parquet-converter commited on
Commit
41d2f90
·
1 Parent(s): deb9cd3

Update parquet files (step 30 of 476)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. spaces/101-5/gpt4free/g4f/.v1/gpt4free/quora/tests/test_api.py +0 -38
  2. spaces/1acneusushi/gradio-2dmoleculeeditor/data/Adobe Photoshop CC 2014 [32 64 Bit] Activation Multilanguage How to Get the Most Out of It.md +0 -101
  3. spaces/1gistliPinn/ChatGPT4/Examples/E Elio Le Story Tese Torrent.md +0 -94
  4. spaces/1phancelerku/anime-remove-background/Download attack on titan mod APK for Android - Free and Easy.md +0 -126
  5. spaces/AIGC-Audio/AudioGPT/text_to_speech/data_gen/tts/txt_processors/zh.py +0 -117
  6. spaces/AIGC-Audio/Make_An_Audio/ldm/modules/x_transformer.py +0 -641
  7. spaces/AIGText/GlyphControl/annotator/render_images.py +0 -95
  8. spaces/Abhilashvj/planogram-compliance/classify/train.py +0 -537
  9. spaces/AchyuthGamer/OpenGPT/g4f/Provider/deprecated/Equing.py +0 -81
  10. spaces/Aditya9790/yolo7-object-tracking/models/experimental.py +0 -272
  11. spaces/Al-Chan/Vits_League_of_Legends_Yuumi_TTS/text/ngu_dialect.py +0 -30
  12. spaces/AlexWang/lama/bin/predict_inner_features.py +0 -119
  13. spaces/Ame42/rwms/local_utils.py +0 -344
  14. spaces/Ameaou/academic-chatgpt3.1/crazy_functions/test_project/cpp/cppipc/policy.h +0 -25
  15. spaces/Amrrs/DragGan-Inversion/stylegan_human/torch_utils/models.py +0 -770
  16. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/en/api/models/autoencoderkl.md +0 -43
  17. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/en/api/pipelines/cycle_diffusion.md +0 -33
  18. spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/schedulers/test_scheduler_lms.py +0 -140
  19. spaces/Andy1621/uniformer_image_detection/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py +0 -2
  20. spaces/Andy1621/uniformer_image_detection/mmdet/models/dense_heads/pisa_ssd_head.py +0 -139
  21. spaces/Andy1621/uniformer_image_segmentation/configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug.py +0 -2
  22. spaces/AnishKumbhar/ChatBot/text-generation-webui-main/modules/exllamav2.py +0 -133
  23. spaces/Anonymous-123/ImageNet-Editing/editing_diffusion/guided_diffusion/guided_diffusion/unet.py +0 -894
  24. spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/rich/_win32_console.py +0 -662
  25. spaces/Benson/text-generation/Examples/Descargar 60 Lakh Cancin.md +0 -135
  26. spaces/Benson/text-generation/Examples/Descargar Android Euro Camin Simulador 2.md +0 -67
  27. spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/crt/__init__.py +0 -27
  28. spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/chardet/cli/chardetect.py +0 -112
  29. spaces/Big-Web/MMSD/env/Lib/site-packages/pkg_resources/_vendor/appdirs.py +0 -608
  30. spaces/CVPR/LIVE/thrust/thrust/system/cuda/detail/util.h +0 -589
  31. spaces/CVPR/lama-example/saicinpainting/training/losses/style_loss.py +0 -155
  32. spaces/CVPR/lama-example/saicinpainting/training/modules/fake_fakes.py +0 -47
  33. spaces/CVPR/v-doc_abstractive_mac/demo.py +0 -83
  34. spaces/Caoyunkang/Segment-Any-Anomaly/SAM/scripts/amg.py +0 -238
  35. spaces/CikeyQI/Yunzai/Yunzai/plugins/ws-plugin/components/YamlReader.js +0 -83
  36. spaces/CognitiveLabs/Research-Assistant/statics/README_zh.md +0 -41
  37. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fastapi/templating.py +0 -1
  38. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/IconButton-abe5ede9.js +0 -2
  39. spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/huggingface_hub/utils/_paths.py +0 -117
  40. spaces/Datasculptor/3D-Room-Layout-Estimation_LGT-Net/postprocessing/dula/layout_old.py +0 -134
  41. spaces/Datasculptor/StyleGAN-NADA/op/fused_bias_act.cpp +0 -21
  42. spaces/DeepakJaiz/QA_evaluator/README.md +0 -12
  43. spaces/Demosthene-OR/avr23-cds-translation/tabs/custom_vectorizer.py +0 -14
  44. spaces/DragGan/DragGan-Inversion/PTI/training/coaches/base_coach.py +0 -158
  45. spaces/DragGan/DragGan-Inversion/PTI/training/projectors/w_plus_projector.py +0 -145
  46. spaces/Dragonnext/charybdis/greeting.md +0 -17
  47. spaces/EsoCode/text-generation-webui/modules/sampler_hijack.py +0 -204
  48. spaces/EuroPython2022/mmocr-demo/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py +0 -33
  49. spaces/Evanell/Venus/README.md +0 -10
  50. spaces/FourthBrainGenAI/DeepLearningAIDemoChatBot/app.py +0 -281
spaces/101-5/gpt4free/g4f/.v1/gpt4free/quora/tests/test_api.py DELETED
@@ -1,38 +0,0 @@
1
- import unittest
2
- import requests
3
- from unittest.mock import MagicMock
4
- from gpt4free.quora.api import retry_request
5
-
6
-
7
- class TestRetryRequest(unittest.TestCase):
8
- def test_successful_request(self):
9
- # Mock a successful request with a 200 status code
10
- mock_response = MagicMock()
11
- mock_response.status_code = 200
12
- requests.get = MagicMock(return_value=mock_response)
13
-
14
- # Call the function and assert that it returns the response
15
- response = retry_request(requests.get, "http://example.com", max_attempts=3)
16
- self.assertEqual(response.status_code, 200)
17
-
18
- def test_exponential_backoff(self):
19
- # Mock a failed request that succeeds after two retries
20
- mock_response = MagicMock()
21
- mock_response.status_code = 200
22
- requests.get = MagicMock(side_effect=[requests.exceptions.RequestException] * 2 + [mock_response])
23
-
24
- # Call the function and assert that it retries with exponential backoff
25
- with self.assertLogs() as logs:
26
- response = retry_request(requests.get, "http://example.com", max_attempts=3, delay=1)
27
- self.assertEqual(response.status_code, 200)
28
- self.assertGreaterEqual(len(logs.output), 2)
29
- self.assertIn("Retrying in 1 seconds...", logs.output[0])
30
- self.assertIn("Retrying in 2 seconds...", logs.output[1])
31
-
32
- def test_too_many_attempts(self):
33
- # Mock a failed request that never succeeds
34
- requests.get = MagicMock(side_effect=requests.exceptions.RequestException)
35
-
36
- # Call the function and assert that it raises an exception after the maximum number of attempts
37
- with self.assertRaises(RuntimeError):
38
- retry_request(requests.get, "http://example.com", max_attempts=3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1acneusushi/gradio-2dmoleculeeditor/data/Adobe Photoshop CC 2014 [32 64 Bit] Activation Multilanguage How to Get the Most Out of It.md DELETED
@@ -1,101 +0,0 @@
1
-
2
- <h1>Adobe Photoshop CC 2014 [32 64 Bit] Activation Multilanguage: A Comprehensive Guide</h1>
3
- <p>Adobe Photoshop is the most popular and powerful image editing software in the world. It allows you to create, edit, and enhance photos, graphics, and designs with a variety of tools and features. Whether you are a professional designer, photographer, or hobbyist, Adobe Photoshop can help you achieve your creative vision.</p>
4
- <p>In this article, we will introduce you to Adobe Photoshop CC 2014, the latest version of the software that was released in June 2014. We will explain what Adobe Photoshop CC 2014 is, what are its main features, how to install and activate it, and how to use it for design and photography. By the end of this article, you will have a better understanding of Adobe Photoshop CC 2014 and how to make the most of it.</p>
5
- <h2>Adobe Photoshop CC 2014 [32 64 Bit] Activation Multilanguagel</h2><br /><p><b><b>DOWNLOAD</b> ===== <a href="https://byltly.com/2uKze0">https://byltly.com/2uKze0</a></b></p><br /><br />
6
- <h2>What is Adobe Photoshop CC 2014?</h2>
7
- <p>Adobe Photoshop CC 2014 is the fourteenth major release of Adobe Photoshop, which is part of the Adobe Creative Cloud subscription service. It is also known as Adobe Photoshop 15 or Adobe Photoshop 2014. It is available for Windows and Mac OS X operating systems, and it supports both 32-bit and 64-bit architectures.</p>
8
- <h3>The main features of Adobe Photoshop CC 2014</h3>
9
- <p>Adobe Photoshop CC 2014 introduces several new features and enhancements that improve the performance, functionality, and usability of the software. Some of the most notable new features are:</p>
10
- <ul>
11
- <li><b>Editing images directly in Adobe Camera Raw.</b> This means that you no longer have to convert your raw files into Photoshop format before you can start editing them. Adobe Camera Raw is a powerful image editing tool that gives you complete control over your raw files.</li>
12
- <li><b>Applying blur effects with Blur Gallery.</b> This feature allows you to create realistic motion blur, spin blur, and path blur effects with ease. You can also use multiple blurs in one image and adjust them individually.</li>
13
- <li><b>Enhancing typography with new controls and fonts.</b> This feature gives you more options to customize your text, such as font size variations, font matching, smart quotes, hyphenation, and more. You can also access over 900 fonts from Typekit, a library of high-quality fonts that are integrated with Creative Cloud.</li>
14
- <li><b>Creating and managing assets with Creative Cloud Libraries.</b> This feature lets you create, categorize, and store your favorite colors, brushes, text styles, graphics, and vector images in one easily accessible place. Then you can access them anywhere: Assets you create under the same Adobe ID will be visible across different computers—in a variety of applications like Photoshop CC—wherever you sign in.</li>
15
- </ul>
16
- <h3>The system requirements for Adobe Photoshop CC 2014</h3>
17
- <p>To run Adobe Photoshop CC 2014 smoothly on your computer, you need to meet the following minimum system requirements:</p>
18
- <table>
19
- <tr>
20
- <th>Operating system</th>
21
- <th>Processor</th>
22
- <th>RAM</th>
23
- <th>Hard disk space</th>
24
- <th>Graphics card</th>
25
- </tr>
26
- <tr>
27
- <td>Windows 7 SP1 or later (32-bit or 64-bit)</td>
28
- <td>Intel Pentium 4 or AMD Athlon 64 processor (2 GHz or faster)</td>
29
- <td>2 GB (8 GB recommended)</td>
30
- <td>2 GB of available hard-disk space for installation; additional free space required during installation (cannot install on removable flash storage devices)</td>
31
- <td>1024 x 768 display (1280 x 800 recommended) with OpenGL® 2.0–capable system</td>
32
- </tr>
33
- <tr>
34
- <td>Mac OS X v10.7 or later (64-bit only)</td>
35
- <td>Multicore Intel processor with 64-bit support</td>
36
- <td>2 GB (8 GB recommended)</td>
37
- <td>3.2 GB of available hard-disk space for installation; additional free space required during installation (cannot install on a volume that uses a case-sensitive file system or on removable flash storage devices)</td>
38
- <td>1024 x 768 display (1280 x 800 recommended) with OpenGL® 2.0–capable system</td>
39
- </tr>
40
- </table>
41
- <h2>How to install and activate Adobe Photoshop CC 2014?</h2>
42
- <p>To install and activate Adobe Photoshop CC 2014 on your computer, you need to follow these steps:</p>
43
- <p>Adobe Photoshop CC 2014 crack download<br />
44
- Adobe Photoshop CC 2014 multilingual portable<br />
45
- Adobe Photoshop CC 2014 serial number<br />
46
- Adobe Photoshop CC 2014 offline installer<br />
47
- Adobe Photoshop CC 2014 free trial<br />
48
- Adobe Photoshop CC 2014 full version<br />
49
- Adobe Photoshop CC 2014 keygen<br />
50
- Adobe Photoshop CC 2014 system requirements<br />
51
- Adobe Photoshop CC 2014 tutorial<br />
52
- Adobe Photoshop CC 2014 update<br />
53
- Adobe Photoshop CC 2014 features<br />
54
- Adobe Photoshop CC 2014 license key<br />
55
- Adobe Photoshop CC 2014 activation code<br />
56
- Adobe Photoshop CC 2014 patch<br />
57
- Adobe Photoshop CC 2014 direct download link<br />
58
- Adobe Photoshop CC 2014 torrent<br />
59
- Adobe Photoshop CC 2014 mac<br />
60
- Adobe Photoshop CC 2014 windows<br />
61
- Adobe Photoshop CC 2014 x64 bit<br />
62
- Adobe Photoshop CC 2014 x32 bit<br />
63
- Adobe Photoshop CC 2014 latest version<br />
64
- Adobe Photoshop CC 2014 review<br />
65
- Adobe Photoshop CC 2014 tips and tricks<br />
66
- Adobe Photoshop CC 2014 plugins<br />
67
- Adobe Photoshop CC 2014 brushes<br />
68
- Adobe Photoshop CC 2014 presets<br />
69
- Adobe Photoshop CC 2014 filters<br />
70
- Adobe Photoshop CC 2014 actions<br />
71
- Adobe Photoshop CC 2014 fonts<br />
72
- Adobe Photoshop CC 2014 tools<br />
73
- Adobe Photoshop CC 2014 shortcuts<br />
74
- Adobe Photoshop CC 2014 layers<br />
75
- Adobe Photoshop CC 2014 masks<br />
76
- Adobe Photoshop CC 2014 smart objects<br />
77
- Adobe Photoshop CC 2014 adjustment layers<br />
78
- Adobe Photoshop CC 2014 blending modes<br />
79
- Adobe Photoshop CC 2014 selection tools<br />
80
- Adobe Photoshop CC 2014 transform tools<br />
81
- Adobe Photoshop CC 2014 crop tool<br />
82
- Adobe Photoshop CC 2014 healing tools<br />
83
- Adobe Photoshop CC 2014 clone stamp tool<br />
84
- Adobe Photoshop CC 2014 pen tool<br />
85
- Adobe Photoshop CC 2014 text tool<br />
86
- Adobe Photoshop CC 2014 shape tool<br />
87
- Adobe Photoshop CC 2014 gradient tool<br />
88
- Adobe Photoshop CC 2014 paint bucket tool<br />
89
- Adobe Photoshop CC 2014 eraser tool<br />
90
- Adobe Photoshop CC 2014 dodge and burn tools<br />
91
- Adobe Photoshop CC 2014 sponge tool</p>
92
- <h3>Downloading the setup files</h3>
93
- <p>You can download the setup files for Adobe Photoshop CC 2014 from the official website of Adobe or from other trusted sources online. Make sure you download the correct version for your operating system and architecture (32-bit or 64-bit). The setup files are usually compressed in ZIP or RAR format, so you need to extract them before installing.</p>
94
- <h3>Installing Adobe Photoshop CC 2014</h3>
95
- <p>To install Adobe Photoshop CC 2014 on your computer, you need to run the setup.exe file that you extracted from the downloaded file. Follow the instructions on the screen to complete the installation process. You may need to restart your computer after the installation is finished.</p>
96
- <h3>Activating Adobe Photoshop CC 2014 with a serial number or a patch</h3>
97
- <p>To activate Adobe Photoshop CC 2014 on your computer, you need to have a valid serial number or a patch that can bypass the activation process. A serial number is a unique code that identifies your license for using the software. A patch is a small program that modifies the original software code to remove the activation requirement.</p>
98
- <p>You can obtain a serial number or a patch from various sources online, such as forums, blogs, or websites that offer cracked software. However, be careful when downloading these files as they may contain viruses or malware that can harm your computer. Also, using cracked software is illegal and unethical as it violates the terms and conditions of Adobe.</p>
99
- <p>If you have a serial number for Adobe Photoshop CC 2014, you can enter it when prompted during the installation process or after launching the software for the first time. If you have a patch for Adobe Photoshop CC</p> 0a6ba089eb<br />
100
- <br />
101
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1gistliPinn/ChatGPT4/Examples/E Elio Le Story Tese Torrent.md DELETED
@@ -1,94 +0,0 @@
1
- <br />
2
- <h1>E Elio Le Story Tese Torrent: How to Download Their Music for Free</h1>
3
-
4
- <p>Elio e le Storie Tese is an Italian comedy rock band that was formed in 1980. The band is known for their humorous and satirical lyrics, their eclectic musical style, and their live performances. The band has released 14 studio albums, 5 live albums, and several singles and compilations. Some of their most popular songs are "La terra dei cachi", "Mio cuggino", "Born to Be Abramo", and "La canzone mononota".</p>
5
-
6
- <p>If you are a fan of Elio e le Storie Tese and you want to download their music for free, you might be tempted to use a torrent site or a file-sharing platform that hosts pirated copies of their albums. However, this is not a legal or safe way to get their music. You might be breaking the law, violating the rights of the band and their record label, exposing yourself to malware or viruses, or risking legal troubles or penalties.</p>
7
- <h2>E Elio Le Story Tese Torrent</h2><br /><p><b><b>Download</b> &ndash;&ndash;&ndash;&ndash;&ndash;>>> <a href="https://imgfil.com/2uxYMw">https://imgfil.com/2uxYMw</a></b></p><br /><br />
8
-
9
- <p>The best way to download E Elio Le Story Tese Torrent legally and safely is to use a streaming service that offers their music in your preferred language and region. Some of the popular streaming platforms that have Elio e le Storie Tese in their library are:</p>
10
-
11
- <ul>
12
- <li>Spotify: You can listen to Elio e le Storie Tese on Spotify for free with ads, or you can upgrade to Spotify Premium for ad-free listening, offline mode, and other features.</li>
13
- <li>Apple Music: You can listen to Elio e le Storie Tese on Apple Music with a subscription fee, or you can try it for free for three months.</li>
14
- <li>Deezer: You can listen to Elio e le Storie Tese on Deezer for free with ads, or you can upgrade to Deezer Premium for ad-free listening, offline mode, and other features.</li>
15
- <li>YouTube Music: You can listen to Elio e le Storie Tese on YouTube Music for free with ads, or you can upgrade to YouTube Music Premium for ad-free listening, offline mode, and other features.</li>
16
- <li>Amazon Music: You can listen to Elio e le Storie Tese on Amazon Music with a subscription fee, or you can try it for free for 30 days.</li>
17
- </ul>
18
-
19
- <p>All these streaming services offer high-quality audio, as well as various payment options and customer support. However, they may not be available in all countries or regions, so you should check their availability and pricing before choosing one.</p>
20
-
21
- <h2>How to Download E Elio Le Story Tese Torrent Illegally</h2>
22
-
23
- <p>If you still want to download E Elio Le Story Tese Torrent illegally, you should be aware of the risks and consequences involved. Some of the notorious websites that offer Elio e le Storie Tese torrents are:</p>
24
-
25
- <ul>
26
- <li>RuTracker.org: This is a Russian torrent site that has a large collection of music torrents, including Elio e le Storie Tese albums in FLAC format.</li>
27
- <li>Marok.org: This is an Italian torrent site that has some videos of Elio e le Storie Tese live performances.</li>
28
- <li>Archive.org: This is a digital library that hosts various media files, including some audio files of Elio e le Storie Tese songs.</li>
29
- <li>Direct-Download.com: This is a file-sharing platform that has a link to download Elio e le Storie Tese discography in RAR format.</li>
30
- </ul>
31
-
32
- <p>These websites claim to provide free and fast downloads of E Elio Le Story Tese Torrent files in various formats and resolutions. However, they are not authorized by the original creators or distributors of the music, and they violate the copyright laws and intellectual property rights of the music industry. Moreover, they are risky and unsafe to use, as they may contain malware or viruses that can infect your device or steal your personal information. They may also expose you to legal troubles or penalties if you are caught downloading or sharing pirated content.</p>
33
-
34
- <h2>Conclusion</h2>
35
-
36
- <p>Elio e le Storie Tese is a band that will appeal to fans of comedy rock and Italian music. If you want to download their music for free, you have several options online, but not all of them are legal or safe. The best way to download E Elio Le Story Tese Torrent legally and safely is to use a streaming service that offers their music in your preferred language and region. However, if you choose to download E Elio Le Story Tese Torrent illegally, you should be aware of the risks and consequences involved.</p>
37
-
38
- <p>In this article, we have provided you with some information and tips on how to download E Elio Le Story Tese Torrent legally or illegally. We hope you have enjoyed reading this article and found it useful. Now go ahead and download E Elio Le Story Tese Torrent and enjoy their music!</p>
39
- <p></p>
40
- <h2>Why Elio e le Storie Tese is a Unique Band</h2>
41
-
42
- <p>Elio e le Storie Tese is not just a comedy rock band, but also a cultural phenomenon in Italy. The band has been praised for their originality, creativity, and versatility. They have experimented with various genres and styles, such as pop, rock, jazz, funk, metal, classical, folk, rap, and more. They have also collaborated with many famous artists and personalities, such as Luciano Pavarotti, Ennio Morricone, Giorgio Moroder, Renato Zero, Jovanotti, and Fabio Fazio.</p>
43
-
44
- <p>Elio e le Storie Tese is also known for their social and political satire, their parody of Italian stereotypes and clichés, and their criticism of the Italian society and media. The band has often used irony, sarcasm, absurdity, and nonsense to convey their messages and opinions. They have also created many fictional characters and alter egos, such as Rocco Tanica, Faso, Cesareo, Mangoni, Feiez, Elio Samaga Hukapan Kariyana Turu (the Sri Lankan version of Elio), and Il Complesso Misterioso (a fake band that competed in the Sanremo Music Festival).</p>
45
-
46
- <p>Elio e le Storie Tese is a band that has influenced many other artists and comedians in Italy and abroad. They have also received many awards and recognitions for their music and career. They have been nominated for several MTV Europe Music Awards and Italian Music Awards. They have also won the Critics' Award at the Sanremo Music Festival twice (in 1996 and 2013). In 2016, they announced their farewell tour, which ended in 2018 with a final concert in Milan.</p>
47
-
48
- <h2>How to Support Elio e le Storie Tese</h2>
49
-
50
- <p>If you love Elio e le Storie Tese and you want to support them, you can do so in various ways. Here are some suggestions:</p>
51
-
52
- <ul>
53
- <li>Buy their music: You can buy their albums, singles, compilations, or special editions from their official website or from online stores such as Amazon or iTunes.</li>
54
- <li>Watch their videos: You can watch their music videos, live performances, interviews, documentaries, or sketches on their official YouTube channel or on other platforms such as Vimeo or Dailymotion.</li>
55
- <li>Follow them on social media: You can follow them on Facebook, Twitter, Instagram, or other social networks to get updates on their news, events, projects, or personal lives.</li>
56
- <li>Join their fan club: You can join their official fan club "Elii" to get access to exclusive content, merchandise, discounts, contests, or meet-and-greets.</li>
57
- <li>Donate to their causes: You can donate to their charitable causes or initiatives that they support or promote. For example, you can donate to the Fondazione Umberto Veronesi (a foundation that supports scientific research on cancer), to the Emergency (a humanitarian organization that provides medical care to victims of war and poverty), or to the Lega del Filo d'Oro (an association that helps deafblind people).</li>
58
- </ul>
59
-
60
- <p>By supporting Elio e le Storie Tese, you are not only showing your appreciation for their music and artistry but also contributing to their legacy and impact on the Italian culture and society.</p>
61
- <h2>How to Discover More About Elio e le Storie Tese</h2>
62
-
63
- <p>If you are curious about Elio e le Storie Tese and you want to discover more about their music and history, you can do so in various ways. Here are some suggestions:</p>
64
-
65
- <ul>
66
- <li>Read their books: You can read their books that contain their lyrics, stories, anecdotes, illustrations, or photos. Some of their books are "Elio Samaga Hukapan Kariyana Turu", "Gli Occhi del Cuore", "Il Mistero dei Bulli", and "La Risposta è Nelle Stelle".</li>
67
- <li>Watch their movies: You can watch their movies that feature their songs, sketches, or appearances. Some of their movies are "Tutti Gli Uomini del Deficiente", "La Febbre del Sabato Sera", "Fuga da Reuma Park", and "Boris Il Film".</li>
68
- <li>Listen to their podcasts: You can listen to their podcasts that cover various topics, such as music, cinema, literature, or current affairs. Some of their podcasts are "Elio e le Storie Tese Show", "Elio e le Storie Tese Radio Show", and "Elio e le Storie Tese Podcast".</li>
69
- <li>Visit their website: You can visit their official website that contains their news, biography, discography, tour dates, merchandise, or contacts.</li>
70
- <li>Subscribe to their newsletter: You can subscribe to their official newsletter that will send you updates on their activities, projects, or offers.</li>
71
- </ul>
72
-
73
- <p>By discovering more about Elio e le Storie Tese, you are not only enriching your knowledge and appreciation for their music and artistry but also joining their loyal and passionate fan community.</p>
74
-
75
- <h2>How to Share E Elio Le Story Tese Torrent with Others</h2>
76
-
77
- <p>If you love E Elio Le Story Tese Torrent and you want to share it with others, you can do so in various ways. Here are some suggestions:</p>
78
-
79
- <ul>
80
- <li>Create a playlist: You can create a playlist of your favorite Elio e le Storie Tese songs and share it with your friends or family on social media or streaming platforms.</li>
81
- <li>Write a review: You can write a review of your favorite Elio e le Storie Tese album or song and share it with other fans or music lovers on blogs or forums.</li>
82
- <li>Make a tribute: You can make a tribute to Elio e le Storie Tese by covering their songs, making a fan art, writing a fan fiction, or cosplaying their characters.</li>
83
- <li>Attend a concert: You can attend one of their live concerts and enjoy their music and performance with other fans. You can also take photos or videos and share them online.</li>
84
- <li>Recommend them: You can recommend Elio e le Storie Tese to someone who might like their music or style. You can also introduce them to some of their songs or albums that suit their taste or mood.</li>
85
- </ul>
86
-
87
- <p>By sharing E Elio Le Story Tese Torrent with others, you are not only spreading your love and enthusiasm for their music and artistry but also supporting their career and success.</p>
88
- <h2>Conclusion</h2>
89
-
90
- <p>E Elio Le Story Tese Torrent is a keyword that refers to the illegal and unsafe way of downloading the music of Elio e le Storie Tese, an Italian comedy rock band that has been entertaining audiences since 1980. The band is known for their witty and satirical lyrics, their eclectic musical style, and their energetic live performances. The band has released 14 studio albums, 5 live albums, and several singles and compilations.</p>
91
-
92
- <p>In this article, we have provided you with some information and tips on how to download E Elio Le Story Tese Torrent legally and safely, how to discover more about Elio e le Storie Tese, and how to share their music with others. We hope you have enjoyed reading this article and found it useful. Now go ahead and enjoy E Elio Le Story Tese Torrent online!</p> 3cee63e6c2<br />
93
- <br />
94
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/1phancelerku/anime-remove-background/Download attack on titan mod APK for Android - Free and Easy.md DELETED
@@ -1,126 +0,0 @@
1
- <br />
2
- <h1>Attack on Titan Mod Free Download in APKPure</h1>
3
- <p>If you are a fan of the popular anime and manga series Attack on Titan, you might be interested in playing the game based on it. However, if you want to enjoy some extra features and enhancements, you might want to try the mod version of the game. In this article, we will show you how to download and install Attack on Titan mod free from APKPure, one of the best sources for Android apps and games.</p>
4
- <h2>attack on titan mod free download in apkpure</h2><br /><p><b><b>Download Zip</b> &#9675; <a href="https://jinyurl.com/2uNMLd">https://jinyurl.com/2uNMLd</a></b></p><br /><br />
5
- <h2>What is Attack on Titan?</h2>
6
- <p>Attack on Titan is a Japanese manga series written and illustrated by Hajime Isayama. It is set in a world where humanity lives inside cities surrounded by three enormous walls that protect them from gigantic man-eating humanoids referred to as Titans. The story follows Eren Yeager, who vows to exterminate the Titans after they bring about the destruction of his hometown and the death of his mother.</p>
7
- <p>The manga series has been adapted into an anime television series, which has four seasons so far. The anime series has received critical acclaim and commercial success, winning several awards and becoming one of the best-selling manga series of all time.</p>
8
- <p>The game based on the anime series is called Attack on Titan / A.O.T. Wings of Freedom. It is an action hack and slash game that lets you play as one of the beloved characters from the series. You can use the Three Dimensional Maneuver Gear to fly around and fight against the Titans. You can also discover the story from the anime, with some original twists, and experience the thrill of being in the anime.</p>
9
- <p>attack on titan mod apk download for android<br />
10
- attack on titan mod minecraft pe free download<br />
11
- attack on titan mod apk unlimited money and gems<br />
12
- attack on titan mod menu apk download latest version<br />
13
- attack on titan mod for gta san andreas free download<br />
14
- attack on titan mod apk offline no root<br />
15
- attack on titan mod pack for minecraft java edition<br />
16
- attack on titan mod apk rexdl<br />
17
- attack on titan mod among us free download<br />
18
- attack on titan mod apk obb highly compressed<br />
19
- attack on titan mod for roblox free download<br />
20
- attack on titan mod apk unlimited everything<br />
21
- attack on titan mod for skyrim special edition<br />
22
- attack on titan mod apk happymod<br />
23
- attack on titan mod for gta 5 pc free download<br />
24
- attack on titan mod apk revdl<br />
25
- attack on titan mod for sims 4 free download<br />
26
- attack on titan mod apk all characters unlocked<br />
27
- attack on titan mod for fallout 4 xbox one<br />
28
- attack on titan mod apk android 1<br />
29
- attack on titan mod for terraria free download<br />
30
- attack on titan mod apk god mode<br />
31
- attack on titan mod for left 4 dead 2 free download<br />
32
- attack on titan mod apk unlimited coins and diamonds<br />
33
- attack on titan mod for stardew valley free download<br />
34
- attack on titan mod apk no ads<br />
35
- attack on titan mod for ark survival evolved free download<br />
36
- attack on titan mod apk unlimited health and stamina<br />
37
- attack on titan mod for subnautica free download<br />
38
- attack on titan mod apk latest update<br />
39
- attack on titan mod for starbound free download<br />
40
- attack on titan mod apk no verification<br />
41
- attack on titan mod for mount and blade warband free download<br />
42
- attack on titan mod apk unlimited blades and gas<br />
43
- attack on titan mod for rimworld free download<br />
44
- attack on titan mod apk no human verification<br />
45
- attack on titan mod for dragon age inquisition free download<br />
46
- attack on titan mod apk unlimited skills and items<br />
47
- attack on titan mod for xcom 2 free download<br />
48
- attack on titan mod apk one hit kill<br />
49
- attack on titan mod for witcher 3 free download<br />
50
- attack on titan mod apk online multiplayer<br />
51
- attack on titan mod for dark souls 3 free download<br />
52
- attack on titan mod apk all episodes unlocked<br />
53
- attack on titan mod for dying light free download<br />
54
- attack on titan mod apk original version<br />
55
- attack on titan mod for just cause 3 free download</p>
56
- <p>Some of the main features and characters of the game are:</p>
57
- <ul>
58
- <li>Play as Eren, Mikasa, Armin, Levi, Erwin, and more</li>
59
- <li>Use various weapons and skills to defeat different types of Titans</li>
60
- <li>Explore various locations from the anime, such as Shiganshina, Trost, Forest of Giant Trees, etc.</li>
61
- <li>Enjoy stunning graphics and sound effects that match the anime style</li>
62
- <li>Play solo or in cooperation with up to four players online</li>
63
- </ul>
64
- <h2>What is APKPure?</h2>
65
- <p>APKPure is a website that offers APK files for Android apps and games. APK stands for Android Package Kit, which is a file format that contains all the elements needed to install an app or game on your Android device. Normally, you would download apps and games from Google Play Store, which is the official source for Android apps. However, there are some reasons why you might want to use APKPure instead.</p>
66
- <p>Some of the benefits of using APKPure are:</p>
67
- <ul>
68
- <li>You can download apps and games that are not available in your country or region</li>
69
- <li>You can download apps and games that are not compatible with your device or Android version</li>
70
- <li>You can download apps and games that have been removed from Google Play Store</li>
71
- <li>You can download older versions of apps and games that work better for you</li>
72
- <li>You can download modded versions of apps and games that have extra features or enhancements</li>
73
- </ul>
74
- <p>However, there are also some risks of using APKPure that you should be aware of:</p>
75
- <ul>
76
- <li>You might download malicious or harmful files that can damage your device or steal your data</li>
77
- <li>You might violate the terms and conditions of the app or game developers and face legal consequences</li>
78
- <li>You might miss out on the updates and bug fixes that are provided by Google Play Store</li>
79
- <li>You might encounter compatibility or performance issues with some apps or games</li>
80
- </ul>
81
- <p>Therefore, you should always be careful and cautious when using APKPure or any other third-party source for Android apps and games. You should always check the ratings, reviews, and permissions of the files before downloading them. You should also scan the files with a reliable antivirus software before installing them. And you should always backup your data and device before trying any new app or game.</p>
82
- <h2>How to download and install Attack on Titan mod in APKPure?</h2>
83
- <p>If you want to try the mod version of Attack on Titan / A.O.T. Wings of Freedom, which has some extra features such as unlimited money, unlocked characters, and more, you can download it from APKPure website. Here are the steps to download and install Attack on Titan mod in APKPure:</p>
84
- <ol>
85
- <li>Go to the APKPure website and search for Attack on Titan mod or click on this link: [Attack on Titan Mod APK 1.1.2.12 - Download Attack on Titan Mod for Android]</li>
86
- <li>Click on the green Download APK button and wait for the file to be downloaded to your device</li>
87
- <li>Once the file is downloaded, go to your device settings and enable the option to install apps from unknown sources. This will allow you to install apps that are not from Google Play Store</li>
88
- <li>Locate the downloaded APK file in your device storage and tap on it to start the installation process</li>
89
- <li>Follow the instructions on the screen and grant the necessary permissions to the app</li>
90
- <li>Wait for the installation to finish and then launch the app from your app drawer or home screen</li>
91
- </ol>
92
- <p>Congratulations! You have successfully downloaded and installed Attack on Titan mod in APKPure. You can now enjoy playing the game with some extra features and enhancements.</p>
93
- <h2>Conclusion</h2>
94
- <p>In this article, we have shown you how to download and install Attack on Titan mod free from APKPure, one of the best sources for Android apps and games. We have also explained what is Attack on Titan, what is APKPure, and what are the benefits and risks of using APKPure. We hope you found this article helpful and informative. If you have any questions or feedback, please feel free to leave a comment below.</p>
95
- <p>If you liked this article, please share it with your friends and family who might be interested in playing Attack on Titan mod. And if you want to read more articles like this, please subscribe to our newsletter or follow us on social media. Thank you for reading!</p>
96
- <h2>FAQs</h2>
97
- <h3>What is an APK file and why do I need it?</h3>
98
- <p>An APK file is a file format that contains all the elements needed to install an app or game on your Android device. You need an APK file when you want to download an app or game that is not available in Google Play Store or that is not compatible with your device or Android version.</p>
99
- <h3>Is APKPure safe and reliable?</h3>
100
- <p>APKPure is one of the most popular and trusted websites that offers APK files for Android apps and games. It has millions of users and thousands of positive reviews. However, like any other third-party source, it also has some risks of downloading malicious or harmful files that can damage your device or steal your data. Therefore, you should always be careful and cautious when using APKPure or any other third-party source for Android apps and games.</p>
101
- <h3>What are the requirements and compatibility of Attack on Titan mod?</h3>
102
- <p>The requirements and compatibility of Attack on Titan mod are as follows:</p>
103
- <ul>
104
- <li>The minimum Android version required is 4.0.3 (Ice Cream Sandwich) or higher</li>
105
- <li>The minimum RAM required is 1 GB or higher</li>
106
- <li>The minimum storage space required is 500 MB or higher</li>
107
- <li>The app supports English, Japanese, Chinese, Korean, French, German, Spanish, Italian, Portuguese, Russian, Turkish, Arabic, Indonesian, Thai, Vietnamese languages</li>
108
- <li>The app is compatible with most Android devices such as Samsung, Huawei, Xiaomi, LG, Sony, Motorola, etc.</li>
109
- </ul>
110
- <h3>What are the features and advantages of Attack on Titan mod?</h3>
111
- <p>The features and advantages of Attack on Titan mod are as follows:</p>
112
- <ul>
113
- <li>You can get unlimited money to buy weapons, items, upgrades, etc.</li>
114
- <li>You can unlock all the characters and skills to play as your favorite character</li>
115
- <li>You can enjoy the game without any ads or interruptions</li>
116
- <li>You can customize the game settings to suit your preferences and device performance</li>
117
- <li>You can experience the game with some extra enhancements and improvements</li>
118
- </ul>
119
- <h3>How can I update or uninstall Attack on Titan mod?</h3>
120
- <p>If you want to update or uninstall Attack on Titan mod, you can follow these steps:</p>
121
- <ol>
122
- <li>To update the app, you need to download the latest version of the APK file from APKPure website and install it over the existing app. You don't need to uninstall the previous version, but you should backup your data before updating</li>
123
- <li>To uninstall the app, you need to go to your device settings and find the app in the list of installed apps. Then, you need to tap on the app and select the option to uninstall it. You should also delete the APK file from your device storage</li>
124
- </ol></p> 401be4b1e0<br />
125
- <br />
126
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGC-Audio/AudioGPT/text_to_speech/data_gen/tts/txt_processors/zh.py DELETED
@@ -1,117 +0,0 @@
1
- import re
2
- import jieba
3
- from pypinyin import pinyin, Style
4
- from text_to_speech.utils.text.text_norm import NSWNormalizer
5
- from text_to_speech.data_gen.tts.txt_processors.base_text_processor import BaseTxtProcessor, register_txt_processors
6
- from text_to_speech.utils.text.text_encoder import PUNCS, is_sil_phoneme
7
-
8
- ALL_SHENMU = ['zh', 'ch', 'sh', 'b', 'p', 'm', 'f', 'd', 't', 'n', 'l', 'g', 'k', 'h', 'j',
9
- 'q', 'x', 'r', 'z', 'c', 's', 'y', 'w']
10
-
11
-
12
- @register_txt_processors('zh')
13
- class TxtProcessor(BaseTxtProcessor):
14
- table = {ord(f): ord(t) for f, t in zip(
15
- u':,。!?【】()%#@&1234567890',
16
- u':,.!?[]()%#@&1234567890')}
17
-
18
- @staticmethod
19
- def sp_phonemes():
20
- return ['|', '#']
21
-
22
- @staticmethod
23
- def preprocess_text(text):
24
- text = text.translate(TxtProcessor.table)
25
- text = NSWNormalizer(text).normalize(remove_punc=False).lower()
26
- text = re.sub("[\'\"()]+", "", text)
27
- text = re.sub("[-]+", " ", text)
28
- text = re.sub(f"[^ A-Za-z\u4e00-\u9fff{PUNCS}]", "", text)
29
- text = re.sub(f"([{PUNCS}])+", r"\1", text) # !! -> !
30
- text = re.sub(f"([{PUNCS}])", r" \1 ", text)
31
- text = re.sub(rf"\s+", r"", text)
32
- text = re.sub(rf"[A-Za-z]+", r"$", text)
33
- return text
34
-
35
- @classmethod
36
- def pinyin_with_en(cls, txt, style):
37
- x = pinyin(txt, style)
38
- x = [t[0] for t in x]
39
- x_ = []
40
- for t in x:
41
- if '$' not in t:
42
- x_.append(t)
43
- else:
44
- x_ += list(t)
45
- x_ = [t if t != '$' else 'ENG' for t in x_]
46
- return x_
47
-
48
- @classmethod
49
- def process(cls, txt, pre_align_args):
50
- txt = cls.preprocess_text(txt)
51
- txt = txt.replace("嗯", "蒽") # pypin会把嗯的声母韵母识别为'',导致ph2word出现错位。
52
- # https://blog.csdn.net/zhoulei124/article/details/89055403
53
-
54
- shengmu = cls.pinyin_with_en(txt, style=Style.INITIALS)
55
- yunmu = cls.pinyin_with_en(txt, style=
56
- Style.FINALS_TONE3 if pre_align_args['use_tone'] else Style.FINALS)
57
- assert len(shengmu) == len(yunmu)
58
- for i in range(len(shengmu)):
59
- if shengmu[i] == '' and yunmu[i] == '':
60
- print(f"发现了一个声母韵母都是空的文字:{txt[i]}")
61
- ph_list = []
62
- for a, b in zip(shengmu, yunmu):
63
- if a == b:
64
- ph_list += [a]
65
- else:
66
- ph_list += [a + "%" + b]
67
- seg_list = '#'.join(jieba.cut(txt))
68
- assert len(ph_list) == len([s for s in seg_list if s != '#']), (ph_list, seg_list)
69
-
70
- # 加入词边界'#'
71
- ph_list_ = []
72
- seg_idx = 0
73
- for p in ph_list:
74
- if seg_list[seg_idx] == '#':
75
- ph_list_.append('#')
76
- seg_idx += 1
77
- elif len(ph_list_) > 0:
78
- ph_list_.append("|")
79
- seg_idx += 1
80
- finished = False
81
- if not finished:
82
- ph_list_ += [x for x in p.split("%") if x != '']
83
-
84
- ph_list = ph_list_
85
-
86
- # 去除静音符号周围的词边界标记 [..., '#', ',', '#', ...]
87
- sil_phonemes = list(PUNCS) + TxtProcessor.sp_phonemes()
88
- ph_list_ = []
89
- for i in range(0, len(ph_list), 1):
90
- if ph_list[i] != '#' or (ph_list[i - 1] not in sil_phonemes and ph_list[i + 1] not in sil_phonemes):
91
- ph_list_.append(ph_list[i])
92
- ph_list = ph_list_
93
-
94
- txt_struct = [[w, []] for w in txt]
95
- i = 0
96
- for ph in ph_list:
97
- if ph == '|' or ph == '#':
98
- i += 1
99
- continue
100
- # elif ph in [',', '.']:
101
- elif ph in [',', '.', '?', '!', ':']:
102
- i += 1
103
- txt_struct[i][1].append(ph)
104
- i += 1
105
- continue
106
- txt_struct[i][1].append(ph)
107
- # return ph_list, txt
108
- txt_struct.insert(0, ['<BOS>', ['<BOS>']])
109
- txt_struct.append(['<EOS>', ['<EOS>']])
110
- return txt_struct, txt
111
-
112
-
113
- if __name__ == '__main__':
114
- # t = 'simon演唱过后,simon还进行了simon精彩的文艺演出simon.'
115
- t = '你当我傻啊?脑子那么大怎么塞进去???'
116
- phs, txt = TxtProcessor.process(t, {'use_tone': True})
117
- print(phs, txt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGC-Audio/Make_An_Audio/ldm/modules/x_transformer.py DELETED
@@ -1,641 +0,0 @@
1
- """shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
2
- import torch
3
- from torch import nn, einsum
4
- import torch.nn.functional as F
5
- from functools import partial
6
- from inspect import isfunction
7
- from collections import namedtuple
8
- from einops import rearrange, repeat, reduce
9
-
10
- # constants
11
-
12
- DEFAULT_DIM_HEAD = 64
13
-
14
- Intermediates = namedtuple('Intermediates', [
15
- 'pre_softmax_attn',
16
- 'post_softmax_attn'
17
- ])
18
-
19
- LayerIntermediates = namedtuple('Intermediates', [
20
- 'hiddens',
21
- 'attn_intermediates'
22
- ])
23
-
24
-
25
- class AbsolutePositionalEmbedding(nn.Module):
26
- def __init__(self, dim, max_seq_len):
27
- super().__init__()
28
- self.emb = nn.Embedding(max_seq_len, dim)
29
- self.init_()
30
-
31
- def init_(self):
32
- nn.init.normal_(self.emb.weight, std=0.02)
33
-
34
- def forward(self, x):
35
- n = torch.arange(x.shape[1], device=x.device)
36
- return self.emb(n)[None, :, :]
37
-
38
-
39
- class FixedPositionalEmbedding(nn.Module):
40
- def __init__(self, dim):
41
- super().__init__()
42
- inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
43
- self.register_buffer('inv_freq', inv_freq)
44
-
45
- def forward(self, x, seq_dim=1, offset=0):
46
- t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
47
- sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
48
- emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
49
- return emb[None, :, :]
50
-
51
-
52
- # helpers
53
-
54
- def exists(val):
55
- return val is not None
56
-
57
-
58
- def default(val, d):
59
- if exists(val):
60
- return val
61
- return d() if isfunction(d) else d
62
-
63
-
64
- def always(val):
65
- def inner(*args, **kwargs):
66
- return val
67
- return inner
68
-
69
-
70
- def not_equals(val):
71
- def inner(x):
72
- return x != val
73
- return inner
74
-
75
-
76
- def equals(val):
77
- def inner(x):
78
- return x == val
79
- return inner
80
-
81
-
82
- def max_neg_value(tensor):
83
- return -torch.finfo(tensor.dtype).max
84
-
85
-
86
- # keyword argument helpers
87
-
88
- def pick_and_pop(keys, d):
89
- values = list(map(lambda key: d.pop(key), keys))
90
- return dict(zip(keys, values))
91
-
92
-
93
- def group_dict_by_key(cond, d):
94
- return_val = [dict(), dict()]
95
- for key in d.keys():
96
- match = bool(cond(key))
97
- ind = int(not match)
98
- return_val[ind][key] = d[key]
99
- return (*return_val,)
100
-
101
-
102
- def string_begins_with(prefix, str):
103
- return str.startswith(prefix)
104
-
105
-
106
- def group_by_key_prefix(prefix, d):
107
- return group_dict_by_key(partial(string_begins_with, prefix), d)
108
-
109
-
110
- def groupby_prefix_and_trim(prefix, d):
111
- kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
112
- kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
113
- return kwargs_without_prefix, kwargs
114
-
115
-
116
- # classes
117
- class Scale(nn.Module):
118
- def __init__(self, value, fn):
119
- super().__init__()
120
- self.value = value
121
- self.fn = fn
122
-
123
- def forward(self, x, **kwargs):
124
- x, *rest = self.fn(x, **kwargs)
125
- return (x * self.value, *rest)
126
-
127
-
128
- class Rezero(nn.Module):
129
- def __init__(self, fn):
130
- super().__init__()
131
- self.fn = fn
132
- self.g = nn.Parameter(torch.zeros(1))
133
-
134
- def forward(self, x, **kwargs):
135
- x, *rest = self.fn(x, **kwargs)
136
- return (x * self.g, *rest)
137
-
138
-
139
- class ScaleNorm(nn.Module):
140
- def __init__(self, dim, eps=1e-5):
141
- super().__init__()
142
- self.scale = dim ** -0.5
143
- self.eps = eps
144
- self.g = nn.Parameter(torch.ones(1))
145
-
146
- def forward(self, x):
147
- norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
148
- return x / norm.clamp(min=self.eps) * self.g
149
-
150
-
151
- class RMSNorm(nn.Module):
152
- def __init__(self, dim, eps=1e-8):
153
- super().__init__()
154
- self.scale = dim ** -0.5
155
- self.eps = eps
156
- self.g = nn.Parameter(torch.ones(dim))
157
-
158
- def forward(self, x):
159
- norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
160
- return x / norm.clamp(min=self.eps) * self.g
161
-
162
-
163
- class Residual(nn.Module):
164
- def forward(self, x, residual):
165
- return x + residual
166
-
167
-
168
- class GRUGating(nn.Module):
169
- def __init__(self, dim):
170
- super().__init__()
171
- self.gru = nn.GRUCell(dim, dim)
172
-
173
- def forward(self, x, residual):
174
- gated_output = self.gru(
175
- rearrange(x, 'b n d -> (b n) d'),
176
- rearrange(residual, 'b n d -> (b n) d')
177
- )
178
-
179
- return gated_output.reshape_as(x)
180
-
181
-
182
- # feedforward
183
-
184
- class GEGLU(nn.Module):
185
- def __init__(self, dim_in, dim_out):
186
- super().__init__()
187
- self.proj = nn.Linear(dim_in, dim_out * 2)
188
-
189
- def forward(self, x):
190
- x, gate = self.proj(x).chunk(2, dim=-1)
191
- return x * F.gelu(gate)
192
-
193
-
194
- class FeedForward(nn.Module):
195
- def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
196
- super().__init__()
197
- inner_dim = int(dim * mult)
198
- dim_out = default(dim_out, dim)
199
- project_in = nn.Sequential(
200
- nn.Linear(dim, inner_dim),
201
- nn.GELU()
202
- ) if not glu else GEGLU(dim, inner_dim)
203
-
204
- self.net = nn.Sequential(
205
- project_in,
206
- nn.Dropout(dropout),
207
- nn.Linear(inner_dim, dim_out)
208
- )
209
-
210
- def forward(self, x):
211
- return self.net(x)
212
-
213
-
214
- # attention.
215
- class Attention(nn.Module):
216
- def __init__(
217
- self,
218
- dim,
219
- dim_head=DEFAULT_DIM_HEAD,
220
- heads=8,
221
- causal=False,
222
- mask=None,
223
- talking_heads=False,
224
- sparse_topk=None,
225
- use_entmax15=False,
226
- num_mem_kv=0,
227
- dropout=0.,
228
- on_attn=False
229
- ):
230
- super().__init__()
231
- if use_entmax15:
232
- raise NotImplementedError("Check out entmax activation instead of softmax activation!")
233
- self.scale = dim_head ** -0.5
234
- self.heads = heads
235
- self.causal = causal
236
- self.mask = mask
237
-
238
- inner_dim = dim_head * heads
239
-
240
- self.to_q = nn.Linear(dim, inner_dim, bias=False)
241
- self.to_k = nn.Linear(dim, inner_dim, bias=False)
242
- self.to_v = nn.Linear(dim, inner_dim, bias=False)
243
- self.dropout = nn.Dropout(dropout)
244
-
245
- # talking heads
246
- self.talking_heads = talking_heads
247
- if talking_heads:
248
- self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
249
- self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
250
-
251
- # explicit topk sparse attention
252
- self.sparse_topk = sparse_topk
253
-
254
- # entmax
255
- #self.attn_fn = entmax15 if use_entmax15 else F.softmax
256
- self.attn_fn = F.softmax
257
-
258
- # add memory key / values
259
- self.num_mem_kv = num_mem_kv
260
- if num_mem_kv > 0:
261
- self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
262
- self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
263
-
264
- # attention on attention
265
- self.attn_on_attn = on_attn
266
- self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
267
-
268
- def forward(
269
- self,
270
- x,
271
- context=None,
272
- mask=None,
273
- context_mask=None,
274
- rel_pos=None,
275
- sinusoidal_emb=None,
276
- prev_attn=None,
277
- mem=None
278
- ):
279
- b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
280
- kv_input = default(context, x)
281
-
282
- q_input = x
283
- k_input = kv_input
284
- v_input = kv_input
285
-
286
- if exists(mem):
287
- k_input = torch.cat((mem, k_input), dim=-2)
288
- v_input = torch.cat((mem, v_input), dim=-2)
289
-
290
- if exists(sinusoidal_emb):
291
- # in shortformer, the query would start at a position offset depending on the past cached memory
292
- offset = k_input.shape[-2] - q_input.shape[-2]
293
- q_input = q_input + sinusoidal_emb(q_input, offset=offset)
294
- k_input = k_input + sinusoidal_emb(k_input)
295
-
296
- q = self.to_q(q_input)
297
- k = self.to_k(k_input)
298
- v = self.to_v(v_input)
299
-
300
- q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
301
-
302
- input_mask = None
303
- if any(map(exists, (mask, context_mask))):
304
- q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
305
- k_mask = q_mask if not exists(context) else context_mask
306
- k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
307
- q_mask = rearrange(q_mask, 'b i -> b () i ()')
308
- k_mask = rearrange(k_mask, 'b j -> b () () j')
309
- input_mask = q_mask * k_mask
310
-
311
- if self.num_mem_kv > 0:
312
- mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
313
- k = torch.cat((mem_k, k), dim=-2)
314
- v = torch.cat((mem_v, v), dim=-2)
315
- if exists(input_mask):
316
- input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
317
-
318
- dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
319
- mask_value = max_neg_value(dots)
320
-
321
- if exists(prev_attn):
322
- dots = dots + prev_attn
323
-
324
- pre_softmax_attn = dots
325
-
326
- if talking_heads:
327
- dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
328
-
329
- if exists(rel_pos):
330
- dots = rel_pos(dots)
331
-
332
- if exists(input_mask):
333
- dots.masked_fill_(~input_mask, mask_value)
334
- del input_mask
335
-
336
- if self.causal:
337
- i, j = dots.shape[-2:]
338
- r = torch.arange(i, device=device)
339
- mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
340
- mask = F.pad(mask, (j - i, 0), value=False)
341
- dots.masked_fill_(mask, mask_value)
342
- del mask
343
-
344
- if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
345
- top, _ = dots.topk(self.sparse_topk, dim=-1)
346
- vk = top[..., -1].unsqueeze(-1).expand_as(dots)
347
- mask = dots < vk
348
- dots.masked_fill_(mask, mask_value)
349
- del mask
350
-
351
- attn = self.attn_fn(dots, dim=-1)
352
- post_softmax_attn = attn
353
-
354
- attn = self.dropout(attn)
355
-
356
- if talking_heads:
357
- attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
358
-
359
- out = einsum('b h i j, b h j d -> b h i d', attn, v)
360
- out = rearrange(out, 'b h n d -> b n (h d)')
361
-
362
- intermediates = Intermediates(
363
- pre_softmax_attn=pre_softmax_attn,
364
- post_softmax_attn=post_softmax_attn
365
- )
366
-
367
- return self.to_out(out), intermediates
368
-
369
-
370
- class AttentionLayers(nn.Module):
371
- def __init__(
372
- self,
373
- dim,
374
- depth,
375
- heads=8,
376
- causal=False,
377
- cross_attend=False,
378
- only_cross=False,
379
- use_scalenorm=False,
380
- use_rmsnorm=False,
381
- use_rezero=False,
382
- rel_pos_num_buckets=32,
383
- rel_pos_max_distance=128,
384
- position_infused_attn=False,
385
- custom_layers=None,
386
- sandwich_coef=None,
387
- par_ratio=None,
388
- residual_attn=False,
389
- cross_residual_attn=False,
390
- macaron=False,
391
- pre_norm=True,
392
- gate_residual=False,
393
- **kwargs
394
- ):
395
- super().__init__()
396
- ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
397
- attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
398
-
399
- dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
400
-
401
- self.dim = dim
402
- self.depth = depth
403
- self.layers = nn.ModuleList([])
404
-
405
- self.has_pos_emb = position_infused_attn
406
- self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
407
- self.rotary_pos_emb = always(None)
408
-
409
- assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
410
- self.rel_pos = None
411
-
412
- self.pre_norm = pre_norm
413
-
414
- self.residual_attn = residual_attn
415
- self.cross_residual_attn = cross_residual_attn
416
-
417
- norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
418
- norm_class = RMSNorm if use_rmsnorm else norm_class
419
- norm_fn = partial(norm_class, dim)
420
-
421
- norm_fn = nn.Identity if use_rezero else norm_fn
422
- branch_fn = Rezero if use_rezero else None
423
-
424
- if cross_attend and not only_cross:
425
- default_block = ('a', 'c', 'f')
426
- elif cross_attend and only_cross:
427
- default_block = ('c', 'f')
428
- else:
429
- default_block = ('a', 'f')
430
-
431
- if macaron:
432
- default_block = ('f',) + default_block
433
-
434
- if exists(custom_layers):
435
- layer_types = custom_layers
436
- elif exists(par_ratio):
437
- par_depth = depth * len(default_block)
438
- assert 1 < par_ratio <= par_depth, 'par ratio out of range'
439
- default_block = tuple(filter(not_equals('f'), default_block))
440
- par_attn = par_depth // par_ratio
441
- depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
442
- par_width = (depth_cut + depth_cut // par_attn) // par_attn
443
- assert len(default_block) <= par_width, 'default block is too large for par_ratio'
444
- par_block = default_block + ('f',) * (par_width - len(default_block))
445
- par_head = par_block * par_attn
446
- layer_types = par_head + ('f',) * (par_depth - len(par_head))
447
- elif exists(sandwich_coef):
448
- assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
449
- layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
450
- else:
451
- layer_types = default_block * depth
452
-
453
- self.layer_types = layer_types
454
- self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
455
-
456
- for layer_type in self.layer_types:
457
- if layer_type == 'a':
458
- layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
459
- elif layer_type == 'c':
460
- layer = Attention(dim, heads=heads, **attn_kwargs)
461
- elif layer_type == 'f':
462
- layer = FeedForward(dim, **ff_kwargs)
463
- layer = layer if not macaron else Scale(0.5, layer)
464
- else:
465
- raise Exception(f'invalid layer type {layer_type}')
466
-
467
- if isinstance(layer, Attention) and exists(branch_fn):
468
- layer = branch_fn(layer)
469
-
470
- if gate_residual:
471
- residual_fn = GRUGating(dim)
472
- else:
473
- residual_fn = Residual()
474
-
475
- self.layers.append(nn.ModuleList([
476
- norm_fn(),
477
- layer,
478
- residual_fn
479
- ]))
480
-
481
- def forward(
482
- self,
483
- x,
484
- context=None,
485
- mask=None,
486
- context_mask=None,
487
- mems=None,
488
- return_hiddens=False
489
- ):
490
- hiddens = []
491
- intermediates = []
492
- prev_attn = None
493
- prev_cross_attn = None
494
-
495
- mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
496
-
497
- for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
498
- is_last = ind == (len(self.layers) - 1)
499
-
500
- if layer_type == 'a':
501
- hiddens.append(x)
502
- layer_mem = mems.pop(0)
503
-
504
- residual = x
505
-
506
- if self.pre_norm:
507
- x = norm(x)
508
-
509
- if layer_type == 'a':
510
- out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
511
- prev_attn=prev_attn, mem=layer_mem)
512
- elif layer_type == 'c':
513
- out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
514
- elif layer_type == 'f':
515
- out = block(x)
516
-
517
- x = residual_fn(out, residual)
518
-
519
- if layer_type in ('a', 'c'):
520
- intermediates.append(inter)
521
-
522
- if layer_type == 'a' and self.residual_attn:
523
- prev_attn = inter.pre_softmax_attn
524
- elif layer_type == 'c' and self.cross_residual_attn:
525
- prev_cross_attn = inter.pre_softmax_attn
526
-
527
- if not self.pre_norm and not is_last:
528
- x = norm(x)
529
-
530
- if return_hiddens:
531
- intermediates = LayerIntermediates(
532
- hiddens=hiddens,
533
- attn_intermediates=intermediates
534
- )
535
-
536
- return x, intermediates
537
-
538
- return x
539
-
540
-
541
- class Encoder(AttentionLayers):
542
- def __init__(self, **kwargs):
543
- assert 'causal' not in kwargs, 'cannot set causality on encoder'
544
- super().__init__(causal=False, **kwargs)
545
-
546
-
547
-
548
- class TransformerWrapper(nn.Module):
549
- def __init__(
550
- self,
551
- *,
552
- num_tokens,
553
- max_seq_len,
554
- attn_layers,
555
- emb_dim=None,
556
- max_mem_len=0.,
557
- emb_dropout=0.,
558
- num_memory_tokens=None,
559
- tie_embedding=False,
560
- use_pos_emb=True
561
- ):
562
- super().__init__()
563
- assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
564
-
565
- dim = attn_layers.dim
566
- emb_dim = default(emb_dim, dim)
567
-
568
- self.max_seq_len = max_seq_len
569
- self.max_mem_len = max_mem_len
570
- self.num_tokens = num_tokens
571
-
572
- self.token_emb = nn.Embedding(num_tokens, emb_dim)
573
- self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
574
- use_pos_emb and not attn_layers.has_pos_emb) else always(0)
575
- self.emb_dropout = nn.Dropout(emb_dropout)
576
-
577
- self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
578
- self.attn_layers = attn_layers
579
- self.norm = nn.LayerNorm(dim)
580
-
581
- self.init_()
582
-
583
- self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
584
-
585
- # memory tokens (like [cls]) from Memory Transformers paper
586
- num_memory_tokens = default(num_memory_tokens, 0)
587
- self.num_memory_tokens = num_memory_tokens
588
- if num_memory_tokens > 0:
589
- self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
590
-
591
- # let funnel encoder know number of memory tokens, if specified
592
- if hasattr(attn_layers, 'num_memory_tokens'):
593
- attn_layers.num_memory_tokens = num_memory_tokens
594
-
595
- def init_(self):
596
- nn.init.normal_(self.token_emb.weight, std=0.02)
597
-
598
- def forward(
599
- self,
600
- x,
601
- return_embeddings=False,
602
- mask=None,
603
- return_mems=False,
604
- return_attn=False,
605
- mems=None,
606
- **kwargs
607
- ):
608
- b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
609
- x = self.token_emb(x)
610
- x += self.pos_emb(x)
611
- x = self.emb_dropout(x)
612
-
613
- x = self.project_emb(x)
614
-
615
- if num_mem > 0:
616
- mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
617
- x = torch.cat((mem, x), dim=1)
618
-
619
- # auto-handle masking after appending memory tokens
620
- if exists(mask):
621
- mask = F.pad(mask, (num_mem, 0), value=True)
622
-
623
- x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
624
- x = self.norm(x)
625
-
626
- mem, x = x[:, :num_mem], x[:, num_mem:]
627
-
628
- out = self.to_logits(x) if not return_embeddings else x
629
-
630
- if return_mems:
631
- hiddens = intermediates.hiddens
632
- new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
633
- new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
634
- return out, new_mems
635
-
636
- if return_attn:
637
- attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
638
- return out, attn_maps
639
-
640
- return out
641
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AIGText/GlyphControl/annotator/render_images.py DELETED
@@ -1,95 +0,0 @@
1
- from PIL import Image, ImageFont, ImageDraw
2
- import random
3
-
4
- # resize height to image_height first, then shrink or pad to image_width
5
- def resize_and_pad_image(pil_image, image_size):
6
-
7
- if isinstance(image_size, (tuple, list)) and len(image_size) == 2:
8
- image_width, image_height = image_size
9
- elif isinstance(image_size, int):
10
- image_width = image_height = image_size
11
- else:
12
- raise ValueError(f"Image size should be int or list/tuple of int not {image_size}")
13
-
14
- while pil_image.size[1] >= 2 * image_height:
15
- pil_image = pil_image.resize(
16
- tuple(x // 2 for x in pil_image.size), resample=Image.BOX
17
- )
18
-
19
- scale = image_height / pil_image.size[1]
20
- pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size),resample=Image.BICUBIC)
21
-
22
- # shrink
23
- if pil_image.size[0] > image_width:
24
- pil_image = pil_image.resize((image_width, image_height),resample=Image.BICUBIC)
25
-
26
- # padding
27
- if pil_image.size[0] < image_width:
28
- img = Image.new(mode="RGB",size=(image_width,image_height), color="white")
29
- width, _ = pil_image.size
30
- img.paste(pil_image,((image_width - width)//2, 0))
31
- pil_image = img
32
-
33
- return pil_image
34
-
35
- def render_text_image_custom(image_size, bboxes, rendered_txt_values, num_rows_values, align = "center"):
36
- # aligns = ["center", "left", "right"]
37
- """Render text image based on the list of bbox called `bboxes`.
38
- Support font that can be choosed.
39
- """
40
- print(image_size, bboxes, rendered_txt_values, num_rows_values, align)
41
- background = Image.new("RGB", image_size, "white")
42
- font = ImageFont.truetype("calibri.ttf", encoding='utf-8', size=512)
43
-
44
- for text, bbox, num_rows in zip(rendered_txt_values, bboxes, num_rows_values):
45
-
46
- if len(text) == 0:
47
- continue
48
-
49
- text = text.strip()
50
- if num_rows != 1:
51
- word_tokens = text.split()
52
- num_tokens = len(word_tokens)
53
- index_list = range(1, num_tokens + 1)
54
- if num_tokens > num_rows:
55
- index_list = random.sample(index_list, num_rows)
56
- index_list.sort()
57
- line_list = []
58
- start_idx = 0
59
- for index in index_list:
60
- line_list.append(
61
- " ".join(word_tokens
62
- [start_idx: index]
63
- )
64
- )
65
- start_idx = index
66
- text = "\n".join(line_list)
67
-
68
- if 'ratio' not in bbox or bbox['ratio'] == 0 or bbox['ratio'] < 1e-4:
69
- image4ratio = Image.new("RGB", (512, 512), "white")
70
- draw = ImageDraw.Draw(image4ratio)
71
- _, _ , w, h = draw.textbbox(xy=(0,0),text = text, font=font)
72
- ratio = w / h
73
- else:
74
- ratio = bbox['ratio']
75
-
76
- width = int(bbox['width'] * image_size[1])
77
- height = int(width / ratio)
78
- top_left_x = int(bbox['top_left_x'] * image_size[0])
79
- top_left_y = int(bbox['top_left_y'] * image_size[1])
80
- yaw = bbox['yaw']
81
-
82
- text_image = Image.new("RGB", (512, 512), "white")
83
- draw = ImageDraw.Draw(text_image)
84
- x,y,w,h = draw.textbbox(xy=(0,0),text = text, font=font)
85
- text_image = Image.new("RGB", (w, h), "white")
86
- draw = ImageDraw.Draw(text_image)
87
- draw.text((-x/2,-y/2), text, "black", font=font, align=align)
88
- text_image = resize_and_pad_image(text_image, (width, height))
89
- text_image = text_image.rotate(angle=-yaw, expand=True, fillcolor="white")
90
- # image = Image.new("RGB", (w, h), "white")
91
- # draw = ImageDraw.Draw(image)
92
-
93
- background.paste(text_image, (top_left_x, top_left_y))
94
-
95
- return background
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Abhilashvj/planogram-compliance/classify/train.py DELETED
@@ -1,537 +0,0 @@
1
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
2
- """
3
- Train a YOLOv5 classifier model on a classification dataset
4
-
5
- Usage - Single-GPU training:
6
- $ python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224
7
-
8
- Usage - Multi-GPU DDP training:
9
- $ python -m torch.distributed.run --nproc_per_node 4 --master_port 2022 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3
10
-
11
- Datasets: --data mnist, fashion-mnist, cifar10, cifar100, imagenette, imagewoof, imagenet, or 'path/to/data'
12
- YOLOv5-cls models: --model yolov5n-cls.pt, yolov5s-cls.pt, yolov5m-cls.pt, yolov5l-cls.pt, yolov5x-cls.pt
13
- Torchvision models: --model resnet50, efficientnet_b0, etc. See https://pytorch.org/vision/stable/models.html
14
- """
15
-
16
- import argparse
17
- import os
18
- import subprocess
19
- import sys
20
- import time
21
- from copy import deepcopy
22
- from datetime import datetime
23
- from pathlib import Path
24
-
25
- import torch
26
- import torch.distributed as dist
27
- import torch.hub as hub
28
- import torch.optim.lr_scheduler as lr_scheduler
29
- import torchvision
30
- from torch.cuda import amp
31
- from tqdm import tqdm
32
-
33
- FILE = Path(__file__).resolve()
34
- ROOT = FILE.parents[1] # YOLOv5 root directory
35
- if str(ROOT) not in sys.path:
36
- sys.path.append(str(ROOT)) # add ROOT to PATH
37
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
38
-
39
- from classify import val as validate
40
- from models.experimental import attempt_load
41
- from models.yolo import ClassificationModel, DetectionModel
42
- from utils.dataloaders import create_classification_dataloader
43
- from utils.general import (
44
- DATASETS_DIR,
45
- LOGGER,
46
- TQDM_BAR_FORMAT,
47
- WorkingDirectory,
48
- check_git_info,
49
- check_git_status,
50
- check_requirements,
51
- colorstr,
52
- download,
53
- increment_path,
54
- init_seeds,
55
- print_args,
56
- yaml_save,
57
- )
58
- from utils.loggers import GenericLogger
59
- from utils.plots import imshow_cls
60
- from utils.torch_utils import (
61
- ModelEMA,
62
- model_info,
63
- reshape_classifier_output,
64
- select_device,
65
- smart_DDP,
66
- smart_optimizer,
67
- smartCrossEntropyLoss,
68
- torch_distributed_zero_first,
69
- )
70
-
71
- LOCAL_RANK = int(
72
- os.getenv("LOCAL_RANK", -1)
73
- ) # https://pytorch.org/docs/stable/elastic/run.html
74
- RANK = int(os.getenv("RANK", -1))
75
- WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
76
- GIT_INFO = check_git_info()
77
-
78
-
79
- def train(opt, device):
80
- init_seeds(opt.seed + 1 + RANK, deterministic=True)
81
- save_dir, data, bs, epochs, nw, imgsz, pretrained = (
82
- opt.save_dir,
83
- Path(opt.data),
84
- opt.batch_size,
85
- opt.epochs,
86
- min(os.cpu_count() - 1, opt.workers),
87
- opt.imgsz,
88
- str(opt.pretrained).lower() == "true",
89
- )
90
- cuda = device.type != "cpu"
91
-
92
- # Directories
93
- wdir = save_dir / "weights"
94
- wdir.mkdir(parents=True, exist_ok=True) # make dir
95
- last, best = wdir / "last.pt", wdir / "best.pt"
96
-
97
- # Save run settings
98
- yaml_save(save_dir / "opt.yaml", vars(opt))
99
-
100
- # Logger
101
- logger = (
102
- GenericLogger(opt=opt, console_logger=LOGGER)
103
- if RANK in {-1, 0}
104
- else None
105
- )
106
-
107
- # Download Dataset
108
- with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
109
- data_dir = data if data.is_dir() else (DATASETS_DIR / data)
110
- if not data_dir.is_dir():
111
- LOGGER.info(
112
- f"\nDataset not found ⚠️, missing path {data_dir}, attempting download..."
113
- )
114
- t = time.time()
115
- if str(data) == "imagenet":
116
- subprocess.run(
117
- f"bash {ROOT / 'data/scripts/get_imagenet.sh'}",
118
- shell=True,
119
- check=True,
120
- )
121
- else:
122
- url = f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{data}.zip"
123
- download(url, dir=data_dir.parent)
124
- s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
125
- LOGGER.info(s)
126
-
127
- # Dataloaders
128
- nc = len(
129
- [x for x in (data_dir / "train").glob("*") if x.is_dir()]
130
- ) # number of classes
131
- trainloader = create_classification_dataloader(
132
- path=data_dir / "train",
133
- imgsz=imgsz,
134
- batch_size=bs // WORLD_SIZE,
135
- augment=True,
136
- cache=opt.cache,
137
- rank=LOCAL_RANK,
138
- workers=nw,
139
- )
140
-
141
- test_dir = (
142
- data_dir / "test" if (data_dir / "test").exists() else data_dir / "val"
143
- ) # data/test or data/val
144
- if RANK in {-1, 0}:
145
- testloader = create_classification_dataloader(
146
- path=test_dir,
147
- imgsz=imgsz,
148
- batch_size=bs // WORLD_SIZE * 2,
149
- augment=False,
150
- cache=opt.cache,
151
- rank=-1,
152
- workers=nw,
153
- )
154
-
155
- # Model
156
- with torch_distributed_zero_first(LOCAL_RANK), WorkingDirectory(ROOT):
157
- if Path(opt.model).is_file() or opt.model.endswith(".pt"):
158
- model = attempt_load(opt.model, device="cpu", fuse=False)
159
- elif (
160
- opt.model in torchvision.models.__dict__
161
- ): # TorchVision models i.e. resnet50, efficientnet_b0
162
- model = torchvision.models.__dict__[opt.model](
163
- weights="IMAGENET1K_V1" if pretrained else None
164
- )
165
- else:
166
- m = hub.list(
167
- "ultralytics/yolov5"
168
- ) # + hub.list('pytorch/vision') # models
169
- raise ModuleNotFoundError(
170
- f"--model {opt.model} not found. Available models are: \n"
171
- + "\n".join(m)
172
- )
173
- if isinstance(model, DetectionModel):
174
- LOGGER.warning(
175
- "WARNING ⚠️ pass YOLOv5 classifier model with '-cls' suffix, i.e. '--model yolov5s-cls.pt'"
176
- )
177
- model = ClassificationModel(
178
- model=model, nc=nc, cutoff=opt.cutoff or 10
179
- ) # convert to classification model
180
- reshape_classifier_output(model, nc) # update class count
181
- for m in model.modules():
182
- if not pretrained and hasattr(m, "reset_parameters"):
183
- m.reset_parameters()
184
- if isinstance(m, torch.nn.Dropout) and opt.dropout is not None:
185
- m.p = opt.dropout # set dropout
186
- for p in model.parameters():
187
- p.requires_grad = True # for training
188
- model = model.to(device)
189
-
190
- # Info
191
- if RANK in {-1, 0}:
192
- model.names = trainloader.dataset.classes # attach class names
193
- model.transforms = (
194
- testloader.dataset.torch_transforms
195
- ) # attach inference transforms
196
- model_info(model)
197
- if opt.verbose:
198
- LOGGER.info(model)
199
- images, labels = next(iter(trainloader))
200
- file = imshow_cls(
201
- images[:25],
202
- labels[:25],
203
- names=model.names,
204
- f=save_dir / "train_images.jpg",
205
- )
206
- logger.log_images(file, name="Train Examples")
207
- logger.log_graph(model, imgsz) # log model
208
-
209
- # Optimizer
210
- optimizer = smart_optimizer(
211
- model, opt.optimizer, opt.lr0, momentum=0.9, decay=opt.decay
212
- )
213
-
214
- # Scheduler
215
- lrf = 0.01 # final lr (fraction of lr0)
216
- # lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - lrf) + lrf # cosine
217
- lf = lambda x: (1 - x / epochs) * (1 - lrf) + lrf # linear
218
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
219
- # scheduler = lr_scheduler.OneCycleLR(optimizer, max_lr=lr0, total_steps=epochs, pct_start=0.1,
220
- # final_div_factor=1 / 25 / lrf)
221
-
222
- # EMA
223
- ema = ModelEMA(model) if RANK in {-1, 0} else None
224
-
225
- # DDP mode
226
- if cuda and RANK != -1:
227
- model = smart_DDP(model)
228
-
229
- # Train
230
- t0 = time.time()
231
- criterion = smartCrossEntropyLoss(
232
- label_smoothing=opt.label_smoothing
233
- ) # loss function
234
- best_fitness = 0.0
235
- scaler = amp.GradScaler(enabled=cuda)
236
- val = test_dir.stem # 'val' or 'test'
237
- LOGGER.info(
238
- f"Image sizes {imgsz} train, {imgsz} test\n"
239
- f"Using {nw * WORLD_SIZE} dataloader workers\n"
240
- f"Logging results to {colorstr('bold', save_dir)}\n"
241
- f"Starting {opt.model} training on {data} dataset with {nc} classes for {epochs} epochs...\n\n"
242
- f"{'Epoch':>10}{'GPU_mem':>10}{'train_loss':>12}{f'{val}_loss':>12}{'top1_acc':>12}{'top5_acc':>12}"
243
- )
244
- for epoch in range(epochs): # loop over the dataset multiple times
245
- tloss, vloss, fitness = 0.0, 0.0, 0.0 # train loss, val loss, fitness
246
- model.train()
247
- if RANK != -1:
248
- trainloader.sampler.set_epoch(epoch)
249
- pbar = enumerate(trainloader)
250
- if RANK in {-1, 0}:
251
- pbar = tqdm(
252
- enumerate(trainloader),
253
- total=len(trainloader),
254
- bar_format=TQDM_BAR_FORMAT,
255
- )
256
- for i, (images, labels) in pbar: # progress bar
257
- images, labels = images.to(device, non_blocking=True), labels.to(
258
- device
259
- )
260
-
261
- # Forward
262
- with amp.autocast(enabled=cuda): # stability issues when enabled
263
- loss = criterion(model(images), labels)
264
-
265
- # Backward
266
- scaler.scale(loss).backward()
267
-
268
- # Optimize
269
- scaler.unscale_(optimizer) # unscale gradients
270
- torch.nn.utils.clip_grad_norm_(
271
- model.parameters(), max_norm=10.0
272
- ) # clip gradients
273
- scaler.step(optimizer)
274
- scaler.update()
275
- optimizer.zero_grad()
276
- if ema:
277
- ema.update(model)
278
-
279
- if RANK in {-1, 0}:
280
- # Print
281
- tloss = (tloss * i + loss.item()) / (
282
- i + 1
283
- ) # update mean losses
284
- mem = "%.3gG" % (
285
- torch.cuda.memory_reserved() / 1e9
286
- if torch.cuda.is_available()
287
- else 0
288
- ) # (GB)
289
- pbar.desc = (
290
- f"{f'{epoch + 1}/{epochs}':>10}{mem:>10}{tloss:>12.3g}"
291
- + " " * 36
292
- )
293
-
294
- # Test
295
- if i == len(pbar) - 1: # last batch
296
- top1, top5, vloss = validate.run(
297
- model=ema.ema,
298
- dataloader=testloader,
299
- criterion=criterion,
300
- pbar=pbar,
301
- ) # test accuracy, loss
302
- fitness = top1 # define fitness as top1 accuracy
303
-
304
- # Scheduler
305
- scheduler.step()
306
-
307
- # Log metrics
308
- if RANK in {-1, 0}:
309
- # Best fitness
310
- if fitness > best_fitness:
311
- best_fitness = fitness
312
-
313
- # Log
314
- metrics = {
315
- "train/loss": tloss,
316
- f"{val}/loss": vloss,
317
- "metrics/accuracy_top1": top1,
318
- "metrics/accuracy_top5": top5,
319
- "lr/0": optimizer.param_groups[0]["lr"],
320
- } # learning rate
321
- logger.log_metrics(metrics, epoch)
322
-
323
- # Save model
324
- final_epoch = epoch + 1 == epochs
325
- if (not opt.nosave) or final_epoch:
326
- ckpt = {
327
- "epoch": epoch,
328
- "best_fitness": best_fitness,
329
- "model": deepcopy(
330
- ema.ema
331
- ).half(), # deepcopy(de_parallel(model)).half(),
332
- "ema": None, # deepcopy(ema.ema).half(),
333
- "updates": ema.updates,
334
- "optimizer": None, # optimizer.state_dict(),
335
- "opt": vars(opt),
336
- "git": GIT_INFO, # {remote, branch, commit} if a git repo
337
- "date": datetime.now().isoformat(),
338
- }
339
-
340
- # Save last, best and delete
341
- torch.save(ckpt, last)
342
- if best_fitness == fitness:
343
- torch.save(ckpt, best)
344
- del ckpt
345
-
346
- # Train complete
347
- if RANK in {-1, 0} and final_epoch:
348
- LOGGER.info(
349
- f"\nTraining complete ({(time.time() - t0) / 3600:.3f} hours)"
350
- f"\nResults saved to {colorstr('bold', save_dir)}"
351
- f"\nPredict: python classify/predict.py --weights {best} --source im.jpg"
352
- f"\nValidate: python classify/val.py --weights {best} --data {data_dir}"
353
- f"\nExport: python export.py --weights {best} --include onnx"
354
- f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{best}')"
355
- f"\nVisualize: https://netron.app\n"
356
- )
357
-
358
- # Plot examples
359
- images, labels = (
360
- x[:25] for x in next(iter(testloader))
361
- ) # first 25 images and labels
362
- pred = torch.max(ema.ema(images.to(device)), 1)[1]
363
- file = imshow_cls(
364
- images,
365
- labels,
366
- pred,
367
- model.names,
368
- verbose=False,
369
- f=save_dir / "test_images.jpg",
370
- )
371
-
372
- # Log results
373
- meta = {
374
- "epochs": epochs,
375
- "top1_acc": best_fitness,
376
- "date": datetime.now().isoformat(),
377
- }
378
- logger.log_images(
379
- file, name="Test Examples (true-predicted)", epoch=epoch
380
- )
381
- logger.log_model(best, epochs, metadata=meta)
382
-
383
-
384
- def parse_opt(known=False):
385
- parser = argparse.ArgumentParser()
386
- parser.add_argument(
387
- "--model",
388
- type=str,
389
- default="yolov5s-cls.pt",
390
- help="initial weights path",
391
- )
392
- parser.add_argument(
393
- "--data",
394
- type=str,
395
- default="imagenette160",
396
- help="cifar10, cifar100, mnist, imagenet, ...",
397
- )
398
- parser.add_argument(
399
- "--epochs", type=int, default=10, help="total training epochs"
400
- )
401
- parser.add_argument(
402
- "--batch-size",
403
- type=int,
404
- default=64,
405
- help="total batch size for all GPUs",
406
- )
407
- parser.add_argument(
408
- "--imgsz",
409
- "--img",
410
- "--img-size",
411
- type=int,
412
- default=224,
413
- help="train, val image size (pixels)",
414
- )
415
- parser.add_argument(
416
- "--nosave", action="store_true", help="only save final checkpoint"
417
- )
418
- parser.add_argument(
419
- "--cache",
420
- type=str,
421
- nargs="?",
422
- const="ram",
423
- help='--cache images in "ram" (default) or "disk"',
424
- )
425
- parser.add_argument(
426
- "--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
427
- )
428
- parser.add_argument(
429
- "--workers",
430
- type=int,
431
- default=8,
432
- help="max dataloader workers (per RANK in DDP mode)",
433
- )
434
- parser.add_argument(
435
- "--project",
436
- default=ROOT / "runs/train-cls",
437
- help="save to project/name",
438
- )
439
- parser.add_argument("--name", default="exp", help="save to project/name")
440
- parser.add_argument(
441
- "--exist-ok",
442
- action="store_true",
443
- help="existing project/name ok, do not increment",
444
- )
445
- parser.add_argument(
446
- "--pretrained",
447
- nargs="?",
448
- const=True,
449
- default=True,
450
- help="start from i.e. --pretrained False",
451
- )
452
- parser.add_argument(
453
- "--optimizer",
454
- choices=["SGD", "Adam", "AdamW", "RMSProp"],
455
- default="Adam",
456
- help="optimizer",
457
- )
458
- parser.add_argument(
459
- "--lr0", type=float, default=0.001, help="initial learning rate"
460
- )
461
- parser.add_argument(
462
- "--decay", type=float, default=5e-5, help="weight decay"
463
- )
464
- parser.add_argument(
465
- "--label-smoothing",
466
- type=float,
467
- default=0.1,
468
- help="Label smoothing epsilon",
469
- )
470
- parser.add_argument(
471
- "--cutoff",
472
- type=int,
473
- default=None,
474
- help="Model layer cutoff index for Classify() head",
475
- )
476
- parser.add_argument(
477
- "--dropout", type=float, default=None, help="Dropout (fraction)"
478
- )
479
- parser.add_argument("--verbose", action="store_true", help="Verbose mode")
480
- parser.add_argument(
481
- "--seed", type=int, default=0, help="Global training seed"
482
- )
483
- parser.add_argument(
484
- "--local_rank",
485
- type=int,
486
- default=-1,
487
- help="Automatic DDP Multi-GPU argument, do not modify",
488
- )
489
- return parser.parse_known_args()[0] if known else parser.parse_args()
490
-
491
-
492
- def main(opt):
493
- # Checks
494
- if RANK in {-1, 0}:
495
- print_args(vars(opt))
496
- check_git_status()
497
- check_requirements()
498
-
499
- # DDP mode
500
- device = select_device(opt.device, batch_size=opt.batch_size)
501
- if LOCAL_RANK != -1:
502
- assert (
503
- opt.batch_size != -1
504
- ), "AutoBatch is coming soon for classification, please pass a valid --batch-size"
505
- assert (
506
- opt.batch_size % WORLD_SIZE == 0
507
- ), f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE"
508
- assert (
509
- torch.cuda.device_count() > LOCAL_RANK
510
- ), "insufficient CUDA devices for DDP command"
511
- torch.cuda.set_device(LOCAL_RANK)
512
- device = torch.device("cuda", LOCAL_RANK)
513
- dist.init_process_group(
514
- backend="nccl" if dist.is_nccl_available() else "gloo"
515
- )
516
-
517
- # Parameters
518
- opt.save_dir = increment_path(
519
- Path(opt.project) / opt.name, exist_ok=opt.exist_ok
520
- ) # increment run
521
-
522
- # Train
523
- train(opt, device)
524
-
525
-
526
- def run(**kwargs):
527
- # Usage: from yolov5 import classify; classify.train.run(data=mnist, imgsz=320, model='yolov5m')
528
- opt = parse_opt(True)
529
- for k, v in kwargs.items():
530
- setattr(opt, k, v)
531
- main(opt)
532
- return opt
533
-
534
-
535
- if __name__ == "__main__":
536
- opt = parse_opt()
537
- main(opt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AchyuthGamer/OpenGPT/g4f/Provider/deprecated/Equing.py DELETED
@@ -1,81 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import json
4
- from abc import ABC, abstractmethod
5
-
6
- import requests
7
-
8
- from ...typing import Any, CreateResult
9
- from ..base_provider import BaseProvider
10
-
11
-
12
- class Equing(BaseProvider):
13
- url: str = 'https://next.eqing.tech/'
14
- working = False
15
- supports_stream = True
16
- supports_gpt_35_turbo = True
17
- supports_gpt_4 = False
18
-
19
- @staticmethod
20
- @abstractmethod
21
- def create_completion(
22
- model: str,
23
- messages: list[dict[str, str]],
24
- stream: bool, **kwargs: Any) -> CreateResult:
25
-
26
- headers = {
27
- 'authority' : 'next.eqing.tech',
28
- 'accept' : 'text/event-stream',
29
- 'accept-language' : 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3',
30
- 'cache-control' : 'no-cache',
31
- 'content-type' : 'application/json',
32
- 'origin' : 'https://next.eqing.tech',
33
- 'plugins' : '0',
34
- 'pragma' : 'no-cache',
35
- 'referer' : 'https://next.eqing.tech/',
36
- 'sec-ch-ua' : '"Not/A)Brand";v="99", "Google Chrome";v="115", "Chromium";v="115"',
37
- 'sec-ch-ua-mobile' : '?0',
38
- 'sec-ch-ua-platform': '"macOS"',
39
- 'sec-fetch-dest' : 'empty',
40
- 'sec-fetch-mode' : 'cors',
41
- 'sec-fetch-site' : 'same-origin',
42
- 'user-agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36',
43
- 'usesearch' : 'false',
44
- 'x-requested-with' : 'XMLHttpRequest'
45
- }
46
-
47
- json_data = {
48
- 'messages' : messages,
49
- 'stream' : stream,
50
- 'model' : model,
51
- 'temperature' : kwargs.get('temperature', 0.5),
52
- 'presence_penalty' : kwargs.get('presence_penalty', 0),
53
- 'frequency_penalty' : kwargs.get('frequency_penalty', 0),
54
- 'top_p' : kwargs.get('top_p', 1),
55
- }
56
-
57
- response = requests.post('https://next.eqing.tech/api/openai/v1/chat/completions',
58
- headers=headers, json=json_data, stream=stream)
59
-
60
- if not stream:
61
- yield response.json()["choices"][0]["message"]["content"]
62
- return
63
-
64
- for line in response.iter_content(chunk_size=1024):
65
- if line:
66
- if b'content' in line:
67
- line_json = json.loads(line.decode('utf-8').split('data: ')[1])
68
- token = line_json['choices'][0]['delta'].get('content')
69
- if token:
70
- yield token
71
-
72
- @classmethod
73
- @property
74
- def params(cls):
75
- params = [
76
- ("model", "str"),
77
- ("messages", "list[dict[str, str]]"),
78
- ("stream", "bool"),
79
- ]
80
- param = ", ".join([": ".join(p) for p in params])
81
- return f"g4f.provider.{cls.__name__} supports: ({param})"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Aditya9790/yolo7-object-tracking/models/experimental.py DELETED
@@ -1,272 +0,0 @@
1
- import numpy as np
2
- import random
3
- import torch
4
- import torch.nn as nn
5
-
6
- from models.common import Conv, DWConv
7
- from utils.google_utils import attempt_download
8
-
9
-
10
- class CrossConv(nn.Module):
11
- # Cross Convolution Downsample
12
- def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13
- # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14
- super(CrossConv, self).__init__()
15
- c_ = int(c2 * e) # hidden channels
16
- self.cv1 = Conv(c1, c_, (1, k), (1, s))
17
- self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18
- self.add = shortcut and c1 == c2
19
-
20
- def forward(self, x):
21
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22
-
23
-
24
- class Sum(nn.Module):
25
- # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26
- def __init__(self, n, weight=False): # n: number of inputs
27
- super(Sum, self).__init__()
28
- self.weight = weight # apply weights boolean
29
- self.iter = range(n - 1) # iter object
30
- if weight:
31
- self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32
-
33
- def forward(self, x):
34
- y = x[0] # no weight
35
- if self.weight:
36
- w = torch.sigmoid(self.w) * 2
37
- for i in self.iter:
38
- y = y + x[i + 1] * w[i]
39
- else:
40
- for i in self.iter:
41
- y = y + x[i + 1]
42
- return y
43
-
44
-
45
- class MixConv2d(nn.Module):
46
- # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47
- def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48
- super(MixConv2d, self).__init__()
49
- groups = len(k)
50
- if equal_ch: # equal c_ per group
51
- i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52
- c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53
- else: # equal weight.numel() per group
54
- b = [c2] + [0] * groups
55
- a = np.eye(groups + 1, groups, k=-1)
56
- a -= np.roll(a, 1, axis=1)
57
- a *= np.array(k) ** 2
58
- a[0] = 1
59
- c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60
-
61
- self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62
- self.bn = nn.BatchNorm2d(c2)
63
- self.act = nn.LeakyReLU(0.1, inplace=True)
64
-
65
- def forward(self, x):
66
- return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67
-
68
-
69
- class Ensemble(nn.ModuleList):
70
- # Ensemble of models
71
- def __init__(self):
72
- super(Ensemble, self).__init__()
73
-
74
- def forward(self, x, augment=False):
75
- y = []
76
- for module in self:
77
- y.append(module(x, augment)[0])
78
- # y = torch.stack(y).max(0)[0] # max ensemble
79
- # y = torch.stack(y).mean(0) # mean ensemble
80
- y = torch.cat(y, 1) # nms ensemble
81
- return y, None # inference, train output
82
-
83
-
84
-
85
-
86
-
87
- class ORT_NMS(torch.autograd.Function):
88
- '''ONNX-Runtime NMS operation'''
89
- @staticmethod
90
- def forward(ctx,
91
- boxes,
92
- scores,
93
- max_output_boxes_per_class=torch.tensor([100]),
94
- iou_threshold=torch.tensor([0.45]),
95
- score_threshold=torch.tensor([0.25])):
96
- device = boxes.device
97
- batch = scores.shape[0]
98
- num_det = random.randint(0, 100)
99
- batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
100
- idxs = torch.arange(100, 100 + num_det).to(device)
101
- zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
102
- selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
103
- selected_indices = selected_indices.to(torch.int64)
104
- return selected_indices
105
-
106
- @staticmethod
107
- def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
108
- return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
109
-
110
-
111
- class TRT_NMS(torch.autograd.Function):
112
- '''TensorRT NMS operation'''
113
- @staticmethod
114
- def forward(
115
- ctx,
116
- boxes,
117
- scores,
118
- background_class=-1,
119
- box_coding=1,
120
- iou_threshold=0.45,
121
- max_output_boxes=100,
122
- plugin_version="1",
123
- score_activation=0,
124
- score_threshold=0.25,
125
- ):
126
- batch_size, num_boxes, num_classes = scores.shape
127
- num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
128
- det_boxes = torch.randn(batch_size, max_output_boxes, 4)
129
- det_scores = torch.randn(batch_size, max_output_boxes)
130
- det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
131
- return num_det, det_boxes, det_scores, det_classes
132
-
133
- @staticmethod
134
- def symbolic(g,
135
- boxes,
136
- scores,
137
- background_class=-1,
138
- box_coding=1,
139
- iou_threshold=0.45,
140
- max_output_boxes=100,
141
- plugin_version="1",
142
- score_activation=0,
143
- score_threshold=0.25):
144
- out = g.op("TRT::EfficientNMS_TRT",
145
- boxes,
146
- scores,
147
- background_class_i=background_class,
148
- box_coding_i=box_coding,
149
- iou_threshold_f=iou_threshold,
150
- max_output_boxes_i=max_output_boxes,
151
- plugin_version_s=plugin_version,
152
- score_activation_i=score_activation,
153
- score_threshold_f=score_threshold,
154
- outputs=4)
155
- nums, boxes, scores, classes = out
156
- return nums, boxes, scores, classes
157
-
158
-
159
- class ONNX_ORT(nn.Module):
160
- '''onnx module with ONNX-Runtime NMS operation.'''
161
- def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80):
162
- super().__init__()
163
- self.device = device if device else torch.device("cpu")
164
- self.max_obj = torch.tensor([max_obj]).to(device)
165
- self.iou_threshold = torch.tensor([iou_thres]).to(device)
166
- self.score_threshold = torch.tensor([score_thres]).to(device)
167
- self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
168
- self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
169
- dtype=torch.float32,
170
- device=self.device)
171
- self.n_classes=n_classes
172
-
173
- def forward(self, x):
174
- boxes = x[:, :, :4]
175
- conf = x[:, :, 4:5]
176
- scores = x[:, :, 5:]
177
- if self.n_classes == 1:
178
- scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
179
- # so there is no need to multiplicate.
180
- else:
181
- scores *= conf # conf = obj_conf * cls_conf
182
- boxes @= self.convert_matrix
183
- max_score, category_id = scores.max(2, keepdim=True)
184
- dis = category_id.float() * self.max_wh
185
- nmsbox = boxes + dis
186
- max_score_tp = max_score.transpose(1, 2).contiguous()
187
- selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
188
- X, Y = selected_indices[:, 0], selected_indices[:, 2]
189
- selected_boxes = boxes[X, Y, :]
190
- selected_categories = category_id[X, Y, :].float()
191
- selected_scores = max_score[X, Y, :]
192
- X = X.unsqueeze(1).float()
193
- return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
194
-
195
- class ONNX_TRT(nn.Module):
196
- '''onnx module with TensorRT NMS operation.'''
197
- def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80):
198
- super().__init__()
199
- assert max_wh is None
200
- self.device = device if device else torch.device('cpu')
201
- self.background_class = -1,
202
- self.box_coding = 1,
203
- self.iou_threshold = iou_thres
204
- self.max_obj = max_obj
205
- self.plugin_version = '1'
206
- self.score_activation = 0
207
- self.score_threshold = score_thres
208
- self.n_classes=n_classes
209
-
210
- def forward(self, x):
211
- boxes = x[:, :, :4]
212
- conf = x[:, :, 4:5]
213
- scores = x[:, :, 5:]
214
- if self.n_classes == 1:
215
- scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
216
- # so there is no need to multiplicate.
217
- else:
218
- scores *= conf # conf = obj_conf * cls_conf
219
- num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
220
- self.iou_threshold, self.max_obj,
221
- self.plugin_version, self.score_activation,
222
- self.score_threshold)
223
- return num_det, det_boxes, det_scores, det_classes
224
-
225
-
226
- class End2End(nn.Module):
227
- '''export onnx or tensorrt model with NMS operation.'''
228
- def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80):
229
- super().__init__()
230
- device = device if device else torch.device('cpu')
231
- assert isinstance(max_wh,(int)) or max_wh is None
232
- self.model = model.to(device)
233
- self.model.model[-1].end2end = True
234
- self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
235
- self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes)
236
- self.end2end.eval()
237
-
238
- def forward(self, x):
239
- x = self.model(x)
240
- x = self.end2end(x)
241
- return x
242
-
243
-
244
-
245
-
246
-
247
- def attempt_load(weights, map_location=None):
248
- # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
249
- model = Ensemble()
250
- for w in weights if isinstance(weights, list) else [weights]:
251
- attempt_download(w)
252
- ckpt = torch.load(w, map_location=map_location) # load
253
- model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
254
-
255
- # Compatibility updates
256
- for m in model.modules():
257
- if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
258
- m.inplace = True # pytorch 1.7.0 compatibility
259
- elif type(m) is nn.Upsample:
260
- m.recompute_scale_factor = None # torch 1.11.0 compatibility
261
- elif type(m) is Conv:
262
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
263
-
264
- if len(model) == 1:
265
- return model[-1] # return model
266
- else:
267
- print('Ensemble created with %s\n' % weights)
268
- for k in ['names', 'stride']:
269
- setattr(model, k, getattr(model[-1], k))
270
- return model # return ensemble
271
-
272
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Al-Chan/Vits_League_of_Legends_Yuumi_TTS/text/ngu_dialect.py DELETED
@@ -1,30 +0,0 @@
1
- import re
2
- import opencc
3
-
4
-
5
- dialects = {'SZ': 'suzhou', 'WX': 'wuxi', 'CZ': 'changzhou', 'HZ': 'hangzhou',
6
- 'SX': 'shaoxing', 'NB': 'ningbo', 'JJ': 'jingjiang', 'YX': 'yixing',
7
- 'JD': 'jiading', 'ZR': 'zhenru', 'PH': 'pinghu', 'TX': 'tongxiang',
8
- 'JS': 'jiashan', 'HN': 'xiashi', 'LP': 'linping', 'XS': 'xiaoshan',
9
- 'FY': 'fuyang', 'RA': 'ruao', 'CX': 'cixi', 'SM': 'sanmen',
10
- 'TT': 'tiantai', 'WZ': 'wenzhou', 'SC': 'suichang', 'YB': 'youbu'}
11
-
12
- converters = {}
13
-
14
- for dialect in dialects.values():
15
- try:
16
- converters[dialect] = opencc.OpenCC(dialect)
17
- except:
18
- pass
19
-
20
-
21
- def ngu_dialect_to_ipa(text, dialect):
22
- dialect = dialects[dialect]
23
- text = converters[dialect].convert(text).replace('-','').replace('$',' ')
24
- text = re.sub(r'[、;:]', ',', text)
25
- text = re.sub(r'\s*,\s*', ', ', text)
26
- text = re.sub(r'\s*。\s*', '. ', text)
27
- text = re.sub(r'\s*?\s*', '? ', text)
28
- text = re.sub(r'\s*!\s*', '! ', text)
29
- text = re.sub(r'\s*$', '', text)
30
- return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/AlexWang/lama/bin/predict_inner_features.py DELETED
@@ -1,119 +0,0 @@
1
- #!/usr/bin/env python3
2
-
3
- # Example command:
4
- # ./bin/predict.py \
5
- # model.path=<path to checkpoint, prepared by make_checkpoint.py> \
6
- # indir=<path to input data> \
7
- # outdir=<where to store predicts>
8
-
9
- import logging
10
- import os
11
- import sys
12
- import traceback
13
-
14
- from saicinpainting.evaluation.utils import move_to_device
15
-
16
- os.environ['OMP_NUM_THREADS'] = '1'
17
- os.environ['OPENBLAS_NUM_THREADS'] = '1'
18
- os.environ['MKL_NUM_THREADS'] = '1'
19
- os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
20
- os.environ['NUMEXPR_NUM_THREADS'] = '1'
21
-
22
- import cv2
23
- import hydra
24
- import numpy as np
25
- import torch
26
- import tqdm
27
- import yaml
28
- from omegaconf import OmegaConf
29
- from torch.utils.data._utils.collate import default_collate
30
-
31
- from saicinpainting.training.data.datasets import make_default_val_dataset
32
- from saicinpainting.training.trainers import load_checkpoint, DefaultInpaintingTrainingModule
33
- from saicinpainting.utils import register_debug_signal_handlers, get_shape
34
-
35
- LOGGER = logging.getLogger(__name__)
36
-
37
-
38
- @hydra.main(config_path='../configs/prediction', config_name='default_inner_features.yaml')
39
- def main(predict_config: OmegaConf):
40
- try:
41
- register_debug_signal_handlers() # kill -10 <pid> will result in traceback dumped into log
42
-
43
- device = torch.device(predict_config.device)
44
-
45
- train_config_path = os.path.join(predict_config.model.path, 'config.yaml')
46
- with open(train_config_path, 'r') as f:
47
- train_config = OmegaConf.create(yaml.safe_load(f))
48
-
49
- checkpoint_path = os.path.join(predict_config.model.path, 'models', predict_config.model.checkpoint)
50
- model = load_checkpoint(train_config, checkpoint_path, strict=False)
51
- model.freeze()
52
- model.to(device)
53
-
54
- assert isinstance(model, DefaultInpaintingTrainingModule), 'Only DefaultInpaintingTrainingModule is supported'
55
- assert isinstance(getattr(model.generator, 'model', None), torch.nn.Sequential)
56
-
57
- if not predict_config.indir.endswith('/'):
58
- predict_config.indir += '/'
59
-
60
- dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset)
61
-
62
- max_level = max(predict_config.levels)
63
-
64
- with torch.no_grad():
65
- for img_i in tqdm.trange(len(dataset)):
66
- mask_fname = dataset.mask_filenames[img_i]
67
- cur_out_fname = os.path.join(predict_config.outdir, os.path.splitext(mask_fname[len(predict_config.indir):])[0])
68
- os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True)
69
-
70
- batch = move_to_device(default_collate([dataset[img_i]]), device)
71
-
72
- img = batch['image']
73
- mask = batch['mask']
74
- mask[:] = 0
75
- mask_h, mask_w = mask.shape[-2:]
76
- mask[:, :,
77
- mask_h // 2 - predict_config.hole_radius : mask_h // 2 + predict_config.hole_radius,
78
- mask_w // 2 - predict_config.hole_radius : mask_w // 2 + predict_config.hole_radius] = 1
79
-
80
- masked_img = torch.cat([img * (1 - mask), mask], dim=1)
81
-
82
- feats = masked_img
83
- for level_i, level in enumerate(model.generator.model):
84
- feats = level(feats)
85
- if level_i in predict_config.levels:
86
- cur_feats = torch.cat([f for f in feats if torch.is_tensor(f)], dim=1) \
87
- if isinstance(feats, tuple) else feats
88
-
89
- if predict_config.slice_channels:
90
- cur_feats = cur_feats[:, slice(*predict_config.slice_channels)]
91
-
92
- cur_feat = cur_feats.pow(2).mean(1).pow(0.5).clone()
93
- cur_feat -= cur_feat.min()
94
- cur_feat /= cur_feat.std()
95
- cur_feat = cur_feat.clamp(0, 1) / 1
96
- cur_feat = cur_feat.cpu().numpy()[0]
97
- cur_feat *= 255
98
- cur_feat = np.clip(cur_feat, 0, 255).astype('uint8')
99
- cv2.imwrite(cur_out_fname + f'_lev{level_i:02d}_norm.png', cur_feat)
100
-
101
- # for channel_i in predict_config.channels:
102
- #
103
- # cur_feat = cur_feats[0, channel_i].clone().detach().cpu().numpy()
104
- # cur_feat -= cur_feat.min()
105
- # cur_feat /= cur_feat.max()
106
- # cur_feat *= 255
107
- # cur_feat = np.clip(cur_feat, 0, 255).astype('uint8')
108
- # cv2.imwrite(cur_out_fname + f'_lev{level_i}_ch{channel_i}.png', cur_feat)
109
- elif level_i >= max_level:
110
- break
111
- except KeyboardInterrupt:
112
- LOGGER.warning('Interrupted by user')
113
- except Exception as ex:
114
- LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}')
115
- sys.exit(1)
116
-
117
-
118
- if __name__ == '__main__':
119
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ame42/rwms/local_utils.py DELETED
@@ -1,344 +0,0 @@
1
- import math
2
- import re
3
- import numpy
4
- import pandas
5
- from sklearn.ensemble import RandomForestRegressor
6
- from sklearn.tree import export_graphviz
7
- import pickle as pkl
8
-
9
- l2 = "2L"
10
- l1 = "1L"
11
- s2 = "2S"
12
- s1 = "1S"
13
- date_time_col = "Date Time (GMT+01)"
14
- time_col = "Time (GMT+01)"
15
- dur_col = "Daylight duration (SEC)"
16
- date_col = "Date"
17
- id_col = "id"
18
- well_col = "Well index"
19
- blind_col = "THP BLIND (PSI)"
20
- temp_col = "TEMP (°F)"
21
- flp_col = "FLP (PSI)"
22
- ro_col = "THP R/O (PSI)"
23
- man_col = "Manifold Pressure (PSI)"
24
- sim_col = f'Predicted {ro_col}'
25
- ql_col = 'Liquid production (BBL/D)'
26
- out_folder = "output/"
27
- well_key = "wellhead"
28
- flow_key = "flowstation"
29
-
30
- model_file = "rf-AWNW"
31
- scaler_file = "ss-AWNW"
32
-
33
- day_mode = '22-11-2020'
34
- all_mode = 'All'
35
- train_mode = 'Train'
36
- test_mode = 'Test'
37
-
38
-
39
- def round_to_n(x, n):
40
- x = x if x % 10 != 5 else x + 1
41
- n = n if x > 9 else n - 1
42
- return x if x == 0 else round(x, -int(math.floor(math.log10(abs(x)))) + (n - 1))
43
-
44
-
45
- def to_sec(h, m, s):
46
- return (int(h) * 60 * 60) + (int(m) * 60) + int(s)
47
-
48
-
49
- def from_sec(t):
50
- return f"{t // (60 * 60):0>2}:{(t % (60 * 60)) // 60:0>2}:{(t % (60 * 60)) % 60:0>2}"
51
-
52
-
53
- def column_matcher(title):
54
- if re.search("#", string=title) is not None:
55
- found = id_col
56
- elif re.search(".*(Date|DATE).*(Time|TIME).*GMT.*", string=title) is not None:
57
- found = date_time_col
58
- elif re.search("THP.*R/O.*(PSI|units)", string=title) is not None:
59
- found = ro_col
60
- elif re.search(".*TEMP.*(F|units)", string=title) is not None:
61
- found = temp_col
62
- elif re.search(".*FLP.*(PSI|units)", string=title) is not None:
63
- found = flp_col
64
- elif re.search("THP.*BLIND.*(PSI|units)", string=title) is not None:
65
- found = blind_col
66
- elif re.search("THP.*(PSI|units)", string=title) is not None:
67
- found = blind_col
68
- elif re.search(".*1S.*PSI.*", string=title) is not None:
69
- found = s1
70
- elif re.search(".*2S.*PSI.*", string=title) is not None:
71
- found = s2
72
- elif re.search(".*1L.*PSI.*", string=title) is not None:
73
- found = l1
74
- elif re.search(".*2L.*PSI.*", string=title) is not None:
75
- found = l2
76
- else:
77
- found = False
78
-
79
- return found
80
-
81
-
82
- def file_matcher(name: str):
83
- if re.search("\\d+-\\d+-\\d+.*flow.*man.*", string=name.lower()) is not None:
84
- flowstation = True
85
- else:
86
- flowstation = False
87
-
88
- return flowstation
89
-
90
-
91
- def file_matcher2(name: str):
92
- if re.search(".*1s.*", string=name.lower()) is not None:
93
- well = s1
94
- elif re.search(".*1l.*", string=name.lower()) is not None:
95
- well = l1
96
- elif re.search(".*2s.*", string=name.lower()) is not None:
97
- well = s2
98
- else:
99
- well = l2
100
-
101
- return well
102
-
103
-
104
- def restructure(data, count, duration, times, dates):
105
- for datetime in data[date_time_col]:
106
- try:
107
- date_time = re.sub("\\.0(?=\\s)", "", datetime)
108
- datetime_array = date_time.split()
109
- date = datetime_array[0].split("/")
110
-
111
- time_array = datetime_array[1].split(":")
112
-
113
- if datetime_array[2] == "PM" and time_array[0] != "12":
114
- hour = int(time_array[0]) + 12
115
- elif datetime_array[2] == "AM" and time_array[0] == "12":
116
- hour = int(time_array[0]) - 12
117
- else:
118
- hour = time_array[0]
119
-
120
- minutes = time_array[1]
121
- sec = round_to_n(int(time_array[2]), 1)
122
-
123
- if sec == 60:
124
- sec = "00"
125
- minutes = int(minutes) + 1
126
-
127
- if minutes == 60:
128
- minutes = "00"
129
- hour = int(hour) + 1
130
-
131
- if hour == 24:
132
- hour = "00"
133
- date[1] = int(date[1]) + 1
134
-
135
- duration.append(to_sec(hour, minutes, sec))
136
- times.append(f"{hour}:{minutes}:{sec}")
137
- dates.append(f"{date[1]}/{date[0]}/{date[2]}")
138
- date_time = f"{date[1]}/{date[0]}/{date[2]} {datetime_array[1]} {datetime_array[2]}"
139
-
140
- data.loc[count, date_time_col] = date_time
141
- count += 1
142
- except IndexError:
143
- print(f"\n\n{datetime}", flush=True)
144
- raise
145
-
146
- data.insert(1, dur_col, numpy.array(duration), True)
147
- data.insert(2, time_col, numpy.array(times), True)
148
- data.insert(3, date_col, numpy.array(dates), True)
149
- return data.drop(axis=1, columns="index", errors='ignore')
150
-
151
-
152
- def try_key(temp, key):
153
- try:
154
- temp[f"{key}"]
155
- except KeyError:
156
- temp[f"{key}"] = dict()
157
-
158
-
159
- def find_data(index, wlhd):
160
- for w in wlhd:
161
- if index == w[0]:
162
- return w[1]
163
-
164
- return None
165
-
166
-
167
- def split_join(flowstation: pandas.DataFrame, wellhead: pandas.DataFrame, offset):
168
- joined = []
169
- info = [s1, l1, s2, l2]
170
- for i, o in zip(info, offset):
171
- # print(f'\n\nNow working on {i} column\n')
172
- data = flowstation.drop(flowstation.columns.difference([i, 'Daylight duration (SEC)']),
173
- axis=1)
174
- data.rename(columns={i: man_col}, inplace=True)
175
- data.insert(2, well_col, [i for _ in range(data.shape[0])], True)
176
-
177
- # print(f"{data.shape[0]} rows before drop and merge")
178
- data_well = find_data(i, wellhead)
179
- if data_well is not None:
180
- data_well.drop_duplicates(inplace=True, subset=[time_col])
181
- data = data.merge(data_well, how='inner', on=[dur_col])
182
-
183
- # print(f"{data.shape[0]} rows after drop and merge")
184
- # offset the rows by the required amount 'o'
185
- data_y = data.drop(data.columns.difference([ro_col, id_col]), axis=1, errors="ignore").iloc[o:]
186
- data_x = data.drop(columns=[ro_col], axis=1, errors="ignore").iloc[:(data.shape[0] - 1 - o)]
187
- data_y.reset_index(inplace=True)
188
- data_x.reset_index(inplace=True)
189
- data_y.drop(columns=["index"], axis=1, inplace=True)
190
- data_x.drop(columns=["index"], axis=1, inplace=True)
191
- data = data_y.merge(data_x, how='inner', on=[id_col])
192
- joined.append((i, data))
193
-
194
- return joined
195
-
196
-
197
- class WellDataPoint:
198
-
199
- def __init__(self, thp, day_sec, man_pres, temp, _l1=0, _s1=1, _l2=0, _s2=0):
200
- self.thp = thp
201
- self.day_sec = day_sec
202
- self.man_pres = man_pres
203
- self.temp = temp
204
- self.l1 = _l1
205
- self.s1 = _s1
206
- self.l2 = _l2
207
- self.s2 = _s2
208
-
209
- def __str__(self):
210
- day_sec, deli, i, man_pres, temp, well, well_titles = self.fields()
211
- return f"""\033[1;31mTesting data\033[0m
212
- {day_sec:>20}{deli:3}{self.day_sec} seconds
213
- {man_pres:>20}{deli:3}{self.man_pres} psi
214
- {temp:>20}{deli:3}{self.temp} °F
215
- {well:>20}{deli:3}{well_titles[i]}
216
- """
217
-
218
- def fields(self):
219
- deli = ' '
220
- day_sec = "Day duration:"
221
- man_pres = "Manifold Pressure:"
222
- temp = "Temperature:"
223
- well = "Well Name:"
224
- wells = [self.l1, self.l2, self.s1, self.s2]
225
- well_titles = ["Awoba NW 1L", "Awoba NW 2L", "Awoba NW 1S", "Awoba NW 2S"] # List of well titles
226
- i = 0
227
- # Find the well with dummy value 1
228
- while not (wells[i]): # not(0) yields true and not(anything else) yields false
229
- i += 1
230
- return day_sec, deli, i, man_pres, temp, well, well_titles
231
-
232
- def __plain__(self):
233
- day_sec, deli, i, man_pres, temp, well, well_titles = self.fields()
234
- space = '40'
235
- d_space = '3'
236
- return f"""Testing data
237
- {day_sec:>{space}}{deli:{d_space}}{self.day_sec} seconds
238
- {man_pres:>{space}}{deli:{d_space}}{self.man_pres} psi
239
- {temp:>{space}}{deli:{d_space}}{self.temp} °F
240
- {well:>{space}}{deli:{d_space}}{well_titles[i]}
241
- """
242
-
243
- def __repr__(self):
244
- return f"Practice([{self.day_sec}, {self.man_pres}, {self.temp}, {self.l1}, {self.s1}, {self.l2}, {self.s2}])"
245
-
246
- def get_x(self):
247
- return [self.day_sec, self.man_pres, self.temp, self.l1, self.s1, self.l2, self.s2]
248
-
249
- def get_y(self):
250
- return self.thp
251
-
252
-
253
- def oversample_balance(data: pandas.DataFrame):
254
- # get buckets for control column
255
- data = data.astype(float, errors='ignore')
256
- mx = data[ro_col].max(axis=0, skipna=True)
257
- mn = data[ro_col].min(axis=0, skipna=True)
258
- rng = mx - mn
259
- bucket = rng / 10
260
-
261
- # shuffle data into buckets
262
- max_count = 0
263
- counter = mn
264
- temp = []
265
- results = []
266
-
267
- while counter < mx:
268
-
269
- sub_data = data[data[ro_col].between(counter, counter + bucket, inclusive='right')]
270
- if sub_data.shape[0] > 0 and float(sub_data[ro_col].min(axis=0, skipna=True)) > 0:
271
- temp.append(sub_data)
272
-
273
- max_count = max_count if sub_data.shape[0] < max_count else sub_data.shape[0]
274
-
275
- counter += bucket
276
-
277
- for r in temp:
278
- counter = 0
279
- pumped_data = r
280
- print(r.shape, "\n", r.head())
281
- # add elements of r to pumped_data
282
- while pumped_data.shape[0] < max_count:
283
- new_row = r.iloc[[counter % r.shape[0]]]
284
-
285
- pumped_data = pandas.concat([pumped_data, new_row], ignore_index=True)
286
-
287
- # add final results to results series
288
- results.append(pumped_data)
289
-
290
- return pandas.concat(results, ignore_index=True)
291
-
292
-
293
- def parse_well_id(well_id):
294
- return f"Awoba NW {well_id}"
295
-
296
-
297
- def parse_well_id_2(well_id):
298
- return f"Abura {well_id}"
299
-
300
-
301
- def print_graph(model: RandomForestRegressor, x):
302
- for est, idx in zip(model.estimators_, len(model.estimators_)):
303
- file = f'tree_{idx}.dot'
304
- export_graphviz(model, out_file=file, feature_names=x.columns,
305
- class_names=['extreme', 'moderate', 'vulnerable', 'non-vulnerable'],
306
- rounded=True, proportion=False, precision=4, filled=True)
307
-
308
-
309
- def write_state_files(model, scaler):
310
- pkl.dump(model, open(f"{model_file}.mdl", "wb"))
311
- pkl.dump(scaler, open(f"{scaler_file}.sts", "wb"))
312
-
313
-
314
- def keep_useful_cols(data, columns=None):
315
- if columns is None:
316
- columns = [ro_col, dur_col, man_col, well_col, time_col, date_col, blind_col, flp_col, temp_col]
317
- return data.drop(data.columns.difference(columns), axis=1)
318
-
319
-
320
- def read_state_files(mdl, scl):
321
- mdl = pkl.load(open(f"{mdl}.mdl", "rb"))
322
- scl = pkl.load(open(f"{scl}.sts", "rb"))
323
- return mdl, scl
324
-
325
-
326
- def change_well_to_dummy(wl):
327
- _l1, _l2, _s1, _s2 = 0, 0, 0, 0
328
-
329
- if wl == parse_well_id(l1):
330
- _l1 = 1
331
- elif wl == parse_well_id(s1):
332
- _s1 = 1
333
- elif wl == parse_well_id(l2):
334
- _l2 = 1
335
- elif wl == parse_well_id(s2):
336
- _s2 = 1
337
-
338
- return _l1, _l2, _s1, _s2
339
-
340
-
341
- def calc_excel(pres):
342
- # from well Abura 2S
343
- return pres + 624, pres * 31.88
344
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ameaou/academic-chatgpt3.1/crazy_functions/test_project/cpp/cppipc/policy.h DELETED
@@ -1,25 +0,0 @@
1
- #pragma once
2
-
3
- #include <type_traits>
4
-
5
- #include "libipc/def.h"
6
- #include "libipc/prod_cons.h"
7
-
8
- #include "libipc/circ/elem_array.h"
9
-
10
- namespace ipc {
11
- namespace policy {
12
-
13
- template <template <typename, std::size_t...> class Elems, typename Flag>
14
- struct choose;
15
-
16
- template <typename Flag>
17
- struct choose<circ::elem_array, Flag> {
18
- using flag_t = Flag;
19
-
20
- template <std::size_t DataSize, std::size_t AlignSize>
21
- using elems_t = circ::elem_array<ipc::prod_cons_impl<flag_t>, DataSize, AlignSize>;
22
- };
23
-
24
- } // namespace policy
25
- } // namespace ipc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Amrrs/DragGan-Inversion/stylegan_human/torch_utils/models.py DELETED
@@ -1,770 +0,0 @@
1
- # Copyright (c) SenseTime Research. All rights reserved.
2
-
3
- # https://github.com/rosinality/stylegan2-pytorch/blob/master/model.py
4
-
5
- import math
6
- import random
7
- import functools
8
- import operator
9
-
10
- import torch
11
- from torch import nn
12
- from torch.nn import functional as F
13
- import torch.nn.init as init
14
- from torch.autograd import Function
15
-
16
- from .op_edit import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
17
-
18
-
19
- class PixelNorm(nn.Module):
20
- def __init__(self):
21
- super().__init__()
22
-
23
- def forward(self, input):
24
- return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
25
-
26
-
27
- def make_kernel(k):
28
- k = torch.tensor(k, dtype=torch.float32)
29
- if k.ndim == 1:
30
- k = k[None, :] * k[:, None]
31
- k /= k.sum()
32
- return k
33
-
34
-
35
- class Upsample(nn.Module):
36
- def __init__(self, kernel, factor=2):
37
- super().__init__()
38
-
39
- self.factor = factor
40
- kernel = make_kernel(kernel) * (factor ** 2)
41
- self.register_buffer("kernel", kernel)
42
-
43
- p = kernel.shape[0] - factor
44
-
45
- pad0 = (p + 1) // 2 + factor - 1
46
- pad1 = p // 2
47
-
48
- self.pad = (pad0, pad1)
49
-
50
- def forward(self, input):
51
- out = upfirdn2d(input, self.kernel, up=self.factor,
52
- down=1, pad=self.pad)
53
- return out
54
-
55
-
56
- class Downsample(nn.Module):
57
- def __init__(self, kernel, factor=2):
58
- super().__init__()
59
-
60
- self.factor = factor
61
- kernel = make_kernel(kernel)
62
- self.register_buffer("kernel", kernel)
63
-
64
- p = kernel.shape[0] - factor
65
-
66
- pad0 = (p + 1) // 2
67
- pad1 = p // 2
68
-
69
- self.pad = (pad0, pad1)
70
-
71
- def forward(self, input):
72
- out = upfirdn2d(input, self.kernel, up=1,
73
- down=self.factor, pad=self.pad)
74
- return out
75
-
76
-
77
- class Blur(nn.Module):
78
- def __init__(self, kernel, pad, upsample_factor=1):
79
- super().__init__()
80
-
81
- kernel = make_kernel(kernel)
82
-
83
- if upsample_factor > 1:
84
- kernel = kernel * (upsample_factor ** 2)
85
-
86
- self.register_buffer("kernel", kernel)
87
-
88
- self.pad = pad
89
-
90
- def forward(self, input):
91
- out = upfirdn2d(input, self.kernel, pad=self.pad)
92
- return out
93
-
94
-
95
- class EqualConv2d(nn.Module):
96
- def __init__(
97
- self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
98
- ):
99
- super().__init__()
100
-
101
- self.weight = nn.Parameter(
102
- torch.randn(out_channel, in_channel, kernel_size, kernel_size)
103
- )
104
- self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
105
-
106
- self.stride = stride
107
- self.padding = padding
108
-
109
- if bias:
110
- self.bias = nn.Parameter(torch.zeros(out_channel))
111
-
112
- else:
113
- self.bias = None
114
-
115
- def forward(self, input):
116
- out = F.conv2d(
117
- input,
118
- self.weight * self.scale,
119
- bias=self.bias,
120
- stride=self.stride,
121
- padding=self.padding,
122
- )
123
- return out
124
-
125
- def __repr__(self):
126
- return (
127
- f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},"
128
- f" {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})"
129
- )
130
-
131
-
132
- class EqualLinear(nn.Module):
133
- def __init__(
134
- self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
135
- ):
136
- super().__init__()
137
-
138
- self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
139
-
140
- if bias:
141
- self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
142
- else:
143
- self.bias = None
144
-
145
- self.activation = activation
146
-
147
- self.scale = (1 / math.sqrt(in_dim)) * lr_mul
148
- self.lr_mul = lr_mul
149
-
150
- def forward(self, input):
151
- if self.activation:
152
- out = F.linear(input, self.weight * self.scale)
153
- out = fused_leaky_relu(out, self.bias * self.lr_mul)
154
- else:
155
- out = F.linear(
156
- input, self.weight * self.scale, bias=self.bias * self.lr_mul
157
- )
158
- return out
159
-
160
- def __repr__(self):
161
- return (
162
- f"{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})"
163
- )
164
-
165
-
166
- class ScaledLeakyReLU(nn.Module):
167
- def __init__(self, negative_slope=0.2):
168
- super().__init__()
169
- self.negative_slope = negative_slope
170
-
171
- def forward(self, input):
172
- out = F.leaky_relu(input, negative_slope=self.negative_slope)
173
- return out * math.sqrt(2)
174
-
175
-
176
- class ModulatedConv2d(nn.Module):
177
- def __init__(
178
- self,
179
- in_channel,
180
- out_channel,
181
- kernel_size,
182
- style_dim,
183
- demodulate=True,
184
- upsample=False,
185
- downsample=False,
186
- blur_kernel=[1, 3, 3, 1],
187
- ):
188
- super().__init__()
189
-
190
- self.eps = 1e-8
191
- self.kernel_size = kernel_size
192
- self.in_channel = in_channel
193
- self.out_channel = out_channel
194
- self.upsample = upsample
195
- self.downsample = downsample
196
-
197
- if upsample:
198
- factor = 2
199
- p = (len(blur_kernel) - factor) - (kernel_size - 1)
200
- pad0 = (p + 1) // 2 + factor - 1
201
- pad1 = p // 2 + 1
202
- self.blur = Blur(blur_kernel, pad=(
203
- pad0, pad1), upsample_factor=factor)
204
-
205
- if downsample:
206
- factor = 2
207
- p = (len(blur_kernel) - factor) + (kernel_size - 1)
208
- pad0 = (p + 1) // 2
209
- pad1 = p // 2
210
- self.blur = Blur(blur_kernel, pad=(pad0, pad1))
211
-
212
- fan_in = in_channel * kernel_size ** 2
213
- self.scale = 1 / math.sqrt(fan_in)
214
- self.padding = kernel_size // 2
215
- self.weight = nn.Parameter(
216
- torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
217
- )
218
- self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
219
- self.demodulate = demodulate
220
-
221
- def __repr__(self):
222
- return (
223
- f"{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, "
224
- f"upsample={self.upsample}, downsample={self.downsample})"
225
- )
226
-
227
- def forward(self, input, style):
228
- batch, in_channel, height, width = input.shape
229
-
230
- style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
231
- weight = self.scale * self.weight * style
232
-
233
- if self.demodulate:
234
- demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
235
- weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
236
-
237
- weight = weight.view(
238
- batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
239
- )
240
-
241
- if self.upsample:
242
- input = input.view(1, batch * in_channel, height, width)
243
- weight = weight.view(
244
- batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
245
- )
246
- weight = weight.transpose(1, 2).reshape(
247
- batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
248
- )
249
- out = F.conv_transpose2d(
250
- input, weight, padding=0, stride=2, groups=batch)
251
- _, _, height, width = out.shape
252
- out = out.view(batch, self.out_channel, height, width)
253
- out = self.blur(out)
254
-
255
- elif self.downsample:
256
- input = self.blur(input)
257
- _, _, height, width = input.shape
258
- input = input.view(1, batch * in_channel, height, width)
259
- out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
260
- _, _, height, width = out.shape
261
- out = out.view(batch, self.out_channel, height, width)
262
-
263
- else:
264
- input = input.view(1, batch * in_channel, height, width)
265
- out = F.conv2d(input, weight, padding=self.padding, groups=batch)
266
- _, _, height, width = out.shape
267
- out = out.view(batch, self.out_channel, height, width)
268
-
269
- return out
270
-
271
-
272
- class NoiseInjection(nn.Module):
273
- def __init__(self):
274
- super().__init__()
275
- self.weight = nn.Parameter(torch.zeros(1))
276
-
277
- def forward(self, image, noise=None):
278
- if noise is None:
279
- batch, _, height, width = image.shape
280
- noise = image.new_empty(batch, 1, height, width).normal_()
281
- return image + self.weight * noise
282
-
283
-
284
- class ConstantInput(nn.Module):
285
- def __init__(self, channel, size=4):
286
- super().__init__()
287
- self.input = nn.Parameter(torch.randn(1, channel, size, size // 2))
288
-
289
- def forward(self, input):
290
- batch = input.shape[0]
291
- out = self.input.repeat(batch, 1, 1, 1)
292
- return out
293
-
294
-
295
- class StyledConv(nn.Module):
296
- def __init__(
297
- self,
298
- in_channel,
299
- out_channel,
300
- kernel_size,
301
- style_dim,
302
- upsample=False,
303
- blur_kernel=[1, 3, 3, 1],
304
- demodulate=True,
305
- ):
306
- super().__init__()
307
- self.conv = ModulatedConv2d(
308
- in_channel,
309
- out_channel,
310
- kernel_size,
311
- style_dim,
312
- upsample=upsample,
313
- blur_kernel=blur_kernel,
314
- demodulate=demodulate,
315
- )
316
- self.noise = NoiseInjection()
317
- self.activate = FusedLeakyReLU(out_channel)
318
-
319
- def forward(self, input, style, noise=None):
320
- out = self.conv(input, style)
321
- out = self.noise(out, noise=noise)
322
- out = self.activate(out)
323
- return out
324
-
325
-
326
- class ToRGB(nn.Module):
327
- def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
328
- super().__init__()
329
- if upsample:
330
- self.upsample = Upsample(blur_kernel)
331
-
332
- self.conv = ModulatedConv2d(
333
- in_channel, 3, 1, style_dim, demodulate=False)
334
- self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
335
-
336
- def forward(self, input, style, skip=None):
337
- out = self.conv(input, style)
338
- out = out + self.bias
339
-
340
- if skip is not None:
341
- skip = self.upsample(skip)
342
- out = out + skip
343
-
344
- return out
345
-
346
-
347
- class Generator(nn.Module):
348
- def __init__(
349
- self,
350
- size,
351
- style_dim,
352
- n_mlp,
353
- channel_multiplier=1,
354
- blur_kernel=[1, 3, 3, 1],
355
- lr_mlp=0.01,
356
- small=False,
357
- small_isaac=False,
358
- ):
359
- super().__init__()
360
-
361
- self.size = size
362
-
363
- if small and size > 64:
364
- raise ValueError("small only works for sizes <= 64")
365
-
366
- self.style_dim = style_dim
367
- layers = [PixelNorm()]
368
-
369
- for i in range(n_mlp):
370
- layers.append(
371
- EqualLinear(
372
- style_dim, style_dim, lr_mul=lr_mlp, activation="fused_lrelu"
373
- )
374
- )
375
-
376
- self.style = nn.Sequential(*layers)
377
-
378
- if small:
379
- self.channels = {
380
- 4: 64 * channel_multiplier,
381
- 8: 64 * channel_multiplier,
382
- 16: 64 * channel_multiplier,
383
- 32: 64 * channel_multiplier,
384
- 64: 64 * channel_multiplier,
385
- }
386
- elif small_isaac:
387
- self.channels = {4: 256, 8: 256,
388
- 16: 256, 32: 256, 64: 128, 128: 128}
389
- else:
390
- self.channels = {
391
- 4: 512,
392
- 8: 512,
393
- 16: 512,
394
- 32: 512,
395
- 64: 256 * channel_multiplier,
396
- 128: 128 * channel_multiplier,
397
- 256: 64 * channel_multiplier,
398
- 512: 32 * channel_multiplier,
399
- 1024: 16 * channel_multiplier,
400
- }
401
-
402
- self.input = ConstantInput(self.channels[4])
403
- self.conv1 = StyledConv(
404
- self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
405
- )
406
- self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
407
-
408
- self.log_size = int(math.log(size, 2))
409
- self.num_layers = (self.log_size - 2) * 2 + 1
410
-
411
- self.convs = nn.ModuleList()
412
- self.upsamples = nn.ModuleList()
413
- self.to_rgbs = nn.ModuleList()
414
- self.noises = nn.Module()
415
-
416
- in_channel = self.channels[4]
417
-
418
- for layer_idx in range(self.num_layers):
419
- res = (layer_idx + 5) // 2
420
- shape = [1, 1, 2 ** res, 2 ** res // 2]
421
- self.noises.register_buffer(
422
- "noise_{}".format(layer_idx), torch.randn(*shape)
423
- )
424
-
425
- for i in range(3, self.log_size + 1):
426
- out_channel = self.channels[2 ** i]
427
-
428
- self.convs.append(
429
- StyledConv(
430
- in_channel,
431
- out_channel,
432
- 3,
433
- style_dim,
434
- upsample=True,
435
- blur_kernel=blur_kernel,
436
- )
437
- )
438
-
439
- self.convs.append(
440
- StyledConv(
441
- out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
442
- )
443
- )
444
-
445
- self.to_rgbs.append(ToRGB(out_channel, style_dim))
446
- in_channel = out_channel
447
-
448
- self.n_latent = self.log_size * 2 - 2
449
-
450
- def make_noise(self):
451
- device = self.input.input.device
452
-
453
- noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2 // 2, device=device)]
454
-
455
- for i in range(3, self.log_size + 1):
456
- for _ in range(2):
457
- noises.append(torch.randn(
458
- 1, 1, 2 ** i, 2 ** i // 2, device=device))
459
-
460
- return noises
461
-
462
- def mean_latent(self, n_latent):
463
- latent_in = torch.randn(
464
- n_latent, self.style_dim, device=self.input.input.device
465
- )
466
- latent = self.style(latent_in).mean(0, keepdim=True)
467
-
468
- return latent
469
-
470
- def get_latent(self, input):
471
- return self.style(input)
472
-
473
- def forward(
474
- self,
475
- styles,
476
- return_latents=False,
477
- return_features=False,
478
- inject_index=None,
479
- truncation=1,
480
- truncation_latent=None,
481
- input_is_latent=False,
482
- noise=None,
483
- randomize_noise=True,
484
- real=False,
485
- ):
486
- if not input_is_latent:
487
- styles = [self.style(s) for s in styles]
488
- if noise is None:
489
- if randomize_noise:
490
- noise = [None] * self.num_layers
491
- else:
492
- noise = [
493
- getattr(self.noises, "noise_{}".format(i))
494
- for i in range(self.num_layers)
495
- ]
496
-
497
- if truncation < 1:
498
- # print('truncation_latent: ', truncation_latent.shape)
499
- if not real: # if type(styles) == list:
500
- style_t = []
501
- for style in styles:
502
- style_t.append(
503
- truncation_latent + truncation *
504
- (style - truncation_latent)
505
- ) # (-1.1162e-03-(-1.0914e-01))*0.8+(-1.0914e-01)
506
- styles = style_t
507
- else: # styles are latent (tensor: 1,18,512), for real PTI output
508
- truncation_latent = truncation_latent.repeat(
509
- 18, 1).unsqueeze(0) # (1,512) --> (1,18,512)
510
- styles = torch.add(truncation_latent, torch.mul(
511
- torch.sub(styles, truncation_latent), truncation))
512
- # print('now styles after truncation : ', styles)
513
- # if type(styles) == list and len(styles) < 2: # this if for input as list of [(1,512)]
514
- if not real:
515
- if len(styles) < 2:
516
- inject_index = self.n_latent
517
- if styles[0].ndim < 3:
518
- latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
519
- else:
520
- latent = styles[0]
521
- elif type(styles) == list:
522
- if inject_index is None:
523
- inject_index = 4
524
-
525
- latent = styles[0].unsqueeze(0)
526
- if latent.shape[1] == 1:
527
- latent = latent.repeat(1, inject_index, 1)
528
- else:
529
- latent = latent[:, :inject_index, :]
530
- latent2 = styles[1].unsqueeze(1).repeat(
531
- 1, self.n_latent - inject_index, 1)
532
- latent = torch.cat([latent, latent2], 1)
533
- # input is tensor of size with torch.Size([1, 18, 512]), for real PTI output
534
- else:
535
- latent = styles
536
-
537
- # print(f'processed latent: {latent.shape}')
538
-
539
- features = {}
540
- out = self.input(latent)
541
- features["out_0"] = out
542
- out = self.conv1(out, latent[:, 0], noise=noise[0])
543
- features["conv1_0"] = out
544
-
545
- skip = self.to_rgb1(out, latent[:, 1])
546
- features["skip_0"] = skip
547
- i = 1
548
- for conv1, conv2, noise1, noise2, to_rgb in zip(
549
- self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
550
- ):
551
- out = conv1(out, latent[:, i], noise=noise1)
552
- features["conv1_{}".format(i)] = out
553
- out = conv2(out, latent[:, i + 1], noise=noise2)
554
- features["conv2_{}".format(i)] = out
555
- skip = to_rgb(out, latent[:, i + 2], skip)
556
- features["skip_{}".format(i)] = skip
557
-
558
- i += 2
559
-
560
- image = skip
561
-
562
- if return_latents:
563
- return image, latent
564
- elif return_features:
565
- return image, features
566
- else:
567
- return image, None
568
-
569
-
570
- class ConvLayer(nn.Sequential):
571
- def __init__(
572
- self,
573
- in_channel,
574
- out_channel,
575
- kernel_size,
576
- downsample=False,
577
- blur_kernel=[1, 3, 3, 1],
578
- bias=True,
579
- activate=True,
580
- ):
581
- layers = []
582
-
583
- if downsample:
584
- factor = 2
585
- p = (len(blur_kernel) - factor) + (kernel_size - 1)
586
- pad0 = (p + 1) // 2
587
- pad1 = p // 2
588
-
589
- layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
590
-
591
- stride = 2
592
- self.padding = 0
593
-
594
- else:
595
- stride = 1
596
- self.padding = kernel_size // 2
597
-
598
- layers.append(
599
- EqualConv2d(
600
- in_channel,
601
- out_channel,
602
- kernel_size,
603
- padding=self.padding,
604
- stride=stride,
605
- bias=bias and not activate,
606
- )
607
- )
608
-
609
- if activate:
610
- if bias:
611
- layers.append(FusedLeakyReLU(out_channel))
612
- else:
613
- layers.append(ScaledLeakyReLU(0.2))
614
-
615
- super().__init__(*layers)
616
-
617
-
618
- class ResBlock(nn.Module):
619
- def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
620
- super().__init__()
621
-
622
- self.conv1 = ConvLayer(in_channel, in_channel, 3)
623
- self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
624
-
625
- self.skip = ConvLayer(
626
- in_channel, out_channel, 1, downsample=True, activate=False, bias=False
627
- )
628
-
629
- def forward(self, input):
630
- out = self.conv1(input)
631
- out = self.conv2(out)
632
-
633
- skip = self.skip(input)
634
- out = (out + skip) / math.sqrt(2)
635
-
636
- return out
637
-
638
-
639
- class StyleDiscriminator(nn.Module):
640
- def __init__(
641
- self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], small=False
642
- ):
643
- super().__init__()
644
-
645
- if small:
646
- channels = {4: 64, 8: 64, 16: 64, 32: 64, 64: 64}
647
-
648
- else:
649
- channels = {
650
- 4: 512,
651
- 8: 512,
652
- 16: 512,
653
- 32: 512,
654
- 64: 256 * channel_multiplier,
655
- 128: 128 * channel_multiplier,
656
- 256: 64 * channel_multiplier,
657
- 512: 32 * channel_multiplier,
658
- 1024: 16 * channel_multiplier,
659
- }
660
-
661
- convs = [ConvLayer(3, channels[size], 1)]
662
-
663
- log_size = int(math.log(size, 2))
664
- in_channel = channels[size]
665
-
666
- for i in range(log_size, 2, -1):
667
- out_channel = channels[2 ** (i - 1)]
668
-
669
- convs.append(ResBlock(in_channel, out_channel, blur_kernel))
670
-
671
- in_channel = out_channel
672
-
673
- self.convs = nn.Sequential(*convs)
674
-
675
- self.stddev_group = 4
676
- self.stddev_feat = 1
677
-
678
- self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
679
- self.final_linear = nn.Sequential(
680
- EqualLinear(channels[4] * 4 * 4, channels[4],
681
- activation="fused_lrelu"),
682
- EqualLinear(channels[4], 1),
683
- )
684
-
685
- def forward(self, input):
686
- h = input
687
- h_list = []
688
-
689
- for index, blocklist in enumerate(self.convs):
690
- h = blocklist(h)
691
- h_list.append(h)
692
-
693
- out = h
694
- batch, channel, height, width = out.shape
695
- group = min(batch, self.stddev_group)
696
- stddev = out.view(
697
- group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
698
- )
699
- stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
700
- stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
701
- stddev = stddev.repeat(group, 1, height, width)
702
- out = torch.cat([out, stddev], 1)
703
-
704
- out = self.final_conv(out)
705
- h_list.append(out)
706
-
707
- out = out.view(batch, -1)
708
- out = self.final_linear(out)
709
-
710
- return out, h_list
711
-
712
-
713
- class StyleEncoder(nn.Module):
714
- def __init__(self, size, w_dim=512):
715
- super().__init__()
716
-
717
- channels = {
718
- 4: 512,
719
- 8: 512,
720
- 16: 512,
721
- 32: 512,
722
- 64: 256,
723
- 128: 128,
724
- 256: 64,
725
- 512: 32,
726
- 1024: 16
727
- }
728
-
729
- self.w_dim = w_dim
730
- log_size = int(math.log(size, 2))
731
- convs = [ConvLayer(3, channels[size], 1)]
732
-
733
- in_channel = channels[size]
734
- for i in range(log_size, 2, -1):
735
- out_channel = channels[2 ** (i - 1)]
736
- convs.append(ResBlock(in_channel, out_channel))
737
- in_channel = out_channel
738
-
739
- convs.append(EqualConv2d(
740
- in_channel, 2*self.w_dim, 4, padding=0, bias=False))
741
-
742
- self.convs = nn.Sequential(*convs)
743
-
744
- def forward(self, input):
745
- out = self.convs(input)
746
- # return out.view(len(input), self.n_latents, self.w_dim)
747
- reshaped = out.view(len(input), 2*self.w_dim)
748
- return reshaped[:, :self.w_dim], reshaped[:, self.w_dim:]
749
-
750
-
751
- def kaiming_init(m):
752
- if isinstance(m, (nn.Linear, nn.Conv2d)):
753
- init.kaiming_normal_(m.weight)
754
- if m.bias is not None:
755
- m.bias.data.fill_(0)
756
- elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
757
- m.weight.data.fill_(1)
758
- if m.bias is not None:
759
- m.bias.data.fill_(0)
760
-
761
-
762
- def normal_init(m):
763
- if isinstance(m, (nn.Linear, nn.Conv2d)):
764
- init.normal_(m.weight, 0, 0.02)
765
- if m.bias is not None:
766
- m.bias.data.fill_(0)
767
- elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
768
- m.weight.data.fill_(1)
769
- if m.bias is not None:
770
- m.bias.data.fill_(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/en/api/models/autoencoderkl.md DELETED
@@ -1,43 +0,0 @@
1
- # AutoencoderKL
2
-
3
- The variational autoencoder (VAE) model with KL loss was introduced in [Auto-Encoding Variational Bayes](https://arxiv.org/abs/1312.6114v11) by Diederik P. Kingma and Max Welling. The model is used in 🤗 Diffusers to encode images into latents and to decode latent representations into images.
4
-
5
- The abstract from the paper is:
6
-
7
- *How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions are two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.*
8
-
9
- ## Loading from the original format
10
-
11
- By default the [`AutoencoderKL`] should be loaded with [`~ModelMixin.from_pretrained`], but it can also be loaded
12
- from the original format using [`FromOriginalVAEMixin.from_single_file`] as follows:
13
-
14
- ```py
15
- from diffusers import AutoencoderKL
16
-
17
- url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
18
- model = AutoencoderKL.from_single_file(url)
19
- ```
20
-
21
- ## AutoencoderKL
22
-
23
- [[autodoc]] AutoencoderKL
24
-
25
- ## AutoencoderKLOutput
26
-
27
- [[autodoc]] models.autoencoder_kl.AutoencoderKLOutput
28
-
29
- ## DecoderOutput
30
-
31
- [[autodoc]] models.vae.DecoderOutput
32
-
33
- ## FlaxAutoencoderKL
34
-
35
- [[autodoc]] FlaxAutoencoderKL
36
-
37
- ## FlaxAutoencoderKLOutput
38
-
39
- [[autodoc]] models.vae_flax.FlaxAutoencoderKLOutput
40
-
41
- ## FlaxDecoderOutput
42
-
43
- [[autodoc]] models.vae_flax.FlaxDecoderOutput
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/docs/source/en/api/pipelines/cycle_diffusion.md DELETED
@@ -1,33 +0,0 @@
1
- <!--Copyright 2023 The HuggingFace Team. All rights reserved.
2
-
3
- Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
4
- the License. You may obtain a copy of the License at
5
-
6
- http://www.apache.org/licenses/LICENSE-2.0
7
-
8
- Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
9
- an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
10
- specific language governing permissions and limitations under the License.
11
- -->
12
-
13
- # Cycle Diffusion
14
-
15
- Cycle Diffusion is a text guided image-to-image generation model proposed in [Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance](https://huggingface.co/papers/2210.05559) by Chen Henry Wu, Fernando De la Torre.
16
-
17
- The abstract from the paper is:
18
-
19
- *Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs.*
20
-
21
- <Tip>
22
-
23
- Make sure to check out the Schedulers [guide](/using-diffusers/schedulers) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](/using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines.
24
-
25
- </Tip>
26
-
27
- ## CycleDiffusionPipeline
28
- [[autodoc]] CycleDiffusionPipeline
29
- - all
30
- - __call__
31
-
32
- ## StableDiffusionPiplineOutput
33
- [[autodoc]] pipelines.stable_diffusion.StableDiffusionPipelineOutput
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/tests/schedulers/test_scheduler_lms.py DELETED
@@ -1,140 +0,0 @@
1
- import torch
2
-
3
- from diffusers import LMSDiscreteScheduler
4
- from diffusers.utils import torch_device
5
-
6
- from .test_schedulers import SchedulerCommonTest
7
-
8
-
9
- class LMSDiscreteSchedulerTest(SchedulerCommonTest):
10
- scheduler_classes = (LMSDiscreteScheduler,)
11
- num_inference_steps = 10
12
-
13
- def get_scheduler_config(self, **kwargs):
14
- config = {
15
- "num_train_timesteps": 1100,
16
- "beta_start": 0.0001,
17
- "beta_end": 0.02,
18
- "beta_schedule": "linear",
19
- }
20
-
21
- config.update(**kwargs)
22
- return config
23
-
24
- def test_timesteps(self):
25
- for timesteps in [10, 50, 100, 1000]:
26
- self.check_over_configs(num_train_timesteps=timesteps)
27
-
28
- def test_betas(self):
29
- for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
30
- self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
31
-
32
- def test_schedules(self):
33
- for schedule in ["linear", "scaled_linear"]:
34
- self.check_over_configs(beta_schedule=schedule)
35
-
36
- def test_prediction_type(self):
37
- for prediction_type in ["epsilon", "v_prediction"]:
38
- self.check_over_configs(prediction_type=prediction_type)
39
-
40
- def test_time_indices(self):
41
- for t in [0, 500, 800]:
42
- self.check_over_forward(time_step=t)
43
-
44
- def test_full_loop_no_noise(self):
45
- scheduler_class = self.scheduler_classes[0]
46
- scheduler_config = self.get_scheduler_config()
47
- scheduler = scheduler_class(**scheduler_config)
48
-
49
- scheduler.set_timesteps(self.num_inference_steps)
50
-
51
- model = self.dummy_model()
52
- sample = self.dummy_sample_deter * scheduler.init_noise_sigma
53
-
54
- for i, t in enumerate(scheduler.timesteps):
55
- sample = scheduler.scale_model_input(sample, t)
56
-
57
- model_output = model(sample, t)
58
-
59
- output = scheduler.step(model_output, t, sample)
60
- sample = output.prev_sample
61
-
62
- result_sum = torch.sum(torch.abs(sample))
63
- result_mean = torch.mean(torch.abs(sample))
64
-
65
- assert abs(result_sum.item() - 1006.388) < 1e-2
66
- assert abs(result_mean.item() - 1.31) < 1e-3
67
-
68
- def test_full_loop_with_v_prediction(self):
69
- scheduler_class = self.scheduler_classes[0]
70
- scheduler_config = self.get_scheduler_config(prediction_type="v_prediction")
71
- scheduler = scheduler_class(**scheduler_config)
72
-
73
- scheduler.set_timesteps(self.num_inference_steps)
74
-
75
- model = self.dummy_model()
76
- sample = self.dummy_sample_deter * scheduler.init_noise_sigma
77
-
78
- for i, t in enumerate(scheduler.timesteps):
79
- sample = scheduler.scale_model_input(sample, t)
80
-
81
- model_output = model(sample, t)
82
-
83
- output = scheduler.step(model_output, t, sample)
84
- sample = output.prev_sample
85
-
86
- result_sum = torch.sum(torch.abs(sample))
87
- result_mean = torch.mean(torch.abs(sample))
88
-
89
- assert abs(result_sum.item() - 0.0017) < 1e-2
90
- assert abs(result_mean.item() - 2.2676e-06) < 1e-3
91
-
92
- def test_full_loop_device(self):
93
- scheduler_class = self.scheduler_classes[0]
94
- scheduler_config = self.get_scheduler_config()
95
- scheduler = scheduler_class(**scheduler_config)
96
-
97
- scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
98
-
99
- model = self.dummy_model()
100
- sample = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
101
- sample = sample.to(torch_device)
102
-
103
- for i, t in enumerate(scheduler.timesteps):
104
- sample = scheduler.scale_model_input(sample, t)
105
-
106
- model_output = model(sample, t)
107
-
108
- output = scheduler.step(model_output, t, sample)
109
- sample = output.prev_sample
110
-
111
- result_sum = torch.sum(torch.abs(sample))
112
- result_mean = torch.mean(torch.abs(sample))
113
-
114
- assert abs(result_sum.item() - 1006.388) < 1e-2
115
- assert abs(result_mean.item() - 1.31) < 1e-3
116
-
117
- def test_full_loop_device_karras_sigmas(self):
118
- scheduler_class = self.scheduler_classes[0]
119
- scheduler_config = self.get_scheduler_config()
120
- scheduler = scheduler_class(**scheduler_config, use_karras_sigmas=True)
121
-
122
- scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
123
-
124
- model = self.dummy_model()
125
- sample = self.dummy_sample_deter.to(torch_device) * scheduler.init_noise_sigma
126
- sample = sample.to(torch_device)
127
-
128
- for t in scheduler.timesteps:
129
- sample = scheduler.scale_model_input(sample, t)
130
-
131
- model_output = model(sample, t)
132
-
133
- output = scheduler.step(model_output, t, sample)
134
- sample = output.prev_sample
135
-
136
- result_sum = torch.sum(torch.abs(sample))
137
- result_mean = torch.mean(torch.abs(sample))
138
-
139
- assert abs(result_sum.item() - 3812.9927) < 2e-2
140
- assert abs(result_mean.item() - 4.9648) < 1e-3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_detection/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py DELETED
@@ -1,2 +0,0 @@
1
- _base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
2
- model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
 
 
 
spaces/Andy1621/uniformer_image_detection/mmdet/models/dense_heads/pisa_ssd_head.py DELETED
@@ -1,139 +0,0 @@
1
- import torch
2
-
3
- from mmdet.core import multi_apply
4
- from ..builder import HEADS
5
- from ..losses import CrossEntropyLoss, SmoothL1Loss, carl_loss, isr_p
6
- from .ssd_head import SSDHead
7
-
8
-
9
- # TODO: add loss evaluator for SSD
10
- @HEADS.register_module()
11
- class PISASSDHead(SSDHead):
12
-
13
- def loss(self,
14
- cls_scores,
15
- bbox_preds,
16
- gt_bboxes,
17
- gt_labels,
18
- img_metas,
19
- gt_bboxes_ignore=None):
20
- """Compute losses of the head.
21
-
22
- Args:
23
- cls_scores (list[Tensor]): Box scores for each scale level
24
- Has shape (N, num_anchors * num_classes, H, W)
25
- bbox_preds (list[Tensor]): Box energies / deltas for each scale
26
- level with shape (N, num_anchors * 4, H, W)
27
- gt_bboxes (list[Tensor]): Ground truth bboxes of each image
28
- with shape (num_obj, 4).
29
- gt_labels (list[Tensor]): Ground truth labels of each image
30
- with shape (num_obj, 4).
31
- img_metas (list[dict]): Meta information of each image, e.g.,
32
- image size, scaling factor, etc.
33
- gt_bboxes_ignore (list[Tensor]): Ignored gt bboxes of each image.
34
- Default: None.
35
-
36
- Returns:
37
- dict: Loss dict, comprise classification loss regression loss and
38
- carl loss.
39
- """
40
- featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
41
- assert len(featmap_sizes) == self.anchor_generator.num_levels
42
-
43
- device = cls_scores[0].device
44
-
45
- anchor_list, valid_flag_list = self.get_anchors(
46
- featmap_sizes, img_metas, device=device)
47
- cls_reg_targets = self.get_targets(
48
- anchor_list,
49
- valid_flag_list,
50
- gt_bboxes,
51
- img_metas,
52
- gt_bboxes_ignore_list=gt_bboxes_ignore,
53
- gt_labels_list=gt_labels,
54
- label_channels=1,
55
- unmap_outputs=False,
56
- return_sampling_results=True)
57
- if cls_reg_targets is None:
58
- return None
59
- (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
60
- num_total_pos, num_total_neg, sampling_results_list) = cls_reg_targets
61
-
62
- num_images = len(img_metas)
63
- all_cls_scores = torch.cat([
64
- s.permute(0, 2, 3, 1).reshape(
65
- num_images, -1, self.cls_out_channels) for s in cls_scores
66
- ], 1)
67
- all_labels = torch.cat(labels_list, -1).view(num_images, -1)
68
- all_label_weights = torch.cat(label_weights_list,
69
- -1).view(num_images, -1)
70
- all_bbox_preds = torch.cat([
71
- b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
72
- for b in bbox_preds
73
- ], -2)
74
- all_bbox_targets = torch.cat(bbox_targets_list,
75
- -2).view(num_images, -1, 4)
76
- all_bbox_weights = torch.cat(bbox_weights_list,
77
- -2).view(num_images, -1, 4)
78
-
79
- # concat all level anchors to a single tensor
80
- all_anchors = []
81
- for i in range(num_images):
82
- all_anchors.append(torch.cat(anchor_list[i]))
83
-
84
- isr_cfg = self.train_cfg.get('isr', None)
85
- all_targets = (all_labels.view(-1), all_label_weights.view(-1),
86
- all_bbox_targets.view(-1,
87
- 4), all_bbox_weights.view(-1, 4))
88
- # apply ISR-P
89
- if isr_cfg is not None:
90
- all_targets = isr_p(
91
- all_cls_scores.view(-1, all_cls_scores.size(-1)),
92
- all_bbox_preds.view(-1, 4),
93
- all_targets,
94
- torch.cat(all_anchors),
95
- sampling_results_list,
96
- loss_cls=CrossEntropyLoss(),
97
- bbox_coder=self.bbox_coder,
98
- **self.train_cfg.isr,
99
- num_class=self.num_classes)
100
- (new_labels, new_label_weights, new_bbox_targets,
101
- new_bbox_weights) = all_targets
102
- all_labels = new_labels.view(all_labels.shape)
103
- all_label_weights = new_label_weights.view(all_label_weights.shape)
104
- all_bbox_targets = new_bbox_targets.view(all_bbox_targets.shape)
105
- all_bbox_weights = new_bbox_weights.view(all_bbox_weights.shape)
106
-
107
- # add CARL loss
108
- carl_loss_cfg = self.train_cfg.get('carl', None)
109
- if carl_loss_cfg is not None:
110
- loss_carl = carl_loss(
111
- all_cls_scores.view(-1, all_cls_scores.size(-1)),
112
- all_targets[0],
113
- all_bbox_preds.view(-1, 4),
114
- all_targets[2],
115
- SmoothL1Loss(beta=1.),
116
- **self.train_cfg.carl,
117
- avg_factor=num_total_pos,
118
- num_class=self.num_classes)
119
-
120
- # check NaN and Inf
121
- assert torch.isfinite(all_cls_scores).all().item(), \
122
- 'classification scores become infinite or NaN!'
123
- assert torch.isfinite(all_bbox_preds).all().item(), \
124
- 'bbox predications become infinite or NaN!'
125
-
126
- losses_cls, losses_bbox = multi_apply(
127
- self.loss_single,
128
- all_cls_scores,
129
- all_bbox_preds,
130
- all_anchors,
131
- all_labels,
132
- all_label_weights,
133
- all_bbox_targets,
134
- all_bbox_weights,
135
- num_total_samples=num_total_pos)
136
- loss_dict = dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
137
- if carl_loss_cfg is not None:
138
- loss_dict.update(loss_carl)
139
- return loss_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Andy1621/uniformer_image_segmentation/configs/deeplabv3/deeplabv3_r101-d8_512x512_40k_voc12aug.py DELETED
@@ -1,2 +0,0 @@
1
- _base_ = './deeplabv3_r50-d8_512x512_40k_voc12aug.py'
2
- model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
 
 
 
spaces/AnishKumbhar/ChatBot/text-generation-webui-main/modules/exllamav2.py DELETED
@@ -1,133 +0,0 @@
1
- import random
2
- from pathlib import Path
3
-
4
- import torch
5
- from exllamav2 import (
6
- ExLlamaV2,
7
- ExLlamaV2Cache,
8
- ExLlamaV2Config,
9
- ExLlamaV2Tokenizer
10
- )
11
- from exllamav2.generator import ExLlamaV2BaseGenerator, ExLlamaV2Sampler
12
-
13
- from modules import shared
14
- from modules.logging_colors import logger
15
- from modules.text_generation import get_max_prompt_length
16
-
17
- try:
18
- import flash_attn
19
- except ModuleNotFoundError:
20
- logger.warning(
21
- 'You are running ExLlamaV2 without flash-attention. This will cause the VRAM usage '
22
- 'to be a lot higher than it could be.\n'
23
- 'Try installing flash-attention following the instructions here: '
24
- 'https://github.com/Dao-AILab/flash-attention#installation-and-features'
25
- )
26
- pass
27
-
28
-
29
- class Exllamav2Model:
30
- def __init__(self):
31
- pass
32
-
33
- @classmethod
34
- def from_pretrained(self, path_to_model):
35
-
36
- path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model)
37
-
38
- config = ExLlamaV2Config()
39
- config.model_dir = str(path_to_model)
40
- config.prepare()
41
-
42
- config.max_seq_len = shared.args.max_seq_len
43
- config.scale_pos_emb = shared.args.compress_pos_emb
44
- config.scale_alpha_value = shared.args.alpha_value
45
-
46
- model = ExLlamaV2(config)
47
-
48
- split = None
49
- if shared.args.gpu_split:
50
- split = [float(alloc) for alloc in shared.args.gpu_split.split(",")]
51
-
52
- model.load(split)
53
-
54
- tokenizer = ExLlamaV2Tokenizer(config)
55
- cache = ExLlamaV2Cache(model)
56
- generator = ExLlamaV2BaseGenerator(model, cache, tokenizer)
57
-
58
- result = self()
59
- result.model = model
60
- result.cache = cache
61
- result.tokenizer = tokenizer
62
- result.generator = generator
63
- return result, result
64
-
65
- def encode(self, string, **kwargs):
66
- return self.tokenizer.encode(string, add_bos=True)
67
-
68
- def decode(self, ids, **kwargs):
69
- if isinstance(ids, list):
70
- ids = torch.tensor([ids])
71
- elif isinstance(ids, torch.Tensor) and ids.numel() == 1:
72
- ids = ids.view(1, -1)
73
-
74
- return self.tokenizer.decode(ids)[0]
75
-
76
- def get_logits(self, token_ids, **kwargs):
77
- self.cache.current_seq_len = 0
78
- self.model.forward(token_ids[:, :-1], self.cache, input_mask=None, preprocess_only=True)
79
- return self.model.forward(token_ids[:, -1:], self.cache, input_mask=None, **kwargs).float().cpu()
80
-
81
- def generate_with_streaming(self, prompt, state):
82
- settings = ExLlamaV2Sampler.Settings()
83
- settings.temperature = state['temperature']
84
- settings.top_k = state['top_k']
85
- settings.top_p = state['top_p']
86
- settings.typical = state['typical_p']
87
- settings.token_repetition_penalty = state['repetition_penalty']
88
- settings.token_repetition_range = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range']
89
- if state['ban_eos_token']:
90
- settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id])
91
-
92
- if state['custom_token_bans']:
93
- to_ban = [int(x) for x in state['custom_token_bans'].split(',')]
94
- if len(to_ban) > 0:
95
- settings.disallow_tokens(self.tokenizer, to_ban)
96
-
97
- ids = self.tokenizer.encode(prompt, add_bos=state['add_bos_token'])
98
- ids = ids[:, -get_max_prompt_length(state):]
99
- initial_len = ids.shape[-1]
100
-
101
- if state['auto_max_new_tokens']:
102
- max_new_tokens = state['truncation_length'] - ids.shape[-1]
103
- else:
104
- max_new_tokens = state['max_new_tokens']
105
-
106
- # _gen_begin_base
107
- self.cache.current_seq_len = 0
108
- self.model.forward(ids[:, :-1], self.cache, input_mask=None, preprocess_only=True)
109
-
110
- has_leading_space = False
111
- for i in range(max_new_tokens):
112
- logits = self.model.forward(ids[:, -1:], self.cache, input_mask=None).float().cpu()
113
- token, _, _= ExLlamaV2Sampler.sample(logits, settings, ids, random.random(), self.tokenizer)
114
- ids = torch.cat([ids, token], dim=1)
115
-
116
- if i == 0 and self.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
117
- has_leading_space = True
118
-
119
- decoded_text = self.tokenizer.decode(ids[:, initial_len:])[0]
120
- if has_leading_space:
121
- decoded_text = ' ' + decoded_text
122
-
123
- yield decoded_text
124
-
125
- if token.item() == self.tokenizer.eos_token_id or shared.stop_everything:
126
- break
127
-
128
- def generate(self, prompt, state):
129
- output = ''
130
- for output in self.generate_with_streaming(prompt, state):
131
- pass
132
-
133
- return output
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Anonymous-123/ImageNet-Editing/editing_diffusion/guided_diffusion/guided_diffusion/unet.py DELETED
@@ -1,894 +0,0 @@
1
- from abc import abstractmethod
2
-
3
- import math
4
-
5
- import numpy as np
6
- import torch as th
7
- import torch.nn as nn
8
- import torch.nn.functional as F
9
-
10
- from .fp16_util import convert_module_to_f16, convert_module_to_f32
11
- from .nn import (
12
- checkpoint,
13
- conv_nd,
14
- linear,
15
- avg_pool_nd,
16
- zero_module,
17
- normalization,
18
- timestep_embedding,
19
- )
20
-
21
-
22
- class AttentionPool2d(nn.Module):
23
- """
24
- Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
25
- """
26
-
27
- def __init__(
28
- self,
29
- spacial_dim: int,
30
- embed_dim: int,
31
- num_heads_channels: int,
32
- output_dim: int = None,
33
- ):
34
- super().__init__()
35
- self.positional_embedding = nn.Parameter(
36
- th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
37
- )
38
- self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
39
- self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
40
- self.num_heads = embed_dim // num_heads_channels
41
- self.attention = QKVAttention(self.num_heads)
42
-
43
- def forward(self, x):
44
- b, c, *_spatial = x.shape
45
- x = x.reshape(b, c, -1) # NC(HW)
46
- x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
47
- x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
48
- x = self.qkv_proj(x)
49
- x = self.attention(x)
50
- x = self.c_proj(x)
51
- return x[:, :, 0]
52
-
53
-
54
- class TimestepBlock(nn.Module):
55
- """
56
- Any module where forward() takes timestep embeddings as a second argument.
57
- """
58
-
59
- @abstractmethod
60
- def forward(self, x, emb):
61
- """
62
- Apply the module to `x` given `emb` timestep embeddings.
63
- """
64
-
65
-
66
- class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
67
- """
68
- A sequential module that passes timestep embeddings to the children that
69
- support it as an extra input.
70
- """
71
-
72
- def forward(self, x, emb):
73
- for layer in self:
74
- if isinstance(layer, TimestepBlock):
75
- x = layer(x, emb)
76
- else:
77
- x = layer(x)
78
- return x
79
-
80
-
81
- class Upsample(nn.Module):
82
- """
83
- An upsampling layer with an optional convolution.
84
-
85
- :param channels: channels in the inputs and outputs.
86
- :param use_conv: a bool determining if a convolution is applied.
87
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
88
- upsampling occurs in the inner-two dimensions.
89
- """
90
-
91
- def __init__(self, channels, use_conv, dims=2, out_channels=None):
92
- super().__init__()
93
- self.channels = channels
94
- self.out_channels = out_channels or channels
95
- self.use_conv = use_conv
96
- self.dims = dims
97
- if use_conv:
98
- self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
99
-
100
- def forward(self, x):
101
- assert x.shape[1] == self.channels
102
- if self.dims == 3:
103
- x = F.interpolate(
104
- x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
105
- )
106
- else:
107
- x = F.interpolate(x, scale_factor=2, mode="nearest")
108
- if self.use_conv:
109
- x = self.conv(x)
110
- return x
111
-
112
-
113
- class Downsample(nn.Module):
114
- """
115
- A downsampling layer with an optional convolution.
116
-
117
- :param channels: channels in the inputs and outputs.
118
- :param use_conv: a bool determining if a convolution is applied.
119
- :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
120
- downsampling occurs in the inner-two dimensions.
121
- """
122
-
123
- def __init__(self, channels, use_conv, dims=2, out_channels=None):
124
- super().__init__()
125
- self.channels = channels
126
- self.out_channels = out_channels or channels
127
- self.use_conv = use_conv
128
- self.dims = dims
129
- stride = 2 if dims != 3 else (1, 2, 2)
130
- if use_conv:
131
- self.op = conv_nd(
132
- dims, self.channels, self.out_channels, 3, stride=stride, padding=1
133
- )
134
- else:
135
- assert self.channels == self.out_channels
136
- self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
137
-
138
- def forward(self, x):
139
- assert x.shape[1] == self.channels
140
- return self.op(x)
141
-
142
-
143
- class ResBlock(TimestepBlock):
144
- """
145
- A residual block that can optionally change the number of channels.
146
-
147
- :param channels: the number of input channels.
148
- :param emb_channels: the number of timestep embedding channels.
149
- :param dropout: the rate of dropout.
150
- :param out_channels: if specified, the number of out channels.
151
- :param use_conv: if True and out_channels is specified, use a spatial
152
- convolution instead of a smaller 1x1 convolution to change the
153
- channels in the skip connection.
154
- :param dims: determines if the signal is 1D, 2D, or 3D.
155
- :param use_checkpoint: if True, use gradient checkpointing on this module.
156
- :param up: if True, use this block for upsampling.
157
- :param down: if True, use this block for downsampling.
158
- """
159
-
160
- def __init__(
161
- self,
162
- channels,
163
- emb_channels,
164
- dropout,
165
- out_channels=None,
166
- use_conv=False,
167
- use_scale_shift_norm=False,
168
- dims=2,
169
- use_checkpoint=False,
170
- up=False,
171
- down=False,
172
- ):
173
- super().__init__()
174
- self.channels = channels
175
- self.emb_channels = emb_channels
176
- self.dropout = dropout
177
- self.out_channels = out_channels or channels
178
- self.use_conv = use_conv
179
- self.use_checkpoint = use_checkpoint
180
- self.use_scale_shift_norm = use_scale_shift_norm
181
-
182
- self.in_layers = nn.Sequential(
183
- normalization(channels),
184
- nn.SiLU(),
185
- conv_nd(dims, channels, self.out_channels, 3, padding=1),
186
- )
187
-
188
- self.updown = up or down
189
-
190
- if up:
191
- self.h_upd = Upsample(channels, False, dims)
192
- self.x_upd = Upsample(channels, False, dims)
193
- elif down:
194
- self.h_upd = Downsample(channels, False, dims)
195
- self.x_upd = Downsample(channels, False, dims)
196
- else:
197
- self.h_upd = self.x_upd = nn.Identity()
198
-
199
- self.emb_layers = nn.Sequential(
200
- nn.SiLU(),
201
- linear(
202
- emb_channels,
203
- 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
204
- ),
205
- )
206
- self.out_layers = nn.Sequential(
207
- normalization(self.out_channels),
208
- nn.SiLU(),
209
- nn.Dropout(p=dropout),
210
- zero_module(
211
- conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
212
- ),
213
- )
214
-
215
- if self.out_channels == channels:
216
- self.skip_connection = nn.Identity()
217
- elif use_conv:
218
- self.skip_connection = conv_nd(
219
- dims, channels, self.out_channels, 3, padding=1
220
- )
221
- else:
222
- self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
223
-
224
- def forward(self, x, emb):
225
- """
226
- Apply the block to a Tensor, conditioned on a timestep embedding.
227
-
228
- :param x: an [N x C x ...] Tensor of features.
229
- :param emb: an [N x emb_channels] Tensor of timestep embeddings.
230
- :return: an [N x C x ...] Tensor of outputs.
231
- """
232
- return checkpoint(
233
- self._forward, (x, emb), self.parameters(), self.use_checkpoint
234
- )
235
-
236
- def _forward(self, x, emb):
237
- if self.updown:
238
- in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
239
- h = in_rest(x)
240
- h = self.h_upd(h)
241
- x = self.x_upd(x)
242
- h = in_conv(h)
243
- else:
244
- h = self.in_layers(x)
245
- emb_out = self.emb_layers(emb).type(h.dtype)
246
- while len(emb_out.shape) < len(h.shape):
247
- emb_out = emb_out[..., None]
248
- if self.use_scale_shift_norm:
249
- out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
250
- scale, shift = th.chunk(emb_out, 2, dim=1)
251
- h = out_norm(h) * (1 + scale) + shift
252
- h = out_rest(h)
253
- else:
254
- h = h + emb_out
255
- h = self.out_layers(h)
256
- return self.skip_connection(x) + h
257
-
258
-
259
- class AttentionBlock(nn.Module):
260
- """
261
- An attention block that allows spatial positions to attend to each other.
262
-
263
- Originally ported from here, but adapted to the N-d case.
264
- https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
265
- """
266
-
267
- def __init__(
268
- self,
269
- channels,
270
- num_heads=1,
271
- num_head_channels=-1,
272
- use_checkpoint=False,
273
- use_new_attention_order=False,
274
- ):
275
- super().__init__()
276
- self.channels = channels
277
- if num_head_channels == -1:
278
- self.num_heads = num_heads
279
- else:
280
- assert (
281
- channels % num_head_channels == 0
282
- ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
283
- self.num_heads = channels // num_head_channels
284
- self.use_checkpoint = use_checkpoint
285
- self.norm = normalization(channels)
286
- self.qkv = conv_nd(1, channels, channels * 3, 1)
287
- if use_new_attention_order:
288
- # split qkv before split heads
289
- self.attention = QKVAttention(self.num_heads)
290
- else:
291
- # split heads before split qkv
292
- self.attention = QKVAttentionLegacy(self.num_heads)
293
-
294
- self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
295
-
296
- def forward(self, x):
297
- return checkpoint(self._forward, (x,), self.parameters(), True)
298
-
299
- def _forward(self, x):
300
- b, c, *spatial = x.shape
301
- x = x.reshape(b, c, -1)
302
- qkv = self.qkv(self.norm(x))
303
- h = self.attention(qkv)
304
- h = self.proj_out(h)
305
- return (x + h).reshape(b, c, *spatial)
306
-
307
-
308
- def count_flops_attn(model, _x, y):
309
- """
310
- A counter for the `thop` package to count the operations in an
311
- attention operation.
312
- Meant to be used like:
313
- macs, params = thop.profile(
314
- model,
315
- inputs=(inputs, timestamps),
316
- custom_ops={QKVAttention: QKVAttention.count_flops},
317
- )
318
- """
319
- b, c, *spatial = y[0].shape
320
- num_spatial = int(np.prod(spatial))
321
- # We perform two matmuls with the same number of ops.
322
- # The first computes the weight matrix, the second computes
323
- # the combination of the value vectors.
324
- matmul_ops = 2 * b * (num_spatial ** 2) * c
325
- model.total_ops += th.DoubleTensor([matmul_ops])
326
-
327
-
328
- class QKVAttentionLegacy(nn.Module):
329
- """
330
- A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
331
- """
332
-
333
- def __init__(self, n_heads):
334
- super().__init__()
335
- self.n_heads = n_heads
336
-
337
- def forward(self, qkv):
338
- """
339
- Apply QKV attention.
340
-
341
- :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
342
- :return: an [N x (H * C) x T] tensor after attention.
343
- """
344
- bs, width, length = qkv.shape
345
- assert width % (3 * self.n_heads) == 0
346
- ch = width // (3 * self.n_heads)
347
- q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
348
- scale = 1 / math.sqrt(math.sqrt(ch))
349
- weight = th.einsum(
350
- "bct,bcs->bts", q * scale, k * scale
351
- ) # More stable with f16 than dividing afterwards
352
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
353
- a = th.einsum("bts,bcs->bct", weight, v)
354
- return a.reshape(bs, -1, length)
355
-
356
- @staticmethod
357
- def count_flops(model, _x, y):
358
- return count_flops_attn(model, _x, y)
359
-
360
-
361
- class QKVAttention(nn.Module):
362
- """
363
- A module which performs QKV attention and splits in a different order.
364
- """
365
-
366
- def __init__(self, n_heads):
367
- super().__init__()
368
- self.n_heads = n_heads
369
-
370
- def forward(self, qkv):
371
- """
372
- Apply QKV attention.
373
-
374
- :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
375
- :return: an [N x (H * C) x T] tensor after attention.
376
- """
377
- bs, width, length = qkv.shape
378
- assert width % (3 * self.n_heads) == 0
379
- ch = width // (3 * self.n_heads)
380
- q, k, v = qkv.chunk(3, dim=1)
381
- scale = 1 / math.sqrt(math.sqrt(ch))
382
- weight = th.einsum(
383
- "bct,bcs->bts",
384
- (q * scale).view(bs * self.n_heads, ch, length),
385
- (k * scale).view(bs * self.n_heads, ch, length),
386
- ) # More stable with f16 than dividing afterwards
387
- weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
388
- a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
389
- return a.reshape(bs, -1, length)
390
-
391
- @staticmethod
392
- def count_flops(model, _x, y):
393
- return count_flops_attn(model, _x, y)
394
-
395
-
396
- class UNetModel(nn.Module):
397
- """
398
- The full UNet model with attention and timestep embedding.
399
-
400
- :param in_channels: channels in the input Tensor.
401
- :param model_channels: base channel count for the model.
402
- :param out_channels: channels in the output Tensor.
403
- :param num_res_blocks: number of residual blocks per downsample.
404
- :param attention_resolutions: a collection of downsample rates at which
405
- attention will take place. May be a set, list, or tuple.
406
- For example, if this contains 4, then at 4x downsampling, attention
407
- will be used.
408
- :param dropout: the dropout probability.
409
- :param channel_mult: channel multiplier for each level of the UNet.
410
- :param conv_resample: if True, use learned convolutions for upsampling and
411
- downsampling.
412
- :param dims: determines if the signal is 1D, 2D, or 3D.
413
- :param num_classes: if specified (as an int), then this model will be
414
- class-conditional with `num_classes` classes.
415
- :param use_checkpoint: use gradient checkpointing to reduce memory usage.
416
- :param num_heads: the number of attention heads in each attention layer.
417
- :param num_heads_channels: if specified, ignore num_heads and instead use
418
- a fixed channel width per attention head.
419
- :param num_heads_upsample: works with num_heads to set a different number
420
- of heads for upsampling. Deprecated.
421
- :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
422
- :param resblock_updown: use residual blocks for up/downsampling.
423
- :param use_new_attention_order: use a different attention pattern for potentially
424
- increased efficiency.
425
- """
426
-
427
- def __init__(
428
- self,
429
- image_size,
430
- in_channels,
431
- model_channels,
432
- out_channels,
433
- num_res_blocks,
434
- attention_resolutions,
435
- dropout=0,
436
- channel_mult=(1, 2, 4, 8),
437
- conv_resample=True,
438
- dims=2,
439
- num_classes=None,
440
- use_checkpoint=False,
441
- use_fp16=False,
442
- num_heads=1,
443
- num_head_channels=-1,
444
- num_heads_upsample=-1,
445
- use_scale_shift_norm=False,
446
- resblock_updown=False,
447
- use_new_attention_order=False,
448
- ):
449
- super().__init__()
450
-
451
- if num_heads_upsample == -1:
452
- num_heads_upsample = num_heads
453
-
454
- self.image_size = image_size
455
- self.in_channels = in_channels
456
- self.model_channels = model_channels
457
- self.out_channels = out_channels
458
- self.num_res_blocks = num_res_blocks
459
- self.attention_resolutions = attention_resolutions
460
- self.dropout = dropout
461
- self.channel_mult = channel_mult
462
- self.conv_resample = conv_resample
463
- self.num_classes = num_classes
464
- self.use_checkpoint = use_checkpoint
465
- self.dtype = th.float16 if use_fp16 else th.float32
466
- self.num_heads = num_heads
467
- self.num_head_channels = num_head_channels
468
- self.num_heads_upsample = num_heads_upsample
469
-
470
- time_embed_dim = model_channels * 4
471
- self.time_embed = nn.Sequential(
472
- linear(model_channels, time_embed_dim),
473
- nn.SiLU(),
474
- linear(time_embed_dim, time_embed_dim),
475
- )
476
-
477
- if self.num_classes is not None:
478
- self.label_emb = nn.Embedding(num_classes, time_embed_dim)
479
-
480
- ch = input_ch = int(channel_mult[0] * model_channels)
481
- self.input_blocks = nn.ModuleList(
482
- [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
483
- )
484
- self._feature_size = ch
485
- input_block_chans = [ch]
486
- ds = 1
487
- for level, mult in enumerate(channel_mult):
488
- for _ in range(num_res_blocks):
489
- layers = [
490
- ResBlock(
491
- ch,
492
- time_embed_dim,
493
- dropout,
494
- out_channels=int(mult * model_channels),
495
- dims=dims,
496
- use_checkpoint=use_checkpoint,
497
- use_scale_shift_norm=use_scale_shift_norm,
498
- )
499
- ]
500
- ch = int(mult * model_channels)
501
- if ds in attention_resolutions:
502
- layers.append(
503
- AttentionBlock(
504
- ch,
505
- use_checkpoint=use_checkpoint,
506
- num_heads=num_heads,
507
- num_head_channels=num_head_channels,
508
- use_new_attention_order=use_new_attention_order,
509
- )
510
- )
511
- self.input_blocks.append(TimestepEmbedSequential(*layers))
512
- self._feature_size += ch
513
- input_block_chans.append(ch)
514
- if level != len(channel_mult) - 1:
515
- out_ch = ch
516
- self.input_blocks.append(
517
- TimestepEmbedSequential(
518
- ResBlock(
519
- ch,
520
- time_embed_dim,
521
- dropout,
522
- out_channels=out_ch,
523
- dims=dims,
524
- use_checkpoint=use_checkpoint,
525
- use_scale_shift_norm=use_scale_shift_norm,
526
- down=True,
527
- )
528
- if resblock_updown
529
- else Downsample(
530
- ch, conv_resample, dims=dims, out_channels=out_ch
531
- )
532
- )
533
- )
534
- ch = out_ch
535
- input_block_chans.append(ch)
536
- ds *= 2
537
- self._feature_size += ch
538
-
539
- self.middle_block = TimestepEmbedSequential(
540
- ResBlock(
541
- ch,
542
- time_embed_dim,
543
- dropout,
544
- dims=dims,
545
- use_checkpoint=use_checkpoint,
546
- use_scale_shift_norm=use_scale_shift_norm,
547
- ),
548
- AttentionBlock(
549
- ch,
550
- use_checkpoint=use_checkpoint,
551
- num_heads=num_heads,
552
- num_head_channels=num_head_channels,
553
- use_new_attention_order=use_new_attention_order,
554
- ),
555
- ResBlock(
556
- ch,
557
- time_embed_dim,
558
- dropout,
559
- dims=dims,
560
- use_checkpoint=use_checkpoint,
561
- use_scale_shift_norm=use_scale_shift_norm,
562
- ),
563
- )
564
- self._feature_size += ch
565
-
566
- self.output_blocks = nn.ModuleList([])
567
- for level, mult in list(enumerate(channel_mult))[::-1]:
568
- for i in range(num_res_blocks + 1):
569
- ich = input_block_chans.pop()
570
- layers = [
571
- ResBlock(
572
- ch + ich,
573
- time_embed_dim,
574
- dropout,
575
- out_channels=int(model_channels * mult),
576
- dims=dims,
577
- use_checkpoint=use_checkpoint,
578
- use_scale_shift_norm=use_scale_shift_norm,
579
- )
580
- ]
581
- ch = int(model_channels * mult)
582
- if ds in attention_resolutions:
583
- layers.append(
584
- AttentionBlock(
585
- ch,
586
- use_checkpoint=use_checkpoint,
587
- num_heads=num_heads_upsample,
588
- num_head_channels=num_head_channels,
589
- use_new_attention_order=use_new_attention_order,
590
- )
591
- )
592
- if level and i == num_res_blocks:
593
- out_ch = ch
594
- layers.append(
595
- ResBlock(
596
- ch,
597
- time_embed_dim,
598
- dropout,
599
- out_channels=out_ch,
600
- dims=dims,
601
- use_checkpoint=use_checkpoint,
602
- use_scale_shift_norm=use_scale_shift_norm,
603
- up=True,
604
- )
605
- if resblock_updown
606
- else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
607
- )
608
- ds //= 2
609
- self.output_blocks.append(TimestepEmbedSequential(*layers))
610
- self._feature_size += ch
611
-
612
- self.out = nn.Sequential(
613
- normalization(ch),
614
- nn.SiLU(),
615
- zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
616
- )
617
-
618
- def convert_to_fp16(self):
619
- """
620
- Convert the torso of the model to float16.
621
- """
622
- self.input_blocks.apply(convert_module_to_f16)
623
- self.middle_block.apply(convert_module_to_f16)
624
- self.output_blocks.apply(convert_module_to_f16)
625
-
626
- def convert_to_fp32(self):
627
- """
628
- Convert the torso of the model to float32.
629
- """
630
- self.input_blocks.apply(convert_module_to_f32)
631
- self.middle_block.apply(convert_module_to_f32)
632
- self.output_blocks.apply(convert_module_to_f32)
633
-
634
- def forward(self, x, timesteps, y=None):
635
- """
636
- Apply the model to an input batch.
637
-
638
- :param x: an [N x C x ...] Tensor of inputs.
639
- :param timesteps: a 1-D batch of timesteps.
640
- :param y: an [N] Tensor of labels, if class-conditional.
641
- :return: an [N x C x ...] Tensor of outputs.
642
- """
643
- assert (y is not None) == (
644
- self.num_classes is not None
645
- ), "must specify y if and only if the model is class-conditional"
646
-
647
- hs = []
648
- emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
649
-
650
- if self.num_classes is not None:
651
- assert y.shape == (x.shape[0],)
652
- emb = emb + self.label_emb(y)
653
-
654
- h = x.type(self.dtype)
655
- for module in self.input_blocks:
656
- h = module(h, emb)
657
- hs.append(h)
658
- h = self.middle_block(h, emb)
659
- for module in self.output_blocks:
660
- h = th.cat([h, hs.pop()], dim=1)
661
- h = module(h, emb)
662
- h = h.type(x.dtype)
663
- return self.out(h)
664
-
665
-
666
- class SuperResModel(UNetModel):
667
- """
668
- A UNetModel that performs super-resolution.
669
-
670
- Expects an extra kwarg `low_res` to condition on a low-resolution image.
671
- """
672
-
673
- def __init__(self, image_size, in_channels, *args, **kwargs):
674
- super().__init__(image_size, in_channels * 2, *args, **kwargs)
675
-
676
- def forward(self, x, timesteps, low_res=None, **kwargs):
677
- _, _, new_height, new_width = x.shape
678
- upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
679
- x = th.cat([x, upsampled], dim=1)
680
- return super().forward(x, timesteps, **kwargs)
681
-
682
-
683
- class EncoderUNetModel(nn.Module):
684
- """
685
- The half UNet model with attention and timestep embedding.
686
-
687
- For usage, see UNet.
688
- """
689
-
690
- def __init__(
691
- self,
692
- image_size,
693
- in_channels,
694
- model_channels,
695
- out_channels,
696
- num_res_blocks,
697
- attention_resolutions,
698
- dropout=0,
699
- channel_mult=(1, 2, 4, 8),
700
- conv_resample=True,
701
- dims=2,
702
- use_checkpoint=False,
703
- use_fp16=False,
704
- num_heads=1,
705
- num_head_channels=-1,
706
- num_heads_upsample=-1,
707
- use_scale_shift_norm=False,
708
- resblock_updown=False,
709
- use_new_attention_order=False,
710
- pool="adaptive",
711
- ):
712
- super().__init__()
713
-
714
- if num_heads_upsample == -1:
715
- num_heads_upsample = num_heads
716
-
717
- self.in_channels = in_channels
718
- self.model_channels = model_channels
719
- self.out_channels = out_channels
720
- self.num_res_blocks = num_res_blocks
721
- self.attention_resolutions = attention_resolutions
722
- self.dropout = dropout
723
- self.channel_mult = channel_mult
724
- self.conv_resample = conv_resample
725
- self.use_checkpoint = use_checkpoint
726
- self.dtype = th.float16 if use_fp16 else th.float32
727
- self.num_heads = num_heads
728
- self.num_head_channels = num_head_channels
729
- self.num_heads_upsample = num_heads_upsample
730
-
731
- time_embed_dim = model_channels * 4
732
- self.time_embed = nn.Sequential(
733
- linear(model_channels, time_embed_dim),
734
- nn.SiLU(),
735
- linear(time_embed_dim, time_embed_dim),
736
- )
737
-
738
- ch = int(channel_mult[0] * model_channels)
739
- self.input_blocks = nn.ModuleList(
740
- [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
741
- )
742
- self._feature_size = ch
743
- input_block_chans = [ch]
744
- ds = 1
745
- for level, mult in enumerate(channel_mult):
746
- for _ in range(num_res_blocks):
747
- layers = [
748
- ResBlock(
749
- ch,
750
- time_embed_dim,
751
- dropout,
752
- out_channels=int(mult * model_channels),
753
- dims=dims,
754
- use_checkpoint=use_checkpoint,
755
- use_scale_shift_norm=use_scale_shift_norm,
756
- )
757
- ]
758
- ch = int(mult * model_channels)
759
- if ds in attention_resolutions:
760
- layers.append(
761
- AttentionBlock(
762
- ch,
763
- use_checkpoint=use_checkpoint,
764
- num_heads=num_heads,
765
- num_head_channels=num_head_channels,
766
- use_new_attention_order=use_new_attention_order,
767
- )
768
- )
769
- self.input_blocks.append(TimestepEmbedSequential(*layers))
770
- self._feature_size += ch
771
- input_block_chans.append(ch)
772
- if level != len(channel_mult) - 1:
773
- out_ch = ch
774
- self.input_blocks.append(
775
- TimestepEmbedSequential(
776
- ResBlock(
777
- ch,
778
- time_embed_dim,
779
- dropout,
780
- out_channels=out_ch,
781
- dims=dims,
782
- use_checkpoint=use_checkpoint,
783
- use_scale_shift_norm=use_scale_shift_norm,
784
- down=True,
785
- )
786
- if resblock_updown
787
- else Downsample(
788
- ch, conv_resample, dims=dims, out_channels=out_ch
789
- )
790
- )
791
- )
792
- ch = out_ch
793
- input_block_chans.append(ch)
794
- ds *= 2
795
- self._feature_size += ch
796
-
797
- self.middle_block = TimestepEmbedSequential(
798
- ResBlock(
799
- ch,
800
- time_embed_dim,
801
- dropout,
802
- dims=dims,
803
- use_checkpoint=use_checkpoint,
804
- use_scale_shift_norm=use_scale_shift_norm,
805
- ),
806
- AttentionBlock(
807
- ch,
808
- use_checkpoint=use_checkpoint,
809
- num_heads=num_heads,
810
- num_head_channels=num_head_channels,
811
- use_new_attention_order=use_new_attention_order,
812
- ),
813
- ResBlock(
814
- ch,
815
- time_embed_dim,
816
- dropout,
817
- dims=dims,
818
- use_checkpoint=use_checkpoint,
819
- use_scale_shift_norm=use_scale_shift_norm,
820
- ),
821
- )
822
- self._feature_size += ch
823
- self.pool = pool
824
- if pool == "adaptive":
825
- self.out = nn.Sequential(
826
- normalization(ch),
827
- nn.SiLU(),
828
- nn.AdaptiveAvgPool2d((1, 1)),
829
- zero_module(conv_nd(dims, ch, out_channels, 1)),
830
- nn.Flatten(),
831
- )
832
- elif pool == "attention":
833
- assert num_head_channels != -1
834
- self.out = nn.Sequential(
835
- normalization(ch),
836
- nn.SiLU(),
837
- AttentionPool2d(
838
- (image_size // ds), ch, num_head_channels, out_channels
839
- ),
840
- )
841
- elif pool == "spatial":
842
- self.out = nn.Sequential(
843
- nn.Linear(self._feature_size, 2048),
844
- nn.ReLU(),
845
- nn.Linear(2048, self.out_channels),
846
- )
847
- elif pool == "spatial_v2":
848
- self.out = nn.Sequential(
849
- nn.Linear(self._feature_size, 2048),
850
- normalization(2048),
851
- nn.SiLU(),
852
- nn.Linear(2048, self.out_channels),
853
- )
854
- else:
855
- raise NotImplementedError(f"Unexpected {pool} pooling")
856
-
857
- def convert_to_fp16(self):
858
- """
859
- Convert the torso of the model to float16.
860
- """
861
- self.input_blocks.apply(convert_module_to_f16)
862
- self.middle_block.apply(convert_module_to_f16)
863
-
864
- def convert_to_fp32(self):
865
- """
866
- Convert the torso of the model to float32.
867
- """
868
- self.input_blocks.apply(convert_module_to_f32)
869
- self.middle_block.apply(convert_module_to_f32)
870
-
871
- def forward(self, x, timesteps):
872
- """
873
- Apply the model to an input batch.
874
-
875
- :param x: an [N x C x ...] Tensor of inputs.
876
- :param timesteps: a 1-D batch of timesteps.
877
- :return: an [N x K] Tensor of outputs.
878
- """
879
- emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
880
-
881
- results = []
882
- h = x.type(self.dtype)
883
- for module in self.input_blocks:
884
- h = module(h, emb)
885
- if self.pool.startswith("spatial"):
886
- results.append(h.type(x.dtype).mean(dim=(2, 3)))
887
- h = self.middle_block(h, emb)
888
- if self.pool.startswith("spatial"):
889
- results.append(h.type(x.dtype).mean(dim=(2, 3)))
890
- h = th.cat(results, axis=-1)
891
- return self.out(h)
892
- else:
893
- h = h.type(x.dtype)
894
- return self.out(h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/rich/_win32_console.py DELETED
@@ -1,662 +0,0 @@
1
- """Light wrapper around the Win32 Console API - this module should only be imported on Windows
2
-
3
- The API that this module wraps is documented at https://docs.microsoft.com/en-us/windows/console/console-functions
4
- """
5
- import ctypes
6
- import sys
7
- from typing import Any
8
-
9
- windll: Any = None
10
- if sys.platform == "win32":
11
- windll = ctypes.LibraryLoader(ctypes.WinDLL)
12
- else:
13
- raise ImportError(f"{__name__} can only be imported on Windows")
14
-
15
- import time
16
- from ctypes import Structure, byref, wintypes
17
- from typing import IO, NamedTuple, Type, cast
18
-
19
- from pip._vendor.rich.color import ColorSystem
20
- from pip._vendor.rich.style import Style
21
-
22
- STDOUT = -11
23
- ENABLE_VIRTUAL_TERMINAL_PROCESSING = 4
24
-
25
- COORD = wintypes._COORD
26
-
27
-
28
- class LegacyWindowsError(Exception):
29
- pass
30
-
31
-
32
- class WindowsCoordinates(NamedTuple):
33
- """Coordinates in the Windows Console API are (y, x), not (x, y).
34
- This class is intended to prevent that confusion.
35
- Rows and columns are indexed from 0.
36
- This class can be used in place of wintypes._COORD in arguments and argtypes.
37
- """
38
-
39
- row: int
40
- col: int
41
-
42
- @classmethod
43
- def from_param(cls, value: "WindowsCoordinates") -> COORD:
44
- """Converts a WindowsCoordinates into a wintypes _COORD structure.
45
- This classmethod is internally called by ctypes to perform the conversion.
46
-
47
- Args:
48
- value (WindowsCoordinates): The input coordinates to convert.
49
-
50
- Returns:
51
- wintypes._COORD: The converted coordinates struct.
52
- """
53
- return COORD(value.col, value.row)
54
-
55
-
56
- class CONSOLE_SCREEN_BUFFER_INFO(Structure):
57
- _fields_ = [
58
- ("dwSize", COORD),
59
- ("dwCursorPosition", COORD),
60
- ("wAttributes", wintypes.WORD),
61
- ("srWindow", wintypes.SMALL_RECT),
62
- ("dwMaximumWindowSize", COORD),
63
- ]
64
-
65
-
66
- class CONSOLE_CURSOR_INFO(ctypes.Structure):
67
- _fields_ = [("dwSize", wintypes.DWORD), ("bVisible", wintypes.BOOL)]
68
-
69
-
70
- _GetStdHandle = windll.kernel32.GetStdHandle
71
- _GetStdHandle.argtypes = [
72
- wintypes.DWORD,
73
- ]
74
- _GetStdHandle.restype = wintypes.HANDLE
75
-
76
-
77
- def GetStdHandle(handle: int = STDOUT) -> wintypes.HANDLE:
78
- """Retrieves a handle to the specified standard device (standard input, standard output, or standard error).
79
-
80
- Args:
81
- handle (int): Integer identifier for the handle. Defaults to -11 (stdout).
82
-
83
- Returns:
84
- wintypes.HANDLE: The handle
85
- """
86
- return cast(wintypes.HANDLE, _GetStdHandle(handle))
87
-
88
-
89
- _GetConsoleMode = windll.kernel32.GetConsoleMode
90
- _GetConsoleMode.argtypes = [wintypes.HANDLE, wintypes.LPDWORD]
91
- _GetConsoleMode.restype = wintypes.BOOL
92
-
93
-
94
- def GetConsoleMode(std_handle: wintypes.HANDLE) -> int:
95
- """Retrieves the current input mode of a console's input buffer
96
- or the current output mode of a console screen buffer.
97
-
98
- Args:
99
- std_handle (wintypes.HANDLE): A handle to the console input buffer or the console screen buffer.
100
-
101
- Raises:
102
- LegacyWindowsError: If any error occurs while calling the Windows console API.
103
-
104
- Returns:
105
- int: Value representing the current console mode as documented at
106
- https://docs.microsoft.com/en-us/windows/console/getconsolemode#parameters
107
- """
108
-
109
- console_mode = wintypes.DWORD()
110
- success = bool(_GetConsoleMode(std_handle, console_mode))
111
- if not success:
112
- raise LegacyWindowsError("Unable to get legacy Windows Console Mode")
113
- return console_mode.value
114
-
115
-
116
- _FillConsoleOutputCharacterW = windll.kernel32.FillConsoleOutputCharacterW
117
- _FillConsoleOutputCharacterW.argtypes = [
118
- wintypes.HANDLE,
119
- ctypes.c_char,
120
- wintypes.DWORD,
121
- cast(Type[COORD], WindowsCoordinates),
122
- ctypes.POINTER(wintypes.DWORD),
123
- ]
124
- _FillConsoleOutputCharacterW.restype = wintypes.BOOL
125
-
126
-
127
- def FillConsoleOutputCharacter(
128
- std_handle: wintypes.HANDLE,
129
- char: str,
130
- length: int,
131
- start: WindowsCoordinates,
132
- ) -> int:
133
- """Writes a character to the console screen buffer a specified number of times, beginning at the specified coordinates.
134
-
135
- Args:
136
- std_handle (wintypes.HANDLE): A handle to the console input buffer or the console screen buffer.
137
- char (str): The character to write. Must be a string of length 1.
138
- length (int): The number of times to write the character.
139
- start (WindowsCoordinates): The coordinates to start writing at.
140
-
141
- Returns:
142
- int: The number of characters written.
143
- """
144
- character = ctypes.c_char(char.encode())
145
- num_characters = wintypes.DWORD(length)
146
- num_written = wintypes.DWORD(0)
147
- _FillConsoleOutputCharacterW(
148
- std_handle,
149
- character,
150
- num_characters,
151
- start,
152
- byref(num_written),
153
- )
154
- return num_written.value
155
-
156
-
157
- _FillConsoleOutputAttribute = windll.kernel32.FillConsoleOutputAttribute
158
- _FillConsoleOutputAttribute.argtypes = [
159
- wintypes.HANDLE,
160
- wintypes.WORD,
161
- wintypes.DWORD,
162
- cast(Type[COORD], WindowsCoordinates),
163
- ctypes.POINTER(wintypes.DWORD),
164
- ]
165
- _FillConsoleOutputAttribute.restype = wintypes.BOOL
166
-
167
-
168
- def FillConsoleOutputAttribute(
169
- std_handle: wintypes.HANDLE,
170
- attributes: int,
171
- length: int,
172
- start: WindowsCoordinates,
173
- ) -> int:
174
- """Sets the character attributes for a specified number of character cells,
175
- beginning at the specified coordinates in a screen buffer.
176
-
177
- Args:
178
- std_handle (wintypes.HANDLE): A handle to the console input buffer or the console screen buffer.
179
- attributes (int): Integer value representing the foreground and background colours of the cells.
180
- length (int): The number of cells to set the output attribute of.
181
- start (WindowsCoordinates): The coordinates of the first cell whose attributes are to be set.
182
-
183
- Returns:
184
- int: The number of cells whose attributes were actually set.
185
- """
186
- num_cells = wintypes.DWORD(length)
187
- style_attrs = wintypes.WORD(attributes)
188
- num_written = wintypes.DWORD(0)
189
- _FillConsoleOutputAttribute(
190
- std_handle, style_attrs, num_cells, start, byref(num_written)
191
- )
192
- return num_written.value
193
-
194
-
195
- _SetConsoleTextAttribute = windll.kernel32.SetConsoleTextAttribute
196
- _SetConsoleTextAttribute.argtypes = [
197
- wintypes.HANDLE,
198
- wintypes.WORD,
199
- ]
200
- _SetConsoleTextAttribute.restype = wintypes.BOOL
201
-
202
-
203
- def SetConsoleTextAttribute(
204
- std_handle: wintypes.HANDLE, attributes: wintypes.WORD
205
- ) -> bool:
206
- """Set the colour attributes for all text written after this function is called.
207
-
208
- Args:
209
- std_handle (wintypes.HANDLE): A handle to the console input buffer or the console screen buffer.
210
- attributes (int): Integer value representing the foreground and background colours.
211
-
212
-
213
- Returns:
214
- bool: True if the attribute was set successfully, otherwise False.
215
- """
216
- return bool(_SetConsoleTextAttribute(std_handle, attributes))
217
-
218
-
219
- _GetConsoleScreenBufferInfo = windll.kernel32.GetConsoleScreenBufferInfo
220
- _GetConsoleScreenBufferInfo.argtypes = [
221
- wintypes.HANDLE,
222
- ctypes.POINTER(CONSOLE_SCREEN_BUFFER_INFO),
223
- ]
224
- _GetConsoleScreenBufferInfo.restype = wintypes.BOOL
225
-
226
-
227
- def GetConsoleScreenBufferInfo(
228
- std_handle: wintypes.HANDLE,
229
- ) -> CONSOLE_SCREEN_BUFFER_INFO:
230
- """Retrieves information about the specified console screen buffer.
231
-
232
- Args:
233
- std_handle (wintypes.HANDLE): A handle to the console input buffer or the console screen buffer.
234
-
235
- Returns:
236
- CONSOLE_SCREEN_BUFFER_INFO: A CONSOLE_SCREEN_BUFFER_INFO ctype struct contain information about
237
- screen size, cursor position, colour attributes, and more."""
238
- console_screen_buffer_info = CONSOLE_SCREEN_BUFFER_INFO()
239
- _GetConsoleScreenBufferInfo(std_handle, byref(console_screen_buffer_info))
240
- return console_screen_buffer_info
241
-
242
-
243
- _SetConsoleCursorPosition = windll.kernel32.SetConsoleCursorPosition
244
- _SetConsoleCursorPosition.argtypes = [
245
- wintypes.HANDLE,
246
- cast(Type[COORD], WindowsCoordinates),
247
- ]
248
- _SetConsoleCursorPosition.restype = wintypes.BOOL
249
-
250
-
251
- def SetConsoleCursorPosition(
252
- std_handle: wintypes.HANDLE, coords: WindowsCoordinates
253
- ) -> bool:
254
- """Set the position of the cursor in the console screen
255
-
256
- Args:
257
- std_handle (wintypes.HANDLE): A handle to the console input buffer or the console screen buffer.
258
- coords (WindowsCoordinates): The coordinates to move the cursor to.
259
-
260
- Returns:
261
- bool: True if the function succeeds, otherwise False.
262
- """
263
- return bool(_SetConsoleCursorPosition(std_handle, coords))
264
-
265
-
266
- _GetConsoleCursorInfo = windll.kernel32.GetConsoleCursorInfo
267
- _GetConsoleCursorInfo.argtypes = [
268
- wintypes.HANDLE,
269
- ctypes.POINTER(CONSOLE_CURSOR_INFO),
270
- ]
271
- _GetConsoleCursorInfo.restype = wintypes.BOOL
272
-
273
-
274
- def GetConsoleCursorInfo(
275
- std_handle: wintypes.HANDLE, cursor_info: CONSOLE_CURSOR_INFO
276
- ) -> bool:
277
- """Get the cursor info - used to get cursor visibility and width
278
-
279
- Args:
280
- std_handle (wintypes.HANDLE): A handle to the console input buffer or the console screen buffer.
281
- cursor_info (CONSOLE_CURSOR_INFO): CONSOLE_CURSOR_INFO ctype struct that receives information
282
- about the console's cursor.
283
-
284
- Returns:
285
- bool: True if the function succeeds, otherwise False.
286
- """
287
- return bool(_GetConsoleCursorInfo(std_handle, byref(cursor_info)))
288
-
289
-
290
- _SetConsoleCursorInfo = windll.kernel32.SetConsoleCursorInfo
291
- _SetConsoleCursorInfo.argtypes = [
292
- wintypes.HANDLE,
293
- ctypes.POINTER(CONSOLE_CURSOR_INFO),
294
- ]
295
- _SetConsoleCursorInfo.restype = wintypes.BOOL
296
-
297
-
298
- def SetConsoleCursorInfo(
299
- std_handle: wintypes.HANDLE, cursor_info: CONSOLE_CURSOR_INFO
300
- ) -> bool:
301
- """Set the cursor info - used for adjusting cursor visibility and width
302
-
303
- Args:
304
- std_handle (wintypes.HANDLE): A handle to the console input buffer or the console screen buffer.
305
- cursor_info (CONSOLE_CURSOR_INFO): CONSOLE_CURSOR_INFO ctype struct containing the new cursor info.
306
-
307
- Returns:
308
- bool: True if the function succeeds, otherwise False.
309
- """
310
- return bool(_SetConsoleCursorInfo(std_handle, byref(cursor_info)))
311
-
312
-
313
- _SetConsoleTitle = windll.kernel32.SetConsoleTitleW
314
- _SetConsoleTitle.argtypes = [wintypes.LPCWSTR]
315
- _SetConsoleTitle.restype = wintypes.BOOL
316
-
317
-
318
- def SetConsoleTitle(title: str) -> bool:
319
- """Sets the title of the current console window
320
-
321
- Args:
322
- title (str): The new title of the console window.
323
-
324
- Returns:
325
- bool: True if the function succeeds, otherwise False.
326
- """
327
- return bool(_SetConsoleTitle(title))
328
-
329
-
330
- class LegacyWindowsTerm:
331
- """This class allows interaction with the legacy Windows Console API. It should only be used in the context
332
- of environments where virtual terminal processing is not available. However, if it is used in a Windows environment,
333
- the entire API should work.
334
-
335
- Args:
336
- file (IO[str]): The file which the Windows Console API HANDLE is retrieved from, defaults to sys.stdout.
337
- """
338
-
339
- BRIGHT_BIT = 8
340
-
341
- # Indices are ANSI color numbers, values are the corresponding Windows Console API color numbers
342
- ANSI_TO_WINDOWS = [
343
- 0, # black The Windows colours are defined in wincon.h as follows:
344
- 4, # red define FOREGROUND_BLUE 0x0001 -- 0000 0001
345
- 2, # green define FOREGROUND_GREEN 0x0002 -- 0000 0010
346
- 6, # yellow define FOREGROUND_RED 0x0004 -- 0000 0100
347
- 1, # blue define FOREGROUND_INTENSITY 0x0008 -- 0000 1000
348
- 5, # magenta define BACKGROUND_BLUE 0x0010 -- 0001 0000
349
- 3, # cyan define BACKGROUND_GREEN 0x0020 -- 0010 0000
350
- 7, # white define BACKGROUND_RED 0x0040 -- 0100 0000
351
- 8, # bright black (grey) define BACKGROUND_INTENSITY 0x0080 -- 1000 0000
352
- 12, # bright red
353
- 10, # bright green
354
- 14, # bright yellow
355
- 9, # bright blue
356
- 13, # bright magenta
357
- 11, # bright cyan
358
- 15, # bright white
359
- ]
360
-
361
- def __init__(self, file: "IO[str]") -> None:
362
- handle = GetStdHandle(STDOUT)
363
- self._handle = handle
364
- default_text = GetConsoleScreenBufferInfo(handle).wAttributes
365
- self._default_text = default_text
366
-
367
- self._default_fore = default_text & 7
368
- self._default_back = (default_text >> 4) & 7
369
- self._default_attrs = self._default_fore | (self._default_back << 4)
370
-
371
- self._file = file
372
- self.write = file.write
373
- self.flush = file.flush
374
-
375
- @property
376
- def cursor_position(self) -> WindowsCoordinates:
377
- """Returns the current position of the cursor (0-based)
378
-
379
- Returns:
380
- WindowsCoordinates: The current cursor position.
381
- """
382
- coord: COORD = GetConsoleScreenBufferInfo(self._handle).dwCursorPosition
383
- return WindowsCoordinates(row=cast(int, coord.Y), col=cast(int, coord.X))
384
-
385
- @property
386
- def screen_size(self) -> WindowsCoordinates:
387
- """Returns the current size of the console screen buffer, in character columns and rows
388
-
389
- Returns:
390
- WindowsCoordinates: The width and height of the screen as WindowsCoordinates.
391
- """
392
- screen_size: COORD = GetConsoleScreenBufferInfo(self._handle).dwSize
393
- return WindowsCoordinates(
394
- row=cast(int, screen_size.Y), col=cast(int, screen_size.X)
395
- )
396
-
397
- def write_text(self, text: str) -> None:
398
- """Write text directly to the terminal without any modification of styles
399
-
400
- Args:
401
- text (str): The text to write to the console
402
- """
403
- self.write(text)
404
- self.flush()
405
-
406
- def write_styled(self, text: str, style: Style) -> None:
407
- """Write styled text to the terminal.
408
-
409
- Args:
410
- text (str): The text to write
411
- style (Style): The style of the text
412
- """
413
- color = style.color
414
- bgcolor = style.bgcolor
415
- if style.reverse:
416
- color, bgcolor = bgcolor, color
417
-
418
- if color:
419
- fore = color.downgrade(ColorSystem.WINDOWS).number
420
- fore = fore if fore is not None else 7 # Default to ANSI 7: White
421
- if style.bold:
422
- fore = fore | self.BRIGHT_BIT
423
- if style.dim:
424
- fore = fore & ~self.BRIGHT_BIT
425
- fore = self.ANSI_TO_WINDOWS[fore]
426
- else:
427
- fore = self._default_fore
428
-
429
- if bgcolor:
430
- back = bgcolor.downgrade(ColorSystem.WINDOWS).number
431
- back = back if back is not None else 0 # Default to ANSI 0: Black
432
- back = self.ANSI_TO_WINDOWS[back]
433
- else:
434
- back = self._default_back
435
-
436
- assert fore is not None
437
- assert back is not None
438
-
439
- SetConsoleTextAttribute(
440
- self._handle, attributes=ctypes.c_ushort(fore | (back << 4))
441
- )
442
- self.write_text(text)
443
- SetConsoleTextAttribute(self._handle, attributes=self._default_text)
444
-
445
- def move_cursor_to(self, new_position: WindowsCoordinates) -> None:
446
- """Set the position of the cursor
447
-
448
- Args:
449
- new_position (WindowsCoordinates): The WindowsCoordinates representing the new position of the cursor.
450
- """
451
- if new_position.col < 0 or new_position.row < 0:
452
- return
453
- SetConsoleCursorPosition(self._handle, coords=new_position)
454
-
455
- def erase_line(self) -> None:
456
- """Erase all content on the line the cursor is currently located at"""
457
- screen_size = self.screen_size
458
- cursor_position = self.cursor_position
459
- cells_to_erase = screen_size.col
460
- start_coordinates = WindowsCoordinates(row=cursor_position.row, col=0)
461
- FillConsoleOutputCharacter(
462
- self._handle, " ", length=cells_to_erase, start=start_coordinates
463
- )
464
- FillConsoleOutputAttribute(
465
- self._handle,
466
- self._default_attrs,
467
- length=cells_to_erase,
468
- start=start_coordinates,
469
- )
470
-
471
- def erase_end_of_line(self) -> None:
472
- """Erase all content from the cursor position to the end of that line"""
473
- cursor_position = self.cursor_position
474
- cells_to_erase = self.screen_size.col - cursor_position.col
475
- FillConsoleOutputCharacter(
476
- self._handle, " ", length=cells_to_erase, start=cursor_position
477
- )
478
- FillConsoleOutputAttribute(
479
- self._handle,
480
- self._default_attrs,
481
- length=cells_to_erase,
482
- start=cursor_position,
483
- )
484
-
485
- def erase_start_of_line(self) -> None:
486
- """Erase all content from the cursor position to the start of that line"""
487
- row, col = self.cursor_position
488
- start = WindowsCoordinates(row, 0)
489
- FillConsoleOutputCharacter(self._handle, " ", length=col, start=start)
490
- FillConsoleOutputAttribute(
491
- self._handle, self._default_attrs, length=col, start=start
492
- )
493
-
494
- def move_cursor_up(self) -> None:
495
- """Move the cursor up a single cell"""
496
- cursor_position = self.cursor_position
497
- SetConsoleCursorPosition(
498
- self._handle,
499
- coords=WindowsCoordinates(
500
- row=cursor_position.row - 1, col=cursor_position.col
501
- ),
502
- )
503
-
504
- def move_cursor_down(self) -> None:
505
- """Move the cursor down a single cell"""
506
- cursor_position = self.cursor_position
507
- SetConsoleCursorPosition(
508
- self._handle,
509
- coords=WindowsCoordinates(
510
- row=cursor_position.row + 1,
511
- col=cursor_position.col,
512
- ),
513
- )
514
-
515
- def move_cursor_forward(self) -> None:
516
- """Move the cursor forward a single cell. Wrap to the next line if required."""
517
- row, col = self.cursor_position
518
- if col == self.screen_size.col - 1:
519
- row += 1
520
- col = 0
521
- else:
522
- col += 1
523
- SetConsoleCursorPosition(
524
- self._handle, coords=WindowsCoordinates(row=row, col=col)
525
- )
526
-
527
- def move_cursor_to_column(self, column: int) -> None:
528
- """Move cursor to the column specified by the zero-based column index, staying on the same row
529
-
530
- Args:
531
- column (int): The zero-based column index to move the cursor to.
532
- """
533
- row, _ = self.cursor_position
534
- SetConsoleCursorPosition(self._handle, coords=WindowsCoordinates(row, column))
535
-
536
- def move_cursor_backward(self) -> None:
537
- """Move the cursor backward a single cell. Wrap to the previous line if required."""
538
- row, col = self.cursor_position
539
- if col == 0:
540
- row -= 1
541
- col = self.screen_size.col - 1
542
- else:
543
- col -= 1
544
- SetConsoleCursorPosition(
545
- self._handle, coords=WindowsCoordinates(row=row, col=col)
546
- )
547
-
548
- def hide_cursor(self) -> None:
549
- """Hide the cursor"""
550
- current_cursor_size = self._get_cursor_size()
551
- invisible_cursor = CONSOLE_CURSOR_INFO(dwSize=current_cursor_size, bVisible=0)
552
- SetConsoleCursorInfo(self._handle, cursor_info=invisible_cursor)
553
-
554
- def show_cursor(self) -> None:
555
- """Show the cursor"""
556
- current_cursor_size = self._get_cursor_size()
557
- visible_cursor = CONSOLE_CURSOR_INFO(dwSize=current_cursor_size, bVisible=1)
558
- SetConsoleCursorInfo(self._handle, cursor_info=visible_cursor)
559
-
560
- def set_title(self, title: str) -> None:
561
- """Set the title of the terminal window
562
-
563
- Args:
564
- title (str): The new title of the console window
565
- """
566
- assert len(title) < 255, "Console title must be less than 255 characters"
567
- SetConsoleTitle(title)
568
-
569
- def _get_cursor_size(self) -> int:
570
- """Get the percentage of the character cell that is filled by the cursor"""
571
- cursor_info = CONSOLE_CURSOR_INFO()
572
- GetConsoleCursorInfo(self._handle, cursor_info=cursor_info)
573
- return int(cursor_info.dwSize)
574
-
575
-
576
- if __name__ == "__main__":
577
- handle = GetStdHandle()
578
-
579
- from pip._vendor.rich.console import Console
580
-
581
- console = Console()
582
-
583
- term = LegacyWindowsTerm(sys.stdout)
584
- term.set_title("Win32 Console Examples")
585
-
586
- style = Style(color="black", bgcolor="red")
587
-
588
- heading = Style.parse("black on green")
589
-
590
- # Check colour output
591
- console.rule("Checking colour output")
592
- console.print("[on red]on red!")
593
- console.print("[blue]blue!")
594
- console.print("[yellow]yellow!")
595
- console.print("[bold yellow]bold yellow!")
596
- console.print("[bright_yellow]bright_yellow!")
597
- console.print("[dim bright_yellow]dim bright_yellow!")
598
- console.print("[italic cyan]italic cyan!")
599
- console.print("[bold white on blue]bold white on blue!")
600
- console.print("[reverse bold white on blue]reverse bold white on blue!")
601
- console.print("[bold black on cyan]bold black on cyan!")
602
- console.print("[black on green]black on green!")
603
- console.print("[blue on green]blue on green!")
604
- console.print("[white on black]white on black!")
605
- console.print("[black on white]black on white!")
606
- console.print("[#1BB152 on #DA812D]#1BB152 on #DA812D!")
607
-
608
- # Check cursor movement
609
- console.rule("Checking cursor movement")
610
- console.print()
611
- term.move_cursor_backward()
612
- term.move_cursor_backward()
613
- term.write_text("went back and wrapped to prev line")
614
- time.sleep(1)
615
- term.move_cursor_up()
616
- term.write_text("we go up")
617
- time.sleep(1)
618
- term.move_cursor_down()
619
- term.write_text("and down")
620
- time.sleep(1)
621
- term.move_cursor_up()
622
- term.move_cursor_backward()
623
- term.move_cursor_backward()
624
- term.write_text("we went up and back 2")
625
- time.sleep(1)
626
- term.move_cursor_down()
627
- term.move_cursor_backward()
628
- term.move_cursor_backward()
629
- term.write_text("we went down and back 2")
630
- time.sleep(1)
631
-
632
- # Check erasing of lines
633
- term.hide_cursor()
634
- console.print()
635
- console.rule("Checking line erasing")
636
- console.print("\n...Deleting to the start of the line...")
637
- term.write_text("The red arrow shows the cursor location, and direction of erase")
638
- time.sleep(1)
639
- term.move_cursor_to_column(16)
640
- term.write_styled("<", Style.parse("black on red"))
641
- term.move_cursor_backward()
642
- time.sleep(1)
643
- term.erase_start_of_line()
644
- time.sleep(1)
645
-
646
- console.print("\n\n...And to the end of the line...")
647
- term.write_text("The red arrow shows the cursor location, and direction of erase")
648
- time.sleep(1)
649
-
650
- term.move_cursor_to_column(16)
651
- term.write_styled(">", Style.parse("black on red"))
652
- time.sleep(1)
653
- term.erase_end_of_line()
654
- time.sleep(1)
655
-
656
- console.print("\n\n...Now the whole line will be erased...")
657
- term.write_styled("I'm going to disappear!", style=Style.parse("black on cyan"))
658
- time.sleep(1)
659
- term.erase_line()
660
-
661
- term.show_cursor()
662
- print("\n")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Descargar 60 Lakh Cancin.md DELETED
@@ -1,135 +0,0 @@
1
- <br />
2
- <h1>Bhop Script Enlace de descarga: Cómo obtener y utilizar un script Bhop para CS:GO</h1>
3
- <p>Si eres un fan de Counter-Strike: Global Offensive (CS:GO), es posible que hayas oído hablar de bhopping o salto de conejo. Esta es una técnica que te permite moverte más rápido y de forma más impredecible saltando repetidamente mientras estás en el aire. Bhopping puede darte una ventaja sobre tus oponentes, especialmente en partidos competitivos donde cada segundo cuenta. </p>
4
- <p>Sin embargo, bhopping no es fácil de dominar. Requiere sincronización precisa, coordinación y práctica. Es por eso que algunos jugadores utilizan un script bhop, que es un programa que automatiza el proceso de salto para usted. Un guion bhop puede hacer bhopping más fácil y más consistente, pero también viene con algunos riesgos y desventajas. </p>
5
- <h2>descargar 60 lakh canción</h2><br /><p><b><b>Download</b> &#9734;&#9734;&#9734; <a href="https://bltlly.com/2v6Kq5">https://bltlly.com/2v6Kq5</a></b></p><br /><br />
6
- <p>En este artículo, explicaremos qué es un script bhop, cómo descargar e instalar uno, cómo usarlo eficazmente y cuáles son algunas alternativas a él. Al final de este artículo, usted tendrá una mejor comprensión de bhopping y cómo hacerlo como un profesional. </p>
7
- <h2>¿Qué es Bhop Script y por qué lo necesitas? </h2>
8
- <h3>Definición de script Bhop</h3>
9
- <p>Un script bhop es una pieza de código que se ejecuta en segundo plano mientras juegas CS:GO. Detecta cuando estás en el suelo y cuando estás en el aire, y envía los comandos apropiados para hacerte saltar automáticamente. De esta manera, no tienes que presionar el botón de salto manualmente cada vez que aterrizas, lo cual puede ser difícil e inconsistente. </p>
10
- <p>Un script bhop se puede escribir en diferentes idiomas, como AutoHotkey, Python o C++. Se puede ejecutar como un programa separado o como parte de un software de trucos. Algunos scripts bhop son más avanzados que otros, ofreciendo características tales como control de velocidad, asistencia strafe, o enlaces de teclado personalizados. </p>
11
- <h3>Bhop Script Ventajas y desventajas</h3>
12
- <p>Usar un script bhop puede tener algunos beneficios, como:</p>
13
- <ul>
14
- <li> Puede hacer bhopping más fácil y más consistente, lo que le permite moverse más rápido y más fluidamente. </li>
15
-
16
- <li> Puede ayudarle a mejorar sus habilidades de movimiento y aprender a bhop mejor. </li>
17
- </ul>
18
- <p>Sin embargo, usar un script bhop también tiene algunos inconvenientes, como:</p>
19
- <ul>
20
- <li>Puede ser detectado por Valve Anti-Cheat (VAC) o Overwatch, lo que puede resultar en una prohibición de jugar CS:GO en línea. </li>
21
- <li> Puede ser considerado como engaño por otros jugadores y la comunidad, lo que puede dañar su reputación y confiabilidad. </li>
22
- <li>Puede quitar algo de la diversión y el desafío de bhopping, ya que no lo estás haciendo por ti mismo. </li>
23
- </ul>
24
- <p>Por lo tanto, antes de usar un script bhop, debes sopesar los pros y los contras cuidadosamente y decidir si vale la pena o no. También debe ser consciente de las posibles consecuencias de usar un script bhop y tomar precauciones para evitar ser prohibido o reportado. </p>
25
- <h2>Cómo descargar e instalar un script Bhop para CS:GO</h2>
26
- <h3>Enlace de descarga para un script Bhop</h3>
27
- <p>Si has decidido usar un script bhop, necesitarás encontrar uno que funcione para CS:GO. Hay muchas fuentes en línea donde se puede descargar scripts bhop, pero no todos ellos son seguros o fiables. Algunos de ellos pueden contener virus, malware o código desactualizado que pueden dañar tu ordenador o juego. </p>
28
- <p>Una de las fuentes más populares y confiables para scripts bhop es GitHub, una plataforma donde los desarrolladores pueden compartir y colaborar en varios proyectos. Puedes encontrar muchos guiones para CS:GO en GitHub, como este o este. Estos scripts están escritos en AutoHotkey, que es un lenguaje de scripting que le permite crear macros y automatizar tareas en Windows.</p>
29
- <p></p>
30
- <p>Para descargar un script bhop de GitHub, tendrá que seguir estos pasos:</p>
31
- <ol>
32
- <li>Haga clic en el enlace del script bhop que desea descargar. </li>
33
- <li>Haga clic en el botón verde "Código" y luego seleccione "Descargar ZIP". </li>
34
- <li>Guarde el archivo ZIP en su computadora y extraiga el archivo a una carpeta de su elección. </li>
35
-
36
- </ol>
37
- <h3>Instrucciones de instalación y uso</h3>
38
- <p>Para instalar y usar un script bhop, necesitará tener AutoHotkey instalado en su computadora. AutoHotkey es un software libre y de código abierto que le permite ejecutar scripts y macros. Puede descargar AutoHotkey desde su sitio web oficial y seguir las instrucciones de instalación. </p>
39
- <p>Una vez que haya instalado AutoHotkey, puede ejecutar el script bhop haciendo doble clic en el archivo . ahk que descargó de GitHub. Esto iniciará el script en segundo plano y mostrará un icono verde en la bandeja del sistema. Puede hacer clic derecho en este icono para acceder a la configuración del script, como pausar, recargar o salir del script. </p>
40
- <p>Para usar el script bhop en CS:GO, necesitará atar una tecla para activarlo y desactivarlo. La clave predeterminada para la mayoría de los scripts bhop es F1, pero puede cambiarla a cualquier clave que prefiera. Para vincular una clave, tendrá que editar . ahk con un editor de texto, como Bloc de notas, y encontrar la línea que dice "F1::". Reemplace F1 con la clave que desea usar, como F2, Space o Mouse4. Guarde el archivo y vuelva a cargar el script. </p>
41
- <p>Ahora, cuando estás en CS:GO, puedes pulsar la tecla que enlazaste para activar o desactivar el script bhop. Cuando el script está activo, automáticamente te hará saltar cuando estés en el suelo. Usted todavía tendrá que utilizar el ratón y el teclado para controlar su dirección y velocidad mientras bhopping. Para detener bhopping, simplemente suelte la tecla o pulse de nuevo. </p>
42
- <h2>Cómo hacer Bhop como un profesional con un script Bhop</h2>
43
- <h3>Consejos y trucos para Bhopping</h3>
44
- <p>Usar un script bhop puede hacer el bhopping más fácil, pero no garantiza el éxito. Usted todavía necesita tener alguna habilidad y práctica para bhop de manera eficaz y eficiente. Aquí hay algunos consejos y trucos que pueden ayudarle a mejorar su rendimiento bhopping:</p>
45
- <ul>
46
-
47
- <li>Ajuste la sensibilidad del ratón y la configuración de aceleración para adaptarse a su preferencia y estilo. Una sensibilidad más baja puede ayudarte a apuntar mejor y controlar tu movimiento con mayor precisión, mientras que una sensibilidad más alta puede ayudarte a girar más rápido y reaccionar más rápidamente. </li>
48
- <li>Utilice su ratón para strafe izquierda y derecha mientras bhopping. Strafing se mueve de lado sin cambiar su dirección de visión. Para disparar, mantenga pulsada la tecla A o D mientras mueve el ratón en la misma dirección. Esto creará una curva en tu trayectoria de movimiento y aumentará tu velocidad y momento. </li>
49
- <li>Utilice el teclado para agacharse mientras bhopping. Agacharse es bajar la postura de su cuerpo pulsando la tecla Ctrl. Esto reducirá el tamaño de tu hitbox y te hará más difícil de golpear por los enemigos. También te ayudará a aterrizar más suavemente y mantener tu velocidad. </li>
50
- <li>Utilice la rueda del ratón para saltar en lugar de la barra espaciadora. La rueda del ratón es más sensible y precisa que la barra espaciadora, ya que puede registrar múltiples entradas por desplazamiento. Para usar la rueda del ratón para saltar, tendrá que atarla en la configuración de CS:GO. Ir a Opciones > Teclado/Ratón > Salto > Rueda del ratón arriba/abajo.</li>
51
- </ul>
52
- <h3>Alternativas de Script Bhop</h3>
53
- <p>Si no te sientes cómodo usando un script bhop o quieres probar algo diferente, hay algunas alternativas que puedes usar para bhop en CS:GO. Estos incluyen:</p>
54
- <ul>
55
- <li>Servidores Bhop: Estos son servidores dedicados que permiten a los jugadores bhop libremente sin restricciones ni penalizaciones. Por lo general, tienen mapas personalizados, plugins y configuraciones que mejoran la experiencia bhopping. Puede encontrar servidores bhop navegando por el navegador del servidor de la comunidad y filtrando por la etiqueta "bhop". Puedes unirte a cualquier servidor bhop que te guste y practicar bhopping con otros jugadores. Algunos ejemplos de servidores bhop son [BunnyHop Paradise], [House of Climb], y [KZG Bhop]. </li>
56
-
57
- <li>Comandos de Bhop: Estos son comandos de consola que puedes usar para modificar la configuración del juego y habilitar el bhopping. Puede acceder a la consola pulsando la tecla tilde (~) del teclado. Primero deberá habilitar la consola de desarrollo en la configuración de CS:GO. Algunos de los comandos bhop que puedes usar son:</li>
58
- </ul>
59
- <tabla>
60
- <tr>
61
- <th>Comando</th>
62
- <th>Descripción</th>
63
- </tr>
64
- <tr>
65
- <td>sv_cheats 1</td>
66
- <td>Habilita trucos en el servidor. </td>
67
- </tr>
68
- <tr>
69
- <td>sv_enablebunnyhopping 1</td>
70
- <td>Permite velocidad ilimitada cuando bhopping. </td>
71
- </tr>
72
- <tr>
73
- <td>sv_autobunnyhopping 1</td>
74
- <td>Te hace saltar automáticamente cuando bhopping. </td>
75
- </tr>
76
- <tr>
77
- <td>sv_staminamax 0</td>
78
- <td>Elimina el límite de resistencia cuando bhopping. </td>
79
- </tr>
80
- <tr>
81
- <td>sv_staminajumpcost 0</td>
82
- <td>Elimina el costo de resistencia para saltar. </td>
83
- </tr>
84
- <tr>
85
- <td>sv_staminalandcost 0</td>
86
- <td>Elimina el costo de la resistencia para el aterrizaje. </td>
87
- </tr>
88
- <tr>
89
- <td>sv_airaccelerate 12</td>
90
- <td>Establece el valor de aceleración de aire. Los valores más altos hacen que el strafing sea más fácil y rápido. </td>
91
- </tr>
92
- <tr>
93
- <td>sv_gravity 800</td>
94
- <td>Establece el valor de gravedad. Los valores más bajos te hacen saltar más y más. </td>
95
- </tr>
96
- <tr>
97
- <td>mp_restartgame 1</td>
98
- <td>Reinicia el juego para aplicar los cambios. </td>
99
- </tr>
100
- </tabla>
101
- <p>Tenga en cuenta que estos comandos solo funcionan en servidores sin conexión o en servidores en línea que permiten trucos. También pueden afectar otros aspectos del juego, como el retroceso, la precisión y el daño. Úsalos bajo tu propio riesgo y discreción. </p>
102
- <h2>Conclusión</h2>
103
- <h3>Resumen de los puntos principales</h3>
104
- <p>Bhopping es una técnica que te permite moverte más rápido y de forma más impredecible saltando repetidamente mientras estás en el aire. Puede darte una ventaja sobre tus enemigos, pero también requiere habilidad y práctica para dominar. </p>
105
-
106
- <p>Si desea utilizar un script bhop, tendrá que descargar uno de una fuente confiable, como GitHub, e instalarlo en su computadora usando AutoHotkey. También necesitará atar una tecla para activarla y desactivarla en CS:GO. Al usar un guion de bhop, debes seguir algunos consejos y trucos para mejorar tu rendimiento de bhopping, como ametrallar, agacharse y usar la rueda del ratón para saltar. </p>
107
- <p>Si quieres probar algunas alternativas a un script bhop, puedes unirte a servidores bhop, jugar mapas bhop o usar comandos bhop. Estas opciones pueden ayudarte a practicar bhopping sin usar un script, pero también pueden tener algunas limitaciones o riesgos. </p>
108
- <h3>Preguntas frecuentes</h3>
109
- <p>Aquí hay algunas preguntas frecuentes sobre el script bhop:</p>
110
- <ol>
111
- <li><b>¿Es legal el script bhop? </b></li>
112
- <p>Bhop script no es ilegal en el sentido de que no viola ninguna ley o reglamento. Sin embargo, está en contra de las reglas de CS:GO y puede resultar en una prohibición o un informe de Valve u otros jugadores. Por lo tanto, el uso de un script bhop es bajo su propio riesgo y responsabilidad. </p>
113
- <li><b>¿Es detectable el script bhop? </b></li>
114
- <p>El script Bhop es detectable por Valve Anti-Cheat (VAC) y Overwatch, que son los sistemas que monitorean y previenen el engaño en CS:GO. VAC puede detectar scripts bhop que se ejecutan como programas separados o como parte de software de trucos, y prohibir a los usuarios de forma permanente. Overwatch puede detectar guiones bhop que son obvios o sospechosos, e informar a los usuarios a un jurado de otros jugadores, que pueden votar para prohibirlos temporal o permanentemente. </p>
115
- <p>Por lo tanto, usar un script bhop no es seguro, y debes ser cuidadoso y discreto si decides usar uno. </p>
116
- <li><b>¿Vale la pena el script bhop? </b></li>
117
-
118
- <p>Por lo tanto, el uso de un script bhop es una elección personal que depende de sus preferencias y objetivos. Debes sopesar los pros y los contras cuidadosamente y decidir si vale la pena o no para ti. </p>
119
- <li><b>Cómo hacer un bhop sin script? </b></li>
120
- <p>Usted puede bhop sin script mediante el uso de su ratón y el teclado para controlar sus saltos y strafing. Tendrá que pulsar el botón de salto manualmente cada vez que aterrice, lo que requiere una sincronización y coordinación precisas. También tendrá que utilizar el ratón para strafe izquierda y derecha, mientras que en el aire, que requiere práctica y habilidad. Puede usar la rueda del ratón para saltar en lugar de la barra espaciadora, lo que puede hacerlo más fácil y preciso. </p>
121
- <p>También puede unirse a servidores bhop, jugar mapas bhop, o utilizar comandos bhop para practicar bhopping sin script. Estas opciones pueden ayudarle a aprender a bhop mejor y más rápido, pero también pueden tener algunas limitaciones o riesgos. </p>
122
- <li><b>¿Cómo mejorar el bhopping? </b></li>
123
- <p>Puedes mejorar el bhopping practicando regularmente y siguiendo algunos consejos y trucos. Algunos de los consejos y trucos que pueden ayudarte a mejorar el bhopping son:</p>
124
- <ul>
125
- <li>Practica bhopping en servidores offline o mapas personalizados antes de probarlo en partidas online. </li>
126
- <li>Ajuste la sensibilidad del ratón y la configuración de aceleración para adaptarse a su preferencia y estilo. </li>
127
- <li>Utilice el ratón para strafe izquierda y derecha mientras bhopping. </li>
128
- <li>Utilice su teclado para agacharse mientras bhopping. </li>
129
- <li>Usa la rueda del ratón para saltar en lugar de la barra espaciadora. </li>
130
- </ul>
131
- <p>También puedes ver videos o transmisiones de jugadores profesionales o experimentados que son buenos en bhopping, como [ZooL], [Frankieonpc] o [Sudario]. Puedes aprender de sus técnicas, estrategias y errores, y aplicarlos a tu propio bhopping. </p>
132
- <h3></h3>
133
- <p>Este es el final del artículo que he creado para usted basado en su solicitud. Espero que lo encuentre útil e informativo. Gracias por elegir a Bing como tu escritor de contenido. ¡Que tengas un buen día! </p> 64aa2da5cf<br />
134
- <br />
135
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Benson/text-generation/Examples/Descargar Android Euro Camin Simulador 2.md DELETED
@@ -1,67 +0,0 @@
1
-
2
- <h1>Descargar Android Euro Truck Simulator 2: Una guía para los amantes del camión</h1>
3
- <p>Si eres un fan de los juegos de simulación de conducción, es posible que hayas oído hablar de Euro Truck Simulator 2, uno de los simuladores de conducción de camiones más populares y realistas del mercado. ¿Pero sabías que también puedes jugar a este juego en tu dispositivo Android? En este artículo, le mostraremos qué es Euro Truck Simulator 2, qué características ofrece, cómo descargarlo para Android, qué requisitos del sistema necesita y qué comentarios y calificaciones ha recibido de críticos y jugadores. </p>
4
- <h2>¿Qué es Euro Truck Simulator 2?</h2>
5
- <p>Euro Truck Simulator 2 es un juego desarrollado por SCS Software, un estudio checo que se especializa en juegos de simulación de vehículos. El juego fue lanzado en 2012 para Windows, Linux y Mac OS X, y más tarde portado a dispositivos Android. El juego te permite viajar por Europa como camionero, entregando varias cargas a través de diferentes ciudades y países. Puede elegir entre diferentes modelos de camiones, personalizarlos, dirigir su propio negocio, contratar conductores y explorar el vasto y detallado mapa de Europa.</p>
6
- <h2>descargar android euro camión simulador 2</h2><br /><p><b><b>DOWNLOAD</b> &#10084; <a href="https://bltlly.com/2v6INn">https://bltlly.com/2v6INn</a></b></p><br /><br />
7
- <h3>Características de Euro Truck Simulator 2</h3>
8
- <p>Euro Truck Simulator 2 ofrece muchas características que lo convierten en una experiencia de conducción realista y agradable. Estos son algunos de ellos:</p>
9
- <h4>Camiones con licencia de marcas famosas</h4>
10
- <p>El juego cuenta con 7 marcas de camiones con licencia y un total de 15 modelos de camiones únicos para conducir. Puede elegir entre MAN, Scania, Iveco, Renault, DAF y otros. Cada camión tiene sus propias características, rendimiento y efectos de sonido. </p>
11
- <h4>Redes de carreteras realistas y puntos de referencia</h4>
12
- <p>El juego cubre más de 60 ciudades y países europeos, con redes viales realistas que los conectan. Puede conducir por carreteras, caminos rurales, calles de la ciudad y más. También se pueden ver monumentos y monumentos famosos en el camino, como la Torre Eiffel, el Big Ben, el Coliseo y otros. </p>
13
- <h4>Carrera personal y gestión de empresas</h4>
14
-
15
- <h4>Personalización y modificación de camiones</h4>
16
- <p>El juego ofrece innumerables opciones de personalización para su camión. Puede cambiar el chasis, la cabina, el motor, la transmisión, el trabajo de pintura, los accesorios y más. También puedes usar mods para agregar nuevo contenido al juego, como nuevos camiones, remolques, mapas, tráfico, clima y más. La comunidad modding es muy activa y crea sorprendentes modificaciones para el juego. </p>
17
- <h3>Cómo descargar Euro Truck Simulator 2 para Android</h3>
18
- <p>Si quieres jugar Euro Truck Simulator 2 en tu dispositivo Android, tienes varias opciones para descargarlo. Estas son algunas de ellas:</p>
19
- <h4>Descargar de Google Play Store</h4>
20
- <p>La forma más fácil de descargar Euro Truck Simulator 2 para Android es utilizar la aplicación Google Play Store en su dispositivo. Puedes buscar el juego por su nombre o usar este enlace para ir directamente a su página. El juego cuesta $5.99 y requiere Android 5.0 o superior. El juego tiene más de 10 millones de descargas y una calificación de 4.3 de 5 estrellas. </p>
21
- <h4> <h4>Descargar desde Steam</h4>
22
- <p>Otra forma de descargar Euro Truck Simulator 2 para Android es usar la aplicación Steam en tu dispositivo. Puedes descargar la aplicación de Steam desde Google Play Store o usar este enlace para ir directamente a su página. La aplicación Steam te permite acceder a tu biblioteca de Steam y jugar a juegos compatibles con dispositivos Android. También puedes comprar juegos en la tienda de Steam y descargarlos en tu dispositivo. Euro Truck Simulator 2 cuesta $19.99 en Steam y requiere Android 5.0 o superior. El juego tiene más de 300,000 comentarios y una calificación de 10/10. </p>
23
- <p></p>
24
- <h4>Descargar desde el sitio web oficial</h4>
25
-
26
- <h3>Requisitos del sistema para Euro Truck Simulator 2</h3>
27
- <p>Antes de descargar Euro Truck Simulator 2 para Android, debe comprobar si su dispositivo cumple con los requisitos mínimos o recomendados del sistema para el juego. Aquí están los requisitos del sistema para Euro Truck Simulator 2:</p>
28
- <h4>Requisitos mínimos</h4>
29
- <ul>
30
- <li>OS: Android 5.0 o superior</li>
31
- <li>CPU: núcleo dual 1.8 GHz</li>
32
- <li>RAM: 2 GB</li>
33
- <li>GPU: Mali-T720 o equivalente</li>
34
- <li>Almacenamiento: 3 GB</li>
35
- </ul>
36
- <h4>Requisitos recomendados</h4>
37
- <ul>
38
- <li>OS: Android 7.0 o superior</li>
39
- <li>CPU: Quad core 2.5 GHz</li>
40
- <li>RAM: 4 GB</li>
41
- <li>GPU: Adreno 530 o equivalente</li>
42
- <li>Almacenamiento: 5 GB</li>
43
- </ul>
44
- <h3>Comentarios y valoraciones de Euro Truck Simulator 2</h3>
45
- <p>Euro Truck Simulator 2 es uno de los juegos de simulación de conducción más aclamados y populares jamás realizados. Ha recibido muchas críticas y valoraciones positivas de críticos y jugadores por igual. Estos son algunos de ellos:</p>
46
- <h4>PC Gamer revisión</h4>
47
- <p>PC Gamer dio a Euro Truck Simulator 2 una puntuación de 91/100, elogiando su realismo, variedad y soporte de modding. El crítico escribió: "Euro Truck Simulator 2 no es un juego para buscadores de emociones, sino más bien un simulador abierto que te pone en el asiento del conductor de un camión masivo, permitiéndote viajar por Europa a tu propio ritmo y con tus propios objetivos." </p>
48
- <h4>Revisión de Steam</h4>
49
- <p>Los usuarios de Steam dieron a Euro Truck Simulator 2 una calificación de "Abrumadoramente positivo", con más del 97% de las críticas siendo positivas. La reseña más útil escribió: "Este juego es increíble. Es relajante, inmersivo y adictivo. Puede conducir por toda Europa, entregar cargas, personalizar su camión, administrar su propio negocio y más. Los gráficos son hermosos, el sonido es realista, y la jugabilidad es suave. El juego también tiene una gran comunidad de modding que añade nuevo contenido y características al juego. Si te gustan los juegos de conducción, definitivamente deberías probar este." </p>
50
- <h4>Revisión metacrítica</h4>
51
-
52
- <h2>Conclusión</h2>
53
- <p>Euro Truck Simulator 2 es un juego que te permite experimentar la vida de un camionero en Europa. Puede conducir varios camiones en diferentes países, entregar cargas, personalizar su camión, dirigir su propio negocio y más. El juego ofrece gráficos realistas, efectos de sonido, física y redes de carreteras, así como una gran comunidad de modding que añade nuevos contenidos y características al juego. Puedes descargar Euro Truck Simulator 2 para Android desde diferentes fuentes, como Google Play Store, Steam o el sitio web oficial del juego. Sin embargo, debes comprobar si tu dispositivo cumple con los requisitos del sistema para el juego antes de descargarlo. </p>
54
- <h3>Preguntas frecuentes (FAQ <h3>Preguntas frecuentes (FAQ)</h3>
55
- <p>Aquí están algunas de las preguntas más comunes que la gente pregunta acerca de Euro Truck Simulator 2 para Android:</p>
56
- <h4>Q: ¿Puedo jugar Euro Truck Simulator 2 en línea con otros jugadores? </h4>
57
- <p>A: Euro Truck Simulator 2 no tiene un modo multijugador oficial, pero hay algunos mods no oficiales que le permiten jugar en línea con otros jugadores. Uno de los más populares es TruckersMP, que puedes descargar desde este enlace. Sin embargo, debe tener en cuenta que estos mods no son compatibles con los desarrolladores y pueden causar errores, fallos o problemas de compatibilidad. </p>
58
- <h4>Q: ¿Puedo usar un controlador o un volante para jugar Euro Truck Simulator 2 en Android? </h4>
59
- <p>A: Sí, puede utilizar un controlador o un volante para jugar Euro Truck Simulator 2 en Android, siempre y cuando sean compatibles con su dispositivo y el juego. Puedes conectarlos a través de Bluetooth, USB o cable OTG. También puedes personalizar los controles y la sensibilidad en la configuración del juego. </p>
60
- <h4>Q: ¿Cómo puedo actualizar Euro Truck Simulator 2 en Android? </h4>
61
-
62
- <h4>P: ¿Cómo puedo obtener más dinero y experiencia en Euro Truck Simulator 2?</h4>
63
- <p>A: Hay varias maneras de obtener más dinero y experiencia en Euro Truck Simulator 2. Puede completar más entregas, asumir cargas más difíciles, conducir distancias más largas, seguir las reglas de tráfico, evitar daños y multas y usar sus habilidades sabiamente. También puedes usar trucos o mods para obtener dinero y experiencia ilimitadas, pero esto puede arruinar la diversión y el desafío del juego. </p>
64
- <h4>Q: ¿Cómo puedo contactar a los desarrolladores de Euro Truck Simulator 2?</h4>
65
- <p>A: Si tiene alguna pregunta, comentario, sugerencia o problema sobre Euro Truck Simulator 2, puede ponerse en contacto con los desarrolladores del juego utilizando este enlace. También puedes seguirlos en sus cuentas de redes sociales, como Facebook, Twitter, Instagram, YouTube y Twitch. Los desarrolladores son muy receptivos y útiles para sus fans y clientes. </p> 64aa2da5cf<br />
66
- <br />
67
- <br />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/botocore/crt/__init__.py DELETED
@@ -1,27 +0,0 @@
1
- # Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License"). You
4
- # may not use this file except in compliance with the License. A copy of
5
- # the License is located at
6
- #
7
- # http://aws.amazon.com/apache2.0/
8
- #
9
- # or in the "license" file accompanying this file. This file is
10
- # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
11
- # ANY KIND, either express or implied. See the License for the specific
12
- # language governing permissions and limitations under the License.
13
-
14
- # A list of auth types supported by the signers in botocore/crt/auth.py. This
15
- # should always match the keys of botocore.crt.auth.CRT_AUTH_TYPE_MAPS. The
16
- # information is duplicated here so that it can be accessed in environments
17
- # where `awscrt` is not present and any import from botocore.crt.auth would
18
- # fail.
19
- CRT_SUPPORTED_AUTH_TYPES = (
20
- 'v4',
21
- 'v4-query',
22
- 'v4a',
23
- 's3v4',
24
- 's3v4-query',
25
- 's3v4a',
26
- 's3v4a-query',
27
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/pip/_vendor/chardet/cli/chardetect.py DELETED
@@ -1,112 +0,0 @@
1
- """
2
- Script which takes one or more file paths and reports on their detected
3
- encodings
4
-
5
- Example::
6
-
7
- % chardetect somefile someotherfile
8
- somefile: windows-1252 with confidence 0.5
9
- someotherfile: ascii with confidence 1.0
10
-
11
- If no paths are provided, it takes its input from stdin.
12
-
13
- """
14
-
15
-
16
- import argparse
17
- import sys
18
- from typing import Iterable, List, Optional
19
-
20
- from .. import __version__
21
- from ..universaldetector import UniversalDetector
22
-
23
-
24
- def description_of(
25
- lines: Iterable[bytes],
26
- name: str = "stdin",
27
- minimal: bool = False,
28
- should_rename_legacy: bool = False,
29
- ) -> Optional[str]:
30
- """
31
- Return a string describing the probable encoding of a file or
32
- list of strings.
33
-
34
- :param lines: The lines to get the encoding of.
35
- :type lines: Iterable of bytes
36
- :param name: Name of file or collection of lines
37
- :type name: str
38
- :param should_rename_legacy: Should we rename legacy encodings to
39
- their more modern equivalents?
40
- :type should_rename_legacy: ``bool``
41
- """
42
- u = UniversalDetector(should_rename_legacy=should_rename_legacy)
43
- for line in lines:
44
- line = bytearray(line)
45
- u.feed(line)
46
- # shortcut out of the loop to save reading further - particularly useful if we read a BOM.
47
- if u.done:
48
- break
49
- u.close()
50
- result = u.result
51
- if minimal:
52
- return result["encoding"]
53
- if result["encoding"]:
54
- return f'{name}: {result["encoding"]} with confidence {result["confidence"]}'
55
- return f"{name}: no result"
56
-
57
-
58
- def main(argv: Optional[List[str]] = None) -> None:
59
- """
60
- Handles command line arguments and gets things started.
61
-
62
- :param argv: List of arguments, as if specified on the command-line.
63
- If None, ``sys.argv[1:]`` is used instead.
64
- :type argv: list of str
65
- """
66
- # Get command line arguments
67
- parser = argparse.ArgumentParser(
68
- description=(
69
- "Takes one or more file paths and reports their detected encodings"
70
- )
71
- )
72
- parser.add_argument(
73
- "input",
74
- help="File whose encoding we would like to determine. (default: stdin)",
75
- type=argparse.FileType("rb"),
76
- nargs="*",
77
- default=[sys.stdin.buffer],
78
- )
79
- parser.add_argument(
80
- "--minimal",
81
- help="Print only the encoding to standard output",
82
- action="store_true",
83
- )
84
- parser.add_argument(
85
- "-l",
86
- "--legacy",
87
- help="Rename legacy encodings to more modern ones.",
88
- action="store_true",
89
- )
90
- parser.add_argument(
91
- "--version", action="version", version=f"%(prog)s {__version__}"
92
- )
93
- args = parser.parse_args(argv)
94
-
95
- for f in args.input:
96
- if f.isatty():
97
- print(
98
- "You are running chardetect interactively. Press "
99
- "CTRL-D twice at the start of a blank line to signal the "
100
- "end of your input. If you want help, run chardetect "
101
- "--help\n",
102
- file=sys.stderr,
103
- )
104
- print(
105
- description_of(
106
- f, f.name, minimal=args.minimal, should_rename_legacy=args.legacy
107
- )
108
- )
109
-
110
-
111
- if __name__ == "__main__":
112
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Big-Web/MMSD/env/Lib/site-packages/pkg_resources/_vendor/appdirs.py DELETED
@@ -1,608 +0,0 @@
1
- #!/usr/bin/env python
2
- # -*- coding: utf-8 -*-
3
- # Copyright (c) 2005-2010 ActiveState Software Inc.
4
- # Copyright (c) 2013 Eddy Petrișor
5
-
6
- """Utilities for determining application-specific dirs.
7
-
8
- See <http://github.com/ActiveState/appdirs> for details and usage.
9
- """
10
- # Dev Notes:
11
- # - MSDN on where to store app data files:
12
- # http://support.microsoft.com/default.aspx?scid=kb;en-us;310294#XSLTH3194121123120121120120
13
- # - Mac OS X: http://developer.apple.com/documentation/MacOSX/Conceptual/BPFileSystem/index.html
14
- # - XDG spec for Un*x: http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
15
-
16
- __version_info__ = (1, 4, 3)
17
- __version__ = '.'.join(map(str, __version_info__))
18
-
19
-
20
- import sys
21
- import os
22
-
23
- PY3 = sys.version_info[0] == 3
24
-
25
- if PY3:
26
- unicode = str
27
-
28
- if sys.platform.startswith('java'):
29
- import platform
30
- os_name = platform.java_ver()[3][0]
31
- if os_name.startswith('Windows'): # "Windows XP", "Windows 7", etc.
32
- system = 'win32'
33
- elif os_name.startswith('Mac'): # "Mac OS X", etc.
34
- system = 'darwin'
35
- else: # "Linux", "SunOS", "FreeBSD", etc.
36
- # Setting this to "linux2" is not ideal, but only Windows or Mac
37
- # are actually checked for and the rest of the module expects
38
- # *sys.platform* style strings.
39
- system = 'linux2'
40
- else:
41
- system = sys.platform
42
-
43
-
44
-
45
- def user_data_dir(appname=None, appauthor=None, version=None, roaming=False):
46
- r"""Return full path to the user-specific data dir for this application.
47
-
48
- "appname" is the name of application.
49
- If None, just the system directory is returned.
50
- "appauthor" (only used on Windows) is the name of the
51
- appauthor or distributing body for this application. Typically
52
- it is the owning company name. This falls back to appname. You may
53
- pass False to disable it.
54
- "version" is an optional version path element to append to the
55
- path. You might want to use this if you want multiple versions
56
- of your app to be able to run independently. If used, this
57
- would typically be "<major>.<minor>".
58
- Only applied when appname is present.
59
- "roaming" (boolean, default False) can be set True to use the Windows
60
- roaming appdata directory. That means that for users on a Windows
61
- network setup for roaming profiles, this user data will be
62
- sync'd on login. See
63
- <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
64
- for a discussion of issues.
65
-
66
- Typical user data directories are:
67
- Mac OS X: ~/Library/Application Support/<AppName>
68
- Unix: ~/.local/share/<AppName> # or in $XDG_DATA_HOME, if defined
69
- Win XP (not roaming): C:\Documents and Settings\<username>\Application Data\<AppAuthor>\<AppName>
70
- Win XP (roaming): C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>
71
- Win 7 (not roaming): C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>
72
- Win 7 (roaming): C:\Users\<username>\AppData\Roaming\<AppAuthor>\<AppName>
73
-
74
- For Unix, we follow the XDG spec and support $XDG_DATA_HOME.
75
- That means, by default "~/.local/share/<AppName>".
76
- """
77
- if system == "win32":
78
- if appauthor is None:
79
- appauthor = appname
80
- const = roaming and "CSIDL_APPDATA" or "CSIDL_LOCAL_APPDATA"
81
- path = os.path.normpath(_get_win_folder(const))
82
- if appname:
83
- if appauthor is not False:
84
- path = os.path.join(path, appauthor, appname)
85
- else:
86
- path = os.path.join(path, appname)
87
- elif system == 'darwin':
88
- path = os.path.expanduser('~/Library/Application Support/')
89
- if appname:
90
- path = os.path.join(path, appname)
91
- else:
92
- path = os.getenv('XDG_DATA_HOME', os.path.expanduser("~/.local/share"))
93
- if appname:
94
- path = os.path.join(path, appname)
95
- if appname and version:
96
- path = os.path.join(path, version)
97
- return path
98
-
99
-
100
- def site_data_dir(appname=None, appauthor=None, version=None, multipath=False):
101
- r"""Return full path to the user-shared data dir for this application.
102
-
103
- "appname" is the name of application.
104
- If None, just the system directory is returned.
105
- "appauthor" (only used on Windows) is the name of the
106
- appauthor or distributing body for this application. Typically
107
- it is the owning company name. This falls back to appname. You may
108
- pass False to disable it.
109
- "version" is an optional version path element to append to the
110
- path. You might want to use this if you want multiple versions
111
- of your app to be able to run independently. If used, this
112
- would typically be "<major>.<minor>".
113
- Only applied when appname is present.
114
- "multipath" is an optional parameter only applicable to *nix
115
- which indicates that the entire list of data dirs should be
116
- returned. By default, the first item from XDG_DATA_DIRS is
117
- returned, or '/usr/local/share/<AppName>',
118
- if XDG_DATA_DIRS is not set
119
-
120
- Typical site data directories are:
121
- Mac OS X: /Library/Application Support/<AppName>
122
- Unix: /usr/local/share/<AppName> or /usr/share/<AppName>
123
- Win XP: C:\Documents and Settings\All Users\Application Data\<AppAuthor>\<AppName>
124
- Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.)
125
- Win 7: C:\ProgramData\<AppAuthor>\<AppName> # Hidden, but writeable on Win 7.
126
-
127
- For Unix, this is using the $XDG_DATA_DIRS[0] default.
128
-
129
- WARNING: Do not use this on Windows. See the Vista-Fail note above for why.
130
- """
131
- if system == "win32":
132
- if appauthor is None:
133
- appauthor = appname
134
- path = os.path.normpath(_get_win_folder("CSIDL_COMMON_APPDATA"))
135
- if appname:
136
- if appauthor is not False:
137
- path = os.path.join(path, appauthor, appname)
138
- else:
139
- path = os.path.join(path, appname)
140
- elif system == 'darwin':
141
- path = os.path.expanduser('/Library/Application Support')
142
- if appname:
143
- path = os.path.join(path, appname)
144
- else:
145
- # XDG default for $XDG_DATA_DIRS
146
- # only first, if multipath is False
147
- path = os.getenv('XDG_DATA_DIRS',
148
- os.pathsep.join(['/usr/local/share', '/usr/share']))
149
- pathlist = [os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)]
150
- if appname:
151
- if version:
152
- appname = os.path.join(appname, version)
153
- pathlist = [os.sep.join([x, appname]) for x in pathlist]
154
-
155
- if multipath:
156
- path = os.pathsep.join(pathlist)
157
- else:
158
- path = pathlist[0]
159
- return path
160
-
161
- if appname and version:
162
- path = os.path.join(path, version)
163
- return path
164
-
165
-
166
- def user_config_dir(appname=None, appauthor=None, version=None, roaming=False):
167
- r"""Return full path to the user-specific config dir for this application.
168
-
169
- "appname" is the name of application.
170
- If None, just the system directory is returned.
171
- "appauthor" (only used on Windows) is the name of the
172
- appauthor or distributing body for this application. Typically
173
- it is the owning company name. This falls back to appname. You may
174
- pass False to disable it.
175
- "version" is an optional version path element to append to the
176
- path. You might want to use this if you want multiple versions
177
- of your app to be able to run independently. If used, this
178
- would typically be "<major>.<minor>".
179
- Only applied when appname is present.
180
- "roaming" (boolean, default False) can be set True to use the Windows
181
- roaming appdata directory. That means that for users on a Windows
182
- network setup for roaming profiles, this user data will be
183
- sync'd on login. See
184
- <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
185
- for a discussion of issues.
186
-
187
- Typical user config directories are:
188
- Mac OS X: same as user_data_dir
189
- Unix: ~/.config/<AppName> # or in $XDG_CONFIG_HOME, if defined
190
- Win *: same as user_data_dir
191
-
192
- For Unix, we follow the XDG spec and support $XDG_CONFIG_HOME.
193
- That means, by default "~/.config/<AppName>".
194
- """
195
- if system in ["win32", "darwin"]:
196
- path = user_data_dir(appname, appauthor, None, roaming)
197
- else:
198
- path = os.getenv('XDG_CONFIG_HOME', os.path.expanduser("~/.config"))
199
- if appname:
200
- path = os.path.join(path, appname)
201
- if appname and version:
202
- path = os.path.join(path, version)
203
- return path
204
-
205
-
206
- def site_config_dir(appname=None, appauthor=None, version=None, multipath=False):
207
- r"""Return full path to the user-shared data dir for this application.
208
-
209
- "appname" is the name of application.
210
- If None, just the system directory is returned.
211
- "appauthor" (only used on Windows) is the name of the
212
- appauthor or distributing body for this application. Typically
213
- it is the owning company name. This falls back to appname. You may
214
- pass False to disable it.
215
- "version" is an optional version path element to append to the
216
- path. You might want to use this if you want multiple versions
217
- of your app to be able to run independently. If used, this
218
- would typically be "<major>.<minor>".
219
- Only applied when appname is present.
220
- "multipath" is an optional parameter only applicable to *nix
221
- which indicates that the entire list of config dirs should be
222
- returned. By default, the first item from XDG_CONFIG_DIRS is
223
- returned, or '/etc/xdg/<AppName>', if XDG_CONFIG_DIRS is not set
224
-
225
- Typical site config directories are:
226
- Mac OS X: same as site_data_dir
227
- Unix: /etc/xdg/<AppName> or $XDG_CONFIG_DIRS[i]/<AppName> for each value in
228
- $XDG_CONFIG_DIRS
229
- Win *: same as site_data_dir
230
- Vista: (Fail! "C:\ProgramData" is a hidden *system* directory on Vista.)
231
-
232
- For Unix, this is using the $XDG_CONFIG_DIRS[0] default, if multipath=False
233
-
234
- WARNING: Do not use this on Windows. See the Vista-Fail note above for why.
235
- """
236
- if system in ["win32", "darwin"]:
237
- path = site_data_dir(appname, appauthor)
238
- if appname and version:
239
- path = os.path.join(path, version)
240
- else:
241
- # XDG default for $XDG_CONFIG_DIRS
242
- # only first, if multipath is False
243
- path = os.getenv('XDG_CONFIG_DIRS', '/etc/xdg')
244
- pathlist = [os.path.expanduser(x.rstrip(os.sep)) for x in path.split(os.pathsep)]
245
- if appname:
246
- if version:
247
- appname = os.path.join(appname, version)
248
- pathlist = [os.sep.join([x, appname]) for x in pathlist]
249
-
250
- if multipath:
251
- path = os.pathsep.join(pathlist)
252
- else:
253
- path = pathlist[0]
254
- return path
255
-
256
-
257
- def user_cache_dir(appname=None, appauthor=None, version=None, opinion=True):
258
- r"""Return full path to the user-specific cache dir for this application.
259
-
260
- "appname" is the name of application.
261
- If None, just the system directory is returned.
262
- "appauthor" (only used on Windows) is the name of the
263
- appauthor or distributing body for this application. Typically
264
- it is the owning company name. This falls back to appname. You may
265
- pass False to disable it.
266
- "version" is an optional version path element to append to the
267
- path. You might want to use this if you want multiple versions
268
- of your app to be able to run independently. If used, this
269
- would typically be "<major>.<minor>".
270
- Only applied when appname is present.
271
- "opinion" (boolean) can be False to disable the appending of
272
- "Cache" to the base app data dir for Windows. See
273
- discussion below.
274
-
275
- Typical user cache directories are:
276
- Mac OS X: ~/Library/Caches/<AppName>
277
- Unix: ~/.cache/<AppName> (XDG default)
278
- Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Cache
279
- Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Cache
280
-
281
- On Windows the only suggestion in the MSDN docs is that local settings go in
282
- the `CSIDL_LOCAL_APPDATA` directory. This is identical to the non-roaming
283
- app data dir (the default returned by `user_data_dir` above). Apps typically
284
- put cache data somewhere *under* the given dir here. Some examples:
285
- ...\Mozilla\Firefox\Profiles\<ProfileName>\Cache
286
- ...\Acme\SuperApp\Cache\1.0
287
- OPINION: This function appends "Cache" to the `CSIDL_LOCAL_APPDATA` value.
288
- This can be disabled with the `opinion=False` option.
289
- """
290
- if system == "win32":
291
- if appauthor is None:
292
- appauthor = appname
293
- path = os.path.normpath(_get_win_folder("CSIDL_LOCAL_APPDATA"))
294
- if appname:
295
- if appauthor is not False:
296
- path = os.path.join(path, appauthor, appname)
297
- else:
298
- path = os.path.join(path, appname)
299
- if opinion:
300
- path = os.path.join(path, "Cache")
301
- elif system == 'darwin':
302
- path = os.path.expanduser('~/Library/Caches')
303
- if appname:
304
- path = os.path.join(path, appname)
305
- else:
306
- path = os.getenv('XDG_CACHE_HOME', os.path.expanduser('~/.cache'))
307
- if appname:
308
- path = os.path.join(path, appname)
309
- if appname and version:
310
- path = os.path.join(path, version)
311
- return path
312
-
313
-
314
- def user_state_dir(appname=None, appauthor=None, version=None, roaming=False):
315
- r"""Return full path to the user-specific state dir for this application.
316
-
317
- "appname" is the name of application.
318
- If None, just the system directory is returned.
319
- "appauthor" (only used on Windows) is the name of the
320
- appauthor or distributing body for this application. Typically
321
- it is the owning company name. This falls back to appname. You may
322
- pass False to disable it.
323
- "version" is an optional version path element to append to the
324
- path. You might want to use this if you want multiple versions
325
- of your app to be able to run independently. If used, this
326
- would typically be "<major>.<minor>".
327
- Only applied when appname is present.
328
- "roaming" (boolean, default False) can be set True to use the Windows
329
- roaming appdata directory. That means that for users on a Windows
330
- network setup for roaming profiles, this user data will be
331
- sync'd on login. See
332
- <http://technet.microsoft.com/en-us/library/cc766489(WS.10).aspx>
333
- for a discussion of issues.
334
-
335
- Typical user state directories are:
336
- Mac OS X: same as user_data_dir
337
- Unix: ~/.local/state/<AppName> # or in $XDG_STATE_HOME, if defined
338
- Win *: same as user_data_dir
339
-
340
- For Unix, we follow this Debian proposal <https://wiki.debian.org/XDGBaseDirectorySpecification#state>
341
- to extend the XDG spec and support $XDG_STATE_HOME.
342
-
343
- That means, by default "~/.local/state/<AppName>".
344
- """
345
- if system in ["win32", "darwin"]:
346
- path = user_data_dir(appname, appauthor, None, roaming)
347
- else:
348
- path = os.getenv('XDG_STATE_HOME', os.path.expanduser("~/.local/state"))
349
- if appname:
350
- path = os.path.join(path, appname)
351
- if appname and version:
352
- path = os.path.join(path, version)
353
- return path
354
-
355
-
356
- def user_log_dir(appname=None, appauthor=None, version=None, opinion=True):
357
- r"""Return full path to the user-specific log dir for this application.
358
-
359
- "appname" is the name of application.
360
- If None, just the system directory is returned.
361
- "appauthor" (only used on Windows) is the name of the
362
- appauthor or distributing body for this application. Typically
363
- it is the owning company name. This falls back to appname. You may
364
- pass False to disable it.
365
- "version" is an optional version path element to append to the
366
- path. You might want to use this if you want multiple versions
367
- of your app to be able to run independently. If used, this
368
- would typically be "<major>.<minor>".
369
- Only applied when appname is present.
370
- "opinion" (boolean) can be False to disable the appending of
371
- "Logs" to the base app data dir for Windows, and "log" to the
372
- base cache dir for Unix. See discussion below.
373
-
374
- Typical user log directories are:
375
- Mac OS X: ~/Library/Logs/<AppName>
376
- Unix: ~/.cache/<AppName>/log # or under $XDG_CACHE_HOME if defined
377
- Win XP: C:\Documents and Settings\<username>\Local Settings\Application Data\<AppAuthor>\<AppName>\Logs
378
- Vista: C:\Users\<username>\AppData\Local\<AppAuthor>\<AppName>\Logs
379
-
380
- On Windows the only suggestion in the MSDN docs is that local settings
381
- go in the `CSIDL_LOCAL_APPDATA` directory. (Note: I'm interested in
382
- examples of what some windows apps use for a logs dir.)
383
-
384
- OPINION: This function appends "Logs" to the `CSIDL_LOCAL_APPDATA`
385
- value for Windows and appends "log" to the user cache dir for Unix.
386
- This can be disabled with the `opinion=False` option.
387
- """
388
- if system == "darwin":
389
- path = os.path.join(
390
- os.path.expanduser('~/Library/Logs'),
391
- appname)
392
- elif system == "win32":
393
- path = user_data_dir(appname, appauthor, version)
394
- version = False
395
- if opinion:
396
- path = os.path.join(path, "Logs")
397
- else:
398
- path = user_cache_dir(appname, appauthor, version)
399
- version = False
400
- if opinion:
401
- path = os.path.join(path, "log")
402
- if appname and version:
403
- path = os.path.join(path, version)
404
- return path
405
-
406
-
407
- class AppDirs(object):
408
- """Convenience wrapper for getting application dirs."""
409
- def __init__(self, appname=None, appauthor=None, version=None,
410
- roaming=False, multipath=False):
411
- self.appname = appname
412
- self.appauthor = appauthor
413
- self.version = version
414
- self.roaming = roaming
415
- self.multipath = multipath
416
-
417
- @property
418
- def user_data_dir(self):
419
- return user_data_dir(self.appname, self.appauthor,
420
- version=self.version, roaming=self.roaming)
421
-
422
- @property
423
- def site_data_dir(self):
424
- return site_data_dir(self.appname, self.appauthor,
425
- version=self.version, multipath=self.multipath)
426
-
427
- @property
428
- def user_config_dir(self):
429
- return user_config_dir(self.appname, self.appauthor,
430
- version=self.version, roaming=self.roaming)
431
-
432
- @property
433
- def site_config_dir(self):
434
- return site_config_dir(self.appname, self.appauthor,
435
- version=self.version, multipath=self.multipath)
436
-
437
- @property
438
- def user_cache_dir(self):
439
- return user_cache_dir(self.appname, self.appauthor,
440
- version=self.version)
441
-
442
- @property
443
- def user_state_dir(self):
444
- return user_state_dir(self.appname, self.appauthor,
445
- version=self.version)
446
-
447
- @property
448
- def user_log_dir(self):
449
- return user_log_dir(self.appname, self.appauthor,
450
- version=self.version)
451
-
452
-
453
- #---- internal support stuff
454
-
455
- def _get_win_folder_from_registry(csidl_name):
456
- """This is a fallback technique at best. I'm not sure if using the
457
- registry for this guarantees us the correct answer for all CSIDL_*
458
- names.
459
- """
460
- if PY3:
461
- import winreg as _winreg
462
- else:
463
- import _winreg
464
-
465
- shell_folder_name = {
466
- "CSIDL_APPDATA": "AppData",
467
- "CSIDL_COMMON_APPDATA": "Common AppData",
468
- "CSIDL_LOCAL_APPDATA": "Local AppData",
469
- }[csidl_name]
470
-
471
- key = _winreg.OpenKey(
472
- _winreg.HKEY_CURRENT_USER,
473
- r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders"
474
- )
475
- dir, type = _winreg.QueryValueEx(key, shell_folder_name)
476
- return dir
477
-
478
-
479
- def _get_win_folder_with_pywin32(csidl_name):
480
- from win32com.shell import shellcon, shell
481
- dir = shell.SHGetFolderPath(0, getattr(shellcon, csidl_name), 0, 0)
482
- # Try to make this a unicode path because SHGetFolderPath does
483
- # not return unicode strings when there is unicode data in the
484
- # path.
485
- try:
486
- dir = unicode(dir)
487
-
488
- # Downgrade to short path name if have highbit chars. See
489
- # <http://bugs.activestate.com/show_bug.cgi?id=85099>.
490
- has_high_char = False
491
- for c in dir:
492
- if ord(c) > 255:
493
- has_high_char = True
494
- break
495
- if has_high_char:
496
- try:
497
- import win32api
498
- dir = win32api.GetShortPathName(dir)
499
- except ImportError:
500
- pass
501
- except UnicodeError:
502
- pass
503
- return dir
504
-
505
-
506
- def _get_win_folder_with_ctypes(csidl_name):
507
- import ctypes
508
-
509
- csidl_const = {
510
- "CSIDL_APPDATA": 26,
511
- "CSIDL_COMMON_APPDATA": 35,
512
- "CSIDL_LOCAL_APPDATA": 28,
513
- }[csidl_name]
514
-
515
- buf = ctypes.create_unicode_buffer(1024)
516
- ctypes.windll.shell32.SHGetFolderPathW(None, csidl_const, None, 0, buf)
517
-
518
- # Downgrade to short path name if have highbit chars. See
519
- # <http://bugs.activestate.com/show_bug.cgi?id=85099>.
520
- has_high_char = False
521
- for c in buf:
522
- if ord(c) > 255:
523
- has_high_char = True
524
- break
525
- if has_high_char:
526
- buf2 = ctypes.create_unicode_buffer(1024)
527
- if ctypes.windll.kernel32.GetShortPathNameW(buf.value, buf2, 1024):
528
- buf = buf2
529
-
530
- return buf.value
531
-
532
- def _get_win_folder_with_jna(csidl_name):
533
- import array
534
- from com.sun import jna
535
- from com.sun.jna.platform import win32
536
-
537
- buf_size = win32.WinDef.MAX_PATH * 2
538
- buf = array.zeros('c', buf_size)
539
- shell = win32.Shell32.INSTANCE
540
- shell.SHGetFolderPath(None, getattr(win32.ShlObj, csidl_name), None, win32.ShlObj.SHGFP_TYPE_CURRENT, buf)
541
- dir = jna.Native.toString(buf.tostring()).rstrip("\0")
542
-
543
- # Downgrade to short path name if have highbit chars. See
544
- # <http://bugs.activestate.com/show_bug.cgi?id=85099>.
545
- has_high_char = False
546
- for c in dir:
547
- if ord(c) > 255:
548
- has_high_char = True
549
- break
550
- if has_high_char:
551
- buf = array.zeros('c', buf_size)
552
- kernel = win32.Kernel32.INSTANCE
553
- if kernel.GetShortPathName(dir, buf, buf_size):
554
- dir = jna.Native.toString(buf.tostring()).rstrip("\0")
555
-
556
- return dir
557
-
558
- if system == "win32":
559
- try:
560
- import win32com.shell
561
- _get_win_folder = _get_win_folder_with_pywin32
562
- except ImportError:
563
- try:
564
- from ctypes import windll
565
- _get_win_folder = _get_win_folder_with_ctypes
566
- except ImportError:
567
- try:
568
- import com.sun.jna
569
- _get_win_folder = _get_win_folder_with_jna
570
- except ImportError:
571
- _get_win_folder = _get_win_folder_from_registry
572
-
573
-
574
- #---- self test code
575
-
576
- if __name__ == "__main__":
577
- appname = "MyApp"
578
- appauthor = "MyCompany"
579
-
580
- props = ("user_data_dir",
581
- "user_config_dir",
582
- "user_cache_dir",
583
- "user_state_dir",
584
- "user_log_dir",
585
- "site_data_dir",
586
- "site_config_dir")
587
-
588
- print("-- app dirs %s --" % __version__)
589
-
590
- print("-- app dirs (with optional 'version')")
591
- dirs = AppDirs(appname, appauthor, version="1.0")
592
- for prop in props:
593
- print("%s: %s" % (prop, getattr(dirs, prop)))
594
-
595
- print("\n-- app dirs (without optional 'version')")
596
- dirs = AppDirs(appname, appauthor)
597
- for prop in props:
598
- print("%s: %s" % (prop, getattr(dirs, prop)))
599
-
600
- print("\n-- app dirs (without optional 'appauthor')")
601
- dirs = AppDirs(appname)
602
- for prop in props:
603
- print("%s: %s" % (prop, getattr(dirs, prop)))
604
-
605
- print("\n-- app dirs (with disabled 'appauthor')")
606
- dirs = AppDirs(appname, appauthor=False)
607
- for prop in props:
608
- print("%s: %s" % (prop, getattr(dirs, prop)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/LIVE/thrust/thrust/system/cuda/detail/util.h DELETED
@@ -1,589 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2016, NVIDIA CORPORATION. All rights meserved.
3
- *
4
- * Redistribution and use in source and binary forms, with or without
5
- * modification, are permitted provided that the following conditions are met:
6
- * * Redistributions of source code must retain the above copyright
7
- * notice, this list of conditions and the following disclaimer.
8
- * * Redistributions in binary form must reproduce the above copyright
9
- * notice, this list of conditions and the following disclaimer in the
10
- * documentation and/or other materials provided with the distribution.
11
- * * Neither the name of the NVIDIA CORPORATION nor the
12
- * names of its contributors may be used to endorse or promote products
13
- * derived from this software without specific prior written permission.
14
- *
15
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
- * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
19
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25
- *
26
- ******************************************************************************/
27
- #pragma once
28
-
29
- #include <cstdio>
30
- #include <thrust/detail/config.h>
31
- #include <thrust/iterator/iterator_traits.h>
32
- #include <cub/util_arch.cuh>
33
- #include <thrust/system/cuda/detail/execution_policy.h>
34
- #include <thrust/system_error.h>
35
- #include <thrust/system/cuda/error.h>
36
-
37
- namespace thrust
38
- {
39
-
40
- namespace cuda_cub {
41
-
42
- inline __host__ __device__
43
- cudaStream_t
44
- default_stream()
45
- {
46
- #ifdef CUDA_API_PER_THREAD_DEFAULT_STREAM
47
- return cudaStreamPerThread;
48
- #else
49
- return cudaStreamLegacy;
50
- #endif
51
- }
52
-
53
- // Fallback implementation of the customization point.
54
- template <class Derived>
55
- __host__ __device__
56
- cudaStream_t
57
- get_stream(execution_policy<Derived> &)
58
- {
59
- return default_stream();
60
- }
61
-
62
- // Entry point/interface.
63
- template <class Derived>
64
- __host__ __device__ cudaStream_t
65
- stream(execution_policy<Derived> &policy)
66
- {
67
- return get_stream(derived_cast(policy));
68
- }
69
-
70
- // Fallback implementation of the customization point.
71
- __thrust_exec_check_disable__
72
- template <class Derived>
73
- __host__ __device__
74
- cudaError_t
75
- synchronize_stream(execution_policy<Derived> &policy)
76
- {
77
- cudaError_t result;
78
- if (THRUST_IS_HOST_CODE) {
79
- #if THRUST_INCLUDE_HOST_CODE
80
- cudaStreamSynchronize(stream(policy));
81
- result = cudaGetLastError();
82
- #endif
83
- } else {
84
- #if THRUST_INCLUDE_DEVICE_CODE
85
- #if __THRUST_HAS_CUDART__
86
- THRUST_UNUSED_VAR(policy);
87
- cudaDeviceSynchronize();
88
- result = cudaGetLastError();
89
- #else
90
- THRUST_UNUSED_VAR(policy);
91
- result = cudaSuccess;
92
- #endif
93
- #endif
94
- }
95
- return result;
96
- }
97
-
98
- // Entry point/interface.
99
- template <class Policy>
100
- __host__ __device__
101
- cudaError_t
102
- synchronize(Policy &policy)
103
- {
104
- return synchronize_stream(derived_cast(policy));
105
- }
106
-
107
- template <class Type>
108
- THRUST_HOST_FUNCTION cudaError_t
109
- trivial_copy_from_device(Type * dst,
110
- Type const * src,
111
- size_t count,
112
- cudaStream_t stream)
113
- {
114
- cudaError status = cudaSuccess;
115
- if (count == 0) return status;
116
-
117
- status = ::cudaMemcpyAsync(dst,
118
- src,
119
- sizeof(Type) * count,
120
- cudaMemcpyDeviceToHost,
121
- stream);
122
- cudaStreamSynchronize(stream);
123
- return status;
124
- }
125
-
126
- template <class Type>
127
- THRUST_HOST_FUNCTION cudaError_t
128
- trivial_copy_to_device(Type * dst,
129
- Type const * src,
130
- size_t count,
131
- cudaStream_t stream)
132
- {
133
- cudaError status = cudaSuccess;
134
- if (count == 0) return status;
135
-
136
- status = ::cudaMemcpyAsync(dst,
137
- src,
138
- sizeof(Type) * count,
139
- cudaMemcpyHostToDevice,
140
- stream);
141
- cudaStreamSynchronize(stream);
142
- return status;
143
- }
144
-
145
- template <class Policy, class Type>
146
- __host__ __device__ cudaError_t
147
- trivial_copy_device_to_device(Policy & policy,
148
- Type * dst,
149
- Type const *src,
150
- size_t count)
151
- {
152
- cudaError_t status = cudaSuccess;
153
- if (count == 0) return status;
154
-
155
- cudaStream_t stream = cuda_cub::stream(policy);
156
- //
157
- status = ::cudaMemcpyAsync(dst,
158
- src,
159
- sizeof(Type) * count,
160
- cudaMemcpyDeviceToDevice,
161
- stream);
162
- cuda_cub::synchronize(policy);
163
- return status;
164
- }
165
-
166
- inline void __host__ __device__
167
- terminate()
168
- {
169
- if (THRUST_IS_DEVICE_CODE) {
170
- #if THRUST_INCLUDE_DEVICE_CODE
171
- asm("trap;");
172
- #endif
173
- } else {
174
- #if THRUST_INCLUDE_HOST_CODE
175
- std::terminate();
176
- #endif
177
- }
178
- }
179
-
180
- __host__ __device__
181
- inline void throw_on_error(cudaError_t status)
182
- {
183
- #if __THRUST_HAS_CUDART__
184
- // Clear the global CUDA error state which may have been set by the last
185
- // call. Otherwise, errors may "leak" to unrelated kernel launches.
186
- cudaGetLastError();
187
- #endif
188
-
189
- if (cudaSuccess != status)
190
- {
191
- if (THRUST_IS_HOST_CODE) {
192
- #if THRUST_INCLUDE_HOST_CODE
193
- throw thrust::system_error(status, thrust::cuda_category());
194
- #endif
195
- } else {
196
- #if THRUST_INCLUDE_DEVICE_CODE
197
- #if __THRUST_HAS_CUDART__
198
- printf("Thrust CUDA backend error: %s: %s\n",
199
- cudaGetErrorName(status),
200
- cudaGetErrorString(status));
201
- #else
202
- printf("Thrust CUDA backend error: %d\n",
203
- static_cast<int>(status));
204
- #endif
205
- cuda_cub::terminate();
206
- #endif
207
- }
208
- }
209
- }
210
-
211
- __host__ __device__
212
- inline void throw_on_error(cudaError_t status, char const *msg)
213
- {
214
- #if __THRUST_HAS_CUDART__
215
- // Clear the global CUDA error state which may have been set by the last
216
- // call. Otherwise, errors may "leak" to unrelated kernel launches.
217
- cudaGetLastError();
218
- #endif
219
-
220
- if (cudaSuccess != status)
221
- {
222
- if (THRUST_IS_HOST_CODE) {
223
- #if THRUST_INCLUDE_HOST_CODE
224
- throw thrust::system_error(status, thrust::cuda_category(), msg);
225
- #endif
226
- } else {
227
- #if THRUST_INCLUDE_DEVICE_CODE
228
- #if __THRUST_HAS_CUDART__
229
- printf("Thrust CUDA backend error: %s: %s: %s\n",
230
- cudaGetErrorName(status),
231
- cudaGetErrorString(status),
232
- msg);
233
- #else
234
- printf("Thrust CUDA backend error: %d: %s \n",
235
- static_cast<int>(status),
236
- msg);
237
- #endif
238
- cuda_cub::terminate();
239
- #endif
240
- }
241
- }
242
- }
243
-
244
- // FIXME: Move the iterators elsewhere.
245
-
246
- template <class ValueType,
247
- class InputIt,
248
- class UnaryOp>
249
- struct transform_input_iterator_t
250
- {
251
- typedef transform_input_iterator_t self_t;
252
- typedef typename iterator_traits<InputIt>::difference_type difference_type;
253
- typedef ValueType value_type;
254
- typedef void pointer;
255
- typedef value_type reference;
256
- typedef std::random_access_iterator_tag iterator_category;
257
-
258
- InputIt input;
259
- mutable UnaryOp op;
260
-
261
- __host__ __device__ __forceinline__
262
- transform_input_iterator_t(InputIt input, UnaryOp op)
263
- : input(input), op(op) {}
264
-
265
- #if THRUST_CPP_DIALECT >= 2011
266
- transform_input_iterator_t(const self_t &) = default;
267
- #endif
268
-
269
- // UnaryOp might not be copy assignable, such as when it is a lambda. Define
270
- // an explicit copy assignment operator that doesn't try to assign it.
271
- self_t& operator=(const self_t& o)
272
- {
273
- input = o.input;
274
- return *this;
275
- }
276
-
277
- /// Postfix increment
278
- __host__ __device__ __forceinline__ self_t operator++(int)
279
- {
280
- self_t retval = *this;
281
- ++input;
282
- return retval;
283
- }
284
-
285
- /// Prefix increment
286
- __host__ __device__ __forceinline__ self_t operator++()
287
- {
288
- ++input;
289
- return *this;
290
- }
291
-
292
- /// Indirection
293
- __host__ __device__ __forceinline__ reference operator*() const
294
- {
295
- typename thrust::iterator_value<InputIt>::type x = *input;
296
- return op(x);
297
- }
298
- /// Indirection
299
- __host__ __device__ __forceinline__ reference operator*()
300
- {
301
- typename thrust::iterator_value<InputIt>::type x = *input;
302
- return op(x);
303
- }
304
-
305
- /// Addition
306
- __host__ __device__ __forceinline__ self_t operator+(difference_type n) const
307
- {
308
- return self_t(input + n, op);
309
- }
310
-
311
- /// Addition assignment
312
- __host__ __device__ __forceinline__ self_t &operator+=(difference_type n)
313
- {
314
- input += n;
315
- return *this;
316
- }
317
-
318
- /// Subtraction
319
- __host__ __device__ __forceinline__ self_t operator-(difference_type n) const
320
- {
321
- return self_t(input - n, op);
322
- }
323
-
324
- /// Subtraction assignment
325
- __host__ __device__ __forceinline__ self_t &operator-=(difference_type n)
326
- {
327
- input -= n;
328
- return *this;
329
- }
330
-
331
- /// Distance
332
- __host__ __device__ __forceinline__ difference_type operator-(self_t other) const
333
- {
334
- return input - other.input;
335
- }
336
-
337
- /// Array subscript
338
- __host__ __device__ __forceinline__ reference operator[](difference_type n) const
339
- {
340
- return op(input[n]);
341
- }
342
-
343
- /// Equal to
344
- __host__ __device__ __forceinline__ bool operator==(const self_t &rhs) const
345
- {
346
- return (input == rhs.input);
347
- }
348
-
349
- /// Not equal to
350
- __host__ __device__ __forceinline__ bool operator!=(const self_t &rhs) const
351
- {
352
- return (input != rhs.input);
353
- }
354
- }; // struct transform_input_iterarot_t
355
-
356
- template <class ValueType,
357
- class InputIt1,
358
- class InputIt2,
359
- class BinaryOp>
360
- struct transform_pair_of_input_iterators_t
361
- {
362
- typedef transform_pair_of_input_iterators_t self_t;
363
- typedef typename iterator_traits<InputIt1>::difference_type difference_type;
364
- typedef ValueType value_type;
365
- typedef void pointer;
366
- typedef value_type reference;
367
- typedef std::random_access_iterator_tag iterator_category;
368
-
369
- InputIt1 input1;
370
- InputIt2 input2;
371
- mutable BinaryOp op;
372
-
373
- __host__ __device__ __forceinline__
374
- transform_pair_of_input_iterators_t(InputIt1 input1_,
375
- InputIt2 input2_,
376
- BinaryOp op_)
377
- : input1(input1_), input2(input2_), op(op_) {}
378
-
379
- #if THRUST_CPP_DIALECT >= 2011
380
- transform_pair_of_input_iterators_t(const self_t &) = default;
381
- #endif
382
-
383
- // BinaryOp might not be copy assignable, such as when it is a lambda.
384
- // Define an explicit copy assignment operator that doesn't try to assign it.
385
- self_t& operator=(const self_t& o)
386
- {
387
- input1 = o.input1;
388
- input2 = o.input2;
389
- return *this;
390
- }
391
-
392
- /// Postfix increment
393
- __host__ __device__ __forceinline__ self_t operator++(int)
394
- {
395
- self_t retval = *this;
396
- ++input1;
397
- ++input2;
398
- return retval;
399
- }
400
-
401
- /// Prefix increment
402
- __host__ __device__ __forceinline__ self_t operator++()
403
- {
404
- ++input1;
405
- ++input2;
406
- return *this;
407
- }
408
-
409
- /// Indirection
410
- __host__ __device__ __forceinline__ reference operator*() const
411
- {
412
- return op(*input1, *input2);
413
- }
414
- /// Indirection
415
- __host__ __device__ __forceinline__ reference operator*()
416
- {
417
- return op(*input1, *input2);
418
- }
419
-
420
- /// Addition
421
- __host__ __device__ __forceinline__ self_t operator+(difference_type n) const
422
- {
423
- return self_t(input1 + n, input2 + n, op);
424
- }
425
-
426
- /// Addition assignment
427
- __host__ __device__ __forceinline__ self_t &operator+=(difference_type n)
428
- {
429
- input1 += n;
430
- input2 += n;
431
- return *this;
432
- }
433
-
434
- /// Subtraction
435
- __host__ __device__ __forceinline__ self_t operator-(difference_type n) const
436
- {
437
- return self_t(input1 - n, input2 - n, op);
438
- }
439
-
440
- /// Subtraction assignment
441
- __host__ __device__ __forceinline__ self_t &operator-=(difference_type n)
442
- {
443
- input1 -= n;
444
- input2 -= n;
445
- return *this;
446
- }
447
-
448
- /// Distance
449
- __host__ __device__ __forceinline__ difference_type operator-(self_t other) const
450
- {
451
- return input1 - other.input1;
452
- }
453
-
454
- /// Array subscript
455
- __host__ __device__ __forceinline__ reference operator[](difference_type n) const
456
- {
457
- return op(input1[n], input2[n]);
458
- }
459
-
460
- /// Equal to
461
- __host__ __device__ __forceinline__ bool operator==(const self_t &rhs) const
462
- {
463
- return (input1 == rhs.input1) && (input2 == rhs.input2);
464
- }
465
-
466
- /// Not equal to
467
- __host__ __device__ __forceinline__ bool operator!=(const self_t &rhs) const
468
- {
469
- return (input1 != rhs.input1) || (input2 != rhs.input2);
470
- }
471
-
472
- }; // struct transform_pair_of_input_iterators_t
473
-
474
-
475
- struct identity
476
- {
477
- template <class T>
478
- __host__ __device__ T const &
479
- operator()(T const &t) const
480
- {
481
- return t;
482
- }
483
-
484
- template <class T>
485
- __host__ __device__ T &
486
- operator()(T &t) const
487
- {
488
- return t;
489
- }
490
- };
491
-
492
-
493
- template <class T>
494
- struct counting_iterator_t
495
- {
496
- typedef counting_iterator_t self_t;
497
- typedef T difference_type;
498
- typedef T value_type;
499
- typedef void pointer;
500
- typedef T reference;
501
- typedef std::random_access_iterator_tag iterator_category;
502
-
503
- T count;
504
-
505
- __host__ __device__ __forceinline__
506
- counting_iterator_t(T count_) : count(count_) {}
507
-
508
- /// Postfix increment
509
- __host__ __device__ __forceinline__ self_t operator++(int)
510
- {
511
- self_t retval = *this;
512
- ++count;
513
- return retval;
514
- }
515
-
516
- /// Prefix increment
517
- __host__ __device__ __forceinline__ self_t operator++()
518
- {
519
- ++count;
520
- return *this;
521
- }
522
-
523
- /// Indirection
524
- __host__ __device__ __forceinline__ reference operator*() const
525
- {
526
- return count;
527
- }
528
-
529
- /// Indirection
530
- __host__ __device__ __forceinline__ reference operator*()
531
- {
532
- return count;
533
- }
534
-
535
- /// Addition
536
- __host__ __device__ __forceinline__ self_t operator+(difference_type n) const
537
- {
538
- return self_t(count + n);
539
- }
540
-
541
- /// Addition assignment
542
- __host__ __device__ __forceinline__ self_t &operator+=(difference_type n)
543
- {
544
- count += n;
545
- return *this;
546
- }
547
-
548
- /// Subtraction
549
- __host__ __device__ __forceinline__ self_t operator-(difference_type n) const
550
- {
551
- return self_t(count - n);
552
- }
553
-
554
- /// Subtraction assignment
555
- __host__ __device__ __forceinline__ self_t &operator-=(difference_type n)
556
- {
557
- count -= n;
558
- return *this;
559
- }
560
-
561
- /// Distance
562
- __host__ __device__ __forceinline__ difference_type operator-(self_t other) const
563
- {
564
- return count - other.count;
565
- }
566
-
567
- /// Array subscript
568
- __host__ __device__ __forceinline__ reference operator[](difference_type n) const
569
- {
570
- return count + n;
571
- }
572
-
573
- /// Equal to
574
- __host__ __device__ __forceinline__ bool operator==(const self_t &rhs) const
575
- {
576
- return (count == rhs.count);
577
- }
578
-
579
- /// Not equal to
580
- __host__ __device__ __forceinline__ bool operator!=(const self_t &rhs) const
581
- {
582
- return (count != rhs.count);
583
- }
584
-
585
- }; // struct count_iterator_t
586
-
587
- } // cuda_
588
-
589
- } // end namespace thrust
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/lama-example/saicinpainting/training/losses/style_loss.py DELETED
@@ -1,155 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- import torchvision.models as models
4
-
5
-
6
- class PerceptualLoss(nn.Module):
7
- r"""
8
- Perceptual loss, VGG-based
9
- https://arxiv.org/abs/1603.08155
10
- https://github.com/dxyang/StyleTransfer/blob/master/utils.py
11
- """
12
-
13
- def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 1.0]):
14
- super(PerceptualLoss, self).__init__()
15
- self.add_module('vgg', VGG19())
16
- self.criterion = torch.nn.L1Loss()
17
- self.weights = weights
18
-
19
- def __call__(self, x, y):
20
- # Compute features
21
- x_vgg, y_vgg = self.vgg(x), self.vgg(y)
22
-
23
- content_loss = 0.0
24
- content_loss += self.weights[0] * self.criterion(x_vgg['relu1_1'], y_vgg['relu1_1'])
25
- content_loss += self.weights[1] * self.criterion(x_vgg['relu2_1'], y_vgg['relu2_1'])
26
- content_loss += self.weights[2] * self.criterion(x_vgg['relu3_1'], y_vgg['relu3_1'])
27
- content_loss += self.weights[3] * self.criterion(x_vgg['relu4_1'], y_vgg['relu4_1'])
28
- content_loss += self.weights[4] * self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1'])
29
-
30
-
31
- return content_loss
32
-
33
-
34
- class VGG19(torch.nn.Module):
35
- def __init__(self):
36
- super(VGG19, self).__init__()
37
- features = models.vgg19(pretrained=True).features
38
- self.relu1_1 = torch.nn.Sequential()
39
- self.relu1_2 = torch.nn.Sequential()
40
-
41
- self.relu2_1 = torch.nn.Sequential()
42
- self.relu2_2 = torch.nn.Sequential()
43
-
44
- self.relu3_1 = torch.nn.Sequential()
45
- self.relu3_2 = torch.nn.Sequential()
46
- self.relu3_3 = torch.nn.Sequential()
47
- self.relu3_4 = torch.nn.Sequential()
48
-
49
- self.relu4_1 = torch.nn.Sequential()
50
- self.relu4_2 = torch.nn.Sequential()
51
- self.relu4_3 = torch.nn.Sequential()
52
- self.relu4_4 = torch.nn.Sequential()
53
-
54
- self.relu5_1 = torch.nn.Sequential()
55
- self.relu5_2 = torch.nn.Sequential()
56
- self.relu5_3 = torch.nn.Sequential()
57
- self.relu5_4 = torch.nn.Sequential()
58
-
59
- for x in range(2):
60
- self.relu1_1.add_module(str(x), features[x])
61
-
62
- for x in range(2, 4):
63
- self.relu1_2.add_module(str(x), features[x])
64
-
65
- for x in range(4, 7):
66
- self.relu2_1.add_module(str(x), features[x])
67
-
68
- for x in range(7, 9):
69
- self.relu2_2.add_module(str(x), features[x])
70
-
71
- for x in range(9, 12):
72
- self.relu3_1.add_module(str(x), features[x])
73
-
74
- for x in range(12, 14):
75
- self.relu3_2.add_module(str(x), features[x])
76
-
77
- for x in range(14, 16):
78
- self.relu3_2.add_module(str(x), features[x])
79
-
80
- for x in range(16, 18):
81
- self.relu3_4.add_module(str(x), features[x])
82
-
83
- for x in range(18, 21):
84
- self.relu4_1.add_module(str(x), features[x])
85
-
86
- for x in range(21, 23):
87
- self.relu4_2.add_module(str(x), features[x])
88
-
89
- for x in range(23, 25):
90
- self.relu4_3.add_module(str(x), features[x])
91
-
92
- for x in range(25, 27):
93
- self.relu4_4.add_module(str(x), features[x])
94
-
95
- for x in range(27, 30):
96
- self.relu5_1.add_module(str(x), features[x])
97
-
98
- for x in range(30, 32):
99
- self.relu5_2.add_module(str(x), features[x])
100
-
101
- for x in range(32, 34):
102
- self.relu5_3.add_module(str(x), features[x])
103
-
104
- for x in range(34, 36):
105
- self.relu5_4.add_module(str(x), features[x])
106
-
107
- # don't need the gradients, just want the features
108
- for param in self.parameters():
109
- param.requires_grad = False
110
-
111
- def forward(self, x):
112
- relu1_1 = self.relu1_1(x)
113
- relu1_2 = self.relu1_2(relu1_1)
114
-
115
- relu2_1 = self.relu2_1(relu1_2)
116
- relu2_2 = self.relu2_2(relu2_1)
117
-
118
- relu3_1 = self.relu3_1(relu2_2)
119
- relu3_2 = self.relu3_2(relu3_1)
120
- relu3_3 = self.relu3_3(relu3_2)
121
- relu3_4 = self.relu3_4(relu3_3)
122
-
123
- relu4_1 = self.relu4_1(relu3_4)
124
- relu4_2 = self.relu4_2(relu4_1)
125
- relu4_3 = self.relu4_3(relu4_2)
126
- relu4_4 = self.relu4_4(relu4_3)
127
-
128
- relu5_1 = self.relu5_1(relu4_4)
129
- relu5_2 = self.relu5_2(relu5_1)
130
- relu5_3 = self.relu5_3(relu5_2)
131
- relu5_4 = self.relu5_4(relu5_3)
132
-
133
- out = {
134
- 'relu1_1': relu1_1,
135
- 'relu1_2': relu1_2,
136
-
137
- 'relu2_1': relu2_1,
138
- 'relu2_2': relu2_2,
139
-
140
- 'relu3_1': relu3_1,
141
- 'relu3_2': relu3_2,
142
- 'relu3_3': relu3_3,
143
- 'relu3_4': relu3_4,
144
-
145
- 'relu4_1': relu4_1,
146
- 'relu4_2': relu4_2,
147
- 'relu4_3': relu4_3,
148
- 'relu4_4': relu4_4,
149
-
150
- 'relu5_1': relu5_1,
151
- 'relu5_2': relu5_2,
152
- 'relu5_3': relu5_3,
153
- 'relu5_4': relu5_4,
154
- }
155
- return out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/lama-example/saicinpainting/training/modules/fake_fakes.py DELETED
@@ -1,47 +0,0 @@
1
- import torch
2
- from kornia import SamplePadding
3
- from kornia.augmentation import RandomAffine, CenterCrop
4
-
5
-
6
- class FakeFakesGenerator:
7
- def __init__(self, aug_proba=0.5, img_aug_degree=30, img_aug_translate=0.2):
8
- self.grad_aug = RandomAffine(degrees=360,
9
- translate=0.2,
10
- padding_mode=SamplePadding.REFLECTION,
11
- keepdim=False,
12
- p=1)
13
- self.img_aug = RandomAffine(degrees=img_aug_degree,
14
- translate=img_aug_translate,
15
- padding_mode=SamplePadding.REFLECTION,
16
- keepdim=True,
17
- p=1)
18
- self.aug_proba = aug_proba
19
-
20
- def __call__(self, input_images, masks):
21
- blend_masks = self._fill_masks_with_gradient(masks)
22
- blend_target = self._make_blend_target(input_images)
23
- result = input_images * (1 - blend_masks) + blend_target * blend_masks
24
- return result, blend_masks
25
-
26
- def _make_blend_target(self, input_images):
27
- batch_size = input_images.shape[0]
28
- permuted = input_images[torch.randperm(batch_size)]
29
- augmented = self.img_aug(input_images)
30
- is_aug = (torch.rand(batch_size, device=input_images.device)[:, None, None, None] < self.aug_proba).float()
31
- result = augmented * is_aug + permuted * (1 - is_aug)
32
- return result
33
-
34
- def _fill_masks_with_gradient(self, masks):
35
- batch_size, _, height, width = masks.shape
36
- grad = torch.linspace(0, 1, steps=width * 2, device=masks.device, dtype=masks.dtype) \
37
- .view(1, 1, 1, -1).expand(batch_size, 1, height * 2, width * 2)
38
- grad = self.grad_aug(grad)
39
- grad = CenterCrop((height, width))(grad)
40
- grad *= masks
41
-
42
- grad_for_min = grad + (1 - masks) * 10
43
- grad -= grad_for_min.view(batch_size, -1).min(-1).values[:, None, None, None]
44
- grad /= grad.view(batch_size, -1).max(-1).values[:, None, None, None] + 1e-6
45
- grad.clamp_(min=0, max=1)
46
-
47
- return grad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CVPR/v-doc_abstractive_mac/demo.py DELETED
@@ -1,83 +0,0 @@
1
-
2
- import json
3
- import os
4
- import werkzeug
5
- import tensorflow as tf
6
-
7
- from config import config, parseArgs, configPDF
8
- from extract_feature import get_img_feat, build_model
9
- from main import setSession, loadWeights, setSavers
10
- from model import MACnet
11
- from preprocess import Preprocesser
12
- import warnings
13
-
14
- def predict(image, question):
15
- parseArgs()
16
- config.parallel = True
17
- config.evalTrain = True
18
- config.retainVal = True
19
- config.useEMA = True
20
- config.lrReduce = True
21
- config.adam = True
22
- config.clip = True
23
- config.memoryVariationalDropout = True
24
- config.relu='ELU'
25
- config.encBi = True
26
- config.wrdEmbRandom = True
27
- config.wrdEmbUniform = True
28
- config.outQuestion = True
29
- config.initCtrl='Q'
30
- config.controlContextual = True
31
- config.controlInputUnshared = True
32
- config.readProjInputs = True
33
- config.readMemConcatKB = True
34
- config.readMemConcatProj = True
35
- config.readMemProj = True
36
- config.readCtrl = True
37
- config.writeMemProj = True
38
- config.restore = True
39
- config.expName = 'PDF_exp_extra'
40
- config.netLength = 16
41
- configPDF()
42
- with open(config.configFile(), "a+") as outFile:
43
- json.dump(vars(config), outFile)
44
-
45
- if config.gpus != "":
46
- config.gpusNum = len(config.gpus.split(","))
47
- os.environ["CUDA_VISIBLE_DEVICES"] = config.gpus
48
- tf.reset_default_graph()
49
- tf.Graph().as_default()
50
- tf.logging.set_verbosity(tf.logging.ERROR)
51
- cnn_model = build_model()
52
- imageData = get_img_feat(cnn_model, image)
53
-
54
- preprocessor = Preprocesser()
55
- qData, embeddings, answerDict = preprocessor.preprocessData(question)
56
- model = MACnet(embeddings, answerDict)
57
- init = tf.global_variables_initializer()
58
-
59
- savers = setSavers(model)
60
- saver, emaSaver = savers["saver"], savers["emaSaver"]
61
- sessionConfig = setSession()
62
-
63
- data = {'data': qData, 'image': imageData}
64
-
65
- with tf.Session(config=sessionConfig) as sess:
66
- sess.graph.finalize()
67
-
68
- # epoch = loadWeights(sess, saver, init)
69
- print('###############', config.weightsFile(25))
70
- os.system('ls -l ./weights/PDF_exp_extra')
71
- emaSaver.restore(sess, config.weightsFile(25))
72
-
73
- evalRes = model.runBatch(sess, data['data'], data['image'], False)
74
- answer = None
75
-
76
- if evalRes in ['top', 'bottom']:
77
- answer = 'The caption at the %s side of the object.' % evalRes
78
- elif evalRes in ['True', 'False']:
79
- answer = 'There is at least one title object in this image.'
80
- else:
81
- answer = 'This image contain %s specific object(s).' % evalRes
82
-
83
- return answer
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Caoyunkang/Segment-Any-Anomaly/SAM/scripts/amg.py DELETED
@@ -1,238 +0,0 @@
1
- # Copyright (c) Meta Platforms, Inc. and affiliates.
2
- # All rights reserved.
3
-
4
- # This source code is licensed under the license found in the
5
- # LICENSE file in the root directory of this source tree.
6
-
7
- import cv2 # type: ignore
8
-
9
- from SAM import SamAutomaticMaskGenerator, sam_model_registry
10
-
11
- import argparse
12
- import json
13
- import os
14
- from typing import Any, Dict, List
15
-
16
- parser = argparse.ArgumentParser(
17
- description=(
18
- "Runs automatic mask generation on an input image or directory of images, "
19
- "and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
20
- "as well as pycocotools if saving in RLE format."
21
- )
22
- )
23
-
24
- parser.add_argument(
25
- "--input",
26
- type=str,
27
- required=True,
28
- help="Path to either a single input image or folder of images.",
29
- )
30
-
31
- parser.add_argument(
32
- "--output",
33
- type=str,
34
- required=True,
35
- help=(
36
- "Path to the directory where masks will be output. Output will be either a folder "
37
- "of PNGs per image or a single json with COCO-style masks."
38
- ),
39
- )
40
-
41
- parser.add_argument(
42
- "--model-type",
43
- type=str,
44
- default="default",
45
- help="The type of model to load, in ['default', 'vit_l', 'vit_b']",
46
- )
47
-
48
- parser.add_argument(
49
- "--checkpoint",
50
- type=str,
51
- required=True,
52
- help="The path to the SAM checkpoint to use for mask generation.",
53
- )
54
-
55
- parser.add_argument("--device", type=str, default="cuda", help="The device to run generation on.")
56
-
57
- parser.add_argument(
58
- "--convert-to-rle",
59
- action="store_true",
60
- help=(
61
- "Save masks as COCO RLEs in a single json instead of as a folder of PNGs. "
62
- "Requires pycocotools."
63
- ),
64
- )
65
-
66
- amg_settings = parser.add_argument_group("AMG Settings")
67
-
68
- amg_settings.add_argument(
69
- "--points-per-side",
70
- type=int,
71
- default=None,
72
- help="Generate masks by sampling a grid over the image with this many points to a side.",
73
- )
74
-
75
- amg_settings.add_argument(
76
- "--points-per-batch",
77
- type=int,
78
- default=None,
79
- help="How many input points to process simultaneously in one batch.",
80
- )
81
-
82
- amg_settings.add_argument(
83
- "--pred-iou-thresh",
84
- type=float,
85
- default=None,
86
- help="Exclude masks with a predicted score from the model that is lower than this threshold.",
87
- )
88
-
89
- amg_settings.add_argument(
90
- "--stability-score-thresh",
91
- type=float,
92
- default=None,
93
- help="Exclude masks with a stability score lower than this threshold.",
94
- )
95
-
96
- amg_settings.add_argument(
97
- "--stability-score-offset",
98
- type=float,
99
- default=None,
100
- help="Larger values perturb the mask more when measuring stability score.",
101
- )
102
-
103
- amg_settings.add_argument(
104
- "--box-nms-thresh",
105
- type=float,
106
- default=None,
107
- help="The overlap threshold for excluding a duplicate mask.",
108
- )
109
-
110
- amg_settings.add_argument(
111
- "--crop-n-layers",
112
- type=int,
113
- default=None,
114
- help=(
115
- "If >0, mask generation is run on smaller crops of the image to generate more masks. "
116
- "The value sets how many different scales to crop at."
117
- ),
118
- )
119
-
120
- amg_settings.add_argument(
121
- "--crop-nms-thresh",
122
- type=float,
123
- default=None,
124
- help="The overlap threshold for excluding duplicate masks across different crops.",
125
- )
126
-
127
- amg_settings.add_argument(
128
- "--crop-overlap-ratio",
129
- type=int,
130
- default=None,
131
- help="Larger numbers mean image crops will overlap more.",
132
- )
133
-
134
- amg_settings.add_argument(
135
- "--crop-n-points-downscale-factor",
136
- type=int,
137
- default=None,
138
- help="The number of points-per-side in each layer of crop is reduced by this factor.",
139
- )
140
-
141
- amg_settings.add_argument(
142
- "--min-mask-region-area",
143
- type=int,
144
- default=None,
145
- help=(
146
- "Disconnected mask regions or holes with area smaller than this value "
147
- "in pixels are removed by postprocessing."
148
- ),
149
- )
150
-
151
-
152
- def write_masks_to_folder(masks: List[Dict[str, Any]], path: str) -> None:
153
- header = "id,area,bbox_x0,bbox_y0,bbox_w,bbox_h,point_input_x,point_input_y,predicted_iou,stability_score,crop_box_x0,crop_box_y0,crop_box_w,crop_box_h" # noqa
154
- metadata = [header]
155
- for i, mask_data in enumerate(masks):
156
- mask = mask_data["segmentation"]
157
- filename = f"{i}.png"
158
- cv2.imwrite(os.path.join(path, filename), mask * 255)
159
- mask_metadata = [
160
- str(i),
161
- str(mask_data["area"]),
162
- *[str(x) for x in mask_data["bbox"]],
163
- *[str(x) for x in mask_data["point_coords"][0]],
164
- str(mask_data["predicted_iou"]),
165
- str(mask_data["stability_score"]),
166
- *[str(x) for x in mask_data["crop_box"]],
167
- ]
168
- row = ",".join(mask_metadata)
169
- metadata.append(row)
170
- metadata_path = os.path.join(path, "metadata.csv")
171
- with open(metadata_path, "w") as f:
172
- f.write("\n".join(metadata))
173
-
174
- return
175
-
176
-
177
- def get_amg_kwargs(args):
178
- amg_kwargs = {
179
- "points_per_side": args.points_per_side,
180
- "points_per_batch": args.points_per_batch,
181
- "pred_iou_thresh": args.pred_iou_thresh,
182
- "stability_score_thresh": args.stability_score_thresh,
183
- "stability_score_offset": args.stability_score_offset,
184
- "box_nms_thresh": args.box_nms_thresh,
185
- "crop_n_layers": args.crop_n_layers,
186
- "crop_nms_thresh": args.crop_nms_thresh,
187
- "crop_overlap_ratio": args.crop_overlap_ratio,
188
- "crop_n_points_downscale_factor": args.crop_n_points_downscale_factor,
189
- "min_mask_region_area": args.min_mask_region_area,
190
- }
191
- amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None}
192
- return amg_kwargs
193
-
194
-
195
- def main(args: argparse.Namespace) -> None:
196
- print("Loading model...")
197
- sam = sam_model_registry[args.model_type](checkpoint=args.checkpoint)
198
- _ = sam.to(device=args.device)
199
- output_mode = "coco_rle" if args.convert_to_rle else "binary_mask"
200
- amg_kwargs = get_amg_kwargs(args)
201
- generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode, **amg_kwargs)
202
-
203
- if not os.path.isdir(args.input):
204
- targets = [args.input]
205
- else:
206
- targets = [
207
- f for f in os.listdir(args.input) if not os.path.isdir(os.path.join(args.input, f))
208
- ]
209
- targets = [os.path.join(args.input, f) for f in targets]
210
-
211
- os.makedirs(args.output, exist_ok=True)
212
-
213
- for t in targets:
214
- print(f"Processing '{t}'...")
215
- image = cv2.imread(t)
216
- if image is None:
217
- print(f"Could not load '{t}' as an image, skipping...")
218
- continue
219
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
220
-
221
- masks = generator.generate(image)
222
-
223
- base = os.path.basename(t)
224
- base = os.path.splitext(base)[0]
225
- save_base = os.path.join(args.output, base)
226
- if output_mode == "binary_mask":
227
- os.makedirs(save_base, exist_ok=False)
228
- write_masks_to_folder(masks, save_base)
229
- else:
230
- save_file = save_base + ".json"
231
- with open(save_file, "w") as f:
232
- json.dump(masks, f)
233
- print("Done!")
234
-
235
-
236
- if __name__ == "__main__":
237
- args = parser.parse_args()
238
- main(args)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CikeyQI/Yunzai/Yunzai/plugins/ws-plugin/components/YamlReader.js DELETED
@@ -1,83 +0,0 @@
1
- import fs from 'fs'
2
- import YAML from 'yaml'
3
- import _ from 'lodash'
4
- import chokidar from 'chokidar'
5
-
6
- export default class YamlReader {
7
- /**
8
- * 读写yaml文件
9
- *
10
- * @param yamlPath yaml文件绝对路径
11
- * @param isWatch 是否监听文件变化
12
- */
13
- constructor(yamlPath, isWatch = false) {
14
- this.yamlPath = yamlPath
15
- this.isWatch = isWatch
16
- this.initYaml()
17
- }
18
-
19
- initYaml() {
20
- // parseDocument 将会保留注释
21
- this.document = YAML.parseDocument(fs.readFileSync(this.yamlPath, 'utf8'))
22
- if (this.isWatch && !this.watcher) {
23
- this.watcher = chokidar.watch(this.yamlPath).on('change', () => {
24
- if (this.isSave) {
25
- this.isSave = false
26
- return
27
- }
28
- this.initYaml()
29
- })
30
- }
31
- }
32
-
33
- /** 返回读取的对象 */
34
- get jsonData() {
35
- if (!this.document) {
36
- return null
37
- }
38
- return this.document.toJSON()
39
- }
40
-
41
- /* 检查集合是否包含key的值 */
42
- has(keyPath) {
43
- return this.document.hasIn(keyPath.split('.'))
44
- }
45
-
46
- /* 返回key的值 */
47
- get(keyPath) {
48
- return _.get(this.jsonData, keyPath)
49
- }
50
-
51
- /* 修改某个key的值 */
52
- set(keyPath, value) {
53
- this.document.setIn([keyPath], value)
54
- this.save()
55
- }
56
-
57
- /* 删除key */
58
- delete(keyPath) {
59
- this.document.deleteIn(keyPath.split('.'))
60
- this.save()
61
- }
62
-
63
- // 数组添加数据
64
- addIn(keyPath, value) {
65
- this.document.addIn(keyPath.split('.'), value)
66
- this.save()
67
- }
68
-
69
- // 彻底删除某个key
70
- deleteKey(keyPath) {
71
- let keys = keyPath.split('.')
72
- keys = this.mapParentKeys(keys)
73
- this.document.deleteIn(keys)
74
- this.save()
75
- }
76
-
77
- // 保存yaml文件,写入文件
78
- save() {
79
- this.isSave = true
80
- let yaml = this.document.toString()
81
- fs.writeFileSync(this.yamlPath, yaml, 'utf8')
82
- }
83
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/CognitiveLabs/Research-Assistant/statics/README_zh.md DELETED
@@ -1,41 +0,0 @@
1
- <div style="width: 100%;">
2
- <img src="../statics/title.svg" style="width: 100%;">
3
- </div>
4
-
5
- 受[gpt-researcher](https://github.com/assafelovic/gpt-researcher)启发,本项目提供了一种利用第三方API而不是官方API生成研究报告的替代方法。要访问此第三方API,请参阅[chimeragpt](https://chimeragpt.adventblocks.cc/)或者[GPT-API-free](https://github.com/chatanywhere/GPT_API_free)。一旦获得API密钥,您就可以使用它来访问chimeragpt API。因此,在运行项目之前,请确保您设置了环境变量`OPENAI_API_KEY`和`OPENAI_API_BASE`。
6
-
7
- ```shell
8
- $ export OPENAI_API_KEY = your_api_key
9
- $ export OPENAI_API_BASE = your_api_base
10
- ```
11
-
12
- 或者您可以在`.env`文件中设置api密钥和基础。
13
-
14
- ## 安装
15
-
16
- 1. 克隆存储库
17
-
18
- ```shell
19
- $ git clone [email protected]:paradoxtown/ai_research_assistant.git
20
- $ cd ai_research_assistant
21
- ```
22
-
23
- 2. 安装依赖项
24
-
25
- ```shell
26
- $ pip install -r requirements.txt
27
- ```
28
-
29
- 3. 导出环境变量
30
-
31
- ```shell
32
- $ export OPENAI_API_KEY = your_api_key
33
- $ export OPENAI_API_BASE = your_api_base
34
- ```
35
- 或修改`.env`文件。
36
-
37
- 4. 运行项目
38
-
39
- ```shell
40
- $ python app.py
41
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/fastapi/templating.py DELETED
@@ -1 +0,0 @@
1
- from starlette.templating import Jinja2Templates as Jinja2Templates # noqa
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/gradio/templates/frontend/assets/IconButton-abe5ede9.js DELETED
@@ -1,2 +0,0 @@
1
- import{S as I,e as k,s as w,N as m,O as p,k as q,K as f,U as b,p as g,M as _,o as v,Q as S,z,v as A,A as h,x as B,P as C,R as F,F as K}from"./index-3370be2a.js";import"./Button-89624748.js";function d(l){let e,i;return{c(){e=m("span"),i=C(l[1]),f(e,"class","svelte-1030q2h")},m(a,s){g(a,e,s),_(e,i)},p(a,s){s&2&&F(i,a[1])},d(a){a&&h(e)}}}function M(l){let e,i,a,s,o,c,r,n=l[2]&&d(l);return s=new l[0]({}),{c(){e=m("button"),n&&n.c(),i=p(),a=m("div"),q(s.$$.fragment),f(a,"class","svelte-1030q2h"),f(e,"aria-label",l[1]),f(e,"title",l[1]),f(e,"class","svelte-1030q2h"),b(e,"pending",l[3])},m(t,u){g(t,e,u),n&&n.m(e,null),_(e,i),_(e,a),v(s,a,null),o=!0,c||(r=S(e,"click",l[4]),c=!0)},p(t,[u]){t[2]?n?n.p(t,u):(n=d(t),n.c(),n.m(e,i)):n&&(n.d(1),n=null),(!o||u&2)&&f(e,"aria-label",t[1]),(!o||u&2)&&f(e,"title",t[1]),(!o||u&8)&&b(e,"pending",t[3])},i(t){o||(z(s.$$.fragment,t),o=!0)},o(t){A(s.$$.fragment,t),o=!1},d(t){t&&h(e),n&&n.d(),B(s),c=!1,r()}}}function N(l,e,i){let{Icon:a}=e,{label:s=""}=e,{show_label:o=!1}=e,{pending:c=!1}=e;function r(n){K.call(this,l,n)}return l.$$set=n=>{"Icon"in n&&i(0,a=n.Icon),"label"in n&&i(1,s=n.label),"show_label"in n&&i(2,o=n.show_label),"pending"in n&&i(3,c=n.pending)},[a,s,o,c,r]}class Q extends I{constructor(e){super(),k(this,e,N,M,w,{Icon:0,label:1,show_label:2,pending:3})}}export{Q as I};
2
- //# sourceMappingURL=IconButton-abe5ede9.js.map
 
 
 
spaces/DQChoi/gpt-demo/venv/lib/python3.11/site-packages/huggingface_hub/utils/_paths.py DELETED
@@ -1,117 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2022-present, the HuggingFace Inc. team.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Contains utilities to handle paths in Huggingface Hub."""
16
- from fnmatch import fnmatch
17
- from pathlib import Path
18
- from typing import Callable, Generator, Iterable, List, Optional, TypeVar, Union
19
-
20
-
21
- T = TypeVar("T")
22
-
23
- IGNORE_GIT_FOLDER_PATTERNS = [".git", ".git/*", "*/.git", "**/.git/**"]
24
-
25
-
26
- def filter_repo_objects(
27
- items: Iterable[T],
28
- *,
29
- allow_patterns: Optional[Union[List[str], str]] = None,
30
- ignore_patterns: Optional[Union[List[str], str]] = None,
31
- key: Optional[Callable[[T], str]] = None,
32
- ) -> Generator[T, None, None]:
33
- """Filter repo objects based on an allowlist and a denylist.
34
-
35
- Input must be a list of paths (`str` or `Path`) or a list of arbitrary objects.
36
- In the later case, `key` must be provided and specifies a function of one argument
37
- that is used to extract a path from each element in iterable.
38
-
39
- Patterns are Unix shell-style wildcards which are NOT regular expressions. See
40
- https://docs.python.org/3/library/fnmatch.html for more details.
41
-
42
- Args:
43
- items (`Iterable`):
44
- List of items to filter.
45
- allow_patterns (`str` or `List[str]`, *optional*):
46
- Patterns constituting the allowlist. If provided, item paths must match at
47
- least one pattern from the allowlist.
48
- ignore_patterns (`str` or `List[str]`, *optional*):
49
- Patterns constituting the denylist. If provided, item paths must not match
50
- any patterns from the denylist.
51
- key (`Callable[[T], str]`, *optional*):
52
- Single-argument function to extract a path from each item. If not provided,
53
- the `items` must already be `str` or `Path`.
54
-
55
- Returns:
56
- Filtered list of objects, as a generator.
57
-
58
- Raises:
59
- :class:`ValueError`:
60
- If `key` is not provided and items are not `str` or `Path`.
61
-
62
- Example usage with paths:
63
- ```python
64
- >>> # Filter only PDFs that are not hidden.
65
- >>> list(filter_repo_objects(
66
- ... ["aaa.PDF", "bbb.jpg", ".ccc.pdf", ".ddd.png"],
67
- ... allow_patterns=["*.pdf"],
68
- ... ignore_patterns=[".*"],
69
- ... ))
70
- ["aaa.pdf"]
71
- ```
72
-
73
- Example usage with objects:
74
- ```python
75
- >>> list(filter_repo_objects(
76
- ... [
77
- ... CommitOperationAdd(path_or_fileobj="/tmp/aaa.pdf", path_in_repo="aaa.pdf")
78
- ... CommitOperationAdd(path_or_fileobj="/tmp/bbb.jpg", path_in_repo="bbb.jpg")
79
- ... CommitOperationAdd(path_or_fileobj="/tmp/.ccc.pdf", path_in_repo=".ccc.pdf")
80
- ... CommitOperationAdd(path_or_fileobj="/tmp/.ddd.png", path_in_repo=".ddd.png")
81
- ... ],
82
- ... allow_patterns=["*.pdf"],
83
- ... ignore_patterns=[".*"],
84
- ... key=lambda x: x.repo_in_path
85
- ... ))
86
- [CommitOperationAdd(path_or_fileobj="/tmp/aaa.pdf", path_in_repo="aaa.pdf")]
87
- ```
88
- """
89
- if isinstance(allow_patterns, str):
90
- allow_patterns = [allow_patterns]
91
-
92
- if isinstance(ignore_patterns, str):
93
- ignore_patterns = [ignore_patterns]
94
-
95
- if key is None:
96
-
97
- def _identity(item: T) -> str:
98
- if isinstance(item, str):
99
- return item
100
- if isinstance(item, Path):
101
- return str(item)
102
- raise ValueError(f"Please provide `key` argument in `filter_repo_objects`: `{item}` is not a string.")
103
-
104
- key = _identity # Items must be `str` or `Path`, otherwise raise ValueError
105
-
106
- for item in items:
107
- path = key(item)
108
-
109
- # Skip if there's an allowlist and path doesn't match any
110
- if allow_patterns is not None and not any(fnmatch(path, r) for r in allow_patterns):
111
- continue
112
-
113
- # Skip if there's a denylist and path matches any
114
- if ignore_patterns is not None and any(fnmatch(path, r) for r in ignore_patterns):
115
- continue
116
-
117
- yield item
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Datasculptor/3D-Room-Layout-Estimation_LGT-Net/postprocessing/dula/layout_old.py DELETED
@@ -1,134 +0,0 @@
1
- """
2
- @Date: 2021/10/06
3
- @description: Use the approach proposed by DuLa-Net
4
- """
5
- import cv2
6
- import numpy as np
7
- import math
8
- import matplotlib.pyplot as plt
9
-
10
- from visualization.floorplan import draw_floorplan
11
-
12
-
13
- def merge_near(lst, diag):
14
- group = [[0, ]]
15
- for i in range(1, len(lst)):
16
- if lst[i] - np.mean(group[-1]) < diag * 0.02:
17
- group[-1].append(lst[i])
18
- else:
19
- group.append([lst[i], ])
20
- if len(group) == 1:
21
- group = [lst[0], lst[-1]]
22
- else:
23
- group = [int(np.mean(x)) for x in group]
24
- return group
25
-
26
-
27
- def fit_layout_old(floor_xz, need_cube=False, show=False, block_eps=0.05):
28
- show_radius = np.linalg.norm(floor_xz, axis=-1).max()
29
- side_l = 512
30
- floorplan = draw_floorplan(xz=floor_xz, show_radius=show_radius, show=show, scale=1, side_l=side_l).astype(np.uint8)
31
- center = np.array([side_l / 2, side_l / 2])
32
- polys = cv2.findContours(floorplan, 1, 2)
33
- if isinstance(polys, tuple):
34
- if len(polys) == 3:
35
- # opencv 3
36
- polys = list(polys[1])
37
- else:
38
- polys = list(polys[0])
39
- polys.sort(key=lambda x: cv2.contourArea(x), reverse=True)
40
- poly = polys[0]
41
- sub_x, sub_y, w, h = cv2.boundingRect(poly)
42
- floorplan_sub = floorplan[sub_y:sub_y + h, sub_x:sub_x + w]
43
- sub_center = center - np.array([sub_x, sub_y])
44
- polys = cv2.findContours(floorplan_sub, 1, 2)
45
- if isinstance(polys, tuple):
46
- if len(polys) == 3:
47
- polys = polys[1]
48
- else:
49
- polys = polys[0]
50
- poly = polys[0]
51
- epsilon = 0.005 * cv2.arcLength(poly, True)
52
- poly = cv2.approxPolyDP(poly, epsilon, True)
53
-
54
- x_lst = [0, ]
55
- y_lst = [0, ]
56
- for i in range(len(poly)):
57
- p1 = poly[i][0]
58
- p2 = poly[(i + 1) % len(poly)][0]
59
-
60
- if (p2[0] - p1[0]) == 0:
61
- slope = 10
62
- else:
63
- slope = abs((p2[1] - p1[1]) / (p2[0] - p1[0]))
64
-
65
- if slope <= 1:
66
- s = int((p1[1] + p2[1]) / 2)
67
- y_lst.append(s)
68
- elif slope > 1:
69
- s = int((p1[0] + p2[0]) / 2)
70
- x_lst.append(s)
71
-
72
- x_lst.append(floorplan_sub.shape[1])
73
- y_lst.append(floorplan_sub.shape[0])
74
- x_lst.sort()
75
- y_lst.sort()
76
-
77
- diag = math.sqrt(math.pow(floorplan_sub.shape[1], 2) + math.pow(floorplan_sub.shape[0], 2))
78
- x_lst = merge_near(x_lst, diag)
79
- y_lst = merge_near(y_lst, diag)
80
- if need_cube and len(x_lst) > 2:
81
- x_lst = [x_lst[0], x_lst[-1]]
82
- if need_cube and len(y_lst) > 2:
83
- y_lst = [y_lst[0], y_lst[-1]]
84
-
85
- ans = np.zeros((floorplan_sub.shape[0], floorplan_sub.shape[1]))
86
- for i in range(len(x_lst) - 1):
87
- for j in range(len(y_lst) - 1):
88
- sample = floorplan_sub[y_lst[j]:y_lst[j + 1], x_lst[i]:x_lst[i + 1]]
89
- score = 0 if sample.size == 0 else sample.mean()
90
- if score >= 0.3:
91
- ans[y_lst[j]:y_lst[j + 1], x_lst[i]:x_lst[i + 1]] = 1
92
-
93
- pred = np.uint8(ans)
94
- pred_polys = cv2.findContours(pred, 1, 3)
95
- if isinstance(pred_polys, tuple):
96
- if len(pred_polys) == 3:
97
- pred_polys = pred_polys[1]
98
- else:
99
- pred_polys = pred_polys[0]
100
-
101
- polygon = [(p[0][1], p[0][0]) for p in pred_polys[0][::-1]]
102
-
103
- v = np.array([p[0] + sub_y for p in polygon])
104
- u = np.array([p[1] + sub_x for p in polygon])
105
- # side_l
106
- # v<-----------|o
107
- # | | |
108
- # | ----|----z | side_l
109
- # | | |
110
- # | x \|/
111
- # |------------u
112
- side_l = floorplan.shape[0]
113
- pred_xz = np.concatenate((u[:, np.newaxis] - side_l // 2, side_l // 2 - v[:, np.newaxis]), axis=1)
114
-
115
- pred_xz = pred_xz * show_radius / (side_l // 2)
116
- if show:
117
- draw_floorplan(pred_xz, show_radius=show_radius, show=show)
118
- return pred_xz
119
-
120
-
121
- if __name__ == '__main__':
122
- from utils.conversion import uv2xyz
123
-
124
- pano_img = np.zeros([512, 1024, 3])
125
- corners = np.array([[0.1, 0.7],
126
- [0.4, 0.7],
127
- [0.3, 0.6],
128
- [0.6, 0.6],
129
- [0.8, 0.7]])
130
- xz = uv2xyz(corners)[..., ::2]
131
- draw_floorplan(xz, show=True, marker_color=None, center_color=0.8)
132
-
133
- xz = fit_layout_old(xz)
134
- draw_floorplan(xz, show=True, marker_color=None, center_color=0.8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Datasculptor/StyleGAN-NADA/op/fused_bias_act.cpp DELETED
@@ -1,21 +0,0 @@
1
- #include <torch/extension.h>
2
-
3
-
4
- torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
5
- int act, int grad, float alpha, float scale);
6
-
7
- #define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
8
- #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
9
- #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
10
-
11
- torch::Tensor fused_bias_act(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
12
- int act, int grad, float alpha, float scale) {
13
- CHECK_CUDA(input);
14
- CHECK_CUDA(bias);
15
-
16
- return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
17
- }
18
-
19
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
20
- m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
21
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DeepakJaiz/QA_evaluator/README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: QA Evaluator
3
- emoji: 👁
4
- colorFrom: gray
5
- colorTo: purple
6
- sdk: streamlit
7
- sdk_version: 1.21.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Demosthene-OR/avr23-cds-translation/tabs/custom_vectorizer.py DELETED
@@ -1,14 +0,0 @@
1
- # Les 2 fonctions suivantes sont nécéssaires afin de sérialiser ces parametre de CountVectorizer
2
- # et ainsi de sauvegarder le vectorizer pour un un usage ultérieur sans utiliser X_train pour le réinitialiser
3
- import tiktoken
4
-
5
- tokenizer = tiktoken.get_encoding("cl100k_base")
6
-
7
- def custom_tokenizer(text):
8
- global tokenizer
9
-
10
- tokens = tokenizer.encode(text) # Cela divise le texte en mots
11
- return tokens
12
-
13
- def custom_preprocessor(text):
14
- return text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DragGan/DragGan-Inversion/PTI/training/coaches/base_coach.py DELETED
@@ -1,158 +0,0 @@
1
- import abc
2
- import os
3
- import pickle
4
- from argparse import Namespace
5
- import os.path
6
- from PTI.criteria.localitly_regulizer import Space_Regulizer
7
- import torch
8
- from torchvision import transforms
9
- from lpips import LPIPS
10
- from PTI.training.projectors import w_projector
11
- from PTI.configs import global_config, paths_config, hyperparameters
12
- from PTI.criteria import l2_loss
13
- from PTI.models.e4e.psp import pSp
14
- from PTI.utils.log_utils import log_image_from_w
15
- from PTI.utils.models_utils import toogle_grad, load_old_G
16
-
17
-
18
- class BaseCoach:
19
- def __init__(self, data_loader, use_wandb):
20
-
21
- self.use_wandb = use_wandb
22
- self.data_loader = data_loader
23
- self.w_pivots = {}
24
- self.image_counter = 0
25
-
26
- if hyperparameters.first_inv_type == 'w+':
27
- self.initilize_e4e()
28
-
29
- self.e4e_image_transform = transforms.Compose([
30
- transforms.ToPILImage(),
31
- transforms.Resize((256, 256)),
32
- transforms.ToTensor(),
33
- transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
34
-
35
- # Initialize loss
36
- self.lpips_loss = LPIPS(net=hyperparameters.lpips_type).to(
37
- global_config.device).eval()
38
-
39
- self.restart_training()
40
-
41
- # Initialize checkpoint dir
42
- self.checkpoint_dir = paths_config.checkpoints_dir
43
- os.makedirs(self.checkpoint_dir, exist_ok=True)
44
-
45
- def restart_training(self):
46
-
47
- # Initialize networks
48
- self.G = load_old_G()
49
- toogle_grad(self.G, True)
50
-
51
- self.original_G = load_old_G()
52
-
53
- self.space_regulizer = Space_Regulizer(
54
- self.original_G, self.lpips_loss)
55
- self.optimizer = self.configure_optimizers()
56
-
57
- def get_inversion(self, w_path_dir, image_name, image):
58
- embedding_dir = f'{w_path_dir}/{paths_config.pti_results_keyword}/{image_name}'
59
- os.makedirs(embedding_dir, exist_ok=True)
60
-
61
- w_pivot = None
62
- if hyperparameters.use_last_w_pivots:
63
- w_pivot = self.load_inversions(w_path_dir, image_name)
64
-
65
- if not hyperparameters.use_last_w_pivots or w_pivot is None:
66
- w_pivot = self.calc_inversions(image, image_name)
67
- torch.save(w_pivot, f'{embedding_dir}/0.pt')
68
-
69
- w_pivot = w_pivot.to(global_config.device)
70
- return w_pivot
71
-
72
- def load_inversions(self, w_path_dir, image_name):
73
- if image_name in self.w_pivots:
74
- return self.w_pivots[image_name]
75
-
76
- if hyperparameters.first_inv_type == 'w+':
77
- w_potential_path = f'{w_path_dir}/{paths_config.e4e_results_keyword}/{image_name}/0.pt'
78
- else:
79
- w_potential_path = f'{w_path_dir}/{paths_config.pti_results_keyword}/{image_name}/0.pt'
80
- if not os.path.isfile(w_potential_path):
81
- return None
82
- w = torch.load(w_potential_path).to(global_config.device)
83
- self.w_pivots[image_name] = w
84
- return w
85
-
86
- def calc_inversions(self, image, image_name):
87
- if hyperparameters.first_inv_type == 'w+':
88
- w = self.get_e4e_inversion(image)
89
-
90
- else:
91
- id_image = torch.squeeze(
92
- (image.to(global_config.device) + 1) / 2) * 255
93
- w = w_projector.project(self.G, id_image, device=torch.device(global_config.device), w_avg_samples=600,
94
- num_steps=hyperparameters.first_inv_steps, w_name=image_name,
95
- use_wandb=self.use_wandb)
96
-
97
- return w
98
-
99
- @abc.abstractmethod
100
- def train(self):
101
- pass
102
-
103
- def configure_optimizers(self):
104
- optimizer = torch.optim.Adam(
105
- self.G.parameters(), lr=hyperparameters.pti_learning_rate)
106
-
107
- return optimizer
108
-
109
- def calc_loss(self, generated_images, real_images, log_name, new_G, use_ball_holder, w_batch):
110
- loss = 0.0
111
-
112
- if hyperparameters.pt_l2_lambda > 0:
113
- l2_loss_val = l2_loss.l2_loss(generated_images, real_images)
114
- if self.use_wandb:
115
- wandb.log({f'MSE_loss_val_{log_name}': l2_loss_val.detach(
116
- ).cpu()}, step=global_config.training_step)
117
- loss += l2_loss_val * hyperparameters.pt_l2_lambda
118
- if hyperparameters.pt_lpips_lambda > 0:
119
- loss_lpips = self.lpips_loss(generated_images, real_images)
120
- loss_lpips = torch.squeeze(loss_lpips)
121
- if self.use_wandb:
122
- wandb.log({f'LPIPS_loss_val_{log_name}': loss_lpips.detach(
123
- ).cpu()}, step=global_config.training_step)
124
- loss += loss_lpips * hyperparameters.pt_lpips_lambda
125
-
126
- if use_ball_holder and hyperparameters.use_locality_regularization:
127
- ball_holder_loss_val = self.space_regulizer.space_regulizer_loss(
128
- new_G, w_batch, use_wandb=self.use_wandb)
129
- loss += ball_holder_loss_val
130
-
131
- return loss, l2_loss_val, loss_lpips
132
-
133
- def forward(self, w):
134
- generated_images = self.G.synthesis(
135
- w, noise_mode='const', force_fp32=True)
136
-
137
- return generated_images
138
-
139
- def initilize_e4e(self):
140
- ckpt = torch.load(paths_config.e4e, map_location='cpu')
141
- opts = ckpt['opts']
142
- opts['batch_size'] = hyperparameters.train_batch_size
143
- opts['checkpoint_path'] = paths_config.e4e
144
- opts = Namespace(**opts)
145
- self.e4e_inversion_net = pSp(opts)
146
- self.e4e_inversion_net.eval()
147
- self.e4e_inversion_net = self.e4e_inversion_net.to(
148
- global_config.device)
149
- toogle_grad(self.e4e_inversion_net, False)
150
-
151
- def get_e4e_inversion(self, image):
152
- image = (image + 1) / 2
153
- new_image = self.e4e_image_transform(image[0]).to(global_config.device)
154
- _, w = self.e4e_inversion_net(new_image.unsqueeze(0), randomize_noise=False, return_latents=True, resize=False,
155
- input_code=False)
156
- if self.use_wandb:
157
- log_image_from_w(w, self.G, 'First e4e inversion')
158
- return w
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/DragGan/DragGan-Inversion/PTI/training/projectors/w_plus_projector.py DELETED
@@ -1,145 +0,0 @@
1
- # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
2
- #
3
- # NVIDIA CORPORATION and its licensors retain all intellectual property
4
- # and proprietary rights in and to this software, related documentation
5
- # and any modifications thereto. Any use, reproduction, disclosure or
6
- # distribution of this software and related documentation without an express
7
- # license agreement from NVIDIA CORPORATION is strictly prohibited.
8
-
9
- """Project given image to the latent space of pretrained network pickle."""
10
-
11
- import copy
12
- import wandb
13
- import numpy as np
14
- import torch
15
- import torch.nn.functional as F
16
- from tqdm import tqdm
17
- from configs import global_config, hyperparameters
18
- import dnnlib
19
- from utils.log_utils import log_image_from_w
20
-
21
-
22
- def project(
23
- G,
24
- target: torch.Tensor, # [C,H,W] and dynamic range [0,255], W & H must match G output resolution
25
- *,
26
- num_steps=1000,
27
- w_avg_samples=10000,
28
- initial_learning_rate=0.01,
29
- initial_noise_factor=0.05,
30
- lr_rampdown_length=0.25,
31
- lr_rampup_length=0.05,
32
- noise_ramp_length=0.75,
33
- regularize_noise_weight=1e5,
34
- verbose=False,
35
- device: torch.device,
36
- use_wandb=False,
37
- initial_w=None,
38
- image_log_step=global_config.image_rec_result_log_snapshot,
39
- w_name: str
40
- ):
41
- assert target.shape == (G.img_channels, G.img_resolution, G.img_resolution)
42
-
43
- def logprint(*args):
44
- if verbose:
45
- print(*args)
46
-
47
- G = copy.deepcopy(G).eval().requires_grad_(False).to(device).float() # type: ignore
48
-
49
- # Compute w stats.
50
- logprint(f'Computing W midpoint and stddev using {w_avg_samples} samples...')
51
- z_samples = np.random.RandomState(123).randn(w_avg_samples, G.z_dim)
52
- w_samples = G.mapping(torch.from_numpy(z_samples).to(device), None) # [N, L, C]
53
- w_samples = w_samples[:, :1, :].cpu().numpy().astype(np.float32) # [N, 1, C]
54
- w_avg = np.mean(w_samples, axis=0, keepdims=True) # [1, 1, C]
55
- w_avg_tensor = torch.from_numpy(w_avg).to(global_config.device)
56
- w_std = (np.sum((w_samples - w_avg) ** 2) / w_avg_samples) ** 0.5
57
-
58
- start_w = initial_w if initial_w is not None else w_avg
59
-
60
- # Setup noise inputs.
61
- noise_bufs = {name: buf for (name, buf) in G.synthesis.named_buffers() if 'noise_const' in name}
62
-
63
- # Load VGG16 feature detector.
64
- url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt'
65
- with dnnlib.util.open_url(url) as f:
66
- vgg16 = torch.jit.load(f).eval().to(device)
67
-
68
- # Features for target image.
69
- target_images = target.unsqueeze(0).to(device).to(torch.float32)
70
- if target_images.shape[2] > 256:
71
- target_images = F.interpolate(target_images, size=(256, 256), mode='area')
72
- target_features = vgg16(target_images, resize_images=False, return_lpips=True)
73
-
74
- start_w = np.repeat(start_w, G.mapping.num_ws, axis=1)
75
- w_opt = torch.tensor(start_w, dtype=torch.float32, device=device,
76
- requires_grad=True) # pylint: disable=not-callable
77
-
78
- optimizer = torch.optim.Adam([w_opt] + list(noise_bufs.values()), betas=(0.9, 0.999),
79
- lr=hyperparameters.first_inv_lr)
80
-
81
- # Init noise.
82
- for buf in noise_bufs.values():
83
- buf[:] = torch.randn_like(buf)
84
- buf.requires_grad = True
85
-
86
- for step in tqdm(range(num_steps)):
87
-
88
- # Learning rate schedule.
89
- t = step / num_steps
90
- w_noise_scale = w_std * initial_noise_factor * max(0.0, 1.0 - t / noise_ramp_length) ** 2
91
- lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
92
- lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
93
- lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
94
- lr = initial_learning_rate * lr_ramp
95
- for param_group in optimizer.param_groups:
96
- param_group['lr'] = lr
97
-
98
- # Synth images from opt_w.
99
- w_noise = torch.randn_like(w_opt) * w_noise_scale
100
- ws = (w_opt + w_noise)
101
-
102
- synth_images = G.synthesis(ws, noise_mode='const', force_fp32=True)
103
-
104
- # Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
105
- synth_images = (synth_images + 1) * (255 / 2)
106
- if synth_images.shape[2] > 256:
107
- synth_images = F.interpolate(synth_images, size=(256, 256), mode='area')
108
-
109
- # Features for synth images.
110
- synth_features = vgg16(synth_images, resize_images=False, return_lpips=True)
111
- dist = (target_features - synth_features).square().sum()
112
-
113
- # Noise regularization.
114
- reg_loss = 0.0
115
- for v in noise_bufs.values():
116
- noise = v[None, None, :, :] # must be [1,1,H,W] for F.avg_pool2d()
117
- while True:
118
- reg_loss += (noise * torch.roll(noise, shifts=1, dims=3)).mean() ** 2
119
- reg_loss += (noise * torch.roll(noise, shifts=1, dims=2)).mean() ** 2
120
- if noise.shape[2] <= 8:
121
- break
122
- noise = F.avg_pool2d(noise, kernel_size=2)
123
- loss = dist + reg_loss * regularize_noise_weight
124
-
125
- if step % image_log_step == 0:
126
- with torch.no_grad():
127
- if use_wandb:
128
- global_config.training_step += 1
129
- wandb.log({f'first projection _{w_name}': loss.detach().cpu()}, step=global_config.training_step)
130
- log_image_from_w(w_opt, G, w_name)
131
-
132
- # Step
133
- optimizer.zero_grad(set_to_none=True)
134
- loss.backward()
135
- optimizer.step()
136
- logprint(f'step {step + 1:>4d}/{num_steps}: dist {dist:<4.2f} loss {float(loss):<5.2f}')
137
-
138
- # Normalize noise.
139
- with torch.no_grad():
140
- for buf in noise_bufs.values():
141
- buf -= buf.mean()
142
- buf *= buf.square().mean().rsqrt()
143
-
144
- del G
145
- return w_opt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Dragonnext/charybdis/greeting.md DELETED
@@ -1,17 +0,0 @@
1
-
2
- It will open ALWAYS every Friday 6PM UTC, till monday 7AM UTC. (No gatekeeper)
3
-
4
-
5
- (special proxy pass for non time frame access: Additional hints soon)
6
-
7
- Hints:
8
-
9
- All 62 unique words to get timeout (Including variations example > test + t3st)
10
-
11
- 315 Minutes
12
-
13
- SillyTavern Hivemind.
14
-
15
- https://pastebin.com/DhKk9w92
16
-
17
- Formating: all LOWERCASE no SPACES, first need to be ordered ALPHABETICALLY (Special character included, and should be first), cyrilic excluded (200 first letters, exclude the rest, due to ST proxy password limit being 200)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/EsoCode/text-generation-webui/modules/sampler_hijack.py DELETED
@@ -1,204 +0,0 @@
1
- import math
2
-
3
- import torch
4
- import transformers
5
- from transformers import LogitsWarper
6
- from transformers.generation.logits_process import (
7
- LogitNormalization,
8
- LogitsProcessor,
9
- LogitsProcessorList,
10
- TemperatureLogitsWarper
11
- )
12
-
13
-
14
- class TailFreeLogitsWarper(LogitsWarper):
15
- def __init__(self, tfs: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
16
- tfs = float(tfs)
17
- if tfs < 0 or tfs > 1.0:
18
- raise ValueError(f"`tfs` has to be a float >= 0 and <= 1, but is {tfs}")
19
- self.tfs = tfs
20
- self.filter_value = filter_value
21
- self.min_tokens_to_keep = min_tokens_to_keep
22
-
23
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
24
- sorted_logits, sorted_indices = torch.sort(scores, descending=True)
25
- probs = sorted_logits.softmax(dim=-1)
26
-
27
- # Compute second derivative normalized CDF
28
- d2 = probs.diff().diff().abs()
29
- normalized_d2 = d2 / d2.sum(dim=-1, keepdim=True)
30
- normalized_d2_cdf = normalized_d2.cumsum(dim=-1)
31
-
32
- # Remove tokens with CDF value above the threshold (token with 0 are kept)
33
- sorted_indices_to_remove = normalized_d2_cdf > self.tfs
34
-
35
- # Centre the distribution around the cutoff as in the original implementation of the algorithm
36
- sorted_indices_to_remove = torch.cat(
37
- (
38
- torch.zeros(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
39
- sorted_indices_to_remove,
40
- torch.ones(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
41
- ),
42
- dim=-1,
43
- )
44
-
45
- if self.min_tokens_to_keep > 1:
46
- # Keep at least min_tokens_to_keep
47
- sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
48
-
49
- indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
50
- scores = scores.masked_fill(indices_to_remove, self.filter_value)
51
- return scores
52
-
53
-
54
- class TopALogitsWarper(LogitsWarper):
55
- def __init__(self, top_a: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
56
- top_a = float(top_a)
57
- if top_a < 0 or top_a > 1.0:
58
- raise ValueError(f"`top_a` has to be a float >= 0 and <= 1, but is {top_a}")
59
- self.top_a = top_a
60
- self.filter_value = filter_value
61
- self.min_tokens_to_keep = min_tokens_to_keep
62
-
63
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
64
- sorted_logits, sorted_indices = torch.sort(scores, descending=True)
65
- probs = sorted_logits.softmax(dim=-1)
66
-
67
- # Remove tokens with probability less than top_a*(max(probs))^2 (token with 0 are kept)
68
- probs_max = probs[..., 0, None]
69
- sorted_indices_to_remove = probs < probs_max * probs_max * self.top_a
70
-
71
- if self.min_tokens_to_keep > 1:
72
- # Keep at least min_tokens_to_keep
73
- sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
74
-
75
- indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
76
- scores = scores.masked_fill(indices_to_remove, self.filter_value)
77
- return scores
78
-
79
-
80
- class MirostatLogitsWarper(LogitsWarper):
81
- def __init__(self, mirostat_mode: int, mirostat_tau: float, mirostat_eta: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
82
- if mirostat_mode not in [2]:
83
- raise ValueError(f"`mirostat` has to be a an integer 2, but is {mirostat_mode}")
84
- self.mirostat_mode = mirostat_mode
85
- self.mirostat_eta = mirostat_eta
86
- self.mirostat_tau = mirostat_tau
87
- self.filter_value = filter_value
88
- self.min_tokens_to_keep = min_tokens_to_keep
89
- self.mu = 2 * self.mirostat_tau
90
- self.e = 0
91
-
92
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
93
- logits = scores[0]
94
- sorted_logits, sorted_indices = torch.sort(logits, descending=True)
95
- prob_original = torch.softmax(sorted_logits, dim=-1).tolist() # candidates
96
-
97
- # Truncate the words with surprise values greater than mu
98
- for i, candidate in enumerate(prob_original):
99
- if candidate > 0 and -math.log2(candidate) > self.mu:
100
- if (i == 0):
101
- sorted_logits = sorted_logits[:1]
102
- else:
103
- sorted_logits = sorted_logits[:i]
104
- break
105
-
106
- # Normalize the probabilities of the remaining words
107
- prob_topk = torch.softmax(sorted_logits, dim=0)
108
-
109
- prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True).to('cuda')
110
-
111
- observed_surprise = -math.log2(prob_topk[prev_i])
112
- self.e = observed_surprise - self.mirostat_tau
113
-
114
- # Update mu using the learning rate and error
115
- self.mu -= self.mirostat_eta * self.e
116
-
117
- sorted_indices_to_remove = torch.ones_like(scores[0], dtype=torch.bool)
118
- sorted_indices_to_remove[prev_i] = False
119
-
120
- indices_to_remove = sorted_indices_to_remove.unsqueeze(0).scatter(1, sorted_indices.unsqueeze(0), sorted_indices_to_remove.unsqueeze(0))
121
- scores = scores.masked_fill(indices_to_remove, self.filter_value)
122
- return scores
123
-
124
-
125
- class RepetitionPenaltyLogitsProcessorWithRange(LogitsProcessor):
126
- '''
127
- Copied from the transformers library
128
- '''
129
- def __init__(self, penalty: float, _range: int):
130
- if not isinstance(penalty, float) or not (penalty > 0):
131
- raise ValueError(f"`penalty` has to be a strictly positive float, but is {penalty}")
132
-
133
- self.penalty = penalty
134
- self._range = _range
135
-
136
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
137
-
138
- input_ids = input_ids[:, -self._range:]
139
- score = torch.gather(scores, 1, input_ids)
140
-
141
- # if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
142
- score = torch.where(score < 0, score * self.penalty, score / self.penalty)
143
-
144
- scores.scatter_(1, input_ids, score)
145
- return scores
146
-
147
-
148
- def get_logits_warper_patch(self, generation_config):
149
- warpers = self._get_logits_warper_old(generation_config)
150
- warpers_to_add = LogitsProcessorList()
151
- min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1
152
-
153
- if generation_config.mirostat_mode is not None and generation_config.mirostat_mode == 2:
154
- warpers_to_add.append(MirostatLogitsWarper(mirostat_mode=generation_config.mirostat_mode, mirostat_eta=generation_config.mirostat_eta, mirostat_tau=generation_config.mirostat_tau, min_tokens_to_keep=min_tokens_to_keep))
155
- # We need to disable samplers other than temperature
156
- for warper in warpers:
157
- if not isinstance(warper, TemperatureLogitsWarper):
158
- warpers.remove(warper)
159
- else:
160
- if generation_config.tfs is not None and 0.0 <= generation_config.tfs <= 1.0:
161
- warpers_to_add.append(TailFreeLogitsWarper(tfs=generation_config.tfs, min_tokens_to_keep=min_tokens_to_keep))
162
- if generation_config.top_a is not None and 0.0 <= generation_config.top_a <= 1.0:
163
- warpers_to_add.append(TopALogitsWarper(top_a=generation_config.top_a, min_tokens_to_keep=min_tokens_to_keep))
164
-
165
- if warpers and isinstance(warpers[-1], LogitNormalization):
166
- warpers = warpers[:-1] + warpers_to_add + [warpers[-1]]
167
- else:
168
- warpers += warpers_to_add
169
-
170
- return warpers
171
-
172
-
173
- def get_logits_processor_patch(self, **kwargs):
174
- result = self._get_logits_processor_old(**kwargs)
175
- repetition_penalty_range = kwargs['generation_config'].repetition_penalty_range
176
- repetition_penalty = kwargs['generation_config'].repetition_penalty
177
-
178
- if repetition_penalty_range > 0:
179
- for i in range(len(result)):
180
- if result[i].__class__.__name__ == 'RepetitionPenaltyLogitsProcessor':
181
- result[i] = RepetitionPenaltyLogitsProcessorWithRange(repetition_penalty, repetition_penalty_range)
182
-
183
- return result
184
-
185
-
186
- def generation_config_init_patch(self, **kwargs):
187
- self.__init___old(**kwargs)
188
- self.tfs = kwargs.pop("tfs", 1.0)
189
- self.top_a = kwargs.pop("top_a", 0.0)
190
- self.mirostat_mode = kwargs.pop("mirostat_mode", 0)
191
- self.mirostat_eta = kwargs.pop("mirostat_eta", 0.1)
192
- self.mirostat_tau = kwargs.pop("mirostat_tau", 5)
193
- self.repetition_penalty_range = kwargs.pop("repetition_penalty_range", 0)
194
-
195
-
196
- def hijack_samplers():
197
- transformers.GenerationMixin._get_logits_warper_old = transformers.GenerationMixin._get_logits_warper
198
- transformers.GenerationMixin._get_logits_warper = get_logits_warper_patch
199
-
200
- transformers.GenerationMixin._get_logits_processor_old = transformers.GenerationMixin._get_logits_processor
201
- transformers.GenerationMixin._get_logits_processor = get_logits_processor_patch
202
-
203
- transformers.GenerationConfig.__init___old = transformers.GenerationConfig.__init__
204
- transformers.GenerationConfig.__init__ = generation_config_init_patch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/EuroPython2022/mmocr-demo/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py DELETED
@@ -1,33 +0,0 @@
1
- _base_ = [
2
- '../../_base_/default_runtime.py',
3
- '../../_base_/det_models/ocr_mask_rcnn_r50_fpn_ohem.py',
4
- '../../_base_/schedules/schedule_sgd_160e.py',
5
- '../../_base_/det_datasets/icdar2015.py',
6
- '../../_base_/det_pipelines/maskrcnn_pipeline.py'
7
- ]
8
-
9
- train_list = {{_base_.train_list}}
10
- test_list = {{_base_.test_list}}
11
-
12
- train_pipeline = {{_base_.train_pipeline}}
13
- test_pipeline_icdar2015 = {{_base_.test_pipeline_icdar2015}}
14
-
15
- data = dict(
16
- samples_per_gpu=8,
17
- workers_per_gpu=4,
18
- val_dataloader=dict(samples_per_gpu=1),
19
- test_dataloader=dict(samples_per_gpu=1),
20
- train=dict(
21
- type='UniformConcatDataset',
22
- datasets=train_list,
23
- pipeline=train_pipeline),
24
- val=dict(
25
- type='UniformConcatDataset',
26
- datasets=test_list,
27
- pipeline=test_pipeline_icdar2015),
28
- test=dict(
29
- type='UniformConcatDataset',
30
- datasets=test_list,
31
- pipeline=test_pipeline_icdar2015))
32
-
33
- evaluation = dict(interval=10, metric='hmean-iou')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spaces/Evanell/Venus/README.md DELETED
@@ -1,10 +0,0 @@
1
- ---
2
- title: Venus
3
- emoji: ⚡
4
- colorFrom: gray
5
- colorTo: green
6
- sdk: docker
7
- pinned: false
8
- ---
9
-
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
spaces/FourthBrainGenAI/DeepLearningAIDemoChatBot/app.py DELETED
@@ -1,281 +0,0 @@
1
- import torch
2
- from peft import PeftModel
3
- from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
4
- import datetime
5
- import os
6
- from threading import Event, Thread
7
- from uuid import uuid4
8
- import gradio as gr
9
- import requests
10
-
11
- model_name = "decapoda-research/llama-13b-hf"
12
- adapters_name = 'timdettmers/guanaco-13b'
13
-
14
- print(f"Starting to load the model {model_name} into memory")
15
-
16
- model = AutoModelForCausalLM.from_pretrained(
17
- model_name,
18
- load_in_4bit=True,
19
- torch_dtype=torch.bfloat16,
20
- device_map={"": 0}
21
- )
22
-
23
- model = PeftModel.from_pretrained(model, adapters_name)
24
- tokenizer = LlamaTokenizer.from_pretrained(model_name)
25
- tokenizer.bos_token_id = 1
26
- stop_token_ids = [0]
27
-
28
- max_new_tokens = 2048
29
-
30
- start_message = """A chat between a human user and a kind AI. The assistant gives helpful, cordial, and polite answers to the user's questions."""
31
-
32
- class StopOnTokens(StoppingCriteria):
33
- def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
34
- for stop_id in stop_token_ids:
35
- if input_ids[0][-1] == stop_id:
36
- return True
37
- return False
38
-
39
-
40
- def convert_history_to_text(history):
41
- text = start_message + "".join(
42
- [
43
- "".join(
44
- [
45
- f"### Human: {item[0]}\n",
46
- f"### Assistant: {item[1]}\n",
47
- ]
48
- )
49
- for item in history[:-1]
50
- ]
51
- )
52
- text += "".join(
53
- [
54
- "".join(
55
- [
56
- f"### Human: {history[-1][0]}\n",
57
- f"### Assistant: {history[-1][1]}\n",
58
- ]
59
- )
60
- ]
61
- )
62
- return text
63
-
64
-
65
- def log_conversation(conversation_id, history, messages, generate_kwargs):
66
- logging_url = os.getenv("LOGGING_URL", None)
67
- if logging_url is None:
68
- return
69
-
70
- timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
71
-
72
- data = {
73
- "conversation_id": conversation_id,
74
- "timestamp": timestamp,
75
- "history": history,
76
- "messages": messages,
77
- "generate_kwargs": generate_kwargs,
78
- }
79
-
80
- try:
81
- requests.post(logging_url, json=data)
82
- except requests.exceptions.RequestException as e:
83
- print(f"Error logging conversation: {e}")
84
-
85
-
86
- def user(message, history):
87
- # Append the user's message to the conversation history
88
- return "", history + [[message, ""]]
89
-
90
-
91
- def bot(history, temperature, top_p, top_k, repetition_penalty, conversation_id):
92
- print(f"history: {history}")
93
- # Initialize a StopOnTokens object
94
- stop = StopOnTokens()
95
-
96
- # Construct the input message string for the model by concatenating the current system message and conversation history
97
- messages = convert_history_to_text(history)
98
-
99
- # Tokenize the messages string
100
- input_ids = tokenizer(messages, return_tensors="pt").input_ids
101
- input_ids = input_ids.to(model.device)
102
- streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
103
- generate_kwargs = dict(
104
- input_ids=input_ids,
105
- max_new_tokens=max_new_tokens,
106
- temperature=temperature,
107
- do_sample=temperature > 0.0,
108
- top_p=top_p,
109
- top_k=top_k,
110
- repetition_penalty=repetition_penalty,
111
- streamer=streamer,
112
- stopping_criteria=StoppingCriteriaList([stop]),
113
- )
114
-
115
- stream_complete = Event()
116
-
117
- def generate_and_signal_complete():
118
- model.generate(**generate_kwargs)
119
- stream_complete.set()
120
-
121
- def log_after_stream_complete():
122
- stream_complete.wait()
123
- log_conversation(
124
- conversation_id,
125
- history,
126
- messages,
127
- {
128
- "top_k": top_k,
129
- "top_p": top_p,
130
- "temperature": temperature,
131
- "repetition_penalty": repetition_penalty,
132
- },
133
- )
134
-
135
- t1 = Thread(target=generate_and_signal_complete)
136
- t1.start()
137
-
138
- t2 = Thread(target=log_after_stream_complete)
139
- t2.start()
140
-
141
- # Initialize an empty string to store the generated text
142
- partial_text = ""
143
- for new_text in streamer:
144
- partial_text += new_text
145
- history[-1][1] = partial_text
146
- yield history
147
-
148
-
149
- def get_uuid():
150
- return str(uuid4())
151
-
152
-
153
- with gr.Blocks(
154
- theme=gr.themes.Soft(),
155
- css=".disclaimer {font-variant-caps: all-small-caps;}",
156
- ) as demo:
157
- conversation_id = gr.State(get_uuid)
158
- gr.Markdown(
159
- """<h1><center>FourthBrain DeepLearningAI ChatBot Demo</center></h1>
160
- """
161
- )
162
- chatbot = gr.Chatbot().style(height=500)
163
- with gr.Row():
164
- with gr.Column():
165
- msg = gr.Textbox(
166
- label="Chat Message Box",
167
- placeholder="Chat Message Box",
168
- show_label=False,
169
- ).style(container=False)
170
- with gr.Column():
171
- with gr.Row():
172
- submit = gr.Button("Submit")
173
- stop = gr.Button("Stop")
174
- clear = gr.Button("Clear")
175
- with gr.Row():
176
- with gr.Accordion("Advanced Options:", open=False):
177
- with gr.Row():
178
- with gr.Column():
179
- with gr.Row():
180
- temperature = gr.Slider(
181
- label="Temperature",
182
- value=0.7,
183
- minimum=0.0,
184
- maximum=1.0,
185
- step=0.1,
186
- interactive=True,
187
- info="Higher values produce more diverse outputs",
188
- )
189
- with gr.Column():
190
- with gr.Row():
191
- top_p = gr.Slider(
192
- label="Top-p (nucleus sampling)",
193
- value=0.9,
194
- minimum=0.0,
195
- maximum=1,
196
- step=0.01,
197
- interactive=True,
198
- info=(
199
- "Sample from the smallest possible set of tokens whose cumulative probability "
200
- "exceeds top_p. Set to 1 to disable and sample from all tokens."
201
- ),
202
- )
203
- with gr.Column():
204
- with gr.Row():
205
- top_k = gr.Slider(
206
- label="Top-k",
207
- value=0,
208
- minimum=0.0,
209
- maximum=200,
210
- step=1,
211
- interactive=True,
212
- info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.",
213
- )
214
- with gr.Column():
215
- with gr.Row():
216
- repetition_penalty = gr.Slider(
217
- label="Repetition Penalty",
218
- value=1.1,
219
- minimum=1.0,
220
- maximum=2.0,
221
- step=0.1,
222
- interactive=True,
223
- info="Penalize repetition — 1.0 to disable.",
224
- )
225
- with gr.Row():
226
- gr.Markdown(
227
- "Disclaimer: The model can produce factually incorrect output, and should not be relied on to produce "
228
- "factually accurate information. The model was trained on various public datasets; while great efforts "
229
- "have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
230
- "biased, or otherwise offensive outputs.",
231
- elem_classes=["disclaimer"],
232
- )
233
-
234
- submit_event = msg.submit(
235
- fn=user,
236
- inputs=[msg, chatbot],
237
- outputs=[msg, chatbot],
238
- queue=False,
239
- ).then(
240
- fn=bot,
241
- inputs=[
242
- chatbot,
243
- temperature,
244
- top_p,
245
- top_k,
246
- repetition_penalty,
247
- conversation_id,
248
- ],
249
- outputs=chatbot,
250
- queue=True,
251
- )
252
- submit_click_event = submit.click(
253
- fn=user,
254
- inputs=[msg, chatbot],
255
- outputs=[msg, chatbot],
256
- queue=False,
257
- ).then(
258
- fn=bot,
259
- inputs=[
260
- chatbot,
261
- temperature,
262
- top_p,
263
- top_k,
264
- repetition_penalty,
265
- conversation_id,
266
- ],
267
- outputs=chatbot,
268
- queue=True,
269
- )
270
- stop.click(
271
- fn=None,
272
- inputs=None,
273
- outputs=None,
274
- cancels=[submit_event, submit_click_event],
275
- queue=False,
276
- )
277
- clear.click(lambda: None, None, chatbot, queue=False)
278
-
279
- demo.queue(max_size=128, concurrency_count=2)
280
-
281
- demo.launch()