nn.Module): - def __init__(self, opt): - super(HGFilter, self).__init__() - self.num_modules = opt.num_stack - - self.opt = opt - - # Base part - self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) - - if self.opt.norm == 'batch': - self.bn1 = nn.BatchNorm2d(64) - elif self.opt.norm == 'group': - self.bn1 = nn.GroupNorm(32, 64) - - if self.opt.hg_down == 'conv64': - self.conv2 = ConvBlock(64, 64, self.opt.norm) - self.down_conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1) - elif self.opt.hg_down == 'conv128': - self.conv2 = ConvBlock(64, 128, self.opt.norm) - self.down_conv2 = nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1) - elif self.opt.hg_down == 'ave_pool': - self.conv2 = ConvBlock(64, 128, self.opt.norm) - else: - raise NameError('Unknown Fan Filter setting!') - - self.conv3 = ConvBlock(128, 128, self.opt.norm) - self.conv4 = ConvBlock(128, 256, self.opt.norm) - - # Stacking part - for hg_module in range(self.num_modules): - self.add_module('m' + str(hg_module), HourGlass(1, opt.num_hourglass, 256, self.opt.norm)) - - self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256, self.opt.norm)) - self.add_module('conv_last' + str(hg_module), - nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) - if self.opt.norm == 'batch': - self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) - elif self.opt.norm == 'group': - self.add_module('bn_end' + str(hg_module), nn.GroupNorm(32, 256)) - - self.add_module('l' + str(hg_module), nn.Conv2d(256, - opt.hourglass_dim, kernel_size=1, stride=1, padding=0)) - - if hg_module < self.num_modules - 1: - self.add_module( - 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) - self.add_module('al' + str(hg_module), nn.Conv2d(opt.hourglass_dim, - 256, kernel_size=1, stride=1, padding=0)) - - def forward(self, x): - x = F.relu(self.bn1(self.conv1(x)), True) - tmpx = x - if self.opt.hg_down == 'ave_pool': - x = F.avg_pool2d(self.conv2(x), 2, stride=2) - elif self.opt.hg_down in ['conv64', 'conv128']: - x = self.conv2(x) - x = self.down_conv2(x) - else: - raise NameError('Unknown Fan Filter setting!') - - normx = x - - x = self.conv3(x) - x = self.conv4(x) - - previous = x - - outputs = [] - for i in range(self.num_modules): - hg = self._modules['m' + str(i)](previous) - - ll = hg - ll = self._modules['top_m_' + str(i)](ll) - - ll = F.relu(self._modules['bn_end' + str(i)] - (self._modules['conv_last' + str(i)](ll)), True) - - # Predict heatmaps - tmp_out = self._modules['l' + str(i)](ll) - outputs.append(tmp_out) - - if i < self.num_modules - 1: - ll = self._modules['bl' + str(i)](ll) - tmp_out_ = self._modules['al' + str(i)](tmp_out) - previous = previous + ll + tmp_out_ - - return outputs, tmpx.detach(), normx diff --git a/spaces/cvlab/zero123-live/ldm/extras.py b/spaces/cvlab/zero123-live/ldm/extras.py deleted file mode 100644 index 62e654b330c44b85565f958d04bee217a168d7ec..0000000000000000000000000000000000000000 --- a/spaces/cvlab/zero123-live/ldm/extras.py +++ /dev/null @@ -1,77 +0,0 @@ -from pathlib import Path -from omegaconf import OmegaConf -import torch -from ldm.util import instantiate_from_config -import logging -from contextlib import contextmanager - -from contextlib import contextmanager -import logging - -@contextmanager -def all_logging_disabled(highest_level=logging.CRITICAL): - """ - A context manager that will prevent any logging messages - triggered during the body from being processed. - - :param highest_level: the maximum logging level in use. - This would only need to be changed if a custom level greater than CRITICAL - is defined. - - https://gist.github.com/simon-weber/7853144 - """ - # two kind-of hacks here: - # * can't get the highest logging level in effect => delegate to the user - # * can't get the current module-level override => use an undocumented - # (but non-private!) interface - - previous_level = logging.root.manager.disable - - logging.disable(highest_level) - - try: - yield - finally: - logging.disable(previous_level) - -def load_training_dir(train_dir, device, epoch="last"): - """Load a checkpoint and config from training directory""" - train_dir = Path(train_dir) - ckpt = list(train_dir.rglob(f"*{epoch}.ckpt")) - assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files" - config = list(train_dir.rglob(f"*-project.yaml")) - assert len(ckpt) > 0, f"didn't find any config in {train_dir}" - if len(config) > 1: - print(f"found {len(config)} matching config files") - config = sorted(config)[-1] - print(f"selecting {config}") - else: - config = config[0] - - - config = OmegaConf.load(config) - return load_model_from_config(config, ckpt[0], device) - -def load_model_from_config(config, ckpt, device="cpu", verbose=False): - """Loads a model from config and a ckpt - if config is a path will use omegaconf to load - """ - if isinstance(config, (str, Path)): - config = OmegaConf.load(config) - - with all_logging_disabled(): - print(f"Loading model from {ckpt}") - pl_sd = torch.load(ckpt, map_location="cpu") - global_step = pl_sd["global_step"] - sd = pl_sd["state_dict"] - model = instantiate_from_config(config.model) - m, u = model.load_state_dict(sd, strict=False) - if len(m) > 0 and verbose: - print("missing keys:") - print(m) - if len(u) > 0 and verbose: - print("unexpected keys:") - model.to(device) - model.eval() - model.cond_stage_model.device = device - return model \ No newline at end of file diff --git a/spaces/dawood17/SayBot_Enchancer/CodeFormer/basicsr/data/transforms.py b/spaces/dawood17/SayBot_Enchancer/CodeFormer/basicsr/data/transforms.py deleted file mode 100644 index aead9dc73ed063e1c5865040eaa2652b26aa3ad3..0000000000000000000000000000000000000000 --- a/spaces/dawood17/SayBot_Enchancer/CodeFormer/basicsr/data/transforms.py +++ /dev/null @@ -1,165 +0,0 @@ -import cv2 -import random - - -def mod_crop(img, scale): - """Mod crop images, used during testing. - - Args: - img (ndarray): Input image. - scale (int): Scale factor. - - Returns: - ndarray: Result image. - """ - img = img.copy() - if img.ndim in (2, 3): - h, w = img.shape[0], img.shape[1] - h_remainder, w_remainder = h % scale, w % scale - img = img[:h - h_remainder, :w - w_remainder, ...] - else: - raise ValueError(f'Wrong img ndim: {img.ndim}.') - return img - - -def paired_random_crop(img_gts, img_lqs, gt_patch_size, scale, gt_path): - """Paired random crop. - - It crops lists of lq and gt images with corresponding locations. - - Args: - img_gts (list[ndarray] | ndarray): GT images. Note that all images - should have the same shape. If the input is an ndarray, it will - be transformed to a list containing itself. - img_lqs (list[ndarray] | ndarray): LQ images. Note that all images - should have the same shape. If the input is an ndarray, it will - be transformed to a list containing itself. - gt_patch_size (int): GT patch size. - scale (int): Scale factor. - gt_path (str): Path to ground-truth. - - Returns: - list[ndarray] | ndarray: GT images and LQ images. If returned results - only have one element, just return ndarray. - """ - - if not isinstance(img_gts, list): - img_gts = [img_gts] - if not isinstance(img_lqs, list): - img_lqs = [img_lqs] - - h_lq, w_lq, _ = img_lqs[0].shape - h_gt, w_gt, _ = img_gts[0].shape - lq_patch_size = gt_patch_size // scale - - if h_gt != h_lq * scale or w_gt != w_lq * scale: - raise ValueError(f'Scale mismatches. GT ({h_gt}, {w_gt}) is not {scale}x ', - f'multiplication of LQ ({h_lq}, {w_lq}).') - if h_lq < lq_patch_size or w_lq < lq_patch_size: - raise ValueError(f'LQ ({h_lq}, {w_lq}) is smaller than patch size ' - f'({lq_patch_size}, {lq_patch_size}). ' - f'Please remove {gt_path}.') - - # randomly choose top and left coordinates for lq patch - top = random.randint(0, h_lq - lq_patch_size) - left = random.randint(0, w_lq - lq_patch_size) - - # crop lq patch - img_lqs = [v[top:top + lq_patch_size, left:left + lq_patch_size, ...] for v in img_lqs] - - # crop corresponding gt patch - top_gt, left_gt = int(top * scale), int(left * scale) - img_gts = [v[top_gt:top_gt + gt_patch_size, left_gt:left_gt + gt_patch_size, ...] for v in img_gts] - if len(img_gts) == 1: - img_gts = img_gts[0] - if len(img_lqs) == 1: - img_lqs = img_lqs[0] - return img_gts, img_lqs - - -def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False): - """Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees). - - We use vertical flip and transpose for rotation implementation. - All the images in the list use the same augmentation. - - Args: - imgs (list[ndarray] | ndarray): Images to be augmented. If the input - is an ndarray, it will be transformed to a list. - hflip (bool): Horizontal flip. Default: True. - rotation (bool): Ratotation. Default: True. - flows (list[ndarray]: Flows to be augmented. If the input is an - ndarray, it will be transformed to a list. - Dimension is (h, w, 2). Default: None. - return_status (bool): Return the status of flip and rotation. - Default: False. - - Returns: - list[ndarray] | ndarray: Augmented images and flows. If returned - results only have one element, just return ndarray. - - """ - hflip = hflip and random.random() < 0.5 - vflip = rotation and random.random() < 0.5 - rot90 = rotation and random.random() < 0.5 - - def _augment(img): - if hflip: # horizontal - cv2.flip(img, 1, img) - if vflip: # vertical - cv2.flip(img, 0, img) - if rot90: - img = img.transpose(1, 0, 2) - return img - - def _augment_flow(flow): - if hflip: # horizontal - cv2.flip(flow, 1, flow) - flow[:, :, 0] *= -1 - if vflip: # vertical - cv2.flip(flow, 0, flow) - flow[:, :, 1] *= -1 - if rot90: - flow = flow.transpose(1, 0, 2) - flow = flow[:, :, [1, 0]] - return flow - - if not isinstance(imgs, list): - imgs = [imgs] - imgs = [_augment(img) for img in imgs] - if len(imgs) == 1: - imgs = imgs[0] - - if flows is not None: - if not isinstance(flows, list): - flows = [flows] - flows = [_augment_flow(flow) for flow in flows] - if len(flows) == 1: - flows = flows[0] - return imgs, flows - else: - if return_status: - return imgs, (hflip, vflip, rot90) - else: - return imgs - - -def img_rotate(img, angle, center=None, scale=1.0): - """Rotate image. - - Args: - img (ndarray): Image to be rotated. - angle (float): Rotation angle in degrees. Positive values mean - counter-clockwise rotation. - center (tuple[int]): Rotation center. If the center is None, - initialize it as the center of the image. Default: None. - scale (float): Isotropic scale factor. Default: 1.0. - """ - (h, w) = img.shape[:2] - - if center is None: - center = (w // 2, h // 2) - - matrix = cv2.getRotationMatrix2D(center, angle, scale) - rotated_img = cv2.warpAffine(img, matrix, (w, h)) - return rotated_img diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/contourpy/util/renderer.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/contourpy/util/renderer.py deleted file mode 100644 index ef1d065ee1328728af04ab61525dad77a73e3d28..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/contourpy/util/renderer.py +++ /dev/null @@ -1,106 +0,0 @@ -from __future__ import annotations - -from abc import ABC, abstractmethod -from typing import TYPE_CHECKING, Any - -import numpy as np - -if TYPE_CHECKING: - import io - - from numpy.typing import ArrayLike - - from contourpy._contourpy import CoordinateArray, FillReturn, FillType, LineReturn, LineType - - -class Renderer(ABC): - """Abstract base class for renderers, defining the interface that they must implement.""" - - def _grid_as_2d(self, x: ArrayLike, y: ArrayLike) -> tuple[CoordinateArray, CoordinateArray]: - x = np.asarray(x) - y = np.asarray(y) - if x.ndim == 1: - x, y = np.meshgrid(x, y) - return x, y - - x = np.asarray(x) - y = np.asarray(y) - if x.ndim == 1: - x, y = np.meshgrid(x, y) - return x, y - - @abstractmethod - def filled( - self, - filled: FillReturn, - fill_type: FillType, - ax: Any = 0, - color: str = "C0", - alpha: float = 0.7, - ) -> None: - pass - - @abstractmethod - def grid( - self, - x: ArrayLike, - y: ArrayLike, - ax: Any = 0, - color: str = "black", - alpha: float = 0.1, - point_color: str | None = None, - quad_as_tri_alpha: float = 0, - ) -> None: - pass - - @abstractmethod - def lines( - self, - lines: LineReturn, - line_type: LineType, - ax: Any = 0, - color: str = "C0", - alpha: float = 1.0, - linewidth: float = 1, - ) -> None: - pass - - @abstractmethod - def mask( - self, - x: ArrayLike, - y: ArrayLike, - z: ArrayLike | np.ma.MaskedArray[Any, Any], - ax: Any = 0, - color: str = "black", - ) -> None: - pass - - @abstractmethod - def save(self, filename: str, transparent: bool = False) -> None: - pass - - @abstractmethod - def save_to_buffer(self) -> io.BytesIO: - pass - - @abstractmethod - def show(self) -> None: - pass - - @abstractmethod - def title(self, title: str, ax: Any = 0, color: str | None = None) -> None: - pass - - @abstractmethod - def z_values( - self, - x: ArrayLike, - y: ArrayLike, - z: ArrayLike, - ax: Any = 0, - color: str = "green", - fmt: str = ".1f", - quad_as_tri: bool = False, - ) -> None: - pass diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/ttLib/tables/_l_o_c_a.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/ttLib/tables/_l_o_c_a.py deleted file mode 100644 index ad1b715133a9948b2e0da307b445a24be08bf0b2..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/ttLib/tables/_l_o_c_a.py +++ /dev/null @@ -1,66 +0,0 @@ -from . import DefaultTable -import sys -import array -import logging - - -log = logging.getLogger(__name__) - - -class table__l_o_c_a(DefaultTable.DefaultTable): - - dependencies = ["glyf"] - - def decompile(self, data, ttFont): - longFormat = ttFont["head"].indexToLocFormat - if longFormat: - format = "I" - else: - format = "H" - locations = array.array(format) - locations.frombytes(data) - if sys.byteorder != "big": - locations.byteswap() - if not longFormat: - l = array.array("I") - for i in range(len(locations)): - l.append(locations[i] * 2) - locations = l - if len(locations) < (ttFont["maxp"].numGlyphs + 1): - log.warning( - "corrupt 'loca' table, or wrong numGlyphs in 'maxp': %d %d", - len(locations) - 1, - ttFont["maxp"].numGlyphs, - ) - self.locations = locations - - def compile(self, ttFont): - try: - max_location = max(self.locations) - except AttributeError: - self.set([]) - max_location = 0 - if max_location < 0x20000 and all(l % 2 == 0 for l in self.locations): - locations = array.array("H") - for i in range(len(self.locations)): - locations.append(self.locations[i] // 2) - ttFont["head"].indexToLocFormat = 0 - else: - locations = array.array("I", self.locations) - ttFont["head"].indexToLocFormat = 1 - if sys.byteorder != "big": - locations.byteswap() - return locations.tobytes() - - def set(self, locations): - self.locations = array.array("I", locations) - - def toXML(self, writer, ttFont): - writer.comment("The 'loca' table will be calculated by the compiler") - writer.newline() - - def __getitem__(self, index): - return self.locations[index] - - def __len__(self): - return len(self.locations) diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/ttLib/tables/_p_r_e_p.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/ttLib/tables/_p_r_e_p.py deleted file mode 100644 index b4b92f3e924ba2f20ade9a6cca45ce78284ffe21..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/fontTools/ttLib/tables/_p_r_e_p.py +++ /dev/null @@ -1,7 +0,0 @@ -from fontTools import ttLib - -superclass = ttLib.getTableClass("fpgm") - - -class table__p_r_e_p(superclass): - pass diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/context.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/context.py deleted file mode 100644 index 393e563a42af1557927a2eb8a51e6e231d48a29a..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/context.py +++ /dev/null @@ -1,20 +0,0 @@ -# Defines the Context class, which is used to store the state of all Blocks that are being rendered. - -from __future__ import annotations - -import threading -from typing import TYPE_CHECKING - -if TYPE_CHECKING: # Only import for type checking (is False at runtime). - from gradio.blocks import BlockContext, Blocks - - -class Context: - root_block: Blocks | None = None # The current root block that holds all blocks. - block: BlockContext | None = None # The current block that children are added to. - id: int = 0 # Running id to uniquely refer to any block that gets defined - ip_address: str | None = None # The IP address of the user. - hf_token: str | None = None # The token provided when loading private HF repos - - -thread_data = threading.local() diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/templates/frontend/assets/index-5c7f446a.js b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/templates/frontend/assets/index-5c7f446a.js deleted file mode 100644 index a45eefb16483a9790a7d1d33f4041cb752f17245..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/gradio/templates/frontend/assets/index-5c7f446a.js +++ /dev/null @@ -1,2 +0,0 @@ -import{S as x,e as $,s as Q,f as p,g as f,h as I,j as E,n as q,k as z,m as G,o as K,t as oe,F as M,X as fe,y as ze,Y as ke,G as P,p as L,aj as De,af as ve,q as Oe,b as Re,r as ee,u as V,v as te,w as B,x as he,H as U,B as Xe,C as _e,a3 as qe,aB as Ae,E as y,N as me,P as re,am as He,a4 as Je,ak as k,V as je,ae as Se,Q as Ce,R as Te,O as ge,T as be,a9 as Le,ab as Ge,ac as We,ad as Ke}from"./index-39fce9e2.js";import{n as de}from"./ModifyUpload.svelte_svelte_type_style_lang-14b768c9.js";import{B as Ee}from"./Button-79f6e3bf.js";import{B as Me}from"./BlockLabel-b1428685.js";import{I as Qe}from"./IconButton-0ac328a0.js";import{E as Ye}from"./Empty-16d6169a.js";import{u as Ze,S as pe}from"./ShareButton-c9a8cbaf.js";import{D as xe}from"./Download-0afd7f1a.js";import{U as $e,W as et}from"./Image.svelte_svelte_type_style_lang-fa4c9c48.js";/* empty css */import{U as tt}from"./UploadText-61f66d92.js";import{U as lt}from"./Upload-78d05dac.js";import{M as nt}from"./ModifyUpload-02c07c98.js";function it(t){let e,n;return{c(){e=p("svg"),n=p("path"),f(n,"d","M8 3H5a2 2 0 0 0-2 2v3m18 0V5a2 2 0 0 0-2-2h-3m0 18h3a2 2 0 0 0 2-2v-3M3 16v3a2 2 0 0 0 2 2h3"),f(e,"xmlns","http://www.w3.org/2000/svg"),f(e,"width","100%"),f(e,"height","100%"),f(e,"viewBox","0 0 24 24"),f(e,"fill","none"),f(e,"stroke","currentColor"),f(e,"stroke-width","1.5"),f(e,"stroke-linecap","round"),f(e,"stroke-linejoin","round")},m(l,i){I(l,e,i),E(e,n)},p:q,i:q,o:q,d(l){l&&z(e)}}}class at extends x{constructor(e){super(),$(this,e,null,it,Q,{})}}function st(t){let e,n,l;return{c(){e=p("svg"),n=p("rect"),l=p("rect"),f(n,"x","6"),f(n,"y","4"),f(n,"width","4"),f(n,"height","16"),f(l,"x","14"),f(l,"y","4"),f(l,"width","4"),f(l,"height","16"),f(e,"xmlns","http://www.w3.org/2000/svg"),f(e,"width","100%"),f(e,"height","100%"),f(e,"viewBox","0 0 24 24"),f(e,"fill","none"),f(e,"stroke","currentColor"),f(e,"stroke-width","1.5"),f(e,"stroke-linecap","round"),f(e,"stroke-linejoin","round")},m(i,r){I(i,e,r),E(e,n),E(e,l)},p:q,i:q,o:q,d(i){i&&z(e)}}}class rt extends x{constructor(e){super(),$(this,e,null,st,Q,{})}}function ut(t){let e,n;return{c(){e=p("svg"),n=p("polygon"),f(n,"points","5 3 19 12 5 21 5 3"),f(e,"xmlns","http://www.w3.org/2000/svg"),f(e,"width","100%"),f(e,"height","100%"),f(e,"viewBox","0 0 24 24"),f(e,"fill","none"),f(e,"stroke","currentColor"),f(e,"stroke-width","1.5"),f(e,"stroke-linecap","round"),f(e,"stroke-linejoin","round")},m(l,i){I(l,e,i),E(e,n)},p:q,i:q,o:q,d(l){l&&z(e)}}}class ot extends x{constructor(e){super(),$(this,e,null,ut,Q,{})}}function _t(t){let e,n,l;return{c(){e=p("svg"),n=p("polygon"),l=p("rect"),f(n,"points","23 7 16 12 23 17 23 7"),f(l,"x","1"),f(l,"y","5"),f(l,"width","15"),f(l,"height","14"),f(l,"rx","2"),f(l,"ry","2"),f(e,"xmlns","http://www.w3.org/2000/svg"),f(e,"width","100%"),f(e,"height","100%"),f(e,"viewBox","0 0 24 24"),f(e,"fill","none"),f(e,"stroke","currentColor"),f(e,"stroke-width","1.5"),f(e,"stroke-linecap","round"),f(e,"stroke-linejoin","round"),f(e,"class","feather feather-video")},m(i,r){I(i,e,r),E(e,n),E(e,l)},p:q,i:q,o:q,d(i){i&&z(e)}}}let we=class extends x{constructor(e){super(),$(this,e,null,_t,Q,{})}};const ye=t=>{let e=["B","KB","MB","GB","PB"],n=0;for(;t>1024;)t/=1024,n++;let l=e[n];return t.toFixed(1)+" "+l},ft=()=>!0;function ct(t,{autoplay:e}){async function n(){e&&await t.play()}return t.addEventListener("loadeddata",n),{destroy(){t.removeEventListener("loadeddata",n)}}}const{isNaN:ht}=qe;function dt(t){let e,n;return e=new rt({}),{c(){M(e.$$.fragment)},m(l,i){P(e,l,i),n=!0},i(l){n||(B(e.$$.fragment,l),n=!0)},o(l){V(e.$$.fragment,l),n=!1},d(l){U(e,l)}}}function mt(t){let e,n;return e=new ot({}),{c(){M(e.$$.fragment)},m(l,i){P(e,l,i),n=!0},i(l){n||(B(e.$$.fragment,l),n=!0)},o(l){V(e.$$.fragment,l),n=!1},d(l){U(e,l)}}}function gt(t){let e,n;return e=new $e({}),{c(){M(e.$$.fragment)},m(l,i){P(e,l,i),n=!0},i(l){n||(B(e.$$.fragment,l),n=!0)},o(l){V(e.$$.fragment,l),n=!1},d(l){U(e,l)}}}function bt(t){let e,n,l,i,r,a,u=!1,s,d=!0,o,_,m,b,T,C,S,R,v,D=ce(t[5])+"",A,H,O=ce(t[6])+"",X,N,F,w,Z,J,W,g,le,ne;function ie(){cancelAnimationFrame(s),n.paused||(s=Ae(ie),u=!0),t[16].call(n)}const ae=[gt,mt,dt],Y=[];function se(j,h){return j[5]===j[6]?0:j[7]?1:2}return C=se(t),S=Y[C]=ae[C](t),W=new at({}),{c(){e=G("div"),n=G("video"),l=G("track"),_=K(),m=G("div"),b=G("div"),T=G("span"),S.c(),R=K(),v=G("span"),A=oe(D),H=oe(" / "),X=oe(O),N=K(),F=G("progress"),Z=K(),J=G("div"),M(W.$$.fragment),f(l,"kind","captions"),fe(l.src,i=t[1])||f(l,"src",i),l.default=!0,fe(n.src,r=t[0])||f(n,"src",r),f(n,"preload","auto"),f(n,"data-testid",a=`${t[4]}-player`),f(n,"class","svelte-w5wajl"),t[6]===void 0&&ze(()=>t[17].call(n)),ke(n,"mirror",t[2]),f(T,"role","button"),f(T,"tabindex","0"),f(T,"class","icon svelte-w5wajl"),f(T,"aria-label","play-pause-replay-button"),f(v,"class","time svelte-w5wajl"),F.value=w=t[5]/t[6]||0,f(F,"class","svelte-w5wajl"),f(J,"role","button"),f(J,"tabindex","0"),f(J,"class","icon svelte-w5wajl"),f(J,"aria-label","full-screen"),f(b,"class","inner svelte-w5wajl"),f(m,"class","controls svelte-w5wajl"),f(e,"class","wrap svelte-w5wajl")},m(j,h){I(j,e,h),E(e,n),E(n,l),t[19](n),E(e,_),E(e,m),E(m,b),E(b,T),Y[C].m(T,null),E(b,R),E(b,v),E(v,A),E(v,H),E(v,X),E(b,N),E(b,F),E(b,Z),E(b,J),P(W,J,null),g=!0,le||(ne=[L(n,"click",t[10]),L(n,"play",t[14]),L(n,"pause",t[15]),L(n,"ended",t[12]),L(n,"timeupdate",ie),L(n,"durationchange",t[17]),L(n,"play",t[18]),L(n,"pause",t[18]),De(o=ct.call(null,n,{autoplay:t[3]})),L(T,"click",t[10]),L(T,"keydown",t[10]),L(F,"mousemove",t[9]),L(F,"touchmove",ve(t[9])),L(F,"click",Oe(ve(t[11]))),L(J,"click",t[13]),L(J,"keypress",t[13])],le=!0)},p(j,[h]){(!g||h&2&&!fe(l.src,i=j[1]))&&f(l,"src",i),(!g||h&1&&!fe(n.src,r=j[0]))&&f(n,"src",r),(!g||h&16&&a!==(a=`${j[4]}-player`))&&f(n,"data-testid",a),!u&&h&32&&!ht(j[5])&&(n.currentTime=j[5]),u=!1,h&128&&d!==(d=j[7])&&n[d?"pause":"play"](),o&&Re(o.update)&&h&8&&o.update.call(null,{autoplay:j[3]}),(!g||h&4)&&ke(n,"mirror",j[2]);let ue=C;C=se(j),C!==ue&&(ee(),V(Y[ue],1,1,()=>{Y[ue]=null}),te(),S=Y[C],S||(S=Y[C]=ae[C](j),S.c()),B(S,1),S.m(T,null)),(!g||h&32)&&D!==(D=ce(j[5])+"")&&he(A,D),(!g||h&64)&&O!==(O=ce(j[6])+"")&&he(X,O),(!g||h&96&&w!==(w=j[5]/j[6]||0))&&(F.value=w)},i(j){g||(B(S),B(W.$$.fragment,j),g=!0)},o(j){V(S),V(W.$$.fragment,j),g=!1},d(j){j&&z(e),t[19](null),Y[C].d(),U(W),le=!1,Xe(ne)}}}function ce(t){if(isNaN(t)||!isFinite(t))return"...";const e=Math.floor(t/60);let n=Math.floor(t%60);return n<10&&(n=`0${n}`),`${e}:${n}`}function wt(t,e,n){let{src:l}=e,{subtitle:i=null}=e,{mirror:r}=e,{autoplay:a}=e,{label:u="test"}=e;const s=_e();let d=0,o,_=!0,m;function b(N){if(!o)return;if(N.type==="click"){C(N);return}if(N.type!=="touchmove"&&!(N.buttons&1))return;const F=N.type==="touchmove"?N.touches[0].clientX:N.clientX,{left:w,right:Z}=N.currentTarget.getBoundingClientRect();n(5,d=o*(F-w)/(Z-w))}async function T(){document.fullscreenElement!=m&&(m.currentTime>0&&!m.paused&&!m.ended&&m.readyState>m.HAVE_CURRENT_DATA?m.pause():await m.play())}function C(N){const{left:F,right:w}=N.currentTarget.getBoundingClientRect();n(5,d=o*(N.clientX-F)/(w-F))}function S(){s("stop"),s("end")}function R(){m.requestFullscreen()}function v(N){y.call(this,t,N)}function D(N){y.call(this,t,N)}function A(){d=this.currentTime,n(5,d)}function H(){o=this.duration,n(6,o)}function O(){_=this.paused,n(7,_)}function X(N){me[N?"unshift":"push"](()=>{m=N,n(8,m)})}return t.$$set=N=>{"src"in N&&n(0,l=N.src),"subtitle"in N&&n(1,i=N.subtitle),"mirror"in N&&n(2,r=N.mirror),"autoplay"in N&&n(3,a=N.autoplay),"label"in N&&n(4,u=N.label)},[l,i,r,a,u,d,o,_,m,b,T,C,S,R,v,D,A,H,O,X]}class Pe extends x{constructor(e){super(),$(this,e,wt,bt,Q,{src:0,subtitle:1,mirror:2,autoplay:3,label:4})}}function kt(t){let e=t[0].data,n,l,i,r,a,u,s,d,o=Be(t);r=new Qe({props:{Icon:xe,label:"Download"}});let _=t[5]&&Ne(t);return{c(){o.c(),n=K(),l=G("div"),i=G("a"),M(r.$$.fragment),s=K(),_&&_.c(),f(i,"href",a=t[0].data),f(i,"target",window.__is_colab__?"_blank":null),f(i,"download",u=t[0].orig_name||t[0].name),f(l,"class","icon-buttons svelte-rvdo70"),f(l,"data-testid","download-div")},m(m,b){o.m(m,b),I(m,n,b),I(m,l,b),E(l,i),P(r,i,null),E(l,s),_&&_.m(l,null),d=!0},p(m,b){b&1&&Q(e,e=m[0].data)?(ee(),V(o,1,1,q),te(),o=Be(m),o.c(),B(o,1),o.m(n.parentNode,n)):o.p(m,b),(!d||b&1&&a!==(a=m[0].data))&&f(i,"href",a),(!d||b&1&&u!==(u=m[0].orig_name||m[0].name))&&f(i,"download",u),m[5]?_?(_.p(m,b),b&32&&B(_,1)):(_=Ne(m),_.c(),B(_,1),_.m(l,null)):_&&(ee(),V(_,1,1,()=>{_=null}),te())},i(m){d||(B(o),B(r.$$.fragment,m),B(_),d=!0)},o(m){V(o),V(r.$$.fragment,m),V(_),d=!1},d(m){m&&(z(n),z(l)),o.d(m),U(r),_&&_.d()}}}function vt(t){let e,n;return e=new Ye({props:{unpadded_box:!0,size:"large",$$slots:{default:[yt]},$$scope:{ctx:t}}}),{c(){M(e.$$.fragment)},m(l,i){P(e,l,i),n=!0},p(l,i){const r={};i&32768&&(r.$$scope={dirty:i,ctx:l}),e.$set(r)},i(l){n||(B(e.$$.fragment,l),n=!0)},o(l){V(e.$$.fragment,l),n=!1},d(l){U(e,l)}}}function Be(t){let e,n;return e=new Pe({props:{src:t[0].data,subtitle:t[1]?.data,autoplay:t[4],mirror:!1,label:t[2]}}),e.$on("play",t[6]),e.$on("pause",t[7]),e.$on("ended",t[8]),{c(){M(e.$$.fragment)},m(l,i){P(e,l,i),n=!0},p(l,i){const r={};i&1&&(r.src=l[0].data),i&2&&(r.subtitle=l[1]?.data),i&16&&(r.autoplay=l[4]),i&4&&(r.label=l[2]),e.$set(r)},i(l){n||(B(e.$$.fragment,l),n=!0)},o(l){V(e.$$.fragment,l),n=!1},d(l){U(e,l)}}}function Ne(t){let e,n;return e=new pe({props:{value:t[0],formatter:t[9]}}),e.$on("error",t[10]),e.$on("share",t[11]),{c(){M(e.$$.fragment)},m(l,i){P(e,l,i),n=!0},p(l,i){const r={};i&1&&(r.value=l[0]),e.$set(r)},i(l){n||(B(e.$$.fragment,l),n=!0)},o(l){V(e.$$.fragment,l),n=!1},d(l){U(e,l)}}}function yt(t){let e,n;return e=new we({}),{c(){M(e.$$.fragment)},m(l,i){P(e,l,i),n=!0},i(l){n||(B(e.$$.fragment,l),n=!0)},o(l){V(e.$$.fragment,l),n=!1},d(l){U(e,l)}}}function Bt(t){let e,n,l,i,r,a;e=new Me({props:{show_label:t[3],Icon:we,label:t[2]||"Video"}});const u=[vt,kt],s=[];function d(o,_){return o[0]===null?0:1}return l=d(t),i=s[l]=u[l](t),{c(){M(e.$$.fragment),n=K(),i.c(),r=re()},m(o,_){P(e,o,_),I(o,n,_),s[l].m(o,_),I(o,r,_),a=!0},p(o,[_]){const m={};_&8&&(m.show_label=o[3]),_&4&&(m.label=o[2]||"Video"),e.$set(m);let b=l;l=d(o),l===b?s[l].p(o,_):(ee(),V(s[b],1,1,()=>{s[b]=null}),te(),i=s[l],i?i.p(o,_):(i=s[l]=u[l](o),i.c()),B(i,1),i.m(r.parentNode,r))},i(o){a||(B(e.$$.fragment,o),B(i),a=!0)},o(o){V(e.$$.fragment,o),V(i),a=!1},d(o){o&&(z(n),z(r)),U(e,o),s[l].d(o)}}}function Nt(t,e,n){let{value:l=null}=e,{subtitle:i=null}=e,{label:r=void 0}=e,{show_label:a=!0}=e,{autoplay:u}=e,{show_share_button:s=!0}=e,d=null,o=null;const _=_e();He(async()=>{l!==d&&i!==o&&o!==null&&(d=l,n(0,l=null),await Je(),n(0,l=d)),d=l,o=i});function m(v){y.call(this,t,v)}function b(v){y.call(this,t,v)}function T(v){y.call(this,t,v)}const C=async v=>v?await Ze(v.data,"url"):"";function S(v){y.call(this,t,v)}function R(v){y.call(this,t,v)}return t.$$set=v=>{"value"in v&&n(0,l=v.value),"subtitle"in v&&n(1,i=v.subtitle),"label"in v&&n(2,r=v.label),"show_label"in v&&n(3,a=v.show_label),"autoplay"in v&&n(4,u=v.autoplay),"show_share_button"in v&&n(5,s=v.show_share_button)},t.$$.update=()=>{t.$$.dirty&1&&l&&_("change",l)},[l,i,r,a,u,s,m,b,T,C,S,R]}class Vt extends x{constructor(e){super(),$(this,e,Nt,Bt,Q,{value:0,subtitle:1,label:2,show_label:3,autoplay:4,show_share_button:5})}}function jt(t){let e,n,l,i;const r=[t[7]];let a={};for(let u=0;u{"elem_id"in g&&n(0,l=g.elem_id),"elem_classes"in g&&n(1,i=g.elem_classes),"visible"in g&&n(2,r=g.visible),"value"in g&&n(3,a=g.value),"label"in g&&n(4,s=g.label),"source"in g&&n(5,d=g.source),"root"in g&&n(18,o=g.root),"root_url"in g&&n(19,_=g.root_url),"show_label"in g&&n(6,m=g.show_label),"loading_status"in g&&n(7,b=g.loading_status),"height"in g&&n(8,T=g.height),"width"in g&&n(9,C=g.width),"container"in g&&n(10,S=g.container),"scale"in g&&n(11,R=g.scale),"min_width"in g&&n(12,v=g.min_width),"mode"in g&&n(13,D=g.mode),"autoplay"in g&&n(14,A=g.autoplay),"show_share_button"in g&&n(15,H=g.show_share_button)},t.$$.update=()=>{t.$$.dirty&786440&&(a!=null?(n(16,O=de(a[0],o,_)),n(17,X=de(a[1],o,_))):(n(16,O=null),n(17,X=null))),t.$$.dirty&1048584&&JSON.stringify(a)!==JSON.stringify(u)&&(n(20,u=a),N("change"))},[l,i,r,a,s,d,m,b,T,C,S,R,v,D,A,H,O,X,o,_,u,F,w,Z,J,W]}class Tt extends x{constructor(e){super(),$(this,e,Ct,St,Q,{elem_id:0,elem_classes:1,visible:2,value:3,label:4,source:5,root:18,root_url:19,show_label:6,loading_status:7,height:8,width:9,container:10,scale:11,min_width:12,mode:13,autoplay:14,show_share_button:15})}get elem_id(){return this.$$.ctx[0]}set elem_id(e){this.$$set({elem_id:e}),k()}get elem_classes(){return this.$$.ctx[1]}set elem_classes(e){this.$$set({elem_classes:e}),k()}get visible(){return this.$$.ctx[2]}set visible(e){this.$$set({visible:e}),k()}get value(){return this.$$.ctx[3]}set value(e){this.$$set({value:e}),k()}get label(){return this.$$.ctx[4]}set label(e){this.$$set({label:e}),k()}get source(){return this.$$.ctx[5]}set source(e){this.$$set({source:e}),k()}get root(){return this.$$.ctx[18]}set root(e){this.$$set({root:e}),k()}get root_url(){return this.$$.ctx[19]}set root_url(e){this.$$set({root_url:e}),k()}get show_label(){return this.$$.ctx[6]}set show_label(e){this.$$set({show_label:e}),k()}get loading_status(){return this.$$.ctx[7]}set loading_status(e){this.$$set({loading_status:e}),k()}get height(){return this.$$.ctx[8]}set height(e){this.$$set({height:e}),k()}get width(){return this.$$.ctx[9]}set width(e){this.$$set({width:e}),k()}get container(){return this.$$.ctx[10]}set container(e){this.$$set({container:e}),k()}get scale(){return this.$$.ctx[11]}set scale(e){this.$$set({scale:e}),k()}get min_width(){return this.$$.ctx[12]}set min_width(e){this.$$set({min_width:e}),k()}get mode(){return this.$$.ctx[13]}set mode(e){this.$$set({mode:e}),k()}get autoplay(){return this.$$.ctx[14]}set autoplay(e){this.$$set({autoplay:e}),k()}get show_share_button(){return this.$$.ctx[15]}set show_share_button(e){this.$$set({show_share_button:e}),k()}}function Et(t){let e,n,l,i,r,a,u;e=new nt({}),e.$on("clear",t[11]);const s=[Ut,Pt],d=[];function o(_,m){return l==null&&(l=!!ft()),l?0:_[0].size?1:-1}return~(i=o(t))&&(r=d[i]=s[i](t)),{c(){M(e.$$.fragment),n=K(),r&&r.c(),a=re()},m(_,m){P(e,_,m),I(_,n,m),~i&&d[i].m(_,m),I(_,a,m),u=!0},p(_,m){let b=i;i=o(_),i===b?~i&&d[i].p(_,m):(r&&(ee(),V(d[b],1,1,()=>{d[b]=null}),te()),~i?(r=d[i],r?r.p(_,m):(r=d[i]=s[i](_),r.c()),B(r,1),r.m(a.parentNode,a)):r=null)},i(_){u||(B(e.$$.fragment,_),B(r),u=!0)},o(_){V(e.$$.fragment,_),V(r),u=!1},d(_){_&&(z(n),z(a)),U(e,_),~i&&d[i].d(_)}}}function Mt(t){let e,n,l,i;const r=[It,Ft],a=[];function u(s,d){return s[2]==="upload"?0:s[2]==="webcam"?1:-1}return~(e=u(t))&&(n=a[e]=r[e](t)),{c(){n&&n.c(),l=re()},m(s,d){~e&&a[e].m(s,d),I(s,l,d),i=!0},p(s,d){let o=e;e=u(s),e===o?~e&&a[e].p(s,d):(n&&(ee(),V(a[o],1,1,()=>{a[o]=null}),te()),~e?(n=a[e],n?n.p(s,d):(n=a[e]=r[e](s),n.c()),B(n,1),n.m(l.parentNode,l)):n=null)},i(s){i||(B(n),i=!0)},o(s){V(n),i=!1},d(s){s&&z(l),~e&&a[e].d(s)}}}function Pt(t){let e,n=t[0].name+"",l,i,r,a=ye(t[0].size)+"",u;return{c(){e=G("div"),l=oe(n),i=K(),r=G("div"),u=oe(a),f(e,"class","file-name svelte-a6ruol"),f(r,"class","file-size svelte-a6ruol")},m(s,d){I(s,e,d),E(e,l),I(s,i,d),I(s,r,d),E(r,u)},p(s,d){d&1&&n!==(n=s[0].name+"")&&he(l,n),d&1&&a!==(a=ye(s[0].size)+"")&&he(u,a)},i:q,o:q,d(s){s&&(z(e),z(i),z(r))}}}function Ut(t){let e=t[0]?.data,n,l,i=Ve(t);return{c(){i.c(),n=re()},m(r,a){i.m(r,a),I(r,n,a),l=!0},p(r,a){a&1&&Q(e,e=r[0]?.data)?(ee(),V(i,1,1,q),te(),i=Ve(r),i.c(),B(i,1),i.m(n.parentNode,n)):i.p(r,a)},i(r){l||(B(i),l=!0)},o(r){V(i),l=!1},d(r){r&&z(n),i.d(r)}}}function Ve(t){let e,n;return e=new Pe({props:{autoplay:t[7],src:t[0].data,subtitle:t[1]?.data,mirror:t[5]&&t[2]==="webcam",label:t[3]}}),e.$on("play",t[18]),e.$on("pause",t[19]),e.$on("stop",t[20]),e.$on("end",t[21]),{c(){M(e.$$.fragment)},m(l,i){P(e,l,i),n=!0},p(l,i){const r={};i&128&&(r.autoplay=l[7]),i&1&&(r.src=l[0].data),i&2&&(r.subtitle=l[1]?.data),i&36&&(r.mirror=l[5]&&l[2]==="webcam"),i&8&&(r.label=l[3]),e.$set(r)},i(l){n||(B(e.$$.fragment,l),n=!0)},o(l){V(e.$$.fragment,l),n=!1},d(l){U(e,l)}}}function Ft(t){let e,n;return e=new et({props:{mirror_webcam:t[5],include_audio:t[6],mode:"video"}}),e.$on("error",t[14]),e.$on("capture",t[15]),e.$on("start_recording",t[16]),e.$on("stop_recording",t[17]),{c(){M(e.$$.fragment)},m(l,i){P(e,l,i),n=!0},p(l,i){const r={};i&32&&(r.mirror_webcam=l[5]),i&64&&(r.include_audio=l[6]),e.$set(r)},i(l){n||(B(e.$$.fragment,l),n=!0)},o(l){V(e.$$.fragment,l),n=!1},d(l){U(e,l)}}}function It(t){let e,n,l;function i(a){t[13](a)}let r={filetype:"video/x-m4v,video/*",$$slots:{default:[zt]},$$scope:{ctx:t}};return t[8]!==void 0&&(r.dragging=t[8]),e=new lt({props:r}),me.push(()=>ge(e,"dragging",i)),e.$on("load",t[10]),{c(){M(e.$$.fragment)},m(a,u){P(e,a,u),l=!0},p(a,u){const s={};u&4194304&&(s.$$scope={dirty:u,ctx:a}),!n&&u&256&&(n=!0,s.dragging=a[8],be(()=>n=!1)),e.$set(s)},i(a){l||(B(e.$$.fragment,a),l=!0)},o(a){V(e.$$.fragment,a),l=!1},d(a){U(e,a)}}}function zt(t){let e;const n=t[12].default,l=Le(n,t,t[22],null);return{c(){l&&l.c()},m(i,r){l&&l.m(i,r),e=!0},p(i,r){l&&l.p&&(!e||r&4194304)&&Ge(l,n,i,i[22],e?Ke(n,i[22],r,null):We(i[22]),null)},i(i){e||(B(l,i),e=!0)},o(i){V(l,i),e=!1},d(i){l&&l.d(i)}}}function Dt(t){let e,n,l,i,r,a;e=new Me({props:{show_label:t[4],Icon:we,label:t[3]||"Video"}});const u=[Mt,Et],s=[];function d(o,_){return o[0]===null?0:1}return l=d(t),i=s[l]=u[l](t),{c(){M(e.$$.fragment),n=K(),i.c(),r=re()},m(o,_){P(e,o,_),I(o,n,_),s[l].m(o,_),I(o,r,_),a=!0},p(o,[_]){const m={};_&16&&(m.show_label=o[4]),_&8&&(m.label=o[3]||"Video"),e.$set(m);let b=l;l=d(o),l===b?s[l].p(o,_):(ee(),V(s[b],1,1,()=>{s[b]=null}),te(),i=s[l],i?i.p(o,_):(i=s[l]=u[l](o),i.c()),B(i,1),i.m(r.parentNode,r))},i(o){a||(B(e.$$.fragment,o),B(i),a=!0)},o(o){V(e.$$.fragment,o),V(i),a=!1},d(o){o&&(z(n),z(r)),U(e,o),s[l].d(o)}}}function Ot(t,e,n){let{$$slots:l={},$$scope:i}=e,{value:r=null}=e,{subtitle:a=null}=e,{source:u}=e,{label:s=void 0}=e,{show_label:d=!0}=e,{mirror_webcam:o=!1}=e,{include_audio:_}=e,{autoplay:m}=e;const b=_e();function T({detail:w}){b("change",w),b("upload",w),n(0,r=w)}function C({detail:w}){n(0,r=null),b("change",w),b("clear")}let S=!1;function R(w){S=w,n(8,S)}function v(w){y.call(this,t,w)}const D=({detail:w})=>b("change",w);function A(w){y.call(this,t,w)}function H(w){y.call(this,t,w)}function O(w){y.call(this,t,w)}function X(w){y.call(this,t,w)}function N(w){y.call(this,t,w)}function F(w){y.call(this,t,w)}return t.$$set=w=>{"value"in w&&n(0,r=w.value),"subtitle"in w&&n(1,a=w.subtitle),"source"in w&&n(2,u=w.source),"label"in w&&n(3,s=w.label),"show_label"in w&&n(4,d=w.show_label),"mirror_webcam"in w&&n(5,o=w.mirror_webcam),"include_audio"in w&&n(6,_=w.include_audio),"autoplay"in w&&n(7,m=w.autoplay),"$$scope"in w&&n(22,i=w.$$scope)},t.$$.update=()=>{t.$$.dirty&256&&b("drag",S)},[r,a,u,s,d,o,_,m,S,b,T,C,l,R,v,D,A,H,O,X,N,F,i]}class Rt extends x{constructor(e){super(),$(this,e,Ot,Dt,Q,{value:0,subtitle:1,source:2,label:3,show_label:4,mirror_webcam:5,include_audio:6,autoplay:7})}}function Xt(t){let e,n;return e=new tt({props:{type:"video"}}),{c(){M(e.$$.fragment)},m(l,i){P(e,l,i),n=!0},p:q,i(l){n||(B(e.$$.fragment,l),n=!0)},o(l){V(e.$$.fragment,l),n=!1},d(l){U(e,l)}}}function qt(t){let e,n,l,i;const r=[t[1]];let a={};for(let u=0;un(19,F=h),W=({detail:h})=>{n(1,b=b||{}),n(1,b.status="error",b),n(1,b.message=h,b)};function g(h){y.call(this,t,h)}function le(h){y.call(this,t,h)}function ne(h){y.call(this,t,h)}function ie(h){y.call(this,t,h)}function ae(h){y.call(this,t,h)}function Y(h){y.call(this,t,h)}function se(h){y.call(this,t,h)}function j(h){y.call(this,t,h)}return t.$$set=h=>{"elem_id"in h&&n(2,l=h.elem_id),"elem_classes"in h&&n(3,i=h.elem_classes),"visible"in h&&n(4,r=h.visible),"value"in h&&n(0,a=h.value),"label"in h&&n(5,s=h.label),"source"in h&&n(6,d=h.source),"root"in h&&n(21,o=h.root),"root_url"in h&&n(22,_=h.root_url),"show_label"in h&&n(7,m=h.show_label),"loading_status"in h&&n(1,b=h.loading_status),"height"in h&&n(8,T=h.height),"width"in h&&n(9,C=h.width),"mirror_webcam"in h&&n(10,S=h.mirror_webcam),"include_audio"in h&&n(11,R=h.include_audio),"container"in h&&n(12,v=h.container),"scale"in h&&n(13,D=h.scale),"min_width"in h&&n(14,A=h.min_width),"mode"in h&&n(15,H=h.mode),"autoplay"in h&&n(16,O=h.autoplay)},t.$$.update=()=>{t.$$.dirty[0]&6291457&&(a!=null?(n(17,X=de(a[0],o,_)),n(18,N=de(a[1],o,_))):(n(17,X=null),n(18,N=null))),t.$$.dirty[0]&8388609&&JSON.stringify(a)!==JSON.stringify(u)&&(n(23,u=a),w("change"))},[a,b,l,i,r,s,d,m,T,C,S,R,v,D,A,H,O,X,N,F,Z,o,_,u,J,W,g,le,ne,ie,ae,Y,se,j]}class Jt extends x{constructor(e){super(),$(this,e,Ht,At,Q,{elem_id:2,elem_classes:3,visible:4,value:0,label:5,source:6,root:21,root_url:22,show_label:7,loading_status:1,height:8,width:9,mirror_webcam:10,include_audio:11,container:12,scale:13,min_width:14,mode:15,autoplay:16},null,[-1,-1])}get elem_id(){return this.$$.ctx[2]}set elem_id(e){this.$$set({elem_id:e}),k()}get elem_classes(){return this.$$.ctx[3]}set elem_classes(e){this.$$set({elem_classes:e}),k()}get visible(){return this.$$.ctx[4]}set visible(e){this.$$set({visible:e}),k()}get value(){return this.$$.ctx[0]}set value(e){this.$$set({value:e}),k()}get label(){return this.$$.ctx[5]}set label(e){this.$$set({label:e}),k()}get source(){return this.$$.ctx[6]}set source(e){this.$$set({source:e}),k()}get root(){return this.$$.ctx[21]}set root(e){this.$$set({root:e}),k()}get root_url(){return this.$$.ctx[22]}set root_url(e){this.$$set({root_url:e}),k()}get show_label(){return this.$$.ctx[7]}set show_label(e){this.$$set({show_label:e}),k()}get loading_status(){return this.$$.ctx[1]}set loading_status(e){this.$$set({loading_status:e}),k()}get height(){return this.$$.ctx[8]}set height(e){this.$$set({height:e}),k()}get width(){return this.$$.ctx[9]}set width(e){this.$$set({width:e}),k()}get mirror_webcam(){return this.$$.ctx[10]}set mirror_webcam(e){this.$$set({mirror_webcam:e}),k()}get include_audio(){return this.$$.ctx[11]}set include_audio(e){this.$$set({include_audio:e}),k()}get container(){return this.$$.ctx[12]}set container(e){this.$$set({container:e}),k()}get scale(){return this.$$.ctx[13]}set scale(e){this.$$set({scale:e}),k()}get min_width(){return this.$$.ctx[14]}set min_width(e){this.$$set({min_width:e}),k()}get mode(){return this.$$.ctx[15]}set mode(e){this.$$set({mode:e}),k()}get autoplay(){return this.$$.ctx[16]}set autoplay(e){this.$$set({autoplay:e}),k()}}function Lt(t){let e,n,l;function i(a){t[30](a)}let r={elem_id:t[1],elem_classes:t[2],visible:t[3],label:t[4],source:t[5],root:t[6],root_url:t[7],show_label:t[8],loading_status:t[9],height:t[10],width:t[11],mirror_webcam:t[12],include_audio:t[13],container:t[14],scale:t[15],min_width:t[16],mode:t[17],autoplay:t[18]};return t[0]!==void 0&&(r.value=t[0]),e=new Jt({props:r}),me.push(()=>ge(e,"value",i)),e.$on("clear",t[31]),e.$on("play",t[32]),e.$on("pause",t[33]),e.$on("upload",t[34]),e.$on("stop",t[35]),e.$on("end",t[36]),e.$on("start_recording",t[37]),e.$on("stop_recording",t[38]),e.$on("change",t[39]),{c(){M(e.$$.fragment)},m(a,u){P(e,a,u),l=!0},p(a,u){const s={};u[0]&2&&(s.elem_id=a[1]),u[0]&4&&(s.elem_classes=a[2]),u[0]&8&&(s.visible=a[3]),u[0]&16&&(s.label=a[4]),u[0]&32&&(s.source=a[5]),u[0]&64&&(s.root=a[6]),u[0]&128&&(s.root_url=a[7]),u[0]&256&&(s.show_label=a[8]),u[0]&512&&(s.loading_status=a[9]),u[0]&1024&&(s.height=a[10]),u[0]&2048&&(s.width=a[11]),u[0]&4096&&(s.mirror_webcam=a[12]),u[0]&8192&&(s.include_audio=a[13]),u[0]&16384&&(s.container=a[14]),u[0]&32768&&(s.scale=a[15]),u[0]&65536&&(s.min_width=a[16]),u[0]&131072&&(s.mode=a[17]),u[0]&262144&&(s.autoplay=a[18]),!n&&u[0]&1&&(n=!0,s.value=a[0],be(()=>n=!1)),e.$set(s)},i(a){l||(B(e.$$.fragment,a),l=!0)},o(a){V(e.$$.fragment,a),l=!1},d(a){U(e,a)}}}function Gt(t){let e,n,l;function i(a){t[20](a)}let r={elem_id:t[1],elem_classes:t[2],visible:t[3],label:t[4],source:t[5],root:t[6],root_url:t[7],show_label:t[8],loading_status:t[9],height:t[10],width:t[11],container:t[14],scale:t[15],min_width:t[16],mode:t[17],autoplay:t[18],show_share_button:t[19]};return t[0]!==void 0&&(r.value=t[0]),e=new Tt({props:r}),me.push(()=>ge(e,"value",i)),e.$on("clear",t[21]),e.$on("play",t[22]),e.$on("pause",t[23]),e.$on("upload",t[24]),e.$on("stop",t[25]),e.$on("end",t[26]),e.$on("start_recording",t[27]),e.$on("stop_recording",t[28]),e.$on("change",t[29]),{c(){M(e.$$.fragment)},m(a,u){P(e,a,u),l=!0},p(a,u){const s={};u[0]&2&&(s.elem_id=a[1]),u[0]&4&&(s.elem_classes=a[2]),u[0]&8&&(s.visible=a[3]),u[0]&16&&(s.label=a[4]),u[0]&32&&(s.source=a[5]),u[0]&64&&(s.root=a[6]),u[0]&128&&(s.root_url=a[7]),u[0]&256&&(s.show_label=a[8]),u[0]&512&&(s.loading_status=a[9]),u[0]&1024&&(s.height=a[10]),u[0]&2048&&(s.width=a[11]),u[0]&16384&&(s.container=a[14]),u[0]&32768&&(s.scale=a[15]),u[0]&65536&&(s.min_width=a[16]),u[0]&131072&&(s.mode=a[17]),u[0]&262144&&(s.autoplay=a[18]),u[0]&524288&&(s.show_share_button=a[19]),!n&&u[0]&1&&(n=!0,s.value=a[0],be(()=>n=!1)),e.$set(s)},i(a){l||(B(e.$$.fragment,a),l=!0)},o(a){V(e.$$.fragment,a),l=!1},d(a){U(e,a)}}}function Wt(t){let e,n,l,i;const r=[Gt,Lt],a=[];function u(s,d){return s[17]==="static"?0:1}return e=u(t),n=a[e]=r[e](t),{c(){n.c(),l=re()},m(s,d){a[e].m(s,d),I(s,l,d),i=!0},p(s,d){let o=e;e=u(s),e===o?a[e].p(s,d):(ee(),V(a[o],1,1,()=>{a[o]=null}),te(),n=a[e],n?n.p(s,d):(n=a[e]=r[e](s),n.c()),B(n,1),n.m(l.parentNode,l))},i(s){i||(B(n),i=!0)},o(s){V(n),i=!1},d(s){s&&z(l),a[e].d(s)}}}function Kt(t,e,n){let{elem_id:l=""}=e,{elem_classes:i=[]}=e,{visible:r=!0}=e,{value:a=null}=e,{label:u}=e,{source:s}=e,{root:d}=e,{root_url:o}=e,{show_label:_}=e,{loading_status:m}=e,{height:b}=e,{width:T}=e,{mirror_webcam:C}=e,{include_audio:S}=e,{container:R=!1}=e,{scale:v=null}=e,{min_width:D=void 0}=e,{mode:A}=e,{autoplay:H=!1}=e,{show_share_button:O=!0}=e;function X(c){a=c,n(0,a)}function N(c){y.call(this,t,c)}function F(c){y.call(this,t,c)}function w(c){y.call(this,t,c)}function Z(c){y.call(this,t,c)}function J(c){y.call(this,t,c)}function W(c){y.call(this,t,c)}function g(c){y.call(this,t,c)}function le(c){y.call(this,t,c)}function ne(c){y.call(this,t,c)}function ie(c){a=c,n(0,a)}function ae(c){y.call(this,t,c)}function Y(c){y.call(this,t,c)}function se(c){y.call(this,t,c)}function j(c){y.call(this,t,c)}function h(c){y.call(this,t,c)}function ue(c){y.call(this,t,c)}function Ue(c){y.call(this,t,c)}function Fe(c){y.call(this,t,c)}function Ie(c){y.call(this,t,c)}return t.$$set=c=>{"elem_id"in c&&n(1,l=c.elem_id),"elem_classes"in c&&n(2,i=c.elem_classes),"visible"in c&&n(3,r=c.visible),"value"in c&&n(0,a=c.value),"label"in c&&n(4,u=c.label),"source"in c&&n(5,s=c.source),"root"in c&&n(6,d=c.root),"root_url"in c&&n(7,o=c.root_url),"show_label"in c&&n(8,_=c.show_label),"loading_status"in c&&n(9,m=c.loading_status),"height"in c&&n(10,b=c.height),"width"in c&&n(11,T=c.width),"mirror_webcam"in c&&n(12,C=c.mirror_webcam),"include_audio"in c&&n(13,S=c.include_audio),"container"in c&&n(14,R=c.container),"scale"in c&&n(15,v=c.scale),"min_width"in c&&n(16,D=c.min_width),"mode"in c&&n(17,A=c.mode),"autoplay"in c&&n(18,H=c.autoplay),"show_share_button"in c&&n(19,O=c.show_share_button)},[a,l,i,r,u,s,d,o,_,m,b,T,C,S,R,v,D,A,H,O,X,N,F,w,Z,J,W,g,le,ne,ie,ae,Y,se,j,h,ue,Ue,Fe,Ie]}class Qt extends x{constructor(e){super(),$(this,e,Kt,Wt,Q,{elem_id:1,elem_classes:2,visible:3,value:0,label:4,source:5,root:6,root_url:7,show_label:8,loading_status:9,height:10,width:11,mirror_webcam:12,include_audio:13,container:14,scale:15,min_width:16,mode:17,autoplay:18,show_share_button:19},null,[-1,-1])}get elem_id(){return this.$$.ctx[1]}set elem_id(e){this.$$set({elem_id:e}),k()}get elem_classes(){return this.$$.ctx[2]}set elem_classes(e){this.$$set({elem_classes:e}),k()}get visible(){return this.$$.ctx[3]}set visible(e){this.$$set({visible:e}),k()}get value(){return this.$$.ctx[0]}set value(e){this.$$set({value:e}),k()}get label(){return this.$$.ctx[4]}set label(e){this.$$set({label:e}),k()}get source(){return this.$$.ctx[5]}set source(e){this.$$set({source:e}),k()}get root(){return this.$$.ctx[6]}set root(e){this.$$set({root:e}),k()}get root_url(){return this.$$.ctx[7]}set root_url(e){this.$$set({root_url:e}),k()}get show_label(){return this.$$.ctx[8]}set show_label(e){this.$$set({show_label:e}),k()}get loading_status(){return this.$$.ctx[9]}set loading_status(e){this.$$set({loading_status:e}),k()}get height(){return this.$$.ctx[10]}set height(e){this.$$set({height:e}),k()}get width(){return this.$$.ctx[11]}set width(e){this.$$set({width:e}),k()}get mirror_webcam(){return this.$$.ctx[12]}set mirror_webcam(e){this.$$set({mirror_webcam:e}),k()}get include_audio(){return this.$$.ctx[13]}set include_audio(e){this.$$set({include_audio:e}),k()}get container(){return this.$$.ctx[14]}set container(e){this.$$set({container:e}),k()}get scale(){return this.$$.ctx[15]}set scale(e){this.$$set({scale:e}),k()}get min_width(){return this.$$.ctx[16]}set min_width(e){this.$$set({min_width:e}),k()}get mode(){return this.$$.ctx[17]}set mode(e){this.$$set({mode:e}),k()}get autoplay(){return this.$$.ctx[18]}set autoplay(e){this.$$set({autoplay:e}),k()}get show_share_button(){return this.$$.ctx[19]}set show_share_button(e){this.$$set({show_share_button:e}),k()}}const ol=Qt,_l=["static","dynamic"];export{ol as Component,_l as modes}; -//# sourceMappingURL=index-5c7f446a.js.map diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/huggingface_hub/_tensorboard_logger.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/huggingface_hub/_tensorboard_logger.py deleted file mode 100644 index 87c5e7a53cc6d966936f8bafa84e6c0b1ff476ee..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/huggingface_hub/_tensorboard_logger.py +++ /dev/null @@ -1,157 +0,0 @@ -# Copyright 2023 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""Contains a logger to push training logs to the Hub, using Tensorboard.""" -from pathlib import Path -from typing import TYPE_CHECKING, List, Optional, Union - -from huggingface_hub._commit_scheduler import CommitScheduler - -from .utils import experimental, is_tensorboard_available - - -if is_tensorboard_available(): - from tensorboardX import SummaryWriter - - # TODO: clarify: should we import from torch.utils.tensorboard ? -else: - SummaryWriter = object # Dummy class to avoid failing at import. Will raise on instance creation. - -if TYPE_CHECKING: - from tensorboardX import SummaryWriter - - -class HFSummaryWriter(SummaryWriter): - """ - Wrapper around the tensorboard's `SummaryWriter` to push training logs to the Hub. - - Data is logged locally and then pushed to the Hub asynchronously. Pushing data to the Hub is done in a separate - thread to avoid blocking the training script. In particular, if the upload fails for any reason (e.g. a connection - issue), the main script will not be interrupted. Data is automatically pushed to the Hub every `commit_every` - minutes (default to every 5 minutes). - - - - `HFSummaryWriter` is experimental. Its API is subject to change in the future without prior notice. - - - - Args: - repo_id (`str`): - The id of the repo to which the logs will be pushed. - logdir (`str`, *optional*): - The directory where the logs will be written. If not specified, a local directory will be created by the - underlying `SummaryWriter` object. - commit_every (`int` or `float`, *optional*): - The frequency (in minutes) at which the logs will be pushed to the Hub. Defaults to 5 minutes. - repo_type (`str`, *optional*): - The type of the repo to which the logs will be pushed. Defaults to "model". - repo_revision (`str`, *optional*): - The revision of the repo to which the logs will be pushed. Defaults to "main". - repo_private (`bool`, *optional*): - Whether to create a private repo or not. Defaults to False. This argument is ignored if the repo already - exists. - path_in_repo (`str`, *optional*): - The path to the folder in the repo where the logs will be pushed. Defaults to "tensorboard/". - repo_allow_patterns (`List[str]` or `str`, *optional*): - A list of patterns to include in the upload. Defaults to `"*.tfevents.*"`. Check out the - [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder) for more details. - repo_ignore_patterns (`List[str]` or `str`, *optional*): - A list of patterns to exclude in the upload. Check out the - [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-folder) for more details. - token (`str`, *optional*): - Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more - details - kwargs: - Additional keyword arguments passed to `SummaryWriter`. - - Examples: - ```py - >>> from huggingface_hub import HFSummaryWriter - - # Logs are automatically pushed every 15 minutes - >>> logger = HFSummaryWriter(repo_id="test_hf_logger", commit_every=15) - >>> logger.add_scalar("a", 1) - >>> logger.add_scalar("b", 2) - ... - - # You can also trigger a push manually - >>> logger.scheduler.trigger() - ``` - - ```py - >>> from huggingface_hub import HFSummaryWriter - - # Logs are automatically pushed every 5 minutes (default) + when exiting the context manager - >>> with HFSummaryWriter(repo_id="test_hf_logger") as logger: - ... logger.add_scalar("a", 1) - ... logger.add_scalar("b", 2) - ``` - """ - - @experimental - def __new__(cls, *args, **kwargs) -> "HFSummaryWriter": - if not is_tensorboard_available(): - raise ImportError( - "You must have `tensorboard` installed to use `HFSummaryWriter`. Please run `pip install --upgrade" - " tensorboardX` first." - ) - return super().__new__(cls) - - def __init__( - self, - repo_id: str, - *, - logdir: Optional[str] = None, - commit_every: Union[int, float] = 5, - repo_type: Optional[str] = None, - repo_revision: Optional[str] = None, - repo_private: bool = False, - path_in_repo: Optional[str] = "tensorboard", - repo_allow_patterns: Optional[Union[List[str], str]] = "*.tfevents.*", - repo_ignore_patterns: Optional[Union[List[str], str]] = None, - token: Optional[str] = None, - **kwargs, - ): - # Initialize SummaryWriter - super().__init__(logdir=logdir, **kwargs) - - # Check logdir has been correctly initialized and fail early otherwise. In practice, SummaryWriter takes care of it. - if not isinstance(self.logdir, str): - raise ValueError(f"`self.logdir` must be a string. Got '{self.logdir}' of type {type(self.logdir)}.") - - # Append logdir name to `path_in_repo` - if path_in_repo is None or path_in_repo == "": - path_in_repo = Path(self.logdir).name - else: - path_in_repo = path_in_repo.strip("/") + "/" + Path(self.logdir).name - - # Initialize scheduler - self.scheduler = CommitScheduler( - folder_path=self.logdir, - path_in_repo=path_in_repo, - repo_id=repo_id, - repo_type=repo_type, - revision=repo_revision, - private=repo_private, - token=token, - allow_patterns=repo_allow_patterns, - ignore_patterns=repo_ignore_patterns, - every=commit_every, - ) - - def __exit__(self, exc_type, exc_val, exc_tb): - """Push to hub in a non-blocking way when exiting the logger's context manager.""" - super().__exit__(exc_type, exc_val, exc_tb) - future = self.scheduler.trigger() - future.result() diff --git a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/huggingface_hub/inference/_client.py b/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/huggingface_hub/inference/_client.py deleted file mode 100644 index 868d1cea5ad2037735034c74a20a0cb4769e8c39..0000000000000000000000000000000000000000 --- a/spaces/dcarpintero/nlp-summarizer-pegasus/.venv/lib/python3.9/site-packages/huggingface_hub/inference/_client.py +++ /dev/null @@ -1,1258 +0,0 @@ -# coding=utf-8 -# Copyright 2023-present, the HuggingFace Inc. team. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -# Related resources: -# https://huggingface.co/tasks -# https://huggingface.co/docs/huggingface.js/inference/README -# https://github.com/huggingface/huggingface.js/tree/main/packages/inference/src -# https://github.com/huggingface/text-generation-inference/tree/main/clients/python -# https://github.com/huggingface/text-generation-inference/blob/main/clients/python/text_generation/client.py -# https://huggingface.slack.com/archives/C03E4DQ9LAJ/p1680169099087869 -# https://github.com/huggingface/unity-api#tasks -# -# Some TODO: -# - validate inputs/options/parameters? with Pydantic for instance? or only optionally? -# - add all tasks -# -# NOTE: the philosophy of this client is "let's make it as easy as possible to use it, even if less optimized". Some -# examples of how it translates: -# - Timeout / Server unavailable is handled by the client in a single "timeout" parameter. -# - Files can be provided as bytes, file paths, or URLs and the client will try to "guess" the type. -# - Images are parsed as PIL.Image for easier manipulation. -# - Provides a "recommended model" for each task => suboptimal but user-wise quicker to get a first script running. -# - Only the main parameters are publicly exposed. Power users can always read the docs for more options. -import logging -import time -import warnings -from dataclasses import asdict -from typing import ( - TYPE_CHECKING, - Any, - Dict, - Iterable, - List, - Optional, - Union, - overload, -) - -from requests import HTTPError -from requests.structures import CaseInsensitiveDict - -from huggingface_hub.constants import INFERENCE_ENDPOINT -from huggingface_hub.inference._common import ( - ContentT, - InferenceTimeoutError, - _b64_encode, - _b64_to_image, - _bytes_to_dict, - _bytes_to_image, - _get_recommended_model, - _import_numpy, - _is_tgi_server, - _open_as_binary, - _set_as_non_tgi, - _stream_text_generation_response, -) -from huggingface_hub.inference._text_generation import ( - TextGenerationParameters, - TextGenerationRequest, - TextGenerationResponse, - TextGenerationStreamResponse, - raise_text_generation_error, -) -from huggingface_hub.inference._types import ClassificationOutput, ConversationalOutput, ImageSegmentationOutput -from huggingface_hub.utils import ( - BadRequestError, - build_hf_headers, - get_session, - hf_raise_for_status, -) -from huggingface_hub.utils._typing import Literal - - -if TYPE_CHECKING: - import numpy as np - from PIL import Image - -logger = logging.getLogger(__name__) - - -class InferenceClient: - """ - Initialize a new Inference Client. - - [`InferenceClient`] aims to provide a unified experience to perform inference. The client can be used - seamlessly with either the (free) Inference API or self-hosted Inference Endpoints. - - Args: - model (`str`, `optional`): - The model to run inference with. Can be a model id hosted on the Hugging Face Hub, e.g. `bigcode/starcoder` - or a URL to a deployed Inference Endpoint. Defaults to None, in which case a recommended model is - automatically selected for the task. - token (`str`, *optional*): - Hugging Face token. Will default to the locally saved token. Pass `token=False` if you don't want to send - your token to the server. - timeout (`float`, `optional`): - The maximum number of seconds to wait for a response from the server. Loading a new model in Inference - API can take up to several minutes. Defaults to None, meaning it will loop until the server is available. - headers (`Dict[str, str]`, `optional`): - Additional headers to send to the server. By default only the authorization and user-agent headers are sent. - Values in this dictionary will override the default values. - cookies (`Dict[str, str]`, `optional`): - Additional cookies to send to the server. - """ - - def __init__( - self, - model: Optional[str] = None, - token: Union[str, bool, None] = None, - timeout: Optional[float] = None, - headers: Optional[Dict[str, str]] = None, - cookies: Optional[Dict[str, str]] = None, - ) -> None: - self.model: Optional[str] = model - self.headers = CaseInsensitiveDict(build_hf_headers(token=token)) # contains 'authorization' + 'user-agent' - if headers is not None: - self.headers.update(headers) - self.cookies = cookies - self.timeout = timeout - - def __repr__(self): - return f"" - - @overload - def post( # type: ignore - self, - *, - json: Optional[Union[str, Dict, List]] = None, - data: Optional[ContentT] = None, - model: Optional[str] = None, - task: Optional[str] = None, - stream: Literal[False] = ..., - ) -> bytes: - pass - - @overload - def post( # type: ignore - self, - *, - json: Optional[Union[str, Dict, List]] = None, - data: Optional[ContentT] = None, - model: Optional[str] = None, - task: Optional[str] = None, - stream: Literal[True] = ..., - ) -> Iterable[bytes]: - pass - - def post( - self, - *, - json: Optional[Union[str, Dict, List]] = None, - data: Optional[ContentT] = None, - model: Optional[str] = None, - task: Optional[str] = None, - stream: bool = False, - ) -> Union[bytes, Iterable[bytes]]: - """ - Make a POST request to the inference server. - - Args: - json (`Union[str, Dict, List]`, *optional*): - The JSON data to send in the request body. Defaults to None. - data (`Union[str, Path, bytes, BinaryIO]`, *optional*): - The content to send in the request body. It can be raw bytes, a pointer to an opened file, a local file - path, or a URL to an online resource (image, audio file,...). If both `json` and `data` are passed, - `data` will take precedence. At least `json` or `data` must be provided. Defaults to None. - model (`str`, *optional*): - The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed - Inference Endpoint. Will override the model defined at the instance level. Defaults to None. - task (`str`, *optional*): - The task to perform on the inference. Used only to default to a recommended model if `model` is not - provided. At least `model` or `task` must be provided. Defaults to None. - stream (`bool`, *optional*): - Whether to iterate over streaming APIs. - - Returns: - bytes: The raw bytes returned by the server. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - """ - url = self._resolve_url(model, task) - - if data is not None and json is not None: - warnings.warn("Ignoring `json` as `data` is passed as binary.") - - t0 = time.time() - timeout = self.timeout - while True: - with _open_as_binary(data) as data_as_binary: - try: - response = get_session().post( - url, - json=json, - data=data_as_binary, - headers=self.headers, - cookies=self.cookies, - timeout=self.timeout, - stream=stream, - ) - except TimeoutError as error: - # Convert any `TimeoutError` to a `InferenceTimeoutError` - raise InferenceTimeoutError(f"Inference call timed out: {url}") from error - - try: - hf_raise_for_status(response) - return response.iter_lines() if stream else response.content - except HTTPError as error: - if error.response.status_code == 503: - # If Model is unavailable, either raise a TimeoutError... - if timeout is not None and time.time() - t0 > timeout: - raise InferenceTimeoutError( - f"Model not loaded on the server: {url}. Please retry with a higher timeout (current:" - f" {self.timeout})." - ) from error - # ...or wait 1s and retry - logger.info(f"Waiting for model to be loaded on the server: {error}") - time.sleep(1) - if timeout is not None: - timeout = max(self.timeout - (time.time() - t0), 1) # type: ignore - continue - raise - - def audio_classification( - self, - audio: ContentT, - *, - model: Optional[str] = None, - ) -> List[ClassificationOutput]: - """ - Perform audio classification on the provided audio content. - - Args: - audio (Union[str, Path, bytes, BinaryIO]): - The audio content to classify. It can be raw audio bytes, a local audio file, or a URL pointing to an - audio file. - model (`str`, *optional*): - The model to use for audio classification. Can be a model ID hosted on the Hugging Face Hub - or a URL to a deployed Inference Endpoint. If not provided, the default recommended model for - audio classification will be used. - - Returns: - `List[Dict]`: The classification output containing the predicted label and its confidence. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - >>> client.audio_classification("audio.flac") - [{'score': 0.4976358711719513, 'label': 'hap'}, {'score': 0.3677836060523987, 'label': 'neu'},...] - ``` - """ - response = self.post(data=audio, model=model, task="audio-classification") - return _bytes_to_dict(response) - - def automatic_speech_recognition( - self, - audio: ContentT, - *, - model: Optional[str] = None, - ) -> str: - """ - Perform automatic speech recognition (ASR or audio-to-text) on the given audio content. - - Args: - audio (Union[str, Path, bytes, BinaryIO]): - The content to transcribe. It can be raw audio bytes, local audio file, or a URL to an audio file. - model (`str`, *optional*): - The model to use for ASR. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed - Inference Endpoint. If not provided, the default recommended model for ASR will be used. - - Returns: - str: The transcribed text. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - >>> client.automatic_speech_recognition("hello_world.flac") - "hello world" - ``` - """ - response = self.post(data=audio, model=model, task="automatic-speech-recognition") - return _bytes_to_dict(response)["text"] - - def conversational( - self, - text: str, - generated_responses: Optional[List[str]] = None, - past_user_inputs: Optional[List[str]] = None, - *, - parameters: Optional[Dict[str, Any]] = None, - model: Optional[str] = None, - ) -> ConversationalOutput: - """ - Generate conversational responses based on the given input text (i.e. chat with the API). - - Args: - text (`str`): - The last input from the user in the conversation. - generated_responses (`List[str]`, *optional*): - A list of strings corresponding to the earlier replies from the model. Defaults to None. - past_user_inputs (`List[str]`, *optional*): - A list of strings corresponding to the earlier replies from the user. Should be the same length as - `generated_responses`. Defaults to None. - parameters (`Dict[str, Any]`, *optional*): - Additional parameters for the conversational task. Defaults to None. For more details about the available - parameters, please refer to [this page](https://huggingface.co/docs/api-inference/detailed_parameters#conversational-task) - model (`str`, *optional*): - The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to - a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used. - Defaults to None. - - Returns: - `Dict`: The generated conversational output. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - >>> output = client.conversational("Hi, who are you?") - >>> output - {'generated_text': 'I am the one who knocks.', 'conversation': {'generated_responses': ['I am the one who knocks.'], 'past_user_inputs': ['Hi, who are you?']}, 'warnings': ['Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.']} - >>> client.conversational( - ... "Wow, that's scary!", - ... generated_responses=output["conversation"]["generated_responses"], - ... past_user_inputs=output["conversation"]["past_user_inputs"], - ... ) - ``` - """ - payload: Dict[str, Any] = {"inputs": {"text": text}} - if generated_responses is not None: - payload["inputs"]["generated_responses"] = generated_responses - if past_user_inputs is not None: - payload["inputs"]["past_user_inputs"] = past_user_inputs - if parameters is not None: - payload["parameters"] = parameters - response = self.post(json=payload, model=model, task="conversational") - return _bytes_to_dict(response) - - def feature_extraction(self, text: str, *, model: Optional[str] = None) -> "np.ndarray": - """ - Generate embeddings for a given text. - - Args: - text (`str`): - The text to embed. - model (`str`, *optional*): - The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to - a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used. - Defaults to None. - - Returns: - `np.ndarray`: The embedding representing the input text as a float32 numpy array. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - >>> client.feature_extraction("Hi, who are you?") - array([[ 2.424802 , 2.93384 , 1.1750331 , ..., 1.240499, -0.13776633, -0.7889173 ], - [-0.42943227, -0.6364878 , -1.693462 , ..., 0.41978157, -2.4336355 , 0.6162071 ], - ..., - [ 0.28552425, -0.928395 , -1.2077185 , ..., 0.76810825, -2.1069427 , 0.6236161 ]], dtype=float32) - ``` - """ - response = self.post(json={"inputs": text}, model=model, task="feature-extraction") - np = _import_numpy() - return np.array(_bytes_to_dict(response)[0], dtype="float32") - - def image_classification( - self, - image: ContentT, - *, - model: Optional[str] = None, - ) -> List[ClassificationOutput]: - """ - Perform image classification on the given image using the specified model. - - Args: - image (`Union[str, Path, bytes, BinaryIO]`): - The image to classify. It can be raw bytes, an image file, or a URL to an online image. - model (`str`, *optional*): - The model to use for image classification. Can be a model ID hosted on the Hugging Face Hub or a URL to a - deployed Inference Endpoint. If not provided, the default recommended model for image classification will be used. - - Returns: - `List[Dict]`: a list of dictionaries containing the predicted label and associated probability. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - >>> client.image_classification("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg") - [{'score': 0.9779096841812134, 'label': 'Blenheim spaniel'}, ...] - ``` - """ - response = self.post(data=image, model=model, task="image-classification") - return _bytes_to_dict(response) - - def image_segmentation( - self, - image: ContentT, - *, - model: Optional[str] = None, - ) -> List[ImageSegmentationOutput]: - """ - Perform image segmentation on the given image using the specified model. - - - - You must have `PIL` installed if you want to work with images (`pip install Pillow`). - - - - Args: - image (`Union[str, Path, bytes, BinaryIO]`): - The image to segment. It can be raw bytes, an image file, or a URL to an online image. - model (`str`, *optional*): - The model to use for image segmentation. Can be a model ID hosted on the Hugging Face Hub or a URL to a - deployed Inference Endpoint. If not provided, the default recommended model for image segmentation will be used. - - Returns: - `List[Dict]`: A list of dictionaries containing the segmented masks and associated attributes. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - >>> client.image_segmentation("cat.jpg"): - [{'score': 0.989008, 'label': 'LABEL_184', 'mask': }, ...] - ``` - """ - - # Segment - response = self.post(data=image, model=model, task="image-segmentation") - output = _bytes_to_dict(response) - - # Parse masks as PIL Image - if not isinstance(output, list): - raise ValueError(f"Server output must be a list. Got {type(output)}: {str(output)[:200]}...") - for item in output: - item["mask"] = _b64_to_image(item["mask"]) - return output - - def image_to_image( - self, - image: ContentT, - prompt: Optional[str] = None, - *, - negative_prompt: Optional[str] = None, - height: Optional[int] = None, - width: Optional[int] = None, - num_inference_steps: Optional[int] = None, - guidance_scale: Optional[float] = None, - model: Optional[str] = None, - **kwargs, - ) -> "Image": - """ - Perform image-to-image translation using a specified model. - - - - You must have `PIL` installed if you want to work with images (`pip install Pillow`). - - - - Args: - image (`Union[str, Path, bytes, BinaryIO]`): - The input image for translation. It can be raw bytes, an image file, or a URL to an online image. - prompt (`str`, *optional*): - The text prompt to guide the image generation. - negative_prompt (`str`, *optional*): - A negative prompt to guide the translation process. - height (`int`, *optional*): - The height in pixels of the generated image. - width (`int`, *optional*): - The width in pixels of the generated image. - num_inference_steps (`int`, *optional*): - The number of denoising steps. More denoising steps usually lead to a higher quality image at the - expense of slower inference. - guidance_scale (`float`, *optional*): - Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, - usually at the expense of lower image quality. - model (`str`, *optional*): - The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed - Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. - - Returns: - `Image`: The translated image. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - >>> image = client.image_to_image("cat.jpg", prompt="turn the cat into a tiger") - >>> image.save("tiger.jpg") - ``` - """ - parameters = { - "prompt": prompt, - "negative_prompt": negative_prompt, - "height": height, - "width": width, - "num_inference_steps": num_inference_steps, - "guidance_scale": guidance_scale, - **kwargs, - } - if all(parameter is None for parameter in parameters.values()): - # Either only an image to send => send as raw bytes - data = image - payload: Optional[Dict[str, Any]] = None - else: - # Or an image + some parameters => use base64 encoding - data = None - payload = {"inputs": _b64_encode(image)} - for key, value in parameters.items(): - if value is not None: - payload[key] = value - - response = self.post(json=payload, data=data, model=model, task="image-to-image") - return _bytes_to_image(response) - - def image_to_text(self, image: ContentT, *, model: Optional[str] = None) -> str: - """ - Takes an input image and return text. - - Models can have very different outputs depending on your use case (image captioning, optical character recognition - (OCR), Pix2Struct, etc). Please have a look to the model card to learn more about a model's specificities. - - Args: - image (`Union[str, Path, bytes, BinaryIO]`): - The input image to caption. It can be raw bytes, an image file, or a URL to an online image.. - model (`str`, *optional*): - The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed - Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. - - Returns: - `str`: The generated text. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - >>> client.image_to_text("cat.jpg") - 'a cat standing in a grassy field ' - >>> client.image_to_text("https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg") - 'a dog laying on the grass next to a flower pot ' - ``` - """ - response = self.post(data=image, model=model, task="image-to-text") - return _bytes_to_dict(response)[0]["generated_text"] - - def sentence_similarity( - self, sentence: str, other_sentences: List[str], *, model: Optional[str] = None - ) -> List[float]: - """ - Compute the semantic similarity between a sentence and a list of other sentences by comparing their embeddings. - - Args: - sentence (`str`): - The main sentence to compare to others. - other_sentences (`List[str]`): - The list of sentences to compare to. - model (`str`, *optional*): - The model to use for the conversational task. Can be a model ID hosted on the Hugging Face Hub or a URL to - a deployed Inference Endpoint. If not provided, the default recommended conversational model will be used. - Defaults to None. - - Returns: - `List[float]`: The embedding representing the input text. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - >>> client.sentence_similarity( - ... "Machine learning is so easy.", - ... other_sentences=[ - ... "Deep learning is so straightforward.", - ... "This is so difficult, like rocket science.", - ... "I can't believe how much I struggled with this.", - ... ], - ... ) - [0.7785726189613342, 0.45876261591911316, 0.2906220555305481] - ``` - """ - response = self.post( - json={"inputs": {"source_sentence": sentence, "sentences": other_sentences}}, - model=model, - task="sentence-similarity", - ) - return _bytes_to_dict(response) - - def summarization( - self, - text: str, - *, - parameters: Optional[Dict[str, Any]] = None, - model: Optional[str] = None, - ) -> str: - """ - Generate a summary of a given text using a specified model. - - Args: - text (`str`): - The input text to summarize. - parameters (`Dict[str, Any]`, *optional*): - Additional parameters for summarization. Check out this [page](https://huggingface.co/docs/api-inference/detailed_parameters#summarization-task) - for more details. - model (`str`, *optional*): - The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed - Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. - - Returns: - `str`: The generated summary text. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - >>> client.summarization("The Eiffel tower...") - 'The Eiffel tower is one of the most famous landmarks in the world....' - ``` - """ - payload: Dict[str, Any] = {"inputs": text} - if parameters is not None: - payload["parameters"] = parameters - response = self.post(json=payload, model=model, task="summarization") - return _bytes_to_dict(response)[0]["summary_text"] - - @overload - def text_generation( # type: ignore - self, - prompt: str, - *, - details: Literal[False] = ..., - stream: Literal[False] = ..., - model: Optional[str] = None, - do_sample: bool = False, - max_new_tokens: int = 20, - best_of: Optional[int] = None, - repetition_penalty: Optional[float] = None, - return_full_text: bool = False, - seed: Optional[int] = None, - stop_sequences: Optional[List[str]] = None, - temperature: Optional[float] = None, - top_k: Optional[int] = None, - top_p: Optional[float] = None, - truncate: Optional[int] = None, - typical_p: Optional[float] = None, - watermark: bool = False, - ) -> str: - ... - - @overload - def text_generation( # type: ignore - self, - prompt: str, - *, - details: Literal[True] = ..., - stream: Literal[False] = ..., - model: Optional[str] = None, - do_sample: bool = False, - max_new_tokens: int = 20, - best_of: Optional[int] = None, - repetition_penalty: Optional[float] = None, - return_full_text: bool = False, - seed: Optional[int] = None, - stop_sequences: Optional[List[str]] = None, - temperature: Optional[float] = None, - top_k: Optional[int] = None, - top_p: Optional[float] = None, - truncate: Optional[int] = None, - typical_p: Optional[float] = None, - watermark: bool = False, - ) -> TextGenerationResponse: - ... - - @overload - def text_generation( # type: ignore - self, - prompt: str, - *, - details: Literal[False] = ..., - stream: Literal[True] = ..., - model: Optional[str] = None, - do_sample: bool = False, - max_new_tokens: int = 20, - best_of: Optional[int] = None, - repetition_penalty: Optional[float] = None, - return_full_text: bool = False, - seed: Optional[int] = None, - stop_sequences: Optional[List[str]] = None, - temperature: Optional[float] = None, - top_k: Optional[int] = None, - top_p: Optional[float] = None, - truncate: Optional[int] = None, - typical_p: Optional[float] = None, - watermark: bool = False, - ) -> Iterable[str]: - ... - - @overload - def text_generation( - self, - prompt: str, - *, - details: Literal[True] = ..., - stream: Literal[True] = ..., - model: Optional[str] = None, - do_sample: bool = False, - max_new_tokens: int = 20, - best_of: Optional[int] = None, - repetition_penalty: Optional[float] = None, - return_full_text: bool = False, - seed: Optional[int] = None, - stop_sequences: Optional[List[str]] = None, - temperature: Optional[float] = None, - top_k: Optional[int] = None, - top_p: Optional[float] = None, - truncate: Optional[int] = None, - typical_p: Optional[float] = None, - watermark: bool = False, - ) -> Iterable[TextGenerationStreamResponse]: - ... - - def text_generation( - self, - prompt: str, - *, - details: bool = False, - stream: bool = False, - model: Optional[str] = None, - do_sample: bool = False, - max_new_tokens: int = 20, - best_of: Optional[int] = None, - repetition_penalty: Optional[float] = None, - return_full_text: bool = False, - seed: Optional[int] = None, - stop_sequences: Optional[List[str]] = None, - temperature: Optional[float] = None, - top_k: Optional[int] = None, - top_p: Optional[float] = None, - truncate: Optional[int] = None, - typical_p: Optional[float] = None, - watermark: bool = False, - decoder_input_details: bool = False, - ) -> Union[str, TextGenerationResponse, Iterable[str], Iterable[TextGenerationStreamResponse]]: - """ - Given a prompt, generate the following text. - - It is recommended to have Pydantic installed in order to get inputs validated. This is preferable as it allow - early failures. - - API endpoint is supposed to run with the `text-generation-inference` backend (TGI). This backend is the - go-to solution to run large language models at scale. However, for some smaller models (e.g. "gpt2") the - default `transformers` + `api-inference` solution is still in use. Both approaches have very similar APIs, but - not exactly the same. This method is compatible with both approaches but some parameters are only available for - `text-generation-inference`. If some parameters are ignored, a warning message is triggered but the process - continues correctly. - - To learn more about the TGI project, please refer to https://github.com/huggingface/text-generation-inference. - - Args: - prompt (`str`): - Input text. - details (`bool`, *optional*): - By default, text_generation returns a string. Pass `details=True` if you want a detailed output (tokens, - probabilities, seed, finish reason, etc.). Only available for models running on with the - `text-generation-inference` backend. - stream (`bool`, *optional*): - By default, text_generation returns the full generated text. Pass `stream=True` if you want a stream of - tokens to be returned. Only available for models running on with the `text-generation-inference` - backend. - model (`str`, *optional*): - The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed - Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. - do_sample (`bool`): - Activate logits sampling - max_new_tokens (`int`): - Maximum number of generated tokens - best_of (`int`): - Generate best_of sequences and return the one if the highest token logprobs - repetition_penalty (`float`): - The parameter for repetition penalty. 1.0 means no penalty. See [this - paper](https://arxiv.org/pdf/1909.05858.pdf) for more details. - return_full_text (`bool`): - Whether to prepend the prompt to the generated text - seed (`int`): - Random sampling seed - stop_sequences (`List[str]`): - Stop generating tokens if a member of `stop_sequences` is generated - temperature (`float`): - The value used to module the logits distribution. - top_k (`int`): - The number of highest probability vocabulary tokens to keep for top-k-filtering. - top_p (`float`): - If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or - higher are kept for generation. - truncate (`int`): - Truncate inputs tokens to the given size - typical_p (`float`): - Typical Decoding mass - See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information - watermark (`bool`): - Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226) - decoder_input_details (`bool`): - Return the decoder input token logprobs and ids. You must set `details=True` as well for it to be taken - into account. Defaults to `False`. - - Returns: - `Union[str, TextGenerationResponse, Iterable[str], Iterable[TextGenerationStreamResponse]]`: - Generated text returned from the server: - - if `stream=False` and `details=False`, the generated text is returned as a `str` (default) - - if `stream=True` and `details=False`, the generated text is returned token by token as a `Iterable[str]` - - if `stream=False` and `details=True`, the generated text is returned with more details as a [`~huggingface_hub.inference._text_generation.TextGenerationResponse`] - - if `details=True` and `stream=True`, the generated text is returned token by token as a iterable of [`~huggingface_hub.inference._text_generation.TextGenerationStreamResponse`] - - Raises: - `ValidationError`: - If input values are not valid. No HTTP call is made to the server. - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - - # Case 1: generate text - >>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12) - '100% open source and built to be easy to use.' - - # Case 2: iterate over the generated tokens. Useful for large generation. - >>> for token in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, stream=True): - ... print(token) - 100 - % - open - source - and - built - to - be - easy - to - use - . - - # Case 3: get more details about the generation process. - >>> client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True) - TextGenerationResponse( - generated_text='100% open source and built to be easy to use.', - details=Details( - finish_reason=, - generated_tokens=12, - seed=None, - prefill=[ - InputToken(id=487, text='The', logprob=None), - InputToken(id=53789, text=' hugging', logprob=-13.171875), - (...) - InputToken(id=204, text=' ', logprob=-7.0390625) - ], - tokens=[ - Token(id=1425, text='100', logprob=-1.0175781, special=False), - Token(id=16, text='%', logprob=-0.0463562, special=False), - (...) - Token(id=25, text='.', logprob=-0.5703125, special=False) - ], - best_of_sequences=None - ) - ) - - # Case 4: iterate over the generated tokens with more details. - # Last object is more complete, containing the full generated text and the finish reason. - >>> for details in client.text_generation("The huggingface_hub library is ", max_new_tokens=12, details=True, stream=True): - ... print(details) - ... - TextGenerationStreamResponse(token=Token(id=1425, text='100', logprob=-1.0175781, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token(id=16, text='%', logprob=-0.0463562, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token(id=1314, text=' open', logprob=-1.3359375, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token(id=3178, text=' source', logprob=-0.28100586, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token(id=273, text=' and', logprob=-0.5961914, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token(id=3426, text=' built', logprob=-1.9423828, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token(id=271, text=' to', logprob=-1.4121094, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token(id=314, text=' be', logprob=-1.5224609, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token(id=1833, text=' easy', logprob=-2.1132812, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token(id=271, text=' to', logprob=-0.08520508, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token(id=745, text=' use', logprob=-0.39453125, special=False), generated_text=None, details=None) - TextGenerationStreamResponse(token=Token( - id=25, - text='.', - logprob=-0.5703125, - special=False), - generated_text='100% open source and built to be easy to use.', - details=StreamDetails(finish_reason=, generated_tokens=12, seed=None) - ) - ``` - """ - # NOTE: Text-generation integration is taken from the text-generation-inference project. It has more features - # like input/output validation (if Pydantic is installed). See `_text_generation.py` header for more details. - - if decoder_input_details and not details: - warnings.warn( - "`decoder_input_details=True` has been passed to the server but `details=False` is set meaning that" - " the output from the server will be truncated." - ) - decoder_input_details = False - - # Validate parameters - parameters = TextGenerationParameters( - best_of=best_of, - details=details, - do_sample=do_sample, - max_new_tokens=max_new_tokens, - repetition_penalty=repetition_penalty, - return_full_text=return_full_text, - seed=seed, - stop=stop_sequences if stop_sequences is not None else [], - temperature=temperature, - top_k=top_k, - top_p=top_p, - truncate=truncate, - typical_p=typical_p, - watermark=watermark, - decoder_input_details=decoder_input_details, - ) - request = TextGenerationRequest(inputs=prompt, stream=stream, parameters=parameters) - payload = asdict(request) - - # Remove some parameters if not a TGI server - if not _is_tgi_server(model): - ignored_parameters = [] - for key in "watermark", "stop", "details", "decoder_input_details": - if payload["parameters"][key] is not None: - ignored_parameters.append(key) - del payload["parameters"][key] - if len(ignored_parameters) > 0: - warnings.warn( - ( - "API endpoint/model for text-generation is not served via TGI. Ignoring parameters" - f" {ignored_parameters}." - ), - UserWarning, - ) - if details: - warnings.warn( - ( - "API endpoint/model for text-generation is not served via TGI. Parameter `details=True` will" - " be ignored meaning only the generated text will be returned." - ), - UserWarning, - ) - details = False - if stream: - raise ValueError( - "API endpoint/model for text-generation is not served via TGI. Cannot return output as a stream." - " Please pass `stream=False` as input." - ) - - # Handle errors separately for more precise error messages - try: - bytes_output = self.post(json=payload, model=model, task="text-generation", stream=stream) # type: ignore - except HTTPError as e: - if isinstance(e, BadRequestError) and "The following `model_kwargs` are not used by the model" in str(e): - _set_as_non_tgi(model) - return self.text_generation( # type: ignore - prompt=prompt, - details=details, - stream=stream, - model=model, - do_sample=do_sample, - max_new_tokens=max_new_tokens, - best_of=best_of, - repetition_penalty=repetition_penalty, - return_full_text=return_full_text, - seed=seed, - stop_sequences=stop_sequences, - temperature=temperature, - top_k=top_k, - top_p=top_p, - truncate=truncate, - typical_p=typical_p, - watermark=watermark, - decoder_input_details=decoder_input_details, - ) - raise_text_generation_error(e) - - # Parse output - if stream: - return _stream_text_generation_response(bytes_output, details) # type: ignore - - data = _bytes_to_dict(bytes_output)[0] - return TextGenerationResponse(**data) if details else data["generated_text"] - - def text_to_image( - self, - prompt: str, - *, - negative_prompt: Optional[str] = None, - height: Optional[float] = None, - width: Optional[float] = None, - num_inference_steps: Optional[float] = None, - guidance_scale: Optional[float] = None, - model: Optional[str] = None, - **kwargs, - ) -> "Image": - """ - Generate an image based on a given text using a specified model. - - - - You must have `PIL` installed if you want to work with images (`pip install Pillow`). - - - - Args: - prompt (`str`): - The prompt to generate an image from. - negative_prompt (`str`, *optional*): - An optional negative prompt for the image generation. - height (`float`, *optional*): - The height in pixels of the image to generate. - width (`float`, *optional*): - The width in pixels of the image to generate. - num_inference_steps (`int`, *optional*): - The number of denoising steps. More denoising steps usually lead to a higher quality image at the - expense of slower inference. - guidance_scale (`float`, *optional*): - Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, - usually at the expense of lower image quality. - model (`str`, *optional*): - The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed - Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. - - Returns: - `Image`: The generated image. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - - >>> image = client.text_to_image("An astronaut riding a horse on the moon.") - >>> image.save("astronaut.png") - - >>> image = client.text_to_image( - ... "An astronaut riding a horse on the moon.", - ... negative_prompt="low resolution, blurry", - ... model="stabilityai/stable-diffusion-2-1", - ... ) - >>> image.save("better_astronaut.png") - ``` - """ - parameters = { - "inputs": prompt, - "negative_prompt": negative_prompt, - "height": height, - "width": width, - "num_inference_steps": num_inference_steps, - "guidance_scale": guidance_scale, - **kwargs, - } - payload = {} - for key, value in parameters.items(): - if value is not None: - payload[key] = value - response = self.post(json=payload, model=model, task="text-to-image") - return _bytes_to_image(response) - - def text_to_speech(self, text: str, *, model: Optional[str] = None) -> bytes: - """ - Synthesize an audio of a voice pronouncing a given text. - - Args: - text (`str`): - The text to synthesize. - model (`str`, *optional*): - The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed - Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. - - Returns: - `bytes`: The generated audio. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from pathlib import Path - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - - >>> audio = client.text_to_speech("Hello world") - >>> Path("hello_world.flac").write_bytes(audio) - ``` - """ - return self.post(json={"inputs": text}, model=model, task="text-to-speech") - - def zero_shot_image_classification( - self, image: ContentT, labels: List[str], *, model: Optional[str] = None - ) -> List[ClassificationOutput]: - """ - Provide input image and text labels to predict text labels for the image. - - Args: - image (`Union[str, Path, bytes, BinaryIO]`): - The input image to caption. It can be raw bytes, an image file, or a URL to an online image. - labels (`List[str]`): - List of string possible labels. The `len(labels)` must be greater than 1. - model (`str`, *optional*): - The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed - Inference Endpoint. This parameter overrides the model defined at the instance level. Defaults to None. - - Returns: - `List[Dict]`: List of classification outputs containing the predicted labels and their confidence. - - Raises: - [`InferenceTimeoutError`]: - If the model is unavailable or the request times out. - `HTTPError`: - If the request fails with an HTTP error status code other than HTTP 503. - - Example: - ```py - >>> from huggingface_hub import InferenceClient - >>> client = InferenceClient() - - >>> client.zero_shot_image_classification( - ... "https://upload.wikimedia.org/wikipedia/commons/thumb/4/43/Cute_dog.jpg/320px-Cute_dog.jpg", - ... labels=["dog", "cat", "horse"], - ... ) - [{"label": "dog", "score": 0.956}, ...] - ``` - """ - - # Raise valueerror if input is less than 2 labels - if len(labels) < 2: - raise ValueError("You must specify at least 2 classes to compare. Please specify more than 1 class.") - - response = self.post( - json={"image": _b64_encode(image), "parameters": {"candidate_labels": ",".join(labels)}}, - model=model, - task="zero-shot-image-classification", - ) - return _bytes_to_dict(response) - - def _resolve_url(self, model: Optional[str] = None, task: Optional[str] = None) -> str: - model = model or self.model - - # If model is already a URL, ignore `task` and return directly - if model is not None and (model.startswith("http://") or model.startswith("https://")): - return model - - # # If no model but task is set => fetch the recommended one for this task - if model is None: - if task is None: - raise ValueError( - "You must specify at least a model (repo_id or URL) or a task, either when instantiating" - " `InferenceClient` or when making a request." - ) - model = _get_recommended_model(task) - - # Compute InferenceAPI url - return ( - # Feature-extraction and sentence-similarity are the only cases where we handle models with several tasks. - f"{INFERENCE_ENDPOINT}/pipeline/{task}/{model}" - if task in ("feature-extraction", "sentence-similarity") - # Otherwise, we use the default endpoint - else f"{INFERENCE_ENDPOINT}/models/{model}" - ) diff --git a/spaces/declare-lab/tango/diffusers/examples/research_projects/onnxruntime/text_to_image/README.md b/spaces/declare-lab/tango/diffusers/examples/research_projects/onnxruntime/text_to_image/README.md deleted file mode 100644 index cd9397939ac2399ac161f19623430636a4c3c9ad..0000000000000000000000000000000000000000 --- a/spaces/declare-lab/tango/diffusers/examples/research_projects/onnxruntime/text_to_image/README.md +++ /dev/null @@ -1,74 +0,0 @@ -# Stable Diffusion text-to-image fine-tuning - -The `train_text_to_image.py` script shows how to fine-tune stable diffusion model on your own dataset. - -___Note___: - -___This script is experimental. The script fine-tunes the whole model and often times the model overfits and runs into issues like catastrophic forgetting. It's recommended to try different hyperparamters to get the best result on your dataset.___ - - -## Running locally with PyTorch -### Installing the dependencies - -Before running the scripts, make sure to install the library's training dependencies: - -**Important** - -To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: -```bash -git clone https://github.com/huggingface/diffusers -cd diffusers -pip install . -``` - -Then cd in the example folder and run -```bash -pip install -r requirements.txt -``` - -And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: - -```bash -accelerate config -``` - -### Pokemon example - -You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-4`, so you'll need to visit [its card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. - -You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens). - -Run the following command to authenticate your token - -```bash -huggingface-cli login -``` - -If you have already cloned the repo, then you won't need to go through these steps. - -
    - -## Use ONNXRuntime to accelerate training -In order to leverage onnxruntime to accelerate training, please use train_text_to_image.py - -The command to train a DDPM UNetCondition model on the Pokemon dataset with onnxruntime: - -```bash -export MODEL_NAME="CompVis/stable-diffusion-v1-4" -export dataset_name="lambdalabs/pokemon-blip-captions" -accelerate launch --mixed_precision="fp16" train_text_to_image.py \ - --pretrained_model_name_or_path=$MODEL_NAME \ - --dataset_name=$dataset_name \ - --use_ema \ - --resolution=512 --center_crop --random_flip \ - --train_batch_size=1 \ - --gradient_accumulation_steps=4 \ - --gradient_checkpointing \ - --max_train_steps=15000 \ - --learning_rate=1e-05 \ - --max_grad_norm=1 \ - --lr_scheduler="constant" --lr_warmup_steps=0 \ - --output_dir="sd-pokemon-model" -``` - -Please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions. \ No newline at end of file diff --git a/spaces/declare-lab/tango/diffusers/src/diffusers/optimization.py b/spaces/declare-lab/tango/diffusers/src/diffusers/optimization.py deleted file mode 100644 index 657e085062e051ddf68c060575d696419ac6c1d2..0000000000000000000000000000000000000000 --- a/spaces/declare-lab/tango/diffusers/src/diffusers/optimization.py +++ /dev/null @@ -1,304 +0,0 @@ -# coding=utf-8 -# Copyright 2023 The HuggingFace Inc. team. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -"""PyTorch optimization for diffusion models.""" - -import math -from enum import Enum -from typing import Optional, Union - -from torch.optim import Optimizer -from torch.optim.lr_scheduler import LambdaLR - -from .utils import logging - - -logger = logging.get_logger(__name__) - - -class SchedulerType(Enum): - LINEAR = "linear" - COSINE = "cosine" - COSINE_WITH_RESTARTS = "cosine_with_restarts" - POLYNOMIAL = "polynomial" - CONSTANT = "constant" - CONSTANT_WITH_WARMUP = "constant_with_warmup" - - -def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1): - """ - Create a schedule with a constant learning rate, using the learning rate set in optimizer. - - Args: - optimizer ([`~torch.optim.Optimizer`]): - The optimizer for which to schedule the learning rate. - last_epoch (`int`, *optional*, defaults to -1): - The index of the last epoch when resuming training. - - Return: - `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. - """ - return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch) - - -def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1): - """ - Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate - increases linearly between 0 and the initial lr set in the optimizer. - - Args: - optimizer ([`~torch.optim.Optimizer`]): - The optimizer for which to schedule the learning rate. - num_warmup_steps (`int`): - The number of steps for the warmup phase. - last_epoch (`int`, *optional*, defaults to -1): - The index of the last epoch when resuming training. - - Return: - `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. - """ - - def lr_lambda(current_step: int): - if current_step < num_warmup_steps: - return float(current_step) / float(max(1.0, num_warmup_steps)) - return 1.0 - - return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch) - - -def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1): - """ - Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after - a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer. - - Args: - optimizer ([`~torch.optim.Optimizer`]): - The optimizer for which to schedule the learning rate. - num_warmup_steps (`int`): - The number of steps for the warmup phase. - num_training_steps (`int`): - The total number of training steps. - last_epoch (`int`, *optional*, defaults to -1): - The index of the last epoch when resuming training. - - Return: - `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. - """ - - def lr_lambda(current_step: int): - if current_step < num_warmup_steps: - return float(current_step) / float(max(1, num_warmup_steps)) - return max( - 0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)) - ) - - return LambdaLR(optimizer, lr_lambda, last_epoch) - - -def get_cosine_schedule_with_warmup( - optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1 -): - """ - Create a schedule with a learning rate that decreases following the values of the cosine function between the - initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the - initial lr set in the optimizer. - - Args: - optimizer ([`~torch.optim.Optimizer`]): - The optimizer for which to schedule the learning rate. - num_warmup_steps (`int`): - The number of steps for the warmup phase. - num_training_steps (`int`): - The total number of training steps. - num_periods (`float`, *optional*, defaults to 0.5): - The number of periods of the cosine function in a schedule (the default is to just decrease from the max - value to 0 following a half-cosine). - last_epoch (`int`, *optional*, defaults to -1): - The index of the last epoch when resuming training. - - Return: - `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. - """ - - def lr_lambda(current_step): - if current_step < num_warmup_steps: - return float(current_step) / float(max(1, num_warmup_steps)) - progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) - return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) - - return LambdaLR(optimizer, lr_lambda, last_epoch) - - -def get_cosine_with_hard_restarts_schedule_with_warmup( - optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1 -): - """ - Create a schedule with a learning rate that decreases following the values of the cosine function between the - initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases - linearly between 0 and the initial lr set in the optimizer. - - Args: - optimizer ([`~torch.optim.Optimizer`]): - The optimizer for which to schedule the learning rate. - num_warmup_steps (`int`): - The number of steps for the warmup phase. - num_training_steps (`int`): - The total number of training steps. - num_cycles (`int`, *optional*, defaults to 1): - The number of hard restarts to use. - last_epoch (`int`, *optional*, defaults to -1): - The index of the last epoch when resuming training. - - Return: - `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. - """ - - def lr_lambda(current_step): - if current_step < num_warmup_steps: - return float(current_step) / float(max(1, num_warmup_steps)) - progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) - if progress >= 1.0: - return 0.0 - return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0)))) - - return LambdaLR(optimizer, lr_lambda, last_epoch) - - -def get_polynomial_decay_schedule_with_warmup( - optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1 -): - """ - Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the - optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the - initial lr set in the optimizer. - - Args: - optimizer ([`~torch.optim.Optimizer`]): - The optimizer for which to schedule the learning rate. - num_warmup_steps (`int`): - The number of steps for the warmup phase. - num_training_steps (`int`): - The total number of training steps. - lr_end (`float`, *optional*, defaults to 1e-7): - The end LR. - power (`float`, *optional*, defaults to 1.0): - Power factor. - last_epoch (`int`, *optional*, defaults to -1): - The index of the last epoch when resuming training. - - Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT - implementation at - https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37 - - Return: - `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule. - - """ - - lr_init = optimizer.defaults["lr"] - if not (lr_init > lr_end): - raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})") - - def lr_lambda(current_step: int): - if current_step < num_warmup_steps: - return float(current_step) / float(max(1, num_warmup_steps)) - elif current_step > num_training_steps: - return lr_end / lr_init # as LambdaLR multiplies by lr_init - else: - lr_range = lr_init - lr_end - decay_steps = num_training_steps - num_warmup_steps - pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps - decay = lr_range * pct_remaining**power + lr_end - return decay / lr_init # as LambdaLR multiplies by lr_init - - return LambdaLR(optimizer, lr_lambda, last_epoch) - - -TYPE_TO_SCHEDULER_FUNCTION = { - SchedulerType.LINEAR: get_linear_schedule_with_warmup, - SchedulerType.COSINE: get_cosine_schedule_with_warmup, - SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, - SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, - SchedulerType.CONSTANT: get_constant_schedule, - SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, -} - - -def get_scheduler( - name: Union[str, SchedulerType], - optimizer: Optimizer, - num_warmup_steps: Optional[int] = None, - num_training_steps: Optional[int] = None, - num_cycles: int = 1, - power: float = 1.0, - last_epoch: int = -1, -): - """ - Unified API to get any scheduler from its name. - - Args: - name (`str` or `SchedulerType`): - The name of the scheduler to use. - optimizer (`torch.optim.Optimizer`): - The optimizer that will be used during training. - num_warmup_steps (`int`, *optional*): - The number of warmup steps to do. This is not required by all schedulers (hence the argument being - optional), the function will raise an error if it's unset and the scheduler type requires it. - num_training_steps (`int``, *optional*): - The number of training steps to do. This is not required by all schedulers (hence the argument being - optional), the function will raise an error if it's unset and the scheduler type requires it. - num_cycles (`int`, *optional*): - The number of hard restarts used in `COSINE_WITH_RESTARTS` scheduler. - power (`float`, *optional*, defaults to 1.0): - Power factor. See `POLYNOMIAL` scheduler - last_epoch (`int`, *optional*, defaults to -1): - The index of the last epoch when resuming training. - """ - name = SchedulerType(name) - schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name] - if name == SchedulerType.CONSTANT: - return schedule_func(optimizer, last_epoch=last_epoch) - - # All other schedulers require `num_warmup_steps` - if num_warmup_steps is None: - raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.") - - if name == SchedulerType.CONSTANT_WITH_WARMUP: - return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, last_epoch=last_epoch) - - # All other schedulers require `num_training_steps` - if num_training_steps is None: - raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.") - - if name == SchedulerType.COSINE_WITH_RESTARTS: - return schedule_func( - optimizer, - num_warmup_steps=num_warmup_steps, - num_training_steps=num_training_steps, - num_cycles=num_cycles, - last_epoch=last_epoch, - ) - - if name == SchedulerType.POLYNOMIAL: - return schedule_func( - optimizer, - num_warmup_steps=num_warmup_steps, - num_training_steps=num_training_steps, - power=power, - last_epoch=last_epoch, - ) - - return schedule_func( - optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, last_epoch=last_epoch - ) diff --git a/spaces/diacanFperku/AutoGPT/Autodesk Revit Architecture 2013 64 Bit Torrent FR 2021.md b/spaces/diacanFperku/AutoGPT/Autodesk Revit Architecture 2013 64 Bit Torrent FR 2021.md deleted file mode 100644 index 9275f314c2a2f92ed067b1cf1d8125ac2db2e353..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/Autodesk Revit Architecture 2013 64 Bit Torrent FR 2021.md +++ /dev/null @@ -1,6 +0,0 @@ -

    Autodesk revit architecture 2013 64 bit torrent FR


    Download ✪✪✪ https://gohhs.com/2uFVwy



    - -Fast ... for AutoCAD 2014 64 bit only; AutoCAD 2013 32 bit AutoCAD 2013 ... Bit Torrent -- DOWNLOAD autodesk revit architecture 2013 crack 64 . 1fdad05405
    -
    -
    -

    diff --git a/spaces/diacanFperku/AutoGPT/HOT! Drivers Para Modem Zte Mf645 Claro Argentina.md b/spaces/diacanFperku/AutoGPT/HOT! Drivers Para Modem Zte Mf645 Claro Argentina.md deleted file mode 100644 index b44011e53fb3bdd07517daf509c50cdb8dffbe2e..0000000000000000000000000000000000000000 --- a/spaces/diacanFperku/AutoGPT/HOT! Drivers Para Modem Zte Mf645 Claro Argentina.md +++ /dev/null @@ -1,36 +0,0 @@ -

    HOT! drivers para modem zte mf645 claro argentina


    Download >> https://gohhs.com/2uFVN8



    - -You can go to: Http://original-ZTE-MF645.blogspot.com The phone will still work, you just need to install it with Zte MF645 ROM Firmware if you want to run that. - -- DMW5SDA driver from link below can remove Wifi, Carrier support, Voice and Data. The rom does not support MTP support if you download via storage mode. - -- The rom is based on 2.6.36 kernel, you can build kernel from source. If you want to be a legal copy, you can install and modify ZTE MF645 ROM Firmware and kernel using ubuntu. - -- Please support the original team if you use this rom, thanks. - -- ZTE MF645 kernel: If you want to use a kernel, follow the link below. - -- I modified the bios from /system/bios/config.bin for wifi, carrier support, voice and data, if you want to use this rom, you can modify this file. - -- I modified firmware using archieve. If you want to use this rom, you need to be sure that you have valid aap firmware if you download from arm7. If you download it from arm7, you can't use this rom. - -- If you use this rom, you must be agree that if you have a problem about this rom or please use original team, you must help me and contact me via my: phone number, emaill, or send me a message on Facebook, twitter, and other tools. - -- If you have a problem about this rom, you must take a screenshot about the problem, and you must contact me via my: phone number, emaill, or send me a message on Facebook, twitter, and other tools. - -- If you have a problem about this rom, please try to install this rom using backup method, if you don't do that, you can have a wrong restore rom. If you have a problem about this rom, please try to clean data of this rom using recovery, if you don't do that, you can have a wrong restore rom. - -- DMW5SDA: If you want to use this driver, you need to follow the link below. - -ROM Firmware ZTE MF645 - -2017-04-25 - -Emely - -Non-Root - -Solved 4fefd39f24
    -
    -
    -

    diff --git a/spaces/digitalxingtong/Kino-Bert-VITS2/models.py b/spaces/digitalxingtong/Kino-Bert-VITS2/models.py deleted file mode 100644 index d4afe44d883691610c5903e602a3ca245fcb3a5c..0000000000000000000000000000000000000000 --- a/spaces/digitalxingtong/Kino-Bert-VITS2/models.py +++ /dev/null @@ -1,707 +0,0 @@ -import copy -import math -import torch -from torch import nn -from torch.nn import functional as F - -import commons -import modules -import attentions -import monotonic_align - -from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d -from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm - -from commons import init_weights, get_padding -from text import symbols, num_tones, num_languages -class DurationDiscriminator(nn.Module): #vits2 - def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0): - super().__init__() - - self.in_channels = in_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.gin_channels = gin_channels - - self.drop = nn.Dropout(p_dropout) - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.norm_1 = modules.LayerNorm(filter_channels) - self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.norm_2 = modules.LayerNorm(filter_channels) - self.dur_proj = nn.Conv1d(1, filter_channels, 1) - - self.pre_out_conv_1 = nn.Conv1d(2*filter_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.pre_out_norm_1 = modules.LayerNorm(filter_channels) - self.pre_out_conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2) - self.pre_out_norm_2 = modules.LayerNorm(filter_channels) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, in_channels, 1) - - self.output_layer = nn.Sequential( - nn.Linear(filter_channels, 1), - nn.Sigmoid() - ) - - def forward_probability(self, x, x_mask, dur, g=None): - dur = self.dur_proj(dur) - x = torch.cat([x, dur], dim=1) - x = self.pre_out_conv_1(x * x_mask) - x = torch.relu(x) - x = self.pre_out_norm_1(x) - x = self.drop(x) - x = self.pre_out_conv_2(x * x_mask) - x = torch.relu(x) - x = self.pre_out_norm_2(x) - x = self.drop(x) - x = x * x_mask - x = x.transpose(1, 2) - output_prob = self.output_layer(x) - return output_prob - - def forward(self, x, x_mask, dur_r, dur_hat, g=None): - x = torch.detach(x) - if g is not None: - g = torch.detach(g) - x = x + self.cond(g) - x = self.conv_1(x * x_mask) - x = torch.relu(x) - x = self.norm_1(x) - x = self.drop(x) - x = self.conv_2(x * x_mask) - x = torch.relu(x) - x = self.norm_2(x) - x = self.drop(x) - - output_probs = [] - for dur in [dur_r, dur_hat]: - output_prob = self.forward_probability(x, x_mask, dur, g) - output_probs.append(output_prob) - - return output_probs - -class TransformerCouplingBlock(nn.Module): - def __init__(self, - channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - n_flows=4, - gin_channels=0, - share_parameter=False - ): - - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.n_layers = n_layers - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.flows = nn.ModuleList() - - self.wn = attentions.FFT(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = self.gin_channels) if share_parameter else None - - for i in range(n_flows): - self.flows.append( - modules.TransformerCouplingLayer(channels, hidden_channels, kernel_size, n_layers, n_heads, p_dropout, filter_channels, mean_only=True, wn_sharing_parameter=self.wn, gin_channels = self.gin_channels)) - self.flows.append(modules.Flip()) - - def forward(self, x, x_mask, g=None, reverse=False): - if not reverse: - for flow in self.flows: - x, _ = flow(x, x_mask, g=g, reverse=reverse) - else: - for flow in reversed(self.flows): - x = flow(x, x_mask, g=g, reverse=reverse) - return x - -class StochasticDurationPredictor(nn.Module): - def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0): - super().__init__() - filter_channels = in_channels # it needs to be removed from future version. - self.in_channels = in_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.log_flow = modules.Log() - self.flows = nn.ModuleList() - self.flows.append(modules.ElementwiseAffine(2)) - for i in range(n_flows): - self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) - self.flows.append(modules.Flip()) - - self.post_pre = nn.Conv1d(1, filter_channels, 1) - self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) - self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) - self.post_flows = nn.ModuleList() - self.post_flows.append(modules.ElementwiseAffine(2)) - for i in range(4): - self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) - self.post_flows.append(modules.Flip()) - - self.pre = nn.Conv1d(in_channels, filter_channels, 1) - self.proj = nn.Conv1d(filter_channels, filter_channels, 1) - self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, filter_channels, 1) - - def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): - x = torch.detach(x) - x = self.pre(x) - if g is not None: - g = torch.detach(g) - x = x + self.cond(g) - x = self.convs(x, x_mask) - x = self.proj(x) * x_mask - - if not reverse: - flows = self.flows - assert w is not None - - logdet_tot_q = 0 - h_w = self.post_pre(w) - h_w = self.post_convs(h_w, x_mask) - h_w = self.post_proj(h_w) * x_mask - e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask - z_q = e_q - for flow in self.post_flows: - z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) - logdet_tot_q += logdet_q - z_u, z1 = torch.split(z_q, [1, 1], 1) - u = torch.sigmoid(z_u) * x_mask - z0 = (w - u) * x_mask - logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) - logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q - - logdet_tot = 0 - z0, logdet = self.log_flow(z0, x_mask) - logdet_tot += logdet - z = torch.cat([z0, z1], 1) - for flow in flows: - z, logdet = flow(z, x_mask, g=x, reverse=reverse) - logdet_tot = logdet_tot + logdet - nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot - return nll + logq # [b] - else: - flows = list(reversed(self.flows)) - flows = flows[:-2] + [flows[-1]] # remove a useless vflow - z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale - for flow in flows: - z = flow(z, x_mask, g=x, reverse=reverse) - z0, z1 = torch.split(z, [1, 1], 1) - logw = z0 - return logw - - -class DurationPredictor(nn.Module): - def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0): - super().__init__() - - self.in_channels = in_channels - self.filter_channels = filter_channels - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.gin_channels = gin_channels - - self.drop = nn.Dropout(p_dropout) - self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) - self.norm_1 = modules.LayerNorm(filter_channels) - self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) - self.norm_2 = modules.LayerNorm(filter_channels) - self.proj = nn.Conv1d(filter_channels, 1, 1) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, in_channels, 1) - - def forward(self, x, x_mask, g=None): - x = torch.detach(x) - if g is not None: - g = torch.detach(g) - x = x + self.cond(g) - x = self.conv_1(x * x_mask) - x = torch.relu(x) - x = self.norm_1(x) - x = self.drop(x) - x = self.conv_2(x * x_mask) - x = torch.relu(x) - x = self.norm_2(x) - x = self.drop(x) - x = self.proj(x * x_mask) - return x * x_mask - - -class TextEncoder(nn.Module): - def __init__(self, - n_vocab, - out_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - gin_channels=0): - super().__init__() - self.n_vocab = n_vocab - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.gin_channels = gin_channels - self.emb = nn.Embedding(len(symbols), hidden_channels) - nn.init.normal_(self.emb.weight, 0.0, hidden_channels ** -0.5) - self.tone_emb = nn.Embedding(num_tones, hidden_channels) - nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels ** -0.5) - self.language_emb = nn.Embedding(num_languages, hidden_channels) - nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels ** -0.5) - self.bert_proj = nn.Conv1d(1024, hidden_channels, 1) - - self.encoder = attentions.Encoder( - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - gin_channels=self.gin_channels) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, x, x_lengths, tone, language, bert, g=None): - x = (self.emb(x)+ self.tone_emb(tone)+ self.language_emb(language)+self.bert_proj(bert).transpose(1,2)) * math.sqrt(self.hidden_channels) # [b, t, h] - x = torch.transpose(x, 1, -1) # [b, h, t] - x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) - - x = self.encoder(x * x_mask, x_mask, g=g) - stats = self.proj(x) * x_mask - - m, logs = torch.split(stats, self.out_channels, dim=1) - return x, m, logs, x_mask - - -class ResidualCouplingBlock(nn.Module): - def __init__(self, - channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - n_flows=4, - gin_channels=0): - super().__init__() - self.channels = channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.n_flows = n_flows - self.gin_channels = gin_channels - - self.flows = nn.ModuleList() - for i in range(n_flows): - self.flows.append( - modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, - gin_channels=gin_channels, mean_only=True)) - self.flows.append(modules.Flip()) - - def forward(self, x, x_mask, g=None, reverse=False): - if not reverse: - for flow in self.flows: - x, _ = flow(x, x_mask, g=g, reverse=reverse) - else: - for flow in reversed(self.flows): - x = flow(x, x_mask, g=g, reverse=reverse) - return x - - -class PosteriorEncoder(nn.Module): - def __init__(self, - in_channels, - out_channels, - hidden_channels, - kernel_size, - dilation_rate, - n_layers, - gin_channels=0): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.hidden_channels = hidden_channels - self.kernel_size = kernel_size - self.dilation_rate = dilation_rate - self.n_layers = n_layers - self.gin_channels = gin_channels - - self.pre = nn.Conv1d(in_channels, hidden_channels, 1) - self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels) - self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) - - def forward(self, x, x_lengths, g=None): - x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) - x = self.pre(x) * x_mask - x = self.enc(x, x_mask, g=g) - stats = self.proj(x) * x_mask - m, logs = torch.split(stats, self.out_channels, dim=1) - z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask - return z, m, logs, x_mask - - -class Generator(torch.nn.Module): - def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, - upsample_initial_channel, upsample_kernel_sizes, gin_channels=0): - super(Generator, self).__init__() - self.num_kernels = len(resblock_kernel_sizes) - self.num_upsamples = len(upsample_rates) - self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) - resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2 - - self.ups = nn.ModuleList() - for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): - self.ups.append(weight_norm( - ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)), - k, u, padding=(k - u) // 2))) - - self.resblocks = nn.ModuleList() - for i in range(len(self.ups)): - ch = upsample_initial_channel // (2 ** (i + 1)) - for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): - self.resblocks.append(resblock(ch, k, d)) - - self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) - self.ups.apply(init_weights) - - if gin_channels != 0: - self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) - - def forward(self, x, g=None): - x = self.conv_pre(x) - if g is not None: - x = x + self.cond(g) - - for i in range(self.num_upsamples): - x = F.leaky_relu(x, modules.LRELU_SLOPE) - x = self.ups[i](x) - xs = None - for j in range(self.num_kernels): - if xs is None: - xs = self.resblocks[i * self.num_kernels + j](x) - else: - xs += self.resblocks[i * self.num_kernels + j](x) - x = xs / self.num_kernels - x = F.leaky_relu(x) - x = self.conv_post(x) - x = torch.tanh(x) - - return x - - def remove_weight_norm(self): - print('Removing weight norm...') - for l in self.ups: - remove_weight_norm(l) - for l in self.resblocks: - l.remove_weight_norm() - - -class DiscriminatorP(torch.nn.Module): - def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): - super(DiscriminatorP, self).__init__() - self.period = period - self.use_spectral_norm = use_spectral_norm - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList([ - norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), - norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), - ]) - self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) - - def forward(self, x): - fmap = [] - - # 1d to 2d - b, c, t = x.shape - if t % self.period != 0: # pad first - n_pad = self.period - (t % self.period) - x = F.pad(x, (0, n_pad), "reflect") - t = t + n_pad - x = x.view(b, c, t // self.period, self.period) - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap - - -class DiscriminatorS(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(DiscriminatorS, self).__init__() - norm_f = weight_norm if use_spectral_norm == False else spectral_norm - self.convs = nn.ModuleList([ - norm_f(Conv1d(1, 16, 15, 1, padding=7)), - norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), - norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), - norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), - norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), - norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), - ]) - self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) - - def forward(self, x): - fmap = [] - - for l in self.convs: - x = l(x) - x = F.leaky_relu(x, modules.LRELU_SLOPE) - fmap.append(x) - x = self.conv_post(x) - fmap.append(x) - x = torch.flatten(x, 1, -1) - - return x, fmap - - -class MultiPeriodDiscriminator(torch.nn.Module): - def __init__(self, use_spectral_norm=False): - super(MultiPeriodDiscriminator, self).__init__() - periods = [2, 3, 5, 7, 11] - - discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] - discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] - self.discriminators = nn.ModuleList(discs) - - def forward(self, y, y_hat): - y_d_rs = [] - y_d_gs = [] - fmap_rs = [] - fmap_gs = [] - for i, d in enumerate(self.discriminators): - y_d_r, fmap_r = d(y) - y_d_g, fmap_g = d(y_hat) - y_d_rs.append(y_d_r) - y_d_gs.append(y_d_g) - fmap_rs.append(fmap_r) - fmap_gs.append(fmap_g) - - return y_d_rs, y_d_gs, fmap_rs, fmap_gs - -class ReferenceEncoder(nn.Module): - ''' - inputs --- [N, Ty/r, n_mels*r] mels - outputs --- [N, ref_enc_gru_size] - ''' - - def __init__(self, spec_channels, gin_channels=0): - - super().__init__() - self.spec_channels = spec_channels - ref_enc_filters = [32, 32, 64, 64, 128, 128] - K = len(ref_enc_filters) - filters = [1] + ref_enc_filters - convs = [weight_norm(nn.Conv2d(in_channels=filters[i], - out_channels=filters[i + 1], - kernel_size=(3, 3), - stride=(2, 2), - padding=(1, 1))) for i in range(K)] - self.convs = nn.ModuleList(convs) - # self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) - - out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K) - self.gru = nn.GRU(input_size=ref_enc_filters[-1] * out_channels, - hidden_size=256 // 2, - batch_first=True) - self.proj = nn.Linear(128, gin_channels) - - def forward(self, inputs, mask=None): - N = inputs.size(0) - out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs] - for conv in self.convs: - out = conv(out) - # out = wn(out) - out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K] - - out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] - T = out.size(1) - N = out.size(0) - out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] - - self.gru.flatten_parameters() - memory, out = self.gru(out) # out --- [1, N, 128] - - return self.proj(out.squeeze(0)) - - def calculate_channels(self, L, kernel_size, stride, pad, n_convs): - for i in range(n_convs): - L = (L - kernel_size + 2 * pad) // stride + 1 - return L - - -class SynthesizerTrn(nn.Module): - """ - Synthesizer for Training - """ - - def __init__(self, - n_vocab, - spec_channels, - segment_size, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - resblock, - resblock_kernel_sizes, - resblock_dilation_sizes, - upsample_rates, - upsample_initial_channel, - upsample_kernel_sizes, - n_speakers=256, - gin_channels=256, - use_sdp=True, - n_flow_layer = 4, - n_layers_trans_flow = 3, - flow_share_parameter = False, - use_transformer_flow = True, - **kwargs): - - super().__init__() - self.n_vocab = n_vocab - self.spec_channels = spec_channels - self.inter_channels = inter_channels - self.hidden_channels = hidden_channels - self.filter_channels = filter_channels - self.n_heads = n_heads - self.n_layers = n_layers - self.kernel_size = kernel_size - self.p_dropout = p_dropout - self.resblock = resblock - self.resblock_kernel_sizes = resblock_kernel_sizes - self.resblock_dilation_sizes = resblock_dilation_sizes - self.upsample_rates = upsample_rates - self.upsample_initial_channel = upsample_initial_channel - self.upsample_kernel_sizes = upsample_kernel_sizes - self.segment_size = segment_size - self.n_speakers = n_speakers - self.gin_channels = gin_channels - self.n_layers_trans_flow = n_layers_trans_flow - self.use_spk_conditioned_encoder = kwargs.get("use_spk_conditioned_encoder", True) - self.use_sdp = use_sdp - self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False) - self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01) - self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6) - self.current_mas_noise_scale = self.mas_noise_scale_initial - if self.use_spk_conditioned_encoder and gin_channels > 0: - self.enc_gin_channels = gin_channels - self.enc_p = TextEncoder(n_vocab, - inter_channels, - hidden_channels, - filter_channels, - n_heads, - n_layers, - kernel_size, - p_dropout, - gin_channels=self.enc_gin_channels) - self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, - upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels) - self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, - gin_channels=gin_channels) - if use_transformer_flow: - self.flow = TransformerCouplingBlock(inter_channels, hidden_channels, filter_channels, n_heads, n_layers_trans_flow, 5, p_dropout, n_flow_layer, gin_channels=gin_channels,share_parameter= flow_share_parameter) - else: - self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, n_flow_layer, gin_channels=gin_channels) - self.sdp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels) - self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels) - - if n_speakers >= 1: - self.emb_g = nn.Embedding(n_speakers, gin_channels) - else: - self.ref_enc = ReferenceEncoder(spec_channels, gin_channels) - - def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert): - if self.n_speakers > 0: - g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] - else: - g = self.ref_enc(y.transpose(1,2)).unsqueeze(-1) - x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert,g=g) - z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g) - z_p = self.flow(z, y_mask, g=g) - - with torch.no_grad(): - # negative cross-entropy - s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t] - neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s] - neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), - s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] - neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] - neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s] - neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 - if self.use_noise_scaled_mas: - epsilon = torch.std(neg_cent) * torch.randn_like(neg_cent) * self.current_mas_noise_scale - neg_cent = neg_cent + epsilon - - attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) - attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach() - - w = attn.sum(2) - - l_length_sdp = self.sdp(x, x_mask, w, g=g) - l_length_sdp = l_length_sdp / torch.sum(x_mask) - - logw_ = torch.log(w + 1e-6) * x_mask - logw = self.dp(x, x_mask, g=g) - l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(x_mask) # for averaging - - l_length = l_length_dp + l_length_sdp - - # expand prior - m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) - logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) - - z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size) - o = self.dec(z_slice, g=g) - return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q), (x, logw, logw_) - - def infer(self, x, x_lengths, sid, tone, language, bert, noise_scale=.667, length_scale=1, noise_scale_w=0.8, max_len=None, sdp_ratio=0,y=None): - #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert) - # g = self.gst(y) - if self.n_speakers > 0: - g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] - else: - g = self.ref_enc(y.transpose(1,2)).unsqueeze(-1) - x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert,g=g) - logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (sdp_ratio) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio) - w = torch.exp(logw) * x_mask * length_scale - w_ceil = torch.ceil(w) - y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() - y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) - attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) - attn = commons.generate_path(w_ceil, attn_mask) - - m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] - logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, - 2) # [b, t', t], [b, t, d] -> [b, d, t'] - - z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale - z = self.flow(z_p, y_mask, g=g, reverse=True) - o = self.dec((z * y_mask)[:, :, :max_len], g=g) - return o, attn, y_mask, (z, z_p, m_p, logs_p) diff --git a/spaces/digitalxingtong/Lixiang-Bert-Vits2/commons.py b/spaces/digitalxingtong/Lixiang-Bert-Vits2/commons.py deleted file mode 100644 index 9ad0444b61cbadaa388619986c2889c707d873ce..0000000000000000000000000000000000000000 --- a/spaces/digitalxingtong/Lixiang-Bert-Vits2/commons.py +++ /dev/null @@ -1,161 +0,0 @@ -import math -import numpy as np -import torch -from torch import nn -from torch.nn import functional as F - - -def init_weights(m, mean=0.0, std=0.01): - classname = m.__class__.__name__ - if classname.find("Conv") != -1: - m.weight.data.normal_(mean, std) - - -def get_padding(kernel_size, dilation=1): - return int((kernel_size*dilation - dilation)/2) - - -def convert_pad_shape(pad_shape): - l = pad_shape[::-1] - pad_shape = [item for sublist in l for item in sublist] - return pad_shape - - -def intersperse(lst, item): - result = [item] * (len(lst) * 2 + 1) - result[1::2] = lst - return result - - -def kl_divergence(m_p, logs_p, m_q, logs_q): - """KL(P||Q)""" - kl = (logs_q - logs_p) - 0.5 - kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q) - return kl - - -def rand_gumbel(shape): - """Sample from the Gumbel distribution, protect from overflows.""" - uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 - return -torch.log(-torch.log(uniform_samples)) - - -def rand_gumbel_like(x): - g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) - return g - - -def slice_segments(x, ids_str, segment_size=4): - ret = torch.zeros_like(x[:, :, :segment_size]) - for i in range(x.size(0)): - idx_str = ids_str[i] - idx_end = idx_str + segment_size - ret[i] = x[i, :, idx_str:idx_end] - return ret - - -def rand_slice_segments(x, x_lengths=None, segment_size=4): - b, d, t = x.size() - if x_lengths is None: - x_lengths = t - ids_str_max = x_lengths - segment_size + 1 - ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) - ret = slice_segments(x, ids_str, segment_size) - return ret, ids_str - - -def get_timing_signal_1d( - length, channels, min_timescale=1.0, max_timescale=1.0e4): - position = torch.arange(length, dtype=torch.float) - num_timescales = channels // 2 - log_timescale_increment = ( - math.log(float(max_timescale) / float(min_timescale)) / - (num_timescales - 1)) - inv_timescales = min_timescale * torch.exp( - torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment) - scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) - signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) - signal = F.pad(signal, [0, 0, 0, channels % 2]) - signal = signal.view(1, channels, length) - return signal - - -def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): - b, channels, length = x.size() - signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) - return x + signal.to(dtype=x.dtype, device=x.device) - - -def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): - b, channels, length = x.size() - signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) - return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) - - -def subsequent_mask(length): - mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) - return mask - - -@torch.jit.script -def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): - n_channels_int = n_channels[0] - in_act = input_a + input_b - t_act = torch.tanh(in_act[:, :n_channels_int, :]) - s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) - acts = t_act * s_act - return acts - - -def convert_pad_shape(pad_shape): - l = pad_shape[::-1] - pad_shape = [item for sublist in l for item in sublist] - return pad_shape - - -def shift_1d(x): - x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] - return x - - -def sequence_mask(length, max_length=None): - if max_length is None: - max_length = length.max() - x = torch.arange(max_length, dtype=length.dtype, device=length.device) - return x.unsqueeze(0) < length.unsqueeze(1) - - -def generate_path(duration, mask): - """ - duration: [b, 1, t_x] - mask: [b, 1, t_y, t_x] - """ - device = duration.device - - b, _, t_y, t_x = mask.shape - cum_duration = torch.cumsum(duration, -1) - - cum_duration_flat = cum_duration.view(b * t_x) - path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) - path = path.view(b, t_x, t_y) - path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] - path = path.unsqueeze(1).transpose(2,3) * mask - return path - - -def clip_grad_value_(parameters, clip_value, norm_type=2): - if isinstance(parameters, torch.Tensor): - parameters = [parameters] - parameters = list(filter(lambda p: p.grad is not None, parameters)) - norm_type = float(norm_type) - if clip_value is not None: - clip_value = float(clip_value) - - total_norm = 0 - for p in parameters: - param_norm = p.grad.data.norm(norm_type) - total_norm += param_norm.item() ** norm_type - if clip_value is not None: - p.grad.data.clamp_(min=-clip_value, max=clip_value) - total_norm = total_norm ** (1. / norm_type) - return total_norm diff --git a/spaces/dineshreddy/WALT/mmdet/models/dense_heads/rpn_test_mixin.py b/spaces/dineshreddy/WALT/mmdet/models/dense_heads/rpn_test_mixin.py deleted file mode 100644 index 4ce5c66f82595f496e6e55719c1caee75150d568..0000000000000000000000000000000000000000 --- a/spaces/dineshreddy/WALT/mmdet/models/dense_heads/rpn_test_mixin.py +++ /dev/null @@ -1,59 +0,0 @@ -import sys - -from mmdet.core import merge_aug_proposals - -if sys.version_info >= (3, 7): - from mmdet.utils.contextmanagers import completed - - -class RPNTestMixin(object): - """Test methods of RPN.""" - - if sys.version_info >= (3, 7): - - async def async_simple_test_rpn(self, x, img_metas): - sleep_interval = self.test_cfg.pop('async_sleep_interval', 0.025) - async with completed( - __name__, 'rpn_head_forward', - sleep_interval=sleep_interval): - rpn_outs = self(x) - - proposal_list = self.get_bboxes(*rpn_outs, img_metas) - return proposal_list - - def simple_test_rpn(self, x, img_metas): - """Test without augmentation. - - Args: - x (tuple[Tensor]): Features from the upstream network, each is - a 4D-tensor. - img_metas (list[dict]): Meta info of each image. - - Returns: - list[Tensor]: Proposals of each image. - """ - rpn_outs = self(x) - proposal_list = self.get_bboxes(*rpn_outs, img_metas) - return proposal_list - - def aug_test_rpn(self, feats, img_metas): - samples_per_gpu = len(img_metas[0]) - aug_proposals = [[] for _ in range(samples_per_gpu)] - for x, img_meta in zip(feats, img_metas): - proposal_list = self.simple_test_rpn(x, img_meta) - for i, proposals in enumerate(proposal_list): - aug_proposals[i].append(proposals) - # reorganize the order of 'img_metas' to match the dimensions - # of 'aug_proposals' - aug_img_metas = [] - for i in range(samples_per_gpu): - aug_img_meta = [] - for j in range(len(img_metas)): - aug_img_meta.append(img_metas[j][i]) - aug_img_metas.append(aug_img_meta) - # after merging, proposals will be rescaled to the original image size - merged_proposals = [ - merge_aug_proposals(proposals, aug_img_meta, self.test_cfg) - for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas) - ] - return merged_proposals diff --git a/spaces/dogincharge/Shap-ER/utils.py b/spaces/dogincharge/Shap-ER/utils.py deleted file mode 100644 index 36e072134588bf5252bf0f018aa7912d9c45567c..0000000000000000000000000000000000000000 --- a/spaces/dogincharge/Shap-ER/utils.py +++ /dev/null @@ -1,9 +0,0 @@ -import random - -from settings import MAX_SEED - - -def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: - if randomize_seed: - seed = random.randint(0, MAX_SEED) - return seed diff --git a/spaces/dorkai/SINGPT-Temporary/convert-to-safetensors.py b/spaces/dorkai/SINGPT-Temporary/convert-to-safetensors.py deleted file mode 100644 index 63baaa9726ab48025d2ba473d029bb3f1153aa3a..0000000000000000000000000000000000000000 --- a/spaces/dorkai/SINGPT-Temporary/convert-to-safetensors.py +++ /dev/null @@ -1,38 +0,0 @@ -''' - -Converts a transformers model to safetensors format and shards it. - -This makes it faster to load (because of safetensors) and lowers its RAM usage -while loading (because of sharding). - -Based on the original script by 81300: - -https://gist.github.com/81300/fe5b08bff1cba45296a829b9d6b0f303 - -''' - -import argparse -from pathlib import Path - -import torch -from transformers import AutoModelForCausalLM, AutoTokenizer - -parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog,max_help_position=54)) -parser.add_argument('MODEL', type=str, default=None, nargs='?', help="Path to the input model.") -parser.add_argument('--output', type=str, default=None, help='Path to the output folder (default: models/{model_name}_safetensors).') -parser.add_argument("--max-shard-size", type=str, default="2GB", help="Maximum size of a shard in GB or MB (default: %(default)s).") -parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.') -args = parser.parse_args() - -if __name__ == '__main__': - path = Path(args.MODEL) - model_name = path.name - - print(f"Loading {model_name}...") - model = AutoModelForCausalLM.from_pretrained(path, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if args.bf16 else torch.float16) - tokenizer = AutoTokenizer.from_pretrained(path) - - out_folder = args.output or Path(f"models/{model_name}_safetensors") - print(f"Saving the converted model to {out_folder} with a maximum shard size of {args.max_shard_size}...") - model.save_pretrained(out_folder, max_shard_size=args.max_shard_size, safe_serialization=True) - tokenizer.save_pretrained(out_folder) diff --git a/spaces/dorkai/singpt/extensions/character_bias/script.py b/spaces/dorkai/singpt/extensions/character_bias/script.py deleted file mode 100644 index 35b38c0edcb38512f2472937578a363343a4468c..0000000000000000000000000000000000000000 --- a/spaces/dorkai/singpt/extensions/character_bias/script.py +++ /dev/null @@ -1,42 +0,0 @@ -import gradio as gr - -params = { - "activate": True, - "bias string": " *I am so happy*", -} - -def input_modifier(string): - """ - This function is applied to your text inputs before - they are fed into the model. - """ - - return string - -def output_modifier(string): - """ - This function is applied to the model outputs. - """ - - return string - -def bot_prefix_modifier(string): - """ - This function is only applied in chat mode. It modifies - the prefix text for the Bot and can be used to bias its - behavior. - """ - - if params['activate'] == True: - return f'{string} {params["bias string"].strip()} ' - else: - return string - -def ui(): - # Gradio elements - activate = gr.Checkbox(value=params['activate'], label='Activate character bias') - string = gr.Textbox(value=params["bias string"], label='Character bias') - - # Event functions to update the parameters in the backend - string.change(lambda x: params.update({"bias string": x}), string, None) - activate.change(lambda x: params.update({"activate": x}), activate, None) diff --git a/spaces/dsymbol/whisper-webui/app.py b/spaces/dsymbol/whisper-webui/app.py deleted file mode 100644 index 7ca3ff7f6403cc4fbcd5aaa9ede949fa3cef4496..0000000000000000000000000000000000000000 --- a/spaces/dsymbol/whisper-webui/app.py +++ /dev/null @@ -1,69 +0,0 @@ -import gradio as gr -import torch.cuda -import whisper -from whisper.tokenizer import LANGUAGES - -gpu = torch.cuda.is_available() -model = None - -DESCRIPTION = """ - -""" - - -def transcribe(recording, file, language, task): - if recording and file: - text = "Please only use one field." - elif not recording and not file: - text = "Please use one field." - else: - language = None if language == "Detect" else language - filepath = file if file else recording - text = model.transcribe( - filepath, task=task.lower(), language=language, fp16=gpu - )["text"].strip() - return text - - -def interface(model_name="small"): - global model - model = whisper.load_model(model_name) - - return gr.Interface( - fn=transcribe, - inputs=[ - gr.Audio(label="Record", source="microphone", type="filepath"), - gr.Audio(label="Upload", source="upload", type="filepath"), - gr.Dropdown( - label="Language", - choices=["Detect"] + sorted([i.title() for i in LANGUAGES.values()]), - value="Detect", - ), - gr.Dropdown( - label="Task", - choices=["Transcribe", "Translate"], - value="Transcribe", - info="Whether to perform X->X speech recognition or X->English translation", - ), - ], - outputs=gr.Textbox(label="Transcription", lines=26), - theme=gr.themes.Default(), - title="Whisper: Transcribe Audio", - description=DESCRIPTION, - allow_flagging="never", - ) - - -if __name__ == "__main__": - demo = interface() - demo.queue().launch(debug=True) diff --git a/spaces/ebgoldstein/FRF_Heavies/app.py b/spaces/ebgoldstein/FRF_Heavies/app.py deleted file mode 100644 index 95724a5b19795983ea2b0b309452ccf4c4f3dc9b..0000000000000000000000000000000000000000 --- a/spaces/ebgoldstein/FRF_Heavies/app.py +++ /dev/null @@ -1,71 +0,0 @@ -import gradio as gr -import numpy as np -import tensorflow as tf -from skimage.io import imsave -from skimage.transform import resize -import matplotlib.pyplot as plt - -#from SegZoo -def standardize(img): - #standardization using adjusted standard deviation - - N = np.shape(img)[0] * np.shape(img)[1] - s = np.maximum(np.std(img), 1.0/np.sqrt(N)) - m = np.mean(img) - img = (img - m) / s - del m, s, N - # - if np.ndim(img)==2: - img = np.dstack((img,img,img)) - return img - -#load model -filepath = './saved_model' -model = tf.keras.models.load_model(filepath, compile = True) -model.compile - -#segmentation -def FRFsegment(input_img): - - dims=(512,512) - w = input_img.shape[0] - h = input_img.shape[1] - print(w) - print(h) - - img = standardize(input_img) - img = resize(img, dims, preserve_range=True, clip=True) - img = np.expand_dims(img,axis=0) - - est_label = model.predict(img) - -# # Test Time AUgmentation -# est_label2 = np.flipud(model.predict((np.flipud(img)), batch_size=1)) -# est_label3 = np.fliplr(model.predict((np.fliplr(img)), batch_size=1)) -# est_label4 = np.flipud(np.fliplr(model.predict((np.flipud(np.fliplr(img)))))) - -# #soft voting - sum the softmax scores to return the new TTA estimated softmax scores -# pred = est_label + est_label2 + est_label3 + est_label4 -# est_label = pred - - mask = np.argmax(np.squeeze(est_label, axis=0),-1) - pred = resize(mask, (w, h), preserve_range=True, clip=True) - - imsave("label.png", pred) - - #overlay plot - plt.clf() - plt.imshow(input_img,cmap='gray') - plt.imshow(pred, alpha=0.4) - plt.axis("off") - plt.margins(x=0, y=0) - plt.savefig("overlay.png", dpi=300, bbox_inches="tight") - - return plt, "label.png", "overlay.png" - - -title = "Segment beach imagery taken from a tower in Duck, NC, USA" -description = "This model segments beach imagery into 4 classes: vegetation, sand, heavy minerals, and background (water + sky + buildings + people)" -examples = [['examples/FRF_c1_snap_20191112160000.jpg'], ['examples/FRF_c1_snap_20170401.jpg']] - -FRFSegapp = gr.Interface(FRFsegment, gr.inputs.Image(), ['plot',gr.outputs.File(),gr.outputs.File()], examples=examples, title = title, description = description, theme = "grass").launch() diff --git a/spaces/evi0mo/vits-fastapi-server/utils.py b/spaces/evi0mo/vits-fastapi-server/utils.py deleted file mode 100644 index ff6a618968fcfc5b54fc5db965b7cdc7b3edb86e..0000000000000000000000000000000000000000 --- a/spaces/evi0mo/vits-fastapi-server/utils.py +++ /dev/null @@ -1,270 +0,0 @@ -import os -import glob -import sys -import argparse -import logging -import json -import subprocess -import numpy as np -from scipy.io.wavfile import read -import torch - -MATPLOTLIB_FLAG = False - -logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) -logger = logging - - -def load_checkpoint(checkpoint_path, model, optimizer=None, drop_speaker_emb=False): - assert os.path.isfile(checkpoint_path) - checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') - iteration = checkpoint_dict['iteration'] - learning_rate = checkpoint_dict['learning_rate'] - if optimizer is not None: - optimizer.load_state_dict(checkpoint_dict['optimizer']) - saved_state_dict = checkpoint_dict['model'] - if hasattr(model, 'module'): - state_dict = model.module.state_dict() - else: - state_dict = model.state_dict() - new_state_dict = {} - for k, v in state_dict.items(): - try: - if k == 'emb_g.weight': - if drop_speaker_emb: - new_state_dict[k] = v - continue - v[:saved_state_dict[k].shape[0], :] = saved_state_dict[k] - new_state_dict[k] = v - else: - new_state_dict[k] = saved_state_dict[k] - except: - logger.info("%s is not in the checkpoint" % k) - new_state_dict[k] = v - if hasattr(model, 'module'): - model.module.load_state_dict(new_state_dict) - else: - model.load_state_dict(new_state_dict) - logger.info("Loaded checkpoint '{}' (iteration {})".format( - checkpoint_path, iteration)) - return model, optimizer, learning_rate, iteration - - -def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): - logger.info("Saving model and optimizer state at iteration {} to {}".format( - iteration, checkpoint_path)) - if hasattr(model, 'module'): - state_dict = model.module.state_dict() - else: - state_dict = model.state_dict() - torch.save({'model': state_dict, - 'iteration': iteration, - 'optimizer': optimizer.state_dict() if optimizer is not None else None, - 'learning_rate': learning_rate}, checkpoint_path) - - -def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050): - for k, v in scalars.items(): - writer.add_scalar(k, v, global_step) - for k, v in histograms.items(): - writer.add_histogram(k, v, global_step) - for k, v in images.items(): - writer.add_image(k, v, global_step, dataformats='HWC') - for k, v in audios.items(): - writer.add_audio(k, v, global_step, audio_sampling_rate) - - -def latest_checkpoint_path(dir_path, regex="G_*.pth"): - f_list = glob.glob(os.path.join(dir_path, regex)) - f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) - x = f_list[-1] - print(x) - return x - - -def plot_spectrogram_to_numpy(spectrogram): - global MATPLOTLIB_FLAG - if not MATPLOTLIB_FLAG: - import matplotlib - matplotlib.use("Agg") - MATPLOTLIB_FLAG = True - mpl_logger = logging.getLogger('matplotlib') - mpl_logger.setLevel(logging.WARNING) - import matplotlib.pylab as plt - import numpy as np - - fig, ax = plt.subplots(figsize=(10, 2)) - im = ax.imshow(spectrogram, aspect="auto", origin="lower", - interpolation='none') - plt.colorbar(im, ax=ax) - plt.xlabel("Frames") - plt.ylabel("Channels") - plt.tight_layout() - - fig.canvas.draw() - data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') - data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) - plt.close() - return data - - -def plot_alignment_to_numpy(alignment, info=None): - global MATPLOTLIB_FLAG - if not MATPLOTLIB_FLAG: - import matplotlib - matplotlib.use("Agg") - MATPLOTLIB_FLAG = True - mpl_logger = logging.getLogger('matplotlib') - mpl_logger.setLevel(logging.WARNING) - import matplotlib.pylab as plt - import numpy as np - - fig, ax = plt.subplots(figsize=(6, 4)) - im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower', - interpolation='none') - fig.colorbar(im, ax=ax) - xlabel = 'Decoder timestep' - if info is not None: - xlabel += '\n\n' + info - plt.xlabel(xlabel) - plt.ylabel('Encoder timestep') - plt.tight_layout() - - fig.canvas.draw() - data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') - data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) - plt.close() - return data - - -def load_wav_to_torch(full_path): - sampling_rate, data = read(full_path) - return torch.FloatTensor(data.astype(np.float32)), sampling_rate - - -def load_filepaths_and_text(filename, split="|"): - with open(filename, encoding='utf-8') as f: - filepaths_and_text = [line.strip().split(split) for line in f] - return filepaths_and_text - - -def get_hparams(init=True): - parser = argparse.ArgumentParser() - parser.add_argument('-c', '--config', type=str, default="./configs/modified_finetune_speaker.json", - help='JSON file for configuration') - parser.add_argument('-m', '--model', type=str, default="pretrained_models", - help='Model name') - parser.add_argument('-n', '--max_epochs', type=int, default=50, - help='finetune epochs') - parser.add_argument('--drop_speaker_embed', type=bool, default=False, help='whether to drop existing characters') - - args = parser.parse_args() - model_dir = os.path.join("./", args.model) - - if not os.path.exists(model_dir): - os.makedirs(model_dir) - - config_path = args.config - config_save_path = os.path.join(model_dir, "config.json") - if init: - with open(config_path, "r") as f: - data = f.read() - with open(config_save_path, "w") as f: - f.write(data) - else: - with open(config_save_path, "r") as f: - data = f.read() - config = json.loads(data) - - hparams = HParams(**config) - hparams.model_dir = model_dir - hparams.max_epochs = args.max_epochs - hparams.drop_speaker_embed = args.drop_speaker_embed - return hparams - - -def get_hparams_from_dir(model_dir): - config_save_path = os.path.join(model_dir, "config.json") - with open(config_save_path, "r") as f: - data = f.read() - config = json.loads(data) - - hparams = HParams(**config) - hparams.model_dir = model_dir - return hparams - - -def get_hparams_from_file(config_path): - with open(config_path, "r", encoding="utf-8") as f: - data = f.read() - config = json.loads(data) - - hparams = HParams(**config) - return hparams - - -def check_git_hash(model_dir): - source_dir = os.path.dirname(os.path.realpath(__file__)) - if not os.path.exists(os.path.join(source_dir, ".git")): - logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format( - source_dir - )) - return - - cur_hash = subprocess.getoutput("git rev-parse HEAD") - - path = os.path.join(model_dir, "githash") - if os.path.exists(path): - saved_hash = open(path).read() - if saved_hash != cur_hash: - logger.warn("git hash values are different. {}(saved) != {}(current)".format( - saved_hash[:8], cur_hash[:8])) - else: - open(path, "w").write(cur_hash) - - -def get_logger(model_dir, filename="train.log"): - global logger - logger = logging.getLogger(os.path.basename(model_dir)) - logger.setLevel(logging.DEBUG) - - formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s") - if not os.path.exists(model_dir): - os.makedirs(model_dir) - h = logging.FileHandler(os.path.join(model_dir, filename)) - h.setLevel(logging.DEBUG) - h.setFormatter(formatter) - logger.addHandler(h) - return logger - - -class HParams(): - def __init__(self, **kwargs): - for k, v in kwargs.items(): - if type(v) == dict: - v = HParams(**v) - self[k] = v - - def keys(self): - return self.__dict__.keys() - - def items(self): - return self.__dict__.items() - - def values(self): - return self.__dict__.values() - - def __len__(self): - return len(self.__dict__) - - def __getitem__(self, key): - return getattr(self, key) - - def __setitem__(self, key, value): - return setattr(self, key, value) - - def __contains__(self, key): - return key in self.__dict__ - - def __repr__(self): - return self.__dict__.__repr__() \ No newline at end of file diff --git a/spaces/fabiogra/moseca/app/header.py b/spaces/fabiogra/moseca/app/header.py deleted file mode 100644 index 26dab30fbf11bccf6469d689f0692c256444d6a0..0000000000000000000000000000000000000000 --- a/spaces/fabiogra/moseca/app/header.py +++ /dev/null @@ -1,68 +0,0 @@ -import streamlit as st -from loguru import logger as log -from streamlit_option_menu import option_menu - -from helpers import switch_page -from style import CSS - -DEFAULT_PAGE = "Separate" - - -def header(logo_and_title=True): - if "first_run" not in st.session_state: - st.session_state.first_run = True - for key in [ - "selected_value", - "filename", - "executed", - "play_karaoke", - "url", - "random_song", - "last_dir", - "player_restart", - ]: - st.session_state[key] = None - st.session_state.video_options = [] - st.session_state.tot_delay = 0 - if "search_results" not in st.session_state: - st.session_state.search_results = [] - if "page" not in st.session_state: - switch_page(DEFAULT_PAGE) - - st.set_page_config( - page_title="Moseca - Music Separation and Karaoke - Free and Open Source alternative to lalal.ai, splitter.ai or media.io vocal remover.", - page_icon="img/logo_moseca.png", - layout="wide", - initial_sidebar_state="collapsed", - ) - st.markdown(CSS, unsafe_allow_html=True) - - options = ["Separate", "Karaoke", "About"] - - page = option_menu( - menu_title=None, - options=options, - # bootrap icons - icons=["play-btn-fill", "file-earmark-music", "info-circle"], - default_index=options.index(st.session_state.get("page", DEFAULT_PAGE)), - orientation="horizontal", - styles={"nav-link": {"padding-left": "1.5rem", "padding-right": "1.5rem"}}, - key="", - ) - if page != st.session_state.get("page", DEFAULT_PAGE): - log.info(f"Go to {page}") - switch_page(page) - - if logo_and_title: - head = st.columns([5, 1, 3, 5]) - with head[1]: - st.image("img/logo_moseca.png", use_column_width=False, width=80) - with head[2]: - st.markdown( - "

    moseca

    Music Source Separation & Karaoke

    ", - unsafe_allow_html=True, - ) - - -if __name__ == "__main__": - header() diff --git a/spaces/facebook/ov-seg/open_vocab_seg/modeling/heads/__init__.py b/spaces/facebook/ov-seg/open_vocab_seg/modeling/heads/__init__.py deleted file mode 100644 index 52db7cce67b1686f7cab3698f15b8f309c897918..0000000000000000000000000000000000000000 --- a/spaces/facebook/ov-seg/open_vocab_seg/modeling/heads/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# Copyright (c) Meta Platforms, Inc. All Rights Reserved \ No newline at end of file diff --git a/spaces/falterWliame/Face_Mask_Detection/Autodesk AutoCAD Electrical 2017 HF3 X86-x64 RUS-ENG By M0nkrus- 64 Bit.md b/spaces/falterWliame/Face_Mask_Detection/Autodesk AutoCAD Electrical 2017 HF3 X86-x64 RUS-ENG By M0nkrus- 64 Bit.md deleted file mode 100644 index 59518d1a300060c95a053a85660e9c6ecb06f0fc..0000000000000000000000000000000000000000 --- a/spaces/falterWliame/Face_Mask_Detection/Autodesk AutoCAD Electrical 2017 HF3 X86-x64 RUS-ENG By M0nkrus- 64 Bit.md +++ /dev/null @@ -1,22 +0,0 @@ -

    Autodesk AutoCAD Electrical 2017 HF3 x86-x64 RUS-ENG by m0nkrus- 64 bit


    Download ►►►►► https://urlca.com/2uDd1r



    - -CPU speed; the resolution is recommended to be at least 300 dpi; the memory speed is recommended to be at least 256 Mbytes; the operating system recommended to be Windows Vista, Windows 7, Windows 8 or Windows 10; the video card recommended to be NVIDIA GeForce GTS 450 with 256 Mbytes of VRAM or later. The entire Software will work only with English and Russian language. - -The AutoCAD Electrical 2017 version HF3 is a fully-functional product but it has some limitations: - -The program is mainly designed for commercial use but it is also available as a free student version (Registration). If you are a student and you have AutoCAD Electrical 2017 on your computer, you can use it for free. You will need to register for your student account. - -You need to register your AutoCAD Electrical 2017 version HF3 on Autodesk’s website. If you do not know how to register your AutoCAD Electrical 2017 version HF3, you can find helpful information in our AutoCAD Electrical 2017 HF3 website help article. If you have any problems with registration, please contact our customer service. - -AutoCAD Electrical 2017 HF3 contains all the features of AutoCAD Electrical 2017, as well as some unique features: - -A new My Library tab in the My Documents folder lets you save your AutoCAD Electrical 2017 files in an offline version of your software. This version of your software is completely self-contained. It is not dependent on other programs on your computer and it does not require your computer to be online. You can create, update and save your files in this version of your software and then you can download your files back to your computer and work with them in AutoCAD. If you do not like this version of your software you can uninstall it and continue to use the full version of AutoCAD Electrical 2017 on your computer. Note: You will have to download the files back to your computer using the AutoCAD Electrical 2017 trial version. - -You can save your AutoCAD Electrical 2017 drawings as *.cad files. These files contain the editable models and you can open them in AutoCAD or Adobe InDesign. - -You can open AutoCAD Electrical 2017 drawings in AutoCAD. If you have not already installed AutoCAD, you will need to install it. - -You can open your AutoCAD Electrical 2017 drawings in Adobe InDesign. If you have not already installed InDesign, you will need 4fefd39f24
    -
    -
    -

    diff --git a/spaces/falterWliame/Face_Mask_Detection/Colossus 3g For Desktopx Free Download 27 !FREE!.md b/spaces/falterWliame/Face_Mask_Detection/Colossus 3g For Desktopx Free Download 27 !FREE!.md deleted file mode 100644 index 68a5db3e050e65ad7bd615781689efa41cf828e1..0000000000000000000000000000000000000000 --- a/spaces/falterWliame/Face_Mask_Detection/Colossus 3g For Desktopx Free Download 27 !FREE!.md +++ /dev/null @@ -1,20 +0,0 @@ -

    colossus 3g for desktopx free download 27


    Download Filehttps://urlca.com/2uDc0R



    - -Actions. Pluralsight offers free training from the world's leading technologists. Tipped to success. - -I don't know. Colossus 3g for desktopx free download 27. Who is the best reporter in the world. Wants his latest report. I don't know. Who is the best reporter in the world. Acts like an idiot. But he's also a genius. Colossus 3g for desktopx free download 27. Who is the best reporter in the world. Who is the best reporter in the world. Does not want to work for anyone. The best reporter in the world. - -Who is the best reporter in the world. Who is the best reporter in the world. Everyone wants to be on his team. He's a great reporter. He doesn't work for anyone. Needs your help. He's a great reporter. He's a great reporter. Write the best story. Write the best story. - -Tipped to success. Write the best story. Needs your help. Write the best story. We will give you a piece of the action. We will give you a piece of the action. Good at putting a story together. We will give you a piece of the action. Good at putting a story together. Needs your help. - -They seem to have a different concept of success. They seem to have a different concept of success. Write the best story. But he's also a genius. Write the best story. But he's also a genius. The best reporter in the world. Write the best story. The best reporter in the world. Write the best story. Write the best story. The best reporter in the world. - -The best reporter in the world. Write the best story. Who is the best reporter in the world. Who is the best reporter in the world. Write the best story. Write the best story. Write the best story. Write the best story. Write the best story. Write the best story. Write the best story. Write the best story. - -Write the best story. The best reporter in the world. Write the best story. Write the best story. Write the best story. Write the best story. Write the best story. The best reporter in the world. Write the best story. Write the best story. Write the best story. Write the best story. Write the best story. Write the best story. Write the best story. - -Great at putting a story together. So he's also a genius. Great at 4fefd39f24
    -
    -
    -

    diff --git a/spaces/falterWliame/Face_Mask_Detection/Maxon CINEMA 4D Studio 19 VRAY MacOs Torrent.md b/spaces/falterWliame/Face_Mask_Detection/Maxon CINEMA 4D Studio 19 VRAY MacOs Torrent.md deleted file mode 100644 index 607254971b9530decf5f3dc8c56c033bae36104a..0000000000000000000000000000000000000000 --- a/spaces/falterWliame/Face_Mask_Detection/Maxon CINEMA 4D Studio 19 VRAY MacOs Torrent.md +++ /dev/null @@ -1,6 +0,0 @@ - -

    Maxon CINEMA 4D Studio R19.068 Features. We update our listings regularly, so if you know of any broken links, please contact us to fix. Please be aware that we can not guarantee that all of the files available for download from our server are up to date. It is recommended to always check downloaded files for. With Maxon CINEMA 4D Studio R19.068 Macintosh macOS 1.3 GB,MacOS 10.12 or lateris a popular 3D modeling, rendering and animation application for professional and mid-level users. Cinema 4D for MAC is a highly advanced, multi-platform 3D graphics application that can be used as a standalone product, or integrated with other Maxon products. http://www.maxon.net/en/component/content/article/1-introduction-to-3d-modeling-and-rendering/14-maxon-cinema-4d-studio-r19-vray-macos-torrent-promax-torrent-vray-macos-r13-mac-torrent-promax-torrent-vray-macos-r16-mac-torrent-promax-torrent-vray-macos-r19-mac-torrent-promax-torrent-vray-macos-r23-mac-torrent.html Tue, 09 Mar 2019 20:51:14 +0000Service Centre Promax Torrent Vray MacOs Torrent

    Promax torrent download or a torrent file to download Promax torrent to your Mac. Dcf, Gif, Png and Jpg formats are among the things that are offered.

    -

    Maxon CINEMA 4D Studio 19 VRAY MacOs Torrent


    Download Zip · https://urlca.com/2uDc6f



    -

    Increasingly, a greater number of design and modeling students are choosing a free software package to learn how to build or design 3D models. As the production of 3D modeling and animation becomes more affordable, freelance designers are also turning to free software tools because they want the same freedom as free software. However, choosing a non-commercial desktop application or a cloud-based toolbox requires a significant learning curve. Getting started with free software may not be as easy as it is with commercial tools. But once you've mastered the basics, you may be pleasantly surprised by the freedom and powerful user interface this software gives you to transform ideas into 3D geometry. The free software packages available today range from the venerable FreeCAD to Blender (www.blender.org), and from the commercial ones such as Cinema 4D (www.ceg.com).... Cinema 4D R18 legacy canada - Version Cinema 4D R18 - Legacy canada canada - Version Cinema 4D R18. C4D Studio R18 068 MacOSX + Crack (BabuPC) C4D Studio R18 068 MacOSX + Crack (BabuPC). C4D Studio R18 068 MacOSX + Full Version Cinema 4D R18 is the professional 3D package for your needs.

    899543212b
    -
    -
    \ No newline at end of file diff --git a/spaces/fatiXbelha/sd/Download ANSI H35.2-2017 PDF - Dimensional Tolerances for Aluminum Mill Products.md b/spaces/fatiXbelha/sd/Download ANSI H35.2-2017 PDF - Dimensional Tolerances for Aluminum Mill Products.md deleted file mode 100644 index 103268c18e5dfda21511fd154d378b879e23b1be..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Download ANSI H35.2-2017 PDF - Dimensional Tolerances for Aluminum Mill Products.md +++ /dev/null @@ -1,220 +0,0 @@ -
    -

    How to Download ANSI H35.2 PDF: A Guide to Aluminum Alloy Dimensional Tolerances

    -

    Introduction

    -

    Aluminum is a versatile and abundant metal that is widely used in various industries and applications, such as aerospace, automotive, marine, construction, electrical, and household products. Aluminum products come in different shapes and sizes, such as sheets, plates, bars, tubes, wires, foils, and castings. To ensure the quality and performance of these products, they need to meet certain dimensional tolerances that specify the allowable variations in their dimensions.

    -

    ansi h35.2 pdf download


    Download Zip ✔✔✔ https://urllie.com/2uNBTs



    -

    One of the most widely accepted standards for dimensional tolerances for aluminum mill products is ANSI H35.2, which is developed and published by the Aluminum Association. This standard covers the tolerances for sheet and plate, fin stock, foil, wire, rod and bar, tube and pipe, forgings, forging stock, and electrical conductors. It also provides definitions and illustrations for various terms and concepts related to aluminum products.

    -

    If you are interested in learning more about ANSI H35.2 standard and how to download it as a PDF file online, this article is for you. In this article, you will learn:

    -
      -
    • What is ANSI H35.2 standard and what does it contain?
    • -
    • Why is ANSI H35.2 important for aluminum products and their users?
    • -
    • How to get ANSI H35.2 PDF online from different sources?
    • -
    • What are the main types of aluminum alloy designations and how are they related to ANSI H35.2?
    • -
    • What are the main types of aluminum alloy dimensional tolerances and how are they presented in ANSI H35.2?
    • -
    -

    Main Body

    -

    Overview of aluminum alloy designations

    -

    Before we dive into the details of ANSI H35.2 standard, let's first understand the basics of aluminum alloy designations. Aluminum alloys are classified into different groups based on their chemical composition and temper (or heat treatment). Each group has a specific designation system that identifies the alloy by a numerical code or a name.

    -

    There are four major designation systems for aluminum alloys around the world:

    -

    ansi h35.2 (m)-2017 pdf download
    -ansi h35.2 dimensional tolerances for aluminum mill products
    -ansi h35.2 free download
    -ansi h35.2 standard pdf
    -ansi h35.2 metric version pdf
    -ansi h35.2 aluminum alloy and temper designation systems
    -ansi h35.2 american national standard for aluminum products
    -ansi h35.2 pdf download free standards pdf
    -ansi h35.2 astm r0070 pdf download
    -ansi h35.2 footnotes for tables pdf download
    -ansi h35.2 tube tolerances pdf download
    -ansi h35.2 extruded products tolerances pdf download
    -ansi h35.2 wrought alloy system pdf download
    -ansi h35.2 2000 series alloys pdf download
    -ansi h35.2 5000 series alloys pdf download
    -ansi h35.2 7000 series alloys pdf download
    -ansi h35.2 tx510 and tx511 tempers pdf download
    -ansi h35.2 circumscribing circle diameter pdf download
    -ansi h35.2 twist tolerance pdf download
    -ansi h35.2 surface quality conditions pdf download
    -ansi h35.2 nist materials data handbook pdf download
    -ansi h35.1 and aluminum standards and data pdf download
    -ansi h35.1 and aluminum association alloy and temper designation systems pdf download
    -ansi h35.1 and international accord on alloy designations pdf download
    -ansi h35.1 and aluminum alloy chemical composition limits pdf download
    -ansi h35.1 and aluminum alloy mechanical properties limits pdf download
    -ansi h35.1 and aluminum alloy product forms and tempers pdf download
    -ansi h35.1 and aluminum alloy cross reference table pdf download
    -ansi h35.1 and aluminum alloy registration record system pdf download
    -ansi h35.1 and aluminum alloy registration request form pdf download
    -how to read ansi h35.2 dimensional tolerances for aluminum mill products pdf guide
    -how to apply ansi h35.2 dimensional tolerances for aluminum mill products pdf tutorial
    -how to calculate ansi h35.2 dimensional tolerances for aluminum mill products pdf formula
    -how to measure ansi h35.2 dimensional tolerances for aluminum mill products pdf tools
    -how to check ansi h35.2 dimensional tolerances for aluminum mill products pdf examples
    -benefits of using ansi h35.2 dimensional tolerances for aluminum mill products pdf report
    -challenges of using ansi h35.2 dimensional tolerances for aluminum mill products pdf case study
    -best practices of using ansi h35.2 dimensional tolerances for aluminum mill products pdf tips
    -comparison of using ansi h35.2 dimensional tolerances for aluminum mill products vs other standards pdf review
    -history of using ansi h35.2 dimensional tolerances for aluminum mill products pdf timeline
    -future of using ansi h35.2 dimensional tolerances for aluminum mill products pdf trends
    -faq of using ansi h35.2 dimensional tolerances for aluminum mill products pdf answers
    -glossary of using ansi h35.2 dimensional tolerances for aluminum mill products pdf terms
    -references of using ansi h35.2 dimensional tolerances for aluminum mill products pdf sources
    -testimonials of using ansi h35.2 dimensional tolerances for aluminum mill products pdf feedbacks
    -samples of using ansi h35.2 dimensional tolerances for aluminum mill products pdf documents
    -templates of using ansi h35.2 dimensional tolerances for aluminum mill products pdf formats
    -resources of using ansi h35.2 dimensional tolerances for aluminum mill products pdf links

    -

    ANSI/AA system

    -

    This is the most popular system in North America and it is managed by the Aluminum Association (AA). It uses a four-digit number to identify the alloy group and its main alloying element(s). For example, 1000 series alloys are essentially pure aluminum (99% or more), 2000 series alloys contain copper as the main alloying element, 3000 series alloys contain manganese, and so on.

    -

    The first digit indicates the major alloying element(s), the second digit indicates modifications of the original alloy or impurity limits, and the third and fourth digits identify specific alloys in each group.

    -

    The temper of the alloy is indicated by a letter followed by one or more digits. For example, T6 means solution heat-treated and artificially aged.

    -

    UNS system

    -

    This is a designation system for metals and alloys that is widely accepted in North America. It stands for Unified Numbering System and it is developed by ASTM International and SAE International. It uses a letter followed by five digits to identify an alloy.

    -

    The letter indicates the metal family (A for aluminum), the first digit indicates the alloy group (similar to ANSI/AA system), and the last four digits identify specific alloys in each group.

    -

    The temper of the alloy is indicated by a suffix after a hyphen. For example, A92024-T351 means 2024-T351 aluminum alloy

    ISO system

    -

    This is a designation system for metals and alloys that is widely accepted internationally. It is developed by the International Organization for Standardization (ISO). It uses the letters Al as prefix, followed by the chemical composition of the alloy. For example, Al99.5 means an aluminum alloy with 99.5% aluminum content.

    -

    The temper of the alloy is indicated by a suffix after a hyphen. For example, Al99.5-H14 means an aluminum alloy with 99.5% aluminum content and strain-hardened and partially annealed temper.

    -

    Overview of aluminum alloy dimensional tolerances

    -

    Now that we have a basic understanding of aluminum alloy designations, let's move on to the main topic of this article: ANSI H35.2 standard and how to download it as a PDF file online.

    -

    ANSI H35.2 standard is an American national standard that specifies the dimensional tolerances for aluminum mill products, such as sheet and plate, fin stock, foil, wire, rod and bar, tube and pipe, forgings, forging stock, and electrical conductors. It also provides definitions and illustrations for various terms and concepts related to aluminum products.

    -

    Dimensional tolerances are the allowable variations in the dimensions of a product, such as thickness, width, length, diameter, straightness, flatness, squareness, roundness, etc. They are important for ensuring the quality and performance of the product, as well as for facilitating its fabrication and assembly.

    -

    ANSI H35.2 standard covers two main types of aluminum alloy dimensional tolerances: wrought alloys and cast alloys.

    -

    Wrought alloys

    -

    Wrought alloys are those that are subjected to hot and/or cold working processes, such as rolling, extruding, forging, and drawing. They have higher strength and ductility than cast alloys.

    -

    ANSI H35.2 standard provides tables of standard tolerances for various wrought alloy products in different tempers. The tables are organized by product form (sheet and plate, fin stock, foil, etc.), product type (coiled or flat sheet and plate, rectangular or round wire rod and bar, etc.), product size (thickness range or diameter range), and product condition (temper). The tables also indicate the applicable units (inch-pound or metric) and the method of measurement (caliper or micrometer).

    -

    The standard tolerances are expressed as plus or minus values from a specified nominal dimension. For example, the standard tolerance for 0.032 inch thick sheet in 3003-H14 temper is ±0.002 inch. This means that the actual thickness of the sheet can vary from 0.030 inch to 0.034 inch.

    -

    Cast alloys

    -

    Cast alloys are those that are produced by pouring molten metal into molds or dies. They have lower strength and ductility than wrought alloys, but they can have more complex shapes and lower production costs.

    -

    ANSI H35.2 standard provides tables of standard tolerances for various cast alloy products in different tempers. The tables are organized by product form (sand castings, permanent mold castings, die castings), product type (plate or bar), product size (thickness range or width range), and product condition (temper). The tables also indicate the applicable units (inch-pound or metric) and the method of measurement (caliper or micrometer).

    -

    The standard tolerances are expressed as plus or minus values from a specified nominal dimension. For example, the standard tolerance for 1 inch thick plate in A356-T6 temper is ±0.030 inch. This means that the actual thickness of the plate can vary from 0.970 inch to 1.030 inch.

    -

    Examples of tolerance tables

    -

    To give you a better idea of how ANSI H35.2 standard presents the dimensional tolerances for aluminum mill products, here are some examples of tolerance tables from the standard:

    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Table 12.2 Standard Tolerances for Round Tube [Metric]
    AlloyTemperOutside Diameter ToleranceWall Thickness Tolerance
    mm%mm%
    1xxx
    3xxx
    5xxx
    6xxx
    7xxx
    O
    H112
    F
    T1
    T4
    T42
    T4510
    T451
    ±0.15±0.5±0.10±10.0
    H12
    H14
    H16
    H18
    H19
    H22
    H24
    H26
    H28
    H32
    H34
    H36
    H38
    ±0.10±0.3±0.08±8.0
    T5
    T52
    T6
    T62
    T6511
    T6510
    ±0.10±0.3±0.08±8.0
    Note: For outside diameters over 200 mm, add 0.10 mm to the tolerance.
    Source: ANSI H35.2-2017
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Table 15.1 Standard Tolerances for Sand Castings [Inch-Pound]
    Alloy Group and Temper DesignationThickness Tolerance, in.
    Up to 1/4 in.Over 1/4 to 1/2 in.Over 1/2 in.
    A356-T6, A357-T6, A201-T7, A206-T7, A242-T7, A356-T71, A357-T71, A201-T72, A206-T72, A242-T72, A356-T73, A357-T73, A201-T74, A206-T74, A242-T74, A356-T77, A357-T77, A201-T78, A206-T78, A242-T78.+/- 0.030+/- 0.045+/- 0.060
    All other alloys and tempers.+/- 0.045+/- 0.060+/- 0.075
    Source: ANSI H35.2-2017
    -

    Conclusion

    -

    In this article, we have learned how to download ANSI H35.2 PDF online and what it contains. We have also learned the basics of aluminum alloy designations and dimensional tolerances.

    -

    To summarize, here are the main points we have covered:

    -
      -
    • ANSI H35.2 standard is an American national standard that specifies the dimensional tolerances for aluminum mill products.
    • -
    • ANSI H35.2 standard is important for ensuring the quality and performance of aluminum products and their users.
    • -
    • ANSI H35.2 PDF can be obtained online from different sources, such as the Aluminum Association website, ANSI webstore, or other online platforms.
    • -
    • Aluminum alloys are classified into different groups based on their chemical composition and temper, and each group has a specific designation system that identifies the alloy by a numerical code or a name.
    • -
    • Aluminum alloy dimensional tolerances are the allowable variations in the dimensions of a product, and they are expressed as plus or minus values from a specified nominal dimension.
    • -
    • ANSI H35.2 standard covers two main types of aluminum alloy dimensional tolerances: wrought alloys and cast alloys.
    • -
    • ANSI H35.2 standard provides tables of standard tolerances for various aluminum alloy products in different tempers, units, and methods of measurement.
    • -
    -

    If you want to learn more about ANSI H35.2 standard and aluminum alloy dimensional tolerances, we recommend you to read the following sources:

    -
      -
    • The Aluminum Association website: https://www.aluminum.org/
    • -
    • The Aluminum Association Standards and Data book: https://www.aluminum.org/resources/standards-data
    • -
    • The International Organization for Standardization website: https://www.iso.org/
    • -
    • The Unified Numbering System for Metals and Alloys book: https://www.astm.org/Standards/E527.htm
    • -
    • The ANSI H35.2- standard: https://webstore.ansi.org/standards/aluminumassociation/ansih352017
    • -
    -

    We hope you have enjoyed reading this article and found it useful. If you have any questions or feedback, please feel free to leave a comment below. Thank you for your attention and have a great day!

    -

    FAQs

    -

    Here are some frequently asked questions and answers about ANSI H35.2 standard and aluminum alloy dimensional tolerances:

    -
      -
    1. What is the difference between ANSI H35.2 and ASTM B209 standards?
    2. -

      ANSI H35.2 and ASTM B209 are both standards that specify the dimensional tolerances for aluminum mill products, but they have some differences in scope, content, and format. ANSI H35.2 is developed and published by the Aluminum Association, while ASTM B209 is developed and published by ASTM International. ANSI H35.2 covers a wider range of aluminum products, such as fin stock, foil, wire, rod and bar, tube and pipe, forgings, forging stock, and electrical conductors, while ASTM B209 mainly covers sheet and plate products. ANSI H35.2 provides tables of standard tolerances for different product forms, types, sizes, conditions, units, and methods of measurement, while ASTM B209 provides general rules and formulas for calculating the tolerances for sheet and plate products.

      -
    3. How can I convert the inch-pound units to metric units in ANSI H35.2 standard?
    4. -

      ANSI H35.2 standard provides both inch-pound and metric units for most of the product forms, except for some products that are only available in inch-pound units, such as electrical conductors. To convert the inch-pound units to metric units, you can use the following conversion factors:

      -
        -
      • 1 inch = 25.4 mm
      • -
      • 1 pound = 0.4536 kg
      • -
      • 1 psi = 6.895 kPa
      • -
      -

      You can also use online converters or calculators to perform the conversion.

      -
    5. How can I check the compliance of my aluminum product with ANSI H35.2 standard?
    6. -

      To check the compliance of your aluminum product with ANSI H35.2 standard, you need to measure the actual dimensions of your product using the appropriate instruments and methods specified in the standard, such as calipers or micrometers. Then, you need to compare the actual dimensions with the nominal dimensions and the standard tolerances given in the tables of the standard for your product form, type, size, condition, unit, and method of measurement. If the actual dimensions fall within the range of the nominal dimensions plus or minus the standard tolerances, your product is compliant with ANSI H35.2 standard.

      -
    7. What are some benefits of using ANSI H35.2 standard for aluminum products?
    8. -

      Some benefits of using ANSI H35.2 standard for aluminum products are:

      -
        -
      • It ensures the quality and performance of aluminum products by providing uniform and consistent dimensional tolerances.
      • -
      • It facilitates the fabrication and assembly of aluminum products by reducing the errors and variations in their dimensions.
      • -
      • It enhances the communication and cooperation between aluminum producers and users by providing a common language and reference for dimensional tolerances.
      • -
      • It promotes the trade and exchange of aluminum products by providing an internationally recognized and accepted standard for dimensional tolerances.
      • -
      -
    9. Where can I find more information about ANSI H35.2 standard and aluminum alloy dimensional tolerances?
    10. -

      You can find more information about ANSI H35.2 standard and aluminum alloy dimensional tolerances from the following sources:

      -
        -
      • The Aluminum Association website: https://www.aluminum.org/
      • -
      • The Aluminum Association Standards and Data book: https://www.aluminum.org/resources/standards-data
      • -
      • The International Organization for Standardization website: https://www.iso.org/
      • -
      • The Unified Numbering System for Metals and Alloys book: https://www.astm.org/Standards/E527.htm
      • -
      • The ANSI H35.2 standard: https://webstore.ansi.org/standards/aluminumassociation/ansih352017
      • -

      401be4b1e0
      -
      -
      \ No newline at end of file diff --git a/spaces/fatiXbelha/sd/Download and Play High-Quality Music on Your Android Device with These Free Music Downloader Apps.md b/spaces/fatiXbelha/sd/Download and Play High-Quality Music on Your Android Device with These Free Music Downloader Apps.md deleted file mode 100644 index fa3f3a32b6bf1334eb4c5dabe66af2305ed11dd1..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Download and Play High-Quality Music on Your Android Device with These Free Music Downloader Apps.md +++ /dev/null @@ -1,235 +0,0 @@ -
      -

      What is the best music downloader apk?

      -

      Music is one of the most popular forms of entertainment and expression for many people. Whether you want to listen to your favorite songs, discover new artists, or create your own playlists, music can enrich your life in many ways. However, not everyone has access to unlimited internet connection or streaming services, which can limit their options for enjoying music. That's why some people use music downloader apps, which allow them to download music from various sources and listen to it offline.

      -

      A music downloader app is a software application that can download music files from online platforms, such as YouTube, SoundCloud, Spotify, or other websites. It can also convert the downloaded files to different formats, such as MP3, WAV, M4A, or OGG, depending on the user's preference. A music downloader app usually comes in the form of an APK file, which is an Android application package that can be installed on Android devices.

      -

      what is the best music downloader apk


      DOWNLOAD - https://urllie.com/2uNvQq



      -

      But how do you choose the best music downloader app for your needs? There are many factors to consider, such as:

      -
        -
      • The features and functions of the app, such as download speed, quality, playlist support, batch download, etc.
      • -
      • The supported formats and websites of the app, such as MP3, MP4, FLAC, YouTube, Facebook, Instagram, etc.
      • -
      • The user interface and experience of the app, such as design, navigation, ease of use, etc.
      • -
      • The pros and cons of the app, such as advantages, disadvantages, reviews, ratings, etc.
      • -
      -

      In this article, we will discuss some of the best music downloader apps available for Android devices in 2023. We will compare and contrast their features, functions, supported formats and websites, user interface and experience, pros and cons. We will also provide some recommendations based on different needs and preferences. By the end of this article, you will have a better idea of what is the best music downloader app for you.

      -

      Musify

      -

      Musify is an all-in-one YouTube downloader that supports more than 20 formats and 1000 websites. It can download music from YouTube as well as other sources like SoundCloud, Spotify, Bandcamp, Vimeo, Dailymotion, etc. It can also convert the downloaded files to MP3 or other formats with high quality. Musify has a simple and intuitive interface that allows you to search for music by keywords or URLs. You can also download playlists or channels with one click. Musify has a built-in ID3 tag editor that can automatically add metadata to your downloaded files.

      -

      Pros:

      -
        -
      • Supports multiple formats and websites
      • -
      • Downloads music with high quality
      • -
      • Downloads playlists or channels easily
      • -
      • Adds metadata automatically
      • -
      -

      Cons:

      -
        -
      • Not free (costs $19.95 per year)
      • -
      • Requires installation on PC
      • -
      • No Android app available
      • -
      -

      By Click Downloader

      -

      By Click Downloader is a simple and fast downloader that supports multiple formats and websites. It can download music from YouTube as well as other sources like Facebook, Twitter, Instagram, Vimeo, Dailymotion , etc. It can also convert the downloaded files to MP3 or other formats with high quality. By Click Downloader has a user-friendly interface that allows you to download music by clicking a pop-up message on your browser. You can also copy and paste the URL of the music you want to download. By Click Downloader has a smart mode that can automatically apply the best settings for your downloads. You can also customize the download options, such as format, quality, name, etc.

      -

      Pros:

      -
        -
      • Supports multiple formats and websites
      • -
      • Downloads music with high quality
      • -
      • Downloads music by clicking or pasting URL
      • -
      • Has a smart mode and customizable options
      • -
      -

      Cons:

      -

      How to download free music offline with apk
      -Best music downloader apk for Android devices
      -Top 10 music downloader apk apps in 2023
      -Music downloader apk with FM radio and offline mode
      -Download MP3 free music with music downloader apk
      -Music downloader apk that supports hundreds of millions of songs
      -Music downloader apk reviews and ratings
      -Music downloader apk comparison and features
      -Music downloader apk download link and installation guide
      -Music downloader apk alternatives and similar apps
      -Music downloader apk for PC and Mac
      -Music downloader apk with high quality sound and lyrics
      -Music downloader apk that works with Spotify and YouTube
      -Music downloader apk with no ads and no subscription
      -Music downloader apk that lets you create playlists and share music
      -Music downloader apk with online and offline streaming
      -Music downloader apk that supports multiple languages and genres
      -Music downloader apk with equalizer and bass booster
      -Music downloader apk that is safe and virus-free
      -Music downloader apk that is compatible with all Android versions
      -Music downloader apk that has a user-friendly interface and design
      -Music downloader apk that updates regularly and adds new songs
      -Music downloader apk that allows you to download music videos and podcasts
      -Music downloader apk that has a large and active community of users
      -Music downloader apk that offers customer support and feedback
      -Music downloader apk that has a premium version and a free trial
      -Music downloader apk that integrates with other apps and devices
      -Music downloader apk that has a sleep timer and a alarm clock
      -Music downloader apk that can download music from any website or app
      -Music downloader apk that can convert music files to different formats

      -
        -
      • Not free (costs $4.99 per month)
      • -
      • Requires installation on PC
      • -
      • No Android app available
      • -
      -

      Snaptube

      -

      Snaptube is a popular and powerful downloader that supports multiple formats and websites. It can download music from YouTube as well as other sources like Facebook, Instagram, TikTok, SoundCloud, etc. It can also convert the downloaded files to MP3 or other formats with high quality. Snaptube has a sleek and easy-to-use interface that allows you to search for music by keywords or categories. You can also browse the trending or recommended music on the app. Snaptube has a floating player that can play the downloaded music in the background while you use other apps.

      -

      Pros:

      -
        -
      • Supports multiple formats and websites
      • -
      • Downloads music with high quality
      • -
      • Searches and browses music easily
      • -
      • Has a floating player and background play
      • -
      -

      Cons:

      -
        -
      • Not available on Google Play Store (needs to be downloaded from official website)
      • -
      • Contains ads (can be removed by upgrading to VIP)
      • -
      • May not work in some countries or regions (needs VPN)
      • -
      -

      Audials Play

      -

      Audials Play is a unique and innovative downloader that supports multiple formats and websites. It can download music from YouTube as well as other sources like Spotify, Deezer, Amazon Music, etc. It can also record the music streams with high quality and save them as MP3 or other formats. Audials Play has a comprehensive and customizable interface that allows you to access over 100,000 radio stations, podcasts, and music channels. You can also create your own playlists and collections of your favorite music. Audials Play has a car mode that can optimize the app for driving.

      -

      Pros:

      -
        -
      • Supports multiple formats and websites
      • -
      • Downloads and records music streams with high quality
      • -
      • Accesses radio stations, podcasts, and music channels
      • -
      • Creates playlists and collections
      • -
      • Has a car mode and driving features
      • -
      -

      Cons:

      -
        -
      • Not free (costs $9.99 per year)
      • -
      • Requires registration and login
      • -
      • No batch download or playlist download
      • -
      -

      Tubidy MP3 & Video Download

      -

      Tubidy MP3 & Video Download is a simple and lightweight downloader that supports multiple formats and websites. It can download music from YouTube as well as other sources like Facebook, Instagram, TikTok, etc. It can also convert the downloaded files to MP3 or other formats with high quality. Tubidy MP3 & Video Download has a minimalistic and straightforward interface that allows you to download music by entering the URL of the music you want to download. You can also preview the music before downloading it.

      -

      Pros:

      -
        -
      • Supports multiple formats and websites
      • -
      • Downloads music with high quality
      • -
      • Downloads music by entering URL
      • -
      • Previews music before downloading it
      • -
      -

      Cons:

      -
        -
      • No advanced features or functions
      • -
      • No search or browse option
      • -
      • No playlist or channel support
      • -
      • No metadata or tag editor
      • -
      -

      A comparison table of the best music downloader apps in 2023

      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      Name of the appMusifyBy Click DownloaderSnaptubeAudials PlayTubidy MP3 & Video Download
      Features and functions- Supports more than 20 formats and 1000 websites
      - Downloads playlists or channels easily
      - Adds metadata automatically
      - Supports multiple formats and websites
      - Downloads music by clicking or pasting URL
      - Has a smart mode and customizable options
      - Supports multiple formats and websites
      - Searches and browses music easily
      - Has a floating player and background play
      - Supports multiple formats and websites
      - Downloads and records music streams with high quality
      - Accesses radio stations, podcasts, and music channels
      - Creates playlists and collections
      - Has a car mode and driving features
      - Supports multiple formats and websites
      - Downloads music by entering URL
      - Previews music before downloading it
      Supported formats and websites- MP3, MP4, WAV, M4A, FLAC, OGG, etc.
      - YouTube, SoundCloud, Spotify, Bandcamp, Vimeo, Dailymotion, etc.
      - MP3, MP4, AVI, FLV, WMV, 3GP, WEBM, etc.
      - YouTube, Facebook, Twitter, Instagram, Vimeo, Dailymotion, etc.
      - MP3, MP4, M4A, OGG, etc.
      - YouTube, Facebook, Instagram, TikTok, SoundCloud, etc.
      - MP3, MP4, AAC, WMA, FLAC, etc.
      - YouTube, Spotify, Deezer, Amazon Music, etc.
      - MP3, MP4, 3GP, etc.
      - YouTube, Facebook, Instagram, TikTok, etc.
      User interface and experience- Simple and intuitive interface
      - Easy to search for music by keywords or URLs
      - User-friendly interface
      - Easy to download music by clicking a pop-up message on your browser
      - Sleek and easy-to-use interface
      - Easy to search for music by keywords or categories
      - Comprehensive and customizable interface
      - Easy to access over 100,000 radio stations, podcasts, and music channels
      - Minimalistic and straightforward interface
      - Easy to download music by entering the URL of the music you want to download
      Pros and consPros:
      - Supports multiple formats and websites
      - Downloads music with high quality
      - Downloads playlists or channels easily
      - Adds metadata automatically
      Cons:
      - Not free (costs $19.95 per year)
      - Requires installation on PC
      - No Android app available
      Pros:
      - Supports multiple formats and websites
      - Downloads music with high quality
      - Downloads music by clicking or pasting URL
      - Has a smart mode and customizable options
      Cons:
      - Not free (costs $4.99 per month)
      - Requires installation on PC
      - No Android app available
      Pros:
      - Supports multiple formats and websites
      - Downloads music with high quality
      - Searches and browses music easily
      - Has a floating player and background play
      Cons:
      - Not available on Google Play Store (needs to be downloaded from official website)
      - Contains ads (can be removed by upgrading to VIP)
      - May not work in some countries or regions (needs VPN)
      Pros:
      - Supports multiple formats and websites
      - Downloads and records music streams with high quality
      - Accesses radio stations, podcasts, and music channels
      - Creates playlists and collections
      - Has a car mode and driving features
      Cons:
      - Not free (costs $9.99 per year)
      - Requires registration and login
      - No batch download or playlist download
      Pros:
      - Supports multiple formats and websites
      - Downloads music with high quality
      - Downloads music by entering URL
      - Previews music before downloading it
      Cons:
      - No advanced features or functions
      - No search or browse option
      - No playlist or channel support
      - No metadata or tag editor
      -

      Recommendations based on different needs and preferences

      -

      Based on the comparison table above, we can see that each music downloader app has its own strengths and weaknesses. Depending on your needs and preferences, you may find one app more suitable than another. Here are some recommendations based on different scenarios:

      -
        -
      • If you want a music downloader app that supports more than 20 formats and 1000 websites, downloads playlists or channels easily, and adds metadata automatically, you may want to try Musify. However, you will need to pay $19.95 per year and install it on your PC.
      • -
      • If you want a music downloader app that supports multiple formats and websites, downloads music by clicking or pasting URL, and has a smart mode and customizable options, you may want to try By Click Downloader. However, you will need to pay $4.99 per month and install it on your PC.
      • -
      • If you want a music downloader app that supports multiple formats and websites, searches and browses music easily, and has a floating player and background play, you may want to try Snaptube. However, you will need to download it from the official website and use VPN if it does not work in your country or region.
      • -
      • If you want a music downloader app that supports multiple formats and websites, downloads and records music streams with high quality, and accesses radio stations, podcasts, and music channels, you may want to try Audials Play. However, you will need to pay $9.99 per year and register and login to use it.
      • -
      • If you want a music downloader app that supports multiple formats and websites, downloads music by entering URL, and previews music before downloading it, you may want to try Tubidy MP3 & Video Download. However, you will not have any advanced features or functions with this app.
      • -
      -

      Conclusion

      -

      In conclusion, a music downloader app is a software application that can download music from various sources and listen to it offline. It can also convert the downloaded files to different formats according to the user's preference. There are many factors to consider when choosing the best music downloader app for your needs, such as features, functions, supported formats and websites, user interface and experience, pros and cons. In this article, we have discussed some of the best music downloader apps available for Android devices in 2023. We have compared and contrasted their features, functions, supported formats and websites, user interface and experience, pros and cons. We have also provided some recommendations based on different needs and preferences. We hope that this article has helped you to find the best music downloader app for you.

      -

      However, before you download any music from the internet, you should be aware of some tips and advice on how to use music downloader apps safely and legally. Here are some of them:

      -
        -
      • Always check the source and quality of the music before downloading it. Some websites or apps may contain malware or viruses that can harm your device or data.
      • -
      • Always respect the intellectual property rights of the music creators and owners. Some music may be protected by copyright or other laws that prohibit unauthorized downloading or distribution.
      • -
      • Always use a VPN or a proxy server to protect your privacy and security when downloading music from the internet. Some websites or apps may track your online activity or collect your personal information.
      • -
      -

      With these tips and advice in mind, you can enjoy your music offline without any worries. Do you have any questions or comments about music downloader apps? Feel free to share them with us in the comment section below. Thank you for reading this article and happy downloading!

      -

      FAQs

      -

      Here are some common questions that readers may have about music downloader apps, along with their answers:

      -

      How to install and update music downloader apps?

      -

      To install a music downloader app on your Android device, you need to follow these steps:

      -
        -
      1. Download the APK file of the app from its official website or a trusted source.
      2. -
      3. Enable the installation of apps from unknown sources on your device settings.
      4. -
      5. Open the APK file and follow the instructions to install the app.
      6. -
      7. Launch the app and enjoy downloading music.
      8. -
      -

      To update a music downloader app on your Android device, you need to follow these steps:

      -
        -
      1. Check if there is a new version of the app available on its official website or a trusted source.
      2. -
      3. Download the APK file of the new version of the app.
      4. -
      5. Uninstall the old version of the app from your device.
      6. -
      7. Install the new version of the app following the same steps as above.
      8. -
      9. Launch the app and enjoy downloading music.
      10. -
      -

      How to download music from YouTube or other sources?

      -

      To download music from YouTube or other sources using a music downloader app, you need to follow these steps:

      -
        -
      1. Open the app and search for the music you want to download by keywords or categories. You can also copy and paste the URL of the music from your browser.
      2. -
      3. Select the format and quality of the music you want to download. You can also customize other options, such as name, metadata, etc.
      4. -
      5. Tap on the download button and wait for the process to complete.
      6. -
      7. Find the downloaded music file on your device storage or on the app's library.
      8. -
      9. Play the downloaded music offline using your preferred media player.
      10. -
      -

      How to convert music files to different formats?

      -

      To convert music files to different formats using a music downloader app, you need to follow these steps:

      -
        -
      1. Select the music file you want to convert from your device storage or from the app's library.
      2. -
      3. Tap on the convert button and choose the format you want to convert to. You can also adjust the quality and other settings.
      4. -
      5. Wait for the conversion to finish and find the converted music file on your device storage or on the app's library.
      6. -
      7. Play the converted music file using your preferred media player.
      8. -
      -

      How to manage and organize downloaded music files?

      -

      To manage and organize downloaded music files using a music downloader app, you need to follow these steps:

      -
        -
      1. Open the app and go to the library or the download manager section.
      2. -
      3. Select the music files you want to manage or organize. You can also sort them by name, date, size, etc.
      4. -
      5. Tap on the edit button and choose the action you want to perform, such as rename, delete, move, copy, etc.
      6. -
      7. You can also create folders or playlists to group your music files by genre, artist, mood, etc.
      8. -
      9. Enjoy your organized music collection offline or online.
      10. -
      -

      How to avoid malware or viruses from music downloader apps?

      -

      To avoid malware or viruses from music downloader apps, you need to follow these tips:

      -
        -
      • Only download music downloader apps from their official websites or trusted sources. Avoid downloading apps from unknown or suspicious links or pop-ups.
      • -
      • Only download music from reputable and legal websites or platforms. Avoid downloading music from pirated or illegal sources that may contain harmful content.
      • -
      • Use a reliable antivirus or security software on your device. Scan your device regularly and remove any detected threats.
      • -
      • Update your device and your apps to the latest version. This can fix any bugs or vulnerabilities that may expose your device to malware or viruses.
      • -

      197e85843d
      -
      -
      \ No newline at end of file diff --git a/spaces/fatiXbelha/sd/Experience Liberty City in HD with GTA III Remastered - Download Here.md b/spaces/fatiXbelha/sd/Experience Liberty City in HD with GTA III Remastered - Download Here.md deleted file mode 100644 index 4a933d77ce6dc992d5bcfe57ed7391db94689ba4..0000000000000000000000000000000000000000 --- a/spaces/fatiXbelha/sd/Experience Liberty City in HD with GTA III Remastered - Download Here.md +++ /dev/null @@ -1,229 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
      -

      LibertyCity Download: How to Play GTA III on Your PC

      -

      Do you remember playing Grand Theft Auto III back in 2001? Do you miss exploring the dark and seedy underworld of Liberty City? Do you wish you could relive those memories on your PC with better graphics and new features? If you answered yes to any of these questions, then you should download LibertyCity.

      -

      libertycity download


      Download >>> https://urllie.com/2uNDS5



      -

      LibertyCity is a modification of GTA Vice City that brings back GTA III with enhanced graphics, gameplay, and content. It is a fan-made project that aims to recreate the original GTA III experience on a modern engine. In this article, we will show you how to download, install, and play LibertyCity on your PC.

      -
      -

      What is LibertyCity?

      -

      LibertyCity is a modification of GTA Vice City that allows you to play GTA III on your PC. It is not a standalone game, but rather a conversion of GTA Vice City that replaces the map, characters, vehicles, weapons, missions, and more with those from GTA III.

      -

      LibertyCity was created by a team of modders called LibertyCity Team, who started working on it in 2005 and released the first version in 2008. Since then, they have updated and improved the mod with new features, bug fixes, and compatibility patches. The latest version of LibertyCity is 7.0, which was released in 2019.

      -

      LibertyCity is compatible with GTA Vice City version 1.0 and 1.1, as well as GTA Vice City Steam version. It requires a clean installation of GTA Vice City, meaning that you should not have any other mods or modifications installed on your game. LibertyCity also comes with its own installer, which makes the installation process easier and faster.

      -
      -

      Why You Should Download LibertyCity?

      -

      LibertyCity is a great mod for GTA fans who want to revisit the classic GTA III on their PC. It offers many benefits and advantages over the original game, such as:

      -
        -
      • Nostalgia: LibertyCity lets you experience the nostalgia of playing GTA III again, with the same story, missions, characters, and atmosphere. You can relive the adventures of Claude, the silent protagonist who gets betrayed by his girlfriend and seeks revenge in the criminal underworld of Liberty City.
      • -
      • Improved Graphics: LibertyCity enhances the graphics of GTA III with better textures, models, lighting, shadows, effects, and more. It also supports widescreen resolutions and anti-aliasing. You can enjoy the beauty of Liberty City in high definition, with more details and realism.
      • -
      • New Features: LibertyCity adds new features and content to GTA III, such as new vehicles, weapons, radio stations, sounds, animations, and more. It also fixes some bugs and glitches that were present in the original game. You can discover new things and have more fun in Liberty City.
      • -
      -

      LibertyCity is a must-have mod for GTA lovers who want to play GTA III on their PC with improved graphics and new features. It is a free and easy-to-install mod that will give you hours of entertainment and enjoyment.

      -
      -

      How to Download LibertyCity?

      -

      There are several sources from where you can download LibertyCity for your PC. Here are some of the most popular ones:

      -

      libertycity gta 3 download
      -libertycity gta 4 download
      -libertycity gta 5 download
      -libertycity fivem download
      -libertycity stories download
      -libertycity vice city download
      -libertycity san andreas download
      -libertycity mod download
      -libertycity map download
      -libertycity game download
      -libertycity pc download
      -libertycity android download
      -libertycity ios download
      -libertycity apk download
      -libertycity obb download
      -libertycity psp download
      -libertycity ps2 download
      -libertycity ps3 download
      -libertycity ps4 download
      -libertycity xbox download
      -libertycity xbox 360 download
      -libertycity xbox one download
      -libertycity steam download
      -libertycity rockstar games download
      -libertycity episodes from liberty city download
      -libertycity the lost and damned download
      -libertycity the ballad of gay tony download
      -libertycity cheats download
      -libertycity trainer download
      -libertycity patch download
      -libertycity crack download
      -libertycity save game download
      -libertycity soundtrack download
      -libertycity radio stations download
      -libertycity cars download
      -libertycity skins download
      -libertycity weapons download
      -libertycity missions download
      -libertycity online download
      -libertycity multiplayer download
      -libertycity server download
      -libertycity launcher download
      -libertycity installer download
      -libertycity setup download
      -libertycity torrent download
      -libertycity free download
      -libertycity full version download
      -libertycity highly compressed download

      -
      -

      Download from Rockstar Games

      -

      The official website of Rockstar Games offers a free download of LibertyCity for registered users. You need to have a Rockstar Games Social Club account to access the download link. Here are the steps to download LibertyCity from Rockstar Games:

      -
        -
      1. Go to https://www.rockstargames.com/libertycity/ and log in with your Rockstar Games Social Club account.
      2. -
      3. Click on the "Download" button and choose a location to save the file.
      4. -
      5. The file size is about 1.3 GB, so it may take some time to download depending on your internet speed.
      6. -
      7. Once the download is complete, you will have a ZIP file named "LibertyCity.zip" on your computer.
      8. -
      -
      -

      Download from Archive.org

      -

      Archive.org is a website that archives and preserves various digital content, including games and mods. You can download LibertyCity from Archive.org without needing any account or registration. Here are the steps to download LibertyCity from Archive.org:

      -
        -
      1. Go to https://archive.org/details/LibertyCity and click on the "Download Options" button.
      2. -
      3. Select the "ZIP" option and choose a location to save the file.
      4. -
      5. The file size is about 1.3 GB, so it may take some time to download depending on your internet speed.
      6. -
      7. Once the download is complete, you will have a ZIP file named "LibertyCity.zip" on your computer.
      8. -
      -
      -

      Download from Other Sources

      -

      There are also other sources from where you can download LibertyCity, such as torrents, mirrors, or third-party websites. However, these sources may not be reliable or safe, and may contain viruses, malware, or corrupted files. Therefore, we do not recommend downloading LibertyCity from these sources, unless you are sure about their authenticity and quality. If you decide to download LibertyCity from other sources, you should scan the file with an antivirus software before opening it.

      -
      -

      How to Install LibertyCity?

      -

      After downloading LibertyCity from your preferred source, you need to install it on your PC. The installation process is simple and straightforward, but it may vary depending on the source of download. Here are the general steps to install LibertyCity on your PC:

      -
      -

      Requirements

      -

      Before installing LibertyCity, you need to make sure that your PC meets the minimum and recommended system requirements for running the mod. Here are the system requirements for LibertyCity:

      - - - - - - - - - -
      MinimumRecommended
      OSWindows XP/Vista/7/8/10Windows 7/8/10
      CPUPentium III 800 MHz or equivalentPentium IV 1.5 GHz or equivalent
      RAM256 MB512 MB
      GPU32 MB DirectX 9 compatible video card64 MB DirectX 9 compatible video card
      HDD2 GB of free space2 GB of free space
      SOUNDDirectX 9 compatible sound cardDirectX 9 compatible sound card
      MISCGTA Vice City version 1.0 or 1.1 installed (Steam version also supported)GTA Vice City version 1.0 or 1.1 installed (Steam version also supported)
      -

      If your PC does not meet the minimum requirements, you may experience poor performance, crashes, or errors while playing LibertyCity. If your PC meets or exceeds the recommended requirements, you will have a smooth and enjoyable gameplay experience.

      Installation Process

      -

      The installation process for LibertyCity depends on the source of download. If you downloaded LibertyCity from Rockstar Games or Archive.org, you will have a ZIP file named "LibertyCity.zip" on your computer. If you downloaded LibertyCity from other sources, you may have a different file name or format. In any case, you need to extract the contents of the file to a folder on your computer. Here are the steps to install LibertyCity from a ZIP file:

      -
        -
      1. Right-click on the ZIP file and select "Extract All" or use a program like WinRAR or 7-Zip to extract the file.
      2. -
      3. Choose a location to extract the file, such as your desktop or a new folder.
      4. -
      5. After the extraction is complete, you will have a folder named "LibertyCity" with several files and subfolders inside.
      6. -
      7. Open the folder and double-click on the file named "Setup.exe" to launch the installer.
      8. -
      9. Follow the instructions on the installer and choose a destination folder for LibertyCity. It is recommended to install LibertyCity in a separate folder from GTA Vice City, such as "C:\Program Files\LibertyCity".
      10. -
      11. Wait for the installation to finish and click on "Finish" when done.
      12. -
      13. You have successfully installed LibertyCity on your PC.
      14. -
      -
      -

      Troubleshooting

      -

      Sometimes, you may encounter some issues or errors while installing or playing LibertyCity. Here are some of the common problems and their solutions:

      -
        -
      • The installer says that GTA Vice City is not installed or not found: This means that the installer cannot detect your GTA Vice City installation. You need to make sure that you have GTA Vice City version 1.0 or 1.1 installed on your PC, and that it is in a valid location. You can also manually browse for your GTA Vice City folder during the installation process.
      • -
      • The game crashes or freezes during loading or gameplay: This means that there is a compatibility issue or a conflict with another program. You need to make sure that you have a clean installation of GTA Vice City, without any other mods or modifications. You also need to run LibertyCity as an administrator and in compatibility mode for Windows XP SP3. You can also try lowering the graphics settings or disabling any background programs that may interfere with the game.
      • -
      • The game does not launch or shows an error message: This means that there is a missing or corrupted file or a wrong configuration. You need to make sure that you have installed LibertyCity correctly and in a separate folder from GTA Vice City. You also need to check if you have all the required files and folders in your LibertyCity folder, such as "gta-lc.exe", "gta-lc.ini", "audio", "models", etc. You can also try reinstalling LibertyCity or downloading it from another source.
      • -
      -

      If you still have problems or questions about LibertyCity, you can visit the official website of LibertyCity Team or their forum for more information and support.

      -
      -

      How to Play LibertyCity?

      -

      After installing LibertyCity on your PC, you are ready to play GTA III on your PC. The gameplay process is similar to GTA Vice City, but with some differences and additions. Here are the steps to play LibertyCity on your PC:

      -
      -

      Launching the Game

      -

      To launch LibertyCity, you need to use the file named "gta-lc.exe" in your LibertyCity folder. You can create a shortcut of this file on your desktop or start menu for easier access. Here are the steps to launch LibertyCity:

      -
        -
      1. Go to your LibertyCity folder and double-click on the file named "gta-lc.exe" to launch the game.
      2. -
      3. You will see a splash screen with the logo of LibertyCity and some information about the mod.
      4. -
      5. You will then see the main menu of the game, with options such as "Start Game", "Load Game", "Options", etc.
      6. -
      7. You can choose any option you want, or press "Enter" to start a new game.
      8. -
      9. You will see a cutscene that introduces the story and the protagonist of GTA III, Claude.
      10. -
      11. After the cutscene, you will be in control of Claude in Liberty City.
      12. -
      -
      -

      Settings and Controls

      -

      To adjust the settings and controls for LibertyCity, you need to use the "Options" menu in the main menu or pause menu of the game. You can change various settings such as graphics, sound, display, language, etc. You can also customize the controls for keyboard, mouse, or gamepad. Here are some of the settings and controls for LibertyCity:

      - - - - - - - - - -
      Setting/ControlDescription
      GraphicsYou can change the graphics settings such as resolution, draw distance, frame limiter, anti-aliasing, etc.
      SoundYou can change the sound settings such as volume, radio station, subtitles, etc.
      DisplayYou can change the display settings such as aspect ratio, widescreen, HUD size, etc.
      LanguageYou can change the language of the game from English to other languages such as Russian, Spanish, French, etc.
      KeyboardYou can customize the keyboard controls for movement, actions, weapons, vehicles, etc.
      MouseYou can customize the mouse controls for aiming, camera, sensitivity, etc.
      GamepadYou can customize the gamepad controls for movement, actions, weapons, vehicles, etc.
      -

      You can also use some keyboard shortcuts for quick actions such as saving the game (F5), loading the game (F7), taking a screenshot (F12), etc.

      -
      -

      Gameplay Tips and Tricks

      -

      To enjoy LibertyCity to the fullest, you need to know some gameplay tips and tricks that will help you survive and succeed in the criminal underworld of Liberty City. Here are some of the gameplay tips and tricks for LibertyCity:

      -
        -
      • Save often: LibertyCity is a challenging game that can be unpredictable and unforgiving. You never know when you will encounter a tough enemy, a police chase, or a game crash. Therefore, you should save your game often, especially before and after completing a mission, entering a new area, or acquiring a new item.
      • -
      • Explore the city: LibertyCity is a large and diverse city that has many secrets and surprises to discover. You can find hidden items, weapons, vehicles, ramps, jumps, easter eggs, and more. You can also interact with various characters, shops, activities, and events. Exploring the city will reward you with money, health, armor, weapons, respect, and fun.
      • -
      • Use cheats: LibertyCity supports the same cheats as GTA Vice City, which can be activated by typing certain codes on the keyboard during gameplay. Cheats can give you various advantages such as unlimited health, ammo, money, weapons, vehicles, etc. However, cheats can also have some drawbacks such as disabling achievements, affecting the game balance, or causing glitches. Therefore, you should use cheats wisely and sparingly.
      • -
      -

      LibertyCity is a fun and immersive game that will make you feel like you are playing GTA III on your PC with improved graphics and new features. It is a mod that every GTA fan should try at least once.

      -
      -

      Conclusion

      -

      LibertyCity is a modification of GTA Vice City that brings back GTA III with enhanced graphics, gameplay, and content. It is a fan-made project that aims to recreate the original GTA III experience on a modern engine. It is a free and easy-to-install mod that will give you hours of entertainment and enjoyment.

      -

      To play LibertyCity on your PC, you need to download it from one of the sources mentioned above, install it on your PC using the installer provided by the mod team, and launch it using the file named "gta-lc.exe". You also need to make sure that your PC meets the system requirements for running the mod, and that you have a clean installation of GTA Vice City without any other mods or modifications.

      -

      LibertyCity is a great mod for GTA fans who want to revisit the classic GTA III on their PC. It offers many benefits and advantages over the original game, such as nostalgia, improved graphics, new features, etc. It also provides some gameplay tips and tricks that will help you survive and succeed in the criminal underworld of Liberty City.

      -

      If you are looking for a way to play GTA III on your PC with better graphics and new features, then you should download LibertyCity today. You will not regret it.

      -
      -

      FAQs

      -

      Here are some of the frequently asked questions about LibertyCity with brief answers:

      - - - - - - - -
      QuestionAnswer
      Is LibertyCity legal?LibertyCity is legal as long as you own a legitimate copy of GTA Vice City and GTA III. The mod does not distribute any copyrighted material from Rockstar Games or Take-Two Interactive.
      Is LibertyCity safe?LibertyCity is safe as long as you download it from a reliable source such as Rockstar Games or Archive.org. The mod does not contain any viruses, malware, or corrupted files.
      Is LibertyCity multiplayer?LibertyCity is not multiplayer by default, but it supports some multiplayer mods such as VC:MP or MTA:VC. You can play LibertyCity online with other players using these mods.
      Can I use other mods with LibertyCity?You can use other mods with LibertyCity as long as they are compatible with the mod and do not conflict with its files or features. You should always backup your files before installing any mods.
      Where can I find more information about LibertyCity?You can find more information about LibertyCity on the official website of LibertyCity Team or their forum. You can also check out some videos or reviews of the mod on YouTube or other websites.
      -

      I hope this article has answered all your questions about LibertyCity and how to play GTA III on your PC. If you have any other questions or feedback, feel free to leave a comment below or contact me directly. Thank you for reading and happy gaming!

      401be4b1e0
      -
      -
      \ No newline at end of file diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Among Us on PC Download the Mod APK and Enjoy New Features.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Among Us on PC Download the Mod APK and Enjoy New Features.md deleted file mode 100644 index 150726bf23309973c45956386ff4ee469ef30c89..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Among Us on PC Download the Mod APK and Enjoy New Features.md +++ /dev/null @@ -1,116 +0,0 @@ - -

      How to Download and Play Among Us Mod APK on PC

      -

      Among Us is a multiplayer social deduction game that has taken the gaming world by storm. In this game, you can play as a crewmate or an impostor in a spaceship, trying to complete tasks or sabotage the mission. The game is full of fun, suspense, and deception, as you have to work together or betray your friends.

      -

      among us mod apk pc download


      Download Ziphttps://gohhs.com/2uPrlc



      -

      Among Us is available for Android, iOS, Windows, and Nintendo Switch platforms. However, some players may prefer to play the game on a bigger screen, with better graphics and controls. That's why playing Among Us Mod APK on PC can be a great option. A mod APK is a modified version of the original game that can offer some extra features, such as new skins, maps, modes, roles, and more.

      -

      In this article, we will show you how to download and play Among Us Mod APK on PC using different methods. You will need to install Android apps on your PC first, then download and install the mod APK of your choice. Let's get started!

      -

      How to install Android apps on PC using different methods

      -

      There are several ways to install Android apps on your PC. Here are some of the most common ones:

      -

      Link your phone to Windows

      -

      If you have an Android phone and a Windows 11 PC, you can use Microsoft's Phone Link app to connect them and access your apps from your computer. This way, you can use the apps that are already installed on your phone without downloading them again. However, this method may not work well for games, as there may be some delay and graphical issues. Also, you will need a Samsung phone for the best experience.

      -

      among us mod apk pc download with bluestacks
      -among us mod apk pc download extra roles
      -among us mod apk pc download skeld.net
      -among us mod apk pc download impostor mode
      -among us mod apk pc download no emulator
      -among us mod apk pc download town of us
      -among us mod apk pc download free 2021
      -among us mod apk pc download always impostor
      -among us mod apk pc download voice chat
      -among us mod apk pc download sheriff mod
      -among us mod apk pc download latest version
      -among us mod apk pc download proximity chat
      -among us mod apk pc download 15 players
      -among us mod apk pc download airship map
      -among us mod apk pc download jester mode
      -among us mod apk pc download with friends
      -among us mod apk pc download custom skins
      -among us mod apk pc download zombie mode
      -among us mod apk pc download online multiplayer
      -among us mod apk pc download doctor mode
      -among us mod apk pc download unlimited money
      -among us mod apk pc download no ads
      -among us mod apk pc download engineer mode
      -among us mod apk pc download medic mode
      -among us mod apk pc download lover mode
      -among us mod apk pc download hide and seek
      -among us mod apk pc download detective mode
      -among us mod apk pc download pet mode
      -among us mod apk pc download hacker mode
      -among us mod apk pc download spy mode
      -among us mod apk pc download crewlink
      -among us mod apk pc download no kill cooldown
      -among us mod apk pc download all unlocked
      -among us mod apk pc download mini crewmate
      -among us mod apk pc download role swap
      -among us mod apk pc download god mode
      -among us mod apk pc download rainbow mode
      -among us mod apk pc download polus map
      -among us mod apk pc download mirror mode
      -among us mod apk pc download innersloth official server

      -

      To use this method, follow these steps:

      -
        -
      • Download and install the Phone Link app on your Windows PC.
      • -
      • Download and install the Link to Windows app on your Android phone.
      • -
      • Connect the two devices by scanning a QR code.
      • -
      • Open the Phone Link app on your PC and select Apps.
      • -
      • Choose the app you want to run from the list.
      • -
      -

      Use an emulator like BlueStacks

      -

      An emulator is a software that mimics the Android operating system on your PC. This way, you can run any Android app or game on your computer as if you were using a mobile device. One of the most popular emulators is BlueStacks, which offers a lot of features and compatibility for gaming.

      -

      To use this method, follow these steps:

      -
        -
      • Download and install BlueStacks on your PC.
      • -
      • Sign in with your Google account to access the Play Store.
      • -
      • Search for the app or game you want to run in the search bar.
      • -
      • Click to install it from the search results.
      • -
      • Launch it from the BlueStacks home screen or desktop shortcut.
      • -
      -

      Use a tool like WSA PacMan

      -

      A tool like WSA PacMan is a graphical user interface that simplifies the process of installing and running Android apps on Windows 11 using the Windows Subsystem for Android (WSA). WSA is a feature that allows you to run Android apps natively on your PC, without the need for an emulator. However, WSA is not available for all devices yet, and it requires some technical steps to set it up. WSA PacMan makes it easier by providing a simple interface and instructions.

      -

      To use this method, follow these steps:

      -
        -
      • Download and install WSA PacMan on your PC.
      • -
      • Follow the instructions on the screen to enable WSA and install the Amazon Appstore.
      • -
      • Search for the app or game you want to run in the search bar.
      • -
      • Click to install it from the search results.
      • -
      • Launch it from the WSA PacMan home screen or desktop shortcut.
      • -
      -

      How to download and install Among Us Mod APK on PC using BlueStacks

      -

      Now that you know how to install Android apps on PC using different methods, let's see how to download and install Among Us Mod APK on PC using BlueStacks. Among Us Mod APK is a modified version of the original game that can offer some extra features, such as new skins, maps, modes, roles, and more. However, you will need to download it from a third-party source, as it is not available on the Play Store. Make sure you download it from a trusted and safe website, such as APKPure or APKMirror.

      -

      To download and install Among Us Mod APK on PC using BlueStacks, follow these steps:

      -

      Step 1: Download and install BlueStacks on your PC

      -

      If you haven't already, download and install BlueStacks on your PC from the official website. BlueStacks is a free and reliable emulator that can run any Android app or game on your computer. It also has some features that can enhance your gaming experience, such as keyboard and mouse controls, multi-instance mode, macro recorder, and more.

      -

      Step 2: Download Among Us Mod APK from a trusted source

      -

      Next, you will need to download Among Us Mod APK from a trusted source. You can use any browser to do this, such as Chrome or Firefox. Go to a website that offers Among Us Mod APK downloads, such as APKPure or APKMirror. Search for Among Us Mod APK in the search bar and choose the version you want to download. Click on the download button and save the file to your PC.

      -

      Step 3: Install Among Us Mod APK on BlueStacks

      -

      Once you have downloaded Among Us Mod APK, you will need to install it on BlueStacks. To do this, open BlueStacks and go to the home screen. Click on the three dots icon at the top right corner and select Install APK. Browse to the location where you saved Among Us Mod APK and select it. Wait for BlueStacks to install it automatically.

      -

      Step 4: Launch Among Us Mod APK and enjoy the game

      -

      Finally, you can launch Among Us Mod APK and enjoy the game on your PC. To do this, go to the home screen of BlueStacks and click on the icon of Among Us Mod APK. The game will start and you can play it as usual. You can also customize the keyboard and mouse controls according to your preference by clicking on the keyboard icon at the bottom right corner.

      -

      How to download and install Among Us Mod APK on PC using WSA PacMan

      -

      If you want to try another method to download and install Among Us Mod APK on PC, you can use WSA PacMan. WSA PacMan is a tool that simplifies the process of installing and running Android apps on Windows 11 using the Windows Subsystem for Android (WSA). WSA is a feature that allows you to run Android apps natively on your PC, without the need for an emulator. However, WSA is not available for all devices yet, and it requires some technical steps to set it up. WSA PacMan makes it easier by providing a simple interface and instructions.

      -

      To download and install Among Us Mod APK on PC using WSA PacMan, follow these steps:

      -

      Step 1: Download and install WSA PacMan on your PC

      -

      If you haven't already, download and install WSA PacMan on your PC from the official website. WSA PacMan is a free and open-source tool that can help you enable WSA and install the Amazon Appstore on your Windows 11 PC. It also has some features that can enhance your gaming experience, such as keyboard and mouse controls, multi-instance mode, macro recorder, and more.Step 2: Download Among Us Mod APK from a trusted source

      -

      Next, you will need to download Among Us Mod APK from a trusted source. You can use any browser to do this, such as Chrome or Firefox. Go to a website that offers Among Us Mod APK downloads, such as APKPure or APKMirror. Search for Among Us Mod APK in the search bar and choose the version you want to download. Click on the download button and save the file to your PC.

      -

      Step 3: Install Among Us Mod APK on WSA PacMan

      -

      Once you have downloaded Among Us Mod APK, you will need to install it on WSA PacMan. To do this, open WSA PacMan and go to the home screen. Click on the Install APK button at the top right corner and browse to the location where you saved Among Us Mod APK. Select it and wait for WSA PacMan to install it automatically.

      -

      Step 4: Launch Among Us Mod APK and enjoy the game

      -

      Finally, you can launch Among Us Mod APK and enjoy the game on your PC. To do this, go to the home screen of WSA PacMan and click on the icon of Among Us Mod APK. The game will start and you can play it as usual. You can also customize the keyboard and mouse controls according to your preference by clicking on the Settings button at the top right corner.

      -

      Conclusion

      -

      In this article, we have shown you how to download and play Among Us Mod APK on PC using different methods. You can choose the one that suits your device and preference best. Playing Among Us Mod APK on PC can give you some advantages, such as a bigger screen, better graphics, and more controls. However, you should always be careful when downloading mod APKs from third-party sources, as they may contain malware or viruses. Make sure you scan them with an antivirus before installing them.

      -

      Among Us is a fun and exciting game that can keep you entertained for hours. Whether you play as a crewmate or an impostor, you will have to use your skills and strategies to win the game. You can also play with your friends online or locally, and chat with them using voice or text. With mod APKs, you can also enjoy some extra features that can make the game more interesting and challenging.

      -

      We hope this article has helped you learn how to download and play Among Us Mod APK on PC. If you have any questions or suggestions, feel free to leave a comment below. Happy gaming!

      -

      FAQs

      -

      What is Among Us?

      -

      Among Us is a multiplayer social deduction game that was released in 2018 by Innersloth. The game is set in a spaceship, where players can play as crewmates or impostors. The crewmates have to complete tasks and find the impostors, while the impostors have to kill the crewmates and sabotage the mission.

      -

      What is a mod APK?

      -

      A mod APK is a modified version of an original Android app or game that can offer some extra features or benefits that are not available in the official version. For example, a mod APK of Among Us can offer new skins, maps, modes, roles, and more.

      -

      Is it safe to download and install mod APKs?

      -

      It depends on where you download them from. Some mod APKs may contain malware or viruses that can harm your device or steal your data. Therefore, you should always download mod APKs from trusted and safe websites, such as APKPure or APKMirror. You should also scan them with an antivirus before installing them.

      -

      Is it legal to download and install mod APKs?

      -

      It depends on the terms and conditions of the original app or game developer. Some developers may allow modding their apps or games for personal use only, while others may prohibit it completely. Therefore, you should always check the license agreement of the app or game before downloading and installing mod APKs.

      -

      Can I play online with other players using mod APKs?

      -

      It depends on the type of mod APK you are using. Some mod APKs may allow you to play online with other players who are using the same mod APK, while others may not work online at all. Therefore, you should always read the description of the mod APK before downloading and installing it.

      401be4b1e0
      -
      -
      \ No newline at end of file diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Bleach vs Naruto Anime Mugen The Ultimate Blood Fight Game for Android.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Bleach vs Naruto Anime Mugen The Ultimate Blood Fight Game for Android.md deleted file mode 100644 index 799c879b7f7f42246848a130d6facd51fc05eb0c..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Bleach vs Naruto Anime Mugen The Ultimate Blood Fight Game for Android.md +++ /dev/null @@ -1,76 +0,0 @@ - -

      Bleach vs Naruto Anime Mugen APK Download: A Guide for Anime Fans

      -

      If you are a fan of anime, especially the ones that involve epic battles and superpowers, you might have heard of Bleach and Naruto. These are two of the most popular and influential anime series of all time, with millions of fans around the world. But what if you could play a fighting game that features characters from both series? Well, that's exactly what Bleach vs Naruto Anime Mugen is all about.

      -

      bleach vs naruto anime mugen apk download


      Download Filehttps://gohhs.com/2uPuON



      -

      In this article, we will tell you everything you need to know about this fan-made game, including what it is, how to download and install it on your Android device, what are its features and benefits, and some frequently asked questions. By the end of this article, you will be ready to enjoy this amazing game and unleash your inner anime fighter.

      -

      What is Bleach vs Naruto Anime Mugen?

      -

      Bleach vs Naruto Anime Mugen is a fan-made fighting game based on two popular anime series, Bleach and Naruto. It is not an official game by any means, but rather a passion project by some dedicated fans who wanted to create their own version of a crossover game.

      -

      The game uses a customizable game engine called Mugen, which stands for "without limit" or "unlimited". Mugen is a freeware 2D fighting game engine that allows users to create their own content for the engine, such as characters, stages, music, sound effects, etc. Users can then share their creations with other users online, or download and play with other people's creations.

      -

      bleach vs naruto mugen apk download for android
      -bleach vs naruto anime fighting game mugen download
      -bleach vs naruto ultimate edition mugen full 370 characters pc download
      -bleach vs naruto shippuden mugen apk free download
      -bleach vs naruto anime crossover mugen mod apk download
      -bleach vs naruto 3.3 mugen apk download offline
      -bleach vs naruto anime battle royale mugen pc download
      -bleach vs naruto mugen apk download latest version
      -bleach vs naruto anime clash mugen android download
      -bleach vs naruto ultimate ninja storm mugen apk download
      -bleach vs naruto anime legends mugen download for pc
      -bleach vs naruto mugen apk download no ads
      -bleach vs naruto anime war mugen mod download
      -bleach vs naruto storm generation mugen apk free download
      -bleach vs naruto anime heroes mugen download android
      -bleach vs naruto mugen apk download with cheats
      -bleach vs naruto anime saga mugen game download
      -bleach vs naruto revolution of heroes mugen apk download
      -bleach vs naruto anime world mugen download for windows
      -bleach vs naruto mugen apk download mediafire
      -bleach vs naruto anime evolution mugen mod apk download
      -bleach vs naruto new era mugen apk offline download
      -bleach vs naruto anime fighters mugen pc free download
      -bleach vs naruto mugen apk download mega
      -bleach vs naruto anime reborn mugen android game download
      -bleach vs naruto final showdown mugen apk online download
      -bleach vs naruto anime storm mugen pc game download
      -bleach vs naruto mugen apk download 2023 update
      -bleach vs naruto anime fusion mugen mod free download
      -bleach vs naruto ultimate battle mugen apk offline mode download

      -

      Bleach vs Naruto Anime Mugen is one of the many games that use the Mugen engine, but it is one of the most popular ones among anime fans. It features a large roster of characters from both anime series, each with their own unique moves, abilities, and transformations. You can choose to fight as Ichigo Kurosaki, Naruto Uzumaki, Rukia Kuchiki, Sasuke Uchiha, or any other character you like.

      -

      The game is also free and easy-to-install on Android devices. All you need is an APK file, which is a type of file that contains all the data and instructions for installing an app on Android. You don't need to root your device or use any special tools to install the game.

      How to Download and Install Bleach vs Naruto Anime Mugen APK on Android?

      -

      Now that you know what Bleach vs Naruto Anime Mugen is, you might be wondering how to get it on your Android device. Don't worry, it's not complicated at all. Just follow these simple steps and you will be playing the game in no time.

      -

      Step 1: Enable unknown sources on your device settings

      -

      Before you can install any APK file on your Android device, you need to enable the option to allow unknown sources. This means that you can install apps that are not from the official Google Play Store, such as Bleach vs Naruto Anime Mugen. To do this, go to your device settings, then security, then toggle on the option to allow unknown sources. You might see a warning message, but don't worry, it's safe to proceed.

      -

      Step 2: Download the APK file from a reputable source

      -

      Next, you need to download the APK file for Bleach vs Naruto Anime Mugen. You can find many websites that offer the file, but be careful, some of them might be fake or malicious. To avoid any risks, we recommend you to download the file from a reputable source, such as [this one]. This website is trusted by many users and has positive reviews. You can also scan the file with an antivirus app before installing it, just to be extra safe.

      -

      Step 3: Locate and tap the APK file to install it

      -

      Once you have downloaded the APK file, you need to locate it on your device storage. You can use a file manager app to do this, or simply go to your downloads folder. Then, tap on the file and you will see a prompt asking you to confirm the installation. Tap on install and wait for the process to finish.

      -

      Step 4: Launch the game and enjoy

      -

      Congratulations, you have successfully installed Bleach vs Naruto Anime Mugen on your Android device. Now, you can launch the game from your app drawer or home screen and start playing. You will see a menu with different options, such as arcade mode, versus mode, team mode, training mode, etc. You can also customize the game settings, such as difficulty level, sound volume, screen size, etc. Choose whatever option you like and have fun.

      What are the Features and Benefits of Bleach vs Naruto Anime Mugen?

      -

      Bleach vs Naruto Anime Mugen is not just a simple fan-made game. It is a game that offers a lot of features and benefits for anime fans who love fighting games. Here are some of the reasons why you should try this game.

      -

      A large roster of characters from both anime series

      -

      One of the main attractions of Bleach vs Naruto Anime Mugen is the large roster of characters from both anime series. You can choose from over 300 characters, each with their own unique moves, abilities, and transformations. You can play as the main protagonists, such as Ichigo Kurosaki, Naruto Uzumaki, Rukia Kuchiki, Sasuke Uchiha, or any other character you like. You can also play as the villains, such as Aizen Sosuke, Madara Uchiha, Ulquiorra Cifer, Obito Uchiha, or any other character you hate. You can even play as some obscure or minor characters, such as Kon, Choji Akimichi, Yoruichi Shihoin, Shikamaru Nara, or any other character you find interesting.

      -

      The game also features over 200 assists, which are characters that can help you in battle by performing special attacks or providing support. You can choose from different assists, such as Orihime Inoue, Sakura Haruno, Renji Abarai, Kakashi Hatake, or any other character you want to team up with.

      -

      A variety of game modes and options to suit your preferences

      -

      Bleach vs Naruto Anime Mugen also offers a variety of game modes and options to suit your preferences. You can choose from different game modes, such as arcade mode, versus mode, team mode, training mode, etc. You can also customize the game settings, such as difficulty level, sound volume, screen size, etc.

      -

      Arcade mode is where you can fight against a series of opponents controlled by the computer. You can choose your character and assist, and then face different enemies until you reach the final boss. You can also unlock new characters and stages by completing arcade mode with different characters.

      -

      Versus mode is where you can fight against another player or the computer. You can choose your character and assist, and then select the stage and time limit. You can also adjust the handicap level to balance the match.

      -

      Team mode is where you can form a team of up to four characters and fight against another team. You can choose your team members and assists, and then select the stage and time limit. You can also switch between your team members during the match.

      -

      Training mode is where you can practice your skills and learn new moves. You can choose your character and assist, and then select the stage and dummy settings. You can also pause the game and access the command list to see the inputs for each move.

      -

      A smooth and responsive gameplay experience

      -

      Bleach vs Naruto Anime Mugen also provides a smooth and responsive gameplay experience. The game runs smoothly on most Android devices, without any lag or glitches. The game also responds well to your inputs, without any delay or errors. The game also has a simple and intuitive control scheme, which makes it easy to perform basic attacks, special moves, combos, transformations, etc.

      -

      The game also has a beautiful and colorful graphics style, which matches the anime aesthetic. The game also has a dynamic and lively sound design, which enhances the atmosphere and immersion. The game also has a catchy and fitting soundtrack, which suits the mood and tone of each stage and character.

      en Anime Mugen, then you should download and install it on your Android device right now. You won't regret it.

      -

      FAQs

      -

      Here are some of the frequently asked questions about Bleach vs Naruto Anime Mugen. If you have any other questions, feel free to ask me in the chat.

      -

      What is an APK file and how to install it on Android?

      -

      An APK file is a type of file that contains all the data and instructions for installing an app on Android. It is similar to an EXE file for Windows or a DMG file for Mac. To install an APK file on Android, you need to enable the option to allow unknown sources on your device settings, then download the APK file from a reputable source, then locate and tap the file to install it.

      -

      What is Mugen and how does it work?

      -

      Mugen is a freeware 2D fighting game engine that allows users to create their own content for the engine, such as characters, stages, music, sound effects, etc. Users can then share their creations with other users online, or download and play with other people's creations. Mugen works by reading the data and instructions from the files created by the users, and then rendering them on the screen.

      -

      Where can I find more characters and stages for Bleach vs Naruto Anime Mugen?

      -

      You can find more characters and stages for Bleach vs Naruto Anime Mugen on various websites that host Mugen content, such as [this one]. You can also search for specific characters or stages on Google or YouTube, and follow the links to download them. However, be careful when downloading files from unknown sources, as they might contain viruses or malware. Always scan the files with an antivirus app before installing them.

      -

      How can I play Bleach vs Naruto Anime Mugen with my friends?

      -

      You can play Bleach vs Naruto Anime Mugen with your friends in two ways: locally or online. To play locally, you need to have two controllers connected to your Android device, such as Bluetooth controllers or USB controllers. Then, you can select versus mode or team mode and choose your characters and assists. To play online, you need to have a Wi-Fi connection and use an app that allows you to create or join a virtual network with your friends, such as [this one]. Then, you can select versus mode or team mode and choose your characters and assists.

      -

      Is Bleach vs Naruto Anime Mugen safe and legal to use?

      -

      Bleach vs Naruto Anime Mugen is safe and legal to use as long as you follow some rules. First, you should only download the game from a reputable source, such as [this one], and scan the file with an antivirus app before installing it. Second, you should not use the game for any commercial purposes, such as selling it or making money from it. Third, you should respect the original creators of the anime series and the game engine, and give them proper credit for their work. Fourth, you should not distribute or modify the game without permission from the original creators.

      197e85843d
      -
      -
      \ No newline at end of file diff --git a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Payback 2 - The Battle Sandbox MOD APK Hack and Dominate the Game.md b/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Payback 2 - The Battle Sandbox MOD APK Hack and Dominate the Game.md deleted file mode 100644 index 3f4663045a49fe83d6401a7392f922ad05798736..0000000000000000000000000000000000000000 --- a/spaces/feregVcuzo/sanity-test-midi/checkpoint/Download Payback 2 - The Battle Sandbox MOD APK Hack and Dominate the Game.md +++ /dev/null @@ -1,125 +0,0 @@ - -

      Payback 2 - The Battle Sandbox Mod APK Hack: How to Download and Play

      -

      If you are looking for a fun and action-packed game that lets you create your own sandbox of mayhem, then you might want to check out Payback 2 - The Battle Sandbox. This game is a sequel to the popular Payback game, which was inspired by the Grand Theft Auto series. In this game, you can choose from various modes and challenges, such as street races, tank battles, zombie invasions, and more. You can also customize your character, vehicles, weapons, and maps to suit your preferences.

      -

      payback 2 the battle sandbox mod apk hack


      Download File ••• https://gohhs.com/2uPmAn



      -

      But what if you want to enjoy the game without any limitations or restrictions? What if you want to have unlimited money, coins, gems, and other resources to unlock everything in the game? Well, that's where Payback 2 - The Battle Sandbox Mod APK Hack comes in. This is a modified version of the original game that gives you access to all the features and content that you would normally have to pay for or earn through gameplay. In this article, we will show you how to download and install Payback 2 - The Battle Sandbox Mod APK Hack, why you should use it, and how to play it.

      -

      What is Payback 2 - The Battle Sandbox?

      -

      Payback 2 - The Battle Sandbox is a game developed by Apex Designs Entertainment Ltd. It was released in 2014 for Android and iOS devices. It is a sandbox game that allows you to create your own scenarios and challenges using various elements and tools. You can also play online with other players or against them in multiplayer mode.

      -

      Features of Payback 2 - The Battle Sandbox

      -

      Some of the features of Payback 2 - The Battle Sandbox are:

      -
        -
      • Varied gameplay: You can choose from different modes and challenges, such as racing, fighting, shooting, driving, flying, and more. You can also create your own custom events using the editor.
      • -
      • Diverse environments: You can explore different maps and locations, such as cities, deserts, mountains, islands, and more. You can also change the weather, time of day, and traffic conditions.
      • -
      • Customizable characters: You can customize your character's appearance, clothes, accessories, and weapons. You can also choose from different factions and gangs to join or fight against.
      • -
      • Customizable vehicles: You can customize your vehicles' performance, color, decals, and weapons. You can also choose from different types of vehicles, such as cars, bikes, trucks, tanks, helicopters, jets, and more.
      • -
      • Online multiplayer: You can play online with other players or against them in various modes and events. You can also chat with them using the in-game chat feature.
      • -
      • Weekly updates: The game is constantly updated with new content and features every week. You can also check out the leaderboards and achievements to see how you rank among other players.
      • -
      -

      How to download and install Payback 2 - The Battle Sandbox Mod APK Hack

      -

      If you want to download and install Payback 2 - The Battle Sandbox Mod APK Hack on your Android device, you will need to follow these steps:

      -
        -
      1. First, you will need to enable the installation of apps from unknown sources on your device. To do this, go to Settings >

        Security > More Settings (or Privacy) > Install unknown apps. Then, find your browser app and enable the permission to install unknown apps from it.

      2. -
      3. Next, you will need to find a reliable source for the APK file of Payback 2 - The Battle Sandbox Mod APK Hack. You can use one of the websites that offer safe Android APK downloads, such as APKMirror, APKPure, or Android Central. Make sure you download the latest version of the modded APK file that is compatible with your device.
      4. -
      5. After you have downloaded the APK file, locate it in your browser's download folder or your file manager app. Tap on the file and follow the instructions to install it. You may need to allow some permissions or accept some warnings before the installation is complete.
      6. -
      7. Once the installation is done, you can launch the game from your app drawer or home screen. You should see the modded features enabled in the game, such as unlimited money, coins, gems, and more.
      8. -
      -

      Why use Payback 2 - The Battle Sandbox Mod APK Hack?

      -

      You may wonder why you should use Payback 2 - The Battle Sandbox Mod APK Hack instead of the original game from the Google Play Store. Well, there are some reasons why you may want to try this modded version of the game.

      -

      payback 2 mod apk unlimited money and gems
      -payback 2 the battle sandbox hack download
      -payback 2 mod apk latest version 2023
      -payback 2 the battle sandbox cheats android
      -payback 2 mod apk revdl
      -payback 2 the battle sandbox online multiplayer
      -payback 2 mod apk rexdl
      -payback 2 the battle sandbox gameplay
      -payback 2 mod apk android 1
      -payback 2 the battle sandbox free download
      -payback 2 mod apk all unlocked
      -payback 2 the battle sandbox offline
      -payback 2 mod apk happymod
      -payback 2 the battle sandbox custom mode
      -payback 2 mod apk no root
      -payback 2 the battle sandbox tips and tricks
      -payback 2 mod apk unlimited everything
      -payback 2 the battle sandbox best weapons
      -payback 2 mod apk obb
      -payback 2 the battle sandbox mod menu
      -payback 2 mod apk ios
      -payback 2 the battle sandbox pc
      -payback 2 mod apk pure
      -payback 2 the battle sandbox wiki
      -payback 2 mod apk old version
      -payback 2 the battle sandbox helicopter
      -payback 2 mod apk full version
      -payback 2 the battle sandbox tank
      -payback 2 mod apk apkpure
      -payback 2 the battle sandbox jetpack
      -payback 2 mod apk android republic
      -payback 2 the battle sandbox codes
      -payback 2 mod apk unlimited coins and diamonds
      -payback 2 the battle sandbox review
      -payback 2 mod apk an1
      -payback 2 the battle sandbox editor mode
      -payback 2 mod apk mob.org
      -payback 2 the battle sandbox zombie mode
      -payback 2 mod apk data file host
      -payback 2 the battle sandbox campaign mode

      -

      Benefits of Payback 2 - The Battle Sandbox Mod APK Hack

      -

      Some of the benefits of using Payback 2 - The Battle Sandbox Mod APK Hack are:

      -
        -
      • You can enjoy all the features and content of the game without spending any real money or time. You can unlock everything in the game, such as characters, vehicles, weapons, maps, modes, and challenges, with unlimited money, coins, gems, and other resources.
      • -
      • You can have more fun and freedom in creating your own sandbox of mayhem. You can customize everything to your liking and experiment with different combinations of elements and tools. You can also play online with other players who use the modded version of the game and have epic battles and races with them.
      • -
      • You can experience new and improved gameplay with the modded version of the game. The modded APK file may have some bug fixes, performance enhancements, graphics improvements, and other tweaks that make the game run smoother and look better on your device.
      • -
      -

      Risks of Payback 2 - The Battle Sandbox Mod APK Hack

      -

      However, using Payback 2 - The Battle Sandbox Mod APK Hack also comes with some risks that you should be aware of:

      -
        -
      • You may violate the terms and conditions of the game developer and Google Play Store by using a modded version of the game. This may result in your account being banned or suspended from the game or the store. You may also lose your progress and data if you uninstall or update the game.
      • -
      • You may expose your device and data to malware or viruses by downloading and installing an APK file from an unknown source. This may compromise your security and privacy and cause damage to your device. You should always scan any APK file you download with a reputable antivirus app before installing it.
      • -
      • You may encounter some errors or glitches in the game due to the modded features or compatibility issues. The modded version of the game may not work properly on some devices or Android versions. You may also experience crashes, freezes, lags, or other problems while playing the game.
      • -
      -

      How to play Payback 2 - The Battle Sandbox Mod APK Hack

      -

      If you have successfully installed Payback 2 - The Battle Sandbox Mod APK Hack on your device, you can start playing it right away. Here are some tips and tricks for playing Payback 2 - The Battle Sandbox Mod APK Hack:

      -

      Tips and tricks for Payback 2 - The Battle Sandbox Mod APK Hack

      -

      Some of the tips and tricks for playing Payback 2 - The Battle Sandbox Mod APK Hack are:

      -
        -
      • Explore different modes and challenges in the game. You can choose from racing, fighting, shooting, driving, flying, and more. You can also create your own custom events using the editor. Try to complete as many events as possible to earn more money, coins, gems, and other rewards.
      • -
      • Customize your character, vehicles, weapons, and maps in the game. You can change your character's appearance, clothes, accessories, and weapons. You can also modify your vehicles' performance, color, decals, and weapons. You can also choose from different types of vehicles, such as cars, bikes, trucks, tanks, helicopters, jets, and more. You can also change the weather, time of day, and traffic conditions on the maps. You can also create your own maps using the editor.
      • -
      • Play online with other players or against them in multiplayer mode. You can join or create online rooms and invite your friends or other players to join. You can also chat with them using the in-game chat feature. You can compete or cooperate with them in various modes and events. You can also check out the leaderboards and achievements to see how you rank among other players.
      • -
      • Have fun and experiment with different elements and tools in the game. You can use various weapons, explosives, vehicles, and objects to cause chaos and destruction in the game. You can also use the physics engine and the ragdoll effects to create hilarious and realistic scenarios. You can also take screenshots and videos of your gameplay and share them with others.
      • -
      -

      Best modes and challenges in Payback 2 - The Battle Sandbox Mod APK Hack

      -

      Some of the best modes and challenges in Payback 2 - The Battle Sandbox Mod APK Hack are:

      -
        -
      • Racing: You can race against other players or the AI in various types of vehicles, such as cars, bikes, trucks, tanks, helicopters, jets, and more. You can also choose from different tracks and terrains, such as streets, highways, deserts, mountains, islands, and more. You can also customize your vehicles' performance, color, decals, and weapons.
      • -
      • Fighting: You can fight against other players or the AI in various types of weapons, such as guns, knives, grenades, rockets, flamethrowers, and more. You can also choose from different factions and gangs to join or fight against. You can also customize your character's appearance, clothes, accessories, and weapons.
      • -
      • Shooting: You can shoot at other players or the AI in various types of weapons, such as pistols, rifles, shotguns, snipers, machine guns, and more. You can also choose from different modes and challenges, such as deathmatch, team deathmatch, capture the flag, king of the hill, and more. You can also customize your character's appearance, clothes, accessories, and weapons.
      • -
      • Driving: You can drive around the map in various types of vehicles, such as cars, bikes, trucks, tanks, helicopters, jets, and more. You can also choose from different maps and locations, such as cities, deserts, mountains, islands, and more. You can also change the weather, time of day, and traffic conditions on the maps. You can also customize your vehicles' performance, color, decals, and weapons.
      • -
      • Flying: You can fly around the map in various types of vehicles, such as helicopters, jets, planes, and more. You can also choose from different maps and locations, such as cities, deserts, mountains, islands, and more. You can also change the weather, time of day, and traffic conditions on the maps. You can also customize your vehicles' performance, color, decals, and weapons.
      • -
      • Zombie Invasion: You can survive a zombie apocalypse in various types of weapons, such as guns, knives, grenades, rockets, flamethrowers, and more. You can also choose from different maps and locations, such as cities, deserts, mountains, islands, and more. You can also change the weather, time of day, and traffic conditions on the maps. You can also customize your character's appearance, clothes, accessories, and weapons.
      • -
      -

      Conclusion

      -

      Payback 2 - The Battle Sandbox is a game that lets you create your own sandbox of mayhem using various elements and tools. You can also play online with other players or against them in multiplayer mode. However, if you want to enjoy the game without any limitations or restrictions, you can use Payback 2 - The Battle Sandbox Mod APK Hack. This is a modified version of the original game that gives you access to all the features and content that you would normally have to pay for or earn through gameplay.

      -

      Summary of the article

      -

      In this article, we have shown you how to download and install Payback 2 - The Battle Sandbox Mod APK Hack on your Android device. We have also explained why you should use it and how to play it. We have also given you some tips and tricks for playing Payback 2 - The Battle Sandbox Mod APK Hack. We hope you have found this article helpful and informative.

      -

      FAQs about Payback 2 - The Battle Sandbox Mod APK Hack

      -

      Here are some frequently asked questions about Payback 2 - The Battle Sandbox Mod APK Hack:

      -
        -
      1. Is Payback 2 - The Battle Sandbox Mod APK Hack safe to use?
      2. -

        Payback 2 - The Battle Sandbox Mod APK Hack is generally safe to use if you download it from a reliable source and scan it with a reputable antivirus app before installing it. However, you should always be careful when downloading and installing any APK file from an unknown source as it may contain malware or viruses that could harm your device or data.

        -
      3. Is Payback 2 - The Battle Sandbox Mod APK Hack legal to use?
      4. -

        Payback 2 - The Battle Sandbox Mod APK Hack is not legal to use as it violates the terms and conditions of the game developer and Google Play Store. By using a modded version of the game, you are breaking the rules and regulations that govern the game and the store. This may result in your account being banned or suspended from the game or the store. You may also lose your progress and data if you uninstall or update the game.

        -
      5. How do I update Payback 2 - The Battle Sandbox Mod APK Hack?
      6. -

        If you want to update Payback 2 - The Battle Sandbox Mod APK Hack to the latest version of the game, you will need to download and install the new modded APK file from the same source that you downloaded it from before. You may need to uninstall the previous version of the modded APK file before installing the new one. However, you should be aware that updating the game may cause some errors or glitches in the game due to the modded features or compatibility issues.

        -
      7. How do I uninstall Payback 2 - The Battle Sandbox Mod APK Hack?
      8. -

        If you want to uninstall Payback 2 - The Battle Sandbox Mod APK Hack from your device, you will need to follow these steps:

        -
          -
        • Go to Settings > Apps > Payback 2 - The Battle Sandbox > Uninstall.
        • -
        • Confirm your action by tapping on OK.
        • -
        • Wait for the uninstallation process to finish.
        • -
        -
      9. Where can I find more information about Payback 2 - The Battle Sandbox Mod APK Hack?
      10. -

        If you want to find more information about Payback 2 - The Battle Sandbox Mod APK Hack, you can visit one of the websites that offer safe Android APK downloads, such as APKMirror, APKPure, or Android Central. You can also check out the official website of the game developer, Apex Designs Entertainment Ltd, or the official Facebook page of the game, Payback 2 - The Battle Sandbox. You can also watch some videos of the game on YouTube, such as this one.

        197e85843d
        -
        -
        \ No newline at end of file diff --git a/spaces/fffiloni/animated-audio-visualizer/app.py b/spaces/fffiloni/animated-audio-visualizer/app.py deleted file mode 100644 index e7ac596666e859cf159ee9cf8da1149061aed451..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/animated-audio-visualizer/app.py +++ /dev/null @@ -1,207 +0,0 @@ -import gradio as gr -import matplotlib.pyplot as plt -import librosa -import numpy as np -from PIL import Image, ImageDraw, ImageFont -from moviepy.editor import * -from moviepy.video.io.VideoFileClip import VideoFileClip - -def make_bars_image(height_values, index, new_height): - - # Define the size of the image - width = 512 - height = new_height - - # Create a new image with a transparent background - image = Image.new('RGBA', (width, height), color=(0, 0, 0, 0)) - - # Get the image drawing context - draw = ImageDraw.Draw(image) - - # Define the rectangle width and spacing - rect_width = 2 - spacing = 2 - - # Define the list of height values for the rectangles - #height_values = [20, 40, 60, 80, 100, 80, 60, 40] - num_bars = len(height_values) - # Calculate the total width of the rectangles and the spacing - total_width = num_bars * rect_width + (num_bars - 1) * spacing - - # Calculate the starting position for the first rectangle - start_x = int((width - total_width) / 2) - # Define the buffer size - buffer_size = 80 - # Draw the rectangles from left to right - x = start_x - for i, height in enumerate(height_values): - - # Define the rectangle coordinates - y0 = buffer_size - y1 = height + buffer_size - x0 = x - x1 = x + rect_width - - # Draw the rectangle - draw.rectangle([x0, y0, x1, y1], fill='white') - - # Move to the next rectangle position - if i < num_bars - 1: - x += rect_width + spacing - - - # Rotate the image by 180 degrees - image = image.rotate(180) - - # Mirror the image - image = image.transpose(Image.FLIP_LEFT_RIGHT) - - # Save the image - image.save('audio_bars_'+ str(index) + '.png') - - return 'audio_bars_'+ str(index) + '.png' - -def db_to_height(db_value): - # Scale the dB value to a range between 0 and 1 - scaled_value = (db_value + 80) / 80 - - # Convert the scaled value to a height between 0 and 100 - height = scaled_value * 50 - - return height - -def infer(title, audio_in, image_in, output_video_path): - # Load the audio file - audio_path = audio_in - audio_data, sr = librosa.load(audio_path) - - # Get the duration in seconds - duration = librosa.get_duration(y=audio_data, sr=sr) - - # Extract the audio data for the desired time - start_time = 0 # start time in seconds - end_time = duration # end time in seconds - - start_index = int(start_time * sr) - end_index = int(end_time * sr) - - audio_data = audio_data[start_index:end_index] - - # Compute the short-time Fourier transform - hop_length = 512 - - - stft = librosa.stft(audio_data, hop_length=hop_length) - spectrogram = librosa.amplitude_to_db(np.abs(stft), ref=np.max) - - # Get the frequency values - freqs = librosa.fft_frequencies(sr=sr, n_fft=stft.shape[0]) - - # Select the indices of the frequency values that correspond to the desired frequencies - n_freqs = 114 - freq_indices = np.linspace(0, len(freqs) - 1, n_freqs, dtype=int) - - # Extract the dB values for the desired frequencies - db_values = [] - for i in range(spectrogram.shape[1]): - db_values.append(list(zip(freqs[freq_indices], spectrogram[freq_indices, i]))) - - # Print the dB values for the first time frame - print(db_values[0]) - - proportional_values = [] - - for frame in db_values: - proportional_frame = [db_to_height(db) for f, db in frame] - proportional_values.append(proportional_frame) - - print(proportional_values[0]) - print("AUDIO CHUNK: " + str(len(proportional_values))) - - # Open the background image - background_image = Image.open(image_in) - - # Resize the image while keeping its aspect ratio - bg_width, bg_height = background_image.size - aspect_ratio = bg_width / bg_height - new_width = 512 - new_height = int(new_width / aspect_ratio) - resized_bg = background_image.resize((new_width, new_height)) - - # Apply black cache for better visibility of the white text - bg_cache = Image.open('black_cache.png') - resized_bg.paste(bg_cache, (0, resized_bg.height - bg_cache.height), mask=bg_cache) - - # Create a new ImageDraw object - draw = ImageDraw.Draw(resized_bg) - - # Define the text to be added - text = title - font = ImageFont.truetype("Lato-Regular.ttf", 16) - text_color = (255, 255, 255) # white color - - # Calculate the position of the text - #text_width, text_height = draw.textsize(text, font=font) - x = 30 - y = new_height - 70 - - # Draw the text on the image - draw.text((x, y), text, fill=text_color, font=font) - - # Save the resized image - resized_bg.save('resized_background.jpg') - - generated_frames = [] - for i, frame in enumerate(proportional_values): - bars_img = make_bars_image(frame, i, new_height) - bars_img = Image.open(bars_img) - # Paste the audio bars image on top of the background image - fresh_bg = Image.open('resized_background.jpg') - fresh_bg.paste(bars_img, (0, 0), mask=bars_img) - # Save the image - fresh_bg.save('audio_bars_with_bg' + str(i) + '.jpg') - generated_frames.append('audio_bars_with_bg' + str(i) + '.jpg') - print(generated_frames) - - # Create a video clip from the images - clip = ImageSequenceClip(generated_frames, fps=len(generated_frames)/(end_time-start_time)) - audio_clip = AudioFileClip(audio_in) - clip = clip.set_audio(audio_clip) - # Set the output codec - codec = 'libx264' - audio_codec = 'aac' - # Save the video to a file - clip.write_videofile("my_video.mp4", codec=codec, audio_codec=audio_codec) - - retimed_clip = VideoFileClip("my_video.mp4") - - # Set the desired frame rate - new_fps = 25 - - # Create a new clip with the new frame rate - new_clip = retimed_clip.set_fps(new_fps) - - # Save the new clip as a new video file - new_clip.write_videofile(output_video_path, codec=codec, audio_codec=audio_codec) - - # Visualize the audio bars - plt.figure(figsize=(10, 4)) - librosa.display.specshow(spectrogram, sr=sr, x_axis='time', y_axis='log') - plt.colorbar(format='%+2.0f dB') - plt.title('Audio Bars Visualization') - - # Save the image as a JPG file - output_path = 'image_out.jpg' - plt.savefig(output_path, dpi=300, bbox_inches='tight') - - #test make image bars - #bars_img = make_bars_image(proportional_values[0]) - return output_video_path, 'image_out.jpg' - -gr.Interface(fn=infer, - inputs=[gr.Textbox(placeholder='FIND A GOOD TITLE'), - gr.Audio(source='upload', type='filepath'), - gr.Image(source='upload', type='filepath'), - gr.Textbox(label="Output video path", value="my_final_video.mp4", visible=False)], - outputs=[gr.Video(label='video result'), gr.Image(label='spectrogram image')], - title='Animated Audio Visualizer', description='

        Upload an audio file, upload a background image, choose a good title, click submit.

        ').launch() \ No newline at end of file diff --git a/spaces/fffiloni/lama-video-watermark-remover/bin/evaluator_example.py b/spaces/fffiloni/lama-video-watermark-remover/bin/evaluator_example.py deleted file mode 100644 index 669e3c53c1218444a880dc78f19a565a406ff6dc..0000000000000000000000000000000000000000 --- a/spaces/fffiloni/lama-video-watermark-remover/bin/evaluator_example.py +++ /dev/null @@ -1,76 +0,0 @@ -import os - -import cv2 -import numpy as np -import torch -from skimage import io -from skimage.transform import resize -from torch.utils.data import Dataset - -from saicinpainting.evaluation.evaluator import InpaintingEvaluator -from saicinpainting.evaluation.losses.base_loss import SSIMScore, LPIPSScore, FIDScore - - -class SimpleImageDataset(Dataset): - def __init__(self, root_dir, image_size=(400, 600)): - self.root_dir = root_dir - self.files = sorted(os.listdir(root_dir)) - self.image_size = image_size - - def __getitem__(self, index): - img_name = os.path.join(self.root_dir, self.files[index]) - image = io.imread(img_name) - image = resize(image, self.image_size, anti_aliasing=True) - image = torch.FloatTensor(image).permute(2, 0, 1) - return image - - def __len__(self): - return len(self.files) - - -def create_rectangle_mask(height, width): - mask = np.ones((height, width)) - up_left_corner = width // 4, height // 4 - down_right_corner = (width - up_left_corner[0] - 1, height - up_left_corner[1] - 1) - cv2.rectangle(mask, up_left_corner, down_right_corner, (0, 0, 0), thickness=cv2.FILLED) - return mask - - -class Model(): - def __call__(self, img_batch, mask_batch): - mean = (img_batch * mask_batch[:, None, :, :]).sum(dim=(2, 3)) / mask_batch.sum(dim=(1, 2))[:, None] - inpainted = mean[:, :, None, None] * (1 - mask_batch[:, None, :, :]) + img_batch * mask_batch[:, None, :, :] - return inpainted - - -class SimpleImageSquareMaskDataset(Dataset): - def __init__(self, dataset): - self.dataset = dataset - self.mask = torch.FloatTensor(create_rectangle_mask(*self.dataset.image_size)) - self.model = Model() - - def __getitem__(self, index): - img = self.dataset[index] - mask = self.mask.clone() - inpainted = self.model(img[None, ...], mask[None, ...]) - return dict(image=img, mask=mask, inpainted=inpainted) - - def __len__(self): - return len(self.dataset) - - -dataset = SimpleImageDataset('imgs') -mask_dataset = SimpleImageSquareMaskDataset(dataset) -model = Model() -metrics = { - 'ssim': SSIMScore(), - 'lpips': LPIPSScore(), - 'fid': FIDScore() -} - -evaluator = InpaintingEvaluator( - mask_dataset, scores=metrics, batch_size=3, area_grouping=True -) - -results = evaluator.evaluate(model) -print(results) diff --git a/spaces/flamehaze1115/Wonder3D-demo/run_test.sh b/spaces/flamehaze1115/Wonder3D-demo/run_test.sh deleted file mode 100644 index 167046f16f70188969b67d649239cff208ceb5bf..0000000000000000000000000000000000000000 --- a/spaces/flamehaze1115/Wonder3D-demo/run_test.sh +++ /dev/null @@ -1 +0,0 @@ -accelerate launch --config_file 1gpu.yaml test_mvdiffusion_seq.py --config configs/mvdiffusion-joint-ortho-6views.yaml \ No newline at end of file diff --git a/spaces/frncscp/bullerengue/musika/22kHz/utils_encode.py b/spaces/frncscp/bullerengue/musika/22kHz/utils_encode.py deleted file mode 100644 index 016ef9695f0113f87a148f52f685ceb0b4509536..0000000000000000000000000000000000000000 --- a/spaces/frncscp/bullerengue/musika/22kHz/utils_encode.py +++ /dev/null @@ -1,132 +0,0 @@ -import os -import time - -import librosa -import matplotlib.pyplot as plt -import numpy as np -import tensorflow as tf -from tensorflow.python.framework import random_seed -import gradio as gr -from scipy.io.wavfile import write as write_wav -from pydub import AudioSegment -from glob import glob -from tqdm import tqdm - -from utils import Utils_functions - - -class UtilsEncode_functions: - def __init__(self, args): - - self.args = args - self.U = Utils_functions(args) - self.paths = sorted(glob(self.args.files_path + "/*")) - - def audio_generator(self): - for p in self.paths: - _, ext = os.path.splitext(p) - wvo = AudioSegment.from_file(p, format=ext[1:]) - wvo = wvo.set_frame_rate(self.args.sr) - wvls = wvo.split_to_mono() - wvls = [s.get_array_of_samples() for s in wvls] - wv = np.array(wvls).T.astype(np.float32) - wv /= np.iinfo(wvls[0].typecode).max - yield tf.squeeze(wv) - - def create_dataset(self): - self.ds = ( - tf.data.Dataset.from_generator( - self.audio_generator, output_signature=(tf.TensorSpec(shape=(None, 2), dtype=tf.float32)) - ) - .prefetch(tf.data.experimental.AUTOTUNE) - .apply(tf.data.experimental.ignore_errors()) - ) - - def compress_files(self, models_ls=None): - critic, gen, enc, dec, enc2, dec2, critic_rec, gen_ema, [opt_dec, opt_disc] = models_ls - # self.create_dataset() - os.makedirs(self.args.save_path, exist_ok=True) - c = 0 - time_compression_ratio = 8 # TODO: infer time compression ratio - shape2 = self.args.shape - pbar = tqdm(self.audio_generator(), position=0, leave=True, total=len(self.paths)) - for wv in pbar: - try: - - if wv.shape[0] > self.args.hop * self.args.shape * 2 + 3 * self.args.hop: - - split_limit = ( - 5 * 60 * self.args.sr - ) # split very long waveforms (> 5 minutes) and process separately to avoid out of memory errors - - nsplits = (wv.shape[0] // split_limit) + 1 - wvsplits = [] - for ns in range(nsplits): - if wv.shape[0] - (ns * split_limit) > self.args.hop * self.args.shape * 2 + 3 * self.args.hop: - wvsplits.append(wv[ns * split_limit : (ns + 1) * split_limit, :]) - - for wv in wvsplits: - - wv = tf.image.random_crop( - wv, - size=[ - (((wv.shape[0] - (3 * self.args.hop)) // (self.args.shape * self.args.hop))) - * self.args.shape - * self.args.hop - + 3 * self.args.hop, - 2, - ], - ) - - chls = [] - for channel in range(2): - - x = wv[:, channel] - x = tf.expand_dims(tf.transpose(self.U.wv2spec(x, hop_size=self.args.hop), (1, 0)), -1) - x = np.array(x, dtype=np.float32) - ds = [] - num = x.shape[1] // self.args.shape - rn = 0 - for i in range(num): - im = x[:, rn + (i * self.args.shape) : rn + (i * self.args.shape) + self.args.shape, :] - ds.append(im) - x = np.array(ds, dtype=np.float32) - lat = self.U.distribute_enc(x, enc) - latls = tf.split(lat, lat.shape[0], 0) - lat = tf.concat(latls, -2) - lat = np.array(tf.squeeze(lat), dtype=np.float32) - - switch = False - if lat.shape[0] > (self.args.max_lat_len * time_compression_ratio): - switch = True - ds2 = [] - num2 = lat.shape[-2] // shape2 - rn2 = 0 - for j in range(num2): - im2 = lat[rn2 + (j * shape2) : rn2 + (j * shape2) + shape2, :] - ds2.append(im2) - lat = np.array(ds2, dtype=np.float32) - lat = self.U.distribute_enc(np.expand_dims(lat, -3), enc2) - latls = tf.split(lat, lat.shape[0], 0) - lat = tf.concat(latls, -2) - lat = np.array(tf.squeeze(lat), dtype=np.float32) - chls.append(lat) - - if lat.shape[0] > self.args.max_lat_len and switch: - - lat = np.concatenate(chls, -1) - - latc = lat[: (lat.shape[0] // self.args.max_lat_len) * self.args.max_lat_len, :] - latcls = tf.split(latc, latc.shape[0] // self.args.max_lat_len, 0) - for el in latcls: - np.save(self.args.save_path + f"/{c}.npy", el) - c += 1 - pbar.set_postfix({"Saved Files": c}) - np.save(self.args.save_path + f"/{c}.npy", lat[-self.args.max_lat_len :, :]) - c += 1 - pbar.set_postfix({"Saved Files": c}) - - except Exception as e: - print(e) - print("Exception ignored! Continuing...") - pass diff --git a/spaces/gotiQspiryo/whisper-ui/config.py b/spaces/gotiQspiryo/whisper-ui/config.py deleted file mode 100644 index 74a5ffa14f5da1bc8d929d42ed0bf310121f1772..0000000000000000000000000000000000000000 --- a/spaces/gotiQspiryo/whisper-ui/config.py +++ /dev/null @@ -1,77 +0,0 @@ -import json -import pathlib - -# Project structure -# ----------------- -APP_DIR = pathlib.Path(__file__).parent.absolute() -PROJECT_DIR = APP_DIR.parent.absolute() - -# Create a data directory to save all local data files -DATA_DIR = PROJECT_DIR / "data" -DATA_DIR.mkdir(exist_ok=True) - -# Create a data directory -MEDIA_DIR = DATA_DIR / "media" -MEDIA_DIR.mkdir(exist_ok=True) - -DEBUG = False - - -# Whisper config -# -------------- -# Default settings -WHISPER_DEFAULT_SETTINGS = { - "whisper_model": "base", - "temperature": 0.0, - "temperature_increment_on_fallback": 0.2, - "no_speech_threshold": 0.6, - "logprob_threshold": -1.0, - "compression_ratio_threshold": 2.4, - "condition_on_previous_text": True, - "verbose": False, - "task": "transcribe", -} -WHISPER_SETTINGS_FILE = DATA_DIR / ".whisper_settings.json" - - -def save_whisper_settings(settings): - with open(WHISPER_SETTINGS_FILE, "w") as f: - json.dump(settings, f, indent=4) - - -def get_whisper_settings(): - # Check if whisper settings are saved in data directory - if WHISPER_SETTINGS_FILE.exists(): - with open(WHISPER_SETTINGS_FILE, "r") as f: - whisper_settings = json.load(f) - # Check if all keys are present [for backward compatibility] - for key in WHISPER_DEFAULT_SETTINGS.keys(): - if key not in whisper_settings: - whisper_settings[key] = WHISPER_DEFAULT_SETTINGS[key] - else: - whisper_settings = WHISPER_DEFAULT_SETTINGS - save_whisper_settings(WHISPER_DEFAULT_SETTINGS) - return whisper_settings - - -# Common page configurations -# -------------------------- -ABOUT = """ -### Whisper UI - -This is a simple wrapper around Whisper to save, browse & search through transcripts. - -Please report any bugs or issues on [Github](https://github.com/hayabhay/whisper-ui/). Thanks! -""" - -def get_page_config(page_title_prefix="", layout="wide"): - return { - "page_title": f"{page_title_prefix}Whisper UI", - "page_icon": "🤖", - "layout": layout, - "menu_items": { - "Get Help": "https://twitter.com/hayabhay", - "Report a bug": "https://github.com/hayabhay/whisper-ui/issues", - "About": ABOUT, - }, - } diff --git a/spaces/gradio/HuBERT/examples/criss/unsupervised_mt/eval.sh b/spaces/gradio/HuBERT/examples/criss/unsupervised_mt/eval.sh deleted file mode 100644 index 03b773ed5a522eb82186fea8ffbb6c557e14b6d3..0000000000000000000000000000000000000000 --- a/spaces/gradio/HuBERT/examples/criss/unsupervised_mt/eval.sh +++ /dev/null @@ -1,37 +0,0 @@ -#!/bin/bash -# Copyright (c) Facebook, Inc. and its affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. -# -SRC=si_LK -TGT=en_XX -MODEL=criss_checkpoints/criss.3rd.pt - -MULTIBLEU=mosesdecoder/scripts/generic/multi-bleu.perl -MOSES=mosesdecoder -REPLACE_UNICODE_PUNCT=$MOSES/scripts/tokenizer/replace-unicode-punctuation.perl -NORM_PUNC=$MOSES/scripts/tokenizer/normalize-punctuation.perl -REM_NON_PRINT_CHAR=$MOSES/scripts/tokenizer/remove-non-printing-char.perl -TOKENIZER=$MOSES/scripts/tokenizer/tokenizer.perl -GEN_TMP_DIR=gen_tmp -LANG_DICT=criss_checkpoints/lang_dict.txt - -if [ ! -d "mosesdecoder" ]; then - git clone https://github.com/moses-smt/mosesdecoder -fi -mkdir -p $GEN_TMP_DIR -fairseq-generate data_tmp/${SRC}-${TGT}-flores \ - --task translation_multi_simple_epoch \ - --max-tokens 2000 \ - --path ${MODEL} \ - --skip-invalid-size-inputs-valid-test \ - --beam 5 --lenpen 1.0 --gen-subset test \ - --remove-bpe=sentencepiece \ - --source-lang ${SRC} --target-lang ${TGT} \ - --decoder-langtok --lang-pairs 'en_XX-ar_AR,en_XX-de_DE,en_XX-es_XX,en_XX-fr_XX,en_XX-hi_IN,en_XX-it_IT,en_XX-ja_XX,en_XX-ko_KR,en_XX-nl_XX,en_XX-ru_RU,en_XX-zh_CN,en_XX-tr_TR,en_XX-vi_VN,en_XX-ro_RO,en_XX-my_MM,en_XX-ne_NP,en_XX-si_LK,en_XX-cs_CZ,en_XX-lt_LT,en_XX-kk_KZ,en_XX-gu_IN,en_XX-fi_FI,en_XX-et_EE,en_XX-lv_LV,ar_AR-en_XX,cs_CZ-en_XX,de_DE-en_XX,es_XX-en_XX,et_EE-en_XX,fi_FI-en_XX,fr_XX-en_XX,gu_IN-en_XX,hi_IN-en_XX,it_IT-en_XX,ja_XX-en_XX,kk_KZ-en_XX,ko_KR-en_XX,lt_LT-en_XX,lv_LV-en_XX,my_MM-en_XX,ne_NP-en_XX,nl_XX-en_XX,ro_RO-en_XX,ru_RU-en_XX,si_LK-en_XX,tr_TR-en_XX,vi_VN-en_XX,zh_CN-en_XX,ar_AR-es_XX,es_XX-ar_AR,ar_AR-hi_IN,hi_IN-ar_AR,ar_AR-zh_CN,zh_CN-ar_AR,cs_CZ-es_XX,es_XX-cs_CZ,cs_CZ-hi_IN,hi_IN-cs_CZ,cs_CZ-zh_CN,zh_CN-cs_CZ,de_DE-es_XX,es_XX-de_DE,de_DE-hi_IN,hi_IN-de_DE,de_DE-zh_CN,zh_CN-de_DE,es_XX-hi_IN,hi_IN-es_XX,es_XX-zh_CN,zh_CN-es_XX,et_EE-es_XX,es_XX-et_EE,et_EE-hi_IN,hi_IN-et_EE,et_EE-zh_CN,zh_CN-et_EE,fi_FI-es_XX,es_XX-fi_FI,fi_FI-hi_IN,hi_IN-fi_FI,fi_FI-zh_CN,zh_CN-fi_FI,fr_XX-es_XX,es_XX-fr_XX,fr_XX-hi_IN,hi_IN-fr_XX,fr_XX-zh_CN,zh_CN-fr_XX,gu_IN-es_XX,es_XX-gu_IN,gu_IN-hi_IN,hi_IN-gu_IN,gu_IN-zh_CN,zh_CN-gu_IN,hi_IN-zh_CN,zh_CN-hi_IN,it_IT-es_XX,es_XX-it_IT,it_IT-hi_IN,hi_IN-it_IT,it_IT-zh_CN,zh_CN-it_IT,ja_XX-es_XX,es_XX-ja_XX,ja_XX-hi_IN,hi_IN-ja_XX,ja_XX-zh_CN,zh_CN-ja_XX,kk_KZ-es_XX,es_XX-kk_KZ,kk_KZ-hi_IN,hi_IN-kk_KZ,kk_KZ-zh_CN,zh_CN-kk_KZ,ko_KR-es_XX,es_XX-ko_KR,ko_KR-hi_IN,hi_IN-ko_KR,ko_KR-zh_CN,zh_CN-ko_KR,lt_LT-es_XX,es_XX-lt_LT,lt_LT-hi_IN,hi_IN-lt_LT,lt_LT-zh_CN,zh_CN-lt_LT,lv_LV-es_XX,es_XX-lv_LV,lv_LV-hi_IN,hi_IN-lv_LV,lv_LV-zh_CN,zh_CN-lv_LV,my_MM-es_XX,es_XX-my_MM,my_MM-hi_IN,hi_IN-my_MM,my_MM-zh_CN,zh_CN-my_MM,ne_NP-es_XX,es_XX-ne_NP,ne_NP-hi_IN,hi_IN-ne_NP,ne_NP-zh_CN,zh_CN-ne_NP,nl_XX-es_XX,es_XX-nl_XX,nl_XX-hi_IN,hi_IN-nl_XX,nl_XX-zh_CN,zh_CN-nl_XX,ro_RO-es_XX,es_XX-ro_RO,ro_RO-hi_IN,hi_IN-ro_RO,ro_RO-zh_CN,zh_CN-ro_RO,ru_RU-es_XX,es_XX-ru_RU,ru_RU-hi_IN,hi_IN-ru_RU,ru_RU-zh_CN,zh_CN-ru_RU,si_LK-es_XX,es_XX-si_LK,si_LK-hi_IN,hi_IN-si_LK,si_LK-zh_CN,zh_CN-si_LK,tr_TR-es_XX,es_XX-tr_TR,tr_TR-hi_IN,hi_IN-tr_TR,tr_TR-zh_CN,zh_CN-tr_TR,vi_VN-es_XX,es_XX-vi_VN,vi_VN-hi_IN,hi_IN-vi_VN,vi_VN-zh_CN,zh_CN-vi_VN' \ - --lang-dict ${LANG_DICT} --lang-tok-style 'mbart' --sampling-method 'temperature' --sampling-temperature '1.0' > $GEN_TMP_DIR/${SRC}_${TGT}.gen -cat $GEN_TMP_DIR/${SRC}_${TGT}.gen | grep -P "^T-" | cut -f2 | $REPLACE_UNICODE_PUNCT | $NORM_PUNC -l ${TGT:0:2} | $REM_NON_PRINT_CHAR | $TOKENIZER -no-escape ${TGT:0:2} > $GEN_TMP_DIR/${SRC}_${TGT}.hyp -cat $GEN_TMP_DIR/${SRC}_${TGT}.gen | grep -P "^H-" | cut -f3 | $REPLACE_UNICODE_PUNCT | $NORM_PUNC -l ${TGT:0:2} | $REM_NON_PRINT_CHAR | $TOKENIZER -no-escape ${TGT:0:2} > $GEN_TMP_DIR/${SRC}_${TGT}.ref -${MULTIBLEU} $GEN_TMP_DIR/${SRC}_${TGT}.ref < $GEN_TMP_DIR/${SRC}_${TGT}.hyp diff --git a/spaces/gradio/HuBERT/examples/translation/prepare-iwslt14.sh b/spaces/gradio/HuBERT/examples/translation/prepare-iwslt14.sh deleted file mode 100644 index 2fb6643fbccb58701dcbb77d91430e68a821ba38..0000000000000000000000000000000000000000 --- a/spaces/gradio/HuBERT/examples/translation/prepare-iwslt14.sh +++ /dev/null @@ -1,115 +0,0 @@ -#!/usr/bin/env bash -# -# Adapted from https://github.com/facebookresearch/MIXER/blob/master/prepareData.sh - -echo 'Cloning Moses github repository (for tokenization scripts)...' -git clone https://github.com/moses-smt/mosesdecoder.git - -echo 'Cloning Subword NMT repository (for BPE pre-processing)...' -git clone https://github.com/rsennrich/subword-nmt.git - -SCRIPTS=mosesdecoder/scripts -TOKENIZER=$SCRIPTS/tokenizer/tokenizer.perl -LC=$SCRIPTS/tokenizer/lowercase.perl -CLEAN=$SCRIPTS/training/clean-corpus-n.perl -BPEROOT=subword-nmt/subword_nmt -BPE_TOKENS=10000 - -URL="http://dl.fbaipublicfiles.com/fairseq/data/iwslt14/de-en.tgz" -GZ=de-en.tgz - -if [ ! -d "$SCRIPTS" ]; then - echo "Please set SCRIPTS variable correctly to point to Moses scripts." - exit -fi - -src=de -tgt=en -lang=de-en -prep=iwslt14.tokenized.de-en -tmp=$prep/tmp -orig=orig - -mkdir -p $orig $tmp $prep - -echo "Downloading data from ${URL}..." -cd $orig -wget "$URL" - -if [ -f $GZ ]; then - echo "Data successfully downloaded." -else - echo "Data not successfully downloaded." - exit -fi - -tar zxvf $GZ -cd .. - -echo "pre-processing train data..." -for l in $src $tgt; do - f=train.tags.$lang.$l - tok=train.tags.$lang.tok.$l - - cat $orig/$lang/$f | \ - grep -v '' | \ - grep -v '' | \ - grep -v '' | \ - sed -e 's///g' | \ - sed -e 's/<\/title>//g' | \ - sed -e 's/<description>//g' | \ - sed -e 's/<\/description>//g' | \ - perl $TOKENIZER -threads 8 -l $l > $tmp/$tok - echo "" -done -perl $CLEAN -ratio 1.5 $tmp/train.tags.$lang.tok $src $tgt $tmp/train.tags.$lang.clean 1 175 -for l in $src $tgt; do - perl $LC < $tmp/train.tags.$lang.clean.$l > $tmp/train.tags.$lang.$l -done - -echo "pre-processing valid/test data..." -for l in $src $tgt; do - for o in `ls $orig/$lang/IWSLT14.TED*.$l.xml`; do - fname=${o##*/} - f=$tmp/${fname%.*} - echo $o $f - grep '<seg id' $o | \ - sed -e 's/<seg id="[0-9]*">\s*//g' | \ - sed -e 's/\s*<\/seg>\s*//g' | \ - sed -e "s/\’/\'/g" | \ - perl $TOKENIZER -threads 8 -l $l | \ - perl $LC > $f - echo "" - done -done - - -echo "creating train, valid, test..." -for l in $src $tgt; do - awk '{if (NR%23 == 0) print $0; }' $tmp/train.tags.de-en.$l > $tmp/valid.$l - awk '{if (NR%23 != 0) print $0; }' $tmp/train.tags.de-en.$l > $tmp/train.$l - - cat $tmp/IWSLT14.TED.dev2010.de-en.$l \ - $tmp/IWSLT14.TEDX.dev2012.de-en.$l \ - $tmp/IWSLT14.TED.tst2010.de-en.$l \ - $tmp/IWSLT14.TED.tst2011.de-en.$l \ - $tmp/IWSLT14.TED.tst2012.de-en.$l \ - > $tmp/test.$l -done - -TRAIN=$tmp/train.en-de -BPE_CODE=$prep/code -rm -f $TRAIN -for l in $src $tgt; do - cat $tmp/train.$l >> $TRAIN -done - -echo "learn_bpe.py on ${TRAIN}..." -python $BPEROOT/learn_bpe.py -s $BPE_TOKENS < $TRAIN > $BPE_CODE - -for L in $src $tgt; do - for f in train.$L valid.$L test.$L; do - echo "apply_bpe.py to ${f}..." - python $BPEROOT/apply_bpe.py -c $BPE_CODE < $tmp/$f > $prep/$f - done -done diff --git a/spaces/gradio/HuBERT/tests/test_token_block_dataset.py b/spaces/gradio/HuBERT/tests/test_token_block_dataset.py deleted file mode 100644 index c4d7b76dcd55fe7869dbb1fa188f7b36fb639bda..0000000000000000000000000000000000000000 --- a/spaces/gradio/HuBERT/tests/test_token_block_dataset.py +++ /dev/null @@ -1,92 +0,0 @@ -# Copyright (c) Facebook, Inc. and its affiliates. -# -# This source code is licensed under the MIT license found in the -# LICENSE file in the root directory of this source tree. - -import unittest - -import tests.utils as test_utils -import torch -from fairseq.data import TokenBlockDataset - - -class TestTokenBlockDataset(unittest.TestCase): - def _build_dataset(self, data, **kwargs): - sizes = [len(x) for x in data] - underlying_ds = test_utils.TestDataset(data) - return TokenBlockDataset(underlying_ds, sizes, **kwargs) - - def test_eos_break_mode(self): - data = [ - torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), - torch.tensor([1], dtype=torch.long), - torch.tensor([8, 7, 6, 1], dtype=torch.long), - ] - ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos") - self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) - self.assertEqual(ds[1].tolist(), [1]) - self.assertEqual(ds[2].tolist(), [8, 7, 6, 1]) - - data = [ - torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), - torch.tensor([8, 7, 6, 1], dtype=torch.long), - torch.tensor([1], dtype=torch.long), - ] - ds = self._build_dataset(data, block_size=None, pad=0, eos=1, break_mode="eos") - self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) - self.assertEqual(ds[1].tolist(), [8, 7, 6, 1]) - self.assertEqual(ds[2].tolist(), [1]) - - def test_block_break_mode(self): - data = [ - torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), - torch.tensor([8, 7, 6, 1], dtype=torch.long), - torch.tensor([9, 1], dtype=torch.long), - ] - ds = self._build_dataset(data, block_size=3, pad=0, eos=1, break_mode="none") - self.assertEqual(ds[0].tolist(), [5, 4, 3]) - self.assertEqual(ds[1].tolist(), [2, 1, 8]) - self.assertEqual(ds[2].tolist(), [7, 6, 1]) - self.assertEqual(ds[3].tolist(), [9, 1]) - - def test_complete_break_mode(self): - data = [ - torch.tensor([5, 4, 3, 2, 1], dtype=torch.long), - torch.tensor([8, 7, 6, 1], dtype=torch.long), - torch.tensor([9, 1], dtype=torch.long), - ] - ds = self._build_dataset( - data, block_size=6, pad=0, eos=1, break_mode="complete" - ) - self.assertEqual(ds[0].tolist(), [5, 4, 3, 2, 1]) - self.assertEqual(ds[1].tolist(), [8, 7, 6, 1, 9, 1]) - - data = [ - torch.tensor([4, 3, 2, 1], dtype=torch.long), - torch.tensor([5, 1], dtype=torch.long), - torch.tensor([1], dtype=torch.long), - torch.tensor([6, 1], dtype=torch.long), - ] - ds = self._build_dataset( - data, block_size=3, pad=0, eos=1, break_mode="complete" - ) - self.assertEqual(ds[0].tolist(), [4, 3, 2, 1]) - self.assertEqual(ds[1].tolist(), [5, 1, 1]) - self.assertEqual(ds[2].tolist(), [6, 1]) - - def test_4billion_tokens(self): - """Regression test for numpy type promotion issue https://github.com/numpy/numpy/issues/5745""" - data = [torch.tensor(list(range(10000)), dtype=torch.long)] * 430000 - ds = self._build_dataset( - data, block_size=6, pad=0, eos=1, break_mode="complete" - ) - ds[-1] # __getitem__ works - start, end = ds.slice_indices[-1] - assert end > 4294967295 # data must be sufficiently large to overflow uint32 - assert not isinstance( - end + 1, float - ) # this would also raise, since np.uint64(1) + 1 => 2.0 - - -if __name__ == "__main__": - unittest.main() diff --git a/spaces/gulabpatel/Real-ESRGAN/tests/test_utils.py b/spaces/gulabpatel/Real-ESRGAN/tests/test_utils.py deleted file mode 100644 index 7919b74905495b4b6f4aa957a1f0b5d7a174c782..0000000000000000000000000000000000000000 --- a/spaces/gulabpatel/Real-ESRGAN/tests/test_utils.py +++ /dev/null @@ -1,87 +0,0 @@ -import numpy as np -from basicsr.archs.rrdbnet_arch import RRDBNet - -from realesrgan.utils import RealESRGANer - - -def test_realesrganer(): - # initialize with default model - restorer = RealESRGANer( - scale=4, - model_path='experiments/pretrained_models/RealESRGAN_x4plus.pth', - model=None, - tile=10, - tile_pad=10, - pre_pad=2, - half=False) - assert isinstance(restorer.model, RRDBNet) - assert restorer.half is False - # initialize with user-defined model - model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) - restorer = RealESRGANer( - scale=4, - model_path='experiments/pretrained_models/RealESRGAN_x4plus_anime_6B.pth', - model=model, - tile=10, - tile_pad=10, - pre_pad=2, - half=True) - # test attribute - assert isinstance(restorer.model, RRDBNet) - assert restorer.half is True - - # ------------------ test pre_process ---------------- # - img = np.random.random((12, 12, 3)).astype(np.float32) - restorer.pre_process(img) - assert restorer.img.shape == (1, 3, 14, 14) - # with modcrop - restorer.scale = 1 - restorer.pre_process(img) - assert restorer.img.shape == (1, 3, 16, 16) - - # ------------------ test process ---------------- # - restorer.process() - assert restorer.output.shape == (1, 3, 64, 64) - - # ------------------ test post_process ---------------- # - restorer.mod_scale = 4 - output = restorer.post_process() - assert output.shape == (1, 3, 60, 60) - - # ------------------ test tile_process ---------------- # - restorer.scale = 4 - img = np.random.random((12, 12, 3)).astype(np.float32) - restorer.pre_process(img) - restorer.tile_process() - assert restorer.output.shape == (1, 3, 64, 64) - - # ------------------ test enhance ---------------- # - img = np.random.random((12, 12, 3)).astype(np.float32) - result = restorer.enhance(img, outscale=2) - assert result[0].shape == (24, 24, 3) - assert result[1] == 'RGB' - - # ------------------ test enhance with 16-bit image---------------- # - img = np.random.random((4, 4, 3)).astype(np.uint16) + 512 - result = restorer.enhance(img, outscale=2) - assert result[0].shape == (8, 8, 3) - assert result[1] == 'RGB' - - # ------------------ test enhance with gray image---------------- # - img = np.random.random((4, 4)).astype(np.float32) - result = restorer.enhance(img, outscale=2) - assert result[0].shape == (8, 8) - assert result[1] == 'L' - - # ------------------ test enhance with RGBA---------------- # - img = np.random.random((4, 4, 4)).astype(np.float32) - result = restorer.enhance(img, outscale=2) - assert result[0].shape == (8, 8, 4) - assert result[1] == 'RGBA' - - # ------------------ test enhance with RGBA, alpha_upsampler---------------- # - restorer.tile_size = 0 - img = np.random.random((4, 4, 4)).astype(np.float32) - result = restorer.enhance(img, outscale=2, alpha_upsampler=None) - assert result[0].shape == (8, 8, 4) - assert result[1] == 'RGBA' diff --git a/spaces/gwang-kim/DATID-3D/pose_estimation/nvdiffrast/build/lib/nvdiffrast/torch/torch_bindings.cpp b/spaces/gwang-kim/DATID-3D/pose_estimation/nvdiffrast/build/lib/nvdiffrast/torch/torch_bindings.cpp deleted file mode 100644 index ed0ae0645a5ed82e4a0760c3e3a5f92aea8f85e6..0000000000000000000000000000000000000000 --- a/spaces/gwang-kim/DATID-3D/pose_estimation/nvdiffrast/build/lib/nvdiffrast/torch/torch_bindings.cpp +++ /dev/null @@ -1,75 +0,0 @@ -// Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. -// -// NVIDIA CORPORATION and its licensors retain all intellectual property -// and proprietary rights in and to this software, related documentation -// and any modifications thereto. Any use, reproduction, disclosure or -// distribution of this software and related documentation without an express -// license agreement from NVIDIA CORPORATION is strictly prohibited. - -#include "torch_common.inl" -#include "torch_types.h" -#include <tuple> - -//------------------------------------------------------------------------ -// Op prototypes. Return type macros for readability. - -#define OP_RETURN_T torch::Tensor -#define OP_RETURN_TT std::tuple<torch::Tensor, torch::Tensor> -#define OP_RETURN_TTT std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> -#define OP_RETURN_TTTT std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> -#define OP_RETURN_TTV std::tuple<torch::Tensor, torch::Tensor, std::vector<torch::Tensor> > -#define OP_RETURN_TTTTV std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, std::vector<torch::Tensor> > - -OP_RETURN_TT rasterize_fwd (RasterizeGLStateWrapper& stateWrapper, torch::Tensor pos, torch::Tensor tri, std::tuple<int, int> resolution, torch::Tensor ranges, int depth_idx); -OP_RETURN_T rasterize_grad (torch::Tensor pos, torch::Tensor tri, torch::Tensor out, torch::Tensor dy); -OP_RETURN_T rasterize_grad_db (torch::Tensor pos, torch::Tensor tri, torch::Tensor out, torch::Tensor dy, torch::Tensor ddb); -OP_RETURN_TT interpolate_fwd (torch::Tensor attr, torch::Tensor rast, torch::Tensor tri); -OP_RETURN_TT interpolate_fwd_da (torch::Tensor attr, torch::Tensor rast, torch::Tensor tri, torch::Tensor rast_db, bool diff_attrs_all, std::vector<int>& diff_attrs_vec); -OP_RETURN_TT interpolate_grad (torch::Tensor attr, torch::Tensor rast, torch::Tensor tri, torch::Tensor dy); -OP_RETURN_TTT interpolate_grad_da (torch::Tensor attr, torch::Tensor rast, torch::Tensor tri, torch::Tensor dy, torch::Tensor rast_db, torch::Tensor dda, bool diff_attrs_all, std::vector<int>& diff_attrs_vec); -TextureMipWrapper texture_construct_mip (torch::Tensor tex, int max_mip_level, bool cube_mode); -OP_RETURN_T texture_fwd (torch::Tensor tex, torch::Tensor uv, int filter_mode, int boundary_mode); -OP_RETURN_T texture_fwd_mip (torch::Tensor tex, torch::Tensor uv, torch::Tensor uv_da, torch::Tensor mip_level_bias, TextureMipWrapper mip_wrapper, std::vector<torch::Tensor> mip_stack, int filter_mode, int boundary_mode); -OP_RETURN_T texture_grad_nearest (torch::Tensor tex, torch::Tensor uv, torch::Tensor dy, int filter_mode, int boundary_mode); -OP_RETURN_TT texture_grad_linear (torch::Tensor tex, torch::Tensor uv, torch::Tensor dy, int filter_mode, int boundary_mode); -OP_RETURN_TTV texture_grad_linear_mipmap_nearest (torch::Tensor tex, torch::Tensor uv, torch::Tensor dy, torch::Tensor uv_da, torch::Tensor mip_level_bias, TextureMipWrapper mip_wrapper, std::vector<torch::Tensor> mip_stack, int filter_mode, int boundary_mode); -OP_RETURN_TTTTV texture_grad_linear_mipmap_linear (torch::Tensor tex, torch::Tensor uv, torch::Tensor dy, torch::Tensor uv_da, torch::Tensor mip_level_bias, TextureMipWrapper mip_wrapper, std::vector<torch::Tensor> mip_stack, int filter_mode, int boundary_mode); -TopologyHashWrapper antialias_construct_topology_hash (torch::Tensor tri); -OP_RETURN_TT antialias_fwd (torch::Tensor color, torch::Tensor rast, torch::Tensor pos, torch::Tensor tri, TopologyHashWrapper topology_hash); -OP_RETURN_TT antialias_grad (torch::Tensor color, torch::Tensor rast, torch::Tensor pos, torch::Tensor tri, torch::Tensor dy, torch::Tensor work_buffer); - -//------------------------------------------------------------------------ - -PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { - // State classes. - pybind11::class_<RasterizeGLStateWrapper>(m, "RasterizeGLStateWrapper").def(pybind11::init<bool, bool, int>()) - .def("set_context", &RasterizeGLStateWrapper::setContext) - .def("release_context", &RasterizeGLStateWrapper::releaseContext); - pybind11::class_<TextureMipWrapper>(m, "TextureMipWrapper").def(pybind11::init<>()); - pybind11::class_<TopologyHashWrapper>(m, "TopologyHashWrapper"); - - // Plumbing to torch/c10 logging system. - m.def("get_log_level", [](void) { return FLAGS_caffe2_log_level; }, "get log level"); - m.def("set_log_level", [](int level){ FLAGS_caffe2_log_level = level; }, "set log level"); - - // Ops. - m.def("rasterize_fwd", &rasterize_fwd, "rasterize forward op"); - m.def("rasterize_grad", &rasterize_grad, "rasterize gradient op ignoring db gradients"); - m.def("rasterize_grad_db", &rasterize_grad_db, "rasterize gradient op with db gradients"); - m.def("interpolate_fwd", &interpolate_fwd, "interpolate forward op with attribute derivatives"); - m.def("interpolate_fwd_da", &interpolate_fwd_da, "interpolate forward op without attribute derivatives"); - m.def("interpolate_grad", &interpolate_grad, "interpolate gradient op with attribute derivatives"); - m.def("interpolate_grad_da", &interpolate_grad_da, "interpolate gradient op without attribute derivatives"); - m.def("texture_construct_mip", &texture_construct_mip, "texture mipmap construction"); - m.def("texture_fwd", &texture_fwd, "texture forward op without mipmapping"); - m.def("texture_fwd_mip", &texture_fwd_mip, "texture forward op with mipmapping"); - m.def("texture_grad_nearest", &texture_grad_nearest, "texture gradient op in nearest mode"); - m.def("texture_grad_linear", &texture_grad_linear, "texture gradient op in linear mode"); - m.def("texture_grad_linear_mipmap_nearest", &texture_grad_linear_mipmap_nearest, "texture gradient op in linear-mipmap-nearest mode"); - m.def("texture_grad_linear_mipmap_linear", &texture_grad_linear_mipmap_linear, "texture gradient op in linear-mipmap-linear mode"); - m.def("antialias_construct_topology_hash", &antialias_construct_topology_hash, "antialias topology hash construction"); - m.def("antialias_fwd", &antialias_fwd, "antialias forward op"); - m.def("antialias_grad", &antialias_grad, "antialias gradient op"); -} - -//------------------------------------------------------------------------ diff --git a/spaces/gyrojeff/YuzuMarker.FontDetection/font_dataset/__init__.py b/spaces/gyrojeff/YuzuMarker.FontDetection/font_dataset/__init__.py deleted file mode 100644 index 0c945524c850b6df38a7b44e976abb1d71ed63b9..0000000000000000000000000000000000000000 --- a/spaces/gyrojeff/YuzuMarker.FontDetection/font_dataset/__init__.py +++ /dev/null @@ -1,5 +0,0 @@ -from . import layout -from . import text -from . import helper -from . import font -from .fontlabel import * diff --git a/spaces/gyugnsu/DragGan-Inversion/stylegan_human/README.md b/spaces/gyugnsu/DragGan-Inversion/stylegan_human/README.md deleted file mode 100644 index 0442c284c6ce0e9e7a1d6d7f487debab8ccd1a1b..0000000000000000000000000000000000000000 --- a/spaces/gyugnsu/DragGan-Inversion/stylegan_human/README.md +++ /dev/null @@ -1,229 +0,0 @@ -# StyleGAN-Human: A Data-Centric Odyssey of Human Generation -<img src="./img/demo_V5_thumbnails-min.png" width="96%" height="96%"> - -<!-- -**stylegan-human/StyleGAN-Human** is a ✨ _special_ ✨ repository because its `README.md` (this file) appears on your GitHub profile. - ---> - -> -> -> **Abstract:** *Unconditional human image generation is an important task in vision and graphics, which enables various applications in the creative industry. Existing studies in this field mainly focus on "network engineering" such as designing new components and objective functions. This work takes a data-centric perspective and investigates multiple critical aspects in "data engineering", which we believe would complement the current practice. To facilitate a comprehensive study, we collect and annotate a large-scale human image dataset with over 230K samples capturing diverse poses and textures. Equipped with this large dataset, we rigorously investigate three essential factors in data engineering for StyleGAN-based human generation, namely data size, data distribution, and data alignment. Extensive experiments reveal several valuable observations w.r.t. these aspects: 1) Large-scale data, more than 40K images, are needed to train a high-fidelity unconditional human generation model with vanilla StyleGAN. 2) A balanced training set helps improve the generation quality with rare face poses compared to the long-tailed counterpart, whereas simply balancing the clothing texture distribution does not effectively bring an improvement. 3) Human GAN models with body centers for alignment outperform models trained using face centers or pelvis points as alignment anchors. In addition, a model zoo and human editing applications are demonstrated to facilitate future research in the community.* <br> -**Keyword:** Human Image Generation, Data-Centric, StyleGAN - -[Jianglin Fu](mailto:fujianglin@sensetime.com), [Shikai Li](mailto:lishikai@sensetime.com), [Yuming Jiang](https://yumingj.github.io/), [Kwan-Yee Lin](https://kwanyeelin.github.io/), [Chen Qian](https://scholar.google.com/citations?user=AerkT0YAAAAJ&hl=zh-CN), [Chen Change Loy](https://www.mmlab-ntu.com/person/ccloy/), [Wayne Wu](https://wywu.github.io/), and [Ziwei Liu](https://liuziwei7.github.io/) <br> -**[[Demo Video]](https://youtu.be/nIrb9hwsdcI)** | **[[Project Page]](https://stylegan-human.github.io/)** | **[[Paper]](https://arxiv.org/pdf/2204.11823.pdf)** - -## Updates -- [20/07/2022] [SHHQ-1.0](./docs/Dataset.md) dataset with 40K images is released! :sparkles: -- [15/06/2022] Data alignment and real-image inversion scripts are released. -- [26/04/2022] Technical report released! -- [22/04/2022] Technical report will be released before May. -- [21/04/2022] The codebase and project page are created. - -## Data Download -The first version SHHQ-1.0, with 40K images is released. To download and use the dataset set, please read the instructions in [Dataset.md](./docs/Dataset.md) - -(We are currently facing large incoming applications, and we need to carefully verify all the applicants, please be patient, and we will reply to you as soon as possible.) - -## Model Zoo - -| Structure | 1024x512 | Metric | Scores | 512x256 | Metric | Scores | -| --------- |:----------:| :----------:| :----------:| :-----: | :-----: | :-----: | -| StyleGAN1 |[stylegan_human_v1_1024.pkl](https://drive.google.com/file/d/1h-R-IV-INGdPEzj4P9ml6JTEvihuNgLX/view?usp=sharing)| fid50k | 3.79 | to be released | - | - | -| StyleGAN2 |[stylegan_human_v2_1024.pkl](https://drive.google.com/file/d/1FlAb1rYa0r_--Zj_ML8e6shmaF28hQb5/view?usp=sharing)| fid50k_full | 1.57 |[stylegan_human_v2_512.pkl](https://drive.google.com/file/d/1dlFEHbu-WzQWJl7nBBZYcTyo000H9hVm/view?usp=sharing) | fid50k_full | 1.97 | -| StyleGAN3 |to be released | - | - | [stylegan_human_v3_512.pkl](https://drive.google.com/file/d/1_274jk_N6WSCkKWeu7hjHycqGvbuOFf5/view?usp=sharing) | fid50k_full | 2.54 | - - - -## Web Demo - -Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo for generation: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/hysts/StyleGAN-Human) and interpolation [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/hysts/StyleGAN-Human-Interpolation) - - - -<a href="https://colab.research.google.com/drive/1sgxoDM55iM07FS54vz9ALg1XckiYA2On"><img src="https://colab.research.google.com/assets/colab-badge.svg" height=22.5></a> - -We prepare a Colab demo to allow you to synthesize images with the provided models, as well as visualize the performance of style-mixing, interpolation, and attributes editing. -The notebook will guide you to install the necessary environment and download pretrained models. The output images can be found in `./StyleGAN-Human/outputs/`. -Hope you enjoy! - -## Usage - -### System requirements -* The original code bases are [stylegan (tensorflow)](https://github.com/NVlabs/stylegan), [stylegan2-ada (pytorch)](https://github.com/NVlabs/stylegan2-ada-pytorch), [stylegan3 (pytorch)](https://github.com/NVlabs/stylegan3), released by NVidia - -* We tested in Python 3.8.5 and PyTorch 1.9.1 with CUDA 11.1. (See https://pytorch.org for PyTorch install instructions.) - -### Installation -To work with this project on your own machine, you need to install the environmnet as follows: - -``` -conda env create -f environment.yml -conda activate stylehuman -# [Optional: tensorflow 1.x is required for StyleGAN1. ] -pip install nvidia-pyindex -pip install nvidia-tensorflow[horovod] -pip install nvidia-tensorboard==1.15 -``` -Extra notes: -1. In case having some conflicts when calling CUDA version, please try to empty the LD_LIBRARY_PATH. For example: -``` -LD_LIBRARY_PATH=; python generate.py --outdir=out/stylegan_human_v2_1024 --trunc=1 --seeds=1,3,5,7 ---network=pretrained_models/stylegan_human_v2_1024.pkl --version 2 -``` - - -2. We found the following troubleshooting links might be helpful: [1.](https://github.com/NVlabs/stylegan3), [2.](https://github.com/NVlabs/stylegan3/blob/main/docs/troubleshooting.md) - -### Train -The training scripts are based on the original [stylegan1](https://github.com/NVlabs/stylegan), [stylegan2-ada](https://github.com/NVlabs/stylegan2-ada-pytorch), and [stylegan3](https://github.com/NVlabs/stylegan3) with minor changes. Here we only provide the scripts with modifications for SG2 and SG3. You can replace the old files with the provided scripts to train. (assume SHHQ-1.0 is placed under data/) - -#### Train Stylegan2-ada-pytorch with SHHQ-1.0 -``` -python train.py --outdir=training_results/sg2/ --data=data/SHHQ-1.0/ \ - --gpus=8 --aug=noaug --mirror=1 --snap=250 --cfg=shhq --square=False -``` -#### Train Stylegan3 with SHHQ-1.0 -``` -python train.py --outdir=training_results/sg3/ --cfg=stylegan3-r --gpus=8 --batch=32 --gamma=12.4 \ - --mirror=1 --aug=noaug --data=data/SHHQ-1.0/ --square=False --snap=250 -``` - -### Pretrained models -Please put the downloaded pretrained models [from above link](#Model-Zoo) under the folder 'pretrained_models'. - - -### Generate full-body human images using our pretrained model -``` -# Generate human full-body images without truncation -python generate.py --outdir=outputs/generate/stylegan_human_v2_1024 --trunc=1 --seeds=1,3,5,7 --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2 - -# Generate human full-body images with truncation -python generate.py --outdir=outputs/generate/stylegan_human_v2_1024 --trunc=0.8 --seeds=0-10 --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2 - -# Generate human full-body images using stylegan V1 -python generate.py --outdir=outputs/generate/stylegan_human_v1_1024 --network=pretrained_models/stylegan_human_v1_1024.pkl --version 1 --seeds=1,3,5 - -# Generate human full-body images using stylegan V3 -python generate.py --outdir=outputs/generate/stylegan_human_v3_512 --network=pretrained_models/stylegan_human_v3_512.pkl --version 3 --seeds=1,3,5 -``` - - -#### Note: The following demos are generated based on models related to StyleGAN V2 (stylegan_human_v2_512.pkl and stylegan_human_v2_1024.pkl). If you want to see results for V1 or V3, you need to change the loading method of the corresponding models. - - -### Interpolation -``` -python interpolation.py --network=pretrained_models/stylegan_human_v2_1024.pkl --seeds=85,100 --outdir=outputs/inter_gifs -``` - -### Style-mixing **image** using stylegan2 -``` -python style_mixing.py --network=pretrained_models/stylegan_human_v2_1024.pkl --rows=85,100,75,458,1500 \\ - --cols=55,821,1789,293 --styles=0-3 --outdir=outputs/stylemixing -``` - -### Style-mixing **video** using stylegan2 -``` -python stylemixing_video.py --network=pretrained_models/stylegan_human_v2_1024.pkl --row-seed=3859 \\ - --col-seeds=3098,31759,3791 --col-styles=8-12 --trunc=0.8 --outdir=outputs/stylemixing_video -``` - -### Aligned raw images -For alignment, we use [openpose-pytorch](https://github.com/Hzzone/pytorch-openpose) for body-keypoints detection and [PaddlePaddle](https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.5/contrib/PP-HumanSeg) for human segmentation. -Before running the alignment script, few models need to be installed: -1. download [body_pose_model.pth](https://drive.google.com/drive/folders/1JsvI4M4ZTg98fmnCZLFM-3TeovnCRElG?usp=sharing) and place it into openpose/model/. -2. download and extract [deeplabv3p_resnet50_os8_humanseg_512x512_100k_with_softmax](https://paddleseg.bj.bcebos.com/dygraph/humanseg/export/deeplabv3p_resnet50_os8_humanseg_512x512_100k_with_softmax.zip) into PP_HumanSeg/export_model/deeplabv3p_resnet50_os8_humanseg_512x512_100k_with_softmax. -3. download and extract [deeplabv3p_resnet50_os8_humanseg_512x512_100k](https://paddleseg.bj.bcebos.com/dygraph/humanseg/train/deeplabv3p_resnet50_os8_humanseg_512x512_100k.zip) into PP_HumanSeg/pretrained_model/deeplabv3p_resnet50_os8_humanseg_512x512_100k. -4. install paddlepaddel: ``` pip install paddleseg ``` - -Then you can start alignment: -``` -python alignment.py --image-folder img/test/ --output-folder aligned_image/ -``` - -### Invert real image with [PTI](https://github.com/danielroich/PTI) -Before inversion, please download our PTI weights: [e4e_w+.pt](https://drive.google.com/file/d/1NUfSJqLhsrU7c9PwAtlZ9xtrxhzS_6tu/view?usp=sharing) into /pti/. - -Few parameters you can change: -- /pti/pti_configs/hyperparameters.py: - - first_inv_type = 'w+' -> Use pretrained e4e encoder - - first_inv_type = 'w' -> Use projection and optimization -- /pti/pti_configs/paths_config.py: - - input_data_path: path of real images - - e4e: path of e4e_w+.pt - - stylegan2_ada_shhq: pretrained stylegan2-ada model for SHHQ - -``` -python run_pti.py -``` -Note: we used the test image under 'aligned_image/' (the output of alignment.py), the inverted latent code and fine-tuned generator will be saved in 'outputs/pti/' - - -### Editing with InterfaceGAN, StyleSpace, and Sefa -``` -python edit.py --network pretrained_models/stylegan_human_v2_1024.pkl --attr_name upper_length \\ - --seeds 61531,61570,61571,61610 --outdir outputs/edit_results -``` - -### Editing using inverted latent code -``` -python edit.py ---network outputs/pti/checkpoints/model_test.pkl --attr_name upper_length \\ - --outdir outputs/edit_results --real True --real_w_path outputs/pti/embeddings/test/PTI/test/0.pt --real_img_path aligned_image/test.png -``` - -Note: -1. ''upper_length'' and ''bottom_length'' of ''attr_name'' are available for demo. -2. Layers to control and editing strength are set in edit/edit_config.py. - - -### Demo for [InsetGAN](https://arxiv.org/abs/2203.07293) - -We implement a quick demo using the key idea from InsetGAN: combining the face generated by FFHQ with the human-body generated by our pretrained model, optimizing both face and body latent codes to get a coherent full-body image. -Before running the script, you need to download the [FFHQ face model]( https://docs.google.com/uc?export=download&confirm=t&id=125OG7SMkXI-Kf2aqiwLLHyCvSW-gZk3M), or you can use your own face model, as well as [pretrained face landmark](https://docs.google.com/uc?export=download&confirm=&id=1A82DnJBJzt8wI2J8ZrCK5fgHcQ2-tcWM) and [pretrained CNN face detection model for dlib](https://docs.google.com/uc?export=download&confirm=&id=1MduBgju5KFNrQfDLoQXJ_1_h5MnctCIG) -``` -python insetgan.py --body_network=pretrained_models/stylegan_human_v2_1024.pkl --face_network=pretrained_models/ffhq.pkl \\ - --body_seed=82 --face_seed=43 --trunc=0.6 --outdir=outputs/insetgan/ --video 1 -``` - -## Results - -### Editing with inverted real image -(from left to right: real image | inverted image | InterFaceGAN result | StyleSpace result | SeFa result) - -https://user-images.githubusercontent.com/98547009/173773800-bb7fe54a-84d3-4b30-9864-a6b7b311f8ff.mp4 - - -### For more demo, please visit our [**web page**](https://stylegan-human.github.io/) . - - -## TODO List - -- [ ] Release 1024x512 version of StyleGAN-Human based on StyleGAN3 -- [ ] Release 512x256 version of StyleGAN-Human based on StyleGAN1 -- [ ] Extension of downstream application (InsetGAN): Add face inversion interface to support fusing user face image and stylegen-human body image -- [x] Add Inversion Script into the provided editing pipeline -- [ ] Release Dataset - - -## Related Works -* (SIGGRAPH 2022) **Text2Human: Text-Driven Controllable Human Image Generation**, Yuming Jiang et al. [[Paper](https://arxiv.org/pdf/2205.15996.pdf)], [[Code](https://github.com/yumingj/Text2Human)], [[Project Page](https://yumingj.github.io/projects/Text2Human.html)], [[Dataset](https://github.com/yumingj/DeepFashion-MultiModal)] -* (ICCV 2021) **Talk-to-Edit: Fine-Grained Facial Editing via Dialog**, Yuming Jiang et al. [[Paper](https://arxiv.org/abs/2109.04425)], [[Code](https://github.com/yumingj/Talk-to-Edit)], [[Project Page](https://www.mmlab-ntu.com/project/talkedit/)], [[Dataset](https://mmlab.ie.cuhk.edu.hk/projects/CelebA/CelebA_Dialog.html)] -* (Technical Report 2022) **Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis**, Wei Cheng et al. [[Paper](https://arxiv.org/pdf/2204.11798.pdf)], [[Code](https://github.com/generalizable-neural-performer/gnr)], [[Project Page](https://generalizable-neural-performer.github.io/)], [[Dataset](https://generalizable-neural-performer.github.io/genebody.html)] - -## Citation - -If you find this work useful for your research, please consider citing our paper: - -```bibtex -@article{fu2022styleganhuman, - title={StyleGAN-Human: A Data-Centric Odyssey of Human Generation}, - author={Fu, Jianglin and Li, Shikai and Jiang, Yuming and Lin, Kwan-Yee and Qian, Chen and Loy, Chen-Change and Wu, Wayne and Liu, Ziwei}, - journal = {arXiv preprint}, - volume = {arXiv:2204.11823}, - year = {2022} -``` - -## Acknowlegement -Part of the code is borrowed from [stylegan (tensorflow)](https://github.com/NVlabs/stylegan), [stylegan2-ada (pytorch)](https://github.com/NVlabs/stylegan2-ada-pytorch), [stylegan3 (pytorch)](https://github.com/NVlabs/stylegan3). diff --git a/spaces/h2oai/h2ogpt-chatbot2/src/utils_langchain.py b/spaces/h2oai/h2ogpt-chatbot2/src/utils_langchain.py deleted file mode 100644 index 7483cca69443691de773196ba6c5134438e113aa..0000000000000000000000000000000000000000 --- a/spaces/h2oai/h2ogpt-chatbot2/src/utils_langchain.py +++ /dev/null @@ -1,152 +0,0 @@ -import copy -import os -import types -import uuid -from typing import Any, Dict, List, Union, Optional -import time -import queue -import pathlib -from datetime import datetime - -from src.utils import hash_file, get_sha - -from langchain.callbacks.base import BaseCallbackHandler -from langchain.schema import LLMResult -from langchain.text_splitter import RecursiveCharacterTextSplitter -from langchain.docstore.document import Document - - -class StreamingGradioCallbackHandler(BaseCallbackHandler): - """ - Similar to H2OTextIteratorStreamer that is for HF backend, but here LangChain backend - """ - def __init__(self, timeout: Optional[float] = None, block=True): - super().__init__() - self.text_queue = queue.SimpleQueue() - self.stop_signal = None - self.do_stop = False - self.timeout = timeout - self.block = block - - def on_llm_start( - self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any - ) -> None: - """Run when LLM starts running. Clean the queue.""" - while not self.text_queue.empty(): - try: - self.text_queue.get(block=False) - except queue.Empty: - continue - - def on_llm_new_token(self, token: str, **kwargs: Any) -> None: - """Run on new LLM token. Only available when streaming is enabled.""" - self.text_queue.put(token) - - def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None: - """Run when LLM ends running.""" - self.text_queue.put(self.stop_signal) - - def on_llm_error( - self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any - ) -> None: - """Run when LLM errors.""" - self.text_queue.put(self.stop_signal) - - def __iter__(self): - return self - - def __next__(self): - while True: - try: - value = self.stop_signal # value looks unused in pycharm, not true - if self.do_stop: - print("hit stop", flush=True) - # could raise or break, maybe best to raise and make parent see if any exception in thread - raise StopIteration() - # break - value = self.text_queue.get(block=self.block, timeout=self.timeout) - break - except queue.Empty: - time.sleep(0.01) - if value == self.stop_signal: - raise StopIteration() - else: - return value - - -def _chunk_sources(sources, chunk=True, chunk_size=512, language=None, db_type=None): - assert db_type is not None - - if not isinstance(sources, (list, tuple, types.GeneratorType)) and not callable(sources): - # if just one document - sources = [sources] - if not chunk: - [x.metadata.update(dict(chunk_id=0)) for chunk_id, x in enumerate(sources)] - if db_type in ['chroma', 'chroma_old']: - # make copy so can have separate summarize case - source_chunks = [Document(page_content=x.page_content, - metadata=copy.deepcopy(x.metadata) or {}) - for x in sources] - else: - source_chunks = sources # just same thing - else: - if language and False: - # Bug in langchain, keep separator=True not working - # https://github.com/hwchase17/langchain/issues/2836 - # so avoid this for now - keep_separator = True - separators = RecursiveCharacterTextSplitter.get_separators_for_language(language) - else: - separators = ["\n\n", "\n", " ", ""] - keep_separator = False - splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=0, keep_separator=keep_separator, - separators=separators) - source_chunks = splitter.split_documents(sources) - - # currently in order, but when pull from db won't be, so mark order and document by hash - [x.metadata.update(dict(chunk_id=chunk_id)) for chunk_id, x in enumerate(source_chunks)] - - if db_type in ['chroma', 'chroma_old']: - # also keep original source for summarization and other tasks - - # assign chunk_id=-1 for original content - # this assumes, as is currently true, that splitter makes new documents and list and metadata is deepcopy - [x.metadata.update(dict(chunk_id=-1)) for chunk_id, x in enumerate(sources)] - - # in some cases sources is generator, so convert to list - return list(sources) + source_chunks - else: - return source_chunks - - -def add_parser(docs1, parser): - [x.metadata.update(dict(parser=x.metadata.get('parser', parser))) for x in docs1] - - -def _add_meta(docs1, file, headsize=50, filei=0, parser='NotSet'): - if os.path.isfile(file): - file_extension = pathlib.Path(file).suffix - hashid = hash_file(file) - else: - file_extension = str(file) # not file, just show full thing - hashid = get_sha(file) - doc_hash = str(uuid.uuid4())[:10] - if not isinstance(docs1, (list, tuple, types.GeneratorType)): - docs1 = [docs1] - [x.metadata.update(dict(input_type=file_extension, - parser=x.metadata.get('parser', parser), - date=str(datetime.now()), - time=time.time(), - order_id=order_id, - hashid=hashid, - doc_hash=doc_hash, - file_id=filei, - head=x.page_content[:headsize].strip())) for order_id, x in enumerate(docs1)] - - -def fix_json_meta(docs1): - if not isinstance(docs1, (list, tuple, types.GeneratorType)): - docs1 = [docs1] - # fix meta, chroma doesn't like None, only str, int, float for values - [x.metadata.update(dict(sender_name=x.metadata.get('sender_name') or '')) for x in docs1] - [x.metadata.update(dict(timestamp_ms=x.metadata.get('timestamp_ms') or '')) for x in docs1] diff --git a/spaces/hands012/gpt-academic/crazy_functions/test_project/cpp/cppipc/policy.h b/spaces/hands012/gpt-academic/crazy_functions/test_project/cpp/cppipc/policy.h deleted file mode 100644 index f88ab5d8cb343f97026966b402eaeed8831e356a..0000000000000000000000000000000000000000 --- a/spaces/hands012/gpt-academic/crazy_functions/test_project/cpp/cppipc/policy.h +++ /dev/null @@ -1,25 +0,0 @@ -#pragma once - -#include <type_traits> - -#include "libipc/def.h" -#include "libipc/prod_cons.h" - -#include "libipc/circ/elem_array.h" - -namespace ipc { -namespace policy { - -template <template <typename, std::size_t...> class Elems, typename Flag> -struct choose; - -template <typename Flag> -struct choose<circ::elem_array, Flag> { - using flag_t = Flag; - - template <std::size_t DataSize, std::size_t AlignSize> - using elems_t = circ::elem_array<ipc::prod_cons_impl<flag_t>, DataSize, AlignSize>; -}; - -} // namespace policy -} // namespace ipc diff --git a/spaces/hanstyle/tts/temp/README.md b/spaces/hanstyle/tts/temp/README.md deleted file mode 100644 index d317106775262a333647d1736125aa66427ebb97..0000000000000000000000000000000000000000 --- a/spaces/hanstyle/tts/temp/README.md +++ /dev/null @@ -1 +0,0 @@ -# 临时目录 diff --git a/spaces/hbestm/gpt-academic-play/toolbox.py b/spaces/hbestm/gpt-academic-play/toolbox.py deleted file mode 100644 index 6f5469e81711d1c79202ade30dce37a2ad2bbc84..0000000000000000000000000000000000000000 --- a/spaces/hbestm/gpt-academic-play/toolbox.py +++ /dev/null @@ -1,720 +0,0 @@ -import markdown -import importlib -import traceback -import inspect -import re -import os -from latex2mathml.converter import convert as tex2mathml -from functools import wraps, lru_cache - -""" -======================================================================== -第一部分 -函数插件输入输出接驳区 - - ChatBotWithCookies: 带Cookies的Chatbot类,为实现更多强大的功能做基础 - - ArgsGeneralWrapper: 装饰器函数,用于重组输入参数,改变输入参数的顺序与结构 - - update_ui: 刷新界面用 yield from update_ui(chatbot, history) - - CatchException: 将插件中出的所有问题显示在界面上 - - HotReload: 实现插件的热更新 - - trimmed_format_exc: 打印traceback,为了安全而隐藏绝对地址 -======================================================================== -""" - -class ChatBotWithCookies(list): - def __init__(self, cookie): - self._cookies = cookie - - def write_list(self, list): - for t in list: - self.append(t) - - def get_list(self): - return [t for t in self] - - def get_cookies(self): - return self._cookies - - -def ArgsGeneralWrapper(f): - """ - 装饰器函数,用于重组输入参数,改变输入参数的顺序与结构。 - """ - def decorated(cookies, max_length, llm_model, txt, txt2, top_p, temperature, chatbot, history, system_prompt, plugin_advanced_arg, *args): - txt_passon = txt - if txt == "" and txt2 != "": txt_passon = txt2 - # 引入一个有cookie的chatbot - cookies.update({ - 'top_p':top_p, - 'temperature':temperature, - }) - llm_kwargs = { - 'api_key': cookies['api_key'], - 'llm_model': llm_model, - 'top_p':top_p, - 'max_length': max_length, - 'temperature':temperature, - } - plugin_kwargs = { - "advanced_arg": plugin_advanced_arg, - } - chatbot_with_cookie = ChatBotWithCookies(cookies) - chatbot_with_cookie.write_list(chatbot) - yield from f(txt_passon, llm_kwargs, plugin_kwargs, chatbot_with_cookie, history, system_prompt, *args) - return decorated - - -def update_ui(chatbot, history, msg='正常', **kwargs): # 刷新界面 - """ - 刷新用户界面 - """ - assert isinstance(chatbot, ChatBotWithCookies), "在传递chatbot的过程中不要将其丢弃。必要时,可用clear将其清空,然后用for+append循环重新赋值。" - yield chatbot.get_cookies(), chatbot, history, msg - -def trimmed_format_exc(): - import os, traceback - str = traceback.format_exc() - current_path = os.getcwd() - replace_path = "." - return str.replace(current_path, replace_path) - -def CatchException(f): - """ - 装饰器函数,捕捉函数f中的异常并封装到一个生成器中返回,并显示到聊天当中。 - """ - - @wraps(f) - def decorated(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT): - try: - yield from f(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT) - except Exception as e: - from check_proxy import check_proxy - from toolbox import get_conf - proxies, = get_conf('proxies') - tb_str = '```\n' + trimmed_format_exc() + '```' - if len(chatbot) == 0: - chatbot.clear() - chatbot.append(["插件调度异常", "异常原因"]) - chatbot[-1] = (chatbot[-1][0], - f"[Local Message] 实验性函数调用出错: \n\n{tb_str} \n\n当前代理可用性: \n\n{check_proxy(proxies)}") - yield from update_ui(chatbot=chatbot, history=history, msg=f'异常 {e}') # 刷新界面 - return decorated - - -def HotReload(f): - """ - HotReload的装饰器函数,用于实现Python函数插件的热更新。 - 函数热更新是指在不停止程序运行的情况下,更新函数代码,从而达到实时更新功能。 - 在装饰器内部,使用wraps(f)来保留函数的元信息,并定义了一个名为decorated的内部函数。 - 内部函数通过使用importlib模块的reload函数和inspect模块的getmodule函数来重新加载并获取函数模块, - 然后通过getattr函数获取函数名,并在新模块中重新加载函数。 - 最后,使用yield from语句返回重新加载过的函数,并在被装饰的函数上执行。 - 最终,装饰器函数返回内部函数。这个内部函数可以将函数的原始定义更新为最新版本,并执行函数的新版本。 - """ - @wraps(f) - def decorated(*args, **kwargs): - fn_name = f.__name__ - f_hot_reload = getattr(importlib.reload(inspect.getmodule(f)), fn_name) - yield from f_hot_reload(*args, **kwargs) - return decorated - - -""" -======================================================================== -第二部分 -其他小工具: - - write_results_to_file: 将结果写入markdown文件中 - - regular_txt_to_markdown: 将普通文本转换为Markdown格式的文本。 - - report_execption: 向chatbot中添加简单的意外错误信息 - - text_divide_paragraph: 将文本按照段落分隔符分割开,生成带有段落标签的HTML代码。 - - markdown_convertion: 用多种方式组合,将markdown转化为好看的html - - format_io: 接管gradio默认的markdown处理方式 - - on_file_uploaded: 处理文件的上传(自动解压) - - on_report_generated: 将生成的报告自动投射到文件上传区 - - clip_history: 当历史上下文过长时,自动截断 - - get_conf: 获取设置 - - select_api_key: 根据当前的模型类别,抽取可用的api-key -======================================================================== -""" - -def get_reduce_token_percent(text): - """ - * 此函数未来将被弃用 - """ - try: - # text = "maximum context length is 4097 tokens. However, your messages resulted in 4870 tokens" - pattern = r"(\d+)\s+tokens\b" - match = re.findall(pattern, text) - EXCEED_ALLO = 500 # 稍微留一点余地,否则在回复时会因余量太少出问题 - max_limit = float(match[0]) - EXCEED_ALLO - current_tokens = float(match[1]) - ratio = max_limit/current_tokens - assert ratio > 0 and ratio < 1 - return ratio, str(int(current_tokens-max_limit)) - except: - return 0.5, '不详' - - -def write_results_to_file(history, file_name=None): - """ - 将对话记录history以Markdown格式写入文件中。如果没有指定文件名,则使用当前时间生成文件名。 - """ - import os - import time - if file_name is None: - # file_name = time.strftime("chatGPT分析报告%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md' - file_name = 'chatGPT分析报告' + \ - time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + '.md' - os.makedirs('./gpt_log/', exist_ok=True) - with open(f'./gpt_log/{file_name}', 'w', encoding='utf8') as f: - f.write('# chatGPT 分析报告\n') - for i, content in enumerate(history): - try: # 这个bug没找到触发条件,暂时先这样顶一下 - if type(content) != str: - content = str(content) - except: - continue - if i % 2 == 0: - f.write('## ') - f.write(content) - f.write('\n\n') - res = '以上材料已经被写入' + os.path.abspath(f'./gpt_log/{file_name}') - print(res) - return res - - -def regular_txt_to_markdown(text): - """ - 将普通文本转换为Markdown格式的文本。 - """ - text = text.replace('\n', '\n\n') - text = text.replace('\n\n\n', '\n\n') - text = text.replace('\n\n\n', '\n\n') - return text - - - - -def report_execption(chatbot, history, a, b): - """ - 向chatbot中添加错误信息 - """ - chatbot.append((a, b)) - history.append(a) - history.append(b) - - -def text_divide_paragraph(text): - """ - 将文本按照段落分隔符分割开,生成带有段落标签的HTML代码。 - """ - if '```' in text: - # careful input - return text - else: - # wtf input - lines = text.split("\n") - for i, line in enumerate(lines): - lines[i] = lines[i].replace(" ", " ") - text = "</br>".join(lines) - return text - -@lru_cache(maxsize=128) # 使用 lru缓存 加快转换速度 -def markdown_convertion(txt): - """ - 将Markdown格式的文本转换为HTML格式。如果包含数学公式,则先将公式转换为HTML格式。 - """ - pre = '<div class="markdown-body">' - suf = '</div>' - if txt.startswith(pre) and txt.endswith(suf): - # print('警告,输入了已经经过转化的字符串,二次转化可能出问题') - return txt # 已经被转化过,不需要再次转化 - - markdown_extension_configs = { - 'mdx_math': { - 'enable_dollar_delimiter': True, - 'use_gitlab_delimiters': False, - }, - } - find_equation_pattern = r'<script type="math/tex(?:.*?)>(.*?)</script>' - - def tex2mathml_catch_exception(content, *args, **kwargs): - try: - content = tex2mathml(content, *args, **kwargs) - except: - content = content - return content - - def replace_math_no_render(match): - content = match.group(1) - if 'mode=display' in match.group(0): - content = content.replace('\n', '</br>') - return f"<font color=\"#00FF00\">$$</font><font color=\"#FF00FF\">{content}</font><font color=\"#00FF00\">$$</font>" - else: - return f"<font color=\"#00FF00\">$</font><font color=\"#FF00FF\">{content}</font><font color=\"#00FF00\">$</font>" - - def replace_math_render(match): - content = match.group(1) - if 'mode=display' in match.group(0): - if '\\begin{aligned}' in content: - content = content.replace('\\begin{aligned}', '\\begin{array}') - content = content.replace('\\end{aligned}', '\\end{array}') - content = content.replace('&', ' ') - content = tex2mathml_catch_exception(content, display="block") - return content - else: - return tex2mathml_catch_exception(content) - - def markdown_bug_hunt(content): - """ - 解决一个mdx_math的bug(单$包裹begin命令时多余<script>) - """ - content = content.replace('<script type="math/tex">\n<script type="math/tex; mode=display">', '<script type="math/tex; mode=display">') - content = content.replace('</script>\n</script>', '</script>') - return content - - def no_code(txt): - if '```' not in txt: - return True - else: - if '```reference' in txt: return True # newbing - else: return False - - if ('$' in txt) and no_code(txt): # 有$标识的公式符号,且没有代码段```的标识 - # convert everything to html format - split = markdown.markdown(text='---') - convert_stage_1 = markdown.markdown(text=txt, extensions=['mdx_math', 'fenced_code', 'tables', 'sane_lists'], extension_configs=markdown_extension_configs) - convert_stage_1 = markdown_bug_hunt(convert_stage_1) - # re.DOTALL: Make the '.' special character match any character at all, including a newline; without this flag, '.' will match anything except a newline. Corresponds to the inline flag (?s). - # 1. convert to easy-to-copy tex (do not render math) - convert_stage_2_1, n = re.subn(find_equation_pattern, replace_math_no_render, convert_stage_1, flags=re.DOTALL) - # 2. convert to rendered equation - convert_stage_2_2, n = re.subn(find_equation_pattern, replace_math_render, convert_stage_1, flags=re.DOTALL) - # cat them together - return pre + convert_stage_2_1 + f'{split}' + convert_stage_2_2 + suf - else: - return pre + markdown.markdown(txt, extensions=['fenced_code', 'codehilite', 'tables', 'sane_lists']) + suf - - -def close_up_code_segment_during_stream(gpt_reply): - """ - 在gpt输出代码的中途(输出了前面的```,但还没输出完后面的```),补上后面的``` - - Args: - gpt_reply (str): GPT模型返回的回复字符串。 - - Returns: - str: 返回一个新的字符串,将输出代码片段的“后面的```”补上。 - - """ - if '```' not in gpt_reply: - return gpt_reply - if gpt_reply.endswith('```'): - return gpt_reply - - # 排除了以上两个情况,我们 - segments = gpt_reply.split('```') - n_mark = len(segments) - 1 - if n_mark % 2 == 1: - # print('输出代码片段中!') - return gpt_reply+'\n```' - else: - return gpt_reply - - -def format_io(self, y): - """ - 将输入和输出解析为HTML格式。将y中最后一项的输入部分段落化,并将输出部分的Markdown和数学公式转换为HTML格式。 - """ - if y is None or y == []: - return [] - i_ask, gpt_reply = y[-1] - i_ask = text_divide_paragraph(i_ask) # 输入部分太自由,预处理一波 - gpt_reply = close_up_code_segment_during_stream(gpt_reply) # 当代码输出半截的时候,试着补上后个``` - y[-1] = ( - None if i_ask is None else markdown.markdown(i_ask, extensions=['fenced_code', 'tables']), - None if gpt_reply is None else markdown_convertion(gpt_reply) - ) - return y - - -def find_free_port(): - """ - 返回当前系统中可用的未使用端口。 - """ - import socket - from contextlib import closing - with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: - s.bind(('', 0)) - s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) - return s.getsockname()[1] - - -def extract_archive(file_path, dest_dir): - import zipfile - import tarfile - import os - # Get the file extension of the input file - file_extension = os.path.splitext(file_path)[1] - - # Extract the archive based on its extension - if file_extension == '.zip': - with zipfile.ZipFile(file_path, 'r') as zipobj: - zipobj.extractall(path=dest_dir) - print("Successfully extracted zip archive to {}".format(dest_dir)) - - elif file_extension in ['.tar', '.gz', '.bz2']: - with tarfile.open(file_path, 'r:*') as tarobj: - tarobj.extractall(path=dest_dir) - print("Successfully extracted tar archive to {}".format(dest_dir)) - - # 第三方库,需要预先pip install rarfile - # 此外,Windows上还需要安装winrar软件,配置其Path环境变量,如"C:\Program Files\WinRAR"才可以 - elif file_extension == '.rar': - try: - import rarfile - with rarfile.RarFile(file_path) as rf: - rf.extractall(path=dest_dir) - print("Successfully extracted rar archive to {}".format(dest_dir)) - except: - print("Rar format requires additional dependencies to install") - return '\n\n需要安装pip install rarfile来解压rar文件' - - # 第三方库,需要预先pip install py7zr - elif file_extension == '.7z': - try: - import py7zr - with py7zr.SevenZipFile(file_path, mode='r') as f: - f.extractall(path=dest_dir) - print("Successfully extracted 7z archive to {}".format(dest_dir)) - except: - print("7z format requires additional dependencies to install") - return '\n\n需要安装pip install py7zr来解压7z文件' - else: - return '' - return '' - - -def find_recent_files(directory): - """ - me: find files that is created with in one minutes under a directory with python, write a function - gpt: here it is! - """ - import os - import time - current_time = time.time() - one_minute_ago = current_time - 60 - recent_files = [] - - for filename in os.listdir(directory): - file_path = os.path.join(directory, filename) - if file_path.endswith('.log'): - continue - created_time = os.path.getmtime(file_path) - if created_time >= one_minute_ago: - if os.path.isdir(file_path): - continue - recent_files.append(file_path) - - return recent_files - - -def on_file_uploaded(files, chatbot, txt, txt2, checkboxes): - """ - 当文件被上传时的回调函数 - """ - if len(files) == 0: - return chatbot, txt - import shutil - import os - import time - import glob - from toolbox import extract_archive - try: - shutil.rmtree('./private_upload/') - except: - pass - time_tag = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) - os.makedirs(f'private_upload/{time_tag}', exist_ok=True) - err_msg = '' - for file in files: - file_origin_name = os.path.basename(file.orig_name) - shutil.copy(file.name, f'private_upload/{time_tag}/{file_origin_name}') - err_msg += extract_archive(f'private_upload/{time_tag}/{file_origin_name}', - dest_dir=f'private_upload/{time_tag}/{file_origin_name}.extract') - moved_files = [fp for fp in glob.glob('private_upload/**/*', recursive=True)] - if "底部输入区" in checkboxes: - txt = "" - txt2 = f'private_upload/{time_tag}' - else: - txt = f'private_upload/{time_tag}' - txt2 = "" - moved_files_str = '\t\n\n'.join(moved_files) - chatbot.append(['我上传了文件,请查收', - f'[Local Message] 收到以下文件: \n\n{moved_files_str}' + - f'\n\n调用路径参数已自动修正到: \n\n{txt}' + - f'\n\n现在您点击任意“红颜色”标识的函数插件时,以上文件将被作为输入参数'+err_msg]) - return chatbot, txt, txt2 - - -def on_report_generated(files, chatbot): - from toolbox import find_recent_files - report_files = find_recent_files('gpt_log') - if len(report_files) == 0: - return None, chatbot - # files.extend(report_files) - chatbot.append(['汇总报告如何远程获取?', '汇总报告已经添加到右侧“文件上传区”(可能处于折叠状态),请查收。']) - return report_files, chatbot - -def is_openai_api_key(key): - API_MATCH_ORIGINAL = re.match(r"sk-[a-zA-Z0-9]{48}$", key) - API_MATCH_AZURE = re.match(r"[a-zA-Z0-9]{32}$", key) - return bool(API_MATCH_ORIGINAL) or bool(API_MATCH_AZURE) - -def is_api2d_key(key): - if key.startswith('fk') and len(key) == 41: - return True - else: - return False - -def is_any_api_key(key): - if ',' in key: - keys = key.split(',') - for k in keys: - if is_any_api_key(k): return True - return False - else: - return is_openai_api_key(key) or is_api2d_key(key) - -def what_keys(keys): - avail_key_list = {'OpenAI Key':0, "API2D Key":0} - key_list = keys.split(',') - - for k in key_list: - if is_openai_api_key(k): - avail_key_list['OpenAI Key'] += 1 - - for k in key_list: - if is_api2d_key(k): - avail_key_list['API2D Key'] += 1 - - return f"检测到: OpenAI Key {avail_key_list['OpenAI Key']} 个,API2D Key {avail_key_list['API2D Key']} 个" - -def select_api_key(keys, llm_model): - import random - avail_key_list = [] - key_list = keys.split(',') - - if llm_model.startswith('gpt-'): - for k in key_list: - if is_openai_api_key(k): avail_key_list.append(k) - - if llm_model.startswith('api2d-'): - for k in key_list: - if is_api2d_key(k): avail_key_list.append(k) - - if len(avail_key_list) == 0: - raise RuntimeError(f"您提供的api-key不满足要求,不包含任何可用于{llm_model}的api-key。您可能选择了错误的模型或请求源。") - - api_key = random.choice(avail_key_list) # 随机负载均衡 - return api_key - -def read_env_variable(arg, default_value): - """ - 环境变量可以是 `GPT_ACADEMIC_CONFIG`(优先),也可以直接是`CONFIG` - 例如在windows cmd中,既可以写: - set USE_PROXY=True - set API_KEY=sk-j7caBpkRoxxxxxxxxxxxxxxxxxxxxxxxxxxxx - set proxies={"http":"http://127.0.0.1:10085", "https":"http://127.0.0.1:10085",} - set AVAIL_LLM_MODELS=["gpt-3.5-turbo", "chatglm"] - set AUTHENTICATION=[("username", "password"), ("username2", "password2")] - 也可以写: - set GPT_ACADEMIC_USE_PROXY=True - set GPT_ACADEMIC_API_KEY=sk-j7caBpkRoxxxxxxxxxxxxxxxxxxxxxxxxxxxx - set GPT_ACADEMIC_proxies={"http":"http://127.0.0.1:10085", "https":"http://127.0.0.1:10085",} - set GPT_ACADEMIC_AVAIL_LLM_MODELS=["gpt-3.5-turbo", "chatglm"] - set GPT_ACADEMIC_AUTHENTICATION=[("username", "password"), ("username2", "password2")] - """ - from colorful import print亮红, print亮绿 - arg_with_prefix = "GPT_ACADEMIC_" + arg - if arg_with_prefix in os.environ: - env_arg = os.environ[arg_with_prefix] - elif arg in os.environ: - env_arg = os.environ[arg] - else: - raise KeyError - print(f"[ENV_VAR] 尝试加载{arg},默认值:{default_value} --> 修正值:{env_arg}") - try: - if isinstance(default_value, bool): - env_arg = env_arg.strip() - if env_arg == 'True': r = True - elif env_arg == 'False': r = False - else: print('enter True or False, but have:', env_arg); r = default_value - elif isinstance(default_value, int): - r = int(env_arg) - elif isinstance(default_value, float): - r = float(env_arg) - elif isinstance(default_value, str): - r = env_arg.strip() - elif isinstance(default_value, dict): - r = eval(env_arg) - elif isinstance(default_value, list): - r = eval(env_arg) - elif default_value is None: - assert arg == "proxies" - r = eval(env_arg) - else: - print亮红(f"[ENV_VAR] 环境变量{arg}不支持通过环境变量设置! ") - raise KeyError - except: - print亮红(f"[ENV_VAR] 环境变量{arg}加载失败! ") - raise KeyError(f"[ENV_VAR] 环境变量{arg}加载失败! ") - - print亮绿(f"[ENV_VAR] 成功读取环境变量{arg}") - return r - -@lru_cache(maxsize=128) -def read_single_conf_with_lru_cache(arg): - from colorful import print亮红, print亮绿, print亮蓝 - try: - # 优先级1. 获取环境变量作为配置 - default_ref = getattr(importlib.import_module('config'), arg) # 读取默认值作为数据类型转换的参考 - r = read_env_variable(arg, default_ref) - except: - try: - # 优先级2. 获取config_private中的配置 - r = getattr(importlib.import_module('config_private'), arg) - except: - # 优先级3. 获取config中的配置 - r = getattr(importlib.import_module('config'), arg) - - # 在读取API_KEY时,检查一下是不是忘了改config - if arg == 'API_KEY': - print亮蓝(f"[API_KEY] 本项目现已支持OpenAI和API2D的api-key。也支持同时填写多个api-key,如API_KEY=\"openai-key1,openai-key2,api2d-key3\"") - print亮蓝(f"[API_KEY] 您既可以在config.py中修改api-key(s),也可以在问题输入区输入临时的api-key(s),然后回车键提交后即可生效。") - if is_any_api_key(r): - print亮绿(f"[API_KEY] 您的 API_KEY 是: {r[:15]}*** API_KEY 导入成功") - else: - print亮红( "[API_KEY] 正确的 API_KEY 是'sk'开头的51位密钥(OpenAI),或者 'fk'开头的41位密钥,请在config文件中修改API密钥之后再运行。") - if arg == 'proxies': - if r is None: - print亮红('[PROXY] 网络代理状态:未配置。无代理状态下很可能无法访问OpenAI家族的模型。建议:检查USE_PROXY选项是否修改。') - else: - print亮绿('[PROXY] 网络代理状态:已配置。配置信息如下:', r) - assert isinstance(r, dict), 'proxies格式错误,请注意proxies选项的格式,不要遗漏括号。' - return r - - -def get_conf(*args): - # 建议您复制一个config_private.py放自己的秘密, 如API和代理网址, 避免不小心传github被别人看到 - res = [] - for arg in args: - r = read_single_conf_with_lru_cache(arg) - res.append(r) - return res - - -def clear_line_break(txt): - txt = txt.replace('\n', ' ') - txt = txt.replace(' ', ' ') - txt = txt.replace(' ', ' ') - return txt - - -class DummyWith(): - """ - 这段代码定义了一个名为DummyWith的空上下文管理器, - 它的作用是……额……就是不起作用,即在代码结构不变得情况下取代其他的上下文管理器。 - 上下文管理器是一种Python对象,用于与with语句一起使用, - 以确保一些资源在代码块执行期间得到正确的初始化和清理。 - 上下文管理器必须实现两个方法,分别为 __enter__()和 __exit__()。 - 在上下文执行开始的情况下,__enter__()方法会在代码块被执行前被调用, - 而在上下文执行结束时,__exit__()方法则会被调用。 - """ - def __enter__(self): - return self - - def __exit__(self, exc_type, exc_value, traceback): - return - -def run_gradio_in_subpath(demo, auth, port, custom_path): - """ - 把gradio的运行地址更改到指定的二次路径上 - """ - def is_path_legal(path: str)->bool: - ''' - check path for sub url - path: path to check - return value: do sub url wrap - ''' - if path == "/": return True - if len(path) == 0: - print("ilegal custom path: {}\npath must not be empty\ndeploy on root url".format(path)) - return False - if path[0] == '/': - if path[1] != '/': - print("deploy on sub-path {}".format(path)) - return True - return False - print("ilegal custom path: {}\npath should begin with \'/\'\ndeploy on root url".format(path)) - return False - - if not is_path_legal(custom_path): raise RuntimeError('Ilegal custom path') - import uvicorn - import gradio as gr - from fastapi import FastAPI - app = FastAPI() - if custom_path != "/": - @app.get("/") - def read_main(): - return {"message": f"Gradio is running at: {custom_path}"} - app = gr.mount_gradio_app(app, demo, path=custom_path) - uvicorn.run(app, host="0.0.0.0", port=port) # , auth=auth - - -def clip_history(inputs, history, tokenizer, max_token_limit): - """ - reduce the length of history by clipping. - this function search for the longest entries to clip, little by little, - until the number of token of history is reduced under threshold. - 通过裁剪来缩短历史记录的长度。 - 此函数逐渐地搜索最长的条目进行剪辑, - 直到历史记录的标记数量降低到阈值以下。 - """ - import numpy as np - from request_llm.bridge_all import model_info - def get_token_num(txt): - return len(tokenizer.encode(txt, disallowed_special=())) - input_token_num = get_token_num(inputs) - if input_token_num < max_token_limit * 3 / 4: - # 当输入部分的token占比小于限制的3/4时,裁剪时 - # 1. 把input的余量留出来 - max_token_limit = max_token_limit - input_token_num - # 2. 把输出用的余量留出来 - max_token_limit = max_token_limit - 128 - # 3. 如果余量太小了,直接清除历史 - if max_token_limit < 128: - history = [] - return history - else: - # 当输入部分的token占比 > 限制的3/4时,直接清除历史 - history = [] - return history - - everything = [''] - everything.extend(history) - n_token = get_token_num('\n'.join(everything)) - everything_token = [get_token_num(e) for e in everything] - - # 截断时的颗粒度 - delta = max(everything_token) // 16 - - while n_token > max_token_limit: - where = np.argmax(everything_token) - encoded = tokenizer.encode(everything[where], disallowed_special=()) - clipped_encoded = encoded[:len(encoded)-delta] - everything[where] = tokenizer.decode(clipped_encoded)[:-1] # -1 to remove the may-be illegal char - everything_token[where] = get_token_num(everything[where]) - n_token = get_token_num('\n'.join(everything)) - - history = everything[1:] - return history diff --git a/spaces/hg2001/age-classifier/README.md b/spaces/hg2001/age-classifier/README.md deleted file mode 100644 index cca227c52611d73de88933f02aaae49bed40fcc1..0000000000000000000000000000000000000000 --- a/spaces/hg2001/age-classifier/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Age Classifier -emoji: 💩 -colorFrom: yellow -colorTo: purple -sdk: gradio -sdk_version: 3.19.1 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/hoang1007/wav2vec2/src/config/model.py b/spaces/hoang1007/wav2vec2/src/config/model.py deleted file mode 100644 index 30342afdb22b14f5df57b23e17248056d2eefd90..0000000000000000000000000000000000000000 --- a/spaces/hoang1007/wav2vec2/src/config/model.py +++ /dev/null @@ -1,57 +0,0 @@ -from easydict import EasyDict as dict - -D_MODEL = 768 -HIDDEN_SIZE = 512 - - - -context_encoder = dict( - feature_projection=dict( - in_features=HIDDEN_SIZE, - out_features=D_MODEL, - dropout=0.1, - ), - encoder=dict( - d_model=D_MODEL, - num_layers=12, - layer_drop=0.05, - pos_embedding=dict( - d_model=D_MODEL, - kernel_size=3, - groups=2, - dropout=0.1, - ), - layer=dict( - d_model=D_MODEL, - num_heads=8, - layer_norm_first=False, - feed_forward_dim=2048, - dropout=0.1, - ), - ) -) - -feature_extractor = dict( - num_channels=7 * (HIDDEN_SIZE,), - kernel_sizes=(10,) + 4 * (3,) + 2 * (2,), - strides=(5,) + 6 * (2,), -) - -quantizer = dict( - in_features=HIDDEN_SIZE, - num_codebooks=2, - num_codewords=320, - d_model=D_MODEL, -) - -wav2vec2_pretraining = dict( - context_encoder=context_encoder, - feature_extractor=feature_extractor, - quantizer=quantizer, - mask_prob=0.65, - mask_length=10, - min_masks=2, - num_negatives=100, - contrastive_logits_temperature=0.1, - diversity_loss_weight=0.2, -) \ No newline at end of file diff --git a/spaces/huazhao/QQsign/bin/unidbg-fetch-qsign.bat b/spaces/huazhao/QQsign/bin/unidbg-fetch-qsign.bat deleted file mode 100644 index 8b291e7303b0c07d14b714e5795473891363c85b..0000000000000000000000000000000000000000 --- a/spaces/huazhao/QQsign/bin/unidbg-fetch-qsign.bat +++ /dev/null @@ -1,89 +0,0 @@ -@rem -@rem Copyright 2015 the original author or authors. -@rem -@rem Licensed under the Apache License, Version 2.0 (the "License"); -@rem you may not use this file except in compliance with the License. -@rem You may obtain a copy of the License at -@rem -@rem https://www.apache.org/licenses/LICENSE-2.0 -@rem -@rem Unless required by applicable law or agreed to in writing, software -@rem distributed under the License is distributed on an "AS IS" BASIS, -@rem WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -@rem See the License for the specific language governing permissions and -@rem limitations under the License. -@rem - -@if "%DEBUG%" == "" @echo off -@rem ########################################################################## -@rem -@rem unidbg-fetch-qsign startup script for Windows -@rem -@rem ########################################################################## - -@rem Set local scope for the variables with windows NT shell -if "%OS%"=="Windows_NT" setlocal - -set DIRNAME=%~dp0 -if "%DIRNAME%" == "" set DIRNAME=. -set APP_BASE_NAME=%~n0 -set APP_HOME=%DIRNAME%.. - -@rem Resolve any "." and ".." in APP_HOME to make it shorter. -for %%i in ("%APP_HOME%") do set APP_HOME=%%~fi - -@rem Add default JVM options here. You can also use JAVA_OPTS and UNIDBG_FETCH_QSIGN_OPTS to pass JVM options to this script. -set DEFAULT_JVM_OPTS= - -@rem Find java.exe -if defined JAVA_HOME goto findJavaFromJavaHome - -set JAVA_EXE=java.exe -%JAVA_EXE% -version >NUL 2>&1 -if "%ERRORLEVEL%" == "0" goto execute - -echo. -echo ERROR: JAVA_HOME is not set and no 'java' command could be found in your PATH. -echo. -echo Please set the JAVA_HOME variable in your environment to match the -echo location of your Java installation. - -goto fail - -:findJavaFromJavaHome -set JAVA_HOME=%JAVA_HOME:"=% -set JAVA_EXE=%JAVA_HOME%/bin/java.exe - -if exist "%JAVA_EXE%" goto execute - -echo. -echo ERROR: JAVA_HOME is set to an invalid directory: %JAVA_HOME% -echo. -echo Please set the JAVA_HOME variable in your environment to match the -echo location of your Java installation. - -goto fail - -:execute -@rem Setup the command line - -set CLASSPATH=%APP_HOME%\lib\unidbg-fetch-qsign-1.1.9.jar;%APP_HOME%\lib\unidbg-android-105.jar;%APP_HOME%\lib\ktor-server-content-negotiation-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-serialization-kotlinx-json-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-server-status-pages-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-server-netty-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-server-host-common-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-server-core-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-serialization-kotlinx-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-serialization-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-events-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-websockets-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-http-cio-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-http-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-network-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-utils-jvm-2.3.1.jar;%APP_HOME%\lib\ktor-io-jvm-2.3.1.jar;%APP_HOME%\lib\kotlin-stdlib-jdk8-1.8.22.jar;%APP_HOME%\lib\kotlinx-serialization-json-jvm-1.5.1.jar;%APP_HOME%\lib\kotlinx-serialization-protobuf-jvm-1.5.1.jar;%APP_HOME%\lib\kotlinx-serialization-core-jvm-1.5.1.jar;%APP_HOME%\lib\logback-classic-1.2.11.jar;%APP_HOME%\lib\kotlinx-coroutines-jdk8-1.7.1.jar;%APP_HOME%\lib\kotlinx-coroutines-core-jvm-1.7.1.jar;%APP_HOME%\lib\kotlin-stdlib-jdk7-1.8.22.jar;%APP_HOME%\lib\kotlin-reflect-1.8.10.jar;%APP_HOME%\lib\kotlin-stdlib-1.8.22.jar;%APP_HOME%\lib\slf4j-api-1.7.36.jar;%APP_HOME%\lib\kotlin-stdlib-common-1.8.22.jar;%APP_HOME%\lib\config-1.4.2.jar;%APP_HOME%\lib\jansi-2.4.0.jar;%APP_HOME%\lib\netty-codec-http2-4.1.92.Final.jar;%APP_HOME%\lib\alpn-api-1.1.3.v20160715.jar;%APP_HOME%\lib\netty-transport-native-kqueue-4.1.92.Final.jar;%APP_HOME%\lib\netty-transport-native-epoll-4.1.92.Final.jar;%APP_HOME%\lib\logback-core-1.2.11.jar;%APP_HOME%\lib\annotations-23.0.0.jar;%APP_HOME%\lib\netty-codec-http-4.1.92.Final.jar;%APP_HOME%\lib\netty-handler-4.1.92.Final.jar;%APP_HOME%\lib\netty-codec-4.1.92.Final.jar;%APP_HOME%\lib\netty-transport-classes-kqueue-4.1.92.Final.jar;%APP_HOME%\lib\netty-transport-classes-epoll-4.1.92.Final.jar;%APP_HOME%\lib\netty-transport-native-unix-common-4.1.92.Final.jar;%APP_HOME%\lib\netty-transport-4.1.92.Final.jar;%APP_HOME%\lib\netty-buffer-4.1.92.Final.jar;%APP_HOME%\lib\netty-resolver-4.1.92.Final.jar;%APP_HOME%\lib\netty-common-4.1.92.Final.jar - - -@rem Execute unidbg-fetch-qsign -"%JAVA_EXE%" %DEFAULT_JVM_OPTS% %JAVA_OPTS% %UNIDBG_FETCH_QSIGN_OPTS% -classpath "%CLASSPATH%" MainKt %* - -:end -@rem End local scope for the variables with windows NT shell -if "%ERRORLEVEL%"=="0" goto mainEnd - -:fail -rem Set variable UNIDBG_FETCH_QSIGN_EXIT_CONSOLE if you need the _script_ return code instead of -rem the _cmd.exe /c_ return code! -if not "" == "%UNIDBG_FETCH_QSIGN_EXIT_CONSOLE%" exit 1 -exit /b 1 - -:mainEnd -if "%OS%"=="Windows_NT" endlocal - -:omega diff --git a/spaces/huggingchat/chat-ui/src/lib/types/Settings.ts b/spaces/huggingchat/chat-ui/src/lib/types/Settings.ts deleted file mode 100644 index 92bb72bf9e6685e57d69b43a1c0173ab86ecc745..0000000000000000000000000000000000000000 --- a/spaces/huggingchat/chat-ui/src/lib/types/Settings.ts +++ /dev/null @@ -1,27 +0,0 @@ -import { defaultModel } from "$lib/server/models"; -import type { Timestamps } from "./Timestamps"; -import type { User } from "./User"; - -export interface Settings extends Timestamps { - userId?: User["_id"]; - sessionId?: string; - - /** - * Note: Only conversations with this settings explicitly set to true should be shared. - * - * This setting is explicitly set to true when users accept the ethics modal. - * */ - shareConversationsWithModelAuthors: boolean; - ethicsModalAcceptedAt: Date | null; - activeModel: string; - hideEmojiOnSidebar?: boolean; - - // model name and system prompts - customPrompts?: Record<string, string>; -} - -// TODO: move this to a constant file along with other constants -export const DEFAULT_SETTINGS = { - shareConversationsWithModelAuthors: true, - activeModel: defaultModel.id, -}; diff --git a/spaces/huggingface-projects/Deep-RL-Course-Certification/README.md b/spaces/huggingface-projects/Deep-RL-Course-Certification/README.md deleted file mode 100644 index 024ef0cfefb2438bf3c5fcfcacf2e42f8dbc0196..0000000000000000000000000000000000000000 --- a/spaces/huggingface-projects/Deep-RL-Course-Certification/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: Deep RL Course Certification -emoji: 🎓 -colorFrom: red -colorTo: yellow -sdk: gradio -sdk_version: 3.17.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/huggingface-projects/wordalle/static/_app/immutable/error.svelte-ca9403a0.js b/spaces/huggingface-projects/wordalle/static/_app/immutable/error.svelte-ca9403a0.js deleted file mode 100644 index 2b1f1a9f1b9f23716a316eacad7fbc58766ca148..0000000000000000000000000000000000000000 --- a/spaces/huggingface-projects/wordalle/static/_app/immutable/error.svelte-ca9403a0.js +++ /dev/null @@ -1 +0,0 @@ -import{S as w,i as y,s as z,e as E,t as v,c as d,a as b,h as P,d as o,g as u,J as R,j as N,k as S,l as C,m as j,E as H}from"./chunks/index-86f4d6c3.js";function J(r){let l,t=r[1].frame+"",a;return{c(){l=E("pre"),a=v(t)},l(f){l=d(f,"PRE",{});var s=b(l);a=P(s,t),s.forEach(o)},m(f,s){u(f,l,s),R(l,a)},p(f,s){s&2&&t!==(t=f[1].frame+"")&&N(a,t)},d(f){f&&o(l)}}}function h(r){let l,t=r[1].stack+"",a;return{c(){l=E("pre"),a=v(t)},l(f){l=d(f,"PRE",{});var s=b(l);a=P(s,t),s.forEach(o)},m(f,s){u(f,l,s),R(l,a)},p(f,s){s&2&&t!==(t=f[1].stack+"")&&N(a,t)},d(f){f&&o(l)}}}function A(r){let l,t,a,f,s=r[1].message+"",c,k,n,p,i=r[1].frame&&J(r),_=r[1].stack&&h(r);return{c(){l=E("h1"),t=v(r[0]),a=S(),f=E("pre"),c=v(s),k=S(),i&&i.c(),n=S(),_&&_.c(),p=C()},l(e){l=d(e,"H1",{});var m=b(l);t=P(m,r[0]),m.forEach(o),a=j(e),f=d(e,"PRE",{});var q=b(f);c=P(q,s),q.forEach(o),k=j(e),i&&i.l(e),n=j(e),_&&_.l(e),p=C()},m(e,m){u(e,l,m),R(l,t),u(e,a,m),u(e,f,m),R(f,c),u(e,k,m),i&&i.m(e,m),u(e,n,m),_&&_.m(e,m),u(e,p,m)},p(e,[m]){m&1&&N(t,e[0]),m&2&&s!==(s=e[1].message+"")&&N(c,s),e[1].frame?i?i.p(e,m):(i=J(e),i.c(),i.m(n.parentNode,n)):i&&(i.d(1),i=null),e[1].stack?_?_.p(e,m):(_=h(e),_.c(),_.m(p.parentNode,p)):_&&(_.d(1),_=null)},i:H,o:H,d(e){e&&o(l),e&&o(a),e&&o(f),e&&o(k),i&&i.d(e),e&&o(n),_&&_.d(e),e&&o(p)}}}function F({error:r,status:l}){return{props:{error:r,status:l}}}function B(r,l,t){let{status:a}=l,{error:f}=l;return r.$$set=s=>{"status"in s&&t(0,a=s.status),"error"in s&&t(1,f=s.error)},[a,f]}class G extends w{constructor(l){super(),y(this,l,B,A,z,{status:0,error:1})}}export{G as default,F as load}; diff --git a/spaces/huggingface/datasets-tagging/apputils.py b/spaces/huggingface/datasets-tagging/apputils.py deleted file mode 100644 index ba119702385f06a2d0a3a6e5305e2af46db5042d..0000000000000000000000000000000000000000 --- a/spaces/huggingface/datasets-tagging/apputils.py +++ /dev/null @@ -1,17 +0,0 @@ -from typing import Dict, List - - -def new_state() -> Dict[str, List]: - return { - "task_categories": [], - "task_ids": [], - "multilinguality": [], - "language": [], - "language_creators": [], - "annotations_creators": [], - "source_datasets": [], - "size_categories": [], - "license": [], - "pretty_name": None, - "tags": [] - } diff --git a/spaces/hylee/photo2cartoon/p2c/test_onnx.py b/spaces/hylee/photo2cartoon/p2c/test_onnx.py deleted file mode 100644 index c050c2d8b77203e30dab32b523a6831dbde1bebf..0000000000000000000000000000000000000000 --- a/spaces/hylee/photo2cartoon/p2c/test_onnx.py +++ /dev/null @@ -1,50 +0,0 @@ -import os -import cv2 -import numpy as np -import onnxruntime -from utils import Preprocess - - -class Photo2Cartoon: - def __init__(self): - self.pre = Preprocess() - curPath = os.path.abspath(os.path.dirname(__file__)) - print(os.path.join(curPath, 'models/photo2cartoon_weights.onnx')) - # assert os.path.exists('./models/photo2cartoon_weights.onnx'), "[Step1: load weights] Can not find 'photo2cartoon_weights.onnx' in folder 'models!!!'" - self.session = onnxruntime.InferenceSession(os.path.join(curPath, 'models/photo2cartoon_weights.onnx')) - print('[Step1: load weights] success!') - - def inference(self, in_path): - img = cv2.cvtColor(cv2.imread(in_path), cv2.COLOR_BGR2RGB) - # face alignment and segmentation - face_rgba = self.pre.process(img) - if face_rgba is None: - print('[Step2: face detect] can not detect face!!!') - return None - - print('[Step2: face detect] success!') - face_rgba = cv2.resize(face_rgba, (256, 256), interpolation=cv2.INTER_AREA) - face = face_rgba[:, :, :3].copy() - mask = face_rgba[:, :, 3][:, :, np.newaxis].copy() / 255. - face = (face * mask + (1 - mask) * 255) / 127.5 - 1 - - face = np.transpose(face[np.newaxis, :, :, :], (0, 3, 1, 2)).astype(np.float32) - - # inference - cartoon = self.session.run(['output'], input_feed={'input': face}) - - # post-process - cartoon = np.transpose(cartoon[0][0], (1, 2, 0)) - cartoon = (cartoon + 1) * 127.5 - cartoon = (cartoon * mask + 255 * (1 - mask)).astype(np.uint8) - #cartoon = cv2.cvtColor(cartoon, cv2.COLOR_RGB2BGR) - - print('[Step3: photo to cartoon] success!') - return cartoon - - -if __name__ == '__main__': - c2p = Photo2Cartoon() - cartoon = c2p.inference('') - if cartoon is not None: - print('Cartoon portrait has been saved successfully!') diff --git a/spaces/hysts/ControlNet-with-Anything-v4/app_scribble_interactive.py b/spaces/hysts/ControlNet-with-Anything-v4/app_scribble_interactive.py deleted file mode 100644 index 94fce120e69463bdee121804ea2c48f4a0475dff..0000000000000000000000000000000000000000 --- a/spaces/hysts/ControlNet-with-Anything-v4/app_scribble_interactive.py +++ /dev/null @@ -1,103 +0,0 @@ -# This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_scribble2image_interactive.py -# The original license file is LICENSE.ControlNet in this repo. -import gradio as gr -import numpy as np - - -def create_canvas(w, h): - return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255 - - -def create_demo(process, max_images=12, default_num_images=3): - with gr.Blocks() as demo: - with gr.Row(): - gr.Markdown( - '## Control Stable Diffusion with Interactive Scribbles') - with gr.Row(): - with gr.Column(): - canvas_width = gr.Slider(label='Canvas Width', - minimum=256, - maximum=512, - value=512, - step=1) - canvas_height = gr.Slider(label='Canvas Height', - minimum=256, - maximum=512, - value=512, - step=1) - create_button = gr.Button(label='Start', - value='Open drawing canvas!') - input_image = gr.Image(source='upload', - type='numpy', - tool='sketch') - gr.Markdown( - value= - 'Do not forget to change your brush width to make it thinner. (Gradio do not allow developers to set brush width so you need to do it manually.) ' - 'Just click on the small pencil icon in the upper right corner of the above block.' - ) - create_button.click(fn=create_canvas, - inputs=[canvas_width, canvas_height], - outputs=input_image, - queue=False) - prompt = gr.Textbox(label='Prompt') - run_button = gr.Button(label='Run') - with gr.Accordion('Advanced options', open=False): - num_samples = gr.Slider(label='Images', - minimum=1, - maximum=max_images, - value=default_num_images, - step=1) - image_resolution = gr.Slider(label='Image Resolution', - minimum=256, - maximum=512, - value=512, - step=256) - num_steps = gr.Slider(label='Steps', - minimum=1, - maximum=100, - value=20, - step=1) - guidance_scale = gr.Slider(label='Guidance Scale', - minimum=0.1, - maximum=30.0, - value=9.0, - step=0.1) - seed = gr.Slider(label='Seed', - minimum=-1, - maximum=2147483647, - step=1, - randomize=True) - a_prompt = gr.Textbox( - label='Added Prompt', - value='best quality, extremely detailed') - n_prompt = gr.Textbox( - label='Negative Prompt', - value= - 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' - ) - with gr.Column(): - result = gr.Gallery(label='Output', - show_label=False, - elem_id='gallery').style(grid=2, - height='auto') - inputs = [ - input_image, - prompt, - a_prompt, - n_prompt, - num_samples, - image_resolution, - num_steps, - guidance_scale, - seed, - ] - prompt.submit(fn=process, inputs=inputs, outputs=result) - run_button.click(fn=process, inputs=inputs, outputs=result) - return demo - - -if __name__ == '__main__': - from model import Model - model = Model() - demo = create_demo(model.process_scribble_interactive) - demo.queue().launch() diff --git a/spaces/hysts/daily-papers/README.md b/spaces/hysts/daily-papers/README.md deleted file mode 100644 index 39d69aa3708b12ff4f61404ab74cb88fb3f26760..0000000000000000000000000000000000000000 --- a/spaces/hysts/daily-papers/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Daily Papers -emoji: 📊 -colorFrom: pink -colorTo: pink -sdk: gradio -sdk_version: 3.50.2 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/hysts/gan-control/README.md b/spaces/hysts/gan-control/README.md deleted file mode 100644 index c64f0ebf55f8b26811f8da3de96fd08e42df722e..0000000000000000000000000000000000000000 --- a/spaces/hysts/gan-control/README.md +++ /dev/null @@ -1,15 +0,0 @@ ---- -title: GAN-Control -emoji: ⚡ -colorFrom: red -colorTo: yellow -sdk: gradio -sdk_version: 3.36.1 -app_file: app.py -pinned: false -suggested_hardware: t4-small ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference - -https://arxiv.org/abs/2101.02477 diff --git a/spaces/hyxue/HiFiFace-inference-demo/Deep3DFaceRecon_pytorch/models/arcface_torch/configs/wf42m_pfc02_r100_16gpus.py b/spaces/hyxue/HiFiFace-inference-demo/Deep3DFaceRecon_pytorch/models/arcface_torch/configs/wf42m_pfc02_r100_16gpus.py deleted file mode 100644 index 9916872b3af4330448f70f3cf72d45be5a200f6d..0000000000000000000000000000000000000000 --- a/spaces/hyxue/HiFiFace-inference-demo/Deep3DFaceRecon_pytorch/models/arcface_torch/configs/wf42m_pfc02_r100_16gpus.py +++ /dev/null @@ -1,27 +0,0 @@ -from easydict import EasyDict as edict - -# make training faster -# our RAM is 256G -# mount -t tmpfs -o size=140G tmpfs /train_tmp - -config = edict() -config.margin_list = (1.0, 0.0, 0.4) -config.network = "r100" -config.resume = False -config.output = None -config.embedding_size = 512 -config.sample_rate = 0.2 -config.fp16 = True -config.momentum = 0.9 -config.weight_decay = 5e-4 -config.batch_size = 128 -config.lr = 0.2 -config.verbose = 10000 -config.dali = False - -config.rec = "/train_tmp/WebFace42M" -config.num_classes = 2059906 -config.num_image = 42474557 -config.num_epoch = 20 -config.warmup_epoch = config.num_epoch // 10 -config.val_targets = ["lfw", "cfp_fp", "agedb_30"] diff --git a/spaces/iccv23-diffusers-demo/T2I-Adapter-SDXL-Sketch/app.py b/spaces/iccv23-diffusers-demo/T2I-Adapter-SDXL-Sketch/app.py deleted file mode 100644 index 7152631b17f750e34f06887fb179fbbe13952671..0000000000000000000000000000000000000000 --- a/spaces/iccv23-diffusers-demo/T2I-Adapter-SDXL-Sketch/app.py +++ /dev/null @@ -1,266 +0,0 @@ -#!/usr/bin/env python - -import os -import random - -import gradio as gr -import numpy as np -import PIL.Image -import torch -import torchvision.transforms.functional as TF -from diffusers import ( - AutoencoderKL, - EulerAncestralDiscreteScheduler, - StableDiffusionXLAdapterPipeline, - T2IAdapter, -) - -DESCRIPTION = '''# Doodly - T2I-Adapter-SDXL **Sketch** -To try out all the [6 T2I-Adapter](https://huggingface.co/collections/TencentARC/t2i-adapter-sdxl-64fac9cbf393f30370eeb02f) released for SDXL, [click here](https://huggingface.co/spaces/TencentARC/T2I-Adapter-SDXL) -''' - -if not torch.cuda.is_available(): - DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" - -style_list = [ - { - "name": "(No style)", - "prompt": "{prompt}", - "negative_prompt": "", - }, - { - "name": "Cinematic", - "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", - "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", - }, - { - "name": "3D Model", - "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", - "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", - }, - { - "name": "Anime", - "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed", - "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", - }, - { - "name": "Digital Art", - "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", - "negative_prompt": "photo, photorealistic, realism, ugly", - }, - { - "name": "Photographic", - "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed", - "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", - }, - { - "name": "Pixel art", - "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", - "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", - }, - { - "name": "Fantasy art", - "prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", - "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", - }, - { - "name": "Neonpunk", - "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", - "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", - }, - { - "name": "Manga", - "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style", - "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", - }, -] - -styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} -STYLE_NAMES = list(styles.keys()) -DEFAULT_STYLE_NAME = "(No style)" - - -def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]: - p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) - return p.replace("{prompt}", positive), n + negative - - -device = torch.device("cuda" if torch.cuda.is_available() else "cpu") -if torch.cuda.is_available(): - model_id = "stabilityai/stable-diffusion-xl-base-1.0" - adapter = T2IAdapter.from_pretrained( - "TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" - ) - scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") - pipe = StableDiffusionXLAdapterPipeline.from_pretrained( - model_id, - vae=AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16), - adapter=adapter, - scheduler=scheduler, - torch_dtype=torch.float16, - variant="fp16", - ) - pipe.to(device) -else: - pipe = None - -MAX_SEED = np.iinfo(np.int32).max - - -def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: - if randomize_seed: - seed = random.randint(0, MAX_SEED) - return seed - - -def run( - image: PIL.Image.Image, - prompt: str, - negative_prompt: str, - style_name: str = DEFAULT_STYLE_NAME, - num_steps: int = 25, - guidance_scale: float = 5, - adapter_conditioning_scale: float = 0.8, - adapter_conditioning_factor: float = 0.8, - seed: int = 0, - progress=gr.Progress(track_tqdm=True), -) -> PIL.Image.Image: - image = image.convert("RGB") - image = TF.to_tensor(image) > 0.5 - image = TF.to_pil_image(image.to(torch.float32)) - - prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) - - generator = torch.Generator(device=device).manual_seed(seed) - out = pipe( - prompt=prompt, - negative_prompt=negative_prompt, - image=image, - num_inference_steps=num_steps, - generator=generator, - guidance_scale=guidance_scale, - adapter_conditioning_scale=adapter_conditioning_scale, - adapter_conditioning_factor=adapter_conditioning_factor, - ).images[0] - return out - - -with gr.Blocks(css="style.css") as demo: - gr.Markdown(DESCRIPTION, elem_id="description") - gr.DuplicateButton( - value="Duplicate Space for private use", - elem_id="duplicate-button", - visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", - ) - - with gr.Row(): - with gr.Column(): - with gr.Group(): - image = gr.Image( - source="canvas", - tool="sketch", - type="pil", - image_mode="L", - invert_colors=True, - shape=(1024, 1024), - brush_radius=4, - height=440, - ) - prompt = gr.Textbox(label="Prompt") - style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) - run_button = gr.Button("Run") - with gr.Accordion("Advanced options", open=False): - negative_prompt = gr.Textbox( - label="Negative prompt", - value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured", - ) - num_steps = gr.Slider( - label="Number of steps", - minimum=1, - maximum=50, - step=1, - value=25, - ) - guidance_scale = gr.Slider( - label="Guidance scale", - minimum=0.1, - maximum=10.0, - step=0.1, - value=5, - ) - adapter_conditioning_scale = gr.Slider( - label="Adapter conditioning scale", - minimum=0.5, - maximum=1, - step=0.1, - value=0.8, - ) - adapter_conditioning_factor = gr.Slider( - label="Adapter conditioning factor", - info="Fraction of timesteps for which adapter should be applied", - minimum=0.5, - maximum=1, - step=0.1, - value=0.8, - ) - seed = gr.Slider( - label="Seed", - minimum=0, - maximum=MAX_SEED, - step=1, - value=0, - ) - randomize_seed = gr.Checkbox(label="Randomize seed", value=True) - with gr.Column(): - result = gr.Image(label="Result", height=400) - - inputs = [ - image, - prompt, - negative_prompt, - style, - num_steps, - guidance_scale, - adapter_conditioning_scale, - adapter_conditioning_factor, - seed, - ] - prompt.submit( - fn=randomize_seed_fn, - inputs=[seed, randomize_seed], - outputs=seed, - queue=False, - api_name=False, - ).then( - fn=run, - inputs=inputs, - outputs=result, - api_name=False, - ) - negative_prompt.submit( - fn=randomize_seed_fn, - inputs=[seed, randomize_seed], - outputs=seed, - queue=False, - api_name=False, - ).then( - fn=run, - inputs=inputs, - outputs=result, - api_name=False, - ) - run_button.click( - fn=randomize_seed_fn, - inputs=[seed, randomize_seed], - outputs=seed, - queue=False, - api_name=False, - ).then( - fn=run, - inputs=inputs, - outputs=result, - api_name=False, - ) - -if __name__ == "__main__": - demo.queue(max_size=20).launch() diff --git a/spaces/ilumine-AI/Insta-3D/index.html b/spaces/ilumine-AI/Insta-3D/index.html deleted file mode 100644 index 6996e045c754b03d1da85fb6202f500feee85d50..0000000000000000000000000000000000000000 --- a/spaces/ilumine-AI/Insta-3D/index.html +++ /dev/null @@ -1,92 +0,0 @@ -<!DOCTYPE html> -<html lang="en-us"> - <head> - <meta charset="utf-8"> - <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> - <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=no"> - <title>Pj - 2D-to-3D - - - - -
        - -
        - - - - - diff --git a/spaces/innnky/nyaru-svc2.0-advanced/preprocess_wave.py b/spaces/innnky/nyaru-svc2.0-advanced/preprocess_wave.py deleted file mode 100644 index d25222a3e94636373ba223934f29daf49abe3da3..0000000000000000000000000000000000000000 --- a/spaces/innnky/nyaru-svc2.0-advanced/preprocess_wave.py +++ /dev/null @@ -1,118 +0,0 @@ -import os - -import librosa -import numpy as np -import pyworld -from scipy.io import wavfile - -import utils - - -class FeatureInput(object): - def __init__(self, samplerate=16000, hop_size=160): - self.fs = samplerate - self.hop = hop_size - - self.f0_bin = 256 - self.f0_max = 1100.0 - self.f0_min = 50.0 - self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) - self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) - - def compute_f0(self, path): - x, sr = librosa.load(path, sr=self.fs) - assert sr == self.fs - f0, t = pyworld.dio( - x.astype(np.double), - fs=sr, - f0_ceil=800, - frame_period=1000 * self.hop / sr, - ) - f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.fs) - for index, pitch in enumerate(f0): - f0[index] = round(pitch, 1) - return f0 - - # for numpy # code from diffsinger - def coarse_f0(self, f0): - f0_mel = 1127 * np.log(1 + f0 / 700) - f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * ( - self.f0_bin - 2 - ) / (self.f0_mel_max - self.f0_mel_min) + 1 - - # use 0 or 1 - f0_mel[f0_mel <= 1] = 1 - f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1 - f0_coarse = np.rint(f0_mel).astype(np.int) - assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, ( - f0_coarse.max(), - f0_coarse.min(), - ) - return f0_coarse - - # for tensor # code from diffsinger - def coarse_f0_ts(self, f0): - f0_mel = 1127 * (1 + f0 / 700).log() - f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * ( - self.f0_bin - 2 - ) / (self.f0_mel_max - self.f0_mel_min) + 1 - - # use 0 or 1 - f0_mel[f0_mel <= 1] = 1 - f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1 - f0_coarse = (f0_mel + 0.5).long() - assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, ( - f0_coarse.max(), - f0_coarse.min(), - ) - return f0_coarse - - def save_wav(self, wav, path): - wav *= 32767 / max(0.01, np.max(np.abs(wav))) * 0.6 - wavfile.write(path, self.fs, wav.astype(np.int16)) - - -if __name__ == "__main__": - wavPath = "./data/waves" - outPath = "./data/label" - if not os.path.exists("./data/label"): - os.mkdir("./data/label") - - # define model and load checkpoint - hps = utils.get_hparams_from_file("./configs/singing_base.json") - featureInput = FeatureInput(hps.data.sampling_rate, hps.data.hop_length) - vits_file = open("./filelists/vc_file.txt", "w", encoding="utf-8") - - for spks in os.listdir(wavPath): - if os.path.isdir(f"./{wavPath}/{spks}"): - os.makedirs(f"./{outPath}/{spks}") - for file in os.listdir(f"./{wavPath}/{spks}"): - if file.endswith(".wav"): - file = file[:-4] - audio_path = f"./{wavPath}/{spks}/{file}.wav" - featur_pit = featureInput.compute_f0(audio_path) - coarse_pit = featureInput.coarse_f0(featur_pit) - np.save( - f"{outPath}/{spks}/{file}_pitch.npy", - coarse_pit, - allow_pickle=False, - ) - np.save( - f"{outPath}/{spks}/{file}_nsff0.npy", - featur_pit, - allow_pickle=False, - ) - - path_audio = f"./data/waves/{spks}/{file}.wav" - path_spkid = f"./data/spkid/{spks}.npy" - path_label = ( - f"./data/phone/{spks}/{file}.npy" # phone means ppg & hubert - ) - path_pitch = f"./data/label/{spks}/{file}_pitch.npy" - path_nsff0 = f"./data/label/{spks}/{file}_nsff0.npy" - print( - f"{path_audio}|{path_spkid}|{path_label}|{path_pitch}|{path_nsff0}", - file=vits_file, - ) - - vits_file.close() diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/Adobe Photoshop Lightroom 6.1.1 Multilanguage Patch - AppzDam Crack.md b/spaces/inplisQlawa/anything-midjourney-v4-1/Adobe Photoshop Lightroom 6.1.1 Multilanguage Patch - AppzDam Crack.md deleted file mode 100644 index 29aaaa6fe0d1ef4318ca0996438d7889c8318329..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/Adobe Photoshop Lightroom 6.1.1 Multilanguage Patch - AppzDam Crack.md +++ /dev/null @@ -1,6 +0,0 @@ -

        Adobe Photoshop Lightroom 6.1.1 Multilanguage Patch - AppzDam Crack


        Download >>> https://urlin.us/2uEwbZ



        -
        -CRACK Adobe Photoshop Lightroom 6.1.1 Update - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Patch - AppzDam. CRACK Adobu Photoshop Lightroom 6.1.1 Multilanguage PATCH - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Multilanguage Patch - AppzDam. CRACK Adobu Photoshop Lightroom 6.1.1 Multilanguage Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Multilanguage Patch - AppzDam. CRACK Adobu Photoshop Lightroom 6.1.1 Multilanguage Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Multilanguage Patch - AppzDam. CRACK Adobu Photoshop Lightroom 6.1.1 Multilanguage Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Multilanguage Patch - AppzDam. CRACK Adobu Photoshop Lightroom 6.1.1 Multilanguage Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Multilanguage Patch - AppzDam. CRACK Adobu Photoshop Lightroom 6.1.1 Multilanguage Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Patch - AppzDam. CRACK Adobe Photoshop Lightroom 6.1.1 Update Multilanguage Patch - AppzDam. CRACK Adobu Photoshop Lightroom 4fefd39f24
        -
        -
        -

        diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/Busy Accounting Software 3.6 E 18 HOT Crack Patch.md b/spaces/inplisQlawa/anything-midjourney-v4-1/Busy Accounting Software 3.6 E 18 HOT Crack Patch.md deleted file mode 100644 index eaf9ac2f12d864dd73159ccb881283a0bb99847f..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/Busy Accounting Software 3.6 E 18 HOT Crack Patch.md +++ /dev/null @@ -1,9 +0,0 @@ -

        busy accounting software 3.6 e 18 crack patch


        Download ►►►►► https://urlin.us/2uEw3G



        -
        -Next: · Implementation of GST in BUSY (Hindi) · Automatic creation of an electronic invoice from BUSY - Hindi · Mix - BUSY ... Next: · Automatic creation of an electronic waybill from BUSY - English · Automatic receipt generation from BUSY - English · Activation and registration -How to activate and register in the GST system (India) -This is a simple step by step guide on how to activate and register in the GST system (India) for BUSY customers. -Here we will explain what steps you need to go through to become a registered user. 8a78ff9644
        -
        -
        -

        diff --git a/spaces/inplisQlawa/anything-midjourney-v4-1/Hwidgen 62.01 ? Digital Licence Activator For Windows 10 [full [HOT]].md b/spaces/inplisQlawa/anything-midjourney-v4-1/Hwidgen 62.01 ? Digital Licence Activator For Windows 10 [full [HOT]].md deleted file mode 100644 index 19feb06f5e2917dcdc83f566b71384d03e0535d1..0000000000000000000000000000000000000000 --- a/spaces/inplisQlawa/anything-midjourney-v4-1/Hwidgen 62.01 ? Digital Licence Activator For Windows 10 [full [HOT]].md +++ /dev/null @@ -1,119 +0,0 @@ -
        -

        Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]: A Review

        -

        If you are looking for a way to activate Windows 10 for free and permanently, you might want to check out Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]. This is a tool that generates a valid and genuine digital licence from Microsoft retail activation servers, which can be used to activate any edition of Windows 10, including server and LTSC/LTSB variants. In this article, we will review the features, benefits, and drawbacks of this tool and help you decide if it is worth downloading.

        - -

        What is Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]?

        -

        Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] is a tool that uses a method called HWIDGEN (Hardware ID Generation) to generate a digital licence for Windows 10. This licence is obtained directly from Microsoft retail activation servers and is linked to your hardware ID, which means it is unique and permanent. You can use this licence to activate any edition of Windows 10, except for version 1507, without any pre-requisites or limitations.

        -

        Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]


        Download Filehttps://urlin.us/2uEwdF



        - -

        What are the features of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]?

        -

        Some of the features of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] are:

        -
          -
        • It supports all editions of Windows 10, including VL (Volume Licence), S (S Mode), Education, Enterprise, Enterprise S (LTSB/LTSC), and Server variants.
        • -
        • It does not require any internet connection or online contact to activate Windows 10. However, it can also work online and activate instantly.
        • -
        • It does not install or store any files or data for activation on your system. Therefore, you do not need to set any exclusions in your antivirus or firewall for this tool.
        • -
        • It does not replace any existing licence or activation method on your system. It only adds a new digital licence to your system.
        • -
        • It does not require any product key or generic key to activate Windows 10. It only uses your hardware ID to generate a digital licence.
        • -
        • It does not require any reactivation or renewal after a certain period of time. It is a permanent activation method that lasts as long as your hardware ID remains unchanged.
        • -
        • It also includes a method called KMS38, which can activate Windows Server and LTSC/LTSB variants offline for up to 19 years.
        • -
        - -

        What are the benefits of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]?

        -

        Some of the benefits of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] are:

        -
          -
        • You can activate Windows 10 for free without any subscription or registration.
        • -
        • You can activate Windows 10 permanently without any expiration or deactivation.
        • -
        • You can activate Windows 10 on any device or platform that supports HWIDGEN or KMS38 method.
        • -
        • You can activate Windows 10 with a valid and genuine digital licence that is recognized by Microsoft servers.
        • -
        • You can activate Windows 10 without any risk of malware or virus infection from unknown sources.
        • -
        - -

        What are the drawbacks of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]?

        -

        Some of the drawbacks of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] are:

        -
          -
        • You might encounter some errors or issues while using the tool due to various reasons such as incompatible device, outdated tool, corrupted file, network problem, server issue, etc.
        • -
        • You might violate some terms and conditions or policies by activating Windows 10 with an unofficial method.
        • -
        • You might lose your activation if you change your hardware ID significantly due to hardware replacement or upgrade.
        • -
        • You might need to reinstall the tool and reactivate Windows 10 if you reinstall your operating system.
        • -
        - -

        How to download and install Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]?

        -

        To download and install Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full], you need to follow these steps:

        -
          -
        1. Go to a trusted website that provides the latest version of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]. You can find some links in the references section below.
        2. -
        3. Download the ZIP file that contains the tool and extract it to your desired location.
        4. -
        5. Run the HWIDGEN-mk6.exe file as administrator and follow the instructions on the screen.
        6. -
        7. Select your desired edition of Windows 10 and click on Patch to generate a digital licence for it.
        8. -
        9. Wait for a few seconds until the process is completed and check your activation status in Settings > Update & Security > Activation.
        10. -
        - -

        Conclusion

        -

        Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] is a great tool for activating Windows 10 for free and permanently with a valid and genuine digital licence. It has many features, benefits, and drawbacks that you need to consider before using it. If you are looking for a reliable and safe way to activate Windows 10, you might want to try this tool out.

        - -

        References

        -

        -

        How to use Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]?

        -

        Using Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] is very easy and simple. You just need to run the tool as administrator and select your desired edition of Windows 10 from the drop-down menu. Then, click on Patch to generate a digital licence for your system. The tool will automatically detect your hardware ID and connect to the Microsoft retail activation servers to obtain a valid and genuine digital licence. You can check your activation status in Settings > Update & Security > Activation. You can also use the tool to activate Windows Server and LTSC/LTSB variants with the KMS38 method, which works offline for up to 19 years.

        -

        - -

        What are the alternatives to Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]?

        -

        While Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] is a great tool for activating Windows 10 with a digital licence, it is not the only one available. There are many other tools that offer similar or even better features and performance. Some of the alternatives to Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] are:

        -
          -
        • KMSpico: This is a popular tool that activates Windows and Office products with a KMS (Key Management Service) method. It works by creating a virtual KMS server on your system and emulating a valid activation.
        • -
        • Microsoft Toolkit: This is a versatile tool that activates Windows and Office products with various methods such as KMS, EZ-Activator, AutoKMS, etc. It also provides some additional features such as backup, customization, and management of your products.
        • -
        • Windows Loader: This is a classic tool that activates Windows 7 with a DAZ (Digital Activation Zone) method. It works by modifying some system files and injecting a SLIC (Software Licensing Description Table) into your BIOS.
        • -
        • Re-Loader: This is a simple tool that activates Windows and Office products with various methods such as OEM (Original Equipment Manufacturer), KMS, AntiWPA, etc. It also supports some older versions of Windows and Office.
        • -
        • KMSPico Portable: This is a portable version of KMSPico that does not require any installation or modification of your system files. It activates Windows and Office products with a KMS method by creating a virtual KMS server on your system.
        • -
        - -

        What are the pros and cons of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]?

        -

        Like any other tool, Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] has its own advantages and disadvantages that you need to weigh before using it. Here are some of the pros and cons of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]:

        - - - - - - - -
        ProsCons
        It supports all editions of Windows 10, including server and LTSC/LTSB variants.It does not support Windows 10 version 1507.
        It does not require any internet connection or online contact to activate Windows 10.It might encounter some errors or issues while using the tool.
        It does not install or store any files or data for activation on your system.It might violate some terms and conditions or policies by activating Windows 10 with an unofficial method.
        It does not require any product key or generic key to activate Windows 10.It might lose your activation if you change your hardware ID significantly.
        It does not require any reactivation or renewal after a certain period of time.It might need to reinstall the tool and reactivate Windows 10 if you reinstall your operating system.
        - -

        Conclusion

        -

        Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] is a great tool for activating Windows 10 for free and permanently with a valid and genuine digital licence. It has many features, benefits, and drawbacks that you need to consider before using it. If you are looking for a reliable and safe way to activate Windows 10, you might want to try this tool out.

        -

        How to verify Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] activation?

        -

        After using Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] to activate Windows 10, you might want to verify that your activation is valid and genuine. You can do so by following these steps:

        -
          -
        1. Go to Settings > Update & Security > Activation and check your activation status. It should say "Windows is activated with a digital licence".
        2. -
        3. Go to Control Panel > System and Security > System and check your product ID. It should start with "0033" for retail activation.
        4. -
        5. Go to Command Prompt and type "slmgr /dlv" and press Enter. A pop-up window will show you detailed information about your digital licence.
        6. -
        7. Go to Microsoft Account website and sign in with your Microsoft account. Go to Devices and check your device name. It should have a green tick mark next to it.
        8. -
        - -

        How to troubleshoot Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] activation?

        -

        If you face any problem or error while using Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] to activate Windows 10, you can try some of these troubleshooting tips:

        -
          -
        • Make sure you are using the latest version of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full]. You can download it from the links in the references section below.
        • -
        • Make sure you are running the tool as administrator and following the instructions on the screen.
        • -
        • Make sure you have a stable internet connection and no firewall or antivirus blocking the tool.
        • -
        • Make sure you have selected the correct edition of Windows 10 that matches your system.
        • -
        • Make sure you have not changed your hardware ID significantly since the last activation.
        • -
        • Make sure you have not used any other activation method or tool on your system before or after using Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full].
        • -
        - -

        How to contact Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] support?

        -

        If you need any help or support regarding Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full], you can contact the developer or the community through these channels:

        -
          -
        • Github: You can visit the Github page of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] and post your issue or feedback on the Issues section.
        • -
        • Reddit: You can visit the Reddit page of Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] and post your question or comment on the Discussion section.
        • -
        • Email: You can send an email to hwidgen@gmail.com and explain your problem or request in detail.
        • -
        - -

        Conclusion

        -

        Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] is a great tool for activating Windows 10 for free and permanently with a valid and genuine digital licence. It has many features, benefits, and drawbacks that you need to consider before using it. If you are looking for a reliable and safe way to activate Windows 10, you might want to try this tool out.

        -

        Conclusion

        -

        In this article, we have reviewed Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full], a free activation tool that lets you activate Windows 10 with a digital licence. We have discussed the features, benefits, drawbacks, alternatives, and how to download, install, use, update, uninstall, verify, troubleshoot, and contact support for the tool. We hope that this article has helped you learn more about Hwidgen 62.01 – Digital Licence Activator For Windows 10 [Full] and decide if it is worth trying out.

        3cee63e6c2
        -
        -
        \ No newline at end of file diff --git a/spaces/inreVtussa/clothingai/Examples/((BETTER)) Download Pp25 2.0 Per Windows.md b/spaces/inreVtussa/clothingai/Examples/((BETTER)) Download Pp25 2.0 Per Windows.md deleted file mode 100644 index 25fd2555e355b3563a2235305115d8498c64c7b7..0000000000000000000000000000000000000000 --- a/spaces/inreVtussa/clothingai/Examples/((BETTER)) Download Pp25 2.0 Per Windows.md +++ /dev/null @@ -1,9 +0,0 @@ -
        -

        The first thing you need to do is download the 25pp tool and open its file and place it in your computer. And now to begin installing this app, we need to visit the official website of the app at the same. What we will do is click on the download link. After that, you will see another download link, click on it to download 25pp iOS Jailbreak Tool. After that, the Pp25 app will automatically be downloaded. After that, you need to download the tool and install it.

        -

        But now that you have finished installing the tool, you need to wait for the tool to install itself. If you don’t get any message in the windows saying that the tool has been installed, then you just need to follow the steps below to install it. Now we have the app installed, and it should work just fine. You can either go to the app to use or go directly to Cydia if you want to.

        -

        Download Pp25 2.0 Per Windows


        Download Zip ☆☆☆ https://tiurll.com/2uCk62



        -

        You can now download any application you want from the App store by visiting the Cydia app. It is available on http://appstore.com/cydia and that is the official website of the app. Scroll down to the 25pp iOS app if you do not find it. You can start browsing the app and download any application you want for free and paid apps. Have fun! If you have any problems, you can always contact us via the contact form in the right side of the page.

        -

        You can now download any application you want from the App store by visiting the Cydia app. It is available on http://appstore.com/cydia and that is the official website of the app. Scroll down to the 25pp iOS app if you do not find it.

        -

        This will automatically download the required component and will complete the installation process. Now your iPhone is loaded with this app, you just have to scroll down and click on the page that says 25pp for iPad/iPhone. Now you will see 25PP installed on the device and you can use it accordingly. For more on 25PP and its various functions, you can check out our 25PP tutorial on the website.

        899543212b
        -
        -
        \ No newline at end of file diff --git a/spaces/inreVtussa/clothingai/Examples/ACDsee Foto Manager V.9.0 (Build 108) Crack ITALIANO By Angelo Download.md b/spaces/inreVtussa/clothingai/Examples/ACDsee Foto Manager V.9.0 (Build 108) Crack ITALIANO By Angelo Download.md deleted file mode 100644 index b0971a1057c45a3de574af12abb928ca9f424809..0000000000000000000000000000000000000000 --- a/spaces/inreVtussa/clothingai/Examples/ACDsee Foto Manager V.9.0 (Build 108) Crack ITALIANO By Angelo Download.md +++ /dev/null @@ -1,60 +0,0 @@ -

        ACDsee Foto Manager v.9.0 (Build 108) crack ITALIANO by Angelo download


        Download Ziphttps://tiurll.com/2uCl2s



        -
        -noooo - - that was the worst - - it shows when I load a.jpg file on the panel, as a launcher. - - lucian__, has this behaviour happened before? - - lucian__: oh, then I think it's a bug, as I've never had that happen before... - - Shizz, what's the problem? - - cristian_c: yes, it has happened before - - Shizz what is your problem? - - it only happens on xubuntu. I have other ubuntu flavors without this problem - - Shizz, what are the problem? - - i was disconnected, sorry - - lucian__, ok - - the icon is not showing, it's a simple photo viewer, like with a thumbs up and a down sign, but is not showing in the panel - - Shizz, can you open it with another way? - - no, i can't see it - - Shizz I've install on my xubuntu 13.04 and it was a problem - - I saw it when I open the photo in the image viewer - - it's like a problem that happenning on linux that is not happening on windows - - Shizz that is true and I agree with you - - But I can't see that icon. - - Shizz, ok, what's the problem with the others distro? - - when I click on the image viewer, I can see the icons for all options and the thumbnail - - but not in the panel, only in the image viewer - - everything is fine, I have no issue with the image viewer - - it is just the icon in the panel - - Shizz, and what is the problem with other distro? - - all the other icons are showing on the panel - - it's just the photo 4fefd39f24
        -
        -
        -

        diff --git a/spaces/isabel/testing-streamlit/styles.css b/spaces/isabel/testing-streamlit/styles.css deleted file mode 100644 index 445e0af2c89d49bdb1ac599c3f3c542f85e018ad..0000000000000000000000000000000000000000 --- a/spaces/isabel/testing-streamlit/styles.css +++ /dev/null @@ -1,4 +0,0 @@ -button { - background-color: #C0FCDC; - background-image: none !important; -} \ No newline at end of file diff --git a/spaces/itacaiunas/Ghibli-Diffusion/README.md b/spaces/itacaiunas/Ghibli-Diffusion/README.md deleted file mode 100644 index 7964af4a30d883d6674576d4d415ed471e9ccc0a..0000000000000000000000000000000000000000 --- a/spaces/itacaiunas/Ghibli-Diffusion/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: Ghibli Diffusion -emoji: 👀 -colorFrom: pink -colorTo: yellow -sdk: gradio -sdk_version: 3.23.0 -app_file: app.py -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/james-oldfield/PandA/networks/genforce/__init__.py b/spaces/james-oldfield/PandA/networks/genforce/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/jatin-tech/SkinZen/README.md b/spaces/jatin-tech/SkinZen/README.md deleted file mode 100644 index de4147bc85d05967809e2feb041c92eb08b20b29..0000000000000000000000000000000000000000 --- a/spaces/jatin-tech/SkinZen/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: SkinZen -emoji: 👁 -colorFrom: blue -colorTo: red -sdk: docker -pinned: false -license: mit ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/jb30k/LegalENG/app.py b/spaces/jb30k/LegalENG/app.py deleted file mode 100644 index a930f5de7b5cd0a154c99b25b42eb7f4bbde9af6..0000000000000000000000000000000000000000 --- a/spaces/jb30k/LegalENG/app.py +++ /dev/null @@ -1,35 +0,0 @@ -import openai -import gradio - -openai.api_key = "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" - -messages = [{"role": "system", "content": "You are a legal database in the EU. You will only awnser truthfully in dutch as following - If asked if something is legal, anwser by law in 10 words. - If asked for advice, give 5 short bullitpoint on which the person can make his/her own critic opinion. - By what law the awnser is based on structure, example (art. 3.1 lid 2 Wet Inkomstenbelasting 2001). List all the laws if more are applicable. - The most important right the person has in that situation in 5 words. - Give 2 websitelinks they can visit to get more legal information about the subject. Always end with the shortest way of asking more questions."}] - -def CustomChatGPT(user_input): - messages.append({"role": "user", "content": user_input}) - response = openai.ChatCompletion.create( - model = "gpt-3.5-turbo", - messages = messages - ) - ChatGPT_reply = response["choices"][0]["message"]["content"] - messages.append({"role": "assistant", "content": ChatGPT_reply}) - return ChatGPT_reply - -inputs = gradio.Textbox(label="Ask your question here:") -outputs = gradio.Textbox(label="Answer here:") - -demo = gradio.Interface( - CustomChatGPT, - inputs=inputs, - outputs=outputs, - title="EU Legal Advice", - description="You can ask your legal questions about European law here. If an ERROR message appears, please resubmit your question!", - allow_flagging=True, - examples=[ - ["Is it legal to record a conversation without someone's consent in Spain?"], - ["What are the legal consequences of plagiarism in the EU?"], - ["What are the legal requirements for renting out a property in Germany?"], - ], -session_cookie=True, -) -demo.launch() \ No newline at end of file diff --git a/spaces/jbilcke-hf/MusicGen/audiocraft/models/builders.py b/spaces/jbilcke-hf/MusicGen/audiocraft/models/builders.py deleted file mode 100644 index 77ee5f96fea2e3c9e475fe961bc1a5ee473ed8eb..0000000000000000000000000000000000000000 --- a/spaces/jbilcke-hf/MusicGen/audiocraft/models/builders.py +++ /dev/null @@ -1,218 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -""" -All the functions to build the relevant models and modules -from the Hydra config. -""" - -import typing as tp -import warnings - -import audiocraft -import omegaconf -import torch - -from .encodec import CompressionModel, EncodecModel, FlattenedCompressionModel # noqa -from .lm import LMModel -from ..modules.codebooks_patterns import ( - CodebooksPatternProvider, - DelayedPatternProvider, - ParallelPatternProvider, - UnrolledPatternProvider, - VALLEPattern, - MusicLMPattern, -) -from ..modules.conditioners import ( - BaseConditioner, - ConditioningProvider, - LUTConditioner, - T5Conditioner, - ConditionFuser, - ChromaStemConditioner, -) -from .. import quantization as qt -from ..utils.utils import dict_from_config - - -def get_quantizer(quantizer: str, cfg: omegaconf.DictConfig, dimension: int) -> qt.BaseQuantizer: - klass = { - 'no_quant': qt.DummyQuantizer, - 'rvq': qt.ResidualVectorQuantizer - }[quantizer] - kwargs = dict_from_config(getattr(cfg, quantizer)) - if quantizer != 'no_quant': - kwargs['dimension'] = dimension - return klass(**kwargs) - - -def get_encodec_autoencoder(encoder_name: str, cfg: omegaconf.DictConfig): - if encoder_name == 'seanet': - kwargs = dict_from_config(getattr(cfg, 'seanet')) - encoder_override_kwargs = kwargs.pop('encoder') - decoder_override_kwargs = kwargs.pop('decoder') - encoder_kwargs = {**kwargs, **encoder_override_kwargs} - decoder_kwargs = {**kwargs, **decoder_override_kwargs} - encoder = audiocraft.modules.SEANetEncoder(**encoder_kwargs) - decoder = audiocraft.modules.SEANetDecoder(**decoder_kwargs) - return encoder, decoder - else: - raise KeyError(f'Unexpected compression model {cfg.compression_model}') - - -def get_compression_model(cfg: omegaconf.DictConfig) -> CompressionModel: - """Instantiate a compression model. - """ - if cfg.compression_model == 'encodec': - kwargs = dict_from_config(getattr(cfg, 'encodec')) - encoder_name = kwargs.pop('autoencoder') - quantizer_name = kwargs.pop('quantizer') - encoder, decoder = get_encodec_autoencoder(encoder_name, cfg) - quantizer = get_quantizer(quantizer_name, cfg, encoder.dimension) - frame_rate = kwargs['sample_rate'] // encoder.hop_length - renormalize = kwargs.pop('renormalize', None) - renorm = kwargs.pop('renorm') - if renormalize is None: - renormalize = renorm is not None - warnings.warn("You are using a deprecated EnCodec model. Please migrate to new renormalization.") - return EncodecModel(encoder, decoder, quantizer, - frame_rate=frame_rate, renormalize=renormalize, **kwargs).to(cfg.device) - else: - raise KeyError(f'Unexpected compression model {cfg.compression_model}') - - -def get_lm_model(cfg: omegaconf.DictConfig) -> LMModel: - """Instantiate a transformer LM. - """ - if cfg.lm_model == 'transformer_lm': - kwargs = dict_from_config(getattr(cfg, 'transformer_lm')) - n_q = kwargs['n_q'] - q_modeling = kwargs.pop('q_modeling', None) - codebooks_pattern_cfg = getattr(cfg, 'codebooks_pattern') - attribute_dropout = dict_from_config(getattr(cfg, 'attribute_dropout')) - cls_free_guidance = dict_from_config(getattr(cfg, 'classifier_free_guidance')) - cfg_prob, cfg_coef = cls_free_guidance["training_dropout"], cls_free_guidance["inference_coef"] - fuser = get_condition_fuser(cfg) - condition_provider = get_conditioner_provider(kwargs["dim"], cfg).to(cfg.device) - if len(fuser.fuse2cond['cross']) > 0: # enforce cross-att programatically - kwargs['cross_attention'] = True - if codebooks_pattern_cfg.modeling is None: - assert q_modeling is not None, \ - 'LM model should either have a codebook pattern defined or transformer_lm.q_modeling' - codebooks_pattern_cfg = omegaconf.OmegaConf.create( - {'modeling': q_modeling, 'delay': {'delays': list(range(n_q))}} - ) - pattern_provider = get_codebooks_pattern_provider(n_q, codebooks_pattern_cfg) - return LMModel( - pattern_provider=pattern_provider, - condition_provider=condition_provider, - fuser=fuser, - cfg_dropout=cfg_prob, - cfg_coef=cfg_coef, - attribute_dropout=attribute_dropout, - dtype=getattr(torch, cfg.dtype), - device=cfg.device, - **kwargs - ).to(cfg.device) - else: - raise KeyError(f'Unexpected LM model {cfg.lm_model}') - - -def get_conditioner_provider(output_dim: int, cfg: omegaconf.DictConfig) -> ConditioningProvider: - """Instantiate a conditioning model. - """ - device = cfg.device - duration = cfg.dataset.segment_duration - cfg = getattr(cfg, "conditioners") - cfg = omegaconf.OmegaConf.create({}) if cfg is None else cfg - conditioners: tp.Dict[str, BaseConditioner] = {} - with omegaconf.open_dict(cfg): - condition_provider_args = cfg.pop('args', {}) - for cond, cond_cfg in cfg.items(): - model_type = cond_cfg["model"] - model_args = cond_cfg[model_type] - if model_type == "t5": - conditioners[str(cond)] = T5Conditioner(output_dim=output_dim, device=device, **model_args) - elif model_type == "lut": - conditioners[str(cond)] = LUTConditioner(output_dim=output_dim, **model_args) - elif model_type == "chroma_stem": - model_args.pop('cache_path', None) - conditioners[str(cond)] = ChromaStemConditioner( - output_dim=output_dim, - duration=duration, - device=device, - **model_args - ) - else: - raise ValueError(f"unrecognized conditioning model: {model_type}") - conditioner = ConditioningProvider(conditioners, device=device, **condition_provider_args) - return conditioner - - -def get_condition_fuser(cfg: omegaconf.DictConfig) -> ConditionFuser: - """Instantiate a condition fuser object. - """ - fuser_cfg = getattr(cfg, "fuser") - fuser_methods = ["sum", "cross", "prepend", "input_interpolate"] - fuse2cond = {k: fuser_cfg[k] for k in fuser_methods} - kwargs = {k: v for k, v in fuser_cfg.items() if k not in fuser_methods} - fuser = ConditionFuser(fuse2cond=fuse2cond, **kwargs) - return fuser - - -def get_codebooks_pattern_provider(n_q: int, cfg: omegaconf.DictConfig) -> CodebooksPatternProvider: - """Instantiate a codebooks pattern provider object. - """ - pattern_providers = { - 'parallel': ParallelPatternProvider, - 'delay': DelayedPatternProvider, - 'unroll': UnrolledPatternProvider, - 'valle': VALLEPattern, - 'musiclm': MusicLMPattern, - } - name = cfg.modeling - kwargs = dict_from_config(cfg.get(name)) if hasattr(cfg, name) else {} - klass = pattern_providers[name] - return klass(n_q, **kwargs) - - -def get_debug_compression_model(device='cpu'): - """Instantiate a debug compression model to be used for unit tests. - """ - seanet_kwargs = { - 'n_filters': 4, - 'n_residual_layers': 1, - 'dimension': 32, - 'ratios': [10, 8, 16] # 25 Hz at 32kHz - } - encoder = audiocraft.modules.SEANetEncoder(**seanet_kwargs) - decoder = audiocraft.modules.SEANetDecoder(**seanet_kwargs) - quantizer = qt.ResidualVectorQuantizer(dimension=32, bins=400, n_q=4) - init_x = torch.randn(8, 32, 128) - quantizer(init_x, 1) # initialize kmeans etc. - compression_model = EncodecModel( - encoder, decoder, quantizer, - frame_rate=25, sample_rate=32000, channels=1).to(device) - return compression_model.eval() - - -def get_debug_lm_model(device='cpu'): - """Instantiate a debug LM to be used for unit tests. - """ - pattern = DelayedPatternProvider(n_q=4) - dim = 16 - providers = { - 'description': LUTConditioner(n_bins=128, dim=dim, output_dim=dim, tokenizer="whitespace"), - } - condition_provider = ConditioningProvider(providers) - fuser = ConditionFuser( - {'cross': ['description'], 'prepend': [], - 'sum': [], 'input_interpolate': []}) - lm = LMModel( - pattern, condition_provider, fuser, - n_q=4, card=400, dim=dim, num_heads=4, custom=True, num_layers=2, - cross_attention=True, causal=True) - return lm.to(device).eval() diff --git a/spaces/jbilcke-hf/MusicGen/audiocraft/modules/conv.py b/spaces/jbilcke-hf/MusicGen/audiocraft/modules/conv.py deleted file mode 100644 index 972938ab84712eb06e1b10cea25444eee51d6637..0000000000000000000000000000000000000000 --- a/spaces/jbilcke-hf/MusicGen/audiocraft/modules/conv.py +++ /dev/null @@ -1,245 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import math -import typing as tp -import warnings - -import torch -from torch import nn -from torch.nn import functional as F -from torch.nn.utils import spectral_norm, weight_norm - - -CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm', - 'time_group_norm']) - - -def apply_parametrization_norm(module: nn.Module, norm: str = 'none'): - assert norm in CONV_NORMALIZATIONS - if norm == 'weight_norm': - return weight_norm(module) - elif norm == 'spectral_norm': - return spectral_norm(module) - else: - # We already check was in CONV_NORMALIZATION, so any other choice - # doesn't need reparametrization. - return module - - -def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs): - """Return the proper normalization module. If causal is True, this will ensure the returned - module is causal, or return an error if the normalization doesn't support causal evaluation. - """ - assert norm in CONV_NORMALIZATIONS - if norm == 'time_group_norm': - if causal: - raise ValueError("GroupNorm doesn't support causal evaluation.") - assert isinstance(module, nn.modules.conv._ConvNd) - return nn.GroupNorm(1, module.out_channels, **norm_kwargs) - else: - return nn.Identity() - - -def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, - padding_total: int = 0) -> int: - """See `pad_for_conv1d`. - """ - length = x.shape[-1] - n_frames = (length - kernel_size + padding_total) / stride + 1 - ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total) - return ideal_length - length - - -def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0): - """Pad for a convolution to make sure that the last window is full. - Extra padding is added at the end. This is required to ensure that we can rebuild - an output of the same length, as otherwise, even with padding, some time steps - might get removed. - For instance, with total padding = 4, kernel size = 4, stride = 2: - 0 0 1 2 3 4 5 0 0 # (0s are padding) - 1 2 3 # (output frames of a convolution, last 0 is never used) - 0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding) - 1 2 3 4 # once you removed padding, we are missing one time step ! - """ - extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total) - return F.pad(x, (0, extra_padding)) - - -def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.): - """Tiny wrapper around F.pad, just to allow for reflect padding on small input. - If this is the case, we insert extra 0 padding to the right before the reflection happen. - """ - length = x.shape[-1] - padding_left, padding_right = paddings - assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) - if mode == 'reflect': - max_pad = max(padding_left, padding_right) - extra_pad = 0 - if length <= max_pad: - extra_pad = max_pad - length + 1 - x = F.pad(x, (0, extra_pad)) - padded = F.pad(x, paddings, mode, value) - end = padded.shape[-1] - extra_pad - return padded[..., :end] - else: - return F.pad(x, paddings, mode, value) - - -def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]): - """Remove padding from x, handling properly zero padding. Only for 1d! - """ - padding_left, padding_right = paddings - assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right) - assert (padding_left + padding_right) <= x.shape[-1] - end = x.shape[-1] - padding_right - return x[..., padding_left: end] - - -class NormConv1d(nn.Module): - """Wrapper around Conv1d and normalization applied to this conv - to provide a uniform interface across normalization approaches. - """ - def __init__(self, *args, causal: bool = False, norm: str = 'none', - norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs): - super().__init__() - self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm) - self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs) - self.norm_type = norm - - def forward(self, x): - x = self.conv(x) - x = self.norm(x) - return x - - -class NormConv2d(nn.Module): - """Wrapper around Conv2d and normalization applied to this conv - to provide a uniform interface across normalization approaches. - """ - def __init__(self, *args, norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs): - super().__init__() - self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm) - self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs) - self.norm_type = norm - - def forward(self, x): - x = self.conv(x) - x = self.norm(x) - return x - - -class NormConvTranspose1d(nn.Module): - """Wrapper around ConvTranspose1d and normalization applied to this conv - to provide a uniform interface across normalization approaches. - """ - def __init__(self, *args, causal: bool = False, norm: str = 'none', - norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs): - super().__init__() - self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm) - self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs) - self.norm_type = norm - - def forward(self, x): - x = self.convtr(x) - x = self.norm(x) - return x - - -class NormConvTranspose2d(nn.Module): - """Wrapper around ConvTranspose2d and normalization applied to this conv - to provide a uniform interface across normalization approaches. - """ - def __init__(self, *args, norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs): - super().__init__() - self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm) - self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs) - - def forward(self, x): - x = self.convtr(x) - x = self.norm(x) - return x - - -class StreamableConv1d(nn.Module): - """Conv1d with some builtin handling of asymmetric or causal padding - and normalization. - """ - def __init__(self, in_channels: int, out_channels: int, - kernel_size: int, stride: int = 1, dilation: int = 1, - groups: int = 1, bias: bool = True, causal: bool = False, - norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {}, - pad_mode: str = 'reflect'): - super().__init__() - # warn user on unusual setup between dilation and stride - if stride > 1 and dilation > 1: - warnings.warn('StreamableConv1d has been initialized with stride > 1 and dilation > 1' - f' (kernel_size={kernel_size} stride={stride}, dilation={dilation}).') - self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride, - dilation=dilation, groups=groups, bias=bias, causal=causal, - norm=norm, norm_kwargs=norm_kwargs) - self.causal = causal - self.pad_mode = pad_mode - - def forward(self, x): - B, C, T = x.shape - kernel_size = self.conv.conv.kernel_size[0] - stride = self.conv.conv.stride[0] - dilation = self.conv.conv.dilation[0] - kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations - padding_total = kernel_size - stride - extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total) - if self.causal: - # Left padding for causal - x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode) - else: - # Asymmetric padding required for odd strides - padding_right = padding_total // 2 - padding_left = padding_total - padding_right - x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode) - return self.conv(x) - - -class StreamableConvTranspose1d(nn.Module): - """ConvTranspose1d with some builtin handling of asymmetric or causal padding - and normalization. - """ - def __init__(self, in_channels: int, out_channels: int, - kernel_size: int, stride: int = 1, causal: bool = False, - norm: str = 'none', trim_right_ratio: float = 1., - norm_kwargs: tp.Dict[str, tp.Any] = {}): - super().__init__() - self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride, - causal=causal, norm=norm, norm_kwargs=norm_kwargs) - self.causal = causal - self.trim_right_ratio = trim_right_ratio - assert self.causal or self.trim_right_ratio == 1., \ - "`trim_right_ratio` != 1.0 only makes sense for causal convolutions" - assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1. - - def forward(self, x): - kernel_size = self.convtr.convtr.kernel_size[0] - stride = self.convtr.convtr.stride[0] - padding_total = kernel_size - stride - - y = self.convtr(x) - - # We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be - # removed at the very end, when keeping only the right length for the output, - # as removing it here would require also passing the length at the matching layer - # in the encoder. - if self.causal: - # Trim the padding on the right according to the specified ratio - # if trim_right_ratio = 1.0, trim everything from right - padding_right = math.ceil(padding_total * self.trim_right_ratio) - padding_left = padding_total - padding_right - y = unpad1d(y, (padding_left, padding_right)) - else: - # Asymmetric padding required for odd strides - padding_right = padding_total // 2 - padding_left = padding_total - padding_right - y = unpad1d(y, (padding_left, padding_right)) - return y diff --git a/spaces/jbilcke-hf/observer/src/app/speak.tsx b/spaces/jbilcke-hf/observer/src/app/speak.tsx deleted file mode 100644 index 0d2573d4913e18413aa87a06a91b6d6a9ac324f6..0000000000000000000000000000000000000000 --- a/spaces/jbilcke-hf/observer/src/app/speak.tsx +++ /dev/null @@ -1,34 +0,0 @@ -"use client" - -import { ReactNode, useEffect, useState } from "react" -import { onlyText } from "react-children-utilities" - -import { useTimeout } from "@/lib/useTimeout" -import { useStore } from "./useStore" - -export function Speak({ - children -}: { - children: ReactNode -}) { - const isSpeechSynthesisAvailable = useStore(state => state.isSpeechSynthesisAvailable) - const lastSpokenSentence = useStore(state => state.lastSpokenSentence) - const init = useStore(state => state.init) - const speak = useStore(state => state.speak) - - const newMessage = onlyText(children).trim() - - useEffect(() => { init() }, []) - - const canSpeak = isSpeechSynthesisAvailable && newMessage?.length && newMessage !== lastSpokenSentence - - useEffect(() => { - console.log("debug:", { canSpeak, newMessage }) - if (canSpeak) { - console.log("speaking!") - speak(newMessage) - } - }, [canSpeak, newMessage]) - - return null -} \ No newline at end of file diff --git a/spaces/jdczlx/ChatGPT-chuanhu/run_Windows.bat b/spaces/jdczlx/ChatGPT-chuanhu/run_Windows.bat deleted file mode 100644 index 4c18f9ccaeea0af972301ffdf48778641221f76d..0000000000000000000000000000000000000000 --- a/spaces/jdczlx/ChatGPT-chuanhu/run_Windows.bat +++ /dev/null @@ -1,5 +0,0 @@ -@echo off -echo Opening ChuanhuChatGPT... - -REM Open powershell via bat -start powershell.exe -NoExit -Command "python ./ChuanhuChatbot.py" diff --git a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/PIL/_binary.py b/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/PIL/_binary.py deleted file mode 100644 index a74ee9eb6f341aca9e074c0acc4b306a354175a0..0000000000000000000000000000000000000000 --- a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/PIL/_binary.py +++ /dev/null @@ -1,102 +0,0 @@ -# -# The Python Imaging Library. -# $Id$ -# -# Binary input/output support routines. -# -# Copyright (c) 1997-2003 by Secret Labs AB -# Copyright (c) 1995-2003 by Fredrik Lundh -# Copyright (c) 2012 by Brian Crowell -# -# See the README file for information on usage and redistribution. -# - - -"""Binary input/output support routines.""" - - -from struct import pack, unpack_from - - -def i8(c): - return c if c.__class__ is int else c[0] - - -def o8(i): - return bytes((i & 255,)) - - -# Input, le = little endian, be = big endian -def i16le(c, o=0): - """ - Converts a 2-bytes (16 bits) string to an unsigned integer. - - :param c: string containing bytes to convert - :param o: offset of bytes to convert in string - """ - return unpack_from("h", c, o)[0] - - -def i32le(c, o=0): - """ - Converts a 4-bytes (32 bits) string to an unsigned integer. - - :param c: string containing bytes to convert - :param o: offset of bytes to convert in string - """ - return unpack_from("H", c, o)[0] - - -def i32be(c, o=0): - return unpack_from(">I", c, o)[0] - - -# Output, le = little endian, be = big endian -def o16le(i): - return pack("H", i) - - -def o32be(i): - return pack(">I", i) diff --git a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/bson/raw_bson.py b/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/bson/raw_bson.py deleted file mode 100644 index d5dbe8fbf9eaf8c6c8a982b0ff6f1dd7feb40eaa..0000000000000000000000000000000000000000 --- a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/bson/raw_bson.py +++ /dev/null @@ -1,196 +0,0 @@ -# Copyright 2015-present MongoDB, Inc. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -"""Tools for representing raw BSON documents. - -Inserting and Retrieving RawBSONDocuments -========================================= - -Example: Moving a document between different databases/collections - -.. doctest:: - - >>> import bson - >>> from pymongo import MongoClient - >>> from bson.raw_bson import RawBSONDocument - >>> client = MongoClient(document_class=RawBSONDocument) - >>> client.drop_database("db") - >>> client.drop_database("replica_db") - >>> db = client.db - >>> result = db.test.insert_many( - ... [{"_id": 1, "a": 1}, {"_id": 2, "b": 1}, {"_id": 3, "c": 1}, {"_id": 4, "d": 1}] - ... ) - >>> replica_db = client.replica_db - >>> for doc in db.test.find(): - ... print(f"raw document: {doc.raw}") - ... print(f"decoded document: {bson.decode(doc.raw)}") - ... result = replica_db.test.insert_one(doc) - ... - raw document: b'...' - decoded document: {'_id': 1, 'a': 1} - raw document: b'...' - decoded document: {'_id': 2, 'b': 1} - raw document: b'...' - decoded document: {'_id': 3, 'c': 1} - raw document: b'...' - decoded document: {'_id': 4, 'd': 1} - -For use cases like moving documents across different databases or writing binary -blobs to disk, using raw BSON documents provides better speed and avoids the -overhead of decoding or encoding BSON. -""" - -from typing import Any, Dict, ItemsView, Iterator, Mapping, Optional - -from bson import _get_object_size, _raw_to_dict -from bson.codec_options import _RAW_BSON_DOCUMENT_MARKER -from bson.codec_options import DEFAULT_CODEC_OPTIONS as DEFAULT -from bson.codec_options import CodecOptions -from bson.son import SON - - -def _inflate_bson( - bson_bytes: bytes, codec_options: CodecOptions, raw_array: bool = False -) -> Dict[Any, Any]: - """Inflates the top level fields of a BSON document. - - :Parameters: - - `bson_bytes`: the BSON bytes that compose this document - - `codec_options`: An instance of - :class:`~bson.codec_options.CodecOptions` whose ``document_class`` - must be :class:`RawBSONDocument`. - """ - # Use SON to preserve ordering of elements. - return _raw_to_dict( - bson_bytes, 4, len(bson_bytes) - 1, codec_options, SON(), raw_array=raw_array - ) - - -class RawBSONDocument(Mapping[str, Any]): - """Representation for a MongoDB document that provides access to the raw - BSON bytes that compose it. - - Only when a field is accessed or modified within the document does - RawBSONDocument decode its bytes. - """ - - __slots__ = ("__raw", "__inflated_doc", "__codec_options") - _type_marker = _RAW_BSON_DOCUMENT_MARKER - - def __init__(self, bson_bytes: bytes, codec_options: Optional[CodecOptions] = None) -> None: - """Create a new :class:`RawBSONDocument` - - :class:`RawBSONDocument` is a representation of a BSON document that - provides access to the underlying raw BSON bytes. Only when a field is - accessed or modified within the document does RawBSONDocument decode - its bytes. - - :class:`RawBSONDocument` implements the ``Mapping`` abstract base - class from the standard library so it can be used like a read-only - ``dict``:: - - >>> from bson import encode - >>> raw_doc = RawBSONDocument(encode({'_id': 'my_doc'})) - >>> raw_doc.raw - b'...' - >>> raw_doc['_id'] - 'my_doc' - - :Parameters: - - `bson_bytes`: the BSON bytes that compose this document - - `codec_options` (optional): An instance of - :class:`~bson.codec_options.CodecOptions` whose ``document_class`` - must be :class:`RawBSONDocument`. The default is - :attr:`DEFAULT_RAW_BSON_OPTIONS`. - - .. versionchanged:: 3.8 - :class:`RawBSONDocument` now validates that the ``bson_bytes`` - passed in represent a single bson document. - - .. versionchanged:: 3.5 - If a :class:`~bson.codec_options.CodecOptions` is passed in, its - `document_class` must be :class:`RawBSONDocument`. - """ - self.__raw = bson_bytes - self.__inflated_doc: Optional[Mapping[str, Any]] = None - # Can't default codec_options to DEFAULT_RAW_BSON_OPTIONS in signature, - # it refers to this class RawBSONDocument. - if codec_options is None: - codec_options = DEFAULT_RAW_BSON_OPTIONS - elif not issubclass(codec_options.document_class, RawBSONDocument): - raise TypeError( - "RawBSONDocument cannot use CodecOptions with document " - "class {}".format(codec_options.document_class) - ) - self.__codec_options = codec_options - # Validate the bson object size. - _get_object_size(bson_bytes, 0, len(bson_bytes)) - - @property - def raw(self) -> bytes: - """The raw BSON bytes composing this document.""" - return self.__raw - - def items(self) -> ItemsView[str, Any]: - """Lazily decode and iterate elements in this document.""" - return self.__inflated.items() - - @property - def __inflated(self) -> Mapping[str, Any]: - if self.__inflated_doc is None: - # We already validated the object's size when this document was - # created, so no need to do that again. - # Use SON to preserve ordering of elements. - self.__inflated_doc = self._inflate_bson(self.__raw, self.__codec_options) - return self.__inflated_doc - - @staticmethod - def _inflate_bson(bson_bytes: bytes, codec_options: CodecOptions) -> Mapping[Any, Any]: - return _inflate_bson(bson_bytes, codec_options) - - def __getitem__(self, item: str) -> Any: - return self.__inflated[item] - - def __iter__(self) -> Iterator[str]: - return iter(self.__inflated) - - def __len__(self) -> int: - return len(self.__inflated) - - def __eq__(self, other: Any) -> bool: - if isinstance(other, RawBSONDocument): - return self.__raw == other.raw - return NotImplemented - - def __repr__(self) -> str: - return "{}({!r}, codec_options={!r})".format( - self.__class__.__name__, - self.raw, - self.__codec_options, - ) - - -class _RawArrayBSONDocument(RawBSONDocument): - """A RawBSONDocument that only expands sub-documents and arrays when accessed.""" - - @staticmethod - def _inflate_bson(bson_bytes: bytes, codec_options: CodecOptions) -> Mapping[Any, Any]: - return _inflate_bson(bson_bytes, codec_options, raw_array=True) - - -DEFAULT_RAW_BSON_OPTIONS: CodecOptions = DEFAULT.with_options(document_class=RawBSONDocument) -_RAW_ARRAY_BSON_OPTIONS: CodecOptions = DEFAULT.with_options(document_class=_RawArrayBSONDocument) -"""The default :class:`~bson.codec_options.CodecOptions` for -:class:`RawBSONDocument`. -""" diff --git a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/gpt_index/readers/__init__.py b/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/gpt_index/readers/__init__.py deleted file mode 100644 index 90680b43b69cd056cff3103140bdab4b825de136..0000000000000000000000000000000000000000 --- a/spaces/joaopereirajp/livvieChatBot/venv/lib/python3.9/site-packages/gpt_index/readers/__init__.py +++ /dev/null @@ -1,75 +0,0 @@ -"""Data Connectors for LlamaIndex. - -This module contains the data connectors for LlamaIndex. Each connector inherits -from a `BaseReader` class, connects to a data source, and loads Document objects -from that data source. - -You may also choose to construct Document objects manually, for instance -in our `Insert How-To Guide <../how_to/insert.html>`_. See below for the API -definition of a Document - the bare minimum is a `text` property. - -""" - -from gpt_index.readers.chroma import ChromaReader -from gpt_index.readers.discord_reader import DiscordReader -from gpt_index.readers.elasticsearch import ElasticsearchReader -from gpt_index.readers.faiss import FaissReader - -# readers -from gpt_index.readers.file.base import SimpleDirectoryReader -from gpt_index.readers.github_readers.github_repository_reader import ( - GithubRepositoryReader, -) -from gpt_index.readers.google_readers.gdocs import GoogleDocsReader -from gpt_index.readers.json import JSONReader -from gpt_index.readers.make_com.wrapper import MakeWrapper -from gpt_index.readers.mbox import MboxReader -from gpt_index.readers.mongo import SimpleMongoReader -from gpt_index.readers.notion import NotionPageReader -from gpt_index.readers.obsidian import ObsidianReader -from gpt_index.readers.pinecone import PineconeReader -from gpt_index.readers.qdrant import QdrantReader -from gpt_index.readers.schema.base import Document -from gpt_index.readers.slack import SlackReader -from gpt_index.readers.steamship.file_reader import SteamshipFileReader -from gpt_index.readers.string_iterable import StringIterableReader -from gpt_index.readers.twitter import TwitterTweetReader -from gpt_index.readers.weaviate.reader import WeaviateReader -from gpt_index.readers.web import ( - BeautifulSoupWebReader, - RssReader, - SimpleWebPageReader, - TrafilaturaWebReader, -) -from gpt_index.readers.wikipedia import WikipediaReader -from gpt_index.readers.youtube_transcript import YoutubeTranscriptReader - -__all__ = [ - "WikipediaReader", - "YoutubeTranscriptReader", - "SimpleDirectoryReader", - "JSONReader", - "SimpleMongoReader", - "NotionPageReader", - "GoogleDocsReader", - "DiscordReader", - "SlackReader", - "WeaviateReader", - "PineconeReader", - "QdrantReader", - "ChromaReader", - "FaissReader", - "Document", - "StringIterableReader", - "SimpleWebPageReader", - "BeautifulSoupWebReader", - "TrafilaturaWebReader", - "RssReader", - "MakeWrapper", - "TwitterTweetReader", - "ObsidianReader", - "GithubRepositoryReader", - "MboxReader", - "ElasticsearchReader", - "SteamshipFileReader", -] diff --git a/spaces/jone/Music_Source_Separation/bytesep/optimizers/__init__.py b/spaces/jone/Music_Source_Separation/bytesep/optimizers/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/spaces/jordonpeter01/MusicGen2/tests/quantization/test_vq.py b/spaces/jordonpeter01/MusicGen2/tests/quantization/test_vq.py deleted file mode 100644 index c215099fedacae35c6798fdd9b8420a447aa16bb..0000000000000000000000000000000000000000 --- a/spaces/jordonpeter01/MusicGen2/tests/quantization/test_vq.py +++ /dev/null @@ -1,18 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import torch - -from audiocraft.quantization.vq import ResidualVectorQuantizer - - -class TestResidualVectorQuantizer: - - def test_rvq(self): - x = torch.randn(1, 16, 2048) - vq = ResidualVectorQuantizer(n_q=8, dimension=16, bins=8) - res = vq(x, 1.) - assert res.x.shape == torch.Size([1, 16, 2048]) diff --git a/spaces/jspr/paperchat/ingest_examples.py b/spaces/jspr/paperchat/ingest_examples.py deleted file mode 100644 index d2a1e7a7c784bfdfa7739ed68da010aeef8c0c2d..0000000000000000000000000000000000000000 --- a/spaces/jspr/paperchat/ingest_examples.py +++ /dev/null @@ -1,219 +0,0 @@ -"""Ingest examples into Weaviate.""" -import os -from pathlib import Path - -import weaviate - -WEAVIATE_URL = os.environ["WEAVIATE_URL"] -client = weaviate.Client( - url=WEAVIATE_URL, - additional_headers={"X-OpenAI-Api-Key": os.environ["OPENAI_API_KEY"]}, -) - -client.schema.delete_class("Rephrase") -client.schema.delete_class("QA") -client.schema.get() -schema = { - "classes": [ - { - "class": "Rephrase", - "description": "Rephrase Examples", - "vectorizer": "text2vec-openai", - "moduleConfig": { - "text2vec-openai": { - "model": "ada", - "modelVersion": "002", - "type": "text", - } - }, - "properties": [ - { - "dataType": ["text"], - "moduleConfig": { - "text2vec-openai": { - "skip": False, - "vectorizePropertyName": False, - } - }, - "name": "content", - }, - { - "dataType": ["text"], - "description": "The link", - "moduleConfig": { - "text2vec-openai": { - "skip": True, - "vectorizePropertyName": False, - } - }, - "name": "question", - }, - { - "dataType": ["text"], - "description": "The link", - "moduleConfig": { - "text2vec-openai": { - "skip": True, - "vectorizePropertyName": False, - } - }, - "name": "answer", - }, - { - "dataType": ["text"], - "description": "The link", - "moduleConfig": { - "text2vec-openai": { - "skip": True, - "vectorizePropertyName": False, - } - }, - "name": "chat_history", - }, - ], - }, - ] -} - -client.schema.create(schema) - -documents = [ - { - "question": "how do i load those?", - "chat_history": "Human: What types of memory exist?\nAssistant: \n\nThere are a few different types of memory: Buffer, Summary, and Conversational Memory.", - "answer": "How do I load Buffer, Summary, and Conversational Memory", - }, - { - "question": "how do i install this package?", - "chat_history": "", - "answer": "How do I install langchain?", - }, - { - "question": "how do I set serpapi_api_key?", - "chat_history": "Human: can you write me a code snippet for that?\nAssistant: \n\nYes, you can create an Agent with a custom LLMChain in LangChain. Here is a [link](https://langchain.readthedocs.io/en/latest/modules/agents/examples/custom_agent.html) to the documentation that provides a code snippet for creating a custom Agent.", - "answer": "How do I set the serpapi_api_key?", - }, - { - "question": "What are some methods for data augmented generation?", - "chat_history": "Human: List all methods of an Agent class please\nAssistant: \n\nTo answer your question, you can find a list of all the methods of the Agent class in the [API reference documentation](https://langchain.readthedocs.io/en/latest/modules/agents/reference.html).", - "answer": "What are some methods for data augmented generation?", - }, - { - "question": "can you write me a code snippet for that?", - "chat_history": "Human: how do I create an agent with custom LLMChain?\nAssistant: \n\nTo create an Agent with a custom LLMChain in LangChain, you can use the [Custom Agent example](https://langchain.readthedocs.io/en/latest/modules/agents/examples/custom_agent.html). This example shows how to create a custom LLMChain and use an existing Agent class to parse the output. For more information on Agents and Tools, check out the [Key Concepts](https://langchain.readthedocs.io/en/latest/modules/agents/key_concepts.html) documentation.", - "answer": "Can you provide a code snippet for creating an Agent with a custom LLMChain?", - }, -] -from langchain.prompts.example_selector.semantic_similarity import \ - sorted_values - -for d in documents: - d["content"] = " ".join(sorted_values(d)) -with client.batch as batch: - for text in documents: - batch.add_data_object( - text, - "Rephrase", - ) - -client.schema.get() -schema = { - "classes": [ - { - "class": "QA", - "description": "Rephrase Examples", - "vectorizer": "text2vec-openai", - "moduleConfig": { - "text2vec-openai": { - "model": "ada", - "modelVersion": "002", - "type": "text", - } - }, - "properties": [ - { - "dataType": ["text"], - "moduleConfig": { - "text2vec-openai": { - "skip": False, - "vectorizePropertyName": False, - } - }, - "name": "content", - }, - { - "dataType": ["text"], - "description": "The link", - "moduleConfig": { - "text2vec-openai": { - "skip": True, - "vectorizePropertyName": False, - } - }, - "name": "question", - }, - { - "dataType": ["text"], - "description": "The link", - "moduleConfig": { - "text2vec-openai": { - "skip": True, - "vectorizePropertyName": False, - } - }, - "name": "answer", - }, - { - "dataType": ["text"], - "description": "The link", - "moduleConfig": { - "text2vec-openai": { - "skip": True, - "vectorizePropertyName": False, - } - }, - "name": "summaries", - }, - { - "dataType": ["text"], - "description": "The link", - "moduleConfig": { - "text2vec-openai": { - "skip": True, - "vectorizePropertyName": False, - } - }, - "name": "sources", - }, - ], - }, - ] -} - -client.schema.create(schema) - -documents = [ - { - "question": "how do i install langchain?", - "answer": "```pip install langchain```", - "summaries": ">Example:\nContent:\n---------\nYou can pip install langchain package by running 'pip install langchain'\n----------\nSource: foo.html", - "sources": "foo.html", - }, - { - "question": "how do i import an openai LLM?", - "answer": "```from langchain.llm import OpenAI```", - "summaries": ">Example:\nContent:\n---------\nyou can import the open ai wrapper (OpenAI) from the langchain.llm module\n----------\nSource: bar.html", - "sources": "bar.html", - }, -] -from langchain.prompts.example_selector.semantic_similarity import \ - sorted_values - -for d in documents: - d["content"] = " ".join(sorted_values(d)) -with client.batch as batch: - for text in documents: - batch.add_data_object( - text, - "QA", - ) diff --git a/spaces/jyseo/3DFuse/my/utils/plot.py b/spaces/jyseo/3DFuse/my/utils/plot.py deleted file mode 100644 index e4172311da88fbabcd107dd3f57b98db7638243a..0000000000000000000000000000000000000000 --- a/spaces/jyseo/3DFuse/my/utils/plot.py +++ /dev/null @@ -1,9 +0,0 @@ -import numpy as np -import matplotlib.pyplot as plt - - -def mpl_fig_to_buffer(fig): - fig.canvas.draw() - plot = np.array(fig.canvas.renderer.buffer_rgba()) - plt.close(fig) - return plot diff --git a/spaces/kdrkdrkdr/ZhongliTTS/monotonic_align/__init__.py b/spaces/kdrkdrkdr/ZhongliTTS/monotonic_align/__init__.py deleted file mode 100644 index 40b6f64aa116c74cac2f6a33444c9eeea2fdb38c..0000000000000000000000000000000000000000 --- a/spaces/kdrkdrkdr/ZhongliTTS/monotonic_align/__init__.py +++ /dev/null @@ -1,21 +0,0 @@ -from numpy import zeros, int32, float32 -from torch import from_numpy - -from .core import maximum_path_jit - - -def maximum_path(neg_cent, mask): - """ numba optimized version. - neg_cent: [b, t_t, t_s] - mask: [b, t_t, t_s] - """ - device = neg_cent.device - dtype = neg_cent.dtype - neg_cent = neg_cent.data.cpu().numpy().astype(float32) - path = zeros(neg_cent.shape, dtype=int32) - - t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(int32) - t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(int32) - maximum_path_jit(path, neg_cent, t_t_max, t_s_max) - return from_numpy(path).to(device=device, dtype=dtype) - diff --git a/spaces/keneonyeachonam/SMART-FHIR-Streamlit-1-022223/README.md b/spaces/keneonyeachonam/SMART-FHIR-Streamlit-1-022223/README.md deleted file mode 100644 index 5f134e6a03d4a56ab4ee6c20046399f7a7f34f27..0000000000000000000000000000000000000000 --- a/spaces/keneonyeachonam/SMART-FHIR-Streamlit-1-022223/README.md +++ /dev/null @@ -1,12 +0,0 @@ ---- -title: SMART FHIR Streamlit 1 022223 -emoji: 🌍 -colorFrom: red -colorTo: red -sdk: streamlit -sdk_version: 1.17.0 -app_file: app.py -pinned: false ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/kevinwang676/SadTalker/webui.sh b/spaces/kevinwang676/SadTalker/webui.sh deleted file mode 100644 index 245750237954e140777c0bd20e6d26a1f9d1f74e..0000000000000000000000000000000000000000 --- a/spaces/kevinwang676/SadTalker/webui.sh +++ /dev/null @@ -1,140 +0,0 @@ -#!/usr/bin/env bash - - -# If run from macOS, load defaults from webui-macos-env.sh -if [[ "$OSTYPE" == "darwin"* ]]; then - export TORCH_COMMAND="pip install torch==1.12.1 torchvision==0.13.1" -fi - -# python3 executable -if [[ -z "${python_cmd}" ]] -then - python_cmd="python3" -fi - -# git executable -if [[ -z "${GIT}" ]] -then - export GIT="git" -fi - -# python3 venv without trailing slash (defaults to ${install_dir}/${clone_dir}/venv) -if [[ -z "${venv_dir}" ]] -then - venv_dir="venv" -fi - -if [[ -z "${LAUNCH_SCRIPT}" ]] -then - LAUNCH_SCRIPT="launcher.py" -fi - -# this script cannot be run as root by default -can_run_as_root=1 - -# read any command line flags to the webui.sh script -while getopts "f" flag > /dev/null 2>&1 -do - case ${flag} in - f) can_run_as_root=1;; - *) break;; - esac -done - -# Disable sentry logging -export ERROR_REPORTING=FALSE - -# Do not reinstall existing pip packages on Debian/Ubuntu -export PIP_IGNORE_INSTALLED=0 - -# Pretty print -delimiter="################################################################" - -printf "\n%s\n" "${delimiter}" -printf "\e[1m\e[32mInstall script for SadTalker + Web UI\n" -printf "\e[1m\e[34mTested on Debian 11 (Bullseye)\e[0m" -printf "\n%s\n" "${delimiter}" - -# Do not run as root -if [[ $(id -u) -eq 0 && can_run_as_root -eq 0 ]] -then - printf "\n%s\n" "${delimiter}" - printf "\e[1m\e[31mERROR: This script must not be launched as root, aborting...\e[0m" - printf "\n%s\n" "${delimiter}" - exit 1 -else - printf "\n%s\n" "${delimiter}" - printf "Running on \e[1m\e[32m%s\e[0m user" "$(whoami)" - printf "\n%s\n" "${delimiter}" -fi - -if [[ -d .git ]] -then - printf "\n%s\n" "${delimiter}" - printf "Repo already cloned, using it as install directory" - printf "\n%s\n" "${delimiter}" - install_dir="${PWD}/../" - clone_dir="${PWD##*/}" -fi - -# Check prerequisites -gpu_info=$(lspci 2>/dev/null | grep VGA) -case "$gpu_info" in - *"Navi 1"*|*"Navi 2"*) export HSA_OVERRIDE_GFX_VERSION=10.3.0 - ;; - *"Renoir"*) export HSA_OVERRIDE_GFX_VERSION=9.0.0 - printf "\n%s\n" "${delimiter}" - printf "Experimental support for Renoir: make sure to have at least 4GB of VRAM and 10GB of RAM or enable cpu mode: --use-cpu all --no-half" - printf "\n%s\n" "${delimiter}" - ;; - *) - ;; -esac -if echo "$gpu_info" | grep -q "AMD" && [[ -z "${TORCH_COMMAND}" ]] -then - export TORCH_COMMAND="pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/rocm5.2" -fi - -for preq in "${GIT}" "${python_cmd}" -do - if ! hash "${preq}" &>/dev/null - then - printf "\n%s\n" "${delimiter}" - printf "\e[1m\e[31mERROR: %s is not installed, aborting...\e[0m" "${preq}" - printf "\n%s\n" "${delimiter}" - exit 1 - fi -done - -if ! "${python_cmd}" -c "import venv" &>/dev/null -then - printf "\n%s\n" "${delimiter}" - printf "\e[1m\e[31mERROR: python3-venv is not installed, aborting...\e[0m" - printf "\n%s\n" "${delimiter}" - exit 1 -fi - -printf "\n%s\n" "${delimiter}" -printf "Create and activate python venv" -printf "\n%s\n" "${delimiter}" -cd "${install_dir}"/"${clone_dir}"/ || { printf "\e[1m\e[31mERROR: Can't cd to %s/%s/, aborting...\e[0m" "${install_dir}" "${clone_dir}"; exit 1; } -if [[ ! -d "${venv_dir}" ]] -then - "${python_cmd}" -m venv "${venv_dir}" - first_launch=1 -fi -# shellcheck source=/dev/null -if [[ -f "${venv_dir}"/bin/activate ]] -then - source "${venv_dir}"/bin/activate -else - printf "\n%s\n" "${delimiter}" - printf "\e[1m\e[31mERROR: Cannot activate python venv, aborting...\e[0m" - printf "\n%s\n" "${delimiter}" - exit 1 -fi - -printf "\n%s\n" "${delimiter}" -printf "Launching launcher.py..." -printf "\n%s\n" "${delimiter}" -exec "${python_cmd}" "${LAUNCH_SCRIPT}" "$@" \ No newline at end of file diff --git a/spaces/kevinwang676/VoiceChanger/src/utils/croper.py b/spaces/kevinwang676/VoiceChanger/src/utils/croper.py deleted file mode 100644 index 3d9a0ac58f97afdc95d40f2a400272b11fe38093..0000000000000000000000000000000000000000 --- a/spaces/kevinwang676/VoiceChanger/src/utils/croper.py +++ /dev/null @@ -1,144 +0,0 @@ -import os -import cv2 -import time -import glob -import argparse -import scipy -import numpy as np -from PIL import Image -import torch -from tqdm import tqdm -from itertools import cycle - -from src.face3d.extract_kp_videos_safe import KeypointExtractor -from facexlib.alignment import landmark_98_to_68 - -import numpy as np -from PIL import Image - -class Preprocesser: - def __init__(self, device='cuda'): - self.predictor = KeypointExtractor(device) - - def get_landmark(self, img_np): - """get landmark with dlib - :return: np.array shape=(68, 2) - """ - with torch.no_grad(): - dets = self.predictor.det_net.detect_faces(img_np, 0.97) - - if len(dets) == 0: - return None - det = dets[0] - - img = img_np[int(det[1]):int(det[3]), int(det[0]):int(det[2]), :] - lm = landmark_98_to_68(self.predictor.detector.get_landmarks(img)) # [0] - - #### keypoints to the original location - lm[:,0] += int(det[0]) - lm[:,1] += int(det[1]) - - return lm - - def align_face(self, img, lm, output_size=1024): - """ - :param filepath: str - :return: PIL Image - """ - lm_chin = lm[0: 17] # left-right - lm_eyebrow_left = lm[17: 22] # left-right - lm_eyebrow_right = lm[22: 27] # left-right - lm_nose = lm[27: 31] # top-down - lm_nostrils = lm[31: 36] # top-down - lm_eye_left = lm[36: 42] # left-clockwise - lm_eye_right = lm[42: 48] # left-clockwise - lm_mouth_outer = lm[48: 60] # left-clockwise - lm_mouth_inner = lm[60: 68] # left-clockwise - - # Calculate auxiliary vectors. - eye_left = np.mean(lm_eye_left, axis=0) - eye_right = np.mean(lm_eye_right, axis=0) - eye_avg = (eye_left + eye_right) * 0.5 - eye_to_eye = eye_right - eye_left - mouth_left = lm_mouth_outer[0] - mouth_right = lm_mouth_outer[6] - mouth_avg = (mouth_left + mouth_right) * 0.5 - eye_to_mouth = mouth_avg - eye_avg - - # Choose oriented crop rectangle. - x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # Addition of binocular difference and double mouth difference - x /= np.hypot(*x) # hypot函数计算直角三角形的斜边长,用斜边长对三角形两条直边做归一化 - x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) # 双眼差和眼嘴差,选较大的作为基准尺度 - y = np.flipud(x) * [-1, 1] - c = eye_avg + eye_to_mouth * 0.1 - quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) # 定义四边形,以面部基准位置为中心上下左右平移得到四个顶点 - qsize = np.hypot(*x) * 2 # 定义四边形的大小(边长),为基准尺度的2倍 - - # Shrink. - # 如果计算出的四边形太大了,就按比例缩小它 - shrink = int(np.floor(qsize / output_size * 0.5)) - if shrink > 1: - rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) - img = img.resize(rsize, Image.ANTIALIAS) - quad /= shrink - qsize /= shrink - else: - rsize = (int(np.rint(float(img.size[0]))), int(np.rint(float(img.size[1])))) - - # Crop. - border = max(int(np.rint(qsize * 0.1)), 3) - crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), - int(np.ceil(max(quad[:, 1])))) - crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), - min(crop[3] + border, img.size[1])) - if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: - # img = img.crop(crop) - quad -= crop[0:2] - - # Pad. - pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), - int(np.ceil(max(quad[:, 1])))) - pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), - max(pad[3] - img.size[1] + border, 0)) - # if enable_padding and max(pad) > border - 4: - # pad = np.maximum(pad, int(np.rint(qsize * 0.3))) - # img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') - # h, w, _ = img.shape - # y, x, _ = np.ogrid[:h, :w, :1] - # mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), - # 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) - # blur = qsize * 0.02 - # img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) - # img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) - # img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') - # quad += pad[:2] - - # Transform. - quad = (quad + 0.5).flatten() - lx = max(min(quad[0], quad[2]), 0) - ly = max(min(quad[1], quad[7]), 0) - rx = min(max(quad[4], quad[6]), img.size[0]) - ry = min(max(quad[3], quad[5]), img.size[0]) - - # Save aligned image. - return rsize, crop, [lx, ly, rx, ry] - - def crop(self, img_np_list, still=False, xsize=512): # first frame for all video - img_np = img_np_list[0] - lm = self.get_landmark(img_np) - - if lm is None: - raise 'can not detect the landmark from source image' - rsize, crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize) - clx, cly, crx, cry = crop - lx, ly, rx, ry = quad - lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) - for _i in range(len(img_np_list)): - _inp = img_np_list[_i] - _inp = cv2.resize(_inp, (rsize[0], rsize[1])) - _inp = _inp[cly:cry, clx:crx] - if not still: - _inp = _inp[ly:ry, lx:rx] - img_np_list[_i] = _inp - return img_np_list, crop, quad - diff --git a/spaces/kidcoconut/spcdkr_omdenasaudi_liverhccxai/uix/lit_packages.py b/spaces/kidcoconut/spcdkr_omdenasaudi_liverhccxai/uix/lit_packages.py deleted file mode 100644 index 875b49858210da4b4e55f78a266ce92252085a9e..0000000000000000000000000000000000000000 --- a/spaces/kidcoconut/spcdkr_omdenasaudi_liverhccxai/uix/lit_packages.py +++ /dev/null @@ -1,31 +0,0 @@ -import importlib - - -#--- return a list of streamlit packages/pages to render -def packages(): - #--- - ary_pkg = [] - ary_pkg.extend(['lit_continentData', - 'lit_countryData' - ]) - return ary_pkg - - - -def get_aryPkgDescr(): - #--- load list of pages to display - aryDescr = [] - aryPkgs = [] - - aryModules = packages() - for modname in aryModules: - m = importlib.import_module('.'+ modname,'uix') - aryPkgs.append(m) - - #--- use the module description attribute if it exists - #--- otherwise use the module name - try: - aryDescr.append(m.description) - except: - aryDescr.append(modname) - return [aryDescr, aryPkgs] \ No newline at end of file diff --git a/spaces/kinensake/quanquan/gramformer/__init__.py b/spaces/kinensake/quanquan/gramformer/__init__.py deleted file mode 100644 index 4bc8f30e80870721cf6a024caf25fbe1f6cc99ed..0000000000000000000000000000000000000000 --- a/spaces/kinensake/quanquan/gramformer/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from gramformer.gramformer import Gramformer diff --git a/spaces/king007/docquery/README.md b/spaces/king007/docquery/README.md deleted file mode 100644 index 62af977b667cc449c5dd0b0eaf1bdd4dccde16d5..0000000000000000000000000000000000000000 --- a/spaces/king007/docquery/README.md +++ /dev/null @@ -1,11 +0,0 @@ ---- -title: "DocQuery —\_Document Query Engine" -emoji: 🦉 -colorFrom: purple -colorTo: purple -sdk: gradio -sdk_version: 3.1.7 -app_file: app.py -pinned: true -duplicated_from: impira/docquery ---- diff --git a/spaces/kira4424/Tacotron-zero-short-voice-clone/vocoder/wavernn/gen_wavernn.py b/spaces/kira4424/Tacotron-zero-short-voice-clone/vocoder/wavernn/gen_wavernn.py deleted file mode 100644 index abda3eb3f9b47ed74398d35a16ec0ffa8a5ff3e6..0000000000000000000000000000000000000000 --- a/spaces/kira4424/Tacotron-zero-short-voice-clone/vocoder/wavernn/gen_wavernn.py +++ /dev/null @@ -1,31 +0,0 @@ -from vocoder.wavernn.models.fatchord_version import WaveRNN -from vocoder.wavernn.audio import * - - -def gen_testset(model: WaveRNN, test_set, samples, batched, target, overlap, save_path): - k = model.get_step() // 1000 - - for i, (m, x) in enumerate(test_set, 1): - if i > samples: - break - - print('\n| Generating: %i/%i' % (i, samples)) - - x = x[0].numpy() - - bits = 16 if hp.voc_mode == 'MOL' else hp.bits - - if hp.mu_law and hp.voc_mode != 'MOL' : - x = decode_mu_law(x, 2**bits, from_labels=True) - else : - x = label_2_float(x, bits) - - save_wav(x, save_path.joinpath("%dk_steps_%d_target.wav" % (k, i))) - - batch_str = "gen_batched_target%d_overlap%d" % (target, overlap) if batched else \ - "gen_not_batched" - save_str = save_path.joinpath("%dk_steps_%d_%s.wav" % (k, i, batch_str)) - - wav = model.generate(m, batched, target, overlap, hp.mu_law) - save_wav(wav, save_str) - diff --git a/spaces/kmaurinjones/wordle_wizard/app.py b/spaces/kmaurinjones/wordle_wizard/app.py deleted file mode 100644 index 40e877401f1cd4e9eac288408e959505d59683b4..0000000000000000000000000000000000000000 --- a/spaces/kmaurinjones/wordle_wizard/app.py +++ /dev/null @@ -1,92 +0,0 @@ -import streamlit as st -from streamlit_extras.stateful_button import button # for button that can maintain its clicked state -import random # for showing random words -from wordle_functions import * # for wordle solving -import plotly.express as px # for plots -from plots import * # for plots - -### Page header -st.title("Wordle Wizard 🧙") - -### Loading in official word list -official_words = [] -with open("data/official_words_processed.txt", "r", encoding = "utf-8") as f: - for word in f.read().split("\n"): - if len(word) == 5: - official_words.append(word) -f.close() # closes connection to file - - -### Examples of words to use -sugg_words = [] -for i in range(0, 20): - ran_int = random.randint(0, len(official_words) - 1) - word = official_words[ran_int] - sugg_words.append(word) - -### for guess length validation of both guesses -valid_guesses = True - -### Generate Examples Button -st.write('Please enter a starting word and a target word, and click the "Abracadabra" button to have the puzzle solved.\n') -st.write('If you would like some examples of words you can use, click the button below.\n') -# gen_egs = st.button('Show Me Words') - -if st.button('Show Me Words', key = "button1"): - st.write(f"There are {len(official_words)} in the official Wordle word list. Here are {len(sugg_words)} of them.") - st.write(f"{sugg_words}\n") - -# user starting word -starting_word = st.text_input("Enter starting word here") -starting_word = starting_word.strip().replace(" ", "").lower() -if len(starting_word) != 5: - valid_guesses = False - st.write('Please double check and make sure there are exactly 5 letters in the starting word.\n') - -# user target word -target_word = st.text_input("Enter target word here") -target_word = target_word.strip().replace(" ", "").lower() -if len(target_word) != 5: - valid_guesses = False - st.write('Please double check and make sure there are exactly 5 letters in the target word.\n') - -### Solving -# solve_button = st.button('Abracadabra') -if button('Abracadabra', key = "button2"): # button to make everything run - if valid_guesses == True: # ensure words are the correct lengths - - # if (starting_word.isalpha() and target_word.isalpha()): # checking there's no punctuation - if not (starting_word.isalpha() and target_word.isalpha()): # if the passed words don't check every criterion - st.write("Please check again that the starting word and target word only contain letter and are both 5 letters in length. Once they are, click the 'Abracadabra' button once more.") - - else: # if all is right in the wordle wizard world - # if either of them isn't in the list, temporarily add them to the list. This doesn't impact things much and will save a ton of error headaches - if starting_word not in official_words: - official_words.append(starting_word) - if target_word not in official_words: - official_words.append(target_word) - - # puzzle solution - wordle_wizard(word_list = official_words, max_guesses = 6, guess = starting_word, target = target_word, random_guess = False, random_target = False, verbose = True, drama = 0, return_stats = False, record = False) - - # post-solution prompt - st.write("Curious about what the number beside each word means? Click the button below to find out!") - - # show plot and info - if button(label = "More info", key = "button3"): - - # show plot of letters distribution - count_plot() - - st.write("This is a distribution of the frequencies of all letters in the Wordle word list used in this app. The higher a given letter's count is, the more likely it is that that letter will be able to tell us something about the target word in a Wordle puzzle.\n") - st.write("The rating of each letter corresponds to approximately the percentage of all words of the ~2300 words of the list used for this game in which the given word's letters appear. This means that, for a word with a rating of 30 (see below), its letters show up in 30\% of the words of the entire word list. Since we cannot possibly have all 26 letters of the English alphabet in one 5-letter word, this rating can only really be used to compare one word to another. Using more highly-rated words should generally result in getting to the target word in fewer guesses than using lower-rated words.\n") - - # show plot of best and worst words - words_plot() - - st.write("By averaging the respective ratings of the letters in each word, we can assign it a relative score. By this rating system, here are the top 5 words, the middle 5 words, and the worst 5 words of the entire Wordle word list in terms of their respective ratings.\n\n") - st.write("If you're interested in learning more about the theory of how Wordle Wizard actually works, check out this blog post (https://medium.com/@kmaurinjones/how-i-beat-wordle-once-and-for-all-322c8641a70d), that describes everything mentioned here (and more!) in greater detail.\n") - - st.write("-----------------------------\n") - -st.write("\nThanks for checking out Wordle Wizard! If you have any feedback or requests for additions to this app, shoot me an email at kmaurinjones@gmail.com.") \ No newline at end of file diff --git a/spaces/koajoel/PolyFormer/fairseq/examples/shuffled_word_order/README.md b/spaces/koajoel/PolyFormer/fairseq/examples/shuffled_word_order/README.md deleted file mode 100644 index f20483849a8ca33bf349b57882a79155ba593bf1..0000000000000000000000000000000000000000 --- a/spaces/koajoel/PolyFormer/fairseq/examples/shuffled_word_order/README.md +++ /dev/null @@ -1,84 +0,0 @@ -# Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little - -[https://arxiv.org/abs/2104.06644](https://arxiv.org/abs/2104.06644) - -## Introduction - -In this work, we pre-train [RoBERTa](../roberta) base on various word shuffled variants of BookWiki corpus (16GB). We observe that a word shuffled pre-trained model achieves surprisingly good scores on GLUE, PAWS and several parametric probing tasks. Please read our paper for more details on the experiments. - -## Pre-trained models - -| Model | Description | Download | -| ------------------------------------- | -------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------- | -| `roberta.base.orig` | RoBERTa (base) trained on natural corpus | [roberta.base.orig.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.orig.tar.gz) | -| `roberta.base.shuffle.n1` | RoBERTa (base) trained on n=1 gram sentence word shuffled data | [roberta.base.shuffle.n1.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n1.tar.gz) | -| `roberta.base.shuffle.n2` | RoBERTa (base) trained on n=2 gram sentence word shuffled data | [roberta.base.shuffle.n2.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n2.tar.gz) | -| `roberta.base.shuffle.n3` | RoBERTa (base) trained on n=3 gram sentence word shuffled data | [roberta.base.shuffle.n3.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n3.tar.gz) | -| `roberta.base.shuffle.n4` | RoBERTa (base) trained on n=4 gram sentence word shuffled data | [roberta.base.shuffle.n4.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n4.tar.gz) | -| `roberta.base.shuffle.512` | RoBERTa (base) trained on unigram 512 word block shuffled data | [roberta.base.shuffle.512.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.512.tar.gz) | -| `roberta.base.shuffle.corpus` | RoBERTa (base) trained on unigram corpus word shuffled data | [roberta.base.shuffle.corpus.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.corpus.tar.gz) | -| `roberta.base.shuffle.corpus_uniform` | RoBERTa (base) trained on unigram corpus word shuffled data, where all words are uniformly sampled | [roberta.base.shuffle.corpus_uniform.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.corpus_uniform.tar.gz) | -| `roberta.base.nopos` | RoBERTa (base) without positional embeddings, trained on natural corpus | [roberta.base.nopos.tar.gz](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.nopos.tar.gz) | - -## Results - -[GLUE (Wang et al, 2019)](https://gluebenchmark.com/) & [PAWS (Zhang et al, 2019)](https://github.com/google-research-datasets/paws) _(dev set, single model, single-task fine-tuning, median of 5 seeds)_ - -| name | CoLA | MNLI | MRPC | PAWS | QNLI | QQP | RTE | SST-2 | -| :----------------------------------- | ----: | ----: | ----: | ----: | ----: | ----: | ----: | ----: | -| `roberta.base.orig` | 61.4 | 86.11 | 89.19 | 94.46 | 92.53 | 91.26 | 74.64 | 93.92 | -| `roberta.base.shuffle.n1` | 35.15 | 82.64 | 86 | 89.97 | 89.02 | 91.01 | 69.02 | 90.47 | -| `roberta.base.shuffle.n2` | 54.37 | 83.43 | 86.24 | 93.46 | 90.44 | 91.36 | 70.83 | 91.79 | -| `roberta.base.shuffle.n3` | 48.72 | 83.85 | 86.36 | 94.05 | 91.69 | 91.24 | 70.65 | 92.02 | -| `roberta.base.shuffle.n4` | 58.64 | 83.77 | 86.98 | 94.32 | 91.69 | 91.4 | 70.83 | 92.48 | -| `roberta.base.shuffle.512` | 12.76 | 77.52 | 79.61 | 84.77 | 85.19 | 90.2 | 56.52 | 86.34 | -| `roberta.base.shuffle.corpus` | 0 | 71.9 | 70.52 | 58.52 | 71.11 | 85.52 | 53.99 | 83.35 | -| `roberta.base.shuffle.corpus_random` | 9.19 | 72.33 | 70.76 | 58.42 | 77.76 | 85.93 | 53.99 | 84.04 | -| `roberta.base.nopos` | 0 | 63.5 | 72.73 | 57.08 | 77.72 | 87.87 | 54.35 | 83.24 | - -For more results on probing tasks, please refer to [our paper](https://arxiv.org/abs/2104.06644). - -## Example Usage - -Follow the same usage as in [RoBERTa](https://github.com/pytorch/fairseq/tree/main/examples/roberta) to load and test your models: - -```python -# Download roberta.base.shuffle.n1 model -wget https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n1.tar.gz -tar -xzvf roberta.base.shuffle.n1.tar.gz - -# Load the model in fairseq -from fairseq.models.roberta import RoBERTaModel -roberta = RoBERTaModel.from_pretrained('/path/to/roberta.base.shuffle.n1', checkpoint_file='model.pt') -roberta.eval() # disable dropout (or leave in train mode to finetune) -``` - -**Note**: The model trained without positional embeddings (`roberta.base.nopos`) is a modified `RoBERTa` model, where the positional embeddings are not used. Thus, the typical `from_pretrained` method on fairseq version of RoBERTa will not be able to load the above model weights. To do so, construct a new `RoBERTaModel` object by setting the flag `use_positional_embeddings` to `False` (or [in the latest code](https://github.com/pytorch/fairseq/blob/main/fairseq/models/roberta/model.py#L543), set `no_token_positional_embeddings` to `True`), and then load the individual weights. - -## Fine-tuning Evaluation - -We provide the trained fine-tuned models on MNLI here for each model above for quick evaluation (1 seed for each model). Please refer to [finetuning details](README.finetuning.md) for the parameters of these models. Follow [RoBERTa](https://github.com/pytorch/fairseq/tree/main/examples/roberta) instructions to evaluate these models. - -| Model | MNLI M Dev Accuracy | Link | -| :----------------------------------------- | :------------------ | :--------------------------------------------------------------------------------------------------------------- | -| `roberta.base.orig.mnli` | 86.14 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.orig.mnli.tar.gz) | -| `roberta.base.shuffle.n1.mnli` | 82.55 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n1.mnli.tar.gz) | -| `roberta.base.shuffle.n2.mnli` | 83.21 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n2.mnli.tar.gz) | -| `roberta.base.shuffle.n3.mnli` | 83.89 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n3.mnli.tar.gz) | -| `roberta.base.shuffle.n4.mnli` | 84.00 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.n4.mnli.tar.gz) | -| `roberta.base.shuffle.512.mnli` | 77.22 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.512.mnli.tar.gz) | -| `roberta.base.shuffle.corpus.mnli` | 71.88 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.corpus.mnli.tar.gz) | -| `roberta.base.shuffle.corpus_uniform.mnli` | 72.46 | [Download](https://dl.fbaipublicfiles.com/unnatural_pretraining/roberta.base.shuffle.corpus_uniform.mnli.tar.gz) | - -## Citation - -```bibtex -@misc{sinha2021masked, - title={Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little}, - author={Koustuv Sinha and Robin Jia and Dieuwke Hupkes and Joelle Pineau and Adina Williams and Douwe Kiela}, - year={2021}, - eprint={2104.06644}, - archivePrefix={arXiv}, - primaryClass={cs.CL} -} -``` diff --git a/spaces/koajoel/PolyFormer/fairseq/examples/speech_synthesis/docs/vctk_example.md b/spaces/koajoel/PolyFormer/fairseq/examples/speech_synthesis/docs/vctk_example.md deleted file mode 100644 index 2ba78f3f73d6ea30f9de89150fbbc9dd5923b6fa..0000000000000000000000000000000000000000 --- a/spaces/koajoel/PolyFormer/fairseq/examples/speech_synthesis/docs/vctk_example.md +++ /dev/null @@ -1,51 +0,0 @@ -[[Back]](..) - -# VCTK - -[VCTK](https://datashare.ed.ac.uk/handle/10283/3443) is an open English speech corpus. We provide examples -for building [Transformer](https://arxiv.org/abs/1809.08895) models on this dataset. - - -## Data preparation -Download data, create splits and generate audio manifests with -```bash -python -m examples.speech_synthesis.preprocessing.get_vctk_audio_manifest \ - --output-data-root ${AUDIO_DATA_ROOT} \ - --output-manifest-root ${AUDIO_MANIFEST_ROOT} -``` - -Then, extract log-Mel spectrograms, generate feature manifest and create data configuration YAML with -```bash -python -m examples.speech_synthesis.preprocessing.get_feature_manifest \ - --audio-manifest-root ${AUDIO_MANIFEST_ROOT} \ - --output-root ${FEATURE_MANIFEST_ROOT} \ - --ipa-vocab --use-g2p -``` -where we use phoneme inputs (`--ipa-vocab --use-g2p`) as example. - -To denoise audio and trim leading/trailing silence using signal processing based VAD, run -```bash -for SPLIT in dev test train; do - python -m examples.speech_synthesis.preprocessing.denoise_and_vad_audio \ - --audio-manifest ${AUDIO_MANIFEST_ROOT}/${SPLIT}.audio.tsv \ - --output-dir ${PROCESSED_DATA_ROOT} \ - --denoise --vad --vad-agg-level 3 -done -``` - -## Training -(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#transformer).) - -## Inference -(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#inference).) - -## Automatic Evaluation -(Please refer to [the LJSpeech example](../docs/ljspeech_example.md#automatic-evaluation).) - -## Results - -| --arch | Params | Test MCD | Model | -|---|---|---|---| -| tts_transformer | 54M | 3.4 | [Download](https://dl.fbaipublicfiles.com/fairseq/s2/vctk_transformer_phn.tar) | - -[[Back]](..) diff --git a/spaces/kohrisatou-infinity/KIP_01_beta/preprocess_hubert_f0.py b/spaces/kohrisatou-infinity/KIP_01_beta/preprocess_hubert_f0.py deleted file mode 100644 index 4fe7f21541acb01537797f430d53b3c0e63279e1..0000000000000000000000000000000000000000 --- a/spaces/kohrisatou-infinity/KIP_01_beta/preprocess_hubert_f0.py +++ /dev/null @@ -1,106 +0,0 @@ -import os -import argparse - -import torch -import json -from glob import glob - -from pyworld import pyworld -from tqdm import tqdm -from scipy.io import wavfile - -import utils -from mel_processing import mel_spectrogram_torch -#import h5py -import logging -logging.getLogger('numba').setLevel(logging.WARNING) - -import parselmouth -import librosa -import numpy as np - - -def get_f0(path,p_len=None, f0_up_key=0): - x, _ = librosa.load(path, 32000) - if p_len is None: - p_len = x.shape[0]//320 - else: - assert abs(p_len-x.shape[0]//320) < 3, (path, p_len, x.shape) - time_step = 320 / 32000 * 1000 - f0_min = 50 - f0_max = 1100 - f0_mel_min = 1127 * np.log(1 + f0_min / 700) - f0_mel_max = 1127 * np.log(1 + f0_max / 700) - - f0 = parselmouth.Sound(x, 32000).to_pitch_ac( - time_step=time_step / 1000, voicing_threshold=0.6, - pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] - - pad_size=(p_len - len(f0) + 1) // 2 - if(pad_size>0 or p_len - len(f0) - pad_size>0): - f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant') - - f0bak = f0.copy() - f0 *= pow(2, f0_up_key / 12) - f0_mel = 1127 * np.log(1 + f0 / 700) - f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1 - f0_mel[f0_mel <= 1] = 1 - f0_mel[f0_mel > 255] = 255 - f0_coarse = np.rint(f0_mel).astype(np.int) - return f0_coarse, f0bak - -def resize2d(x, target_len): - source = np.array(x) - source[source<0.001] = np.nan - target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source) - res = np.nan_to_num(target) - return res - -def compute_f0(path, c_len): - x, sr = librosa.load(path, sr=32000) - f0, t = pyworld.dio( - x.astype(np.double), - fs=sr, - f0_ceil=800, - frame_period=1000 * 320 / sr, - ) - f0 = pyworld.stonemask(x.astype(np.double), f0, t, 32000) - for index, pitch in enumerate(f0): - f0[index] = round(pitch, 1) - assert abs(c_len - x.shape[0]//320) < 3, (c_len, f0.shape) - - return None, resize2d(f0, c_len) - - -def process(filename): - print(filename) - save_name = filename+".soft.pt" - if not os.path.exists(save_name): - devive = torch.device("cuda" if torch.cuda.is_available() else "cpu") - wav, _ = librosa.load(filename, sr=16000) - wav = torch.from_numpy(wav).unsqueeze(0).to(devive) - c = utils.get_hubert_content(hmodel, wav) - torch.save(c.cpu(), save_name) - else: - c = torch.load(save_name) - f0path = filename+".f0.npy" - if not os.path.exists(f0path): - cf0, f0 = compute_f0(filename, c.shape[-1] * 2) - np.save(f0path, f0) - - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--in_dir", type=str, default="dataset/32k", help="path to input dir") - args = parser.parse_args() - - print("Loading hubert for content...") - hmodel = utils.get_hubert_model(0 if torch.cuda.is_available() else None) - print("Loaded hubert.") - - filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True)#[:10] - - for filename in tqdm(filenames): - process(filename) - \ No newline at end of file diff --git a/spaces/kokofixcomputers/chat-ui/src/lib/types/SharedConversation.ts b/spaces/kokofixcomputers/chat-ui/src/lib/types/SharedConversation.ts deleted file mode 100644 index e8981ed83a8871ef49fa539a14cb1ebfca599ea0..0000000000000000000000000000000000000000 --- a/spaces/kokofixcomputers/chat-ui/src/lib/types/SharedConversation.ts +++ /dev/null @@ -1,12 +0,0 @@ -import type { Message } from "./Message"; -import type { Timestamps } from "./Timestamps"; - -export interface SharedConversation extends Timestamps { - _id: string; - - hash: string; - - model: string; - title: string; - messages: Message[]; -} diff --git a/spaces/krystian-lieber/codellama-34b-chat/USE_POLICY.md b/spaces/krystian-lieber/codellama-34b-chat/USE_POLICY.md deleted file mode 100644 index 1ed95d8066682f283a0bd3696d7b6d6a539c18dc..0000000000000000000000000000000000000000 --- a/spaces/krystian-lieber/codellama-34b-chat/USE_POLICY.md +++ /dev/null @@ -1,50 +0,0 @@ -# Llama Code Acceptable Use Policy - -Meta is committed to promoting safe and fair use of its tools and features, including Llama Code. If you access or use Llama Code, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at [ai.meta.com/llama/use-policy](http://ai.meta.com/llama/use-policy). - -## Prohibited Uses -We want everyone to use Llama Code safely and responsibly. You agree you will not use, or allow others to use, Llama Code to: - -1. Violate the law or others’ rights, including to: - 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: - 1. Violence or terrorism - 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material - 3. Human trafficking, exploitation, and sexual violence - 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. - 5. Sexual solicitation - 6. Any other criminal activity - 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals - 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services - 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices - 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws - 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials - 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system - - - -2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama Code related to the following: - 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State - 2. Guns and illegal weapons (including weapon development) - 3. Illegal drugs and regulated/controlled substances - 4. Operation of critical infrastructure, transportation technologies, or heavy machinery - 5. Self-harm or harm to others, including suicide, cutting, and eating disorders - 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual - - - -3. Intentionally deceive or mislead others, including use of Llama Code related to the following: - 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation - 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content - 3. Generating, promoting, or further distributing spam - 4. Impersonating another individual without consent, authorization, or legal right - 5. Representing that the use of Llama Code or outputs are human-generated - 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement -4. Fail to appropriately disclose to end users any known dangers of your AI system - -Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means: - -* Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama) -* Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) -* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) -* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: [LlamaUseReport@meta.com](mailto:LlamaUseReport@meta.com) - diff --git a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/altair/vegalite/__init__.py b/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/altair/vegalite/__init__.py deleted file mode 100644 index 690d64e63bc40a6006318cd70535017d41643def..0000000000000000000000000000000000000000 --- a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/altair/vegalite/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -# ruff: noqa -from .v5 import * diff --git a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/anyio/to_thread.py b/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/anyio/to_thread.py deleted file mode 100644 index 9315d1ecf16eee45cd129ce17e48041a7f82348a..0000000000000000000000000000000000000000 --- a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/anyio/to_thread.py +++ /dev/null @@ -1,67 +0,0 @@ -from __future__ import annotations - -from typing import Callable, TypeVar -from warnings import warn - -from ._core._eventloop import get_asynclib -from .abc import CapacityLimiter - -T_Retval = TypeVar("T_Retval") - - -async def run_sync( - func: Callable[..., T_Retval], - *args: object, - cancellable: bool = False, - limiter: CapacityLimiter | None = None, -) -> T_Retval: - """ - Call the given function with the given arguments in a worker thread. - - If the ``cancellable`` option is enabled and the task waiting for its completion is cancelled, - the thread will still run its course but its return value (or any raised exception) will be - ignored. - - :param func: a callable - :param args: positional arguments for the callable - :param cancellable: ``True`` to allow cancellation of the operation - :param limiter: capacity limiter to use to limit the total amount of threads running - (if omitted, the default limiter is used) - :return: an awaitable that yields the return value of the function. - - """ - return await get_asynclib().run_sync_in_worker_thread( - func, *args, cancellable=cancellable, limiter=limiter - ) - - -async def run_sync_in_worker_thread( - func: Callable[..., T_Retval], - *args: object, - cancellable: bool = False, - limiter: CapacityLimiter | None = None, -) -> T_Retval: - warn( - "run_sync_in_worker_thread() has been deprecated, use anyio.to_thread.run_sync() instead", - DeprecationWarning, - ) - return await run_sync(func, *args, cancellable=cancellable, limiter=limiter) - - -def current_default_thread_limiter() -> CapacityLimiter: - """ - Return the capacity limiter that is used by default to limit the number of concurrent threads. - - :return: a capacity limiter object - - """ - return get_asynclib().current_default_thread_limiter() - - -def current_default_worker_thread_limiter() -> CapacityLimiter: - warn( - "current_default_worker_thread_limiter() has been deprecated, " - "use anyio.to_thread.current_default_thread_limiter() instead", - DeprecationWarning, - ) - return current_default_thread_limiter() diff --git a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/gradio/templates/frontend/assets/Textbox-8be76163.js b/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/gradio/templates/frontend/assets/Textbox-8be76163.js deleted file mode 100644 index 83e897a38ac8a0b811a0656560bcd4bb597c4011..0000000000000000000000000000000000000000 --- a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/gradio/templates/frontend/assets/Textbox-8be76163.js +++ /dev/null @@ -1,2 +0,0 @@ -import{S as te,i as le,s as ie,G as N,e as j,H as W,C as h,g as y,m as q,E as be,l as U,t as w,o as Y,p as g,q as v,n as L,r as he,a8 as de,I as me,K as ge,T as X,b as K,ad as H,a6 as ke,J as m,a1 as pe,a0 as A,f as se,F as J,aa as we,am as ye,ac as ve,ae as k,a as Z,k as x,y as F,x as Te,$ as Ee,h as Ce,j as Be}from"./index-8c3da1d9.js";/* empty css */import{B as He}from"./Button-62634b34.js";/* empty css */import{B as Ne}from"./BlockTitle-338c46c0.js";import{C as Se,a as ze}from"./Copy-fd383441.js";function De(l){let e;return{c(){e=me(l[3])},m(t,n){y(t,e,n)},p(t,n){n[0]&8&&ge(e,t[3])},d(t){t&&v(e)}}}function Ke(l){let e,t,n,i,s,u,c=l[6]&&l[9].show_copy_button&&$(l);return{c(){c&&c.c(),e=W(),t=N("textarea"),h(t,"data-testid","textbox"),h(t,"class","scroll-hide svelte-1pie7s6"),h(t,"placeholder",l[2]),h(t,"rows",l[1]),t.disabled=l[5]},m(f,b){c&&c.m(f,b),y(f,e,b),y(f,t,b),H(t,l[0]),l[25](t),i=!0,s||(u=[ke(n=l[16].call(null,t,l[0])),m(t,"input",l[24]),m(t,"keypress",l[15]),m(t,"blur",l[12]),m(t,"select",l[14])],s=!0)},p(f,b){f[6]&&f[9].show_copy_button?c?(c.p(f,b),b[0]&576&&g(c,1)):(c=$(f),c.c(),g(c,1),c.m(e.parentNode,e)):c&&(U(),w(c,1,1,()=>{c=null}),Y()),(!i||b[0]&4)&&h(t,"placeholder",f[2]),(!i||b[0]&2)&&h(t,"rows",f[1]),(!i||b[0]&32)&&(t.disabled=f[5]),n&&pe(n.update)&&b[0]&1&&n.update.call(null,f[0]),b[0]&1&&H(t,f[0])},i(f){i||(g(c),i=!0)},o(f){w(c),i=!1},d(f){c&&c.d(f),f&&v(e),f&&v(t),l[25](null),s=!1,A(u)}}}function je(l){let e;function t(s,u){if(s[8]==="text")return Ie;if(s[8]==="password")return Ge;if(s[8]==="email")return Fe}let n=t(l),i=n&&n(l);return{c(){i&&i.c(),e=se()},m(s,u){i&&i.m(s,u),y(s,e,u)},p(s,u){n===(n=t(s))&&i?i.p(s,u):(i&&i.d(1),i=n&&n(s),i&&(i.c(),i.m(e.parentNode,e)))},i:J,o:J,d(s){i&&i.d(s),s&&v(e)}}}function $(l){let e,t,n,i;const s=[Le,qe],u=[];function c(f,b){return f[11]?0:1}return e=c(l),t=u[e]=s[e](l),{c(){t.c(),n=se()},m(f,b){u[e].m(f,b),y(f,n,b),i=!0},p(f,b){let a=e;e=c(f),e===a?u[e].p(f,b):(U(),w(u[a],1,1,()=>{u[a]=null}),Y(),t=u[e],t?t.p(f,b):(t=u[e]=s[e](f),t.c()),g(t,1),t.m(n.parentNode,n))},i(f){i||(g(t),i=!0)},o(f){w(t),i=!1},d(f){u[e].d(f),f&&v(n)}}}function qe(l){let e,t,n,i,s;return t=new Se({}),{c(){e=N("button"),j(t.$$.fragment),h(e,"class","copy-text svelte-1pie7s6")},m(u,c){y(u,e,c),q(t,e,null),n=!0,i||(s=m(e,"click",l[13]),i=!0)},p:J,i(u){n||(g(t.$$.fragment,u),n=!0)},o(u){w(t.$$.fragment,u),n=!1},d(u){u&&v(e),L(t),i=!1,s()}}}function Le(l){let e,t,n,i;return t=new ze({}),{c(){e=N("button"),j(t.$$.fragment),h(e,"class","svelte-1pie7s6")},m(s,u){y(s,e,u),q(t,e,null),i=!0},p:J,i(s){i||(g(t.$$.fragment,s),n||we(()=>{n=ye(e,ve,{duration:300}),n.start()}),i=!0)},o(s){w(t.$$.fragment,s),i=!1},d(s){s&&v(e),L(t)}}}function Fe(l){let e,t,n;return{c(){e=N("input"),h(e,"data-testid","textbox"),h(e,"type","email"),h(e,"class","scroll-hide svelte-1pie7s6"),h(e,"placeholder",l[2]),e.disabled=l[5],h(e,"autocomplete","email")},m(i,s){y(i,e,s),H(e,l[0]),l[23](e),t||(n=[m(e,"input",l[22]),m(e,"keypress",l[15]),m(e,"blur",l[12]),m(e,"select",l[14])],t=!0)},p(i,s){s[0]&4&&h(e,"placeholder",i[2]),s[0]&32&&(e.disabled=i[5]),s[0]&1&&e.value!==i[0]&&H(e,i[0])},d(i){i&&v(e),l[23](null),t=!1,A(n)}}}function Ge(l){let e,t,n;return{c(){e=N("input"),h(e,"data-testid","password"),h(e,"type","password"),h(e,"class","scroll-hide svelte-1pie7s6"),h(e,"placeholder",l[2]),e.disabled=l[5],h(e,"autocomplete","")},m(i,s){y(i,e,s),H(e,l[0]),l[21](e),t||(n=[m(e,"input",l[20]),m(e,"keypress",l[15]),m(e,"blur",l[12]),m(e,"select",l[14])],t=!0)},p(i,s){s[0]&4&&h(e,"placeholder",i[2]),s[0]&32&&(e.disabled=i[5]),s[0]&1&&e.value!==i[0]&&H(e,i[0])},d(i){i&&v(e),l[21](null),t=!1,A(n)}}}function Ie(l){let e,t,n;return{c(){e=N("input"),h(e,"data-testid","textbox"),h(e,"type","text"),h(e,"class","scroll-hide svelte-1pie7s6"),h(e,"placeholder",l[2]),e.disabled=l[5]},m(i,s){y(i,e,s),H(e,l[0]),l[19](e),t||(n=[m(e,"input",l[18]),m(e,"keypress",l[15]),m(e,"blur",l[12]),m(e,"select",l[14])],t=!0)},p(i,s){s[0]&4&&h(e,"placeholder",i[2]),s[0]&32&&(e.disabled=i[5]),s[0]&1&&e.value!==i[0]&&H(e,i[0])},d(i){i&&v(e),l[19](null),t=!1,A(n)}}}function Je(l){let e,t,n,i,s,u;t=new Ne({props:{show_label:l[6],info:l[4],$$slots:{default:[De]},$$scope:{ctx:l}}});const c=[je,Ke],f=[];function b(a,_){return a[1]===1&&a[7]===1?0:1}return i=b(l),s=f[i]=c[i](l),{c(){e=N("label"),j(t.$$.fragment),n=W(),s.c(),h(e,"class","svelte-1pie7s6")},m(a,_){y(a,e,_),q(t,e,null),be(e,n),f[i].m(e,null),u=!0},p(a,_){const d={};_[0]&64&&(d.show_label=a[6]),_[0]&16&&(d.info=a[4]),_[0]&8|_[1]&1&&(d.$$scope={dirty:_,ctx:a}),t.$set(d);let E=i;i=b(a),i===E?f[i].p(a,_):(U(),w(f[E],1,1,()=>{f[E]=null}),Y(),s=f[i],s?s.p(a,_):(s=f[i]=c[i](a),s.c()),g(s,1),s.m(e,null))},i(a){u||(g(t.$$.fragment,a),g(s),u=!0)},o(a){w(t.$$.fragment,a),w(s),u=!1},d(a){a&&v(e),L(t),f[i].d()}}}function Ue(l,e,t){let{value:n=""}=e,{value_is_output:i=!1}=e,{lines:s=1}=e,{placeholder:u="Type here..."}=e,{label:c}=e,{info:f=void 0}=e,{disabled:b=!1}=e,{show_label:a=!0}=e,{max_lines:_}=e,{type:d="text"}=e,{style:E={}}=e,p,S=!1,z;const T=he();function M(){T("change",n),i||T("input")}de(()=>{t(17,i=!1)});function O(){T("blur")}async function P(){"clipboard"in navigator&&(await navigator.clipboard.writeText(n),Q())}function Q(){t(11,S=!0),z&&clearTimeout(z),z=setTimeout(()=>{t(11,S=!1)},1e3)}function R(o){const C=o.target,G=C.value,B=[C.selectionStart,C.selectionEnd];T("select",{value:G.substring(...B),index:B})}async function V(o){await X(),(o.key==="Enter"&&o.shiftKey&&s>1||o.key==="Enter"&&!o.shiftKey&&s===1&&_>=1)&&(o.preventDefault(),T("submit"))}async function D(o){if(await X(),s===_)return;let C=_===!1?!1:_===void 0?21*11:21*(_+1),G=21*(s+1);const B=o.target;B.style.height="1px";let I;C&&B.scrollHeight>C?I=C:B.scrollHeighto.removeEventListener("input",D)}}function ne(){n=this.value,t(0,n)}function ae(o){K[o?"unshift":"push"](()=>{p=o,t(10,p)})}function ue(){n=this.value,t(0,n)}function fe(o){K[o?"unshift":"push"](()=>{p=o,t(10,p)})}function oe(){n=this.value,t(0,n)}function re(o){K[o?"unshift":"push"](()=>{p=o,t(10,p)})}function _e(){n=this.value,t(0,n)}function ce(o){K[o?"unshift":"push"](()=>{p=o,t(10,p)})}return l.$$set=o=>{"value"in o&&t(0,n=o.value),"value_is_output"in o&&t(17,i=o.value_is_output),"lines"in o&&t(1,s=o.lines),"placeholder"in o&&t(2,u=o.placeholder),"label"in o&&t(3,c=o.label),"info"in o&&t(4,f=o.info),"disabled"in o&&t(5,b=o.disabled),"show_label"in o&&t(6,a=o.show_label),"max_lines"in o&&t(7,_=o.max_lines),"type"in o&&t(8,d=o.type),"style"in o&&t(9,E=o.style)},l.$$.update=()=>{l.$$.dirty[0]&1155&&p&&s!==_&&D({target:p}),l.$$.dirty[0]&1&&M()},[n,s,u,c,f,b,a,_,d,E,p,S,O,P,R,V,r,i,ne,ae,ue,fe,oe,re,_e,ce]}let Ye=class extends te{constructor(e){super(),le(this,e,Ue,Je,ie,{value:0,value_is_output:17,lines:1,placeholder:2,label:3,info:4,disabled:5,show_label:6,max_lines:7,type:8,style:9},null,[-1,-1])}};function ee(l){let e,t;const n=[l[13]];let i={};for(let s=0;sZ(t,"value",c)),K.push(()=>Z(t,"value_is_output",f)),t.$on("change",l[17]),t.$on("input",l[18]),t.$on("submit",l[19]),t.$on("blur",l[20]),t.$on("select",l[21]),{c(){u&&u.c(),e=W(),j(t.$$.fragment)},m(a,_){u&&u.m(a,_),y(a,e,_),q(t,a,_),s=!0},p(a,_){a[13]?u?(u.p(a,_),_&8192&&g(u,1)):(u=ee(a),u.c(),g(u,1),u.m(e.parentNode,e)):u&&(U(),w(u,1,1,()=>{u=null}),Y());const d={};_&4&&(d.label=a[2]),_&8&&(d.info=a[3]),_&512&&(d.show_label=a[9]),_&128&&(d.lines=a[7]),_&2048&&(d.type=a[11]),_&17536&&(d.max_lines=!a[10]&&a[14]==="static"?a[7]+1:a[10]),_&256&&(d.placeholder=a[8]),_&4096&&(d.style=a[12]),_&16384&&(d.disabled=a[14]==="static"),!n&&_&1&&(n=!0,d.value=a[0],x(()=>n=!1)),!i&&_&2&&(i=!0,d.value_is_output=a[1],x(()=>i=!1)),t.$set(d)},i(a){s||(g(u),g(t.$$.fragment,a),s=!0)},o(a){w(u),w(t.$$.fragment,a),s=!1},d(a){u&&u.d(a),a&&v(e),L(t,a)}}}function Me(l){let e,t;return e=new He({props:{visible:l[6],elem_id:l[4],elem_classes:l[5],disable:typeof l[12].container=="boolean"&&!l[12].container,$$slots:{default:[Ae]},$$scope:{ctx:l}}}),{c(){j(e.$$.fragment)},m(n,i){q(e,n,i),t=!0},p(n,[i]){const s={};i&64&&(s.visible=n[6]),i&16&&(s.elem_id=n[4]),i&32&&(s.elem_classes=n[5]),i&4096&&(s.disable=typeof n[12].container=="boolean"&&!n[12].container),i&4226959&&(s.$$scope={dirty:i,ctx:n}),e.$set(s)},i(n){t||(g(e.$$.fragment,n),t=!0)},o(n){w(e.$$.fragment,n),t=!1},d(n){L(e,n)}}}function Oe(l,e,t){let{label:n="Textbox"}=e,{info:i=void 0}=e,{elem_id:s=""}=e,{elem_classes:u=[]}=e,{visible:c=!0}=e,{value:f=""}=e,{lines:b}=e,{placeholder:a=""}=e,{show_label:_}=e,{max_lines:d}=e,{type:E="text"}=e,{style:p={}}=e,{loading_status:S=void 0}=e,{mode:z}=e,{value_is_output:T=!1}=e;function M(r){f=r,t(0,f)}function O(r){T=r,t(1,T)}function P(r){F.call(this,l,r)}function Q(r){F.call(this,l,r)}function R(r){F.call(this,l,r)}function V(r){F.call(this,l,r)}function D(r){F.call(this,l,r)}return l.$$set=r=>{"label"in r&&t(2,n=r.label),"info"in r&&t(3,i=r.info),"elem_id"in r&&t(4,s=r.elem_id),"elem_classes"in r&&t(5,u=r.elem_classes),"visible"in r&&t(6,c=r.visible),"value"in r&&t(0,f=r.value),"lines"in r&&t(7,b=r.lines),"placeholder"in r&&t(8,a=r.placeholder),"show_label"in r&&t(9,_=r.show_label),"max_lines"in r&&t(10,d=r.max_lines),"type"in r&&t(11,E=r.type),"style"in r&&t(12,p=r.style),"loading_status"in r&&t(13,S=r.loading_status),"mode"in r&&t(14,z=r.mode),"value_is_output"in r&&t(1,T=r.value_is_output)},[f,T,n,i,s,u,c,b,a,_,d,E,p,S,z,M,O,P,Q,R,V,D]}class xe extends te{constructor(e){super(),le(this,e,Oe,Me,ie,{label:2,info:3,elem_id:4,elem_classes:5,visible:6,value:0,lines:7,placeholder:8,show_label:9,max_lines:10,type:11,style:12,loading_status:13,mode:14,value_is_output:1})}get label(){return this.$$.ctx[2]}set label(e){this.$$set({label:e}),k()}get info(){return this.$$.ctx[3]}set info(e){this.$$set({info:e}),k()}get elem_id(){return this.$$.ctx[4]}set elem_id(e){this.$$set({elem_id:e}),k()}get elem_classes(){return this.$$.ctx[5]}set elem_classes(e){this.$$set({elem_classes:e}),k()}get visible(){return this.$$.ctx[6]}set visible(e){this.$$set({visible:e}),k()}get value(){return this.$$.ctx[0]}set value(e){this.$$set({value:e}),k()}get lines(){return this.$$.ctx[7]}set lines(e){this.$$set({lines:e}),k()}get placeholder(){return this.$$.ctx[8]}set placeholder(e){this.$$set({placeholder:e}),k()}get show_label(){return this.$$.ctx[9]}set show_label(e){this.$$set({show_label:e}),k()}get max_lines(){return this.$$.ctx[10]}set max_lines(e){this.$$set({max_lines:e}),k()}get type(){return this.$$.ctx[11]}set type(e){this.$$set({type:e}),k()}get style(){return this.$$.ctx[12]}set style(e){this.$$set({style:e}),k()}get loading_status(){return this.$$.ctx[13]}set loading_status(e){this.$$set({loading_status:e}),k()}get mode(){return this.$$.ctx[14]}set mode(e){this.$$set({mode:e}),k()}get value_is_output(){return this.$$.ctx[1]}set value_is_output(e){this.$$set({value_is_output:e}),k()}}export{xe as T}; -//# sourceMappingURL=Textbox-8be76163.js.map diff --git a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/jinja2/filters.py b/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/jinja2/filters.py deleted file mode 100644 index ed07c4c0e2ae1b6203b3468cda8a303ecf3d7832..0000000000000000000000000000000000000000 --- a/spaces/ky2k/Toxicity_Classifier_POC/.venv/lib/python3.9/site-packages/jinja2/filters.py +++ /dev/null @@ -1,1840 +0,0 @@ -"""Built-in template filters used with the ``|`` operator.""" -import math -import random -import re -import typing -import typing as t -from collections import abc -from itertools import chain -from itertools import groupby - -from markupsafe import escape -from markupsafe import Markup -from markupsafe import soft_str - -from .async_utils import async_variant -from .async_utils import auto_aiter -from .async_utils import auto_await -from .async_utils import auto_to_list -from .exceptions import FilterArgumentError -from .runtime import Undefined -from .utils import htmlsafe_json_dumps -from .utils import pass_context -from .utils import pass_environment -from .utils import pass_eval_context -from .utils import pformat -from .utils import url_quote -from .utils import urlize - -if t.TYPE_CHECKING: - import typing_extensions as te - from .environment import Environment - from .nodes import EvalContext - from .runtime import Context - from .sandbox import SandboxedEnvironment # noqa: F401 - - class HasHTML(te.Protocol): - def __html__(self) -> str: - pass - - -F = t.TypeVar("F", bound=t.Callable[..., t.Any]) -K = t.TypeVar("K") -V = t.TypeVar("V") - - -def ignore_case(value: V) -> V: - """For use as a postprocessor for :func:`make_attrgetter`. Converts strings - to lowercase and returns other types as-is.""" - if isinstance(value, str): - return t.cast(V, value.lower()) - - return value - - -def make_attrgetter( - environment: "Environment", - attribute: t.Optional[t.Union[str, int]], - postprocess: t.Optional[t.Callable[[t.Any], t.Any]] = None, - default: t.Optional[t.Any] = None, -) -> t.Callable[[t.Any], t.Any]: - """Returns a callable that looks up the given attribute from a - passed object with the rules of the environment. Dots are allowed - to access attributes of attributes. Integer parts in paths are - looked up as integers. - """ - parts = _prepare_attribute_parts(attribute) - - def attrgetter(item: t.Any) -> t.Any: - for part in parts: - item = environment.getitem(item, part) - - if default is not None and isinstance(item, Undefined): - item = default - - if postprocess is not None: - item = postprocess(item) - - return item - - return attrgetter - - -def make_multi_attrgetter( - environment: "Environment", - attribute: t.Optional[t.Union[str, int]], - postprocess: t.Optional[t.Callable[[t.Any], t.Any]] = None, -) -> t.Callable[[t.Any], t.List[t.Any]]: - """Returns a callable that looks up the given comma separated - attributes from a passed object with the rules of the environment. - Dots are allowed to access attributes of each attribute. Integer - parts in paths are looked up as integers. - - The value returned by the returned callable is a list of extracted - attribute values. - - Examples of attribute: "attr1,attr2", "attr1.inner1.0,attr2.inner2.0", etc. - """ - if isinstance(attribute, str): - split: t.Sequence[t.Union[str, int, None]] = attribute.split(",") - else: - split = [attribute] - - parts = [_prepare_attribute_parts(item) for item in split] - - def attrgetter(item: t.Any) -> t.List[t.Any]: - items = [None] * len(parts) - - for i, attribute_part in enumerate(parts): - item_i = item - - for part in attribute_part: - item_i = environment.getitem(item_i, part) - - if postprocess is not None: - item_i = postprocess(item_i) - - items[i] = item_i - - return items - - return attrgetter - - -def _prepare_attribute_parts( - attr: t.Optional[t.Union[str, int]] -) -> t.List[t.Union[str, int]]: - if attr is None: - return [] - - if isinstance(attr, str): - return [int(x) if x.isdigit() else x for x in attr.split(".")] - - return [attr] - - -def do_forceescape(value: "t.Union[str, HasHTML]") -> Markup: - """Enforce HTML escaping. This will probably double escape variables.""" - if hasattr(value, "__html__"): - value = t.cast("HasHTML", value).__html__() - - return escape(str(value)) - - -def do_urlencode( - value: t.Union[str, t.Mapping[str, t.Any], t.Iterable[t.Tuple[str, t.Any]]] -) -> str: - """Quote data for use in a URL path or query using UTF-8. - - Basic wrapper around :func:`urllib.parse.quote` when given a - string, or :func:`urllib.parse.urlencode` for a dict or iterable. - - :param value: Data to quote. A string will be quoted directly. A - dict or iterable of ``(key, value)`` pairs will be joined as a - query string. - - When given a string, "/" is not quoted. HTTP servers treat "/" and - "%2F" equivalently in paths. If you need quoted slashes, use the - ``|replace("/", "%2F")`` filter. - - .. versionadded:: 2.7 - """ - if isinstance(value, str) or not isinstance(value, abc.Iterable): - return url_quote(value) - - if isinstance(value, dict): - items: t.Iterable[t.Tuple[str, t.Any]] = value.items() - else: - items = value # type: ignore - - return "&".join( - f"{url_quote(k, for_qs=True)}={url_quote(v, for_qs=True)}" for k, v in items - ) - - -@pass_eval_context -def do_replace( - eval_ctx: "EvalContext", s: str, old: str, new: str, count: t.Optional[int] = None -) -> str: - """Return a copy of the value with all occurrences of a substring - replaced with a new one. The first argument is the substring - that should be replaced, the second is the replacement string. - If the optional third argument ``count`` is given, only the first - ``count`` occurrences are replaced: - - .. sourcecode:: jinja - - {{ "Hello World"|replace("Hello", "Goodbye") }} - -> Goodbye World - - {{ "aaaaargh"|replace("a", "d'oh, ", 2) }} - -> d'oh, d'oh, aaargh - """ - if count is None: - count = -1 - - if not eval_ctx.autoescape: - return str(s).replace(str(old), str(new), count) - - if ( - hasattr(old, "__html__") - or hasattr(new, "__html__") - and not hasattr(s, "__html__") - ): - s = escape(s) - else: - s = soft_str(s) - - return s.replace(soft_str(old), soft_str(new), count) - - -def do_upper(s: str) -> str: - """Convert a value to uppercase.""" - return soft_str(s).upper() - - -def do_lower(s: str) -> str: - """Convert a value to lowercase.""" - return soft_str(s).lower() - - -def do_items(value: t.Union[t.Mapping[K, V], Undefined]) -> t.Iterator[t.Tuple[K, V]]: - """Return an iterator over the ``(key, value)`` items of a mapping. - - ``x|items`` is the same as ``x.items()``, except if ``x`` is - undefined an empty iterator is returned. - - This filter is useful if you expect the template to be rendered with - an implementation of Jinja in another programming language that does - not have a ``.items()`` method on its mapping type. - - .. code-block:: html+jinja - -
        - {% for key, value in my_dict|items %} -
        {{ key }} -
        {{ value }} - {% endfor %} -
        - - .. versionadded:: 3.1 - """ - if isinstance(value, Undefined): - return - - if not isinstance(value, abc.Mapping): - raise TypeError("Can only get item pairs from a mapping.") - - yield from value.items() - - -@pass_eval_context -def do_xmlattr( - eval_ctx: "EvalContext", d: t.Mapping[str, t.Any], autospace: bool = True -) -> str: - """Create an SGML/XML attribute string based on the items in a dict. - All values that are neither `none` nor `undefined` are automatically - escaped: - - .. sourcecode:: html+jinja - - - ... - - - Results in something like this: - - .. sourcecode:: html - -
          - ... -
        - - As you can see it automatically prepends a space in front of the item - if the filter returned something unless the second parameter is false. - """ - rv = " ".join( - f'{escape(key)}="{escape(value)}"' - for key, value in d.items() - if value is not None and not isinstance(value, Undefined) - ) - - if autospace and rv: - rv = " " + rv - - if eval_ctx.autoescape: - rv = Markup(rv) - - return rv - - -def do_capitalize(s: str) -> str: - """Capitalize a value. The first character will be uppercase, all others - lowercase. - """ - return soft_str(s).capitalize() - - -_word_beginning_split_re = re.compile(r"([-\s({\[<]+)") - - -def do_title(s: str) -> str: - """Return a titlecased version of the value. I.e. words will start with - uppercase letters, all remaining characters are lowercase. - """ - return "".join( - [ - item[0].upper() + item[1:].lower() - for item in _word_beginning_split_re.split(soft_str(s)) - if item - ] - ) - - -def do_dictsort( - value: t.Mapping[K, V], - case_sensitive: bool = False, - by: 'te.Literal["key", "value"]' = "key", - reverse: bool = False, -) -> t.List[t.Tuple[K, V]]: - """Sort a dict and yield (key, value) pairs. Python dicts may not - be in the order you want to display them in, so sort them first. - - .. sourcecode:: jinja - - {% for key, value in mydict|dictsort %} - sort the dict by key, case insensitive - - {% for key, value in mydict|dictsort(reverse=true) %} - sort the dict by key, case insensitive, reverse order - - {% for key, value in mydict|dictsort(true) %} - sort the dict by key, case sensitive - - {% for key, value in mydict|dictsort(false, 'value') %} - sort the dict by value, case insensitive - """ - if by == "key": - pos = 0 - elif by == "value": - pos = 1 - else: - raise FilterArgumentError('You can only sort by either "key" or "value"') - - def sort_func(item: t.Tuple[t.Any, t.Any]) -> t.Any: - value = item[pos] - - if not case_sensitive: - value = ignore_case(value) - - return value - - return sorted(value.items(), key=sort_func, reverse=reverse) - - -@pass_environment -def do_sort( - environment: "Environment", - value: "t.Iterable[V]", - reverse: bool = False, - case_sensitive: bool = False, - attribute: t.Optional[t.Union[str, int]] = None, -) -> "t.List[V]": - """Sort an iterable using Python's :func:`sorted`. - - .. sourcecode:: jinja - - {% for city in cities|sort %} - ... - {% endfor %} - - :param reverse: Sort descending instead of ascending. - :param case_sensitive: When sorting strings, sort upper and lower - case separately. - :param attribute: When sorting objects or dicts, an attribute or - key to sort by. Can use dot notation like ``"address.city"``. - Can be a list of attributes like ``"age,name"``. - - The sort is stable, it does not change the relative order of - elements that compare equal. This makes it is possible to chain - sorts on different attributes and ordering. - - .. sourcecode:: jinja - - {% for user in users|sort(attribute="name") - |sort(reverse=true, attribute="age") %} - ... - {% endfor %} - - As a shortcut to chaining when the direction is the same for all - attributes, pass a comma separate list of attributes. - - .. sourcecode:: jinja - - {% for user in users|sort(attribute="age,name") %} - ... - {% endfor %} - - .. versionchanged:: 2.11.0 - The ``attribute`` parameter can be a comma separated list of - attributes, e.g. ``"age,name"``. - - .. versionchanged:: 2.6 - The ``attribute`` parameter was added. - """ - key_func = make_multi_attrgetter( - environment, attribute, postprocess=ignore_case if not case_sensitive else None - ) - return sorted(value, key=key_func, reverse=reverse) - - -@pass_environment -def do_unique( - environment: "Environment", - value: "t.Iterable[V]", - case_sensitive: bool = False, - attribute: t.Optional[t.Union[str, int]] = None, -) -> "t.Iterator[V]": - """Returns a list of unique items from the given iterable. - - .. sourcecode:: jinja - - {{ ['foo', 'bar', 'foobar', 'FooBar']|unique|list }} - -> ['foo', 'bar', 'foobar'] - - The unique items are yielded in the same order as their first occurrence in - the iterable passed to the filter. - - :param case_sensitive: Treat upper and lower case strings as distinct. - :param attribute: Filter objects with unique values for this attribute. - """ - getter = make_attrgetter( - environment, attribute, postprocess=ignore_case if not case_sensitive else None - ) - seen = set() - - for item in value: - key = getter(item) - - if key not in seen: - seen.add(key) - yield item - - -def _min_or_max( - environment: "Environment", - value: "t.Iterable[V]", - func: "t.Callable[..., V]", - case_sensitive: bool, - attribute: t.Optional[t.Union[str, int]], -) -> "t.Union[V, Undefined]": - it = iter(value) - - try: - first = next(it) - except StopIteration: - return environment.undefined("No aggregated item, sequence was empty.") - - key_func = make_attrgetter( - environment, attribute, postprocess=ignore_case if not case_sensitive else None - ) - return func(chain([first], it), key=key_func) - - -@pass_environment -def do_min( - environment: "Environment", - value: "t.Iterable[V]", - case_sensitive: bool = False, - attribute: t.Optional[t.Union[str, int]] = None, -) -> "t.Union[V, Undefined]": - """Return the smallest item from the sequence. - - .. sourcecode:: jinja - - {{ [1, 2, 3]|min }} - -> 1 - - :param case_sensitive: Treat upper and lower case strings as distinct. - :param attribute: Get the object with the min value of this attribute. - """ - return _min_or_max(environment, value, min, case_sensitive, attribute) - - -@pass_environment -def do_max( - environment: "Environment", - value: "t.Iterable[V]", - case_sensitive: bool = False, - attribute: t.Optional[t.Union[str, int]] = None, -) -> "t.Union[V, Undefined]": - """Return the largest item from the sequence. - - .. sourcecode:: jinja - - {{ [1, 2, 3]|max }} - -> 3 - - :param case_sensitive: Treat upper and lower case strings as distinct. - :param attribute: Get the object with the max value of this attribute. - """ - return _min_or_max(environment, value, max, case_sensitive, attribute) - - -def do_default( - value: V, - default_value: V = "", # type: ignore - boolean: bool = False, -) -> V: - """If the value is undefined it will return the passed default value, - otherwise the value of the variable: - - .. sourcecode:: jinja - - {{ my_variable|default('my_variable is not defined') }} - - This will output the value of ``my_variable`` if the variable was - defined, otherwise ``'my_variable is not defined'``. If you want - to use default with variables that evaluate to false you have to - set the second parameter to `true`: - - .. sourcecode:: jinja - - {{ ''|default('the string was empty', true) }} - - .. versionchanged:: 2.11 - It's now possible to configure the :class:`~jinja2.Environment` with - :class:`~jinja2.ChainableUndefined` to make the `default` filter work - on nested elements and attributes that may contain undefined values - in the chain without getting an :exc:`~jinja2.UndefinedError`. - """ - if isinstance(value, Undefined) or (boolean and not value): - return default_value - - return value - - -@pass_eval_context -def sync_do_join( - eval_ctx: "EvalContext", - value: t.Iterable, - d: str = "", - attribute: t.Optional[t.Union[str, int]] = None, -) -> str: - """Return a string which is the concatenation of the strings in the - sequence. The separator between elements is an empty string per - default, you can define it with the optional parameter: - - .. sourcecode:: jinja - - {{ [1, 2, 3]|join('|') }} - -> 1|2|3 - - {{ [1, 2, 3]|join }} - -> 123 - - It is also possible to join certain attributes of an object: - - .. sourcecode:: jinja - - {{ users|join(', ', attribute='username') }} - - .. versionadded:: 2.6 - The `attribute` parameter was added. - """ - if attribute is not None: - value = map(make_attrgetter(eval_ctx.environment, attribute), value) - - # no automatic escaping? joining is a lot easier then - if not eval_ctx.autoescape: - return str(d).join(map(str, value)) - - # if the delimiter doesn't have an html representation we check - # if any of the items has. If yes we do a coercion to Markup - if not hasattr(d, "__html__"): - value = list(value) - do_escape = False - - for idx, item in enumerate(value): - if hasattr(item, "__html__"): - do_escape = True - else: - value[idx] = str(item) - - if do_escape: - d = escape(d) - else: - d = str(d) - - return d.join(value) - - # no html involved, to normal joining - return soft_str(d).join(map(soft_str, value)) - - -@async_variant(sync_do_join) # type: ignore -async def do_join( - eval_ctx: "EvalContext", - value: t.Union[t.AsyncIterable, t.Iterable], - d: str = "", - attribute: t.Optional[t.Union[str, int]] = None, -) -> str: - return sync_do_join(eval_ctx, await auto_to_list(value), d, attribute) - - -def do_center(value: str, width: int = 80) -> str: - """Centers the value in a field of a given width.""" - return soft_str(value).center(width) - - -@pass_environment -def sync_do_first( - environment: "Environment", seq: "t.Iterable[V]" -) -> "t.Union[V, Undefined]": - """Return the first item of a sequence.""" - try: - return next(iter(seq)) - except StopIteration: - return environment.undefined("No first item, sequence was empty.") - - -@async_variant(sync_do_first) # type: ignore -async def do_first( - environment: "Environment", seq: "t.Union[t.AsyncIterable[V], t.Iterable[V]]" -) -> "t.Union[V, Undefined]": - try: - return await auto_aiter(seq).__anext__() - except StopAsyncIteration: - return environment.undefined("No first item, sequence was empty.") - - -@pass_environment -def do_last( - environment: "Environment", seq: "t.Reversible[V]" -) -> "t.Union[V, Undefined]": - """Return the last item of a sequence. - - Note: Does not work with generators. You may want to explicitly - convert it to a list: - - .. sourcecode:: jinja - - {{ data | selectattr('name', '==', 'Jinja') | list | last }} - """ - try: - return next(iter(reversed(seq))) - except StopIteration: - return environment.undefined("No last item, sequence was empty.") - - -# No async do_last, it may not be safe in async mode. - - -@pass_context -def do_random(context: "Context", seq: "t.Sequence[V]") -> "t.Union[V, Undefined]": - """Return a random item from the sequence.""" - try: - return random.choice(seq) - except IndexError: - return context.environment.undefined("No random item, sequence was empty.") - - -def do_filesizeformat(value: t.Union[str, float, int], binary: bool = False) -> str: - """Format the value like a 'human-readable' file size (i.e. 13 kB, - 4.1 MB, 102 Bytes, etc). Per default decimal prefixes are used (Mega, - Giga, etc.), if the second parameter is set to `True` the binary - prefixes are used (Mebi, Gibi). - """ - bytes = float(value) - base = 1024 if binary else 1000 - prefixes = [ - ("KiB" if binary else "kB"), - ("MiB" if binary else "MB"), - ("GiB" if binary else "GB"), - ("TiB" if binary else "TB"), - ("PiB" if binary else "PB"), - ("EiB" if binary else "EB"), - ("ZiB" if binary else "ZB"), - ("YiB" if binary else "YB"), - ] - - if bytes == 1: - return "1 Byte" - elif bytes < base: - return f"{int(bytes)} Bytes" - else: - for i, prefix in enumerate(prefixes): - unit = base ** (i + 2) - - if bytes < unit: - return f"{base * bytes / unit:.1f} {prefix}" - - return f"{base * bytes / unit:.1f} {prefix}" - - -def do_pprint(value: t.Any) -> str: - """Pretty print a variable. Useful for debugging.""" - return pformat(value) - - -_uri_scheme_re = re.compile(r"^([\w.+-]{2,}:(/){0,2})$") - - -@pass_eval_context -def do_urlize( - eval_ctx: "EvalContext", - value: str, - trim_url_limit: t.Optional[int] = None, - nofollow: bool = False, - target: t.Optional[str] = None, - rel: t.Optional[str] = None, - extra_schemes: t.Optional[t.Iterable[str]] = None, -) -> str: - """Convert URLs in text into clickable links. - - This may not recognize links in some situations. Usually, a more - comprehensive formatter, such as a Markdown library, is a better - choice. - - Works on ``http://``, ``https://``, ``www.``, ``mailto:``, and email - addresses. Links with trailing punctuation (periods, commas, closing - parentheses) and leading punctuation (opening parentheses) are - recognized excluding the punctuation. Email addresses that include - header fields are not recognized (for example, - ``mailto:address@example.com?cc=copy@example.com``). - - :param value: Original text containing URLs to link. - :param trim_url_limit: Shorten displayed URL values to this length. - :param nofollow: Add the ``rel=nofollow`` attribute to links. - :param target: Add the ``target`` attribute to links. - :param rel: Add the ``rel`` attribute to links. - :param extra_schemes: Recognize URLs that start with these schemes - in addition to the default behavior. Defaults to - ``env.policies["urlize.extra_schemes"]``, which defaults to no - extra schemes. - - .. versionchanged:: 3.0 - The ``extra_schemes`` parameter was added. - - .. versionchanged:: 3.0 - Generate ``https://`` links for URLs without a scheme. - - .. versionchanged:: 3.0 - The parsing rules were updated. Recognize email addresses with - or without the ``mailto:`` scheme. Validate IP addresses. Ignore - parentheses and brackets in more cases. - - .. versionchanged:: 2.8 - The ``target`` parameter was added. - """ - policies = eval_ctx.environment.policies - rel_parts = set((rel or "").split()) - - if nofollow: - rel_parts.add("nofollow") - - rel_parts.update((policies["urlize.rel"] or "").split()) - rel = " ".join(sorted(rel_parts)) or None - - if target is None: - target = policies["urlize.target"] - - if extra_schemes is None: - extra_schemes = policies["urlize.extra_schemes"] or () - - for scheme in extra_schemes: - if _uri_scheme_re.fullmatch(scheme) is None: - raise FilterArgumentError(f"{scheme!r} is not a valid URI scheme prefix.") - - rv = urlize( - value, - trim_url_limit=trim_url_limit, - rel=rel, - target=target, - extra_schemes=extra_schemes, - ) - - if eval_ctx.autoescape: - rv = Markup(rv) - - return rv - - -def do_indent( - s: str, width: t.Union[int, str] = 4, first: bool = False, blank: bool = False -) -> str: - """Return a copy of the string with each line indented by 4 spaces. The - first line and blank lines are not indented by default. - - :param width: Number of spaces, or a string, to indent by. - :param first: Don't skip indenting the first line. - :param blank: Don't skip indenting empty lines. - - .. versionchanged:: 3.0 - ``width`` can be a string. - - .. versionchanged:: 2.10 - Blank lines are not indented by default. - - Rename the ``indentfirst`` argument to ``first``. - """ - if isinstance(width, str): - indention = width - else: - indention = " " * width - - newline = "\n" - - if isinstance(s, Markup): - indention = Markup(indention) - newline = Markup(newline) - - s += newline # this quirk is necessary for splitlines method - - if blank: - rv = (newline + indention).join(s.splitlines()) - else: - lines = s.splitlines() - rv = lines.pop(0) - - if lines: - rv += newline + newline.join( - indention + line if line else line for line in lines - ) - - if first: - rv = indention + rv - - return rv - - -@pass_environment -def do_truncate( - env: "Environment", - s: str, - length: int = 255, - killwords: bool = False, - end: str = "...", - leeway: t.Optional[int] = None, -) -> str: - """Return a truncated copy of the string. The length is specified - with the first parameter which defaults to ``255``. If the second - parameter is ``true`` the filter will cut the text at length. Otherwise - it will discard the last word. If the text was in fact - truncated it will append an ellipsis sign (``"..."``). If you want a - different ellipsis sign than ``"..."`` you can specify it using the - third parameter. Strings that only exceed the length by the tolerance - margin given in the fourth parameter will not be truncated. - - .. sourcecode:: jinja - - {{ "foo bar baz qux"|truncate(9) }} - -> "foo..." - {{ "foo bar baz qux"|truncate(9, True) }} - -> "foo ba..." - {{ "foo bar baz qux"|truncate(11) }} - -> "foo bar baz qux" - {{ "foo bar baz qux"|truncate(11, False, '...', 0) }} - -> "foo bar..." - - The default leeway on newer Jinja versions is 5 and was 0 before but - can be reconfigured globally. - """ - if leeway is None: - leeway = env.policies["truncate.leeway"] - - assert length >= len(end), f"expected length >= {len(end)}, got {length}" - assert leeway >= 0, f"expected leeway >= 0, got {leeway}" - - if len(s) <= length + leeway: - return s - - if killwords: - return s[: length - len(end)] + end - - result = s[: length - len(end)].rsplit(" ", 1)[0] - return result + end - - -@pass_environment -def do_wordwrap( - environment: "Environment", - s: str, - width: int = 79, - break_long_words: bool = True, - wrapstring: t.Optional[str] = None, - break_on_hyphens: bool = True, -) -> str: - """Wrap a string to the given width. Existing newlines are treated - as paragraphs to be wrapped separately. - - :param s: Original text to wrap. - :param width: Maximum length of wrapped lines. - :param break_long_words: If a word is longer than ``width``, break - it across lines. - :param break_on_hyphens: If a word contains hyphens, it may be split - across lines. - :param wrapstring: String to join each wrapped line. Defaults to - :attr:`Environment.newline_sequence`. - - .. versionchanged:: 2.11 - Existing newlines are treated as paragraphs wrapped separately. - - .. versionchanged:: 2.11 - Added the ``break_on_hyphens`` parameter. - - .. versionchanged:: 2.7 - Added the ``wrapstring`` parameter. - """ - import textwrap - - if wrapstring is None: - wrapstring = environment.newline_sequence - - # textwrap.wrap doesn't consider existing newlines when wrapping. - # If the string has a newline before width, wrap will still insert - # a newline at width, resulting in a short line. Instead, split and - # wrap each paragraph individually. - return wrapstring.join( - [ - wrapstring.join( - textwrap.wrap( - line, - width=width, - expand_tabs=False, - replace_whitespace=False, - break_long_words=break_long_words, - break_on_hyphens=break_on_hyphens, - ) - ) - for line in s.splitlines() - ] - ) - - -_word_re = re.compile(r"\w+") - - -def do_wordcount(s: str) -> int: - """Count the words in that string.""" - return len(_word_re.findall(soft_str(s))) - - -def do_int(value: t.Any, default: int = 0, base: int = 10) -> int: - """Convert the value into an integer. If the - conversion doesn't work it will return ``0``. You can - override this default using the first parameter. You - can also override the default base (10) in the second - parameter, which handles input with prefixes such as - 0b, 0o and 0x for bases 2, 8 and 16 respectively. - The base is ignored for decimal numbers and non-string values. - """ - try: - if isinstance(value, str): - return int(value, base) - - return int(value) - except (TypeError, ValueError): - # this quirk is necessary so that "42.23"|int gives 42. - try: - return int(float(value)) - except (TypeError, ValueError): - return default - - -def do_float(value: t.Any, default: float = 0.0) -> float: - """Convert the value into a floating point number. If the - conversion doesn't work it will return ``0.0``. You can - override this default using the first parameter. - """ - try: - return float(value) - except (TypeError, ValueError): - return default - - -def do_format(value: str, *args: t.Any, **kwargs: t.Any) -> str: - """Apply the given values to a `printf-style`_ format string, like - ``string % values``. - - .. sourcecode:: jinja - - {{ "%s, %s!"|format(greeting, name) }} - Hello, World! - - In most cases it should be more convenient and efficient to use the - ``%`` operator or :meth:`str.format`. - - .. code-block:: text - - {{ "%s, %s!" % (greeting, name) }} - {{ "{}, {}!".format(greeting, name) }} - - .. _printf-style: https://docs.python.org/library/stdtypes.html - #printf-style-string-formatting - """ - if args and kwargs: - raise FilterArgumentError( - "can't handle positional and keyword arguments at the same time" - ) - - return soft_str(value) % (kwargs or args) - - -def do_trim(value: str, chars: t.Optional[str] = None) -> str: - """Strip leading and trailing characters, by default whitespace.""" - return soft_str(value).strip(chars) - - -def do_striptags(value: "t.Union[str, HasHTML]") -> str: - """Strip SGML/XML tags and replace adjacent whitespace by one space.""" - if hasattr(value, "__html__"): - value = t.cast("HasHTML", value).__html__() - - return Markup(str(value)).striptags() - - -def sync_do_slice( - value: "t.Collection[V]", slices: int, fill_with: "t.Optional[V]" = None -) -> "t.Iterator[t.List[V]]": - """Slice an iterator and return a list of lists containing - those items. Useful if you want to create a div containing - three ul tags that represent columns: - - .. sourcecode:: html+jinja - -
        - {%- for column in items|slice(3) %} -
          - {%- for item in column %} -
        • {{ item }}
        • - {%- endfor %} -
        - {%- endfor %} -
        - - If you pass it a second argument it's used to fill missing - values on the last iteration. - """ - seq = list(value) - length = len(seq) - items_per_slice = length // slices - slices_with_extra = length % slices - offset = 0 - - for slice_number in range(slices): - start = offset + slice_number * items_per_slice - - if slice_number < slices_with_extra: - offset += 1 - - end = offset + (slice_number + 1) * items_per_slice - tmp = seq[start:end] - - if fill_with is not None and slice_number >= slices_with_extra: - tmp.append(fill_with) - - yield tmp - - -@async_variant(sync_do_slice) # type: ignore -async def do_slice( - value: "t.Union[t.AsyncIterable[V], t.Iterable[V]]", - slices: int, - fill_with: t.Optional[t.Any] = None, -) -> "t.Iterator[t.List[V]]": - return sync_do_slice(await auto_to_list(value), slices, fill_with) - - -def do_batch( - value: "t.Iterable[V]", linecount: int, fill_with: "t.Optional[V]" = None -) -> "t.Iterator[t.List[V]]": - """ - A filter that batches items. It works pretty much like `slice` - just the other way round. It returns a list of lists with the - given number of items. If you provide a second parameter this - is used to fill up missing items. See this example: - - .. sourcecode:: html+jinja - - - {%- for row in items|batch(3, ' ') %} - - {%- for column in row %} - - {%- endfor %} - - {%- endfor %} -
        {{ column }}
        - """ - tmp: "t.List[V]" = [] - - for item in value: - if len(tmp) == linecount: - yield tmp - tmp = [] - - tmp.append(item) - - if tmp: - if fill_with is not None and len(tmp) < linecount: - tmp += [fill_with] * (linecount - len(tmp)) - - yield tmp - - -def do_round( - value: float, - precision: int = 0, - method: 'te.Literal["common", "ceil", "floor"]' = "common", -) -> float: - """Round the number to a given precision. The first - parameter specifies the precision (default is ``0``), the - second the rounding method: - - - ``'common'`` rounds either up or down - - ``'ceil'`` always rounds up - - ``'floor'`` always rounds down - - If you don't specify a method ``'common'`` is used. - - .. sourcecode:: jinja - - {{ 42.55|round }} - -> 43.0 - {{ 42.55|round(1, 'floor') }} - -> 42.5 - - Note that even if rounded to 0 precision, a float is returned. If - you need a real integer, pipe it through `int`: - - .. sourcecode:: jinja - - {{ 42.55|round|int }} - -> 43 - """ - if method not in {"common", "ceil", "floor"}: - raise FilterArgumentError("method must be common, ceil or floor") - - if method == "common": - return round(value, precision) - - func = getattr(math, method) - return t.cast(float, func(value * (10**precision)) / (10**precision)) - - -class _GroupTuple(t.NamedTuple): - grouper: t.Any - list: t.List - - # Use the regular tuple repr to hide this subclass if users print - # out the value during debugging. - def __repr__(self) -> str: - return tuple.__repr__(self) - - def __str__(self) -> str: - return tuple.__str__(self) - - -@pass_environment -def sync_do_groupby( - environment: "Environment", - value: "t.Iterable[V]", - attribute: t.Union[str, int], - default: t.Optional[t.Any] = None, - case_sensitive: bool = False, -) -> "t.List[_GroupTuple]": - """Group a sequence of objects by an attribute using Python's - :func:`itertools.groupby`. The attribute can use dot notation for - nested access, like ``"address.city"``. Unlike Python's ``groupby``, - the values are sorted first so only one group is returned for each - unique value. - - For example, a list of ``User`` objects with a ``city`` attribute - can be rendered in groups. In this example, ``grouper`` refers to - the ``city`` value of the group. - - .. sourcecode:: html+jinja - -
          {% for city, items in users|groupby("city") %} -
        • {{ city }} -
            {% for user in items %} -
          • {{ user.name }} - {% endfor %}
          -
        • - {% endfor %}
        - - ``groupby`` yields namedtuples of ``(grouper, list)``, which - can be used instead of the tuple unpacking above. ``grouper`` is the - value of the attribute, and ``list`` is the items with that value. - - .. sourcecode:: html+jinja - -
          {% for group in users|groupby("city") %} -
        • {{ group.grouper }}: {{ group.list|join(", ") }} - {% endfor %}
        - - You can specify a ``default`` value to use if an object in the list - does not have the given attribute. - - .. sourcecode:: jinja - -
          {% for city, items in users|groupby("city", default="NY") %} -
        • {{ city }}: {{ items|map(attribute="name")|join(", ") }}
        • - {% endfor %}
        - - Like the :func:`~jinja-filters.sort` filter, sorting and grouping is - case-insensitive by default. The ``key`` for each group will have - the case of the first item in that group of values. For example, if - a list of users has cities ``["CA", "NY", "ca"]``, the "CA" group - will have two values. This can be disabled by passing - ``case_sensitive=True``. - - .. versionchanged:: 3.1 - Added the ``case_sensitive`` parameter. Sorting and grouping is - case-insensitive by default, matching other filters that do - comparisons. - - .. versionchanged:: 3.0 - Added the ``default`` parameter. - - .. versionchanged:: 2.6 - The attribute supports dot notation for nested access. - """ - expr = make_attrgetter( - environment, - attribute, - postprocess=ignore_case if not case_sensitive else None, - default=default, - ) - out = [ - _GroupTuple(key, list(values)) - for key, values in groupby(sorted(value, key=expr), expr) - ] - - if not case_sensitive: - # Return the real key from the first value instead of the lowercase key. - output_expr = make_attrgetter(environment, attribute, default=default) - out = [_GroupTuple(output_expr(values[0]), values) for _, values in out] - - return out - - -@async_variant(sync_do_groupby) # type: ignore -async def do_groupby( - environment: "Environment", - value: "t.Union[t.AsyncIterable[V], t.Iterable[V]]", - attribute: t.Union[str, int], - default: t.Optional[t.Any] = None, - case_sensitive: bool = False, -) -> "t.List[_GroupTuple]": - expr = make_attrgetter( - environment, - attribute, - postprocess=ignore_case if not case_sensitive else None, - default=default, - ) - out = [ - _GroupTuple(key, await auto_to_list(values)) - for key, values in groupby(sorted(await auto_to_list(value), key=expr), expr) - ] - - if not case_sensitive: - # Return the real key from the first value instead of the lowercase key. - output_expr = make_attrgetter(environment, attribute, default=default) - out = [_GroupTuple(output_expr(values[0]), values) for _, values in out] - - return out - - -@pass_environment -def sync_do_sum( - environment: "Environment", - iterable: "t.Iterable[V]", - attribute: t.Optional[t.Union[str, int]] = None, - start: V = 0, # type: ignore -) -> V: - """Returns the sum of a sequence of numbers plus the value of parameter - 'start' (which defaults to 0). When the sequence is empty it returns - start. - - It is also possible to sum up only certain attributes: - - .. sourcecode:: jinja - - Total: {{ items|sum(attribute='price') }} - - .. versionchanged:: 2.6 - The ``attribute`` parameter was added to allow summing up over - attributes. Also the ``start`` parameter was moved on to the right. - """ - if attribute is not None: - iterable = map(make_attrgetter(environment, attribute), iterable) - - return sum(iterable, start) # type: ignore[no-any-return, call-overload] - - -@async_variant(sync_do_sum) # type: ignore -async def do_sum( - environment: "Environment", - iterable: "t.Union[t.AsyncIterable[V], t.Iterable[V]]", - attribute: t.Optional[t.Union[str, int]] = None, - start: V = 0, # type: ignore -) -> V: - rv = start - - if attribute is not None: - func = make_attrgetter(environment, attribute) - else: - - def func(x: V) -> V: - return x - - async for item in auto_aiter(iterable): - rv += func(item) - - return rv - - -def sync_do_list(value: "t.Iterable[V]") -> "t.List[V]": - """Convert the value into a list. If it was a string the returned list - will be a list of characters. - """ - return list(value) - - -@async_variant(sync_do_list) # type: ignore -async def do_list(value: "t.Union[t.AsyncIterable[V], t.Iterable[V]]") -> "t.List[V]": - return await auto_to_list(value) - - -def do_mark_safe(value: str) -> Markup: - """Mark the value as safe which means that in an environment with automatic - escaping enabled this variable will not be escaped. - """ - return Markup(value) - - -def do_mark_unsafe(value: str) -> str: - """Mark a value as unsafe. This is the reverse operation for :func:`safe`.""" - return str(value) - - -@typing.overload -def do_reverse(value: str) -> str: - ... - - -@typing.overload -def do_reverse(value: "t.Iterable[V]") -> "t.Iterable[V]": - ... - - -def do_reverse(value: t.Union[str, t.Iterable[V]]) -> t.Union[str, t.Iterable[V]]: - """Reverse the object or return an iterator that iterates over it the other - way round. - """ - if isinstance(value, str): - return value[::-1] - - try: - return reversed(value) # type: ignore - except TypeError: - try: - rv = list(value) - rv.reverse() - return rv - except TypeError as e: - raise FilterArgumentError("argument must be iterable") from e - - -@pass_environment -def do_attr( - environment: "Environment", obj: t.Any, name: str -) -> t.Union[Undefined, t.Any]: - """Get an attribute of an object. ``foo|attr("bar")`` works like - ``foo.bar`` just that always an attribute is returned and items are not - looked up. - - See :ref:`Notes on subscriptions ` for more details. - """ - try: - name = str(name) - except UnicodeError: - pass - else: - try: - value = getattr(obj, name) - except AttributeError: - pass - else: - if environment.sandboxed: - environment = t.cast("SandboxedEnvironment", environment) - - if not environment.is_safe_attribute(obj, name, value): - return environment.unsafe_undefined(obj, name) - - return value - - return environment.undefined(obj=obj, name=name) - - -@typing.overload -def sync_do_map( - context: "Context", value: t.Iterable, name: str, *args: t.Any, **kwargs: t.Any -) -> t.Iterable: - ... - - -@typing.overload -def sync_do_map( - context: "Context", - value: t.Iterable, - *, - attribute: str = ..., - default: t.Optional[t.Any] = None, -) -> t.Iterable: - ... - - -@pass_context -def sync_do_map( - context: "Context", value: t.Iterable, *args: t.Any, **kwargs: t.Any -) -> t.Iterable: - """Applies a filter on a sequence of objects or looks up an attribute. - This is useful when dealing with lists of objects but you are really - only interested in a certain value of it. - - The basic usage is mapping on an attribute. Imagine you have a list - of users but you are only interested in a list of usernames: - - .. sourcecode:: jinja - - Users on this page: {{ users|map(attribute='username')|join(', ') }} - - You can specify a ``default`` value to use if an object in the list - does not have the given attribute. - - .. sourcecode:: jinja - - {{ users|map(attribute="username", default="Anonymous")|join(", ") }} - - Alternatively you can let it invoke a filter by passing the name of the - filter and the arguments afterwards. A good example would be applying a - text conversion filter on a sequence: - - .. sourcecode:: jinja - - Users on this page: {{ titles|map('lower')|join(', ') }} - - Similar to a generator comprehension such as: - - .. code-block:: python - - (u.username for u in users) - (getattr(u, "username", "Anonymous") for u in users) - (do_lower(x) for x in titles) - - .. versionchanged:: 2.11.0 - Added the ``default`` parameter. - - .. versionadded:: 2.7 - """ - if value: - func = prepare_map(context, args, kwargs) - - for item in value: - yield func(item) - - -@typing.overload -def do_map( - context: "Context", - value: t.Union[t.AsyncIterable, t.Iterable], - name: str, - *args: t.Any, - **kwargs: t.Any, -) -> t.Iterable: - ... - - -@typing.overload -def do_map( - context: "Context", - value: t.Union[t.AsyncIterable, t.Iterable], - *, - attribute: str = ..., - default: t.Optional[t.Any] = None, -) -> t.Iterable: - ... - - -@async_variant(sync_do_map) # type: ignore -async def do_map( - context: "Context", - value: t.Union[t.AsyncIterable, t.Iterable], - *args: t.Any, - **kwargs: t.Any, -) -> t.AsyncIterable: - if value: - func = prepare_map(context, args, kwargs) - - async for item in auto_aiter(value): - yield await auto_await(func(item)) - - -@pass_context -def sync_do_select( - context: "Context", value: "t.Iterable[V]", *args: t.Any, **kwargs: t.Any -) -> "t.Iterator[V]": - """Filters a sequence of objects by applying a test to each object, - and only selecting the objects with the test succeeding. - - If no test is specified, each object will be evaluated as a boolean. - - Example usage: - - .. sourcecode:: jinja - - {{ numbers|select("odd") }} - {{ numbers|select("odd") }} - {{ numbers|select("divisibleby", 3) }} - {{ numbers|select("lessthan", 42) }} - {{ strings|select("equalto", "mystring") }} - - Similar to a generator comprehension such as: - - .. code-block:: python - - (n for n in numbers if test_odd(n)) - (n for n in numbers if test_divisibleby(n, 3)) - - .. versionadded:: 2.7 - """ - return select_or_reject(context, value, args, kwargs, lambda x: x, False) - - -@async_variant(sync_do_select) # type: ignore -async def do_select( - context: "Context", - value: "t.Union[t.AsyncIterable[V], t.Iterable[V]]", - *args: t.Any, - **kwargs: t.Any, -) -> "t.AsyncIterator[V]": - return async_select_or_reject(context, value, args, kwargs, lambda x: x, False) - - -@pass_context -def sync_do_reject( - context: "Context", value: "t.Iterable[V]", *args: t.Any, **kwargs: t.Any -) -> "t.Iterator[V]": - """Filters a sequence of objects by applying a test to each object, - and rejecting the objects with the test succeeding. - - If no test is specified, each object will be evaluated as a boolean. - - Example usage: - - .. sourcecode:: jinja - - {{ numbers|reject("odd") }} - - Similar to a generator comprehension such as: - - .. code-block:: python - - (n for n in numbers if not test_odd(n)) - - .. versionadded:: 2.7 - """ - return select_or_reject(context, value, args, kwargs, lambda x: not x, False) - - -@async_variant(sync_do_reject) # type: ignore -async def do_reject( - context: "Context", - value: "t.Union[t.AsyncIterable[V], t.Iterable[V]]", - *args: t.Any, - **kwargs: t.Any, -) -> "t.AsyncIterator[V]": - return async_select_or_reject(context, value, args, kwargs, lambda x: not x, False) - - -@pass_context -def sync_do_selectattr( - context: "Context", value: "t.Iterable[V]", *args: t.Any, **kwargs: t.Any -) -> "t.Iterator[V]": - """Filters a sequence of objects by applying a test to the specified - attribute of each object, and only selecting the objects with the - test succeeding. - - If no test is specified, the attribute's value will be evaluated as - a boolean. - - Example usage: - - .. sourcecode:: jinja - - {{ users|selectattr("is_active") }} - {{ users|selectattr("email", "none") }} - - Similar to a generator comprehension such as: - - .. code-block:: python - - (u for user in users if user.is_active) - (u for user in users if test_none(user.email)) - - .. versionadded:: 2.7 - """ - return select_or_reject(context, value, args, kwargs, lambda x: x, True) - - -@async_variant(sync_do_selectattr) # type: ignore -async def do_selectattr( - context: "Context", - value: "t.Union[t.AsyncIterable[V], t.Iterable[V]]", - *args: t.Any, - **kwargs: t.Any, -) -> "t.AsyncIterator[V]": - return async_select_or_reject(context, value, args, kwargs, lambda x: x, True) - - -@pass_context -def sync_do_rejectattr( - context: "Context", value: "t.Iterable[V]", *args: t.Any, **kwargs: t.Any -) -> "t.Iterator[V]": - """Filters a sequence of objects by applying a test to the specified - attribute of each object, and rejecting the objects with the test - succeeding. - - If no test is specified, the attribute's value will be evaluated as - a boolean. - - .. sourcecode:: jinja - - {{ users|rejectattr("is_active") }} - {{ users|rejectattr("email", "none") }} - - Similar to a generator comprehension such as: - - .. code-block:: python - - (u for user in users if not user.is_active) - (u for user in users if not test_none(user.email)) - - .. versionadded:: 2.7 - """ - return select_or_reject(context, value, args, kwargs, lambda x: not x, True) - - -@async_variant(sync_do_rejectattr) # type: ignore -async def do_rejectattr( - context: "Context", - value: "t.Union[t.AsyncIterable[V], t.Iterable[V]]", - *args: t.Any, - **kwargs: t.Any, -) -> "t.AsyncIterator[V]": - return async_select_or_reject(context, value, args, kwargs, lambda x: not x, True) - - -@pass_eval_context -def do_tojson( - eval_ctx: "EvalContext", value: t.Any, indent: t.Optional[int] = None -) -> Markup: - """Serialize an object to a string of JSON, and mark it safe to - render in HTML. This filter is only for use in HTML documents. - - The returned string is safe to render in HTML documents and - ``