diff --git a/spaces/17TheWord/RealESRGAN/scripts/extract_subimages.py b/spaces/17TheWord/RealESRGAN/scripts/extract_subimages.py deleted file mode 100644 index 9b969ae0d4adff403f2ad362b9afaaaee58e2cef..0000000000000000000000000000000000000000 --- a/spaces/17TheWord/RealESRGAN/scripts/extract_subimages.py +++ /dev/null @@ -1,135 +0,0 @@ -import argparse -import cv2 -import numpy as np -import os -import sys -from basicsr.utils import scandir -from multiprocessing import Pool -from os import path as osp -from tqdm import tqdm - - -def main(args): - """A multi-thread tool to crop large images to sub-images for faster IO. - - opt (dict): Configuration dict. It contains: - n_thread (int): Thread number. - compression_level (int): CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size - and longer compression time. Use 0 for faster CPU decompression. Default: 3, same in cv2. - input_folder (str): Path to the input folder. - save_folder (str): Path to save folder. - crop_size (int): Crop size. - step (int): Step for overlapped sliding window. - thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped. - - Usage: - For each folder, run this script. - Typically, there are GT folder and LQ folder to be processed for DIV2K dataset. - After process, each sub_folder should have the same number of subimages. - Remember to modify opt configurations according to your settings. - """ - - opt = {} - opt['n_thread'] = args.n_thread - opt['compression_level'] = args.compression_level - opt['input_folder'] = args.input - opt['save_folder'] = args.output - opt['crop_size'] = args.crop_size - opt['step'] = args.step - opt['thresh_size'] = args.thresh_size - extract_subimages(opt) - - -def extract_subimages(opt): - """Crop images to subimages. - - Args: - opt (dict): Configuration dict. It contains: - input_folder (str): Path to the input folder. - save_folder (str): Path to save folder. - n_thread (int): Thread number. - """ - input_folder = opt['input_folder'] - save_folder = opt['save_folder'] - if not osp.exists(save_folder): - os.makedirs(save_folder) - print(f'mkdir {save_folder} ...') - else: - print(f'Folder {save_folder} already exists. Exit.') - sys.exit(1) - - # scan all images - img_list = list(scandir(input_folder, full_path=True)) - - pbar = tqdm(total=len(img_list), unit='image', desc='Extract') - pool = Pool(opt['n_thread']) - for path in img_list: - pool.apply_async(worker, args=(path, opt), callback=lambda arg: pbar.update(1)) - pool.close() - pool.join() - pbar.close() - print('All processes done.') - - -def worker(path, opt): - """Worker for each process. - - Args: - path (str): Image path. - opt (dict): Configuration dict. It contains: - crop_size (int): Crop size. - step (int): Step for overlapped sliding window. - thresh_size (int): Threshold size. Patches whose size is lower than thresh_size will be dropped. - save_folder (str): Path to save folder. - compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION. - - Returns: - process_info (str): Process information displayed in progress bar. - """ - crop_size = opt['crop_size'] - step = opt['step'] - thresh_size = opt['thresh_size'] - img_name, extension = osp.splitext(osp.basename(path)) - - # remove the x2, x3, x4 and x8 in the filename for DIV2K - img_name = img_name.replace('x2', '').replace('x3', '').replace('x4', '').replace('x8', '') - - img = cv2.imread(path, cv2.IMREAD_UNCHANGED) - - h, w = img.shape[0:2] - h_space = np.arange(0, h - crop_size + 1, step) - if h - (h_space[-1] + crop_size) > thresh_size: - h_space = np.append(h_space, h - crop_size) - w_space = np.arange(0, w - crop_size + 1, step) - if w - (w_space[-1] + crop_size) > thresh_size: - w_space = np.append(w_space, w - crop_size) - - index = 0 - for x in h_space: - for y in w_space: - index += 1 - cropped_img = img[x:x + crop_size, y:y + crop_size, ...] - cropped_img = np.ascontiguousarray(cropped_img) - cv2.imwrite( - osp.join(opt['save_folder'], f'{img_name}_s{index:03d}{extension}'), cropped_img, - [cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']]) - process_info = f'Processing {img_name} ...' - return process_info - - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument('--input', type=str, default='datasets/DF2K/DF2K_HR', help='Input folder') - parser.add_argument('--output', type=str, default='datasets/DF2K/DF2K_HR_sub', help='Output folder') - parser.add_argument('--crop_size', type=int, default=480, help='Crop size') - parser.add_argument('--step', type=int, default=240, help='Step for overlapped sliding window') - parser.add_argument( - '--thresh_size', - type=int, - default=0, - help='Threshold size. Patches whose size is lower than thresh_size will be dropped.') - parser.add_argument('--n_thread', type=int, default=20, help='Thread number.') - parser.add_argument('--compression_level', type=int, default=3, help='Compression level') - args = parser.parse_args() - - main(args) diff --git a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Antares Autotune Evo VST RTAS v6.0.9.rar.rar The Ultimate Guide to the Most Popular Vocal Processing Tool.md b/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Antares Autotune Evo VST RTAS v6.0.9.rar.rar The Ultimate Guide to the Most Popular Vocal Processing Tool.md deleted file mode 100644 index 2ceed470797d754736d0ada203e05e8dd71d3ae9..0000000000000000000000000000000000000000 --- a/spaces/1acneusushi/gradio-2dmoleculeeditor/data/Antares Autotune Evo VST RTAS v6.0.9.rar.rar The Ultimate Guide to the Most Popular Vocal Processing Tool.md +++ /dev/null @@ -1,191 +0,0 @@ - -
If you are looking for a professional and easy-to-use tool for correcting and enhancing the pitch of your vocals or instruments, you might have come across a file called Antares Autotune Evo VST RTAS v6.0.9.rar.rar. But what is this file and how can you use it in your audio projects? In this article, we will explain what Antares Autotune Evo is, what VST RTAS means, what a .rar file is, and how to download, install and use Antares Autotune Evo in your digital audio workstation (DAW).
-Antares Autotune Evo is a multi-platform plug-in that corrects intonation and timing problems in vocals or solo instruments, in real time, without distortion or artifacts, while preserving all of the expressive nuance of the original performance. It is one of the most popular and widely used pitch correction tools in the music industry, used by thousands of audio professionals around the world.
-Download File ✸✸✸ https://byltly.com/2uKvHC
VST stands for Virtual Studio Technology, which is a standard interface for integrating software audio synthesizers and effects plugins with audio editors and hard-disk recording systems. RTAS stands for Real-Time AudioSuite, which is a format of audio plug-in developed by Avid Technology for their Pro Tools software. Antares Autotune Evo VST RTAS v6.0.9.rar.rar is a file that contains both the VST and RTAS versions of the plug-in, which means you can use it with different DAWs that support either format.
-A .rar file is a compressed archive file that can contain one or more files or folders inside it. It is similar to a .zip file, but it uses a different compression algorithm that can achieve higher compression ratios. A .rar file can also be split into multiple parts, which can be useful for transferring large files over the internet or storing them on removable media. Antares Autotune Evo VST RTAS v6.0.9.rar.rar is actually a double-compressed archive file, which means it has been compressed twice with the .rar format. To extract the files inside it, you will need a software that can handle .rar files, such as WinRAR or 7-Zip.
-Antares Autotune Evo has two main modes of operation: automatic and graphical. In automatic mode, the plug-in detects the pitch of the input signal, identifies the closest pitch in a user-specified scale (including minor, major, chromatic and 26 historical and microtonal scales), and corrects the input pitch to match the scale pitch. A retune speed control lets you match the retune rate to virtually any performance style. This mode is ideal for quick and easy pitch correction without much tweaking.
-In graphical mode, the plug-in displays the detected pitch envelope of the input signal and allows you to draw in the desired pitch using a variety of graphics tools. This mode gives you complete control over the correction or modification of the most elaborate expressive gestures. You can also zoom in and out, undo and redo edits, import and export pitch data, and more. This mode is ideal for meticulous and creative pitch manipulation.
-Antares Autotune Evo can correct not only intonation problems but also timing problems in vocals or solo instruments. It can also create special effects such as robotic vocals, gender change, vibrato control, formant shifting, throat modeling, pitch shifting, transposition, doubling, harmonizing, etc.. You can use Antares Autotune Evo to fix subtle pitch errors or create dramatic vocal transformations.
-Antares Autotune Evo VST RTAS v6.0.9 PROPER-AiR download
-Antares Autotune Evo VST RTAS v6.0.9 PROPER-AiR free
-Antares Autotune Evo VST RTAS v6.0.9 PROPER-AiR crack
-Antares Autotune Evo VST RTAS v6.0.9 PROPER-AiR rar
-Antares Autotune Evo VST RTAS v6.0.9 PROPER-AiR audioz
-Antares Autotune Evo VST RTAS v6.0.9 PROPER-AiR google drive
-Antares Autotune Evo VST RTAS v6.0.9 PROPER-AiR 4shared
-Antares Autotune Evo VST RTAS v6.0.9 PROPER-AiR atualizado
-Antares Autotune Evo VST RTAS v6.0.9 PROPER-AiR modulador de voz
-Antares Autotune Evo VST RTAS v6.0.9 PROPER-AiR site oficial
-Antares Autotune Evo VST RTAS v6.0.9 full version
-Antares Autotune Evo VST RTAS v6.0.9 serial key
-Antares Autotune Evo VST RTAS v6.0.9 activation code
-Antares Autotune Evo VST RTAS v6.0.9 license key
-Antares Autotune Evo VST RTAS v6.0.9 registration key
-Antares Autotune Evo VST RTAS v6.0.9 torrent download
-Antares Autotune Evo VST RTAS v6.0.9 magnet link
-Antares Autotune Evo VST RTAS v6.0.9 direct link
-Antares Autotune Evo VST RTAS v6.0.9 mega download
-Antares Autotune Evo VST RTAS v6.0.9 mediafire download
-Antares Autotune Evo VST RTAS v6.0.9 windows 10 compatible
-Antares Autotune Evo VST RTAS v6.0.9 windows 7 compatible
-Antares Autotune Evo VST RTAS v6.0.9 mac os compatible
-Antares Autotune Evo VST RTAS v6.0.9 linux compatible
-Antares Autotune Evo VST RTAS v6.0.9 64 bit compatible
-Antares Autotune Evo VST RTAS v6.0.9 32 bit compatible
-Antares Autotune Evo VST RTAS v6.0.9 pitch correction software
-Antares Autotune Evo VST RTAS v6.0.9 vocal effects software
-Antares Autotune Evo VST RTAS v6.0.9 professional audio software
-Antares Autotune Evo VST RTAS v6.0.9 music production software
-Antares Autotune Evo VST RTAS v6.0.9 how to install guide
-Antares Autotune Evo VST RTAS v6.0.9 how to use guide
-Antares Autotune Evo VST RTAS v6.0.9 user manual pdf
-Antares Autotune Evo VST RTAS v6.0.9 video tutorial youtube
-Antares Autotune Evo VST RTAS v6.0.9 review and rating
-Antares Autotune Evo VST RTAS v6
Antares Autotune Evo is compatible with Windows XP/Vista/7/8/10 (32-bit or 64-bit) and Mac OS X 10.4 or later (Universal Binary). It supports sample rates up to 192 kHz. It can be used as a standalone application or as a plug-in with various DAWs that support VST or RTAS formats. It has a low CPU usage and a high-quality audio output. It also has an online manual and video tutorials to help you get started.
-To download Antares Autotune Evo VST RTAS v6.0.9.rar.rar, you can use one of these links:
-The file size is about 5 MB. You may need to register or sign in to access some of these links.
-After downloading Antares Autotune Evo VST RTAS v6.0.9.rar.rar, you will need to extract it using a software that can handle .rar files, such as WinRAR or 7-Zip. To do this:
-After extracting the file, you will get a folder called Antares.Autotune.Evo.VST.RTAS.v6.0.9.PROPER-AiR that contains the VST and RTAS versions of the plug-in, as well as a text file with installation instructions. To install the plug-in:
-You have now successfully installed Antares Autotune Evo VST RTAS v6.0.9.rar.rar on your computer.
-To use Antares Autotune Evo in your audio projects, you need to load it as a plug-in in your DAW. The exact steps may vary depending on your DAW, but here is a general guide:
-The first thing you need to do is to choose the scale and retune speed for your input signal. The scale determines which pitches are considered correct and which are corrected by the plug-in. The retune speed determines how fast and how much the plug-in corrects the input pitch. To do this:
-In this article, we have learned what Antares Autotune Evo VST RTAS v6.0.9.rar.rar is and how to use it in our audio projects. We have covered:
-If you are interested in trying out Antares Autotune Evo for yourself, you can download it from one of the links below and follow the steps in this article to get started. You will be amazed by how much you can improve or transform your vocals or instruments with this powerful plug-in. Whether you want to fix subtle pitch errors or create dramatic vocal effects, Antares Autotune Evo can help you achieve your creative goals.
-Download Antares Autotune Evo VST RTAS v6.0.9.rar.rar from one of these links:
-Thank you for reading this article and happy tuning!
-Auto-Tune Pro is the latest version of Auto-Tune software that offers more features and improvements than Auto-Tune Evo. Some of these features include:
-To uninstall Antares Autotune Evo from your computer, you need to do two things:
-If you have any questions or issues with Antares Autotune Evo, you can contact the Antares support team through their website or through their social media channels. You can also check their online manual and video tutorials for more information and tips on how to use Antares Autotune Evo. Here are some links to help you:
-If you are looking for some alternatives to Antares Autotune Evo, you can try some of these other pitch correction and manipulation software:
-Here are some tips and tricks for using Antares Autotune Evo effectively and creatively:
-Do you have a collection of DVDs that you want to backup, rip, convert or create? If so, you need a reliable and versatile DVD copy software that can handle any task you throw at it.
-One such software is DVDFab 8.1.5.9 Qt Final Multilang, a powerful and comprehensive tool that can copy, rip, convert and create DVDs with high quality and speed.
-Download File ——— https://byltly.com/2uKAa8
In this article, we will show you what DVDFab 8.1.5.9 Qt Final Multilang can do, why you should choose it over other DVD copy software, and how you can use it to perform various tasks with ease.
-DVDFab 8.1.5.9 Qt Final Multilang is a software that can copy, rip, convert and create DVDs and Blu-rays with high quality and speed.
-It supports various formats and devices, such as MP4, MKV, AVI, iPhone, iPad, Android, etc.
-It also has many advanced features and options that allow you to customize your output according to your preferences.
-DVDFab Qt 8.1.5.9 Multilingual Full Version
-Download DVDFab 8.1.5.9 Final with Crack
-DVDFab Qt 8.1.5.9 Portable Free Download
-How to Install DVDFab 8.1.5.9 Multilang on PC
-DVDFab 8.1.5.9 Qt Final Patched Download
-DVDFab Qt 8.1.5.9 Serial Key Generator
-Download DVDFab 8.1.5.9 Final Multilanguage for Windows
-DVDFab Qt 8.1.5.9 License Key Activation
-DVDFab 8.1.5.9 Qt Final Multilang Torrent Download
-DVDFab Qt 8.1.5.9 Crack Full Version
-Download DVDFab 8.1.5.9 Final with Keygen
-DVDFab Qt 8.1.5.9 Registration Code Free
-DVDFab 8.1.5.9 Qt Final Multilang Review
-DVDFab Qt 8.1.5.9 Features and Benefits
-Download DVDFab 8.1.5.9 Final with License Key
-DVDFab Qt 8.1.5.9 Product Key Finder
-DVDFab 8.1.5.9 Qt Final Multilang Software Download
-DVDFab Qt 8.1.5.9 System Requirements and Compatibility
-Download DVDFab 8.1.5.9 Final with Serial Number
-DVDFab Qt 8.1.5.9 Activation Code Generator
-DVDFab 8.1.5.9 Qt Final Multilang Free Trial Download
-DVDFab Qt 8.1.5.9 User Guide and Manual
-Download DVDFab 8.1.5.9 Final with Patch
-DVDFab Qt 8.1.5.9 Keygen Full Version
-DVDFab 8.1.5.9 Qt Final Multilang Update Download
-DVDFab Qt 8 Crack + Serial Key Free Download
-Download DVDFab 8 Full Version with Crack
-DVDFab Qt Latest Version Free Download for PC
-How to Use DVDFab Qt to Copy and Rip DVDs and Blu-rays
-DVDFab Qt Crack + Keygen Download for Windows
-Download DVDFab Qt Portable Full Version for PC
-DVDFab Qt Review: Best DVD and Blu-ray Copy Software
-DVDFab Qt License Key + Patch Free Download
-Download DVDFab Qt Multilingual Full Version for Windows
-DVDFab Qt Serial Number + Activation Code Free Download
-Download DVDFab Qt Crack + Keygen for PC
-DVDFab Qt User Manual and Tutorial PDF Download
-DVDFab Qt System Requirements and Installation Guide
-Download DVDFab Qt Full Version with License Key for PC
-DVDFab Qt Patch + Serial Key Free Download for Windows
-Download DVDFab Qt Multilanguage Full Version with Crack for PC
-DVDFab Qt Activation Code + Registration Code Free Download
-Download DVDFab Qt Full Version with Serial Number for PC
-DVDFab Qt Features and Functions Overview and Comparison
-Download DVDFab Qt Full Version with Patch for PC
-DVDFab Qt Product Key + Crack Free Download for Windows
-Download DVDFab Qt Multilingual Full Version with Keygen for PC
-How to Update and Upgrade to the Latest Version of DVDFab
Here are some of the reasons why you should choose DVDFab 8.1.5.9 Qt Final Multilang over other DVD copy software:
-Now that you know what DVDFab 8.1.5.9 Qt Final Multilang can do and why you should choose it over other DVD copy software, let's see how you can use it to perform various tasks.
-If you want to make a backup copy of your DVDs for safekeeping or sharing, you can use DVDFab 8.QT Final Multilang's copy mode.
-This mode allows you to copy your DVDs in different ways, such as full disc, main movie, split, merge, clone/burn, customize or customize split.
-You can also choose between different output types, such as DVD disc (DVD+R/RW,DVD-R/RW,DVD+R DL,DVD-R DL), ISO file or folder.
-Here are the steps on how to copy DVDs with DVDFab 8.QT Final Multilang:
-If you want to convert your DVDs into digital formats that can be played on various devices or platforms, you can use DVDFab 8.QT Final Multilang's ripper mode.
-You can also customize the output settings by adjusting the video and audio parameters, such as resolution, bitrate, frame rate, codec, channel, etc.
-Here are the steps on how to rip DVDs with DVDFab 8.QT Final Multilang:
-If you want to change the format of your DVDs without changing the content or quality, you can use DVDFab 8.QT Final Multilang's converter mode.
-This mode allows you to convert your DVDs into different formats and profiles, such as MP4,H264,H265,MKV,MPEG4,MPEG2,XVID,DIVX,AAC,DTS,DOLBY DIGITAL PLUS,DOLBY TRUEHD,DOLBY ATMOS,iPhone,iPad,iPod Touch,Samsung Galaxy,Huawei,Xiaomi,LG,Sony,Nokia,Motorola,ZTE,Vivo,Oppo,Nintendo Switch,Xbox One S,Xbox One X,Xbox Series S,Xbox Series X,Sony PS3,Sony PS4,Sony PS4 Pro,Sony PS5,PSP,Vita,Wii U,Wii,Nintendo DS,Nintendo DSi,Nintendo DSi XL,Nintendo DS Lite,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,Nintendo DSi XL,
-You can also customize the output settings by adjusting the video and audio parameters, such as resolution, bitrate, frame rate, codec, channel, etc.
-Here are the steps on how to convert DVDs with DVDFab 8.QT Final Multilang:
-If you want to create your own DVDs from various sources, such as videos, photos, music, etc., you can use DVDFab 8.QT Final Multilang's creator mode.
-This mode allows you to create DVDs in different formats and profiles, such as DVD disc (DVD+R/RW,DVD-R/RW,DVD+R DL,DVD-R DL), ISO file or folder.
-You can also customize the menu, chapters, subtitles, audio tracks, etc. by using various templates and options.
-Here are the steps on how to create DVDs with DVDFab 8.QT Final Multilang:
-To help you make an informed decision, we have prepared a comparison table that shows how DVDFab 8.QT Final Multilang stacks up against other popular DVD copy software in terms of features, speed, quality, compatibility, etc.
-DVD Copy Software | -Features | -Speed | -Quality | -Compatibility | -
---|---|---|---|---|
DVDFab 8.QT Final Multilang | -Copy, rip, convert and create DVDs and Blu-rays in various modes and formats. | -Fast and stable. | -High and lossless. | -Wide and flexible. | -
Wondershare UniConverter | -Copy, rip and convert DVDs and videos in various formats. | -Fast but unstable. | -High but lossy. | -Wide but limited. | -
WinX DVD Ripper Platinum | -Rip and convert DVDs in various formats. | -Fast but unstable. | -High but lossy. | -Narrow and rigid. | -
DVD Shrink | -Copy and compress DVDs in various modes. | -Slow and unstable. | -Low and lossy. | -Narrow and rigid. | -
DVD Decrypter | -Copy and decrypt DVDs in various modes. | -Slow and unstable. | -Low and lossy. | -Narrow and rigid. | -
As you can see from the table, DVDFab 8.QT Final Multilang is the best DVD copy software that can meet all your needs and expectations.
-In conclusion, DVDFab 8.QT Final Multilang is a powerful and comprehensive DVD copy software that can copy, rip, convert and create DVDs with high quality and speed.
-It has a user-friendly interface, multiple modes, fast processing speed, high output quality, wide compatibility, and a free trial version that you can download and use without any limitations.
-If you are looking for a software that can handle any DVD task you throw at it, you should definitely give DVDFab 8.QT Final Multilang a try. You will not regret it!
-To download DVDFab 8.QT Final Multilang for free and enjoy its amazing features, click on the link below:
- Download DVDFab 8.QT Final Multilang for Free Now! -Here are some of the frequently asked questions about DVDFab 8.QT Final Multilang:
-The system requirements for DVDFab 8.QT Final Multilang are as follows:
-To update DVDFab 8.QT Final Multilang to the latest version, you can do one of the following:
-If you have any questions or problems with DVDFab 8.QT Final Multilang, you can contact the customer service of DVDFab by doing one of the following:
-If you are not satisfied with DVDFab 8.QT Final Multilang for any reason, you can request a refund within 30 days of purchase by doing one of the following:
-If you want to get a discount for DVDFab 8.QT Final Multilang, you can do one of the following:
-DANFE View is a software for Windows that allows you to receive, store, view and print the XML files of NF-e, NFC-e, MDF-e and CT-e. These are different types of electronic invoices that are used in Brazil for tax purposes. With DANFE View, you can have all your electronic invoices, whether received or issued, in one place, organized and accessible.
-Electronic invoices are mandatory in Brazil for most businesses and transactions. They are digital documents that contain all the information about the products or services sold, the buyer and seller, the taxes and fees involved, and the authorization code from the tax authority. They are sent and received in XML format, which is a standard for data exchange on the web.
-Download Zip ⚹⚹⚹ https://byltly.com/2uKyUJ
However, XML files are not easy to read or print by humans. That's why there is a need for a software like DANFE View, which can convert XML files into more user-friendly formats, such as PDF or HTML. DANFE View can also generate and print the DANFE (Documento Auxiliar da Nota Fiscal Eletrônica), which is a simplified version of the NF-e that can be used as a proof of purchase or delivery.
-But DANFE View is not just a viewer or printer of electronic invoices. It is also a powerful tool for managing and organizing them. With DANFE View, you can:
-DANFE View is available in three versions: Free, Plus and Office. The Free version has some limitations in terms of storage capacity, number of companies managed and features available. The Plus version allows you to manage unlimited XML files related to one CNPJ or CPF (individual tax identification number). The Office version allows you to manage unlimited XML files from any CNPJ or CPF.
-If you want to try DANFE View for free for 7 days, you can download it from the official website[^1^]. You can also find more information about the software features, prices and support on the website[^1^]. DANFE View is a reliable and secure software that respects the privacy and integrity of your data. It is also updated regularly to comply with the latest tax regulations and requirements.
-DANFE View is a must-have software for anyone who deals with electronic invoices in Brazil. It can save you time, money and hassle by making your life easier and more organized. Don't miss this opportunity and download DANFE View today!
- cec2833e83Are you a fan of Brazilian music? Do you enjoy listening to romantic songs with catchy melodies and heartfelt lyrics? If so, you may have heard of Evaldo Freire, one of the most popular singers of brega music in Brazil. But do you know how to download his discography via torrent?
-DOWNLOAD ✅ https://byltly.com/2uKwSw
In this article, we will tell you everything you need to know about Evaldo Freire and his musical style. We will also explain what a torrent is and how it works. And we will show you how to find, download, and play Evaldo Freire's discography via torrent. So sit back, relax, and enjoy this musical journey!
-Evaldo Freire is a Brazilian singer who was born in 1945 in Pernambuco. He started his musical career in 1968 as part of a trio called Os Três Moraes. He later went solo and became one of the most successful artists of brega music in Brazil.
-Brega music is a genre that emerged in Brazil in the 1960s and 1970s. It combines romantic ballads with pop and folk influences. The word brega means tacky or cheesy in Portuguese, but it also has a positive connotation of being authentic and sincere. Brega music often deals with themes such as love, betrayal, nostalgia, and social issues.
-Some of Evaldo Freire's most famous songs and albums are "Chega" (Enough), "Só Quero" (I Only Want), "Meu Deus" (My God), "Não Vou Chorar" (I Won't Cry), "Eu Nunca Pensava" (I Never Thought), "Eu Encontrei Alguém" (I Found Someone), "Você Não Presta Pra Mim" (You're No Good For Me), "Onde Está Você" (Where Are You), "Eu Não Sou Lixo" (I'm Not Trash), "Não Me Deixe Só" (Don't Leave Me Alone), "O Amor é Tudo" (Love Is Everything), "Eu Preciso de Você" (I Need You), "Saudade de Você" (Missing You), "Eu Te Amo Demais" (I Love You Too Much), "Você Mudou Demais" (You Changed Too Much), among others.
-A torrent is a file that contains information about other files that are shared by users over the internet. It allows users to download large amounts of data from multiple sources at once, without relying on a central server.
-while users who are downloading the file are called leechers. A tracker is a server that helps users find each other and coordinate the file transfer. A client is a software that enables users to create, download, and manage torrents. -Some of the advantages of using torrents are that they can speed up the download process, reduce the load on the original source, and allow users to resume interrupted downloads. Some of the disadvantages are that they depend on the availability and generosity of other users, they may expose users to legal and ethical issues, and they may contain malicious or fake files.
-Evaldo Freire discography torrent download free
-How to download Evaldo Freire albums torrent
-Evaldo Freire songs torrent download mp3
-Best sites to download Evaldo Freire discography torrent
-Evaldo Freire torrent download full discography
-Download Evaldo Freire music torrent online
-Evaldo Freire discografia completa torrent baixar
-Onde baixar discografia de Evaldo Freire torrent
-Músicas de Evaldo Freire torrent download grátis
-Melhores sites para baixar discografia de Evaldo Freire torrent
-Discografia Evaldo Freire download torrent magnet link
-Como baixar discos de Evaldo Freire torrent
-Evaldo Freire discography torrent download 320kbps
-Download Evaldo Freire albums torrent flac
-Evaldo Freire songs torrent download zip
-Discografia de Evaldo Freire torrent download rar
-Download all Evaldo Freire songs torrent
-Evaldo Freire discography torrent download blogspot
-Baixar discografia de Evaldo Freire torrent mega
-Discografia completa de Evaldo Freire torrent download mediafire
-Download Evaldo Freire discography torrent kickass
-Baixar discos de Evaldo Freire torrent the pirate bay
-Discografia de Evaldo Freire download torrent utorrent
-Baixar músicas de Evaldo Freire torrent bittorrent
-Download Evaldo Freire music torrent limetorrents
-Discografia de Evaldo Freire download torrent yify
-Baixar todas as músicas de Evaldo Freire torrent rarbg
-Download best of Evaldo Freire torrent extratorrent
-Discografia de Evaldo Freire download torrent isoHunt
-Baixar melhores músicas de Evaldo Freire torrent eztv
-Download greatest hits of Evaldo Freire torrent zooqle
-Discografia de Evaldo Freire download torrent torlock
-Baixar sucessos de Evaldo Freire torrent demonoid
-Download top songs of Evaldo Freire torrent idope
-Discografia de Evaldo Freire download torrent seedpeer
-Baixar canções de Evaldo Freire torrent monova
-Download popular songs of Evaldo Freire torrent yourbittorrent
-Discografia de Evaldo Freire download torrent btscene
-Baixar hits de Evaldo Freire torrent glodls
-Download classic songs of Evaldo Freire torrent 1337x
Some of the most popular torrent clients and websites are BitTorrent, uTorrent, The Pirate Bay, Kickass Torrents, RARBG, 1337x, YTS, EZTV, Zooqle, LimeTorrents, and Torrentz2. However, users should be careful when using these sites, as they may be blocked or banned in some countries or regions.
-If you want to download Evaldo Freire's discography via torrent, you will need to follow these steps:
-To help you choose a torrent file for Evaldo Freire's discography, we have created a table that compares some of the options available on The Pirate Bay:
- | Name | Size | Quality | Seeders | Leechers | Health | |------|------|---------|---------|----------|--------| | Discografia Evaldo Freire | 1.1 GB | 320 kbps | 12 | 4 | Good | | Evaldo Freire Discography | 1.2 GB | 256 kbps | 8 | 6 | Good | | Evaldo Freire - Brega Collection | 214 MB | 128 kbps | 5 | 3 | Fair | | Evaldo Freire - Chega e Mais Nada (1977) | 35 MB | 192 kbps | 3 | 2 | Fair | | Evaldo Freire - Só Quero (1981) | 40 MB | 192 kbps | 2 | 1 | Poor |As you can see, the first two options are the best ones in terms of size, quality, and availability. However, you can also choose other options if you only want specific albums or songs.
-the content owners or authorities. You should also respect the rights and efforts of the artists and creators who produce the content. You should only download torrents from trusted and legal sources, and use a VPN or proxy to protect your privacy and security. You should also scan the files for viruses or malware before opening them. -In this article, we have learned about Evaldo Freire and his musical style. We have also learned about torrent and how it works. And we have learned how to download Evaldo Freire's discography via torrent.
-If you are a fan of Brazilian music and brega music, you should definitely check out Evaldo Freire's songs and albums. He is one of the most popular and influential singers of this genre, and his music will touch your heart and soul. You can find his discography on various torrent websites, but make sure you do it legally and ethically.
-What do you think of Evaldo Freire and his music? Have you downloaded his discography via torrent? How was your experience? Share your thoughts and opinions with us in the comments section below. We would love to hear from you!
-Thank you for reading this article. We hope you enjoyed it and learned something new. If you liked this article, please share it with your friends and family. And don't forget to subscribe to our newsletter for more interesting and informative articles like this one.
-Have you ever wanted to run an Android app on your computer or browser without installing an emulator? If so, you might be interested in ApkOnline Android Online Emulator, a web-based tool that lets you access any Android app from anywhere. In this article, we will review ApkOnline Android Online Emulator, its features, benefits, and how to use it. We will also compare it with some alternatives and answer some frequently asked questions.
-ApkOnline Android Online Emulator is a web browser extension that allows you to start the official free android online emulator with a simple click from your web browser. Its goal is to allow end users to run any Android app from anywhere when online using HTML5 and Javascript technologies. As a mobile emulator, ApkOnline allows users and developers to use their Android applications from anywhere in the world.
-Download File ✵ https://urlin.us/2uT2kT
Some of the features of ApkOnline Android Online Emulator are:
-Some of the benefits of ApkOnline Android Online Emulator are:
-To use ApkOnline Android Online Emulator, you need to follow these steps:
-The first step is to install the ApkOnline browser extension on your web browser. You can find it on the official website or on the Microsoft Edge Addons store. Once you install it, you will see an icon on your browser toolbar.
-apkonline android online emulator download
-apkonline android online emulator free
-apkonline android online emulator apk
-apkonline android online emulator for pc
-apkonline android online emulator games
-apkonline android online emulator app
-apkonline android online emulator review
-apkonline android online emulator tutorial
-apkonline android online emulator chrome
-apkonline android online emulator ios
-apkonline android online emulator no download
-apkonline android online emulator reddit
-apkonline android online emulator alternative
-apkonline android online emulator mod
-apkonline android online emulator hack
-apkonline android online emulator test
-apkonline android online emulator play store
-apkonline android online emulator whatsapp
-apkonline android online emulator instagram
-apkonline android online emulator tiktok
-apkonline android online emulator netflix
-apkonline android online emulator youtube
-apkonline android online emulator facebook
-apkonline android online emulator snapchat
-apkonline android online emulator telegram
-apkonline android online emulator spotify
-apkonline android online emulator zoom
-apkonline android online emulator discord
-apkonline android online emulator twitter
-apkonline android online emulator gmail
-apkonline android online emulator google maps
-apkonline android online emulator uber
-apkonline android online emulator amazon
-apkonline android online emulator ebay
-apkonline android online emulator paypal
-apkonline android online emulator minecraft
-apkonline android online emulator roblox
-apkonline android online emulator pubg
-apkonline android online emulator fortnite
-apkonline android online emulator candy crush
-apkonline android online emulator clash of clans
-apkonline android online emulator pokemon go
-apkonline android online emulator among us
-apkonline android online emulator subway surfers
-apkonline android online emulator temple run
-apkonline android online emulator angry birds
-apkonline android online emulator plants vs zombies
-apkonline android online emulator fruit ninja
-apkonline android online emulator doodle jump
-apkonline android online emulator cut the rope
The next step is to search for and download any Android app you want to run online. You can do this by clicking on the ApkOnline icon on your browser toolbar and selecting \"APK Downloader\". This will open a new tab with a search box where you can type the name of the app you want to download. You can also browse the categories or the top apps to find the app you are looking for. Once you find the app, you can click on the \"Download APK\" button to download it to your computer.
-The final step is to run the Android app online using the ApkOnline emulator. You can do this by clicking on the ApkOnline icon on your browser toolbar and selecting \"Run APK Online\". This will open a new tab with the emulator interface where you can drag and drop the APK file you downloaded in the previous step. Alternatively, you can click on the \"Browse\" button and select the APK file from your computer. Once you upload the APK file, the emulator will start running the app online. You can interact with the app using your mouse and keyboard, or use the menu on the right side of the emulator to access the buttons and settings.
-ApkOnline Android Online Emulator is not the only web-based tool that allows you to run Android apps online. There are some alternatives that you can try if you want to compare or explore other options. Here are some of them:
-Appetize.io is a web-based platform that allows you to run native mobile apps in your browser. You can upload your own apps or use their public apps to test and demo them online. Appetize.io supports both Android and iOS apps, and provides various device models and configurations to choose from. You can also embed your apps on your website or share them with others via a link. Appetize.io offers a free plan with limited usage and features, and paid plans with more options and support.
-Genymotion Cloud is a cloud-based service that allows you to run Android virtual devices on any web browser. You can use Genymotion Cloud to test, develop, or demo your Android apps online without installing anything on your computer. Genymotion Cloud provides various device models and Android versions to choose from, and supports features such as GPS, camera, network, battery, sensors, and Google Play Services. Genymotion Cloud offers a free trial and paid plans with different pricing and features.
-ARC Welder is a Chrome extension that allows you to run Android apps on Chrome OS or any other platform that supports Chrome. You can use ARC Welder to test or use your Android apps on your computer without installing an emulator. ARC Welder supports most of the Android features and APIs, but not all of them. You can also adjust the orientation, size, and form factor of your app to fit your screen. ARC Welder is free to use, but it requires you to have Chrome installed on your computer.
-In this article, we have reviewed ApkOnline Android Online Emulator, a web-based tool that allows you to run any Android app online without installing an emulator. We have discussed its features, benefits, and how to use it. We have also compared it with some alternatives that offer similar functionality. We hope this article has been helpful and informative for you.
-If you have any questions or comments about ApkOnline Android Online Emulator or any other web-based tool for running Android apps online, feel free to leave them below. We would love to hear from you.
-Here are some of the most common questions that people ask about ApkOnline Android Online Emulator:
-ApkOnline Android Online Emulator is safe to use as long as you download APK files from trusted sources. ApkOnline does not store or share any of your personal data or files. However, you should always be careful when downloading or running any app online, as there might be some risks involved.
-ApkOnline Android Online Emulator is free to use for personal and non-commercial purposes. However, if you want to use it for commercial purposes or need more features and support, you can contact ApkOnline for a quote.
-No, ApkOnline Android Online Emulator only supports Android apps. If you want to run iOS apps online, you can try some of the alternatives we mentioned, such as Appetize.io, which supports both Android and iOS apps.
-No, ApkOnline Android Online Emulator does not save your progress or data on the cloud. Every time you run an app online, it starts from scratch. If you want to save your progress or data, you need to use a real device or an emulator that supports data storage.
-No, ApkOnline Android Online Emulator only allows you to run one app at a time on one tab. If you want to run multiple apps at the same time, you need to open multiple tabs and run each app separately. However, this might affect the performance and speed of the emulator.
-If you are looking for a challenging and immersive open world survival RPG, you might want to check out Bad 2 Bad: Apocalypse. This game is the sequel to Bad 2 Bad: Delta and Extinction, and it follows the story of the Delta Team, led by Major Pan, saving and reconstructing the world ravaged by a virus from the Human Forces. In this article, we will review the game's features, gameplay, graphics, sound, and more. We will also answer some frequently asked questions about the game.
-Download → https://urlin.us/2uT2hq
Bad 2 Bad: Apocalypse is a mobile game developed by DAWINSTONE, an indie game development team from South Korea. The game is available for Android devices on Google Play and for iOS devices on App Store. The game is free to download and play, but it contains in-app purchases and ads.
-According to the developer, some of the main features of the game are:
-The core gameplay of Bad 2 Bad: Apocalypse is based on exploration, gathering, fishing, and crafting for survival. You can explore various locations such as forests, deserts, cities, islands, mountains, etc. You can gather resources such as wood, stone, metal, food, water, etc. You can fish in rivers, lakes, or oceans. You can craft items such as weapons, armor, tools, medicine, etc. You can also upgrade your base camp by building facilities such as barracks, workshops, farms, etc.
-The game also allows you to customize your character's appearance and equipment. You can choose from different races such as humans, animals, or hybrids. You can change your character's hair style, color, eyes, nose, mouth, etc. You can also equip your character with various weapons such as rifles, pistols, shotguns, snipers, etc. You can also equip your character with accessories such as helmets, goggles, masks, gloves, etc.
-In addition to your main character, you can also create and upgrade your own special forces team. You can recruit different characters from different factions such as Delta Force,
Another feature of the game is the use of support weapons and battle armor to enhance your combat capabilities. You can call for artillery support from self-propelled artilleries, air support from attack helicopters, and combat drones to assist you in battle . You can also embark on the powerful tactical weapon "Battle Armor" and ride into battle . The Battle Armor is a mechanized suit that can fire missiles, rockets, and machine guns. You can also upgrade the Battle Armor with different types and models.
-The game has advanced graphics and upgraded systems compared to the previous games in the series. The game features a 2D pixel art style with smooth animations and dynamic lighting effects. The game also has a realistic weather system that changes according to the time and location. The game has a variety of sound effects and music tracks that match the mood and atmosphere of the game. The game also has voice acting for some of the main characters and dialogues.
-bad 2 bad apocalypse mod apk download
-bad 2 bad apocalypse cheats and tips
-bad 2 bad apocalypse game review
-bad 2 bad apocalypse best weapons and equipment
-bad 2 bad apocalypse how to craft items
-bad 2 bad apocalypse open world survival rpg
-bad 2 bad apocalypse latest version update
-bad 2 bad apocalypse free apk for android
-bad 2 bad apocalypse squad system and tactics
-bad 2 bad apocalypse world missions and regions
-bad 2 bad apocalypse base camp upgrade guide
-bad 2 bad apocalypse exploration and gathering
-bad 2 bad apocalypse fishing and cooking
-bad 2 bad apocalypse character customization and appearance
-bad 2 bad apocalypse night vision and accessories
-bad 2 bad apocalypse artillery and air support
-bad 2 bad apocalypse combat drones and battle armor
-bad 2 bad apocalypse virus-infected wilders and enemies
-bad 2 bad apocalypse delta team and major pan story
-bad 2 bad apocalypse sequel to delta and extinction
-dawinstone games - developer of bad 2 bad apocalypse
-how to play bad 2 bad apocalypse offline mode
-how to install xapk file of bad 2 bad apocalypse
-how to backup and restore data of bad 2 bad apocalypse
-how to contact dawinstone support for bad 2 bad apocalypse
-is there a pc version of bad 2 bad apocalypse available
-is there a ios version of bad 2 bad apocalypse available
-is there a multiplayer mode in bad 2 bad apocalypse
-is there a wiki page for bad 2 bad apocalypse game
-is there a forum for discussing about bad 2 bad apocalypse game
-what are the minimum requirements to run the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game of the game
The pros of the graphics and sound are:
-The cons of the graphics and sound are:
-In conclusion, Bad 2 Bad: Apocalypse is a challenging and immersive open world survival RPG that follows the story of the Delta Team saving and reconstructing the world from a virus. The game has various features such as exploration, gathering, fishing, crafting, customization, squad system, support weapons, and battle armor. The game has advanced graphics and upgraded systems that create a realistic and dynamic environment. The game also has diverse sound effects and music tracks that match the mood and atmosphere of the game.
-We recommend Bad 2 Bad: Apocalypse to anyone who enjoys open world survival RPGs with a pixel art style and a post-apocalyptic theme. The game is fun and engaging, and it offers a lot of content and replay value. The game is also free to download and play, but it contains in-app purchases and ads. We rate the game 4.5 out of 5 stars, based on its features, gameplay, graphics, sound, and overall quality.
-A1: You can download and install Bad 2 Bad: Apocalypse from Google Play or App Store, depending on your device. You need to have at least Android 4.4 or iOS 9.0 or later to run the game. You also need to have enough storage space on your device to install the game.
-A2: You can upgrade your base camp by building and improving facilities such as barracks, workshops, farms, etc. You need to gather resources such as wood, stone, metal, food, water, etc. to build and upgrade the facilities. You can also upgrade your equipment by crafting or buying new weapons, armor, tools, medicine, etc. You need to gather resources or money to craft or buy new equipment.
-A3: You can unlock new characters and skins by completing world missions, citadel missions, or special events. You can also unlock new characters and skins by spending diamonds or gold coins in the shop. Diamonds are the premium currency of the game that you can buy with real money or earn by watching ads or completing tasks. Gold coins are the common currency of the game that you can earn by playing the game or selling items.
-A4: World missions are quests that take place across the globe. You can access them from the world map or from the mission board in your base camp. World missions have different objectives such as eliminating enemies, rescuing allies, collecting items, etc. You can earn rewards such as resources, money, items, characters, skins, etc. by completing world missions.
-Citadel is a special mode that challenges you to survive waves of enemies in a fortified base. You can access it from the world map or from the mission board in your base camp. Citadel has different levels of difficulty such as easy, normal, hard, etc. You can earn rewards such as resources, money, items, characters, skins, etc. by completing citadel.
-A5: You can contact the developer and get support by visiting their official website, Facebook page, YouTube channel, or email address. You can also visit their community forum or Discord server to interact with other players and get tips and feedback.
197e85843dYouTube Shorts are short-form videos that are similar to TikTok and Instagram Reels. They are vertical videos that are 60 seconds or less in length. You can watch them in a never-ending feed of content that is personalized for you. You can also create your own Shorts using the camera and editing tools in the YouTube app.
-Download Zip ✏ ✏ ✏ https://jinyurl.com/2uNP34
If you want to download YouTube Shorts on your device, whether it is your own or someone else's, there are different ways to do it. In this article, we will show you how to download YouTube Shorts on PC, Android, and iOS devices.
-YouTube Shorts are a new feature that YouTube introduced in 2020 to compete with TikTok and Instagram Reels. They are short videos that are designed to be watched on mobile devices. They can be up to 60 seconds long, but if you use music from the YouTube catalog, they will be limited to 15 seconds.
-You can watch YouTube Shorts in a dedicated tab in the YouTube app, or by swiping up on any Short video. You can also find them in the regular YouTube feed, where they will have a #Shorts label.
-YouTube Shorts and TikTok are very similar in terms of content and format. They both offer vertical videos that are fun, engaging, and viral. They both have music and sound effects that you can use for your videos. They both have filters, stickers, text, and other editing tools that you can use to enhance your videos.
-However, there are some differences between them as well. For example:
-If you are a YouTube partner who has accepted the YouTube Partner Program terms, you can earn money from your YouTube Shorts. There are two ways to do this:
-To be eligible for monetization, your Shorts must follow the YouTube channel monetization policies, the advertiser-friendly content guidelines, and the community guidelines. You must also have at least 1,000 subscribers and either 4
If you have created your own YouTube Shorts and you want to download them to your device, you can do so using either YouTube Studio on PC or the YouTube app on mobile. Here are the steps for each method:
-If you want to download YouTube Shorts from other creators or channels, you have two options: using the YouTube app on mobile or using third-party YouTube Shorts downloaders. Here are the steps for each option:
-How to download YouTube Shorts videos
-YouTube Shorts downloader app
-YouTube Shorts watermark remover
-Download YouTube Shorts on Android
-Download YouTube Shorts on iPhone
-Download YouTube Shorts on PC
-Best YouTube Shorts downloader online
-Save YouTube Shorts to gallery
-Download YouTube Shorts without login
-Download own YouTube Shorts video
-YouTube Shorts video converter
-Download YouTube Shorts with sound
-Download YouTube Shorts in HD quality
-Download YouTube Shorts in MP4 format
-Download YouTube Shorts in MP3 format
-How to edit YouTube Shorts videos
-How to make YouTube Shorts videos
-How to upload YouTube Shorts videos
-How to monetize YouTube Shorts videos
-How to get more views on YouTube Shorts videos
-YouTube Shorts tips and tricks
-YouTube Shorts vs TikTok videos
-YouTube Shorts vs Instagram Reels videos
-YouTube Shorts vs Snapchat Spotlight videos
-Best apps for creating YouTube Shorts videos
-Best music for YouTube Shorts videos
-Best hashtags for YouTube Shorts videos
-Best niches for YouTube Shorts videos
-Best examples of YouTube Shorts videos
-Best channels for YouTube Shorts videos
-How to grow your channel with YouTube Shorts videos
-How to optimize your channel for YouTube Shorts videos
-How to use analytics for YouTube Shorts videos
-How to promote your YouTube Shorts videos
-How to collaborate with other creators on YouTube Shorts videos
-How to add subtitles to YouTube Shorts videos
-How to add filters to YouTube Shorts videos
-How to add stickers to YouTube Shorts videos
-How to add transitions to YouTube Shorts videos
-How to add effects to YouTube Shorts videos
-How to trim YouTube Shorts videos
-How to crop YouTube Shorts videos
-How to rotate YouTube Shorts videos
-How to speed up or slow down YouTube Shorts videos
-How to reverse YouTube Shorts videos
-How to loop YouTube Shorts videos
-How to mute or unmute YouTube Shorts videos
-How to change the aspect ratio of YouTube Shorts videos
-How to change the background of YouTube Shorts videos
-How to change the thumbnail of YouTube Shorts videos
If you don't want to use the YouTube app or SaveTube, you can also use other websites or apps that allow you to download YouTube Shorts. Here are some examples of such tools:
-Tube Shorts is a website that lets you download YouTube Shorts in MP4 format. You just need to paste the link of the Short video that you want to download and click on Download MP4. You can also scan a QR code to download the video directly to your mobile device.
-Heat Feed is another website that allows you to download YouTube Shorts in MP4 format. You just need to paste the link of the Short video that you want to download and click on Download Video Now. You can also choose a quality option before downloading.
-In this article, we have shown you how to download YouTube Shorts on your device, whether they are your own or someone else's. You can use either YouTube Studio on PC, YouTube app on mobile, or third-party YouTube Shorts downloaders. We hope this article was helpful and informative for you. If you have any questions or feedback, please let us know in the comments below.
-If you are looking for a simple and easy way to download videos from various websites, you might want to try Youtube-dlg 0.4, a cross-platform graphical user interface (GUI) for the popular youtube-dl command-line tool. In this article, we will explain what Youtube-dlg is, what features it offers, how to download and install it, how to use it, and what are its pros and cons.
-Download File > https://jinyurl.com/2uNNGa
Youtube-dlg is a front-end GUI for youtube-dl, a powerful media downloader that can handle hundreds of websites and formats. Youtube-dl is a command-line tool that requires some knowledge of terminal commands and options to use it effectively. Youtube-dlg simplifies the process by providing a user-friendly interface that allows you to enter the URL of the video you want to download, choose the format and quality, and start the download with a click of a button.
-Youtube-dlg has many features that make it a convenient and versatile tool for downloading videos from the web. Some of these features are:
-Youtube-dlg uses youtube-dl in the backend to download files, which means that it supports all the sites that youtube-dl supports. According to the official documentation of youtube-dl, there are more than 1000 supported sites, including:
-There are several ways to download Youtube-dlg 0.4, depending on your operating system and preference. Here are some of the most common options:
-Option | Description |
---|---|
SourceForge | You can download the latest version of Youtube-dlg 0.4 from SourceForge as a ZIP or TAR file. You can also find older versions in the same page. |
PyPi | You can download Youtube-dlg 0.4 as a Python package from PyPi. You will need Python 2.7.3 or higher to install it. |
GitHub | You can download Youtube-dlg 0.4 from its GitHub repository. You can also find the source code, issues, and pull requests there. |
Homebrew | If you are using Mac OS, you can install Youtube-dlg 0.4 using Homebrew, a package manager for Mac OS. You will need to run the following command in the terminal: brew install youtube-dlg |
AUR | If you are using Arch Linux or a derivative, you can install Youtube-dlg 0.4 using AUR, a community-driven repository for Arch Linux. You will need to use an AUR helper such as yay or pacaur to install it. |
The installation steps for Youtube-dlg 0.4 vary depending on the download option you choose and the operating system you use. Here are some general steps that apply to most cases:
-youtube-dlg
.Using Youtube-dlg 0.4 is very simple and straightforward. Here are the basic steps to download a video using Youtube-dlg 0.4:
-youtube-dlg 0.4 windows setup
-youtube-dlg 0.4 portable zip
-youtube-dlg 0.4 source code
-youtube-dlg 0.4 linux install
-youtube-dlg 0.4 mac os x
-youtube-dlg 0.4 changelog
-youtube-dlg 0.4 documentation
-youtube-dlg 0.4 screenshots
-youtube-dlg 0.4 supported sites
-youtube-dlg 0.4 ffmpeg optional
-youtube-dlg 0.4 new UI
-youtube-dlg 0.4 post processing
-youtube-dlg 0.4 output template
-youtube-dlg 0.4 command line options
-youtube-dlg 0.4 custom binary
-youtube-dlg 0.4 issues and bugs
-youtube-dlg 0.4 reviews and ratings
-youtube-dlg 0.4 alternatives and competitors
-youtube-dlg 0.4 features and benefits
-youtube-dlg 0.4 FAQs and tutorials
-youtube-dlg 0.4 license and terms
-youtube-dlg 0.4 contributors and developers
-youtube-dlg 0.4 translations and languages
-youtube-dlg 0.4 updates and releases
-youtube-dlg 0.4 github repository
-youtube-dl gui for windows download
-download videos with youtube-dl gui
-how to use youtube-dl gui on linux
-best settings for youtube-dl gui mac
-latest version of youtube-dl gui python
-free and open source youtube downloader gui
-cross platform front-end for youtube downloader
-download playlists and channels with youtube dl gui
-how to install ffmpeg for youtube dl gui
-how to change save path in youtube dl gui
-how to add extra options in youtube dl gui
-how to update youtube dl in youtube dl gui
-how to fix errors in youtube dl gui
-how to customize filename format in youtube dl gui
-how to change number of workers in youtube dl gui
-how to download subtitles with youtube dl gui
-how to download audio only with youtube dl gui
-how to download live streams with youtube dl gui
-how to download multiple urls with youtube dl gui
-how to download from unsupported sites with youtube dl gui
-how to convert videos with post processing in youtube dl gui
If you want to access more advanced features of Youtube-dlg 0.4, you can click on the "Options" button at the bottom right corner of the main window and select "Advanced Options". This will open a new window where you can customize various settings of Youtube-dlg 0.4, such as:
-Youtube-dlg 0.4 has many advantages that make it a great tool for downloading videos from the web. Some of these advantages are:
-Youtube-dlg 0.4 also has some disadvantages that you should be aware of before using it. Some of these disadvantages are:
-In conclusion, Youtube-dlg 0.4 is a cross-platform GUI for youtube-dl that allows you to download videos from various websites with ease and convenience. It has many features and options that make it a versatile and powerful tool for downloading videos from the web. However, it also has some drawbacks that you should consider before using it. If you are looking for a simple and easy way to download videos from the web, you might want to give Youtube-dlg 0.4 a try.
-Here are some frequently asked questions about Youtube-dlg 0.4:
-If you are a fan of farming games, you might have heard of Farming Simulator 12, one of the most popular and realistic farming simulation games for Android devices. In this game, you can experience the varied farming life in a wide, agricultural scenery with fields, roads, your farm, and a small village. You can cultivate your fields with various three-dimensional vehicles modeled after original machines and vehicles by prestigious manufacturers. You can also sell your harvest and invest in new equipment, buildings, and tools.
-DOWNLOAD ——— https://jinyurl.com/2uNMrX
However, if you want to enjoy the game without any limitations or restrictions, you might want to try FS 12 Mod APK Unlimited Money, a modified version of the original game that gives you unlimited money and access to all the features and items in the game. In this article, we will tell you what is FS 12 Mod APK Unlimited Money, how to download and install it on your Android device, and what are the benefits and precautions of using it.
-Farming Simulator 12 is a game developed by Giants Software, a Swiss video game developer that specializes in creating realistic and immersive simulation games. Farming Simulator 12 was released in 2012 for Android devices, and it has received positive reviews from critics and players alike. The game has been praised for its graphics, gameplay, physics, and variety of vehicles and equipment.
-Some of the features of Farming Simulator 12 are:
-FS 12 Mod APK Unlimited Money is a modified version of the original Farming Simulator 12 game that gives you unlimited money and access to all the features and items in the game. This means that you can buy any vehicle, equipment, tool, building, or seed that you want without worrying about the cost. You can also upgrade your farm and expand your business as much as you want.
-Some of the benefits of using FS 12 Mod APK Unlimited Money are:
-If you want to download and install FS 12 Mod APK Unlimited Money on your Android device, you need to follow these steps:
-Before you start using FS 12 Mod APK Unlimited Money, here are some tips and precautions that you should keep in mind:
-Farming Simulator 12 is a fun and realistic farming simulation game that lets you experience the varied farming life on your Android device. However, if you want to enjoy the game without any limitations or restrictions, you can try FS 12 Mod APK Unlimited Money, a modified version of the original game that gives you unlimited money and access to all the features and items in the game. You can download and install FS 12 Mod APK Unlimited Money by following the steps mentioned above, but make sure you follow the tips and precautions as well. We hope this article was helpful and informative for you. Happy farming!
-fs 12 mod apk unlimited money download free
-fs 12 mod apk unlimited money download latest version
-fs 12 mod apk unlimited money download android
-fs 12 mod apk unlimited money download no root
-fs 12 mod apk unlimited money download offline
-fs 12 mod apk unlimited money download for pc
-fs 12 mod apk unlimited money download 2023
-fs 12 mod apk unlimited money download hack
-fs 12 mod apk unlimited money download obb
-fs 12 mod apk unlimited money download mediafire
-fs 12 mod apk unlimited money download rexdl
-fs 12 mod apk unlimited money download revdl
-fs 12 mod apk unlimited money download apkpure
-fs 12 mod apk unlimited money download happymod
-fs 12 mod apk unlimited money download uptodown
-fs 12 farming simulator mod apk unlimited money download
-fs 12 gold edition mod apk unlimited money download
-fs 22 vs fs 12 mod apk unlimited money download
-how to install fs 12 mod apk unlimited money download
-how to play fs 12 mod apk unlimited money download
-how to get fs 12 mod apk unlimited money download
-how to update fs 12 mod apk unlimited money download
-how to use fs 22 cheats in fs 12 mod apk unlimited money download[^1^]
-best features of fs 12 mod apk unlimited money download
-best tips and tricks for fs 12 mod apk unlimited money download
-best vehicles and equipment in fs 12 mod apk unlimited money download
-best crops and animals in fs 12 mod apk unlimited money download
-best maps and locations in fs 12 mod apk unlimited money download
-best mods and addons for fs 12 mod apk unlimited money download
-best graphics and sound in fs 12 mod apk unlimited money download
-pros and cons of fs 12 mod apk unlimited money download
-reviews and ratings of fs 12 mod apk unlimited money download
-alternatives and competitors of fs 12 mod apk unlimited money download
-benefits and drawbacks of fs 12 mod apk unlimited money download
-advantages and disadvantages of fs 12 mod apk unlimited money download
-comparison and contrast of fs 12 mod apk unlimited money download
-similarities and differences of fs 12 mod apk unlimited money download
-pros and cons of farming simulator vs real life farming with fs 12 mod apk unlimited money download
-reviews and ratings of farming simulator vs real life farming with fs 12 mod apk unlimited money download
Farming Simulator 12 and Farming Simulator 14 are two different versions of the same game series developed by Giants Software. Farming Simulator 14 was released in 2013 for Android devices, and it has some improvements and additions over Farming Simulator 12, such as new vehicles, equipment, crops, animals, maps, graphics, and gameplay modes.
-FS 12 Mod APK Unlimited Money is generally safe to use if you download it from a reliable source and scan it for viruses or malware before installing it. However, you should be careful not to use it for online or multiplayer mode, as it may result in banning or suspension of your account. You should also backup your game data before uninstalling the original game or installing the mod file.
-If you want to update FS 12 Mod APK Unlimited Money, you need to uninstall the old version of the mod file from your device and download the new version of the mod file from a trusted source. Then, you need to follow the same steps as mentioned above for installing the mod file. Make sure you backup your game data before uninstalling or installing the mod file.
-If you want to play FS 12 Mod APK Unlimited Money on PC, you need to use an Android emulator software that allows you to run Android apps and games on your PC. Some of the popular Android emulators are BlueStacks, NoxPlayer, MEmu, LDPlayer, etc. You need to download and install an Android emulator on your PC and then follow the same steps as mentioned above for downloading and installing FS 12 Mod APK Unlimited Money on your Android device.
-If you want to play FS 12 Mod APK Unlimited Money with your friends, you can do so by using a local Wi-Fi network or Bluetooth connection. However, you should not use the mod file for online or multiplayer mode as it may result in banning or suspension of your account. You should also make sure that your friends have the same version of the mod file as you do.
401be4b1e0
- This classroom is a public open source forum to create and teach AI together. Our goal is turning Pain to Joy and ultimately creating Superpowers for those in need.
- More info and long term documentation of our progress is at 🌲 Yggdrasil Yggdrasil 🌲
- Intended audience are those interested in learning, or teaching AI and creative technologies for health care and clinical experts, but making it fast and easy to meet goals of anyone interested in learning new technologies like the 🥇Huggingface AI Platform🥇, Streamlit, Gradio, ML Models, Datasets and 🥇HF Spaces🥇.
-
As a radiologist or oncologist, it is crucial to know what is wrong with a breast x-ray image.
Upload the breast X-ray image to know what is wrong with a patients breast with or without inplant
" -article="
Web app is built and managed by Addai Fosberg
" -examples = ['img1.jpeg', 'img2.jpeg'] -enable_queue=True -#interpretation='default' - -gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,enable_queue=enable_queue).launch() \ No newline at end of file diff --git a/spaces/AdityaVishwakarma/LiveChecker/README.md b/spaces/AdityaVishwakarma/LiveChecker/README.md deleted file mode 100644 index d82a107f3efd0eee86cbd2d994e2bc9302de6f53..0000000000000000000000000000000000000000 --- a/spaces/AdityaVishwakarma/LiveChecker/README.md +++ /dev/null @@ -1,13 +0,0 @@ ---- -title: LiveChecker -emoji: 🦀 -colorFrom: purple -colorTo: pink -sdk: streamlit -sdk_version: 1.27.2 -app_file: app.py -pinned: false -license: apache-2.0 ---- - -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/bejeweled/board/PreTest.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/bejeweled/board/PreTest.js deleted file mode 100644 index e2b90040e6e96887b214f66a347a16f62a0f49ed..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/bejeweled/board/PreTest.js +++ /dev/null @@ -1,47 +0,0 @@ -/* -1. Test if there has any matched line after chess swapping -*/ - -import RefreshSymbolCache from './match/RefreshSymbolCache.js'; -import AnyMatch from './match/AnyMatch.js'; - -var PreTest = function () { - var match = this.match; - var directions = this.board.grid.halfDirections; - var tileB; - RefreshSymbolCache.call(this); // only refresh symbol cache once - for (var tileY = (this.board.height / 2), rowCnt = this.board.height; tileY < rowCnt; tileY++) { - for (var tileX = 0, colCnt = this.board.width; tileX < colCnt; tileX++) { - tileA.x = tileX; - tileA.y = tileY; - for (var dir = 0, dirCnt = directions.length; dir < dirCnt; dir++) { - tileB = this.board.getNeighborTileXY(tileA, dir); - // swap symbol - swapSymbols(match, tileA, tileB); - // any match? - this.preTestResult = AnyMatch.call(this, 3); - // swap symbol back - swapSymbols(match, tileA, tileB); - - if (this.preTestResult) { - return true; - } - } - } - } - return false; -} - -var swapSymbols = function (match, tileA, tileB) { - var symbolA = match.getSymbol(tileA.x, tileA.y); - var symbolB = match.getSymbol(tileB.x, tileB.y); - match.setSymbol(tileA.x, tileA.y, symbolB); - match.setSymbol(tileB.x, tileB.y, symbolA); -}; - -var tileA = { - x: 0, - y: 0 -}; - -export default PreTest; \ No newline at end of file diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/gridsizer/LayoutChildren.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/gridsizer/LayoutChildren.js deleted file mode 100644 index 62b172e89efe147620c79e920adbd2b6f7eb61dc..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/gridsizer/LayoutChildren.js +++ /dev/null @@ -1,68 +0,0 @@ -import ResizeGameObject from '../../../plugins/utils/size/ResizeGameObject.js'; -import PreLayoutChild from '../basesizer/utils/PreLayoutChild.js'; -import LayoutChild from '../basesizer/utils/LayoutChild.js'; -import CheckSize from '../basesizer/utils/CheckSize.js'; - -var LayoutChildren = function () { - var child, childConfig, padding; - var startX = this.innerLeft, - startY = this.innerTop; - var itemX, - itemY = startY; - var x, y, width, height; // Align zone - var childWidth, childHeight; - // Layout grid children - var columnSpace = this.space.column, - rowSpace = this.space.row, - indentLeftOdd = this.space.indentLeftOdd, - indentLeftEven = this.space.indentLeftEven, - indentTopOdd = this.space.indentTopOdd, - indentTopEven = this.space.indentTopEven; - - var colWidth, rowHeight; - var indentLeft, indentTop; - for (var rowIndex = 0; rowIndex < this.rowCount; rowIndex++) { - rowHeight = this.getRowHeight(rowIndex); - - indentLeft = (rowIndex % 2) ? indentLeftEven : indentLeftOdd; - itemX = startX + indentLeft; - for (var columnIndex = 0; columnIndex < this.columnCount; columnIndex++) { - colWidth = this.getColumnWidth(columnIndex); - - child = this.getChildAt(columnIndex, rowIndex); - if ((!child) || (child.rexSizer.hidden)) { - itemX += (colWidth + columnSpace[columnIndex]); - continue; - } - - PreLayoutChild.call(this, child); - - childWidth = this.getExpandedChildWidth(child, colWidth); - childHeight = this.getExpandedChildHeight(child, rowHeight); - if (child.isRexSizer) { - child.runLayout(this, childWidth, childHeight); - CheckSize(child, this); - } else { - ResizeGameObject(child, childWidth, childHeight); - } - - childConfig = child.rexSizer; - padding = childConfig.padding; - - x = (itemX + padding.left); - width = colWidth - padding.left - padding.right; - - indentTop = (columnIndex % 2) ? indentTopEven : indentTopOdd; - y = (itemY + indentTop + padding.top); - height = rowHeight - padding.top - padding.bottom; - - LayoutChild.call(this, child, x, y, width, height, childConfig.align); - - itemX += (colWidth + columnSpace[columnIndex]); - } - - itemY += (rowHeight + rowSpace[rowIndex]); - } -} - -export default LayoutChildren; \ No newline at end of file diff --git a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/pan/Pan.js b/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/pan/Pan.js deleted file mode 100644 index 90d3b003dfb3f918badd56f213d96b3357d36bf3..0000000000000000000000000000000000000000 --- a/spaces/AgentVerse/agentVerse/ui/src/phaser3-rex-plugins/templates/ui/pan/Pan.js +++ /dev/null @@ -1,2 +0,0 @@ -import { Pan } from '../../../plugins/gestures'; -export default Pan; \ No newline at end of file diff --git a/spaces/Alycer/VITS-Umamusume-voice-synthesizer/mel_processing.py b/spaces/Alycer/VITS-Umamusume-voice-synthesizer/mel_processing.py deleted file mode 100644 index 3e252e76320522a8a4195a60665168f22769aec2..0000000000000000000000000000000000000000 --- a/spaces/Alycer/VITS-Umamusume-voice-synthesizer/mel_processing.py +++ /dev/null @@ -1,101 +0,0 @@ -import torch -import torch.utils.data -from librosa.filters import mel as librosa_mel_fn - -MAX_WAV_VALUE = 32768.0 - - -def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): - """ - PARAMS - ------ - C: compression factor - """ - return torch.log(torch.clamp(x, min=clip_val) * C) - - -def dynamic_range_decompression_torch(x, C=1): - """ - PARAMS - ------ - C: compression factor used to compress - """ - return torch.exp(x) / C - - -def spectral_normalize_torch(magnitudes): - output = dynamic_range_compression_torch(magnitudes) - return output - - -def spectral_de_normalize_torch(magnitudes): - output = dynamic_range_decompression_torch(magnitudes) - return output - - -mel_basis = {} -hann_window = {} - - -def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): - if torch.min(y) < -1.: - print('min value is ', torch.min(y)) - if torch.max(y) > 1.: - print('max value is ', torch.max(y)) - - global hann_window - dtype_device = str(y.dtype) + '_' + str(y.device) - wnsize_dtype_device = str(win_size) + '_' + dtype_device - if wnsize_dtype_device not in hann_window: - hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) - - y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') - y = y.squeeze(1) - - spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], - center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) - - spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) - return spec - - -def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): - global mel_basis - dtype_device = str(spec.dtype) + '_' + str(spec.device) - fmax_dtype_device = str(fmax) + '_' + dtype_device - if fmax_dtype_device not in mel_basis: - mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) - mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) - spec = torch.matmul(mel_basis[fmax_dtype_device], spec) - spec = spectral_normalize_torch(spec) - return spec - - -def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): - if torch.min(y) < -1.: - print('min value is ', torch.min(y)) - if torch.max(y) > 1.: - print('max value is ', torch.max(y)) - - global mel_basis, hann_window - dtype_device = str(y.dtype) + '_' + str(y.device) - fmax_dtype_device = str(fmax) + '_' + dtype_device - wnsize_dtype_device = str(win_size) + '_' + dtype_device - if fmax_dtype_device not in mel_basis: - mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) - mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) - if wnsize_dtype_device not in hann_window: - hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) - - y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') - y = y.squeeze(1) - - spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], - center=center, pad_mode='reflect', normalized=False, onesided=True) - - spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) - - spec = torch.matmul(mel_basis[fmax_dtype_device], spec) - spec = spectral_normalize_torch(spec) - - return spec diff --git a/spaces/Amrrs/DragGan-Inversion/PTI/torch_utils/custom_ops.py b/spaces/Amrrs/DragGan-Inversion/PTI/torch_utils/custom_ops.py deleted file mode 100644 index 4cc4e43fc6f6ce79f2bd68a44ba87990b9b8564e..0000000000000000000000000000000000000000 --- a/spaces/Amrrs/DragGan-Inversion/PTI/torch_utils/custom_ops.py +++ /dev/null @@ -1,126 +0,0 @@ -# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. -# -# NVIDIA CORPORATION and its licensors retain all intellectual property -# and proprietary rights in and to this software, related documentation -# and any modifications thereto. Any use, reproduction, disclosure or -# distribution of this software and related documentation without an express -# license agreement from NVIDIA CORPORATION is strictly prohibited. - -import os -import glob -import torch -import torch.utils.cpp_extension -import importlib -import hashlib -import shutil -from pathlib import Path - -from torch.utils.file_baton import FileBaton - -#---------------------------------------------------------------------------- -# Global options. - -verbosity = 'brief' # Verbosity level: 'none', 'brief', 'full' - -#---------------------------------------------------------------------------- -# Internal helper funcs. - -def _find_compiler_bindir(): - patterns = [ - 'C:/Program Files (x86)/Microsoft Visual Studio/*/Professional/VC/Tools/MSVC/*/bin/Hostx64/x64', - 'C:/Program Files (x86)/Microsoft Visual Studio/*/BuildTools/VC/Tools/MSVC/*/bin/Hostx64/x64', - 'C:/Program Files (x86)/Microsoft Visual Studio/*/Community/VC/Tools/MSVC/*/bin/Hostx64/x64', - 'C:/Program Files (x86)/Microsoft Visual Studio */vc/bin', - ] - for pattern in patterns: - matches = sorted(glob.glob(pattern)) - if len(matches): - return matches[-1] - return None - -#---------------------------------------------------------------------------- -# Main entry point for compiling and loading C++/CUDA plugins. - -_cached_plugins = dict() - -def get_plugin(module_name, sources, **build_kwargs): - assert verbosity in ['none', 'brief', 'full'] - - # Already cached? - if module_name in _cached_plugins: - return _cached_plugins[module_name] - - # Print status. - if verbosity == 'full': - print(f'Setting up PyTorch plugin "{module_name}"...') - elif verbosity == 'brief': - print(f'Setting up PyTorch plugin "{module_name}"... ', end='', flush=True) - - try: # pylint: disable=too-many-nested-blocks - # Make sure we can find the necessary compiler binaries. - if os.name == 'nt' and os.system("where cl.exe >nul 2>nul") != 0: - compiler_bindir = _find_compiler_bindir() - if compiler_bindir is None: - raise RuntimeError(f'Could not find MSVC/GCC/CLANG installation on this computer. Check _find_compiler_bindir() in "{__file__}".') - os.environ['PATH'] += ';' + compiler_bindir - - # Compile and load. - verbose_build = (verbosity == 'full') - - # Incremental build md5sum trickery. Copies all the input source files - # into a cached build directory under a combined md5 digest of the input - # source files. Copying is done only if the combined digest has changed. - # This keeps input file timestamps and filenames the same as in previous - # extension builds, allowing for fast incremental rebuilds. - # - # This optimization is done only in case all the source files reside in - # a single directory (just for simplicity) and if the TORCH_EXTENSIONS_DIR - # environment variable is set (we take this as a signal that the user - # actually cares about this.) - source_dirs_set = set(os.path.dirname(source) for source in sources) - if len(source_dirs_set) == 1 and ('TORCH_EXTENSIONS_DIR' in os.environ): - all_source_files = sorted(list(x for x in Path(list(source_dirs_set)[0]).iterdir() if x.is_file())) - - # Compute a combined hash digest for all source files in the same - # custom op directory (usually .cu, .cpp, .py and .h files). - hash_md5 = hashlib.md5() - for src in all_source_files: - with open(src, 'rb') as f: - hash_md5.update(f.read()) - build_dir = torch.utils.cpp_extension._get_build_directory(module_name, verbose=verbose_build) # pylint: disable=protected-access - digest_build_dir = os.path.join(build_dir, hash_md5.hexdigest()) - - if not os.path.isdir(digest_build_dir): - os.makedirs(digest_build_dir, exist_ok=True) - baton = FileBaton(os.path.join(digest_build_dir, 'lock')) - if baton.try_acquire(): - try: - for src in all_source_files: - shutil.copyfile(src, os.path.join(digest_build_dir, os.path.basename(src))) - finally: - baton.release() - else: - # Someone else is copying source files under the digest dir, - # wait until done and continue. - baton.wait() - digest_sources = [os.path.join(digest_build_dir, os.path.basename(x)) for x in sources] - torch.utils.cpp_extension.load(name=module_name, build_directory=build_dir, - verbose=verbose_build, sources=digest_sources, **build_kwargs) - else: - torch.utils.cpp_extension.load(name=module_name, verbose=verbose_build, sources=sources, **build_kwargs) - module = importlib.import_module(module_name) - - except: - if verbosity == 'brief': - print('Failed!') - raise - - # Print status and add to cache. - if verbosity == 'full': - print(f'Done setting up PyTorch plugin "{module_name}".') - elif verbosity == 'brief': - print('Done.') - _cached_plugins[module_name] = module - return module - -#---------------------------------------------------------------------------- diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/utils/import_utils.py b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/utils/import_utils.py deleted file mode 100644 index 449b8261d1366189ba12aec55132101fa09abec0..0000000000000000000000000000000000000000 --- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/src/diffusers/utils/import_utils.py +++ /dev/null @@ -1,655 +0,0 @@ -# Copyright 2023 The HuggingFace Team. All rights reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" -Import utilities: Utilities related to imports and our lazy inits. -""" -import importlib.util -import operator as op -import os -import sys -from collections import OrderedDict -from typing import Union - -from huggingface_hub.utils import is_jinja_available # noqa: F401 -from packaging import version -from packaging.version import Version, parse - -from . import logging - - -# The package importlib_metadata is in a different place, depending on the python version. -if sys.version_info < (3, 8): - import importlib_metadata -else: - import importlib.metadata as importlib_metadata - - -logger = logging.get_logger(__name__) # pylint: disable=invalid-name - -ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"} -ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"}) - -USE_TF = os.environ.get("USE_TF", "AUTO").upper() -USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper() -USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper() -USE_SAFETENSORS = os.environ.get("USE_SAFETENSORS", "AUTO").upper() - -STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} - -_torch_version = "N/A" -if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES: - _torch_available = importlib.util.find_spec("torch") is not None - if _torch_available: - try: - _torch_version = importlib_metadata.version("torch") - logger.info(f"PyTorch version {_torch_version} available.") - except importlib_metadata.PackageNotFoundError: - _torch_available = False -else: - logger.info("Disabling PyTorch because USE_TORCH is set") - _torch_available = False - - -_tf_version = "N/A" -if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES: - _tf_available = importlib.util.find_spec("tensorflow") is not None - if _tf_available: - candidates = ( - "tensorflow", - "tensorflow-cpu", - "tensorflow-gpu", - "tf-nightly", - "tf-nightly-cpu", - "tf-nightly-gpu", - "intel-tensorflow", - "intel-tensorflow-avx512", - "tensorflow-rocm", - "tensorflow-macos", - "tensorflow-aarch64", - ) - _tf_version = None - # For the metadata, we have to look for both tensorflow and tensorflow-cpu - for pkg in candidates: - try: - _tf_version = importlib_metadata.version(pkg) - break - except importlib_metadata.PackageNotFoundError: - pass - _tf_available = _tf_version is not None - if _tf_available: - if version.parse(_tf_version) < version.parse("2"): - logger.info(f"TensorFlow found but with version {_tf_version}. Diffusers requires version 2 minimum.") - _tf_available = False - else: - logger.info(f"TensorFlow version {_tf_version} available.") -else: - logger.info("Disabling Tensorflow because USE_TORCH is set") - _tf_available = False - -_jax_version = "N/A" -_flax_version = "N/A" -if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES: - _flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None - if _flax_available: - try: - _jax_version = importlib_metadata.version("jax") - _flax_version = importlib_metadata.version("flax") - logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.") - except importlib_metadata.PackageNotFoundError: - _flax_available = False -else: - _flax_available = False - -if USE_SAFETENSORS in ENV_VARS_TRUE_AND_AUTO_VALUES: - _safetensors_available = importlib.util.find_spec("safetensors") is not None - if _safetensors_available: - try: - _safetensors_version = importlib_metadata.version("safetensors") - logger.info(f"Safetensors version {_safetensors_version} available.") - except importlib_metadata.PackageNotFoundError: - _safetensors_available = False -else: - logger.info("Disabling Safetensors because USE_TF is set") - _safetensors_available = False - -_transformers_available = importlib.util.find_spec("transformers") is not None -try: - _transformers_version = importlib_metadata.version("transformers") - logger.debug(f"Successfully imported transformers version {_transformers_version}") -except importlib_metadata.PackageNotFoundError: - _transformers_available = False - - -_inflect_available = importlib.util.find_spec("inflect") is not None -try: - _inflect_version = importlib_metadata.version("inflect") - logger.debug(f"Successfully imported inflect version {_inflect_version}") -except importlib_metadata.PackageNotFoundError: - _inflect_available = False - - -_unidecode_available = importlib.util.find_spec("unidecode") is not None -try: - _unidecode_version = importlib_metadata.version("unidecode") - logger.debug(f"Successfully imported unidecode version {_unidecode_version}") -except importlib_metadata.PackageNotFoundError: - _unidecode_available = False - - -_onnxruntime_version = "N/A" -_onnx_available = importlib.util.find_spec("onnxruntime") is not None -if _onnx_available: - candidates = ( - "onnxruntime", - "onnxruntime-gpu", - "ort_nightly_gpu", - "onnxruntime-directml", - "onnxruntime-openvino", - "ort_nightly_directml", - "onnxruntime-rocm", - "onnxruntime-training", - ) - _onnxruntime_version = None - # For the metadata, we have to look for both onnxruntime and onnxruntime-gpu - for pkg in candidates: - try: - _onnxruntime_version = importlib_metadata.version(pkg) - break - except importlib_metadata.PackageNotFoundError: - pass - _onnx_available = _onnxruntime_version is not None - if _onnx_available: - logger.debug(f"Successfully imported onnxruntime version {_onnxruntime_version}") - -# (sayakpaul): importlib.util.find_spec("opencv-python") returns None even when it's installed. -# _opencv_available = importlib.util.find_spec("opencv-python") is not None -try: - candidates = ( - "opencv-python", - "opencv-contrib-python", - "opencv-python-headless", - "opencv-contrib-python-headless", - ) - _opencv_version = None - for pkg in candidates: - try: - _opencv_version = importlib_metadata.version(pkg) - break - except importlib_metadata.PackageNotFoundError: - pass - _opencv_available = _opencv_version is not None - if _opencv_available: - logger.debug(f"Successfully imported cv2 version {_opencv_version}") -except importlib_metadata.PackageNotFoundError: - _opencv_available = False - -_scipy_available = importlib.util.find_spec("scipy") is not None -try: - _scipy_version = importlib_metadata.version("scipy") - logger.debug(f"Successfully imported scipy version {_scipy_version}") -except importlib_metadata.PackageNotFoundError: - _scipy_available = False - -_librosa_available = importlib.util.find_spec("librosa") is not None -try: - _librosa_version = importlib_metadata.version("librosa") - logger.debug(f"Successfully imported librosa version {_librosa_version}") -except importlib_metadata.PackageNotFoundError: - _librosa_available = False - -_accelerate_available = importlib.util.find_spec("accelerate") is not None -try: - _accelerate_version = importlib_metadata.version("accelerate") - logger.debug(f"Successfully imported accelerate version {_accelerate_version}") -except importlib_metadata.PackageNotFoundError: - _accelerate_available = False - -_xformers_available = importlib.util.find_spec("xformers") is not None -try: - _xformers_version = importlib_metadata.version("xformers") - if _torch_available: - import torch - - if version.Version(torch.__version__) < version.Version("1.12"): - raise ValueError("PyTorch should be >= 1.12") - logger.debug(f"Successfully imported xformers version {_xformers_version}") -except importlib_metadata.PackageNotFoundError: - _xformers_available = False - -_k_diffusion_available = importlib.util.find_spec("k_diffusion") is not None -try: - _k_diffusion_version = importlib_metadata.version("k_diffusion") - logger.debug(f"Successfully imported k-diffusion version {_k_diffusion_version}") -except importlib_metadata.PackageNotFoundError: - _k_diffusion_available = False - -_note_seq_available = importlib.util.find_spec("note_seq") is not None -try: - _note_seq_version = importlib_metadata.version("note_seq") - logger.debug(f"Successfully imported note-seq version {_note_seq_version}") -except importlib_metadata.PackageNotFoundError: - _note_seq_available = False - -_wandb_available = importlib.util.find_spec("wandb") is not None -try: - _wandb_version = importlib_metadata.version("wandb") - logger.debug(f"Successfully imported wandb version {_wandb_version }") -except importlib_metadata.PackageNotFoundError: - _wandb_available = False - -_omegaconf_available = importlib.util.find_spec("omegaconf") is not None -try: - _omegaconf_version = importlib_metadata.version("omegaconf") - logger.debug(f"Successfully imported omegaconf version {_omegaconf_version}") -except importlib_metadata.PackageNotFoundError: - _omegaconf_available = False - -_tensorboard_available = importlib.util.find_spec("tensorboard") -try: - _tensorboard_version = importlib_metadata.version("tensorboard") - logger.debug(f"Successfully imported tensorboard version {_tensorboard_version}") -except importlib_metadata.PackageNotFoundError: - _tensorboard_available = False - - -_compel_available = importlib.util.find_spec("compel") -try: - _compel_version = importlib_metadata.version("compel") - logger.debug(f"Successfully imported compel version {_compel_version}") -except importlib_metadata.PackageNotFoundError: - _compel_available = False - - -_ftfy_available = importlib.util.find_spec("ftfy") is not None -try: - _ftfy_version = importlib_metadata.version("ftfy") - logger.debug(f"Successfully imported ftfy version {_ftfy_version}") -except importlib_metadata.PackageNotFoundError: - _ftfy_available = False - - -_bs4_available = importlib.util.find_spec("bs4") is not None -try: - # importlib metadata under different name - _bs4_version = importlib_metadata.version("beautifulsoup4") - logger.debug(f"Successfully imported ftfy version {_bs4_version}") -except importlib_metadata.PackageNotFoundError: - _bs4_available = False - -_torchsde_available = importlib.util.find_spec("torchsde") is not None -try: - _torchsde_version = importlib_metadata.version("torchsde") - logger.debug(f"Successfully imported torchsde version {_torchsde_version}") -except importlib_metadata.PackageNotFoundError: - _torchsde_available = False - -_invisible_watermark_available = importlib.util.find_spec("imwatermark") is not None -try: - _invisible_watermark_version = importlib_metadata.version("invisible-watermark") - logger.debug(f"Successfully imported invisible-watermark version {_invisible_watermark_version}") -except importlib_metadata.PackageNotFoundError: - _invisible_watermark_available = False - - -def is_torch_available(): - return _torch_available - - -def is_safetensors_available(): - return _safetensors_available - - -def is_tf_available(): - return _tf_available - - -def is_flax_available(): - return _flax_available - - -def is_transformers_available(): - return _transformers_available - - -def is_inflect_available(): - return _inflect_available - - -def is_unidecode_available(): - return _unidecode_available - - -def is_onnx_available(): - return _onnx_available - - -def is_opencv_available(): - return _opencv_available - - -def is_scipy_available(): - return _scipy_available - - -def is_librosa_available(): - return _librosa_available - - -def is_xformers_available(): - return _xformers_available - - -def is_accelerate_available(): - return _accelerate_available - - -def is_k_diffusion_available(): - return _k_diffusion_available - - -def is_note_seq_available(): - return _note_seq_available - - -def is_wandb_available(): - return _wandb_available - - -def is_omegaconf_available(): - return _omegaconf_available - - -def is_tensorboard_available(): - return _tensorboard_available - - -def is_compel_available(): - return _compel_available - - -def is_ftfy_available(): - return _ftfy_available - - -def is_bs4_available(): - return _bs4_available - - -def is_torchsde_available(): - return _torchsde_available - - -def is_invisible_watermark_available(): - return _invisible_watermark_available - - -# docstyle-ignore -FLAX_IMPORT_ERROR = """ -{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the -installation page: https://github.com/google/flax and follow the ones that match your environment. -""" - -# docstyle-ignore -INFLECT_IMPORT_ERROR = """ -{0} requires the inflect library but it was not found in your environment. You can install it with pip: `pip install -inflect` -""" - -# docstyle-ignore -PYTORCH_IMPORT_ERROR = """ -{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the -installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment. -""" - -# docstyle-ignore -ONNX_IMPORT_ERROR = """ -{0} requires the onnxruntime library but it was not found in your environment. You can install it with pip: `pip -install onnxruntime` -""" - -# docstyle-ignore -OPENCV_IMPORT_ERROR = """ -{0} requires the OpenCV library but it was not found in your environment. You can install it with pip: `pip -install opencv-python` -""" - -# docstyle-ignore -SCIPY_IMPORT_ERROR = """ -{0} requires the scipy library but it was not found in your environment. You can install it with pip: `pip install -scipy` -""" - -# docstyle-ignore -LIBROSA_IMPORT_ERROR = """ -{0} requires the librosa library but it was not found in your environment. Checkout the instructions on the -installation page: https://librosa.org/doc/latest/install.html and follow the ones that match your environment. -""" - -# docstyle-ignore -TRANSFORMERS_IMPORT_ERROR = """ -{0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip -install transformers` -""" - -# docstyle-ignore -UNIDECODE_IMPORT_ERROR = """ -{0} requires the unidecode library but it was not found in your environment. You can install it with pip: `pip install -Unidecode` -""" - -# docstyle-ignore -K_DIFFUSION_IMPORT_ERROR = """ -{0} requires the k-diffusion library but it was not found in your environment. You can install it with pip: `pip -install k-diffusion` -""" - -# docstyle-ignore -NOTE_SEQ_IMPORT_ERROR = """ -{0} requires the note-seq library but it was not found in your environment. You can install it with pip: `pip -install note-seq` -""" - -# docstyle-ignore -WANDB_IMPORT_ERROR = """ -{0} requires the wandb library but it was not found in your environment. You can install it with pip: `pip -install wandb` -""" - -# docstyle-ignore -OMEGACONF_IMPORT_ERROR = """ -{0} requires the omegaconf library but it was not found in your environment. You can install it with pip: `pip -install omegaconf` -""" - -# docstyle-ignore -TENSORBOARD_IMPORT_ERROR = """ -{0} requires the tensorboard library but it was not found in your environment. You can install it with pip: `pip -install tensorboard` -""" - - -# docstyle-ignore -COMPEL_IMPORT_ERROR = """ -{0} requires the compel library but it was not found in your environment. You can install it with pip: `pip install compel` -""" - -# docstyle-ignore -BS4_IMPORT_ERROR = """ -{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip: -`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation. -""" - -# docstyle-ignore -FTFY_IMPORT_ERROR = """ -{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the -installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones -that match your environment. Please note that you may need to restart your runtime after installation. -""" - -# docstyle-ignore -TORCHSDE_IMPORT_ERROR = """ -{0} requires the torchsde library but it was not found in your environment. You can install it with pip: `pip install torchsde` -""" - -# docstyle-ignore -INVISIBLE_WATERMARK_IMPORT_ERROR = """ -{0} requires the invisible-watermark library but it was not found in your environment. You can install it with pip: `pip install invisible-watermark>=0.2.0` -""" - - -BACKENDS_MAPPING = OrderedDict( - [ - ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)), - ("flax", (is_flax_available, FLAX_IMPORT_ERROR)), - ("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)), - ("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)), - ("opencv", (is_opencv_available, OPENCV_IMPORT_ERROR)), - ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)), - ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)), - ("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)), - ("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)), - ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)), - ("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)), - ("note_seq", (is_note_seq_available, NOTE_SEQ_IMPORT_ERROR)), - ("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)), - ("omegaconf", (is_omegaconf_available, OMEGACONF_IMPORT_ERROR)), - ("tensorboard", (is_tensorboard_available, TENSORBOARD_IMPORT_ERROR)), - ("compel", (is_compel_available, COMPEL_IMPORT_ERROR)), - ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)), - ("torchsde", (is_torchsde_available, TORCHSDE_IMPORT_ERROR)), - ("invisible_watermark", (is_invisible_watermark_available, INVISIBLE_WATERMARK_IMPORT_ERROR)), - ] -) - - -def requires_backends(obj, backends): - if not isinstance(backends, (list, tuple)): - backends = [backends] - - name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__ - checks = (BACKENDS_MAPPING[backend] for backend in backends) - failed = [msg.format(name) for available, msg in checks if not available()] - if failed: - raise ImportError("".join(failed)) - - if name in [ - "VersatileDiffusionTextToImagePipeline", - "VersatileDiffusionPipeline", - "VersatileDiffusionDualGuidedPipeline", - "StableDiffusionImageVariationPipeline", - "UnCLIPPipeline", - ] and is_transformers_version("<", "4.25.0"): - raise ImportError( - f"You need to install `transformers>=4.25` in order to use {name}: \n```\n pip install" - " --upgrade transformers \n```" - ) - - if name in ["StableDiffusionDepth2ImgPipeline", "StableDiffusionPix2PixZeroPipeline"] and is_transformers_version( - "<", "4.26.0" - ): - raise ImportError( - f"You need to install `transformers>=4.26` in order to use {name}: \n```\n pip install" - " --upgrade transformers \n```" - ) - - -class DummyObject(type): - """ - Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by - `requires_backend` each time a user tries to access any method of that class. - """ - - def __getattr__(cls, key): - if key.startswith("_") and key != "_load_connected_pipes": - return super().__getattr__(cls, key) - requires_backends(cls, cls._backends) - - -# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319 -def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str): - """ - Args: - Compares a library version to some requirement using a given operation. - library_or_version (`str` or `packaging.version.Version`): - A library name or a version to check. - operation (`str`): - A string representation of an operator, such as `">"` or `"<="`. - requirement_version (`str`): - The version to compare the library version against - """ - if operation not in STR_OPERATION_TO_FUNC.keys(): - raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}") - operation = STR_OPERATION_TO_FUNC[operation] - if isinstance(library_or_version, str): - library_or_version = parse(importlib_metadata.version(library_or_version)) - return operation(library_or_version, parse(requirement_version)) - - -# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338 -def is_torch_version(operation: str, version: str): - """ - Args: - Compares the current PyTorch version to a given reference with an operation. - operation (`str`): - A string representation of an operator, such as `">"` or `"<="` - version (`str`): - A string version of PyTorch - """ - return compare_versions(parse(_torch_version), operation, version) - - -def is_transformers_version(operation: str, version: str): - """ - Args: - Compares the current Transformers version to a given reference with an operation. - operation (`str`): - A string representation of an operator, such as `">"` or `"<="` - version (`str`): - A version string - """ - if not _transformers_available: - return False - return compare_versions(parse(_transformers_version), operation, version) - - -def is_accelerate_version(operation: str, version: str): - """ - Args: - Compares the current Accelerate version to a given reference with an operation. - operation (`str`): - A string representation of an operator, such as `">"` or `"<="` - version (`str`): - A version string - """ - if not _accelerate_available: - return False - return compare_versions(parse(_accelerate_version), operation, version) - - -def is_k_diffusion_version(operation: str, version: str): - """ - Args: - Compares the current k-diffusion version to a given reference with an operation. - operation (`str`): - A string representation of an operator, such as `">"` or `"<="` - version (`str`): - A version string - """ - if not _k_diffusion_available: - return False - return compare_versions(parse(_k_diffusion_version), operation, version) - - -class OptionalDependencyNotAvailable(BaseException): - """An error indicating that an optional dependency of Diffusers was not found in the environment.""" diff --git a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/utils/custom_init_isort.py b/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/utils/custom_init_isort.py deleted file mode 100644 index f8ef799c5e6c83f864bc0db06f874324342802c5..0000000000000000000000000000000000000000 --- a/spaces/Androidonnxfork/CivitAi-to-Diffusers/diffusers/utils/custom_init_isort.py +++ /dev/null @@ -1,252 +0,0 @@ -# coding=utf-8 -# Copyright 2023 The HuggingFace Inc. team. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import argparse -import os -import re - - -PATH_TO_TRANSFORMERS = "src/diffusers" - -# Pattern that looks at the indentation in a line. -_re_indent = re.compile(r"^(\s*)\S") -# Pattern that matches `"key":" and puts `key` in group 0. -_re_direct_key = re.compile(r'^\s*"([^"]+)":') -# Pattern that matches `_import_structure["key"]` and puts `key` in group 0. -_re_indirect_key = re.compile(r'^\s*_import_structure\["([^"]+)"\]') -# Pattern that matches `"key",` and puts `key` in group 0. -_re_strip_line = re.compile(r'^\s*"([^"]+)",\s*$') -# Pattern that matches any `[stuff]` and puts `stuff` in group 0. -_re_bracket_content = re.compile(r"\[([^\]]+)\]") - - -def get_indent(line): - """Returns the indent in `line`.""" - search = _re_indent.search(line) - return "" if search is None else search.groups()[0] - - -def split_code_in_indented_blocks(code, indent_level="", start_prompt=None, end_prompt=None): - """ - Split `code` into its indented blocks, starting at `indent_level`. If provided, begins splitting after - `start_prompt` and stops at `end_prompt` (but returns what's before `start_prompt` as a first block and what's - after `end_prompt` as a last block, so `code` is always the same as joining the result of this function). - """ - # Let's split the code into lines and move to start_index. - index = 0 - lines = code.split("\n") - if start_prompt is not None: - while not lines[index].startswith(start_prompt): - index += 1 - blocks = ["\n".join(lines[:index])] - else: - blocks = [] - - # We split into blocks until we get to the `end_prompt` (or the end of the block). - current_block = [lines[index]] - index += 1 - while index < len(lines) and (end_prompt is None or not lines[index].startswith(end_prompt)): - if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level: - if len(current_block) > 0 and get_indent(current_block[-1]).startswith(indent_level + " "): - current_block.append(lines[index]) - blocks.append("\n".join(current_block)) - if index < len(lines) - 1: - current_block = [lines[index + 1]] - index += 1 - else: - current_block = [] - else: - blocks.append("\n".join(current_block)) - current_block = [lines[index]] - else: - current_block.append(lines[index]) - index += 1 - - # Adds current block if it's nonempty. - if len(current_block) > 0: - blocks.append("\n".join(current_block)) - - # Add final block after end_prompt if provided. - if end_prompt is not None and index < len(lines): - blocks.append("\n".join(lines[index:])) - - return blocks - - -def ignore_underscore(key): - "Wraps a `key` (that maps an object to string) to lower case and remove underscores." - - def _inner(x): - return key(x).lower().replace("_", "") - - return _inner - - -def sort_objects(objects, key=None): - "Sort a list of `objects` following the rules of isort. `key` optionally maps an object to a str." - - # If no key is provided, we use a noop. - def noop(x): - return x - - if key is None: - key = noop - # Constants are all uppercase, they go first. - constants = [obj for obj in objects if key(obj).isupper()] - # Classes are not all uppercase but start with a capital, they go second. - classes = [obj for obj in objects if key(obj)[0].isupper() and not key(obj).isupper()] - # Functions begin with a lowercase, they go last. - functions = [obj for obj in objects if not key(obj)[0].isupper()] - - key1 = ignore_underscore(key) - return sorted(constants, key=key1) + sorted(classes, key=key1) + sorted(functions, key=key1) - - -def sort_objects_in_import(import_statement): - """ - Return the same `import_statement` but with objects properly sorted. - """ - - # This inner function sort imports between [ ]. - def _replace(match): - imports = match.groups()[0] - if "," not in imports: - return f"[{imports}]" - keys = [part.strip().replace('"', "") for part in imports.split(",")] - # We will have a final empty element if the line finished with a comma. - if len(keys[-1]) == 0: - keys = keys[:-1] - return "[" + ", ".join([f'"{k}"' for k in sort_objects(keys)]) + "]" - - lines = import_statement.split("\n") - if len(lines) > 3: - # Here we have to sort internal imports that are on several lines (one per name): - # key: [ - # "object1", - # "object2", - # ... - # ] - - # We may have to ignore one or two lines on each side. - idx = 2 if lines[1].strip() == "[" else 1 - keys_to_sort = [(i, _re_strip_line.search(line).groups()[0]) for i, line in enumerate(lines[idx:-idx])] - sorted_indices = sort_objects(keys_to_sort, key=lambda x: x[1]) - sorted_lines = [lines[x[0] + idx] for x in sorted_indices] - return "\n".join(lines[:idx] + sorted_lines + lines[-idx:]) - elif len(lines) == 3: - # Here we have to sort internal imports that are on one separate line: - # key: [ - # "object1", "object2", ... - # ] - if _re_bracket_content.search(lines[1]) is not None: - lines[1] = _re_bracket_content.sub(_replace, lines[1]) - else: - keys = [part.strip().replace('"', "") for part in lines[1].split(",")] - # We will have a final empty element if the line finished with a comma. - if len(keys[-1]) == 0: - keys = keys[:-1] - lines[1] = get_indent(lines[1]) + ", ".join([f'"{k}"' for k in sort_objects(keys)]) - return "\n".join(lines) - else: - # Finally we have to deal with imports fitting on one line - import_statement = _re_bracket_content.sub(_replace, import_statement) - return import_statement - - -def sort_imports(file, check_only=True): - """ - Sort `_import_structure` imports in `file`, `check_only` determines if we only check or overwrite. - """ - with open(file, "r") as f: - code = f.read() - - if "_import_structure" not in code: - return - - # Blocks of indent level 0 - main_blocks = split_code_in_indented_blocks( - code, start_prompt="_import_structure = {", end_prompt="if TYPE_CHECKING:" - ) - - # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). - for block_idx in range(1, len(main_blocks) - 1): - # Check if the block contains some `_import_structure`s thingy to sort. - block = main_blocks[block_idx] - block_lines = block.split("\n") - - # Get to the start of the imports. - line_idx = 0 - while line_idx < len(block_lines) and "_import_structure" not in block_lines[line_idx]: - # Skip dummy import blocks - if "import dummy" in block_lines[line_idx]: - line_idx = len(block_lines) - else: - line_idx += 1 - if line_idx >= len(block_lines): - continue - - # Ignore beginning and last line: they don't contain anything. - internal_block_code = "\n".join(block_lines[line_idx:-1]) - indent = get_indent(block_lines[1]) - # Slit the internal block into blocks of indent level 1. - internal_blocks = split_code_in_indented_blocks(internal_block_code, indent_level=indent) - # We have two categories of import key: list or _import_structure[key].append/extend - pattern = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key - # Grab the keys, but there is a trap: some lines are empty or just comments. - keys = [(pattern.search(b).groups()[0] if pattern.search(b) is not None else None) for b in internal_blocks] - # We only sort the lines with a key. - keys_to_sort = [(i, key) for i, key in enumerate(keys) if key is not None] - sorted_indices = [x[0] for x in sorted(keys_to_sort, key=lambda x: x[1])] - - # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. - count = 0 - reordered_blocks = [] - for i in range(len(internal_blocks)): - if keys[i] is None: - reordered_blocks.append(internal_blocks[i]) - else: - block = sort_objects_in_import(internal_blocks[sorted_indices[count]]) - reordered_blocks.append(block) - count += 1 - - # And we put our main block back together with its first and last line. - main_blocks[block_idx] = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]]) - - if code != "\n".join(main_blocks): - if check_only: - return True - else: - print(f"Overwriting {file}.") - with open(file, "w") as f: - f.write("\n".join(main_blocks)) - - -def sort_imports_in_all_inits(check_only=True): - failures = [] - for root, _, files in os.walk(PATH_TO_TRANSFORMERS): - if "__init__.py" in files: - result = sort_imports(os.path.join(root, "__init__.py"), check_only=check_only) - if result: - failures = [os.path.join(root, "__init__.py")] - if len(failures) > 0: - raise ValueError(f"Would overwrite {len(failures)} files, run `make style`.") - - -if __name__ == "__main__": - parser = argparse.ArgumentParser() - parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") - args = parser.parse_args() - - sort_imports_in_all_inits(check_only=args.check_only) diff --git a/spaces/Andy1621/uniformer_image_detection/configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py deleted file mode 100644 index 5ac908e60c1f964bdd6c3e61933a37c04d487bfb..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py +++ /dev/null @@ -1,8 +0,0 @@ -_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py' -model = dict( - backbone=dict(plugins=[ - dict( - cfg=dict(type='ContextBlock', ratio=1. / 4), - stages=(False, True, True, True), - position='after_conv3') - ])) diff --git a/spaces/Andy1621/uniformer_image_detection/configs/gfl/README.md b/spaces/Andy1621/uniformer_image_detection/configs/gfl/README.md deleted file mode 100644 index 53ae22b75642130b229ea8982345384792f5d3a2..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/gfl/README.md +++ /dev/null @@ -1,32 +0,0 @@ -# Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection - -## Introduction - -[ALGORITHM] - -We provide config files to reproduce the object detection results in the paper [Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection](https://arxiv.org/abs/2006.04388) - -```latex -@article{li2020generalized, - title={Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection}, - author={Li, Xiang and Wang, Wenhai and Wu, Lijun and Chen, Shuo and Hu, Xiaolin and Li, Jun and Tang, Jinhui and Yang, Jian}, - journal={arXiv preprint arXiv:2006.04388}, - year={2020} -} -``` - -## Results and Models - -| Backbone | Style | Lr schd | Multi-scale Training| Inf time (fps) | box AP | Config | Download | -|:-----------------:|:-------:|:-------:|:-------------------:|:--------------:|:------:|:------:|:--------:| -| R-50 | pytorch | 1x | No | 19.5 | 40.2 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_r50_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_1x_coco/gfl_r50_fpn_1x_coco_20200629_121244-25944287.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_1x_coco/gfl_r50_fpn_1x_coco_20200629_121244.log.json) | -| R-50 | pytorch | 2x | Yes | 19.5 | 42.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_r50_fpn_mstrain_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_mstrain_2x_coco/gfl_r50_fpn_mstrain_2x_coco_20200629_213802-37bb1edc.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_mstrain_2x_coco/gfl_r50_fpn_mstrain_2x_coco_20200629_213802.log.json) | -| R-101 | pytorch | 2x | Yes | 14.7 | 44.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_r101_fpn_mstrain_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126.log.json) | -| R-101-dcnv2 | pytorch | 2x | Yes | 12.9 | 47.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002.log.json) | -| X-101-32x4d | pytorch | 2x | Yes | 12.1 | 45.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco/gfl_x101_32x4d_fpn_mstrain_2x_coco_20200630_102002-50c1ffdb.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco/gfl_x101_32x4d_fpn_mstrain_2x_coco_20200630_102002.log.json) | -| X-101-32x4d-dcnv2 | pytorch | 2x | Yes | 10.7 | 48.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco_20200630_102002-14a2bf25.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco_20200630_102002.log.json) | - -[1] *1x and 2x mean the model is trained for 90K and 180K iterations, respectively.* \ -[2] *All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..* \ -[3] *`dcnv2` denotes deformable convolutional networks v2.* \ -[4] *FPS is tested with a single GeForce RTX 2080Ti GPU, using a batch size of 1.* diff --git a/spaces/Andy1621/uniformer_image_detection/configs/instaboost/cascade_mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/instaboost/cascade_mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py deleted file mode 100644 index 7cf5f307442e56b29460fb5477cef64bfd3476b9..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/instaboost/cascade_mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py +++ /dev/null @@ -1,13 +0,0 @@ -_base_ = './cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py' -model = dict( - pretrained='open-mmlab://resnext101_64x4d', - backbone=dict( - type='ResNeXt', - depth=101, - groups=64, - base_width=4, - num_stages=4, - out_indices=(0, 1, 2, 3), - frozen_stages=1, - norm_cfg=dict(type='BN', requires_grad=True), - style='pytorch')) diff --git a/spaces/Andy1621/uniformer_image_detection/configs/rpn/rpn_x101_32x4d_fpn_1x_coco.py b/spaces/Andy1621/uniformer_image_detection/configs/rpn/rpn_x101_32x4d_fpn_1x_coco.py deleted file mode 100644 index 83bd70032cb24be6b96f988522ef84f7b4cc0e6a..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_detection/configs/rpn/rpn_x101_32x4d_fpn_1x_coco.py +++ /dev/null @@ -1,13 +0,0 @@ -_base_ = './rpn_r50_fpn_1x_coco.py' -model = dict( - pretrained='open-mmlab://resnext101_32x4d', - backbone=dict( - type='ResNeXt', - depth=101, - groups=32, - base_width=4, - num_stages=4, - out_indices=(0, 1, 2, 3), - frozen_stages=1, - norm_cfg=dict(type='BN', requires_grad=True), - style='pytorch')) diff --git a/spaces/Andy1621/uniformer_image_segmentation/configs/ann/ann_r50-d8_769x769_40k_cityscapes.py b/spaces/Andy1621/uniformer_image_segmentation/configs/ann/ann_r50-d8_769x769_40k_cityscapes.py deleted file mode 100644 index 4912bdb9fb298518ae084eb7df0ad22d3e4ff84f..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_segmentation/configs/ann/ann_r50-d8_769x769_40k_cityscapes.py +++ /dev/null @@ -1,9 +0,0 @@ -_base_ = [ - '../_base_/models/ann_r50-d8.py', - '../_base_/datasets/cityscapes_769x769.py', '../_base_/default_runtime.py', - '../_base_/schedules/schedule_40k.py' -] -model = dict( - decode_head=dict(align_corners=True), - auxiliary_head=dict(align_corners=True), - test_cfg=dict(mode='slide', crop_size=(769, 769), stride=(513, 513))) diff --git a/spaces/Andy1621/uniformer_image_segmentation/configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py b/spaces/Andy1621/uniformer_image_segmentation/configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py deleted file mode 100644 index 58f28b43f55f54c7a604960735963e6b7c13b6f1..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_segmentation/configs/emanet/emanet_r101-d8_512x1024_80k_cityscapes.py +++ /dev/null @@ -1,2 +0,0 @@ -_base_ = './emanet_r50-d8_512x1024_80k_cityscapes.py' -model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101)) diff --git a/spaces/Andy1621/uniformer_image_segmentation/configs/hrnet/fcn_hr18s_512x1024_40k_cityscapes.py b/spaces/Andy1621/uniformer_image_segmentation/configs/hrnet/fcn_hr18s_512x1024_40k_cityscapes.py deleted file mode 100644 index 4e31d26e093b6cb2d59b24bb3060c92bd7dccdea..0000000000000000000000000000000000000000 --- a/spaces/Andy1621/uniformer_image_segmentation/configs/hrnet/fcn_hr18s_512x1024_40k_cityscapes.py +++ /dev/null @@ -1,9 +0,0 @@ -_base_ = './fcn_hr18_512x1024_40k_cityscapes.py' -model = dict( - pretrained='open-mmlab://msra/hrnetv2_w18_small', - backbone=dict( - extra=dict( - stage1=dict(num_blocks=(2, )), - stage2=dict(num_blocks=(2, 2)), - stage3=dict(num_modules=3, num_blocks=(2, 2, 2)), - stage4=dict(num_modules=2, num_blocks=(2, 2, 2, 2))))) diff --git a/spaces/AnnonSubmission/xai-cl/ssl_models/simsiam.py b/spaces/AnnonSubmission/xai-cl/ssl_models/simsiam.py deleted file mode 100644 index 2e55787cd6af24c82967878b94bcc168280a6995..0000000000000000000000000000000000000000 --- a/spaces/AnnonSubmission/xai-cl/ssl_models/simsiam.py +++ /dev/null @@ -1,91 +0,0 @@ -import torch -import torch.nn as nn -import torchvision -device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - -"""from https://github.com/facebookresearch/simsiam""" - -class SimSiam(nn.Module): - - def __init__(self, base_encoder, dim, pred_dim): - """ - dim: feature dimension (default: 2048) - pred_dim: hidden dimension of the predictor (default: 512) - symetric is True only when training - """ - super(SimSiam, self).__init__() - - # create the encoder - # num_classes is the output fc dimension, zero-initialize last BNs - self.encoder = base_encoder(num_classes=dim, zero_init_residual=True) - - # build a 3-layer projector - prev_dim = self.encoder.fc.weight.shape[1] - self.encoder.fc = nn.Sequential(nn.Linear(prev_dim, prev_dim, bias=False), - nn.BatchNorm1d(prev_dim), - nn.ReLU(inplace=True), # first layer - nn.Linear(prev_dim, prev_dim, bias=False), - nn.BatchNorm1d(prev_dim), - nn.ReLU(inplace=True), # second layer - self.encoder.fc, - nn.BatchNorm1d(dim, affine=False)) # output layer - self.encoder.fc[6].bias.requires_grad = False # hack: not use bias as it is followed by BN - - # build a 2-layer predictor - self.predictor = nn.Sequential(nn.Linear(dim, pred_dim, bias=False), - nn.BatchNorm1d(pred_dim), - nn.ReLU(inplace=True), # hidden layer - nn.Linear(pred_dim, dim)) # output layer - - def forward(self, x1, x2): - z1 = self.encoder(x1).detach() # NxC - z2 = self.encoder(x2).detach() # NxC - - p1 = self.predictor(z1) # NxC - p2 = self.predictor(z2) # NxC - - loss = -(nn.CosineSimilarity(dim=1)(p1, z2).mean() + nn.CosineSimilarity(dim=1)(p2, z1).mean()) * 0.5 - - return loss - -class ResNet(nn.Module): - def __init__(self, backbone): - super().__init__() - - modules = list(backbone.children())[:-2] - self.net = nn.Sequential(*modules) - - def forward(self, x): - return self.net(x).mean(dim=[2, 3]) - -class RestructuredSimSiam(nn.Module): - def __init__(self, model): - super().__init__() - - self.encoder = ResNet(model.encoder) - self.mlp_encoder = model.encoder.fc - self.mlp_encoder[6].bias.requires_grad = False - self.contrastive_head = model.predictor - - def forward(self, x, run_head = True): - - x = self.mlp_encoder(self.encoder(x)) # don't detach since we will do backprop for explainability - - if run_head: - x = self.contrastive_head(x) - - return x - - -def get_simsiam(ckpt_path = 'checkpoint_0099.pth.tar'): - - model = SimSiam(base_encoder = torchvision.models.resnet50, - dim = 2048, - pred_dim = 512) - - checkpoint = torch.load('pretrained_models/simsiam_models/'+ ckpt_path, map_location='cpu') - state_dic = checkpoint['state_dict'] - state_dic = {k.replace("module.", ""): v for k, v in state_dic.items()} - model.load_state_dict(state_dic) - restructured_model = RestructuredSimSiam(model) - return restructured_model.to(device) diff --git a/spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/ops/deform_roi_pool.py b/spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/ops/deform_roi_pool.py deleted file mode 100644 index cc245ba91fee252226ba22e76bb94a35db9a629b..0000000000000000000000000000000000000000 --- a/spaces/Anonymous-sub/Rerender/ControlNet/annotator/uniformer/mmcv/ops/deform_roi_pool.py +++ /dev/null @@ -1,204 +0,0 @@ -# Copyright (c) OpenMMLab. All rights reserved. -from torch import nn -from torch.autograd import Function -from torch.autograd.function import once_differentiable -from torch.nn.modules.utils import _pair - -from ..utils import ext_loader - -ext_module = ext_loader.load_ext( - '_ext', ['deform_roi_pool_forward', 'deform_roi_pool_backward']) - - -class DeformRoIPoolFunction(Function): - - @staticmethod - def symbolic(g, input, rois, offset, output_size, spatial_scale, - sampling_ratio, gamma): - return g.op( - 'mmcv::MMCVDeformRoIPool', - input, - rois, - offset, - pooled_height_i=output_size[0], - pooled_width_i=output_size[1], - spatial_scale_f=spatial_scale, - sampling_ratio_f=sampling_ratio, - gamma_f=gamma) - - @staticmethod - def forward(ctx, - input, - rois, - offset, - output_size, - spatial_scale=1.0, - sampling_ratio=0, - gamma=0.1): - if offset is None: - offset = input.new_zeros(0) - ctx.output_size = _pair(output_size) - ctx.spatial_scale = float(spatial_scale) - ctx.sampling_ratio = int(sampling_ratio) - ctx.gamma = float(gamma) - - assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!' - - output_shape = (rois.size(0), input.size(1), ctx.output_size[0], - ctx.output_size[1]) - output = input.new_zeros(output_shape) - - ext_module.deform_roi_pool_forward( - input, - rois, - offset, - output, - pooled_height=ctx.output_size[0], - pooled_width=ctx.output_size[1], - spatial_scale=ctx.spatial_scale, - sampling_ratio=ctx.sampling_ratio, - gamma=ctx.gamma) - - ctx.save_for_backward(input, rois, offset) - return output - - @staticmethod - @once_differentiable - def backward(ctx, grad_output): - input, rois, offset = ctx.saved_tensors - grad_input = grad_output.new_zeros(input.shape) - grad_offset = grad_output.new_zeros(offset.shape) - - ext_module.deform_roi_pool_backward( - grad_output, - input, - rois, - offset, - grad_input, - grad_offset, - pooled_height=ctx.output_size[0], - pooled_width=ctx.output_size[1], - spatial_scale=ctx.spatial_scale, - sampling_ratio=ctx.sampling_ratio, - gamma=ctx.gamma) - if grad_offset.numel() == 0: - grad_offset = None - return grad_input, None, grad_offset, None, None, None, None - - -deform_roi_pool = DeformRoIPoolFunction.apply - - -class DeformRoIPool(nn.Module): - - def __init__(self, - output_size, - spatial_scale=1.0, - sampling_ratio=0, - gamma=0.1): - super(DeformRoIPool, self).__init__() - self.output_size = _pair(output_size) - self.spatial_scale = float(spatial_scale) - self.sampling_ratio = int(sampling_ratio) - self.gamma = float(gamma) - - def forward(self, input, rois, offset=None): - return deform_roi_pool(input, rois, offset, self.output_size, - self.spatial_scale, self.sampling_ratio, - self.gamma) - - -class DeformRoIPoolPack(DeformRoIPool): - - def __init__(self, - output_size, - output_channels, - deform_fc_channels=1024, - spatial_scale=1.0, - sampling_ratio=0, - gamma=0.1): - super(DeformRoIPoolPack, self).__init__(output_size, spatial_scale, - sampling_ratio, gamma) - - self.output_channels = output_channels - self.deform_fc_channels = deform_fc_channels - - self.offset_fc = nn.Sequential( - nn.Linear( - self.output_size[0] * self.output_size[1] * - self.output_channels, self.deform_fc_channels), - nn.ReLU(inplace=True), - nn.Linear(self.deform_fc_channels, self.deform_fc_channels), - nn.ReLU(inplace=True), - nn.Linear(self.deform_fc_channels, - self.output_size[0] * self.output_size[1] * 2)) - self.offset_fc[-1].weight.data.zero_() - self.offset_fc[-1].bias.data.zero_() - - def forward(self, input, rois): - assert input.size(1) == self.output_channels - x = deform_roi_pool(input, rois, None, self.output_size, - self.spatial_scale, self.sampling_ratio, - self.gamma) - rois_num = rois.size(0) - offset = self.offset_fc(x.view(rois_num, -1)) - offset = offset.view(rois_num, 2, self.output_size[0], - self.output_size[1]) - return deform_roi_pool(input, rois, offset, self.output_size, - self.spatial_scale, self.sampling_ratio, - self.gamma) - - -class ModulatedDeformRoIPoolPack(DeformRoIPool): - - def __init__(self, - output_size, - output_channels, - deform_fc_channels=1024, - spatial_scale=1.0, - sampling_ratio=0, - gamma=0.1): - super(ModulatedDeformRoIPoolPack, - self).__init__(output_size, spatial_scale, sampling_ratio, gamma) - - self.output_channels = output_channels - self.deform_fc_channels = deform_fc_channels - - self.offset_fc = nn.Sequential( - nn.Linear( - self.output_size[0] * self.output_size[1] * - self.output_channels, self.deform_fc_channels), - nn.ReLU(inplace=True), - nn.Linear(self.deform_fc_channels, self.deform_fc_channels), - nn.ReLU(inplace=True), - nn.Linear(self.deform_fc_channels, - self.output_size[0] * self.output_size[1] * 2)) - self.offset_fc[-1].weight.data.zero_() - self.offset_fc[-1].bias.data.zero_() - - self.mask_fc = nn.Sequential( - nn.Linear( - self.output_size[0] * self.output_size[1] * - self.output_channels, self.deform_fc_channels), - nn.ReLU(inplace=True), - nn.Linear(self.deform_fc_channels, - self.output_size[0] * self.output_size[1] * 1), - nn.Sigmoid()) - self.mask_fc[2].weight.data.zero_() - self.mask_fc[2].bias.data.zero_() - - def forward(self, input, rois): - assert input.size(1) == self.output_channels - x = deform_roi_pool(input, rois, None, self.output_size, - self.spatial_scale, self.sampling_ratio, - self.gamma) - rois_num = rois.size(0) - offset = self.offset_fc(x.view(rois_num, -1)) - offset = offset.view(rois_num, 2, self.output_size[0], - self.output_size[1]) - mask = self.mask_fc(x.view(rois_num, -1)) - mask = mask.view(rois_num, 1, self.output_size[0], self.output_size[1]) - d = deform_roi_pool(input, rois, offset, self.output_size, - self.spatial_scale, self.sampling_ratio, - self.gamma) - return d * mask diff --git a/spaces/Apex-X/GODROOP/roop/processors/frame/face_enhancer.py b/spaces/Apex-X/GODROOP/roop/processors/frame/face_enhancer.py deleted file mode 100644 index ba920dcc142a40462c68c22bad86811c6a30f973..0000000000000000000000000000000000000000 --- a/spaces/Apex-X/GODROOP/roop/processors/frame/face_enhancer.py +++ /dev/null @@ -1,81 +0,0 @@ -from typing import Any, List, Callable -import cv2 -import threading -import gfpgan - -import roop.globals -import roop.processors.frame.core -from roop.core import update_status -from roop.face_analyser import get_one_face -from roop.typing import Frame, Face -from roop.utilities import conditional_download, resolve_relative_path, is_image, is_video - -FACE_ENHANCER = None -THREAD_SEMAPHORE = threading.Semaphore() -THREAD_LOCK = threading.Lock() -NAME = 'ROOP.FACE-ENHANCER' - - -def get_face_enhancer() -> Any: - global FACE_ENHANCER - - with THREAD_LOCK: - if FACE_ENHANCER is None: - model_path = resolve_relative_path('../models/GFPGANv1.4') - # todo: set models path https://github.com/TencentARC/GFPGAN/issues/399 - FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1) # type: ignore[attr-defined] - return FACE_ENHANCER - - -def pre_check() -> bool: - download_directory_path = resolve_relative_path('../models') - conditional_download(download_directory_path, ['https://huggingface.co/th2w33knd/GFPGANv1.4/resolve/main/GFPGANv1.4.pth']) - return True - - -def pre_start() -> bool: - if not is_image(roop.globals.target_path) and not is_video(roop.globals.target_path): - update_status('Select an image or video for target path.', NAME) - return False - return True - - -def post_process() -> None: - global FACE_ENHANCER - - FACE_ENHANCER = None - - -def enhance_face(temp_frame: Frame) -> Frame: - with THREAD_SEMAPHORE: - _, _, temp_frame = get_face_enhancer().enhance( - temp_frame, - paste_back=True - ) - return temp_frame - - -def process_frame(source_face: Face, temp_frame: Frame) -> Frame: - target_face = get_one_face(temp_frame) - if target_face: - temp_frame = enhance_face(temp_frame) - return temp_frame - - -def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None: - for temp_frame_path in temp_frame_paths: - temp_frame = cv2.imread(temp_frame_path) - result = process_frame(None, temp_frame) - cv2.imwrite(temp_frame_path, result) - if update: - update() - - -def process_image(source_path: str, target_path: str, output_path: str) -> None: - target_frame = cv2.imread(target_path) - result = process_frame(None, target_frame) - cv2.imwrite(output_path, result) - - -def process_video(source_path: str, temp_frame_paths: List[str]) -> None: - roop.processors.frame.core.process_video(None, temp_frame_paths, process_frames) diff --git a/spaces/Arnx/MusicGenXvAKN/tests/data/test_audio_utils.py b/spaces/Arnx/MusicGenXvAKN/tests/data/test_audio_utils.py deleted file mode 100644 index 0480671bb17281d61ce02bce6373a5ccec89fece..0000000000000000000000000000000000000000 --- a/spaces/Arnx/MusicGenXvAKN/tests/data/test_audio_utils.py +++ /dev/null @@ -1,110 +0,0 @@ -# Copyright (c) Meta Platforms, Inc. and affiliates. -# All rights reserved. -# -# This source code is licensed under the license found in the -# LICENSE file in the root directory of this source tree. - -import julius -import torch -import pytest - -from audiocraft.data.audio_utils import ( - _clip_wav, - convert_audio_channels, - convert_audio, - normalize_audio -) -from ..common_utils import get_batch_white_noise - - -class TestConvertAudioChannels: - - def test_convert_audio_channels_downmix(self): - b, c, t = 2, 3, 100 - audio = get_batch_white_noise(b, c, t) - mixed = convert_audio_channels(audio, channels=2) - assert list(mixed.shape) == [b, 2, t] - - def test_convert_audio_channels_nochange(self): - b, c, t = 2, 3, 100 - audio = get_batch_white_noise(b, c, t) - mixed = convert_audio_channels(audio, channels=c) - assert list(mixed.shape) == list(audio.shape) - - def test_convert_audio_channels_upmix(self): - b, c, t = 2, 1, 100 - audio = get_batch_white_noise(b, c, t) - mixed = convert_audio_channels(audio, channels=3) - assert list(mixed.shape) == [b, 3, t] - - def test_convert_audio_channels_upmix_error(self): - b, c, t = 2, 2, 100 - audio = get_batch_white_noise(b, c, t) - with pytest.raises(ValueError): - convert_audio_channels(audio, channels=3) - - -class TestConvertAudio: - - def test_convert_audio_channels_downmix(self): - b, c, dur = 2, 3, 4. - sr = 128 - audio = get_batch_white_noise(b, c, int(sr * dur)) - out = convert_audio(audio, from_rate=sr, to_rate=sr, to_channels=2) - assert list(out.shape) == [audio.shape[0], 2, audio.shape[-1]] - - def test_convert_audio_channels_upmix(self): - b, c, dur = 2, 1, 4. - sr = 128 - audio = get_batch_white_noise(b, c, int(sr * dur)) - out = convert_audio(audio, from_rate=sr, to_rate=sr, to_channels=3) - assert list(out.shape) == [audio.shape[0], 3, audio.shape[-1]] - - def test_convert_audio_upsample(self): - b, c, dur = 2, 1, 4. - sr = 2 - new_sr = 3 - audio = get_batch_white_noise(b, c, int(sr * dur)) - out = convert_audio(audio, from_rate=sr, to_rate=new_sr, to_channels=c) - out_j = julius.resample.resample_frac(audio, old_sr=sr, new_sr=new_sr) - assert torch.allclose(out, out_j) - - def test_convert_audio_resample(self): - b, c, dur = 2, 1, 4. - sr = 3 - new_sr = 2 - audio = get_batch_white_noise(b, c, int(sr * dur)) - out = convert_audio(audio, from_rate=sr, to_rate=new_sr, to_channels=c) - out_j = julius.resample.resample_frac(audio, old_sr=sr, new_sr=new_sr) - assert torch.allclose(out, out_j) - - -class TestNormalizeAudio: - - def test_clip_wav(self): - b, c, dur = 2, 1, 4. - sr = 3 - audio = 10.0 * get_batch_white_noise(b, c, int(sr * dur)) - _clip_wav(audio) - assert audio.abs().max() <= 1 - - def test_normalize_audio_clip(self): - b, c, dur = 2, 1, 4. - sr = 3 - audio = 10.0 * get_batch_white_noise(b, c, int(sr * dur)) - norm_audio = normalize_audio(audio, strategy='clip') - assert norm_audio.abs().max() <= 1 - - def test_normalize_audio_rms(self): - b, c, dur = 2, 1, 4. - sr = 3 - audio = 10.0 * get_batch_white_noise(b, c, int(sr * dur)) - norm_audio = normalize_audio(audio, strategy='rms') - assert norm_audio.abs().max() <= 1 - - def test_normalize_audio_peak(self): - b, c, dur = 2, 1, 4. - sr = 3 - audio = 10.0 * get_batch_white_noise(b, c, int(sr * dur)) - norm_audio = normalize_audio(audio, strategy='peak') - assert norm_audio.abs().max() <= 1 diff --git a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/pyparsing/diagram/__init__.py b/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/pyparsing/diagram/__init__.py deleted file mode 100644 index 1506d66bf4e93afb60ad46c23f234b31c46b3a7e..0000000000000000000000000000000000000000 --- a/spaces/Ataturk-Chatbot/HuggingFaceChat/venv/lib/python3.11/site-packages/pip/_vendor/pyparsing/diagram/__init__.py +++ /dev/null @@ -1,642 +0,0 @@ -import railroad -from pip._vendor import pyparsing -import typing -from typing import ( - List, - NamedTuple, - Generic, - TypeVar, - Dict, - Callable, - Set, - Iterable, -) -from jinja2 import Template -from io import StringIO -import inspect - - -jinja2_template_source = """\ - - - - {% if not head %} - - {% else %} - {{ head | safe }} - {% endif %} - - -{{ body | safe }} -{% for diagram in diagrams %} -¿Necesitas un vídeo mp4 ficticio para probar tus funciones y funciones relacionadas con el vídeo? Si es así, no estás solo. Muchos desarrolladores, diseñadores, probadores y usuarios necesitan videos de muestra para verificar el rendimiento, la calidad, la compatibilidad y la funcionalidad de sus aplicaciones de video, sitios web, software y dispositivos. En este artículo, le mostraremos cómo descargar video mp4 dummy de diferentes sitios web y cómo usarlo para diversos propósitos de prueba.
-Un vídeo mp4 dummy es un archivo de vídeo de muestra que tiene diferentes resoluciones y tamaños. Por ejemplo, puede encontrar videos mp4 ficticios con resoluciones que van desde 144p a 1080p y tamaños que van desde unos pocos KBs a varios MBs. Un video mp4 ficticio generalmente tiene un contenido genérico que no está relacionado con ningún tema o tema específico. Puede ser una animación simple, un patrón de color, un mensaje de texto o un clip aleatorio.
-Download ✑ https://bltlly.com/2v6KpX
Un video mp4 ficticio es útil para probar varios aspectos de la reproducción, diseño y desarrollo de video en diferentes dispositivos y plataformas. Por ejemplo, puede usar un video mp4 ficticio para probar cómo su aplicación de video o sitio web maneja diferentes resoluciones, relaciones de aspecto, velocidades de búfer y problemas de compatibilidad. También puede usar un video mp4 ficticio para probar cómo sus herramientas de edición, codificación, transcodificación, compresión y conversión de video y software funcionan con diferentes formatos y calidades. Un vídeo mp4 ficticio puede ayudarte a identificar y solucionar cualquier problema o error que pueda ocurrir con tus funciones y funciones relacionadas con el vídeo.
-Algunos ejemplos de sitios web que ofrecen videos de muestra gratuitos para descargar son Sample-Videos.com, Learning Container y Gist. Estos sitios web tienen una variedad de videos de muestra en diferentes formatos, resoluciones, tamaños y duraciones. Puede descargarlos directamente de sus sitios web o utilizar sus enlaces para descargarlos de otras fuentes. Aquí hay una tabla que muestra algunos de los videos de muestra disponibles en estos sitios web:
-Los pasos para descargar video mp4 dummy desde diferentes sitios web pueden variar dependiendo del sitio web, pero generalmente implican copiar la URL del video y pegarlo en una herramienta de descarga. Una herramienta de descarga es un software o un sitio web que le permite descargar vídeos de varias fuentes mediante la introducción de sus direcciones URL. Algunos ejemplos de herramientas de descarga son SaveFrom.net, Y2mate.com y OnlineVideoConverter.com. Estos son los pasos comunes para descargar vídeo mp4 dummy usando una herramienta de descarga:
-Algunos sitios web que ofrecen videos de muestra le permiten elegir el formato y la calidad del video antes de descargarlo. Por ejemplo, Sample-Videos.com le permite seleccionar entre diferentes resoluciones y tamaños de vídeos mp4. Learning Container le permite seleccionar entre diferentes resoluciones de vídeos mp4. Gist le permite seleccionar entre diferentes resoluciones y formatos de vídeos.
-Otros sitios web ofrecen opciones predefinidas para descargar videos de muestra. Por ejemplo, SaveFrom.net proporciona una lista de formatos y calidades disponibles para cada URL de vídeo que introduzca. Y2mate.com proporciona una lista de formatos y tamaños disponibles para cada URL de vídeo que introduzca. OnlineVideoConverter.com proporciona una lista de formatos disponibles para cada URL de vídeo que introduzca.
-El vídeo mp4 dummy se puede utilizar para probar varios aspectos de la reproducción de vídeo en diferentes dispositivos y plataformas. Por ejemplo, puede usar un video mp4 ficticio para probar cómo su aplicación de video o sitio web maneja diferentes resoluciones, relaciones de aspecto, velocidades de almacenamiento en búfer y problemas de compatibilidad en varios navegadores, sistemas operativos y dispositivos. También puede utilizar un vídeo mp4 ficticio para probar cómo su reproductor de vídeo o dispositivo muestra diferentes calidades y formatos de vídeos.
-Dummy mp4 video es un recurso útil para probar características y funciones relacionadas con el video. Se puede descargar fácilmente desde varios sitios web utilizando sencillos pasos. Se puede utilizar para diversos fines, como el diseño, desarrollo, edición y optimización de vídeos. Mediante el uso de vídeo mp4 dummy, puede asegurarse de que sus aplicaciones de vídeo, sitios web, software y dispositivos funcionan sin problemas y de manera eficiente.
-Algunos formatos de vídeo comunes además de mp4 son AVI, WMV, MOV, MKV, FLV, WEBM y MPEG. Cada formato tiene sus propias ventajas y desventajas en términos de calidad, compatibilidad y tamaño de archivo.
- -Algunos sitios web populares de transmisión de video que admiten formato mp4 son YouTube, Vimeo, Dailymotion, Facebook e Instagram. Estos sitios web permiten a los usuarios subir y ver vídeos en formato mp4.
-Algunas ventajas del formato mp4 son que tiene alta calidad, bajo tamaño de archivo, amplia compatibilidad y admite múltiples transmisiones de audio y video. Algunas desventajas del formato mp4 son que puede no soportar algunos codecs o características, puede estar dañado o dañado fácilmente, y puede tener problemas de licencia.
-Para convertir otros formatos de video a formato mp4, puede usar herramientas o software de conversión de video en línea o fuera de línea. Las herramientas de conversión de video en línea son sitios web que le permiten cargar su archivo de video y elegir el formato de salida y la calidad. Software convertidor de vídeo sin conexión son programas que se pueden instalar en el ordenador y utilizar para convertir el archivo de vídeo. Algunos ejemplos de herramientas de conversión de video en línea son CloudConvert.com, Online-Convert.com y Zamzar.com. Algunos ejemplos de software de conversión de vídeo sin conexión son HandBrake, VLC Media Player y Freemake Video Converter.
- -Para reducir el tamaño del archivo de videos mp4, puede usar herramientas o software de compresor de video en línea o fuera de línea. Herramientas de compresor de vídeo en línea son sitios web que le permiten subir su archivo de vídeo y elegir el tamaño de salida y la calidad. Software compresor de vídeo sin conexión son programas que se pueden instalar en el ordenador y utilizar para comprimir el archivo de vídeo. Algunos ejemplos de herramientas de compresor de vídeo online son Compressify.io, YouCompress.com y Clideo.com. Algunos ejemplos de software de compresor de vídeo sin conexión son WinX Video Converter, Free Video Compressor y Any Video Converter.
64aa2da5cf